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ABSTRACT 

TERAHERTZ TIME DOMAIN METHODS FOR MATERIAL CHARACTERIZATION OF 

LAYERED DIELECITRIC MEDIA 

 

By 

Jose Ale Hejase 

Material characterization methods for layered dielectric media are highly sought after in many 

fields including nondestructive evaluation, structural health monitoring, security imaging, 

biological tissue inspection and agricultural and industrial quality assurance. On the other hand, 

the still under-explored Terahertz frequency range shows great promise and advantages for 

imaging and spectroscopy. As such, this dissertation provides a library of material parameter 

extraction tools of single and multiple layered dielectric mediums for different circumstances and 

using a variety of measurement and analysis criteria. The conditions required for using each 

characterization method are laid out. The background theory of the methods is based upon 

electromagnetic waves transmission and reflection phenomena at interfaces, wave propagation 

and Fourier optics. Because material characterization is an inverse problem solution, 

optimization and root finding methods were required to that effect. The optimization method 

utilized was the Nelder-Mead Simplex method while the root finding method was the Secant 

method. The inverse problem solution setups and special considerations for each of the 

characterization tools are presented. The operation validation and material characterization 

examples for each method are demonstrated. Additionally, the limitations of the methods are 

discussed along with error analysis pertaining to crucial input parameters. On the other hand, a 

measurement component for fine spatial resolution interrogation is designed, fabricated and 

tested. This component can be used in conjunction with the methods presented in this research 

study for simultaneous imaging and spectroscopy/material characterization of structures. The 



possible future investigation routes related to the research presented in this dissertation are 

discussed in the conclusion.                                                                                                       .
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CHAPTER 1 

INTRODUCTION 

 

1.1 Terahertz Nondestructive Evaluation 

1.1.1 Definition 

Until recently, the wide Terahertz (THz) frequency spectrum (0.1 to 10 THz) has been one of 

the least explored sections of the Electromagnetic spectrum due to the lack of availability of THz 

sources and detectors. However, because of recent technological advances combining optical and 

electronic systems, THz systems have been significantly advanced. The mechanism utilized in 

most of these developments involves the use of mode-locking femtosecond lasers in order to 

excite photoconductive switches which generate THz radiation [1]. 

The use of THz radiation can have major benefits in many areas such as high frequency 

circuits, spectroscopy, imaging, high bandwidth communications and different types of sensing. 

However, such uses are still in their infancy. Several reasons are behind this lag. Partly, the 

inability to generate THz signals efficiently until the past two decades. Also, THz systems were 

not commercia1lly available except until this past decade. Moreover, THz systems are 

expensive, bulky and require significant upkeep. Research groups carrying out research in the 

THz spectrum are few in number and thus the know-how and the availablility of necessary tools 

is still limited [2]. As a result, further investigations in this spectral region will prove to be very 

useful towards utilizing THz radiation to its full capacity in many applications. 

One of the emerging fields of THz is the use of THz radiation for nondestructive evaluation 

(NDE).  THz NDE revolves around the development of techniques to examine structures and 

specimens without putting the integrity of the specimen in jeopardy. The area of NDE includes 
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measurement techniques, signal processing and data analysis. An example of an NDE system is 

shown in Figure 1-1.  Here a sample containing a defect is interrogated with a wave, in this case 

a THz wave, using a quasi-optical setup. The interaction of the sample with the wave is then 

recorded using a measurement transducer. The measured interactions in addition to the excitation 

signal are then processed and analyzed. The result of the processing may be in the form of flaw 

detection or flaw characterization. 

 
Figure 1-1. Typical NDE system (“For interpretation of the references to color in this and all 

other figures, the reader is referred to the electronic version of this dissertation.”) 
 

Interest in the use of THz for NDE is due to several reasons. First, material spectral 

fingerprints are very abundant in the THz frequency range making THz radiation very attractive 

for use in material spectroscopy. Second, THz radiation is known to be non-ionizing and thus is 

safer for biomedical (and biological studies) applications than X-rays. Third, the wavelengths at 

THz frequencies are smaller than at microwave frequencies thus resulting in higher resolution 

imaging when compared to more common microwave imaging techniques. Fourth, a wide 

variety of materials (e.g., paper, plastics, dielectric composites, etc.) are transparent at THz 

frequencies making THz attractive for use in NDE of such materials and structures. Fifth, while 
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highly conducting materials are not transparent at THz frequencies, THz radiation can be used to 

examine their surface (e.g., roughness, corrosion, oxidation, etc) or coatings on these surfaces. 

All these different reasons infer the applicability of THz radiation for NDE applications spanning 

and not limited to: security applications, bio-imaging, spectroscopy, moisture content 

examination, material characterization and composite materials inspection [3]. Figure 1-2 shows 

an example of using THz radiation for monitoring the moisture content of a leaf as a function of 

drying-time. The amplitude of the signal transmitted through the leaf increases as a function of 

time. This can be attributed to the fact that the leaf loses moisture overtime thus decreasing the 

attenuation of the transmitted THz signal. Figure 1-3 shows an example where THz radiation 

was used in order to detect an embedded chip and loop antenna within a smart plastic card. 

Figure 1-4 shows different measured time domain THz signals as a function of increase in 

delamination gap between two Polyethylene terephthalate (PET) films. The uniqueness of each 

of the waveforms shown in the figure infers that THz radiation can be used to inspect structures 

having very thin delamination (for example: peeling of paint from surface). 

 
Figure 1-2. Leaf moisture examination using THz radiation 
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Figure 1-3. Concealed object detection using THz radiation 

 
Figure 1-4. Delamination thickness detection using THz radiation 

THz NDE can be sub-grouped into four categories of study based on the use and end results. 

These are as follows:  

1. The use of THz radiation for obtaining physical dimensions of different structures 

2. The use of THz radiation for obtaining material properties of structures as a function of 

frequency 

3. The use of THz radiation for obtaining spectral information about structures coming 

short of material properties (detecting a change in the material properties) 
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4. The use of THz radiation for obtaining structural information coming short of 

dimensions (detecting a change in the structure). 

1.1.2 Literature Overview 

Many examples related to the use of THz radiation to examine structures have been 

documented. These are reviewed here briefly. 

In [4], THz imaging was utilized to examine voids and disbands in foam insulation of a space 

shuttle external tank.  Additionally, the ability to use THz radiation for metallic and nonmetallic 

weapon detection was shown. A main contribution of [4] was the demonstration of the feasibility 

to use THz radiation to do fast large area imaging scans. In [5], NDE of IC packages was done 

for delamination detection at 109 GHz using open ended coaxial cable focusing probes while 

monitoring the reflection. Features from THz time domain measurements have been used in 

order to detect flaws (or contiminants) in a chocolate bar towards a quick detection technique for 

chocolate bar quality assurance [6]. THz time domain measurements have been used to detect 

surface roughness of metallic structures with roughness varying between 0.8 μm up to 100 μm 

[7]. The reflection spectrum was shown to be almost identical for average roughness varying 

from 0.8 μm up to 3.2 μm. Above 3.2 μm, the surface roughness effect on the reflection 

magnitude spectrum was shown to be pronounced [7].  

In [8], THz radiation was used to estimate crop yield. Veins, leafs, and fruit berries have 

different spectral signatures. These signatures are determined by physical dimensions and 

dielectric properties. The inspection process was carried out at a 1m standoff thus showing 

feasibility for use in agricultural quality assurance. THz radiation has also shown promise to 

monitor minute changes in live cells including cell growth, cell volume and morphology changes 

over time [9]. Using THz radiation, imaging and discrimination of localized heat damage spots 
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on aircraft composites has been shown in [10]. Additionally, discrimination between hidden 

explosive versus non-explosive materials has been demonstrated in [11]. 

Some research work has been done on target reconstruction using different tomography 

techniques in the THz range [12-13]. These studies have developed reconstruction algorithms for 

THz tomography based on diffraction theory and electromagnetic scattering. While THz 

tomography has limited applications compared to X-ray tomography due to the limited 

penetration depth of THz radiation in highly moist environments, it still can be used as a safer 

alternative for certain types of image reconstruction involving humans such as under-skin tumor 

imaging. 

One example of capitalizing on the abundance of material spectral features in the THz 

frequency range is material moisture content examination. Moisture content in objects has been 

known to affect their integrity. The advantage of using THz radiation to monitor moisture 

content is that moisture absorption peaks are highly concentrated in the THz frequency range and 

have strong absorption features. Several studies have shown this characteristic including [14]. In 

another work, the ability of THz radiation to detect the water content in paper has been 

demonstrated. This was done by examining the effects on the phase and magnitude of a 

transmitted THz signal through pieces of paper having different moisture levels [15]. Figure 1-5 

shows the magnitude spectrum of a THz signal transmitted through moist air. Absorption peaks 

are labeled in the figure.  
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Figure 1-5. Magnitude of the THz signal transmitted through moist air (THz frequencies) [14] 

One of the main advantages of X-ray imaging and interrogation is the high resolution images 

that can be resolved. Recent progress in the area of THz near field imaging has shown that ultra 

fine resolution can be achieved by using X-ray inspired imaging techniques or focusing tools. 

This includes the use of scanning near field optical microscopy for THz imaging where sub-

micron resolution has been demonstrated [16]. The applications of such focusing include 

inspection of very fine features in biological tissue reaching cell level or even nondestructive 

evaluation of semiconductors such as solar cell for micro-crack detection. Other instances where 

sub-wavelength focusing has been achieved include the use of waveguide apertures [17-18] and 

dielectric probes [19-20]. While the resolution achieved by such methods is not as high as 

scanning near field optical microscopy, they do provide faster measurements and more flexibility 

in the measurement setup while still proving useful in a variety of possible applications such as 

concealed object inspection [17], mineralogy studies [19] and pore/void detection [18]. 

A major motivation behind the emergence of THz NDE is the ability of THz radiation to 

penetrate through most optically opaque materials (largely dielectric materials). A variety of 

materials that have been characterized in the literature are proof that THz radiation can be used 
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in NDE of structures composed of these materials. In [21], several high dielectric constant and 

low loss materials were characterized at THz frequencies. The availability of such substrates 

with such characteristics might be advantageous as photonic crystal substrates for terahertz 

frequency antennas. The measured substrates included Alumina, Silicon, Zirconium and others. 

In [22] and [23], THz material characterization is carried out for several oxide materials. In [24], 

low loss polymers that are not attacked by chemicals and thus compatible with microfluidics 

sensing and bio-imaging have been characterized at THz frequencies. In [25], different polymers, 

oils and glasses were characterized. The ability of THz radiation to distinguish between used, 

overused and unused oils was shown. Also shown was the ability of THz radiation to distinguish 

between cured and uncured SU8 (photo-epoxy material). This discrimination capability was 

possible as the dielectric properties were shown to be different related to the degree of cross-

linking of the polymer chains.   

The properties of the materials mentioned in the above paragraph were extracted using 

different material characterization methods. One crucial area of THz NDE involving 

computation and measurements is material characterization. The material characterization 

problem definition and its importance are discussed in the next subsections along with a survey 

of available methods and techniques. 
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1.2 Terahertz Material Characterization 

1.2.1 Problem Statement  

Characterizing materials at THz frequencies is a challenging inverse problem. Here, the 

resultant of the interaction of THz radiation with a material system is used in order to determine 

the properties of that system. In most instances, these are the dielectric properties such as 

permittivity and loss tangent or refractive index and absorption coefficient. The process of 

extracting the material properties is the inverse problem solution and the essence of the material 

characterization. This is the opposite of the forward problem solution where the resultant of the 

interaction of the THz radiation with the material system is to be predicted while knowing the 

properties of the system. Figure 1-6 shows a systems-based block diagram summarizing the 

forward and inverse problems pertaining to material characterization. 

 
Figure 1-6. Forward and inverse problems of material characterization 

The apparent need for material characterization methods is to extract properties of unknown 

samples. However, given an object to test noninvasively the more information extracted about 

that object the better. The characteristics of the materials that form the object and their location 

within the object are the utmost information that can be achieved. As a result, a variety of 

versatile material characterization methods and techniques are required in order to achieve more 



10 

 

efficient, reliable and informative nondestructive testing. The next subsections present the THz 

time domain system configuration and material characterization techniques currently available 

for THz time domain signals.  

1.2.2 Terahertz Time Domain System 

This dissertation presents new THz material characterization methods which employ time 

domain signals in the process. However, prior to discussing the methods available in the 

literature it is probably worth introducing what a typical THz time domain system entails, how it 

operates and briefly discuss its limitations.   

 
Figure 1-7. THz time domain system measurement setup – reflection mode 

As mentioned before, common THz time domain systems use femtosecond mode-locking 

lasers in order to generate THz radiation. Such systems have two photoconductive switches, one 

placed at an emitter level and one at a receiver level. The emitter level switch generates radiation 
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when excited with a pump laser pulse while the receiver level switch detects them triggered by a 

separate gate laser pulse delivered through a time delay fixture [26]. Plano-convex lenses can be 

placed on the photoconductive switches. This results in collimated THz radiation travelling from 

the emitter to the plano-convex lens at the receiver where it is focused on to the detecting 

photoconductive switch. THz radiation is detected at the receiver by scanning through the time 

delay. Measurements can be taken in transmission mode and in reflection mode by changing the 

emitter’s and receiver’s locations. The range of frequencies that can be achieved on common 

systems ranges from 100 GHz up to 2.5 THz. Figures 1-7 and 1-8 show sketches of a THz time 

domain system set up for reflection and transmission measurements respectively. Due to the 

emitter and receiver being separate parts of the system, they would have to be placed at an angle 

in order to carry out reflection measurements. A metal plate can be placed behind the sample if 

needed. Figure 1-7 shows one type of reflection measurement configurations used for THz time 

domain systems. In transmission mode measurements, the sample is place in between the 

transmitter and receiver as shown in Figure 1-8.  

Figure 1-9 shows a commercially available THz time domain system. This system is the T-

ray 2000 from picometrix. Labels of its different parts are shown in the figure. The T-ray 2000 is 

the system that is utilized to carry out the measurement portion of this dissertation. THz time-

domain NDE computational and experimental techniques are constrained by current THz 

systems limitations. Particularly of interest are the limitations pertaining to material 

characterization techniques. The emitted power of current THz systems is not very high, thus 

limiting the operation of current THz systems in the lower end of the THz range (up to around 

2.5 THz) [2]. This limits the frequency range where materials can be characterized. On the other 

hand, THz time-domain systems may experience power drifts and time shifts over short periods 
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of times. While these effects are not very pronounced, under certain circumstances they may 

result in erroneous extracted material parameters. 

 
Figure 1-8. THz time domain measurement setup – transmission mode 

 
Figure 1-9. T-ray 2000 time-domain THz system 
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1.2.3 Current Terahertz Time Domain Material Characterization Techniques 

The different THz time domain material characterization techniques documented in the 

literature were essential to this research. These methods provided crucial knowledge that was 

built upon in this dissertation. On the other hand, some of their limitations provided motivation 

to certain parts of the dissertation research. 

The most common technique for carrying out THz time-domain material characterization is a 

transmission mode single layer material characterization method. This has been discussed in 

great detail in literature, including refs. [27-31]. The differences between the previous works 

were minimal in which incremental improvements were introduced chronologically. The 

background for all these works is more or less the same. In this technique, a transmission mode 

setup is used (see Figure 1-8). Normally incident time-domain reference (typically through air), 

 tEr , and sample,  tEs , transmission measurements are collected. The Fourier transforms, 

 rE  and  sE  respectively, of these acquired signals are then calculated. By dividing  sE  

by  rE , a measured frequency domain transmission coefficient,  mT , can be found. It is 

well known from electromagnetic theory of wave propagation in mediums that the transmission 

coefficient is a function of the material properties and thickness of the medium that the wave 

propagates. Consequently, the material characterization method proceeds by defining a 

calculated frequency domain transmission coefficient,  cT .  cT , for normal incidence is 

described as  

 
     
     clnj

clnjTT
T

ssaas

ssaas
c ~2exp1

~exp









 ,                            (1-1) 

where, sn~  ( sss jknn ~ ) is the complex index of refraction of the sample, l  is the thickness of 

the sample, c is the speed of light in air,  asT  and  as  are interfacial transmission and 
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reflection coefficients when the wave is travelling from air into the sample, and  saT  and 

 sa  are the interfacial transmission and reflection coefficients when the wave is travelling 

from the sample to air. The expression which describes  as  is  

 
)(1

1)(

ss

ss
as

jkn

jkn




  .                              (1-2) 

The rest of the interfacial coefficients are described as,  

    assa  ,                             (1-3) 

    asasT 1 ,                         (1-4) 

    assaT 1 .                          (1-5) 

Given  mT , the unknown material properties ( sn and sk ) are found through an extraction 

process using an optimization algorithm. The condition that must be satisfied to arrive at the true 

material properties is     cm TT  . More details on this material parameter extraction 

procedure are provided in chapter two.   

The above theory has been applied as the basis for many material characterization methods. 

The differences between the different implementations include the addition of thickness 

optimization modules, oblique incidence usage capability, different optimization methods and 

noise treatment techniques.  
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Figure 1-10. THz ellipsometry measurement setup [32] 

Another technique for material characterization used at THz frequencies is THz ellipsometry 

[32-33]. Ellipsometry is a material characterization technique commonly used at other frequency 

ranges (for example: optical). The change in the polarization of a reflected wave due to oblique 

incidence on a dielectric sample is associated with the material properties of the sample. As a 

result the inverse problem entails finding the material properties of the dielectric slab causing a 

specific change in polarization. Fig. 1-10 shows a typical THz ellipsometry measurement system. 

The transmitter and receiver of a typical time-domain THz system radiate and detect linearly 

polarized waves. In the THz ellipsometry system, the transmitter and receiver are rotated such 

that perpendicular (s-) and parallel (p-) polarizations can be obtained when using a polarizer. The 

polarizer angle that results in perpendicular polarization is 90 degrees different from the one 

resulting in parallel polarization. The parallel or perpendicular polarized wave resulting from the 

polarizer after the wave impinges upon the sample under examination. The polarization of the 

reflected signal will change as a result of the reflection due to the sample properties. The changes 
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in the amplitude and phase of the recorded waves due to parallel and perpendicular incidence are 

utilized in order to find the dielectric properties of the sample under test. This method is further 

discussed in [32-33]. One advantage of THz ellipsometry is that the sample does not have to be 

moved in order to measure a reference sample (unlike transmission time-domain material 

characterization method discussed earlier) thus decreasing experimental error. On the other hand, 

the extracted material properties of the sample are highly sensitive to any uncertainty in the angle 

of oblique incidence of the wave impinging upon the sample and the extinction ratio of the 

polarizers. 

 
Figure 1-11. (a) THz DTDS measurement setup (b) Sample close-up view [34] 

Another method used for THz material characterization is THz differential time-domain 

spectroscopy (DTDS) [9, 34-36]. Using this method, material properties of ultrathin films can be 

extracted unlike the traditional THz material time-domain material characterization methods. 

The THz-DTDS measurement setup is shown in Figure 1-11 (a). THz-DTDS requires two 

signals in order to carry out the characterization. These are a signal transmitted through a 

reference material,
 

 tEr , and a signal equaling the difference between the signal transmitted 

through the sample film and the reference material,      tEtEtE rsdiff  . At first it might 

seem trivial to obtain these signals from the transmission setup shown in Figure 1-8, however, 
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THz system noise and instabilities are of the same order of magnitude (and maybe higher) as 

changes in amplitude and phase seen due to wave transmission through ultrathin films. In THz 

DTDS, the sample under study (see Figure 1-11 (b)) is moved in and out of the THz beam using 

a galvanometer. The movement alternates between placing the film and reference in the THz 

beam path. A lock-in amplifier synchronized to the galvanometer oscillation signal is used in 

order to measure the differential signal thus highly increasing the SNR. The same experimental 

setup is used in order to acquire  tEdiff  and  tEr .  tEr  can be thought of as a differential 

measurement as well if the film part of the sample fixture (see Figure 1-11 (b)) is blocked with a 

metal plate to prevent transmission through the film, thus causing the galvanometer to alternate 

between the reference sample and the metal plate.  

While the techniques described above provide solutions for many material characterization 

inverse problem scenarios, they still have certain shortcomings. The available methods served as 

a valuable source towards building the research disseminated by this dissertation and their 

shortcomings provided many motivations for it. The motivation, objectives and dissertation 

layout are discussed in the next sections. 
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1.3 Research Motivation and Objectives 

Most documented methods require a reference measurement in addition to the sample 

measurement in order to carry out the material characterization. This fact is a shortcoming due to 

time and amplitude drifts inherent in THz systems. Reference and sample measurements are 

collected at different times and thus if not taken in short time proximity after each other may 

result in erroneous material characteristics due to the signal drift. Additionally, in case of a 

simultaneous imaging and material characterization pixel scans of a single layer heterogeneous 

material sample, a reference measurement is required for every pixel thus placing a high time 

cost on the scan. Second, most documented methods require the knowledge of the thickness of 

the sample understudy in order to extract its dielectric properties. This is hindering as the 

uncertainty in thickness measurements leads to error in material parameter extraction. Few 

schemes that can be used in conjunction with material parameter extraction techniques have been 

developed. One method commonly used is the total variation technique first presented in [27] 

and used in conjunction with the common transmission mode THz material characterization 

technique. Given a discrete set of thicknesses in a specific range (usually dictated by the 

uncertainty of the measured thickness), the material properties of a dielectric sample can be 

obtained for each thickness. The material properties are frequency dependent. The total variation 

measure is a smoothness measure which makes use of the fact that within a certain limited 

frequency range (like the lower THz range), solids’ material properties do not change drastically 

between consecutive frequency samples. Hence, the properties extracted with the lowest total 

variation measure along with the corresponding thickness are the properties of the sample under 

test. A limitation of the total variation method is that it is highly sensitive to system noise. 

Robust methods capable of extracting the thickness along with the material properties of the 
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sample would be highly advantageous in applications where measuring the thickness is not 

appealing due to logistic or time constraints. Third, the present literature lacks THz material 

characterization methods for stacked layers of dielectrics. The availability of such methods can 

be very useful for many applications.  

This research builds upon the work that has been documented in the literature as presented 

above. Realizing the importance of evaluation of objects in a wide variety of applications and 

under various scenarios, the goal of the dissertation research is to provide measurement and data 

analysis techniques in order to carry out material characterization of structures. The ultimate goal 

which the dissertation research contributes towards is the characterization of a structure as shown 

in Figure 1-12 using THz radiation. Given a highly complex 3D composite system (see Figure 1-

12), the task would be to extract the material parameters of the homogeneous sections of the 

system.   

 
Figure 1-12. The ultimate goal which the dissertation contributes towards 

Several tasks are carried out as steps towards that ultimate goal while at the same time 

overcoming challenges of previously documented material characterization methods. The steps 

are special cases of the ultimate goal to be achieved. 

First, two single homogeneous dielectric layer material characterization methods are 

presented. The first is a reference requiring method based upon the single layer transmission THz 
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material characterization method presented in [27]. In essence, it is similar to the method 

demonstrated in [27] with minor incremental improvements in the optimization process. The 

main motivation behind working with this method was in order to characterize various materials 

to be used as a benchmark for the accuracy of the other methods developed as a result of this 

dissertation. The second is the self-calibrating single layer material characterization method 

which doesn’t require a reference signal to carry out the material characterization thus decreasing 

the measurement time requirements and overcoming the THz system drifts. 

Second, a material characterization method employing different incident angle signals 

transmitted through the structure under test is developed. This method allows for single and 

multiple dielectric layer material characterization along with thickness extraction of different 

layers.  

Third, a method that employs input and output field distributions of a multi-feature wave 

transmitted through a material system under test is developed. This new measurement method 

can be utilized to characterize single and multiple layer dielectric material systems in parallel 

with layer thickness extraction.  

Fourth, while the methods mentioned above provide solutions for characterizing layers in the 

direction normal to the layer surfaces, solutions are needed to realize the characterization of a 3D 

composite system having heterogeneity also along the direction parallel to the surface. Towards 

this endeavor, focusing probes have been developed. These focus THz radiation into small 

regions of the structure understudy and can be used in conjunction with the developed material 

characterization methods to characterize structures that are not homogenous along the direction 

parallel to their surface.  
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1.4 Dissertation Layout 

The next chapters of this dissertation proceed in the following fashion. Chapter 2 presents the 

single layer material characterization methods. For each method the background theory, inverse 

problem optimization setup, method experimental validation results and an error analysis study 

are presented. Chapter 3 presents the methods capable of carrying out both multiple and single 

layer material characterization along with thickness extraction. For the multiple angle method the 

background theory, inverse problem root finding setup, forward problem experimental 

validation, inverse problem solution from synthesized and experimentally measured signals and 

an error analysis study are presented. On the other hand, for the input and output field 

distribution method the background theory, inverse problem root finding setup, forward and 

inverse problem solutions from synthesized signal, experimental feasibility and implementation 

discussion are presented. Chapter 4 pertains to the focusing probes. The probe design, simulation 

studies and experimental testing are presented. The dissertation is concluded in chapter 5 along 

with the presentation of possible future work routes. 
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CHAPTER 2 

SINGLE LAYER MATERIAL CHARACTERIZATION METHODS 

 

2.1 The Reference Requiring Method  

Note: This work is part of [37]. The Matlab material characterization code associated with this 

method is presented in Appendix C. 

2.1.1 Problem Definition and Motivation 

 
Figure 2-1. Reference requiring method idealized measurement setup 

Given a dielectric slab with a known thickness, the reference requiring method is used to find 

the dielectric properties of the slab using a THz signal transmitted through the slab and its 

relation to a THz signal transmitted through a reference material (typically air). Figure 2-1 shows 

the corresponding idealized measurement setup for the method where Tx and Rx are the 

transmitter and receiver modules respectively and  tEi ,  tEr , and  tEs  are the incident, 

reference and sample THz time-domain signals respectively. The reference requiring method 
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presented here builds upon the background theory in [27]. Particularly, the characterization 

method uses a different optimization algorithm, the Nelder-Mead method which is more robust 

to signal noise. Additionally, the extraction of the material properties is done independently at 

every frequency sample unlike [27] where the extraction is done in the whole frequency range at 

once thus being more prone to contain errors.  Note that similar changes to [27] were done in 

[30] but discovered by the author after the completion of this section of chapter 2. 

2.1.2 Characterization Method Theory 

As mentioned earlier, this method utilizes two different signals collected from a transmission 

mode measurement setup. These are a reference signal and a sample signal. The reference 

measurement is taken when the sample is removed from the path of the THz radiation beam. To 

minimize measurement errors due to drift in THz signal generation and detection, sample 

measurements and reference signal measurements were carried out in close time proximity from 

each other. The different considerations taken during the measurement procedure and the data 

analysis method are as follows: 

1) The electromagnetic time domain pulse was normally incident on the sample  

2) The samples tested were flat and had smooth surfaces 

3) The THz system signal (through air) had acceptable noise levels (high signal-to noise ratio 

(SNR)) up to 2.5 THz 

4) The size of the time window when the data is collected was 80 ps 

5) The sampling period of the time pulse (of the reference and sample signals) was 0.03941 

ps, which when considering the time-domain signal’s 2048 samples, gives a frequency 

domain resolution of approximately 12.5 GHz.  

The process begins by acquiring the two time-domain signals sequentially. These are the 
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reference signal through air (sample removed from the path of the beam) and the sample signal 

(signal transmitted through the sample under test). Figure 2-1 depicts the measurements along 

with notations used in the discussion of the material parameter extraction theory.   

 
Figure 2-2. Typical reference (air background) and sample (Alumina) THz time-domain signals 

The reference signal,  tEr , is simply the incident signal,  tEi , delayed in time (by p ) due 

to traveling a certain distance in air. The sample signal,  tEs , on the other hand is  tEi  delayed 

in time (by 1p ) due to traveling a different distance in air and convoluted with the time-domain 

transmission coefficient  tT  which is a function of the dielectric substrate having thickness l . 

The expressions for  tEr  and  tEs  are 

    ptEtE ir  , (2-1) 

and 

      tTptEtE is  1 . (2-2) 

Figure 2-2 shows example measured time-domain (80ps time window with 2048 measured data 

points) reference and sample (0.635mm thick Alumina, Al2O3) signals. A delay in time, a change 
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in amplitude and multiple transmissions from the substrate are visible in the time-domain sample 

signal.  

The frequency spectrum was calculated by Fourier transforming the time-domain signals. 

The expressions for the Fourier transforms are 

      cxnjEE airir
~exp   , (2-3) 

and 

         TclxnjEE airis  ~exp , (2-4) 

where airn~  ( 000027.1~ jnair  ) is the complex index of refraction of air [27], c is the speed of 

light in free space, x is the distance between the transmitter and receiver and l is the thickness of 

dielectric sample under test. The frequency domain transmission coefficient,  T , is a function 

of the complex index of refraction of the sample, sn~  ( jknns ~
), and its thickness, l , and is 

described by [38] 
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where  asT  and  as  are the interfacial transmission and reflection coefficients between air 

and the sample under test and  saT  and  sa  are the interfacial transmission and reflection 

coefficients at the interface between the sample under test and air. The expressions describing 

the interfacial transmission and reflection coefficients for normal incidence are  
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respectively, where o  and p  can be the sample understudy or air. 

A ratio of the Fourier transforms of the measured signals can be obtained and is expressed as 

  
 
 



r

s

E

E
O  . (2-8) 

The modeled ratio which is a function of the properties of the material under test is described by 
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Hence, the material properties can be found by minimizing the difference between the 

measured and modeled ratios in (2-8) and (2-9) respectively. The next subsection lays out the 

optimization procedure and setup.  

2.1.3 Optimization Procedure and Setup 

Although the collected data contains the material properties information inherently, the 

material properties can’t be extracted analytically. An optimization process has to take place 

where the ratio  


O  can be optimized towards matching the measured ratio  O . The 

optimization goal would be achieved by finding appropriate values for the complex index of 

refraction of the sample at each frequency.  

The material properties to be extracted are the real part of the refractive index of the sample, 

n , and the imaginary part of the refractive index, k . The properties are frequency dependent; 

hence, it was chosen to optimize independently at all frequency points. The properties of 

materials were extracted between 300 GHz and an upper frequency limit chosen based on the 

signal level of the magnitude of the Fourier transform of the time-domain sample signal. Above 

2.5 THz the signal is at the noise level. The average of the magnitude of the magnitude spectrum 
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above 2.5 THz was used as the noise floor measure. The frequency corresponding to twenty 

times the noise floor was chosen as the upper limit of the frequency range for characterizing all 

the materials. Given that the calculated and measured material property ratios are complex 

quantities and frequency dependent, the fitness function was chosen to minimize the difference 

between the magnitudes and the phases of the ratios at all frequency points. The fitness function 

)(F  that is used to carry out the optimization is  

   )()()()( 


 OOOOF . (2-10)   

The calculation of the phase difference requires extra precaution. Phase is determined in 

radians and the same angle can be described in two ways, positively or negatively. This may lead 

to extracting incorrect material properties. In order to remedy this effect, if faced with a phase 

difference that is greater than  or less than   during the optimization process, the phase 

difference is substituted with the result obtained by subtracting the 2  from its absolute value.  

The optimization technique utilized in this study is the Nelder and Mead modified simplex 

method [39-41]. The simplex method is an unconstrained direct search multivariable 

optimization algorithm. A regular simplex is a polyhedron with N+1 equidistant points, where N 

is the dimension (number of variables) of the multivariable optimization. In the problem at hand, 

the regular simplex was chosen to be a triangle as the optimization is done for two variables. The 

fitness function is calculated at every vertex. The vertex point that has the highest (or worst) 

fitness function value is updated based on the rules defined in [40]. The optimization stops once 

the fitness function reaches the threshold set at the beginning of the optimization  1010  or 

once the standard deviation of the fitness function values at all the vertices is very small 

 1010 . More details on the optimization method implementation can be found in [39-41] and 
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Appendix A of this dissertation. 

Given a measured value of the thickness of the substrate understudy, a discrete array of 

thicknesses is created. The array will include a range of thicknesses limited by the uncertainty of 

the thickness measurement. For example, if the uncertainty of the measurement is 5%, the upper 

limit of the range of thicknesses would be the measured value added to 5% of the measured 

value. The characterization process first begins by picking a thickness from the array created 

earlier. Guesses of the real and imaginary parts of the refractive index are made. The initial 

guesses are chosen to be the same at all frequencies. The procedure applied to find these initial 

guesses is detailed in [27]. By examining the time delay of the sample signal with respect to the 

reference signal, the initial guess for the real part of the refractive index can be found. The 

expression to finding an initial guess for the real part of the refractive index of the sample is 

     
l

tc
ninitial


 00027.1 ,      (2-11) 

where t  is the time delay of the sample signal with respect to the reference signal and initialn  

is the initial guess for the real part of the refractive index. Using the initial guess of the real part 

of the refractive index, the initial guess for the imaginary part of the refractive index is taken to 

be the highest value chosen such that the absolute maximum of the inverse Fourier transform of 

the calculated ratio in (2-9) is less than or equal to the absolute maximum of the inverse Fourier 

transform of the measured ratio in (2-8). After the initial guesses have been made, a frequency is 

selected. The Nelder and Mead modified simplex method is applied at that frequency in order to 

find the optimal values of the real and imaginary parts of the index of refraction which minimize 

(2-10) at that frequency. The optimization procedure is then repeated for all the other 

frequencies. This process is carried out at all the thicknesses present in the discrete thicknesses 

array. As mentioned in [27], the optimal thickness can be chosen by calculating a total variation 
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measure of degree two for each set of material properties found. The total variation method of 

degree two is a smoothness measure which is based upon the fact that for solids’, material 

properties do not change drastically between two consecutive frequency samples. Instead, the 

material properties vary smoothly across the whole frequency range. More details on the total 

variation of degree two can be found in [27]. After the measure is calculated for each thickness, 

the thickness that corresponds to the deepest local minimum (in a thickness versus total variation 

degree two plot) is selected as the optimal thickness. Consequently, the material properties 

corresponding to that optimal thickness are the optimal properties.  

2.1.4 Method Validation and Results 

In this section, the material characterization method described above is utilized in order to 

obtain the dielectric properties of different materials. The materials characterized include 

organics, inorganics and polymer-ceramic composites. The information is presented in the form 

of the relative dielectric constant, r , and the loss tangent, tan . These parameters are 

calculated from the real part of the index of refraction, n , and the extinction coefficient, k , 

found using the characterization method. The relative dielectric constant is related to the index of 

refraction and extinction coefficient by
22 knr  . The loss tangent is related to the index of 

refraction and extinction coefficient by
 

 222tan knnk  .  The substrates and films 

examined had physical thicknesses ranging from 50 µm to 3.5 mm. Note that a ringing effect 

might be observed in the extracted parameters. This ringing effect is due to the nonzero truncated 

ends of the measured time-domain signals (see Figure 2-2). 

The inorganic substrates characterized in this research are doped indium phosphide (InP), 

doped silicon (Si), alumina (Al2O3), Pyrex Borosilicate glass and Quartz glass. The glass 

materials relative dielectric constants and loss tangents are shown in Figure 2-3. The ceramic and 
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semiconducting materials’ relative dielectric constants and loss tangents are shown in Figure 2-4. 

The availability of high dielectric constant materials with low loss tangents is crucial and very 

useful for the field of THz packaging and integration. The ability of THz radiation to inspect 

such materials shows great promise in the field of NDE of THz electronic packages. Aside from 

Pyrex, the characterized materials here are clearly low loss ( 02.0tan  ) over the measured 

frequency range. Also Al2O3, Si and InP have high relative dielectric constants ( 4.123.9  r ). 

Semiconductors, such as Si and InP are needed in the fabrication of THz active components. 

Undoped Si and InP have been characterized in the past showing almost no dielectric loss [27]. 

In this study, doped Si and InP substrates are characterized instead of the undoped materials. In 

general such doped semiconductors are used in fabrication of actual devices and were thus 

chosen to be characterized here. 

 
Figure 2-3. (a) Dielectric constant of glasses, (b) Loss-tangent of glasses 
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Figure 2-4. (a) Dielectric constant of ceramic and semiconductors, (b) Loss-tangent of ceramic 

and semiconductors 
 

 
Figure 2-5. (a) Dielectric constant of organic materials, (b) Loss-tangent of organic materials 

 
Figure 2-6. (a) Dielectric constant of organic materials, (b) Loss-tangent of organic materials 

THz packaging utilizes materials with low dielectric constants and loss tangents. Again, the 

ability to characterize such materials shows great promise in the area of THz NDE of electronic 

packages. For this reason, a host of organic materials were characterized under this study. These 
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are: high density polyethylene (HDPE), polyethylene terephthalate (PET), polyethylene 

terephthalate glycol (PETG), polycarbonate (PC), polypropylene (PP), polytetrafluoroethylene 

(PTFE), polynorbornene (Zeonor 1020R) from Zeon Chemicals, polyether ether ketone (PEEK), 

polyimide (PI), liquid crystal polymer (ULTRALAM LCP) and Nafion. The relative dielectric 

constants and loss tangents of HDPE, Zeonor, PC, PTFE and PP are presented in Figure 2-5; 

while the relative dielectric constants and loss tangents of PET, PETG, PEEK, Nafion, PI and 

LCP are shown in Figure 2-6. With 02.0tan   assumed to be the criterion to classify between 

low loss and high loss organic materials; it can be immediately concluded from the results that 

materials like HDPE, Zeonor, PTFE and PP are low-loss materials while others like Nafion and 

PETG are higher-loss substrate materials. A third category of materials includes materials such 

as PET (low loss below 500 GHz), show lower dielectric loss in certain frequency bands. 

The polymer-ceramic composite substrates characterized here were obtained from Rogers 

Corporation. The substrates obtained are PTFE-ceramic composites, intended for use in 

microwave and RF applications. The dielectric constant is modified by changing the volume 

loading of the base polymer material with high dielectric constant ceramic particles [42]. 

Although they had been characterized (and documented by Roger’s) at lower frequencies (< 10 

GHz), no information exists on their properties in the higher frequency range, and to our 

knowledge these are characterized in the THz spectral region for the first time. The boards 

characterized are RO-3003, RO-3006, and RO-3010. Figure 2-7 shows the relative dielectric 

constant and loss tangent values of the polymer-ceramic composite materials. The dielectric 

constant of these materials remains high in the THz spectral region. However, the loss-tangent is 

also high for substrates containing a higher concentration of ceramic. This may be largely due to 

scattering of THz waves by the ceramic particles and potentially voids in the substrate. In the 
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future, the use of nanocomposites would be a useful approach to tailoring high dielectric constant 

materials for THz applications [42]. With respect to THz NDE, the results obtained for the 

composite materials infer that THz radiation can be used to inspect different loading within a 

composite material, grain size within a material by increased or decreased scattering in addition 

to material characterization. 

 
Figure 2-7. (a) Dielectric constant of polymer-ceramic composites, (b) Loss-tangent of polymer-

ceramic composites 
 

The repeatability of the measurements and the characterization results has been validated in 

three different ways. In the first approach, the characterization of some of the samples of Figures 

2-5 and 2-6 was carried out at different times and the results were similar within less than 1% 

difference. In the second approach, the characterization of two samples with different thickness 

but made from the same material showed material characteristics with less than 3% difference.  

Finally, as a third approach, some of the extracted parameters here were compared with 

material parameters present in the literature. Table 2-1 shows extracted dielectric properties at a 

single frequency of selected substrates placed in comparison with properties of the same 

materials available from the literature. It is apparent that the properties extracted using the 

reference requiring method are very similar to material properties readily available in the 

literature. Minor differences may be attributed to things like THz radiation source instabilities, 
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thickness measurement uncertainty, different extraction processes (for example [43] uses a less 

accurate analytic approach), different environment conditions (temperature and humidity) at the 

time of measurements (for example, PI dielectric properties are affected by the moisture and 

temperature levels in the room at the time of measurement), different surface roughness of 

samples measured and differences in manufacturability.  

Table 2-1. Dielectric Properties Comparison 

 
Reference Requiring Method Literature 

Material r  tan  r  tan  Reference 

InP (1THz) 12.33 0.009 12.39 0.006 [27] 

Quartz (1THz) 3.84 0.004 3.84 0.0037 [25] 

Al2O3 (1THz) 9.3 0.003 9.28 0.004 [21] 

PC (1THz) 2.61 0.027 2.67 0.028 [25] 

Zeonor (1THz) 2.35 0.001 2.28 0.001 [24] 

HDPE (1THz) 2.38 0.002 2.37 0.002 [25] 

PTFE (1THz) 2.06 0.0004 2.08 0.008 [43] 

PP (1THz) 2.21 0.002 2.28 0.008 [43] 

PId
*
 - PIm

*
 (1THz) 3.25-3.37 0.021-0.037 3.22 0.05 [44] 

PET (1THz) 2.98 0.031 2.93 0.063 [43] 

Pyrex (0.8THz) 4.48 0.052 4.45 0.05 [25] 

*PId is a dried polyimide sample, lacking moisture content. 

*PIm is a polyimide sample taken from an uncontrolled environment characterized by 

having some moisture in it. The properties pertaining to this sample are presented in 

the material characterization results.  
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The close comparison presented through this table infers the accuracy of the characterization 

carried out and the capability of reproducing results published in the past by other researchers.  

2.1.5 Moisture Content Examination Example 

 
Figure 2-8. (a) Relative dielectric constants of the moist and dry Polyimide samples, (b) Loss 

tangents of the moist and dry Polyimide samples 
 

Presence of moisture can jeopardize the integrity of structures (for example it may lead to 

early failure of electronic parts). THz radiation can be used to detect small amounts of moisture 

ingression in dielectric films. An experiment has been carried out in order to show how moisture 

content can be detected in a polyimide film, a widely used electronic packaging substrate. The 

experimental setup involved using two pieces of a polyimide substrate having similar physical 

and material properties. One of the substrates was put in an oven heated at constant temperature 

of 80
o
 C for 16 hours in a dry environment to remove any moisture from the film prior to the 

measurements. The second substrate was used as received (expected to have moisture content 

within). Four signals were then collected, one through each sample and a corresponding 

reference measurement for each. Each pair of signals was then used in order to extract the 

dielectric permittivity and loss tangent for each sample as discussed earlier. It has been shown in 

the literature at lower frequencies (up to 100 GHz), that humidity leads to an increase in loss 
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tangent and the dielectric permittivity of Polyimide [45]. A similar effect is attained at THz 

frequencies and this is shown in Figure 2-8. This simple experiment shows that THz radiation 

can be used in characterizing moisture ingression in dielectric films and in detection of early 

packaging failure due to moisture.   

2.1.6 Error Analysis and Discussion 

Uncertainty in the measurements might result in errors in the extracted material parameters. 

The uncertainties might have slight or significant effect on the extracted parameters. Of specific 

interest are the measured inputs required to run the material characterization method. Particularly 

of concern is the thickness input of the sample to be characterized. The samples thicknesses used 

for the characterization method described above where acquired using a digital caliper having a 

thickness measurement accuracy of ±0.02mm. In this section, an error analysis is carried out in 

order to examine the effect of the thickness measurement uncertainty on the extracted 

parameters.  

For a given a dielectric sample it is assumed that its true thickness lies within ±0.02mm of 

the measured thickness. A population of 1000 possible true sample thicknesses is generated at 

random from a normal distribution having the measured thickness as a mean and 0.01mm as the 

standard deviation. For every sample thickness the forward problem was solved resulting in a 

synthesized sample signal calculated from a measured reference signal. The same measured 

reference signal was used for every forward problem solution. For every synthesized sample 

signal the inverse problem was solved using the measured thickness. Afterwards, the mean and 

standard deviation of the extracted properties was found at every single frequency. The resulting 

mean along with two times the standard deviation error bars were then plotted on the same 

graph.  
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Figure 2-9. (a) Extracted material properties of “B” for measured thickness=0.5mm, (b) 

Extracted  material properties of “B” for measured thickness=1mm 
 

Three modeled materials were used in order to carry out the thickness error analysis study for 

the reference requiring material characterization method. The materials’ properties across the 

whole frequency range were “A”: 1r =2.372 and 1tan =0.005 (approximating the material 

properties of a low loss polymer), “B”: 2r =3.822 and 2tan =0.005 (approximating the 
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material properties of a low loss glass) and “C”: 3r =11.7 and 3tan =0.005 (approximating the 

properties of a low loss semiconductor). Two different tests were carried out. First, the 

sensitivity of the material characterization method was examined for the same material (“B”) at 

two different measured thicknesses. The two different measured thicknesses of “B” were chosen 

to be 0.5mm and 1mm. Second, the sensitivity of the method was tested for the three different 

materials (“A”, “B” and “C”) having the same optical thicknesses. Note that the optical thickness 

of a material is its physical thickness multiplied by its refractive index. The measured 

thicknesses of “A”, “B” and “C” were chosen to be 1.3mm, 1mm and 0.6mm, respectively. Note 

that the results of the 1mm material “B” were not recalculated as this was done in the first test.  

Figure 2-9 shows the mean and standard deviation of the extracted properties at each 

frequency for the two measured thicknesses of “B”. Upon comparing Figure 2-9 (a) and (b), it 

can be seen that the means of the extracted material properties of “B” for both thicknesses are 

almost the same. However, it can also be seen that the error bars for the 0.5mm thick sample are 

larger. This means that for the same material properties, the reference requiring method 

extraction procedure is more sensitive to the thickness measurement uncertainty as the thickness 

decreases.  
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Figure 2-10. (a) Extracted material properties of “A” for measured thickness=1.3mm, (b) 

Extracted  material properties of “C” for measured thickness=0.6mm 
 

Figure 2-10 shows the mean and standard deviation of the material properties extracted for 

“A” and “C” each at its measured thickness. Although the material samples “A” and “C” from 

Figure 2-10 (a) and (b) and “B” from Figure 2-9 (b) all had the same optical thickness, the error 

bars grew significantly larger for the material having a higher dielectric constant. From this 
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observation, it can be concluded that the reference requiring method is not equally sensitive to 

the thickness measurement uncertainty for materials having the same optical thickness. Using the 

results obtained from both of the error analysis tests, a third conclusion can be made. Given two 

materials having the same thickness, the reference requiring method is more sensitive to the 

thickness accuracy measurement for the material that has a higher dielectric constant. This can 

be deduced when comparing the results shown in Figures 2-9 (a) and 2-10 (b). Although the 

lower dielectric constant material “B” in Figure 2-9 (a) had a lesser physical thickness than the 

higher dielectric constant material “C” in Figure 2-10 (b) the error bars on the extracted 

properties for “C” were significantly larger. 
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2.2 Self Calibrating Method  

Note: This work is part of [46]. The Matlab material characterization code associated with this 

method is presented in Appendix D. 

2.2.1 Problem Definition and Motivation 

In a typical material characterization scheme, information pertaining to some unknown 

material is acquired and then analyzed in order to extract the dielectric properties of the material. 

Several techniques have been developed for THz time-domain material characterization. These 

techniques involve different assumptions and hence work on different groups of materials. In 

classical THz time-domain techniques, the information acquired before analysis is usually a 

signal representing a transient plane wave transmitted through the sample under test, and a signal 

for the transient plane wave transmitted through a reference sample of known material properties 

[25, 27-30]. While under ideal experimental conditions these methods produce dependable 

extracted parameters, they still have shortcomings. With the classical techniques, differences 

between the sample and reference measurements are mainly due to the wave propagation through 

the sample. However, minor differences between the two measured signals arise due to THz 

system instabilities causing different drifts in power and delays in time. These differences give 

rise to small errors in the extracted material parameters if the measured signals are collected in 

very close time proximity from each other. An increasing error in the extracted parameters is 

realized with more time proximity between the collection of the measurements. Additonally, in a 

real-time simultaneous imaging and spectroscopy scan of an inhomogeneous sample, obtaining a 

reference measurement for each pixel might prove time consuming and logistically difficult 

when the sample is large. More desirable would be one reference measurement for the whole 
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scan. Unfortunately, this is precluded due the instabilities inherent in existing THz time-domain 

systems. 

This study provides an alternative method for characterizing materials using THz time-

domain signals. The method requires only a sample signal while there is  no need for a reference 

signal. Instead of using the relations between a reference and sample signal, this method employs 

the relations between the multiple transmissions of the pulsed signal through the sample under 

test in order to extract its material properties. The technique demonstrated in this section 

improves on previous traditional single layer characterization methods in decreasing the time 

required for measurements and in overcoming THz system drifts and instabilities issues in the 

extracted parameters. 

2.2.2 Characterization Method Theory 

Consider a transient plane wave with an inverted Gaussian monocycle time-domain 

waveform, incident through air from a stationary collimating source. Assume that the wave 

impinges normally upon a planar dielectric slab of finite thickness and unknown dielectric 

properties. The waveform representing the wave transmitted through the slab is collected at a 

stationary receiver located on the same straight line as the transmitter and dielectric slab, a 

distance d  from the transmitter. Figure 2-11 shows a descriptive sketch of the setup. 

 
Figure 2-11.  Sketch of idealized measurement setup 
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The acquired waveform is the convolution of the waveform of the incident plane wave, 

delayed in time due to traveling a certain distance in air, with the global time-domain 

transmission coefficient of the sample,  tT . The global time-domain transmission coefficient is 

a function of the thickness of the slab, l , its refractive index, n , and its extinction coefficient, k . 

The expression for the time-domain waveform acquired at the receiver is 

      tTptEtE is  , (2-12) 

where t  is time,   cldp   is the travel time through air (where c  is the speed of light in air), 

and  tEi  is the waveform of the incident field. 

The received signal consists of multiple events representing multiple transmissions of the 

wave through the sample. This is due to the mismatches in the media properties at the interface 

between the dielectric slab and air. Figure 2-12 shows a signal transmitted through a typical 

dielectric slab. The first, second and third transmissions are clearly seen. Although there are an 

infinite number of multiple transmissions, only the first few have non-negligible amplitudes. 

 

Figure 2-12. Received time-domain signal for a typical sample showing multiple transmissions 

under ideal conditions 
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In order to proceed with the theoretical description, the Fourier transform of the received 

signal is computed as 

          TcldnjEE ais  ~exp , (2-13) 

where the complex index of refraction of air is 000027.1~ jna   [27] and  T  is the global 

frequency domain transmission coefficient. The expression for  T  can be easily found [38] 

and is described by 

  
     
     clnj

clnjTT
T

ssaas

ssaas
~2exp1

~exp









 , (2-14) 

where jknns ~
 is the complex refractive index of the dielectric slab,  asT  and  as  are 

the interfacial transmission and reflection coefficients, respectively, when the transient plane 

wave is traveling from air to the dielectric sample, and  saT  and   sa  are the interfacial 

transmission and reflection coefficients, respectively, when the transient plane wave is traveling 

from the dielectric sample to air.  

The expression describing  as  is 

  
sa

as
as

nn

nn
~~

~~




  . (2-15) 

The rest of the interfacial coefficients,  sa ,  asT , and  saT , can be described in terms 

of  as  by 

     assa  , (2-16) 

     asasT 1 , (2-17) 

and 

     assaT 1 . (2-18) 



45 

 

The various multiple transmissions are easily identified when the global transmission 

coefficient is expanded in a binomial series. The binomial series for  T  is 

 

       
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. (2-19) 

By taking the inverse Fourier transform of (2-19), an infinite series describing  tT  can be 

obtained. The summation of the first three terms is 
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, (2-20) 

where     clnjFtf ss
~exp1    is the time-domain dispersion function due to one-way 

propagation in the dielectric slab,   n
s tf

  is short-hand notation for n  convolutions of  tfs , s  

is the one-way transit time across the slab, and the unit step functions account for the causality of 

the various multiple transmissions. In the case of a dispersionless material,  tfs  is merely the 

impulse function,  st   , which accounts for the propagation delay through the slab. Inserting 

(2-20) in (2-12) gives 
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The three multiple transmissions shown in Figure 2-12 are described by the three terms of the 

summation shown in (2-21). It is seen that each successive transmission undergoes an additional 

time delay of s2 associated with a two way dispersion of      tftftf sss 
2

. Now, assume 

)(tW to be a time-domain window of unity amplitude between pt   and pt s  2 , and zero 

elsewhere. Multiplying  tEs  by )(tW  results in the isolation of the beginning section of  tEs . 

This section is that portion of the first multiple transmission  

                tWtUtftTtTptEtE sssaasia   (2-22) 

that lies in sptp 2 . If dispersion is low and the dielectric slab is sufficiently optically 

thick such that the second multiple transmission is sufficiently delayed in time, then  tEa  is a 

good approximation of the first multiple transmission  tE1 : 

               sssaasia tUtftTtTptEtEtE  1 . (2-23) 

The Fourier transform of the first multiple transmission can be expressed as 

             clnjTTcldnjEE ssaasai
~exp~exp1   . (2-24) 

Dividing (2-24) by the spectrum of the measured signal (2-13), results in a ratio. After 

simplification the ratio can be expressed as 
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Note that this normalization completely eliminates the spectrum of the incident waveform, 

 iE , leaving a simple expression that is a function of the unknown material constants n  and 

k . Thus, the material constants can be found by minimizing the difference between the measured 

signal ratio and the model (2-25) without knowledge of the incident waveform. The optimization 

procedure is explained in the next subsection. 

2.2.3 Optimization Procedure and Setup 

Let  M  be the ratio of  1E  to  sE  obtained from the measured waveform and  


M  

be the theoretical ratio given by (2-25). After approximating an~
 
to 1, the expression for  



M  in 

terms of the material properties of the dielectric slab may be written as 

      cljknj
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2
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










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

 . (2-26)  

Minimizing the difference between  


M  and  M  will yield the dielectric properties of the 

slab,  n  and k . Since the ratios are frequency dependent complex quantities, the objective 

function was chosen to minimize the sum of the differences between the magnitudes (in absolute 

scales) and the phases (in radians) of the measured and calculated ratios at each frequency. The 

expression for the objective function is   

          


 MMCMMCf 2

^

1 |||| . (2-27) 

Where 1C  and 2C  are weighting constants. Upon implementation, this objective function gave 

acceptable results for the simple case 121  CC . 

The optimization method chosen to minimize (2-27) is the Nelder and Mead Simplex method 

[39-41]. The dimension of the simplex polyhedron was chosen as 2N  since two variables are 
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included in the optimization. The iterative procedure used is detailed in [40] and Appendix A. 

The optimization is carried out to minimize (2-27) at each individual frequency sample. The 

optimization for the material properties at a certain frequency is terminated if the value of the 

objective function at one of the vertices of the simplex becomes appropriately small [39] (less 

than 10
-10

) or the function values at the vertices become appropriately close to each other [39] 

(standard deviation less than 10
-10

). The obtained variables at the vertex with the lowest function 

value are then considered to be the solution at that frequency. In this work, the reflection, 

expansion, contraction and shrinking factors are 1, 2, 0.5, and 0.5 respectively. These values 

were chosen based on previous applications of the Nelder Mead simplex method [39-41]. 

The base point for the initial simplex at every frequency is determined by certain initial 

guesses of n  and k . Given  tEs , the initial guess for n  at all frequencies is determined using 

 
l

tc
ninitial

2


 , (2-28) 

where t  is the time difference between the two peaks of the first two consecutive multiple 

transmissions. Using initialn  and assuming an initial extinction coefficient value of 0initialk  

at all frequencies, an initial guess for  


M  can be found using (2-26). Afterwards, very small 

increments of   10
-5

 are added to initialk  while comparing  






q
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iMA

1

  and  




q

i

iMB

1

  , 

where  i  are the frequency samples and q  is the total number of frequency samples in the 

frequency range over which the dielectric properties are extracted. The choice of frequency range 

is discussed in the validation results section. The value of initialk  that results in the minimum 

difference between A  and B  is the initial guess for k  used to specify the base point. It is worth 

noting that all base points for the initial guesses at all frequencies are identical. Hence, the initial 
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simplex polyhedron is the same at all frequencies. The two other vertices of the simplex are 

found as described in [39] with the scale factor,  , chosen to be 0.01.  

2.2.4 Signal Artifacts Removal Technique 

 
Figure 2-13. Example time-domain signals obtained from the measurement 

In any realistic scenario, the waveform of the transient plane wave transmitted through the 

test substrate is not only a function of the substrate properties, but is also dependent on the 

properties of the apparatus. Temporal artifacts in the radiated waveform result from things like 

wire bonds of the antenna packages and fabrication imperfections. Additionally, extraneous 

effects are introduced by the measurement system and affect the shape of the acquired 

waveform. Unless these extraneous effects are removed, significant errors in n  and k  can be 

expected upon extraction. It is worth noting that while these artifacts are systematic and 

unchanging, the measured waveforms differ from one signal to the next due to fluctuations in 

power level or drifts in the time base. It is thus necessary to use an archived reference waveform 
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measured with the sample absent to remove the extraneous effects from the signal obtained with 

any sample present.  

Begin with the waveform for the plane wave transmitted through the sample under test. 

Figure 2-13 shows typical measured waveforms. The dotted waveform is  tEim , a measured 

sample signal of the wave transmitted through air, and the solid line waveform is  tEsm , a 

sample signal transmitted through an Alumina sample.  tEim  is an archived signal that is not 

required to be collected every time a sample is to be characterized. As can be clearly observed, 

the signals are different from the idealized time-domain signals shown in Figures 2-11 and 2-12. 

The extra fluctuations are due to the measurement apparatus and the signal generating system. 

The signals were each measured at 2048 time points covering an 80ps time window. Extraneous 

system effects are present at every multiple transmission in the measured sample signal. Hence, 

the second multiple transmission overlays with the extraneous system effects of the first multiple 

transmission, and the third multiple transmission overlays with the extraneous system effects of 

the first and second multiple transmissions, etc. It is clear then that since the first multiple 

transmission is the first time event of the transmitted signal, it doesn’t overlay with any 

previously generated extraneous system effects. This is clearly observable in Figure 2-13 where 

 tEsm  lacks any signal fluctuations prior to the first multiple transmission. 

Based on these observations, a technique that aims to remove the extraneous system effects 

generated at each multiple transmission is conceived. It is assumed that the pattern of extraneous 

system effects at a multiple transmission is a signal that follows its monocycle-like pulse. Then 

the archived time-domain signal may be shifted a time s  such that it aligns with the sample 

signal to form the waveform,  sim tE  . Figure 2-14 shows  sim tE   and  tEsm .  
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Figure 2-14. Sample signal along with the shifted archived time-domain signal 

Next,  sim tE   is scaled such that its peak intensity matches that of  tEsm . After that, the 

scaled signal is subtracted from  tEsm , resulting in the removal of the artifacts in the signal 

produced during the first multiple transmission. Figure 2-15 shows  tEsm  and the subtracted 

signal. 
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Figure 2-15. Sample Signal and First Subtraction Result 

 
Figure 2-16. Second Subtraction Result 
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From Figure 2-15, it can be seen that the subtraction produces a cleaner version of the second 

multiple transmission, and that the third and fourth multiple transmissions become more visible. 

It can also be observed that the subtraction is nearly complete up to the time of the mono-cycle 

like pulse of the second multiple transmission, with only minor fluctuations due to time sampling 

and dispersion.  

The final sample signal with the extraneous system effects removed is composed of a set of 

patched signal sections. The first signal section occupies the region between the two vertical line 

markers of the solid line waveform in Figure 2-13. This section contains the mono-cycle like 

pulse of the first multiple transmission. The signal section lying in between the two vertical line 

markers of the dashed waveform in Figure 2-15 is the next patch belonging to the sample signal 

with no system effects. This section contains the mono-cycle like pulse of the second multiple 

transmission.   

The signal artifacts removal process proceeds by shifting and scaling  tEim  to align its peak 

in time and match in intensity with the peak of the first mono-cycle like pulse of the dashed 

waveform in Figure 2-14.  The scaled and shifted signal is then subtracted from the dashed 

waveform of Figure 2-14. The resulting signal from the subtraction is shown as the dashed 

waveform in Figure 2-16, while the solid line waveform in Figure 2-16 represents the original 

waveform before subtraction. From the waveform resulting from the subtraction in Figure 2-16, 

it can be seen that the subtraction results in a clean version of the third multiple transmission and 

a cleaner representation of the fourth multiple transmission. It can also be observed that the 

subtraction is nearly complete up to the third multiple transmission, with fluctuations occurring 

due to time sampling and dispersion. The signal section lying in between the two vertical line 

markers of dashed waveform in Figure 2-16 is the next patch belonging to the sample signal with 
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no system effects. This section contains the mono-cycle like pulse of the third multiple 

transmission. The shifting, scaling and subtraction operation is repeated for all the multiple 

transmissions in the sample signal time window that are above noise level. The final sample 

signal used for the self-calibrating method, with the extraneous effects removed, is a series of 

patched signal segments from the successive subtractions. This signal is shown in Figure 2-17 

along with the measured sample signal.  

The transmitted signal multiples through a slab are not only scaled and time delayed versions 

of the signal transmitted through air, they are also stretched due to dispersive effects. Hence, the 

signal clean-up procedure presented works better when dispersion effects are minimal. This can 

be clearly concluded from the fact that the procedure presented does not take any signal 

stretching into consideration. 

 
Figure 2-17. Measured and Final Sample Signals 
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2.2.5 Method Validation and Results 

Using the T-ray 2000 THz time-domain system from Picometrix [www.picometrix.com], 

 tEsm  for the sample under test was acquired. The extraneous measurement system effects 

present in the acquired signal were removed using the system artifacts removal technique and the 

archived measured time-domain signal,  tEim , to obtain an approximation to  tEs . The initial 

guesses for initialn  and initialk  were determined as described earlier. The first multiple 

transmission time domain signal,  tE1 , was then obtained by multiplying by )(tW . )(tW  is 

centered at the first multiple transmission of  tEsm  with a s2  width. s  is equal to half the 

time delay between the first and second multiple transmissions of  tEsm .After  tE1  and  tEs  

were determined, their Fourier transforms were found and the measured ratio,  M , was 

computed. The Nelder Mead simplex optimization method was then set up and used to minimize 

the objective function in (2-27) in order to extract the material properties at every frequency 

sample of the Fourier transform.  

Several different material samples were characterized. The dielectric properties of the 

substrates were extracted in a frequency range for 250 GHz to 1.6 THz.  Above 1.6 THz noise 

effects become more dominant in the extraction, and results may become unreliable.  

The samples that were used to validate the method are: Alumina (Al2O3), Quartz, High 

Density Polyethylene (HDPE), Indium Phosphide (InP), and Silicon (Si). These samples were 

picked because they span a variety of material types: ceramics, polymers, semiconductors and 

glasses. The thicknesses of the material samples tested are: Al2O3 – 0.637mm, Quartz – 

1.631mm, HDPE – 1.58mm, InP – 0.63mm, and Si – 0.513mm. Note that an accurate measure of 

the sample thickness is required for the method to extract the sample’s true dielectric properties. 
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An uncertainty in the thickness of the sample results in an uncertainty in the extracted properties. 

The accuracy of the sample thickness measure becomes more influential when the sample to be 

characterized becomes more and more optically thin. The dielectric properties are presented in 

the form of the dielectric constant, r , and the loss tangent, tan ,  which were obtained from 

the extracted n  and k  using 
22 knr   and 

22

2
tan

kn

nk


 . The extracted material 

properties were smoothed with a moving average including 21 data points within its averaging 

window and centered at the data point to be smoothed. The standard deviation of the data within 

the averaging window was found each time the window was shifted. In order to show the spread 

of the extracted data before smoothing, standard deviation bars were included in the smoothed 

results. Each data point has a bar associated with it extending one standard deviation above and 

another below the data point. For validation completeness, the results presented here are 

compared to previously published results in the literature at selected frequencies. 

 
Figure 2-18. Extracted dielectric properties of Al2O3 
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Figure 2-19. Extracted dielectric properties of HDPE 

Figure 2-18 shows the dielectric properties obtained for Al2O3. These values follow the 

material parameters shown in [21]. The loss tangent from [21] lies within one standard deviation 

from the loss tangent obtained using the self-calibrating method. The dielectric constant in [21] 

differs from the dielectric constant obtained here by less than 1.7%. Possible reasons for this 

difference are manufacturability, sample thickness uncertainty and inherent system instability 

differences between the reference signal and sample signal in the reference requiring method of 

[21]. Figure 2-19 shows the dielectric properties obtained for HDPE. The extracted values follow 

those results shown in [25] quite well. Upon close comparison, it can be observed that both the 

dielectric constant and the loss tangent obtained from [25] lie within one standard deviation from 

the parameters extracted using the self-calibrating method. 
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Figure 2-20. Extracted dielectric properties of Quartz 

Figure 2-20 presents the characterization results obtained for Quartz. These results closely 

follow those shown in [25]. Both the dielectric constant and the loss tangent from [25] lie within 

one standard deviation from the parameters extracted using the self-calibrating method. Figure 2-

21 shows the results obtained for the first semiconducting material, InP. The results show that 

the loss tangent of InP extracted using the self-calibrating method lies within one standard 

deviation from the loss tangent in [27] while the dielectric constants differ by around 1.2%.  

Reasons for this difference might again be attributed to thickness uncertainty and the inherent 

system instability difference between reference and sample signals in the reference requiring 

method of [27]. Additionally, while both InP samples (in [27] and in this study) are high doped 

semiconductor samples, the effective doping concentrations might be different resulting in small 

differences in the extracted parameters. 
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Figure 2-21. Extracted dielectric properties of InP 

 
Figure 2-22. Extracted dielectric properties of doped Si 

Figure 2-22 presents the extracted dielectric properties for doped Si. Doped Si has lower 

resistivity than undoped Si. Previous studies show that Si with different resistivities have 

different material properties [47-48]. It has been shown that the higher the resistivity (lower 
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doping concentration) the lower the dielectric constant and the lower the loss tangent [48]. The 

dielectric properties of Si obtained here lie within the range of possible values of Si shown in 

[48]. Additionally, the extracted properties of Si here match to values presented in [37] for the 

same wafer using a reference-requiring material parameter extraction method and lie well within 

one standard deviation from them. Note that in [21], [25], [27], and [37] a measured reference 

signal was required for characterization whereas the results shown in Figure 2-18 to 2-22 do not 

require this signal. 

2.2.6 Method Limitations 

The self-calibrating technique has several implementation constraints which still needs to be 

resolved. First, in order to to separate the first multiple transmission from the sample signal, the 

time delay between the first multiple and the second multiple must be sufficiently large than the 

pulse width (avoid overlap of pulses). This time delay is determined by the optical thickness of 

the material sample under test. Specifically, the optical thickness is determined by the physical 

thickness and the refractive index of the sample. Second, for the characterization to be feasible, 

the total signal power present in at least the second multiple transmission must be above the 

noise level of the measured signal. Third, the measured signal artifacts removal procedure does 

not account for all the dispersion effects in the material, and hence the method works best when 

dispersion is low. Fourth, the sample thickness measurement accuracy affects the extracted 

results of the dielectric constant. Hence, a highly accurate thickness measurement is required for 

best characterization. To characterize a sample, the effect of the thickness measurement error can 

be decreased by using a thicker sample as the uncertainty of the thickness measurement would be 

less relative to the total thickness of the sample. However, even with these constraints, the 

method is still applicable to a wide range of materials and useful under many scenarios. 
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2.2.7 Error Analysis and Discussion 

As is mentioned in 2.2.6, one of the parameters which the self-calibrating method is highly 

prone to is the thickness measurement accuracy of the sample to be characterized. In this section, 

an error analysis is carried out in order to examine the effect of the thickness measurement 

uncertainty on the extracted parameters.  

For a given a dielectric sample it is assumed that its true thickness lies within ±0.02mm of 

the measured thickness. A population of 1000 possible true sample thicknesses is generated at 

random from a normal distribution having the measured thickness as a mean and 0.01mm as the 

standard deviation. For every sample thickness the forward problem was solved resulting in a 

synthesized sample signal calculated from a measured reference signal. The same measured 

reference signal was used for every forward problem solution. For every synthesized sample 

signal the inverse problem was solved using the measured thickness. Afterwards, the mean and 

standard deviation of the extracted properties was found at every single frequency. The resulting 

mean along with two times the standard deviation error bars were then plotted on the same 

graph.  
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Figure 2-23. (a) Extracted material properties of “B” for measured thickness=0.5mm, (b) 

Extracted  material properties of “B” for measured thickness=1mm 
 

Three modeled materials were used in order to carry out the thickness error analysis study for 

the self-calibrating material characterization method. The materials’ properties across the whole 

frequency range were “A”: 1r =2.372 and 1tan =0.005 (approximating the material properties 
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of a low loss polymer), “B”: 2r =3.822 and 2tan =0.005 (approximating the material 

properties of a low loss glass) and “C”: 3r =11.7 and 3tan =0.005 (approximating the 

properties of a low loss semiconductor). Two different tests were carried out. First, the 

sensitivity of the material characterization method was examined for the same material (“B”) at 

two different measured thicknesses. The two different measured thicknesses of “B” were chosen 

to be 0.5mm and 1mm. Second, the sensitivity of the method was tested for the three different 

materials (“A”, “B” and “C”) having the same optical thicknesses. Note that the optical thickness 

of a material is its physical thickness multiplied by its refractive index. The measured 

thicknesses of “A”, “B” and “C” were picked to be 1.3mm, 1mm and 0.6mm respectively. Note 

that the results of the 1mm material “B” were not recalculated as this was done in the first test. 
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Figure 2-24. (a) Extracted material properties of “A” for measured thickness=1.3mm, (b) 

Extracted  material properties of “C” for measured thickness=0.6mm 
 

Figure 2-23 shows the mean and standard deviation of the extracted properties at each 

frequency for the two measured thicknesses of “B”. Upon comparing Figure 2-23 (a) and (b), it 

can be seen that the means of the extracted material properties of “B” for both thicknesses are 

almost the same. However, it can also be seen that the error bars for the 0.5mm thick sample are 
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larger. This means that for the same material properties, the self-calibrating method is more 

sensitive to the thickness measurement uncertainty as the thickness decreases.  

Figure 2-24 shows the mean and standard deviation of the material properties extracted for 

“A” and “C” at their measured thicknesses. Although the material samples “A” and “C” from 

Figure 2-24 (a) and (b) and “B” from Figure 2-23 (b) all have the same optical thickness, the 

error bars grew significantly larger for the material having a higher dielectric constant. From this 

observation, it can be concluded that the self-calibrating method is not equally sensitive to the 

thickness measurement uncertainty for materials having the same optical thickness. Using the 

results obtained from both of the error analysis tests, a third conclusion can also be made. Given 

two materials having the same thickness, the self-calibrating method is more sensitive to the 

thickness accuracy measure for the material that has a higher dielectric constant. This can be 

deduced when comparing the results shown in Figures 2-23 (a) and 2-24 (b). Although the lower 

dielectric constant material “B” in Figure 2-23 (a) had a lesser thickness than the higher 

dielectric constant material “C” in Figure 2-24 (b) the error bars on the extracted properties for 

“C” were significantly larger. 

A few observations can be made upon comparing the error analysis results obtained for the 

reference requiring (see section 2.1.6) and the self-calibrating methods given that the same 

modeled materials were used for both studies. First, it is clear from the obtained results that the 

self-calibrating method is more sensitive to the thickness measurement uncertainty than the 

reference requiring method. Second, the ringing effect seen in the reference requiring method 

extracted properties mean and standard deviation is not seen in those of the self-calibrating 

method(see Figures 2-10 (b) and 2-24 (b)). This is due to the absence of nonzero truncations in 

the time domain sample signal used for extracting the material properties with the self-
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calibrating technique. The nonzero truncations disappear from the measured sample signal after 

the signal artifacts removal procedure. Third, for the 0.5mm thick material “B” and the 1.3m 

thick material “A” the self-calibrating method shows significantly higher error bars on the loss 

tangent than the reference requiring method. This can be explained by two of the method 

limitations discussed above in section 2.2.6. The higher loss tangent for material “B” is most 

likely due to the need to have sufficient time delay between the multiple transmissions of the 

sample signal. On the other hand for “A”, the self-calibrating method is more prone to signal 

power than the reference requiring method as it requires at least the second multiple transmission 

to be higher than noise level. The higher the number of multiple transmissions captured above 

noise level, the better the method results. For a low loss polymer material like “A”, most of the 

signal passes through the sample in the first transmission and the second transmission is 

relatively low in amplitude. This might result in a higher loss tangent uncertainty for the self-

calibrating method.  
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CHAPTER 3 

METHODS FOR CHARACTERIZATION OF MULTIPLE LAYER MEDIA 

 

3.1 The Multiple Angle Method 

Note: This work is partially documented in [49]. The Matlab material characterization code 

associated with this method is presented in Appendix E. 

3.1.1 Problem Definition and Motivation 

The methods provided in chapter 2 cannot be used to carry out multiple layer material 

characterization or even efficient single layer material characterization with thickness extraction. 

Methods capable of achieving such feats will prove useful for many applications including 

manufacturing quality assurance, defect characterization, structural health monitoring, composite 

material delamination characterization and biotissue inspection. 

This section demonstrates the multiple angle method capable of material characterization of 

multiple dielectric layers along with single layer characterization with thickness extraction. 

Given a dielectric stack with flat surfaces, an incident electromagnetic plane wave with a 

monocycle shaped Gaussian waveform is illuminated onto the structure at a certain angle. First, a 

reference signal (representing a delayed version of the incident plane wave) transmitted through 

air is measured. Second, signals transmitted through the stack at different angles of incidence are 

collected. Using these signals and the knowledge of the number of layers in the stack, the 

proposed method extracts the dielectric properties and thickness of each layer. The number of 

measurements required is dependent on the number of dielectric layers in the stack. 
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3.1.2 Characterization Method Theory 

 
Figure 3-1. Sketch of the idealized measurement setup 

As mentioned before, two sets of measurements are required for the multiple angle method: 

i) a reference measurement,  and ii) a number of incident angle dependent sample measurements. 

The sketch diagram, Figure 3-1, shows an idealized measurement setup of the signals required 

for the multiple angle method. The incident plane wave is  ,tEi  where t  is time and   is the 

angle of incidence. The reference measurement,  ,qtEi  , is the incident wave delayed in time 

by q  due to travelling the distance d  (see Figure 3-1) between the transmitter and receiver. On 

the other hand, the wave transmitted through the stack (or sample measurement) can be 

described as 

 
      ,,, tTptEtE itr  ,                                             (3-1) 

where  ,tT  is the global time domain transmission coefficient due to travelling through the 

material system and p  is a time delay due to travelling a certain distance in air before entering 

and after exiting the material system. The stack is composed of multiple dielectric layers each 
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having a thickness, il , and dielectric properties, iii jknn ~  where i  is a positive integer 

number representing a specific layer. 

Proceeding with the theoretical description, the Fourier transforms of the measured signals 

are found. The Fourier transform of the reference measurement,  ,qtEi  , is described as 

    cdnjE ai
~exp,    where 000027.1~ jna   [27] is the refractive index of air,   is the 

angular frequency in radians and c  is the speed of light in air. The Fourier transform of the 

incidence angle dependent sample measurement is described by 

        ,,,, UTEE itr  ,                                           (3-2) 

where  ,T  is the  Fourier transform of the global time-domain transmission coefficient  and 

 ,U  is a phase shift factor resulting from the wave travelling a certain distance in air before 

entering and after exiting the material system. Respectively, the expressions for  ,U  and 

 ,T are 
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and 

    1,

0

,exp, 



  ii

n

i

iiz SljkT  , [50]                                     (3-4) 

where 0i and 1 ni  are the air before and after the dielectric material system, izk ,  is the 

wave vector component along the z  direction and is described by 

    22
, sin~ 


 iiz n

c
k .                                                     (3-5) 

Additionally,   
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where 1, iiT  and 1, iiR  are interfacial transmission and reflection coefficients respectively and 

are described in terms of the wave impedances in each layer, iZ , as 
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Given the experimental measurement setup, the parallel polarization case is considered and as a 

result the wave impedance in layer i  is given by 

i

iiz
i

k

k
Z

,
 ,                                                                            (3-10) 

where 
i

i
n~

120
   and ii n

c
k ~

  are the intrinsic impedance and wave number in layer i  

respectively. For a given angle of incidence a ratio,  ,Q , of  ,trE  to 

    cdnjE ai
~exp,  

 

can be obtained and simplified to 
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3.1.3 Inverse Problem Root Finding Setup 

Each layer i  in the dielectric stack is associated with three characteristics in , ik  and il . For 

a given angle of incidence,  ,Q  is a function of the three properties of each layer in the 

dielectric stack. A calculated set of ratios (obtained at different angles of incidence) can be 

matched to a measured set of ratios (at the same angles of incidence) by finding the three 

properties of each layer in the stack. This matching operation is the basis for the multiple angle 

material parameter extraction method. The objective function for such an operation is described 

as 

 
 

 

 
 

 
0

,

,

,

,

,

,

.

3

2

1

.

3

2

1



















































calcmeas

Q

Q

Q

Q

Q

Q

F












.                             (3-12) 

The expression shown in (3-12) is a system of equations. Thus, the matching operation 

required to extract the properties of each layer is essentially solving a system of equations of a 

certain number of unknowns. Since, the ratios are complex quantities, two separate equations can 

be obtained for every measured ratio (magnitude and phase or real and imaginary). This results 

in decreasing the total number of measurements and as a result the complexity of the problem. 

Extracting the properties of each layer from the measured signals, requires a total number of 

ratios (or different angle of incidence measurements) specified by the total number of unknowns. 

For example, a stack of two layers of which the thicknesses are known has a total of 4 unknowns. 

Since two equations can be obtained from each ratio (from each angle of incidence), two 

different ratios are required (or two different angle of incidence sample measurements in 

addition to the reference measurement). On the other hand, if the thicknesses of the layers are 

unknown then the total number of unknowns is 6 and thus requiring three different ratios. 
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In order to solve the system of equations and obtain approximations to the roots (or dielectric 

layer characteristics to be found), the secant method [51] was used. A description of the secant 

method is available in Appendix B. Note that the secant method is highly sensitive to initial 

guesses. The root finding process takes place in two different phases. The first phase consists of 

running the extraction procedure at each discrete frequency point starting from a set of initial 

guesses picked at random from uniform distributions. The uniform distributions are possible 

wide ranges of values which the unknowns to be found lie within. Afterwards, the extracted 

parameters for the frequency points where the extraction algorithm converged or completed the 

maximum number of iterations are checked whether they lie within certain intervals set prior to 

running the extraction. If a certain extracted set of parameters satisfies the intervals, then the 

second phase begins. If not, then the first phase is run again. The second phase is a rerun of the 

extraction procedure taking the extracted set of parameters satisfying the intervals from the first 

phase as initial guesses. An additional provision added to the second phase is that if convergence 

is achieved at a certain frequency point, the parameters obtained at that frequency are used as the 

initial guesses for the next frequency. Upon completion of the second phase, the approximations 

to the extracted layer characteristics are obtained. 

3.1.4 Forward Problem Solution and Validation 

  The forward problem solution was carried out in order to validate the theory and check if it 

models the experimental measurement procedure and setup well. Before proceeding any further 

it is worthy to present the measurement setup used for collecting the data utilized in the forward 

and inverse problem solutions. The top view of the experimental setup used for collecting the 

measured signals along with the labels and descriptors is shown in Figure 3-2. 
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Figure 3-2. Experiment measurement setup (top view) 

Figure 3-3 shows a typical reference signal measured through air. This signal simply 

represents the incident signal delayed in time due to its path length in air between the transmitter 

and the receiver. Embedded into the THz measured signal is the inherent system response.  

 
Figure 3-3. Typical measured reference signal through air (or delayed incident signal) 
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Figure 3-4. Measured and calculated signals through the single layer dielectric stack 

Measured signals were obtained for a single layer of HDPE ( l =1.595mm) with average 

dielectric properties across the THz system frequency range of operation being ( n =1.535 and 

k =0.002) [25]. The signals were obtained at two angles of incidence, 20- and 60-degrees. 

Additionally, calculated signals were obtained using the theory presented earlier and a measured 

reference signal through air similar to the one shown in Figure 3-3. Figure 3-4 shows the 

measured signals along with their calculated counter parts for the single layer HDPE stack.  

Two layer measurements were obtained for Zeonor 1420-R ( l =1.98mm) and Quartz 

( l =1.631mm) with average dielectric properties across the THz system frequency range of 

operation being ( n =1.5425 and k =0.001) [25] and ( n =1.958 and k =0.003) [37], respectively. 

Measured signals were obtained at two angles of incidence, 20- and 60-degrees. Additionally, 

calculated signals were obtained using the theory presented earlier and a measured reference 
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signal through air similar to the one shown in Figure 3-3. Figure 3-5 shows the measured signals 

along with their calculated counter parts for the two layer stack. 

 
Figure 3-5. Measured and calculated signals through the two layer dielectric stack 

The close similarities between the waveforms verify the characterization method modeling 

and assumptions. The slight differences between the synthesized and measured signals (see 

indent of Figures 3-4 and 3-5) may have been due to a variety of factors including: i) the 

measurement incident angle setting accuracy; ii) the thickness measurement uncertainty, iii)the 

effective average dielectric properties used to generate synthetic signals instead of using the 

actual frequency dependent properties and iv) for the two layer stack, presence of air gap 

between the stacked layers. 
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3.1.5 Inverse Problem Solution From Synthesized Data 

Here, three different scenarios were considered and used to test the proposed characterization 

method. The tests for the characterization method were carried out using synthesized transmitted 

signals from a measured reference signal. The results for the inverse problem solution were 

obtained between 0.3 and 1.6 THz with 0.0125 THz steps (found from the sampling period of the 

measured reference signal =0.0394 ps and the total number of points=2048).  

In the first case, it was assumed that the dielectric stack was composed of a single dielectric 

layer with an unknown thickness. The dielectric layer had a thickness of l =1.1mm. Its refractive 

index real and imaginary parts across the whole frequency range were n =1.8 and k =0.001, 

respectively. To sum it up, this problem included three unknowns and as a result three equations 

were required corresponding to two ratios or two sample measurements at two different angles of 

incidence. The two angles of incidence were picked to be 30- and 60-deg. The layer properties 

were solved for at each frequency point. The preliminary initial guesses for the first phase of the 

root finding process were picked at random in the ranges 1.4 to 1.9, 0 to 0.05 and 0.2mm to 2mm 

for n , k  and l  respectively. The extracted parameters obtained from the first phase which were 

used as the initial guesses for the second phase were: 1.7736, 0.0037 and 1.1165mm for n , k  

and l  respectively. Figure 3-6 shows the extracted material properties for the single layer stack 

along with the thickness.  
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Figure 3-6. Extracted properties of the single layer stack 
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In the second case, it was assumed that the dielectric stack was composed of two dielectric 

layers with known thicknesses. The dielectric layers had thicknesses of 1l =1.2mm and 

2l =1.98mm, respectively. Their refractive indices real and imaginary parts across the whole 

frequency range were ( 1n =2 and 1k =0.01) and ( 2n =1.5425 and 2k =0.01), respectively. To sum 

it up, this problem included four unknowns and as a result four equations were required 

corresponding to two ratios or two sample measurements at two angles of incidence. These were 

picked to be 30- and 60-degrees. The layer properties were solved for at each frequency point. 

The preliminary initial guesses for the first phase were picked at random in the ranges 1.6 to 2.2, 

0 to 0.1, 1.4 to 1.8 and 0 to 0.1 for 1n , 1k , 2n  and 2k
 
respectively. The extracted parameters 

obtained from the first phase which were used as the initial guesses for the second phase were: 

2.0029, 0.01399, 1.5354 and 0.008639 for 1n , 1k , 2n  and 2k
 
respectively. Figure 3-7 shows the 

extracted material properties for the two layer stack. It is clear that the method succeeded in 

converging to values close to the true properties. 
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Figure 3-7. Extracted properties of the two layer stack (known thicknesses) 

In the third case, it was assumed that the dielectric stack was composed of two dielectric 

layers with unknown thicknesses. The dielectric layers had thicknesses of 1l =1.98mm and 

2l =1.2mm, respectively. Their refractive indices real and imaginary parts across the whole 

frequency range were ( 1n =1.5425 and 1k =0.01) and ( 2n =2 and 2k =0.01) respectively. To sum 

it up, this problem included six unknowns and as a result six equations were required 
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corresponding to three ratios or three sample measurements at three angles of incidence. These 

were picked to be 20-, 40- and 60-deg. The layer properties were solved for at each frequency 

point. The preliminary initial guesses for the first phase were picked at random in the ranges 1.4 

to 1.6, 0 to 0.1, 1.8mm to 2.3mm, 1.7 to 2.3, 0 to 0.1 and 0.9mm to 1.4mm for 1n , 1k , 1l  2n , 2k
 

and 2l  
respectively. The extracted parameters obtained from the first phase which were used as 

the initial guesses for the second phase were: 1.5627, 0.00998, 1.908mm, 1.9579, 0.00965 and 

1.243mm for 1n , 1k , 1l , 2n , 2k
 
and 2l  

respectively. Figure 3-8 shows the extracted material 

properties for the two layer stack.  
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Figure 3-8. Extracted properties of the two layer stack (unknown thicknesses) 
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Upon examining the results obtained for all the three test cases carried out, it is clear that the 

method succeeded in converging to values very close to the true properties at most of the 

frequency samples. Since, this inverse problem solution is for synthesized data, the difference 

cannot be attributed to the measurement procedure or source instability. However, the minor 

differences can be attributed to the discretization of the measured time-domain reference signal 

used to generate the synthesized data. A single time step (0.0394ps) in a material having n =1.8 

corresponds to a physical thickness of 0.0145mm, thus the accuracy of the extraction is affected 

by the discretization as the samples to be characterized become more optically thin. The 

fluctuations in the extracted parameters are caused by the nonzero truncated ends of the time-

domain signals (see Figures 3-3 to 3-5). Comparatively, it is clear that an increasing complexity 

(more unknowns) results in worse extracted parameters (see Figure 3-6, 3-7 and 3-8). This might 

be partially attributed to a solution non-uniqueness issue. An example of the solution non-

uniqueness issue can be seen in the complimentary outliers in the extracted results at 937 GHz in 

the refractive index (real) graph of Figure 3-7. One possible solution for the non-uniqueness 

issue in any future method improvements might be in a multi-objective function constrained 

optimization. For the third case, the root finding method didn’t converge to an answer or 

complete the root finding process number of iterations at all frequencies. The frequencies at 

which the root finding process failed are represented by the zeros in Figure 3-8. The increased 

complexity of the root finding problem is the probable reason for the failure to converge.   

3.1.6 Inverse Problem Solution From Measured Data 

In this section material sample properties were extracted from measured data. The results for 

the inverse problem solution were obtained between 0.2 THz and an upper limit determined by 

the noise floor of the measured signals with 0.0125 THz steps (found from the sampling period 
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of the measured reference signal =0.0394 ps and the total number of points=2048). Two types of 

inverse problem solutions were carried out. These were the extraction of parameters of a single 

layer dielectric stack with unknown thickness and of a two layer dielectric stack with known 

layer thicknesses. The single layer dielectric stacks characterized along with their thicknesses 

were: HDPE – 1.595mm, Si – 0.52mm, Pyrex – 0.52mm and Polycarbonate (PC) - 1.11mm. 

These thicknesses were acquired using a digital caliper accurate to within 0.02mm. The two layer 

dielectric stacks which were characterized were composed of: HDPE-Si and Pyrex-Si. The 

dielectric properties are presented in the form of the dielectric constant, r , and the loss tangent, 

tan ,  which were obtained from the extracted n  and k  using 
22 knr   and 

22

2
tan

kn

nk


 . This was done for ease of comparison with the extracted properties from the 

methods presented in chapter two. The extracted material properties were smoothed with a 

moving average including 21 data points within its averaging window and centered at the data 

point to be smoothed. The averaging excluded any frequency points where the method didn’t 

converge to a value or converged to another solution out of the range of possible solutions (used 

to find the initial guesses for the first phase). The standard deviation of the data within the 

averaging window was found each time the window was shifted. In order to show the spread of 

the extracted data before smoothing, standard deviation bars were included in the smoothed 

results. Each data point has a bar associated with it extending one standard deviation above and 

another below the data point. For validation completeness, the results presented for this method 

are compared to the results obtained from the reference requiring method (chapter 2 or [37]) at 

selected frequencies. 
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All the sample measurements for the inverse problem solution for the single layer stacks 

were taken at 60- and 40-deg except for Si (60- and 50-deg). Figure 3-9 shows the results 

obtained for the HDPE single layer stack. The preliminary initial guesses for the first phase of 

the root finding process were picked at random in the ranges 1.5 to 2.1, 0 to 0.15 and 0.2mm to 

2mm for n , k  and l  respectively. The extracted parameters obtained from the first phase which 

were used as the initial guesses for the second phase were: 1.58466, 0.005317 and 1.479mm for 

n , k  and l  respectively. The dielectric properties extracted in [37] lie within one standard 

deviation from those extracted here. Additionally, the mean of the thickness extracted here is 

2.8% different from that measured with the digital caliper. Figure 3-10 shows the results 

obtained for the Si single layer stack. The preliminary initial guesses for the first phase of the 

root finding process were picked at random in the ranges 3 to 3.8, 0 to 0.15 and 0.2mm to 2mm 

for n , k  and l  respectively. The extracted parameters obtained from the first phase which were 

used as the initial guesses for the second phase were: 3.421, 0.0242 and 0.52mm for n , k  and l  

respectively. The dielectric properties extracted in [37] lie well within one standard deviation 

from those extracted here. Additionally, the mean of the thickness extracted here is 2.1% 

different from that measured with the digital caliper.  
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Figure 3-9. HDPE single layer stack extracted material properties and thickness 
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Figure 3-10. Si single layer stack extracted material properties and thickness 
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Figure 3-11. Pyrex single layer stack extracted material properties and thickness 

Figure 3-11 shows the results obtained for the Pyrex single layer stack. The preliminary 

initial guesses for the first phase of the root finding process were picked at random in the ranges 

1.9 to 2.5, 0 to 0.15 and 0.2mm to 2mm for n , k  and l  respectively. The extracted parameters 
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obtained from the first phase which were used as the initial guesses for the second phase were: 

2.1559, 0.0158 and 0.5057mm for n , k  and l  respectively. The extracted dielectric constant 

differs by about 5% from that obtained in [37], while the loss tangent lies well within one 

standard deviation. Additionally, the thickness extracted here is 2.88% different from that 

measured with the digital caliper. Figure 3-12 shows the results obtained for the PC single layer 

stack. The preliminary initial guesses for the first phase of the root finding process were picked 

at random in the ranges 1.5 to 2.1, 0 to 0.15 and 0.2mm to 2mm for n , k  and l  respectively. The 

extracted parameters obtained from the first phase which were used as the initial guesses for the 

second phase were: 1.6517, 0.01454 and 1.155mm for n , k  and l  respectively. The dielectric 

properties extracted here lie within one standard deviation from those extracted in [37]. 

Additionally, the thickness extracted here is 0.54% different from that measured with the digital 

caliper.  
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Figure 3-12. PC single layer stack extracted material properties and thickness 

The single layer characterization results achieved along with thickness extraction show the 

contribution of the multiple angle method relative to other single layer material characterization 

method which don’t extract the thickness of the dielectric sample. On the other hand, pertaining 
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to the obtained results one observation made was that the size of the error bars on the extracted 

material properties (especially the dielectric constant) increased as the dielectric constant 

increased. The reason for this is yet to be investigated. 

Figure 3-13 shows the results obtained for the Si-HDPE two layer stack. The preliminary 

initial guesses for the first phase were picked at random in the ranges 3 to 3.8, 0 to 0.2, 1.4 to 1.8 

and 0 to 0.2 for 1n , 1k , 2n  and 2k
 
respectively. The extracted parameters obtained from the first 

phase which were used as the initial guesses for the second phase were: 3.4077, 0.0348, 1.5263 

and 0.00146 for 1n , 1k , 2n  and 2k
 
respectively. It is clear that the dielectrics constant in [37] lie 

well within one standard deviation of the dielectric constants extracted here. The extracted loss 

tangents however appear to be higher than in [37]. A very likely explanation to that might be in 

any small air gaps between the two layers of the stack not accounted for in the theoretical model. 

The air gaps possibly came to be when the layers were mechanically pressed against each other 

to create the two layer stack. These air gaps result in cavities for the THz wave and thus might be 

causing some attenuation to the signal. Another possible reason for mismatches lies in the 

instabilities of the source and detector causing different signal drifts in the collected data. Figure 

3-14 shows the results obtained for the Pyrex-Si two layer stack. The preliminary initial guesses 

for the first phase of the extraction process were picked at random in the ranges 1.9 to 2.3, 0 to 

0.08, 3 to 3.5 and 0 to 0.08 for 1n , 1k , 2n  and 2k
 
respectively. The extracted parameters 

obtained from the first phase which were used as the initial guesses for the second phase were: 

2.0938, 0.07, 3.432 and 0.0075 for 1n , 1k , 2n  and 2k
 
respectively. The dielectric constant 

results obtained here compared to these in [37] and lie well within one standard deviation of each 

other. The loss tangent of Si from [37] lies within one standard deviation from the loss tangent 

extracted here. On the other hand, while the loss tangent in [37] from Pyrex maintains the same 



91 

 

increasing trend as the Pyrex loss tangent extracted using the multiple angle method it is 

significantly less. Again, this error in the loss tangent can possibly be attributed to air gaps 

between the layers or measurement system drifts and instabilities. 

 
Figure 3-13. HDPE-Si two layer stack extracted material properties 
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Figure 3-14. Pyrex-Si two layer stack extracted material properties 

3.1.7 Error Analysis and Discussion 

The multiple angle method requires the measurement of signals transmitted through the 

sample at an angle. As such, the angle setting in the measurement setup might prove to be a 
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source of uncertainty in the extracted material parameters. In this section, an error analysis is 

done in order to examine the effect of the incidence angle setting accuracy on the extracted 

parameters.  

The first study was carried out on the material characterization of a single layer dielectric 

sample with known thickness for the parallel polarization setup discussed in earlier sections. This 

characterization requires a single sample signal taken at a chosen angle of incidence in addition 

to the reference signal through air. For this study, the assumed sample signal angles were chosen 

to be 0-, 20-, 40- and 60-degrees. The effect of the angle of incidence uncertainty on the 

extracted parameters is examined. From the measurement setup it was determined that the 

incident angle setting is accurate to within ±0.5-degrees.  

The modeled material used to carry out the error analysis study had the properties: 

1r =3.822, 1tan =0.005 and thickness=1mm. The initial guesses used for the error analysis 

study were the true modeled material’s properties themselves as the goal was to examine the 

sensitivity of the technique due to the angle setting accuracy only. For the purpose of the 

discussion that will follow the presentation of the results, it was determined that the Brewster’s 

angle of the modeled material is around 63-degrees.   

For each of the assumed sample signal angle settings (0-, 20-, 40- and 60-degrees), a 

population of 1000 possible true angle settings is generated at random from a normal distribution 

having the assumed angle setting as a mean and 0.25-degrees as the standard deviation. For 

every possible true sample signal angle setting generated in the population, the forward problem 

was solved resulting in a synthesized sample signal calculated from a measured reference signal. 

The same measured reference signal was used in every forward problem solution. Afterwards, 

for each synthesized sample signal the inverse problem was solved using the assumed sample 
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signal angle setting. The mean and standard deviation of the extracted properties were then found 

at every single frequency. The resulting mean along with two times the standard deviation error 

bars were then plotted on the same graph. Figure 3-15 shows the means and the errors bars 

obtained for the extracted parameters of the modeled material using the each of the four sets of 

synthesized sample signals at assumed angle settings of 0-, 20-, 40- and 60- degrees. 

 
Figure 3-15. Extracted material parameters for the assumed incident angle settings of (a) 0-

degrees, (b) 20-degrees, (c) 40-degrees and (d) 60-degrees 
 

From Figure 3-15, it is seen that the method becomes more sensitive to an incident angle 

approaching the Brewster’s angle when extracting the dielectric constant. This is apparent in the 

increasing size of the error bars. The comparison of the error bars of the extracted loss tangents 

however shows that the method is slightly more sensitive to the 20- and 40-degrees angles of 

incidence when extracting the loss tangent. The recurrent peak at around 1.1 THz in the extracted 

loss tangents of Figure 3-15 may largely be due to moisture absorption (see Figure 1-5) which 
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would have been present in the measured reference signal used in the forward and inverse 

problem solutions.  

 
Figure 3-16. Extracted properties for the assumed incident angle pair (60- and 40- degrees) (a) 2 

matching equations for 60-degrees incidence (b) 2 matching equations for 40-degrees incidence 
 

The second error analysis study involved the characterization of a single dielectric layer 

along with thickness extraction. In order to carry out this characterization, two sample signals at 

two angles are required as the number of unknowns amounts to three and each sample signal can 

be used to find two unknowns. The assumed sample signal angles used for the study were chosen 

to be at 40- and 60-degrees. Out of the four possible matching equations (two pairs matching 

magnitudes and phases of calculated and measured ratios) for the root finding process, three 

must be picked to complete the characterization. The error analysis study here is run twice. In the 
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first case, two equations matching the magnitude and phase of a calculated and measured ratio 

for 60-degrees incidence are used while one equation matching the phase of a calculated and 

measured ratio for 40-degrees incidence is used. In the second case, two equations matching the 

magnitude and phase of a calculated and measured ratio for 40-degrees incidence are used while 

one equation matching the phase of a calculated and measured ratio for 60-degrees incidence is 

used. Figure 3-16 shows the means and error bars of the extracted dielectric properties and 

thicknesses for each of the cases.     

Upon comparing the results from the two cases obtained, it is clear that the angle setting 

accuracy affected the possible ranges of the extracted dielectric constant and thickness almost the 

same in both cases. However, the loss tangent in case (a) was almost unaffected by the angle 

setting accuracy as opposed to the loss tangent in case (b) which had relatively large error bars. 

Hence, this leads to the conclusion that under a similar situation and given the angle setting 

accuracy as the major part of uncertainty in the measurement; the choice of which angle 

dependent sample signal is used to generate two equations versus one for the root finding 

algorithm can affect the possible outcome of the material parameter extraction method. Finally, 

upon comparing the results obtained in Figure 3-16 against the ones obtained in Figure 3-15, it is 

shown that as the number of angle dependent sample signals increases for the material 

characterization method the uncertainty in the extracted results increases as well. 
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3.2 The Input and Output Field Distribution Method 

3.2.1 Problem Definition and Motivation 

All the material characterization methods presented in this dissertation up until this section 

were modeled to carry out material characterization of dielectric material systems using a single 

source and a single detector measurement setup. In the future, THz systems will include a single 

source and an array of detectors. Such THz systems will have the capability to carry out single 

shot imaging. Research is currently being carried out to realize such systems. A method 

facilitating the use of the future multiple detector THz systems  for material characterization is 

needed. Such a method would make use of the field distributions achieved in measurement using 

an array of detectors. In this section, the input and out field distribution method is presented 

towards that need. 

This method is based upon the angular spectrum propagation concept of Fourier optics [52]. 

The concept shares similarities with systems theory. Using this concept, the field distribution of 

an electromagnetic wave at a certain plane can be found if the field distribution of the same wave 

is known at another plane. The field distribution to be found depends on the known distribution 

and the medium that the wave has to propagate through in between the two planes. Hence, if the 

field distribution at two parallel planes is known while the medium material properties between 

them are unknown an inverse problem can be setup in order to solve for the material properties 

of the medium.      

  This method can be further explained if the medium is considered to be a system (see block 

diagram in Figure 1-6). Under such a consideration, the field distribution at one of the planes 

bordering the medium is the input field distribution while the other is the output field 

distribution. Hence given an unchanging medium (or material system), for any input field 

distribution a unique output field distribution exists.  
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Consider the medium to be a layered dielectric stack. Using the input and output field 

distribution at both borders of the stack and the knowledge of the number of layers in the stack, 

the proposed method provides means to obtain the dielectric properties and thickness of each 

layer. The number of different input field distributions required (and as a result output field 

distributions) is dependent on the number of dielectric layers in the stack. Due to that, an 

efficient way to obtain various input field distributions is required. The THz system alone 

generates a collimated THz parallel beam. In this research, a 1-D Fresnel phase reversing zone 

plate (PRZP) lens [53-59] is used to obtain a desired field distribution. Unlike traditional 

refractive lenses, the PRZP focuses electromagnetic waves through diffraction. It was chosen due 

to its predictable performance in that it has well spread out focal lengths for different 

wavelengths of electromagnetic waves and because of the multiple feature field distribution that 

can be generated as a result of wave propagation through it. Other reasons for choosing the 

PRZP lens are its ease of fabrication and its overall flat surface making its alignment easier. 

Figure 3-17 shows the idealized model for the input and output field distribution method used for 

the analysis in the following sections. 

 

Figure 3-17. Idealized model for the input and output field distribution method  
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The advantages of the input and output field distribution method over the multiple angle 

method are its independence from the use of input paramters (such as angle setting for the 

multiple angle method) and its observed extracted parameter solution uniqueness. 

In the next subsections the material characterization method background theory, forward 

problem solution from synthesized data, the inverse problem solution from synthesized data and 

a discussion on the method’s experimental implementation including the design and 

experimental testing of a PRZP are presented. 

3.2.2 Characterization Method Theory 

 
Figure 3-18. Theoretical model for the characterization method 
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Consider a monochromatic collimated electromagnetic plane wave propagating in the z- 

direction incident upon a 1-D PRZP lens (see Figure 3-18). The zone plate lens can be described 

in terms of a transmittance function [60]. The transmittance function is a Fourier series expressed 

as 
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where w  is an integer number,      wjb
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wavelength in free space and p is the frequency dependent principle focal length of the zone 

plate lens. Assuming that the incident parallel beam has a unity amplitude, the angular spectrum 

of the field distribution after the lens is the spatial Fourier transform of equation (3-13) and is 

described by  
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where xf  is the spatial frequency along the x direction and is related to the wave vector 

component along the x direction, xk , by 
2

x
x

k
f  . The angular spectrum of the field 

distribution directly before the material system (at zi1, see Figure 3-18) can be found by 

multiplying the angular spectrum after the lens by an exponential function. The angular spectrum 

at zi1 is described by 
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where 0,zk  is the wave vector component along the z direction in free space and is described by 
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, 0,zk  is picked to be the negative imaginary value resulting from the square 

root in (3-16). Under this condition the wave becomes evanescent. In relation to the problem 

definition of this material characterization technique, 1ziA is the angular spectrum (or spatial 

Fourier transform) of the input field distribution. The material system between zi1 and zi2 can be 

described by a transmission coefficient,  xkT , , which is a function of the material system’s 

layers properties and thicknesses.  xkT , is described as 
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where 0i and 1 Ni  are the air before and after the dielectric material system, il  is the 

thickness of layer i  of the material system, izk ,  is the wave vector component along the z  

direction and is described by 

22
, xiiz kkk                                                                        (3-18) 

where ik is the wave number in the layer i  of the material system and is a function of the 

complex index of refraction of layer i  ( iii jknn ~ ) by, ii n
c

k ~
 . 

Additionally,   

 11,2,1,1
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1,

2exp
~

1 







iiziiii

ii
ii

ljkRR

T
S ,                      (3-19) 
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where 1, iiT  and 1, iiR  are interfacial transmission and reflection coefficients respectively and 

are described in terms of the wave impedances in each layer, iZ , as 

1

1
1,

2









ii

i
ii

ZZ

Z
T ,                                                                  (3-20) 
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R ,                                                                 (3-21) 

and 

 
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~
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ljkRR
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R .                      (3-22) 

Given the experi1mental measurement setup, the perpendicular polarization case is considered 

and as a result the wave impedance in layer i  is given by 

iz

ii
i

k

k
Z

,


 ,                                                                               (3-23) 

where 
i

i
n~

120
   is the intrinsic impedance. The angular spectrum of the output field 

distribution located at zi11 (or after the material system) is described as 

 xzizi kTAA ,111  .                                                               (3-24) 

It is worthy to note that if the material system was moved to an arbitrary location ziu on the 

z-axis of Figure 3-18, the angular spectrum of the input field distribution will change to  

   ziukjkTA zxbziu 0,exp                                                  (3-25) 

thus resulting in changes in the angular spectrum of the output field distribution collected at ziuu 

to become 

 xziuziuu kTAA , .                                                              (3-26) 
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The input and output field distributions at locations ziu and ziuu respectively are the inverse 

spatial Fourier transforms of (3-25) and (3-26) and can be respectively described by 

  xxziuziu dfxfjAE 2exp




                                              (3-27) 

and 

 

    xxxziu

xxziuuziuu

dfxfjkTA

dfxfjAE





2exp,

2exp










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



.                              (3-28) 

3.2.3 Inverse Problem Root Finding Setup 

Given a stack of N  dielectric layers, input field distributions,  zMIE , at different locations 

on the z axis can be measured every time the material system is shifted with respect to the PRZP 

lens. The output field distribution,  zzMOE  , associated with each measured  zMIE  is also 

measured where z  is the total thickness of the material system. Using the angular spectrum of 

 zMIE  and a certain calculated material system transmission coefficient,  xC kT , , calculated 

versions of the output field distribution,   zzCOE  , can be obtained through equation (3-27).  

The root finding process aims to iteratively approximate the unknown material properties of 

the material systems used to calculate  xC kT ,  such that the system of equations, 
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is solved. The approximated material properties as a result of the root finding process are the 

extracted material properties of the layers of the material system.  

  The amount of input and output field distribution pairs required to carry out the material 

characterization is determined by the total number of unknown dielectric layers’ properties to be 

solved for. For example, a stack of two dielectric layers of which the thicknesses are known has 

a total of 4 unknowns. Since two equations can be obtained from each input and output field 

distribution pair, two different input and output field distribution pairs are required. On the other 

hand, if the thicknesses of the layers are unknown then the total number of unknowns is 6 thus 

requiring three different input and output field distribution pairs. 

In order to solve the system of equations and obtain approximations to the roots (or dielectric 

layer characteristics to be found), the secant method [51] was used. A description of the secant 

method is available in Appendix B. Note that the secant method is highly sensitive to initial 

guesses. The root finding process takes place in two different phases. The first phase consists of 

running the extraction procedure at each discrete frequency point starting from a set of initial 

guesses picked at random from uniform distributions. It is worthy to note that if convergence is 

achieved at a certain frequency point, the parameters extracted at that frequency are used as the 

initial guesses for the next frequency. Uniform field distributions are possible for a wide range of 

values for which the unknowns can be found to lie within. Afterwards, the extracted parameters 

for the frequency points where the extraction algorithm converged or completed the maximum 
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number of loops are checked as to whether they lie within certain intervals set prior to running 

the extraction. If a certain extracted set of parameters satisfies the intervals, then the second 

phase begins. If not, then the first phase is run again. The second phase is a rerun of the 

extraction procedure taking the extracted set of parameters satisfying the intervals from the first 

phase as initial guesses. Again, if convergence is achieved at a certain frequency point, the 

parameters extracted at that frequency are used as the initial guesses for the next frequency.  

3.2.4 Forward Problem Solution from Synthesized Data 

 
Figure 2-19. Waveform of the incident plane wave upon the PRZP 



106 

 

 
Figure 3-20. Magnitude of the Fourier transform of  tEi  

  In this section the evaluation of the forward problem which the method is based upon is 

carried out. Since the problem is 1-D, only the field distribution in the vertical direction needs to 

be considered. The field distribution considered at every plane is truncated in a region limited by 

an assumed PRZP aperture (see dashed green lines in Figure 3-18). The assumed PRZP aperture 

is located between -19.2mm and 19.2mm on the x-axis. This distance is represented 

computationally by 1024 discrete points.  

  Assume that a collimated transient plane wave,  tEi , is incident upon the PRZP. 

Furthermore, assume that it has a waveform similar to that of the THz system signal transmitted 

though air. The waveform of the incident plane wave is shown in Figure 3-19. The discrete 

Fourier transform of  tEi  is defined as  iE . Figure 3-20 shows the magnitude of  iE .  

Now consider the magnitude and phase of  iE  at each discrete frequency separately. 

These magnitude and phase values describe the value of the field at each pixel of the field 

distribution at the plane directly before the PRZP. It is worthy to note that this field distribution 

is the parallel beam considered in the characterization method theory (see Figure 3-17 and 3-18). 
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Solving at each frequency, the theory described in the previous section is applicable with the 

provision that the parallel incident beam is not of magnitude 1 and phase 0 anymore. The 

resulting field distributions can then be obtained at the planes of interest at each frequency 

considered. 

The PRZP considered in this model is characterized by having a principle focal length 

equaling approximately 60mm at 600 GHz. The focal length of the PRZP at any other frequency 

considered can then be found using 

df

f
ppf                                                                                 (3-30) 

where p 60mm and is the design focal length, df  600 GHz and is the design frequency for 

the design focal length and f  is the frequency at which pf  is to be found. 

 
Figure 3-21. Magnitude of the input field distribution at 60mm 

The forward problem solution was carried out to find the field distribution at two different 

locations on the z-axis given that the material system in between these locations is simply air of a 
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certain thickness. The thickness of the air material system is chosen to be 30mm. The input field 

distribution was calculated at 60mm (in reference to Figure 3-18, zi1=60mm). Figure 3-21 shows 

the magnitude of the calculated input field distribution. Given the modeled PRZP and its 

approximate 60mm focal length at the design frequency of 600 GHz, it can be seen that the 

calculated results in Figure 3-21 validate the design where the highest intensity focus is located 

at approximately 600 GHz.  Note, the high intensity at the lower frequencies is to a large part due 

to the emitted THz signal power which decreases as the frequency increases (see Figure 3-20 that 

shows the signal power  as a function of frquency). 

 
Figure 3-22. Magnitude of the output field distribution for a 30mm material system of air 

The material system is composed of 30mm of air hence calculating the output field 

distribution as a result of the input field distribution and the material system calculated 

transmission coefficient is equivalent to calculating the field distribution at 90mm away from the 

PRZP. Using equation (3-30), it can be anticipated that the focal length of around 90mm arises at 

900 GHz. Figure 3-22 shows the magnitude of the output field distribution due to the angular 
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spectrum of the input field distribution propagating through the 30mm material system of air.  As 

was expected, Figure 3-22 shows that the focal frequency has shifted from 600 GHz to 900 GHz 

as a result of propagating the angular spectrum of the input field distribution through a 30mm 

material system composed of air.  

For the sake of a comparative discussion, the forward problem solution was also carried out 

to find the output field distribution due to a material system having n 3 and k =0. Figure 3-23 

shows the magnitude of the output field distribution if the material system had the same 30mm 

thickness but n 3 and k =0 as opposed to air’s n 1 and k =0. 

 
Figure 3-23. Magnitude of the output field distribution for a 30mm thick material having n 3 

and k =0 
 

Comparing results obtained for the output field distributions of the 30mm material system of 

air (Figure 3-22) versus the 30mm material system having n 3 and k =0 (Figure 3-23), it can 

be seen that the focal frequency in Figure 3-23 is approximately 730 GHz versus the 900 GHz in 

Figure 3-22. This can be explained by the fact that electromagnetic rays propagating through the 
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material having n 3 and k =0 propagate a longer optical distance as opposed to the 30mm 

material system of air thus extending the focal length that would have been relevant to air at a 

certain frequency. 

The forward problem results validate the theoretical model of the input and output field 

distribution method. 

3.2.5 Inverse Problem Solution from Synthesized Data 

In this section, inverse problem solutions from synthesized data are carried out. These studies 

are carried out with the goal of showing the feasibility of using the input and output field 

distribution method for the characterization of multiple layer dielectric media. Three cases are 

considered: material characterization of a single dielectric layer along with thickness extraction, 

material characterization of a two dielectric layer stack along with thickness extraction and 

material characterization of a three dielectric layer stack with known thicknesses. 

The results for the inverse problem solution were obtained between 0.2 THz and 2 THz with 

0.0125 THz frequency resolution (found from the sampling period of the measured reference 

signal =0.0394 ps and the total number of points=2048).  

In the first case, it was assumed that the dielectric stack was composed of a single dielectric 

layer with an unknown thickness. The dielectric layer had a thickness of l =1.982mm. Its 

refractive index real and imaginary parts across the whole frequency range were n =1.51 and 

k =0.002, respectively. To sum it up, this problem included three unknowns and as a result three 

equations were required corresponding to two input field distributions at two distances from the 

PRZP. The two input field distributions were synthesized at 50mm and 100mm. The layer 

properties were solved for at each frequency point. The preliminary initial guesses for the first 

phase of the root finding process were picked at random in the ranges 1.45 to 5, 0 to 0.1 and 

0.125mm to 5mm for n , k  and l  respectively. The first phase ran three times with three 
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different randomly picked initial guesses before arriving at the extracted parameters used as 

initial guesses for the second phase of the root finding process. The third and final set of 

randomly picked initial guesses for the first phase before arriving at the extracted parameters 

were 2.3050, 0.0453 and 0.0016 for n , k  and l  respectively. The extracted parameters from the 

first phase which were used as the initial guesses for the second phase were actually the true 

parameters for the dielectric layer 1.51, 0.002 and 1.982mm for n , k  and l  respectively. Figure 

3-24 shows the extracted parameters from the second phase of the root finding process. 
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Figure 3-24. Extracted parameters of the single layer stack 

In the second inverse problem solution case, it was assumed that the dielectric stack was 

composed of two layers with unknown thicknesses. The dielectric layers had thicknesses 

1l =0.513mm and 2l =1.63mm. The refractive indices real and imaginary parts of both dielectric 
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layers across the whole frequency range were ( 1n =3.4278, 1k =0.01) and ( 2n =1.96, 2k =0.008), 

respectively. To sum it up, this problem included six unknowns and as a result six equations 

were required corresponding to three input field distributions at three distances from the PRZP. 

The three input field distributions were synthesized at 20mm, 30mm and 40mm. The layer 

properties were solved for at each frequency point. The preliminary initial guesses for the first 

phase of the root finding process were picked at random in the ranges 3.2 to 3.9, 0 to 0.02 and 

0.462 mm to 0.5646 mm for 1n , 1k  and 1l  respectively and 1.9 to 2.2, 0 to 0.02 and 1.5 mm to 

1.8 mm for 2n , 2k  and 2l  respectively. The first phase ran four times each time with a different 

set of randomly picked initial guesses before arriving at the extracted parameters used as initial 

guesses for the second phase of the root finding process. The fourth and final set of randomly 

picked initial guesses for the first phase before arriving at the extracted parameters were 3.8047, 

0.0182 and 0.000472 for 1n , 1k  and 1l  respectively and 1.9324, 0.0029 and 0.0016 for 2n , 2k  

and 2l  respectively. The extracted parameters from the first phase which were used as the initial 

guesses for the second phase were actually the true parameters for the dielectric layers. Figure 3-

25 shows the extracted parameters from the second phase of the root finding process. 
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Figure 3-25. Extracted parameters of the two layer stack 

In the third inverse problem solution case, it was assumed that the dielectric stack was 

composed of three dielectric layers with known thicknesses. The dielectric layers had thicknesses 

1l =1mm, 2l =1.1mm and 3l =0.85mm. The refractive indices real and imaginary parts of three 

dielectric layers across the whole frequency range were ( 1n =1.6, 1k =0.06), ( 2n =1.8, 
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2k =0.001) and ( 3n =1.7, 3k =0.005) respectively. To sum it up, this problem included six 

unknowns and as a result six equations were required corresponding to three input field 

distributions at three distances from the PRZP. The three input field distributions were 

synthesized at 30mm, 35mm and 45mm. The properties of all layers were solved at each 

frequency point. The preliminary initial guesses for the first phase of the root finding process 

were all picked at random in the ranges 1.45 to 1.9 for all the real parts of the indices of 

refraction and 0 to 0.05 for the imaginary parts of the indices of refraction. The first phase ran 

four times for each iteration with a different set of randomly picked initial guesses before 

arriving at the extracted parameters used as initial guesses for the second phase of the root 

finding process. The fourth and final set of randomly picked initial guesses for the first phase 

before arriving at the extracted parameters were 1.5526 and 0.0185 for 1n  and 1k , 1.8509 and 

0.0428 for 2n  and 2k  and 1.6311 and 0.0159 for 3n  and 3k . The extracted parameters from the 

first phase which were used as the initial guesses for the second phase were actually the true 

parameters for the dielectric layers. Figure 3-26 shows the extracted parameters from the second 

phase of the root finding process. 

 
Figure 3-26. Extracted parameters of the three layer stackT 
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The results from the three cases that were tested show the feasibility of using the material 

characterization technique for multiple layer characterization in addition to single layer 

characterization with layer thickness extraction. 

3.2.6 Experimental Implementation Discussion 

   Work on the implementation of the inverse problem solution using measured data is still in 

the process. Implementation effects pertaining to the THz system noise, instabilities and 

detection mechanism of the electromagnetic radiation at the receiver are currently being 

investigated. Due to the need for a slit scan using the single source and single detector setup, a 

decrease in the effective measured signal to noise ratio (SNR) is prone to happen. This decrease 

in the SNR has negative results consequences on the root finding method as it is not very robust 

to noise. The usage of a multi-objective function optimization mechanism instead of a root 

finding method for the inverse problem solution can be utilized. An optimization can be set up to 

be more robust to noise which is an issue with a root finding method such as the secant method. 

The signal power and time drifts occurring over time might prove to be an issue that must be 

accounted for in the implementation of the inverse problem solution from the measured data. 

Because field distributions are required to be measured, a pixel imaging scan is needed for each 

measured field distribution and thus the drifts might cause errors in the measured data especially 

that imaging scans take a long time. The next subsection presents work done towards the 

experimental implementation of the input and output field distribution method. 

3.2.6.1 Phase Reversal Zone Plate Lens: Design, Fabrication and Testing 

Here the design, fabrication and testing of a PRZP lens for the purpose of carrying out the 

inverse problem solution from measured data is presented. The PRZP designed structure is 

shown in Figure 3-27. As is seen in Figure 3-27, the 1-D PRZP is composed of a dielectric 

substrate having periodically spaced grooves in it.  
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Figure 3-27. PRZP design structure 

The zones of the PRZP are the alternating highs and lows in the dielectric substrate 

representing grooves and protrusions. The size of each zone is defined by a width id  where i  is 

the index of the zone under consideration. The size of each zone is a function of the design 

wavelength and design focal length of the PRZP. It is worthy to note that the groove zones are 

located in such a way where the diffraction caused by them on the wave transmitted through the 

PRZP adds in phase at the design focal length. On the other hand, the groove depth is designed 

such that the diffracted wave components from the protrusions add in phase with the diffraction 

resulting from the grooves. Further explanations and details on the PRZP are given in [60-61]. 

The expressions to find the width of each zone and the groove depth are respectively,  

42
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where r  is the dielectric constant  of the PRZP substrate. Note that the expression to find the 

zone widths is an approximation and as a result, the design expected operational performance 

might be slightly off. Given that the PRZP in this dissertation research is only required to 

generate different multi-feature input field distributions for different distances away from a 

material system, minor inconsistencies in the nature of the field distribution versus the design 

expectations are not crucial as they do not affect the goal or the performance of the material 

characterization technique.  

Using the expressions in (3-31) and (3-32), a PRZP was designed to have 12 zones, and a 

30mm design focal length at 600 GHz. The calculated overall cross-section of the design was 

27.4 mm*27.4mm while the groove depth was calculated to be around 0.46mm. The chosen 

material for the PRZP was HDPE ( 37.2r ) [37]. The PRZP design was fabricated using a 

precision computer controlled plastic milling machine. After fabricating the PRZP it was tested 

using the THz system. The measurement system utilized for measuring the distribution of the 

PRZP is shown in Figure 3-28. The transmitter, receiver and PRZP apertures are aligned to be 

parallel to each other. The PRZP is centered within the transmitter collimated beam. A 1.5mm 

wide slit is attached to the receiver. The receiver along with the slit, scan the field distribution as 

a result of the PRZP vertically. The number of data points collected at the receiver end is 128 

which translates to steps of 0.22mm. The PRZP is mounted on a rail which can be used to 

modify the distance between the PRZP and the receiver resulting in a different measured field 

distribution. In order to block any other extraneous signals outside of the PRZP cross-sectional 

area, a copper screen is utilized with a square hole as big as the PRZP cross-sectional area. It is 

understood that this might affect the field distribution collected at the receiver. This however 

does not have any negative effect on the material characterization technique. This is because the 
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technique requires solely unique input field distributions which result in unique output field 

distributions regardless of the nature of how they were generated as it is the material system 

properties that determine the relation between the input and output field distributions 

 
Figure 3-28. PRZP field distribution measurement setup 

 
Figure 3-29. Magnitude of field distribution as a result of the PRZP measured at: (a) 15.5mm and 

(b) 20mm 
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The field distribution due to the PRZP was measured at two receiver locations (distance). 

These were at approximately 15.5mm and 20mm. The magnitudes of the measured field 

distributions are shown in Figure 3-29.  

The results shown in Figure 3-29 prove that different field distributions can be obtained as a 

result of moving the PRZP along the direction normal to its surface. This shows that the PRZP 

can be used in order to generate different input field distributions to the material system which 

are used for the material characterization technique. Additionally, the results show that the 

frequency at which the PRZP obtains focus at 15.5mm is around 325 GHz while the frequency at 

which the PRZP obtains focus at 20mm is around 437.5 GHz. These results are relatively close 

to what can be predicted using equation (3-30). The focal lengths calculated from (3-30) at 325 

GHz and 437.5 GHz are 16.25mm and 21.8mm respectively. The differences might be partly due 

to the decreasing trend of the power stored in the THz signal as frequency increases. 

Additionally, distance setting uncertainty might play a role in these differences aside from that 

the design equation for the PRZP in (3-30) is an approximation. 

 

 

 

 

 

 

 

 



121 

 

CHAPTER 4 

SMALL AREA INTERROGATION AND SPECTROSCOPY – CHARACTERIZATION 

OF 3D COMPOSITE MATERIAL STRUCTURES 

 

4.1 Problem Definition and Motivation 

 In the preceding chapters of this dissertation, the methods presented for characterizing 

dielectric properties of material systems have been shown to satisfy material systems that are 

homogeneous along the direction parallel to the surface of the system. The ability to characterize 

the properties of material systems which are generally heterogeneous along more directions 

would have great positive impact in many fields due to the flexibility provided.    

 
Figure 4-1. Composite structure, homogeneous along the direction normal to its surface 

  Given certain provisions, the methods presented up to this point can be used to characterize 

composite material structures. The single layer material characterization methods have the 

capability to characterize material structures that are homogeneous only along the direction 

normal to the surface of the material system. Figure 4-1 shows a sketch of such a system. That 

system can be thought of as composed of small sections of homogeneous materials. If the THz 

radiation beam can be made (or focused) to have a cross-sectional area that is smaller than the 
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cross-sectional area of the smallest homogeneous section of the composite structure, then both 

single layer methods can be used to characterize the structure by scanning the THz beam section 

by section.  Ideally, the way to realize such a beam is by modifying the measurement setup to 

radiate a collimated beam having a cross-sectional area (or diameter) that is smaller than that of 

the smallest homogeneous material section. This can be done using a set of plano-convex lenses 

with decreasing diameters and alternating directions. However, alignment and spacing issues 

arise with this approach. 

 

Figure 4-2. Composite structure, heterogeneous along all directions 

  Additionally, under ideal circumstances the multiple layer methods can be adjusted to 

characterize the material properties of composite systems that are heterogeneous along all 

directions. A sketch of a heterogeneous material system is shown in Figure 4-2. For the multiple 

angle method, not only should the THz radiation beam cross-sectional area be smaller than that 

of the smallest homogeneous section of the composite structure but also the effects of oblique 
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wave propagation in the structure due to its thickness must be dealt with (effects ignored under 

the thin lens approximation). These effects have decreased impact the thinner the composite 

material structure is optically. The input and output field distribution method can also be used to 

characterize a heterogeneous material system. This is possible given different input field 

distributions which can be achieved using a phase reversal zone plate lens or different types of 

lenses. The provision that would have to be made here is that the field distribution cross sectional 

area at the input and output would have to be truncated such that it is smaller than that of the 

smallest homogeneous material section.      

  In this chapter, a tool for characterizing composite materials at small stand-off distance 

(especially near field region) in transmission mode using a single source and detector 

measurement setup is demonstrated. This tool can be used for small area interrogation (or high 

resolution imaging and/or spectroscopy) or even for extracting material properties of 

homogeneous sections of a composite material structure when used in conjunction with an 

accommodating material characterization technique. The tool has sub-wavelength focusing 

characteristics and maintains a wide operational bandwidth. It overcomes alignment issues 

encountered when using lenses for small volume interrogation. This is because it focuses at small 

stand-off distance. 
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4.2 Terahertz Dielectric Sub-wavelength Focusing Probe 

Note: this work is partially documented in [62]. 

4.2.1 Probe Design 

 
Figure 4-3. Conical probe geometry 

Recently, a Teflon dielectric probe was demonstrated [63]. This work showed that a simple 

pencil-tip shaped dielectric probe can be used in high resolution imaging in the millimeter wave 

frequency range. Building upon this design, it was found that by using simple geometric shaping 

of low-loss dielectrics, desired probe characteristics for THz applications can be achieved. The 

desired characteristics include sub-wavelength focusing, wide-bandwidth, low signal attenuation 

and ease of fabrication. The signal attenuation caused by the probe is largely dictated by the 

material properties, geometry and fabrication imperfections. The focusing resolution on the other 

hand is largely determined by the geometry of the probe. High-density polyethylene was chosen 

as the probe material because of its low-loss over a wide frequency band, ease of machining and 
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relative low-cost. High density polyethylene (HDPE) has relatively unchanging dielectric 

properties from (0.2 THz up to around 1.8 THz) [24-25, 37]. It also has a relatively low dielectric 

constant (r = 2.37) and thus the need for anti-reflection coatings is less. The shape of the probe 

borrows principles from quasi optical component design such as lenses, dielectric tapering and 

polarization maintaining approaches. 

The probes are designed for the THz time-domain system, which has separate transmitter and 

receiver heads. The optics on these heads are designed to transmit and receive linearly polarized 

collimated electromagnetic pulses. To couple the probes with these heads, the ends of the probes 

were designed to be plano-convex lenses with a radius (20mm) to cover the whole collimating 

beam cross section (38.1mm diameter). A cylinder of height equaling 15mm and diameter 

equaling 38.1mm was added as a delay medium and also to be used in holding and mounting the 

probe. A shallowly tapered cone (with a 22
o
 vertex angle) with a length of about 97mm is built 

on top of this cylinder. The small tip of the probe was shaped like a small hemisphere having a 

diameter of approximately 1mm. The plano-convex lens focuses the collimated beam into the 

beginning of the cone. The cone then guides the wave to the small tip of the probe. Figure 4-3 

shows a sketch diagram of the conical probe. 

4.2.2 Probe Simulation 

The probe design (see Figure 4-3) was simulated in order to observe its focusing resolution. 

The simulation was carried out using Ansoft HFSS 13. The source in the simulation setup was 

set to be a linearly polarized plane wave traveling along the axial direction of the probe. The 

simulation was carried out at 200 GHz. The results examined were in the form of the magnitude 

of the field distribution at different locations with respect to the dielectric probe.  
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The computational cost of simulating such a structure is very high. The structure dimensions 

are large with respect to a wavelength and as a result a very large number of unknowns is needed 

in order to complete the simulation (>200000 unknowns). A desktop computer with 16GB of 

RAM failed to complete the simulation. Had the collimated beam diameter been smaller, most of 

the design dimensions would have been smaller as well. This is because the probe design 

dimensions were dependent on the 38.1mm diameter collimated beam. While maintaining the 

same taper angle and diameter of the hemispherical tip, it is hypothesized that similar focusing 

can be obtained using a scaled version of the probe design from Figure 4-3 given that the 

collimated beam is scaled by the same factor. Note that this remains true as long as the scaling of 

the dimensions keeps the simulated structure large with respect to the wavelength (similar to 

focusing lens size requirements). The simulated structure dimensions were scaled by 5 from the 

true design dimensions. Figure 4-4 shows the simulated structure in red while the true design is 

shown in blue.  

 
Figure 4-4. True design (blue) versus simulated design (red) 

Figure 4-5 shows the cross-sectional field distribution in and around the probe. It is clear that 

the plano-convex lens succeeds in focusing the wave to a focal spot at the beginning of the 
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tapered cone. Afterwards the wave is accumulated further and further into a smaller cross-

sectional area as the cone cross section becomes smaller. The field distribution shows a high 

intensity focal spot close to the tip. The distribution shows less field confinement away from the 

probe tip.  

 
Figure 4-5. Complex field distribution magnitude (red=highest intensity, blue=lowest intensity) 

 
Figure 4-6. Electric field complex magnitude 0.15mm away from the tip 

Figure 4-6 shows the field distribution along the cross- and co-polarization lines at 0.15mm 

away from the tip of the probe. Taking the half power of these distributions results in a resolution 
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of around 0.7mm which is sub-wavelength (wavelength at 200 GHz = 1.5 mm). In conclusion, 

the simulation results show that the probe design can achieve the intended sub-wavelength 

resolution property. As a result, the probe design was adopted for fabrication.   

4.2.3 Probe Fabrication and Experimental Testing 

 
Figure 4-7. Probe measurement setup 

The conical probe was fabricated using a CNC machine. It was ensured that the surface of 

the probe was smooth. The probes were characterized using the T-ray 2000 time domain 

terahertz system from Picometrix. All the measurements were carried out in transmission mode, 

where the signal from the transmitter passes through two probes facing each other and is 

received on the opposite end. A photograph of this setup is shown in Figure 4-7. Using this 

setup, the operational bandwidth and spatial resolution of the probes were measured. 

Additionally, a leaf imaging experiment utilizing the wide bandwidth and sub-wavelength 

focusing properties of the probe simultaneously was carried out. 

4.2.3.1 Bandwidth Testing 

The bandwidth of the probe was found by measuring the transmission through both probes 

facing each other with their tips barely in contact (see Figure 4-7). The operational frequency 
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band was defined as the frequency range limited by noise on the lower end below 50 GHz and by 

the noise floor on the higher end of the magnitude of the Fourier transform of the time domain 

signal transmitted through both probes. Figure 4-8 shows the magnitude of the Fourier transform 

of the time domain signal transmitted through the probes. The measured bandwidth of the probe 

is approximately 900 GHz ranging from 50 GHz to 950 GHz. The decreasing trend in the 

transmitted signal is to a large part due to the power generated by the transmitter and not only to 

losses or scattering in the probes.  

 
Figure 4-8. Transmitted signal magnitude spectrum 

4.2.3.2 Imaging Resolution Testing 

Terahertz imaging has the characteristic, unlike infrared, of being transparent to a wide range 

of dielectric substrates [64]. Unlike X-rays,  THz radiation is nonionizing. This is very attractive 

for imaging of biological tissue. In comparison to microwave and millimeter wave imaging, 

higher resolution imaging can be generated using THz because of its inherent smaller 

wavelength. 
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Figure 4-9. Resolution measurement for the conical focusing probes 

Knowing that the focusing resolution of the probes is essential information for carrying out 

imaging scans. The resolution of the probes was obtained through measurement by setting the 

probes opposite to each other separated at their tips by approximately a 0.75mm air gap. In the 

gap, a thin metal plate with a sharp edge was moved along a line in 0.1mm increments for a total 

line length of 10mm (see Figure 4-9). The time domain transmitted signal was measured as a 

function of metal plate edge raster location. The magnitude of the Fourier transform of every 

time domain signal was then found, giving a broad band frequency signal. Figure 4-10 shows the 

measured magnitude of the Fourier transform for a fixed frequency (212.5 GHz) as a function of 

metal plate edge raster location. A first order smoothing function is fitted to the measured data. 

The data trend appears to be a step function with a high magnitude value corresponding to the 

transmitted signal when no metal is present between the probes. The finesse of the focusing of 

the probe corresponds to a more ideal step function. The gradient of the obtained step functions 

hence provides a Gaussian like curve. The half power of the Gaussian curve corresponds to the 

resolution of the probe at the corresponding frequency. This approach to measuring spatial 

resolution is based upon work presented in [65].    
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Figure 4-10. Fourier transform magnitude at 212.5 GHz  

Figure 4-11 shows the gradient of the smoothened version of the magnitude of the Fourier 

transform of the transmitted signal in addition to its half power resolution. Finally, Figure 4-12 

presents the resolution of the probe at different frequencies using the same approach. It is clear 

from Figure 4-12 that the probe is characterized by having sub-wavelength focusing resolution 

varying between 0.2 wavelengths to 0.45 wavelengths in a frequency band ranging from 75 GHz 

up to 212.5 GHz. At higher frequencies, the sub-wavelength resolution characteristic is lost. 

However, the actual resolution is expected to be better. The loss of sub-wavelength focusing for 

this probe can be attributed to the distance between the probes, misalignments and coarse 

movement of the robotic arm and more importantly the machining of the probe tip ends. Thus 

there is significant room for the improvement of the probe. These results, however, do show that 

the probe can be used for fine resolution imaging and probing which holds promise for many 

applications. 
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Figure 4-11. Gradient of the magnitude of the Fourier transform with it half power resolution 

Figure 4-12. Resolution as a function of frequency for the conical probe 

4.2.3.3 Simultaneous Imaging and Spectroscopy Experiment 

The sub-wavelength focusing ability and wideband characteristic of the probe was used for 

simultaneous imaging and spectroscopy of a green leaf. The imaging was carried out in 
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transmission mode. A green leaf from a tree was placed between two thin porous paper based 

pieces of tape. The tape was used in order to hold the leaf between the two probes and stretch it 

without damaging it. The total average thickness of the leaf along with its tape holders was 

approximately 0.65 mm. The total distance between the probes was 0.75 mm. The imaged 

window section of the leaf was 8mm*10mm. The leaf along with its imaged window is shown in 

Figure 4-13.  

 
Figure 4-13. Leaf imaged window 

The imaging results obtained show high transmission through the regions of the leaf that 

have low quantities of water while lower transmission is apparent when water is abundant in the 

leaf (such as the leaf veins). The explanation behind this phenomenon is traced back to the fact 

the water is highly attenuating in the THz frequency range. Additionally the broadband nature of 



134 

 

the probes makes use of the time domain THz pulse in order to image at a wide frequency range 

at each pixel in a single measurement. Figure 4-14 shows the images obtained at 137.5, 175 and 

200 GHz. Refering back to Figure 4-12, it is clear that the finest imaging resolution for the probe 

is at 175 GHz. This can be correlated to the resolution of the imaging results obtained in Figure 

4-14 where the finest level of detail is seen in the 175 GHz image.   

 
Figure 4-14. Leaf images at different frequencies 

Consider the imaged leaf to be a composite structure. Based on the results of the experiment, 

it can be prospected that another purpose for which the probe was designed is feasible: 

composite structure material characterization. The frequency dependent information obtained at 

every pixel of the leaf can be used to extract the pixel’s material properties using one of the 

characterization methods outlined in the previous chapters. Carrying out this operation at every 

pixel ultimately results in characterizing the material properties of the leaf (or the composite 

material system). 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

In this dissertation, tools and techniques for characterizing layered dielectric materials in the 

THz spectral region have been presented. These have been devised to work for many special 

cases of material characterization scenarios providing a variety of solutions for previously 

encountered challenges in the area of THz material characterization. In general, the research 

work carried out under this dissertation serves as a stepping stone towards characterization of 

complex 3-D composite material systems. 

Two methods for characterizing single layer dielectric material samples have been presented. 

The first of these is the reference requiring method. This method builds upon the THz material 

characterization techniques documented in the literature (especially [27]). In particular, 

improvements to the method presented in [27] include the usage of the Nelder and Mead 

optimization method which is robust to noise. Also, here the optimization was carried out at 

discrete frequency points independently instead of the whole frequency range at once thus 

decreasing the possibility for errors in the extracted parameters. This allows for the preservation 

of spectral data at all measured frequencies and is important for attaining the spectral content of a 

sample. Using this method, a library of material characteristics in the THz frequency range was 

produced. The material properties which were extracted as a result of this method have been 

made available to the scientific community on an online webpage. Additionally, the reference 

requiring method was used in order to examine moisture content in polyimide films. It was 

shown that the extracted dielectric constant and loss tangent of polyimide films increase with 

higher moisture content. In the reference requiring method, the thickness of the sample under test 
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has to be known accurately. In order to determine the sensitivity of extracted material parameters 

to the thickness, an error analysis studying the effect of the dielectric sample thickness 

measurement accuracy on the reference requiring method was carried out. It was concluded that 

the reference requiring method becomes increasingly sensitive to the thickness measurement 

accuracy as the physical thickness of the sample to be characterized becomes smaller and as the 

dielectric constant of samples having the same physical thickness increases. It was also observed 

that the reference requiring method is not equally sensitive to dielectric samples having the same 

optical thickness.  

The second of the single layer dielectric material characterization methods presented in this 

dissertation is the self-calibrating method. Unlike the reference requiring method, the self-

calibrating technique only requires a single sample measurement to extract the dielectric material 

properties and avoids the use of a separate reference measured signal. The self-calibrating 

technique relates parts of the sample signal measurement to the whole signal in order to carry out 

the material parameter extraction. The need for only a sample measurement also contributes to 

saving valuable data collection time which becomes crucial in long imaging and spectroscopy 

scans. More importantly, the self-calibrating technique overcomes errors faced by reference 

requiring methods due to differences between reference and sample signals occurring as a result 

of THz system drifts. Post processing of measured data prior to extracting material parameters is 

presented. The main aim of the post processing is to remove any system artifacts from the 

measured sample signal which are not accounted for in the theoretical model. The material 

characterization results obtained using the self-calibrating method match to within small margins 

of difference material parameters documented in the literature. The method limitations are also 

discussed. Similar to the reference requiring method, the self-calibrating technique also requires 
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prior knowledge of sample thickness for material parameter extraction. As a result, an error 

analysis study to examine the sensitivity of the self-calibrating technique to the thickness 

measurement accuracy was carried out. The observations made from the error analysis results are 

similar to those obtained for the reference requiring method thickness accuracy error analysis. 

However, it was also concluded that the self-calibrating method is more sensitive to the thickness 

measurement accuracy then the reference requiring method while maintaining lesser ringing in 

the extracted parameters as a function of frequency. 

Two methods for characterizing multiple layer dielectric material samples were presented. 

These methods can also be used in carrying out single layer material characterization along with 

layer thickness extraction. The first of these methods is the multiple angle method. The 

relationship between a reference signal transmitted through air and signals transmitted through a 

material system at different angles of incidence are utilized to extract the unknown material 

properties. The total number of different incidence angle sample measurements required for the 

material characterization process is dependent on the number of unknown parameters to be 

extracted. The material characterization method’s root finding process which solves a system of 

equations was the secant method. The root finding process setup is presented. The forward 

problem solution results show good matching between measured and calculated data. The 

inverse problem solution results of the multiple angle method from synthesized signals show the 

feasibility of the application of the material characterization method for single and multiple layer 

material characterization. It should be noted that the secant method fails to converge to a solution 

at some discrete frequency points as the complexity of the problem increases. The material 

characterization results obtained using the multiple angle method for single layer 

characterization along with thickness extraction match to within small margins of difference 
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material parameters documented in the literature. For the two layer dielectric stacks, the 

extracted dielectric constants match to within a small margin of difference the dielectric 

constants documented in the literature. The extracted loss tangents on the other hand are larger 

than the true values in the literature. Possible reasons for the mismatch include air gaps between 

the layers of the stack and/or THz source instabilities effects on the measured sample signals. 

The multiple angle method requires the sample signal angle settings as inputs. As a result, an 

error analysis study to examine the sensitivity of the technique to the angle setting accuracy was 

carried out through characterizing a single layer dielectric sample with known and unknown 

thicknesses. The observations made from the error analysis results show that the technique is 

more sensitive to the accuracy of the angle setting as the angle of incidence approaches the 

Brewster’s angle when extracting the dielectric constant. This effect however is not true for the 

loss tangent. Also, given the choice to pick the equations for the root finding process such as in 

the case of a single layer characterization with thickness extraction which requires three 

equations but has four available equations (from two sample measurements); the choice of the 

equation must not be arbitrary. The error analysis study shows that the sensitivity of the 

technique differs for the choice of equations.  

The second of the multiple layer dielectric material characterization methods presented in 

this dissertation is the input and output field distribution method. While the other material 

characterization methods work for single source and detector measurement setups, this method is 

devised for a single source and multiple detector setup. The method is based upon the idea that if 

the field distributions at two parallel planes (before and after the sample respectively) are known 

then the material properties of the medium (or a material system) between the two planes can be 

found. For a material system composed of multiple dielectric layers, the knowledge of several 
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input field distributions and output field distributions are required. By using a phase reversal 

zone plate (PRZP) Fresnel lens and its placement distance from the sample different field 

distributions can be attained. The total number of input and output field distribution pairs 

required for the material characterization process is dependent on the number of unknown 

parameters to be extracted. The material characterization method’s root finding process which 

solves a system of equations was the secant method. The root finding process setup is presented.  

The forward problem solution from synthesized signals proves the validity of the theoretical 

model. The inverse problem solution from synthesized signals validates the use of this technique 

for characterization of multi-layered dielectric structures. The design and experimental testing of 

a PRZP lens is carried out towards implementing the material characterization method from 

measured field distributions.  

By employing the dielectric sub-wavelength focusing probes presented in chapter 4 in a 

single source and detector setup, a means to achieving material characterization of 3-D 

composite material systems is provided. To extract material information about the composite 3-D 

structure, this setup has to be used in conjunction with one of the material characterization 

techniques described in chapters 2 and 3. The designed probes have wide operational bandwidth 

and fine sub-wavelength focusing resolution characteristics which were verified experimentally.  
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5.2 Future Work 

The measured signals needed for the reference requiring method are prone to the THz system 

amplitude and time drifts. These effects result in errors in the extracted parameters. To determine 

how much the THz system drifts affect the technique, possible future work in this arena includes 

error analysis studies examining the sensitivity of the reference requiring method to THz system 

drifts and instabilities. Additionally, approaches for improving the THz system to decrease its 

amplitude and time drifts would be highly useful. 

The self-calibrating method requires post measurement processing of data in order to remove 

system artifacts from the measurements prior to extracting the material properties. The system 

artifacts removal procedure demonstrated in this dissertation does not account for all the dispersion 

effects in the material, and hence the self-calibrating technique currently works better for materials with 

low dispersion. Future work can include alternative system artifacts removal solutions that do account 

better for dispersion in order to widen the scope of material properties that can be extracted accurately 

using the self-calibrating technique. Solutions can include post measurement processing procedures or 

improvements to the measurement system.  

Future work on the multiple angle method must include the usage of a more robust root 

finding algorithm or a constrained multi-objective function optimization for the inverse problem 

solution. Additionally to fully realize the sensitivities of the multiple angle method, further error 

analysis studies to examine the sensitivity of the technique to possible air gaps between the 

layers of a stack and THz system drifts and instabilities are needed. Additionally, the 

incorporation of a self-calibrating technique in the characterization theory of the multiple angle 

method can be investigated in order to decrease the effect of the THz system drifts and 

instabilities on the extracted parameters. 
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Pertaining to the input and output field distribution method, future work includes carrying out 

the inverse problem solution from measured data. This requires accounting for the THz system 

issues such as the measured signal to noise ratio, detection mechanism, system instabilities and 

the usage of an optimization method that is more robust to noise then the root finding secant 

method if needed. 

Finally with respect to the dielectric sub-wavelength THz focusing probes, possible future 

work routes include the design and fabrication of a better performance probe in terms of 

bandwidth and resolution. Additionally the implementation of a 3-D composite structure material 

characterization should be carried out using the probes in a single source and detector 

measurement setup along with one of the material characterization techniques demonstrated in 

chapters 2 and 3 in order to realize their full capacity. 
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Appendix A 

The Nelder and Mead Modified Simplex Optimization Method 

 
Figure A-1. Nelder and Mead Simplex method possible movements  

The Nelder and Mead modified Simplex method doesn’t require the knowledge of an 

analytic expression for the derivative of the objective function and hence is a direct search 

method. It is an unconstrained optimization method making it computationally robust [39]. The 

method is also applicable on problems solving for several variables making it useful in the case 

of single layer material characterization methods as there is a need to extract the real and 

imaginary parts of the refractive index, n  and k respectively. In this method, 1N  function 

values are evaluated in the multivariable space where N  is the number of variables for the 

optimization and the 1N  vertices are equidistantly separated composing a polyhedron in 

space. The polyhedron is called a simplex. The vertex with the highest function value is then 

substituted with a vertex having a lower function value through a reflection, expansion, 

contraction or shrinking operation.  Figure A-1 shows the possible movement alterations of a 

simplex as a result of the Nelder and Mead Simplex method. If x1, x2, and x3 are the vertices 

that compose the initial simplex, and assuming that x1 is the vertex with the worst function 

value, going through the method will result in one of the four modifications on the initial simplex 
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to produce a new one. It is worthy to note that the shrink alteration is done by preserving the 

vertex with the least function value and shrinking the simplex spread accordingly [40]. 

The choice of alteration is specified by a set of rules. These go as follow for a single iteration 

of the Nelder Mead Simplex Method: [40] 

1. Given a simplex polyhedron, the fitness function is evaluated at every vertex. The fitness 

function values are then ordered from the least to the highest. In this case, assuming the 

simplex is two dimensional; three vertices are present in the simplex at any instant. 

Assume these vertices to be lowx , midx , and highx  corresponding to the vertex 

producing the lowest, middle, and highest function values respectively 

( lowxatf , midxatf , and highxatf ). 

2. The centroid cx  is calculated using all the points except highx  by,  

  midlowc xxx 
2

1
. (A-1) 

3. The reflected point is then computed using, 

   highcref xxx   1 . (A-2) 

The fitness function refxatf  is then evaluated. If midreflow xatfxatfxatf  , then 

highx  is substituted with refx  and the iteration is ended proceeding back to step 1 for a 

new iteration. 

4. If lowref xatfxatf  , then the expanded point is calculated using, 

   refc xxx  1exp . (A-3) 
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The fitness function expxatf  is then evaluated. If expxatfxatf ref  , then highx  is 

substituted with expx  and the iteration is ended proceeding back to step 1 for a new 

iteration. If not, then highx  is substituted with refx  and the iteration is ended proceeding 

back to step 1 for a new iteration. 

5. If midref xatfxatf  , then a contraction operation must be carried out.  

If highref xatfxatf  , then the contracted point is determined using, 

   chighcont xxx   1 . (A-4) 

The fitness function contxatf  is then evaluated. If highcont xatfxatf  , then highx  is 

substituted with contx  and the iteration is ended proceeding back to step 1 for a new 

iteration. If not, then a shrinking operation is performed after proceeding to step 6. 

If highrefmid xatfxatfxatf  , the contracted point is determined using, 

   crefcont xxx   1 . (A-5) 

The fitness function contxatf  is then evaluated. If refcont xatfxatf  , then highx  is 

substituted with contx  and the iteration is ended proceeding back to step 1 for a new 

iteration. If not, then a shrinking operation is performed after proceeding to step 6. 

6. The shrinking operation is carried out by shrinking the polyhedron towards the vertex 

with the lowest function value by,  

  lowilowi xxxx   , (A-6) 

where, i  covers all the vertices except for lowx . The iteration is then ended proceeding 

back to step 1 for a new iteration.  
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If the value of the fitness function at one of the vertices of the simplex becomes too small or 

the function values at each vertex become very close to each other, then the search is terminated 

and the obtained variables at the vertex with the lowest function value are taken to be the 

solution. The initial simplex before the iterative procedure is initiated is found using the 

following steps: [39] 

 Let  0x  be the N-dimensional initial guess (base point) for the simplex.  

 The N  initial vertices left to complete the initial simplex are then calculated using the 

base point and a scale factor,  .   is a quantity that determines the initial size of the 

simplex. The vertices are found using, 
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where, both i  and j  vary from 1 up to N . 1  and 2  are a function of N  and   

through the equations,   

 
 


















2

11 2
1

1
N

NN
, (A-8) 

and 
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respectively. 
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Appendix B 

The Secant Method 

The secant method in order to solve a system of nonlinear equations is presented here. This is 

a root finding method that solves equations using the Newton-Raphson algorithm [50] with a 

provision in which the function derivatives are approximated using finite differences.  

The problem to be solved is to find N unknowns  lNxxxx ...21  satisfying the N 

equations,          0...21 
l

N xfxfxfxf . The method process goes as follows, [66] 

1. N initial guesses  00
2

0
1

0 ... Nxxxx   to the N unknowns are made. x which is a 

small increment to the unknowns is specified. 

2.  0xf  is evaluated. If   0xf , then the solution process stops and 0x  is taken as the 

solution. If not then the method proceeds to step 3. 

For n=0,1,2,…., P-1 do:  

3. Given  n
N

nnn xxxx ...
21

  and          0...21 
ln

N
nnn xfxfxfxf , 

the Jacobian matrix, 
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is then calculated using a finite difference approximation to calculate 
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If   Jdet , then the process is stopped and taken back to step 1 where new initial 

guesses and x  are made. If not, then the process moves to step 4.  

4. The values for the unknowns, nx , are then updated using 

 nnn xfJxx 11   .                                                             (B-3) 

5. If   1nxf  (convergence criteria), then the root finding process stops and 1nx  is 

taken to be the solution. If not and 1 Pn , the process goes back to step 3 and repeats. 

If 1 Pn  the root finding process stops with no solution. Note, that the choice of   is 

dependent on the problem. In certain cases the procedure might be converging to a 

solution but   is set to be too low and as such the result might be interpreted as no 

convergence achieved.  

For the multiple angle method, the following parameters were picked: 

1610  

50P  

0100000000000.x   

Note: In this research, if 1 Pn  iterations have been carried out, while   1nxf  is not 

satisfied; the unknowns from that frequency iteration are taken to be the extracted parameters at 
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that frequency. For the material characterization methods presented in this dissertation, it was 

observed that when the root finding method completes the number of iterations while not 

achieving the convergence criteria (   1nxf ); the function values  1nxf  although not less 

than   have iteratively decreased in a converging like fashion to very small values and staggered 

around there. This provision was made to account for measurement system effects (such as 

power) affecting certain frequency samples while not affecting others thus preventing or 

allowing the convergence criteria to be satisfied or not. The extracted parameters obtained using 

the secant method with this provision were validated against the literature  and found to be 

sound. 
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Appendix C 

Reference Requiring Method Material Characterization Matlab Code 

Description: This code extracts the material parameters (dielectric constant and loss tangent) 

of a dielectric substrate using the reference requiring method. The code allows for slight 

substrate thickness optimization. However, if a good estimate of the thickness is available this 

optimization is not recommended due to its un-robustness to noise. Refer to Mittleman-Dorney 

2001 ([27]) for the thickness optimization background (total variation method). The code 

requires certain inputs. These are: 

-Reference measurement and sample measurement files names 

-Thickness estimate 

-Noise floor for upper frequency limit 

-Lower frequency limit 

-Next power of two above the number of data points in measured signal (example, if 2000 data 

points were collected enter 2048) 

Note:  

**The measured data text files, must have two columns with one being time and the other  being 

signal intensity. The unit for time should be picoseconds. Delete any other text from the text 

files. 

*The optimization method used is the modified NELDER MEAD SIMPLEX METHOD in two 

dimensions.   

 The code for the reference requiring method is: 

clc%clearing command window 

close all%closing all previously open figures 

clear all%clearing MATLAB workspace memory 
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format long 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%  

%%%%%%%%%%%%%%%%%%%inputs%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% 

 

flow=120e9; %lower frequency limit 

upfl=2.5*(10^12); %noise floor frequency limit 

thickest=1.58*(10^-3); %thickness estimate 

nex_pw2_nsamples=2048; %next power of two above the number of 

data points in                        %measured 

signal 

 

%%loading reference and sample data 

Ref_Air=textread('HDPE_Ref_Air_1_p_575_mm.txt', '%s');%reference 

measurement 

Ref_Air=str2double(Ref_Air); 

sample=textread('HDPE_Test_1_p_575_mm.txt', '%s');%sample 

measurement 

sample=str2double(sample); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% 

 

%%Building Reference and Sample(Test) Matrices for 

j=1; 

for i=1:size(sample,1) 

    if mod(i,2)~=0 

        Ref_Air_c(j,1)=Ref_Air(i,1); 

        sample_c(j,1)=sample(i,1); 

    end 

    if mod(i,2)==0 

        Ref_Air_c(j,2)=Ref_Air(i,1); 

        sample_c(j,2)=sample(i,1); 

        j=j+1; 

    end 

end 

  

Ts=(Ref_Air_c(2,1)-Ref_Air_c(1,1))*10^(-12);%sampling period 

Fs=1/Ts;%sampling frequency 

  

%%Reference and Sample Signals Collected from THz system Plot 
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figure 

plot((Ref_Air_c(:,1)),Ref_Air_c(:,2),':',... 

    (sample_c(:,1)),sample_c(:,2)) 

grid 

legend('Air - No Sample', ' Sample') 

xlabel('Time (ps)') 

ylabel('Recieved Signal Intensity (a.u.)') 

title('Time Domain Signals') 

x=(0:1:(size(Ref_Air_c,1)-1))*Ts;%updated x axis - time axis   

(shortened)  

Num_samples=nex_pw2_nsamples;%n points to calculate DFT for 

f=0:Fs/Num_samples:(Fs-Fs/Num_samples);%frequency axis for DFT 

  

tots=sample_c(:,2); 

totr=Ref_Air_c(:,2); 

  

delt=0;%(find(tots==max(tots)))-... 

    %(find(totr==max(totr)));%time indices delay between the 

peaks of the %reference and sample signals 

  

NFFT=Num_samples; 

gh=(fft(totr(1:(end-delt)),NFFT)); 

jh=(fft(tots,NFFT)); 

  

fff=find(f>=upfl);%upper frequency limit for noise floor 

noise_level=20*mean(abs(jh(fff(1):end/2)));%obtaining a measure 

for noise %level (20*noise_floor) 

  

fr=find(f>=flow);%lower frequency limit to start 

characterization at 

mista=abs(jh((fr(1):end/2))); 

sss=find(mista<=noise_level); 

fr1=find(abs(jh(1:end/2))==mista(sss(1))); 

fr1(end)=fr1(end)-3; 

f_worth=f(fr(1):fr1(end));%frequencies to extract material 

parameters at 

  

figure 

plot(f,abs(gh(1:size(f,2))),':',... 

    f,abs(jh(1:size(f,2)))) 

grid 

legend('Air - No Sample', ' Sample') 

xlabel('Frequency - Hz') 

ylabel('Magnitude (a.u.)') 

title('Frequency Domain - Magnitude Spectrum') 

  

figure 
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plot(f,unwrap(angle(gh(1:size(f,2)))),':',... 

    f,unwrap(angle(jh(1:size(f,2))))) 

grid 

legend('Air - No Sample', ' Sample') 

xlabel('Frequency - Hz') 

ylabel('Phase (degrees)') 

title('Frequency Domain - Phase Spectrum') 

  

A=jh./gh;%measured transfer function, frequency domain 

  

figure %measured transfer function magnitude plot 

plot(f,abs(A)) 

grid 

xlabel('Frequency - Hz') 

title('Frequency Domain Measured Transfer Function - Magnitude 

Spectrum') 

figure %measured transfer function phase plot 

plot(f,phase(A)) 

grid 

xlabel('Frequency - Hz') 

title('Frequency Domain Measured Transfer Function - Phase 

Spectrum') 

  

lp=thickest;%thickness of substrate 

lup=lp*0.03+lp;%upper thickness range limit 

ldn=lp-lp*0.03;%lower thickness range limit 

num_p=40;%number of points in thickness vector 

lvec=ldn:(lup-ldn)/num_p:lup;%thickness vector 

lvec=lp;%uncomment this if no thickness optimization is needed 

(uncommenting  

        %is recommended if possible) 

  

for wj=1:size(lvec,2)%extracting parameters of each thickness 

     

%%initializing refractive index n 

xstar=x; 

del_t=abs(xstar(1,(find(totr==max(totr))))-... 

xstar(1,(find(tots==max(tots))))); 

c=3e8;%speed of light in air m/s 

nair=1.00027;%refractive index of air 

l_eval=lvec(wj); 

Thickness=l_eval; 

index_initc=del_t*c./Thickness + nair; 

index_init=ones(size(gh,1),1)*index_initc; 

  

%%initializing extinction coefficient k 

k_init=zeros(size(index_init)); 
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A=jh./gh;%measured transfer function, frequency domain 

A_hat_init=(exp(sqrt(-1)*2*pi*f'*(nair).*Thickness./c).*... 

           (2*nair./(nair+index_init-sqrt(-1).*k_init)).*... 

    (2*(index_init-sqrt(-1)*k_init)./(nair+index_init-sqrt(-

1)*k_init)).*... 

      exp(-sqrt(-1)*2*pi*f'.*(index_init-sqrt(-

1)*k_init)*Thickness/c))./... 

      (1+(((index_init-sqrt(-1)*k_init)-nair)./... 

 (index_init-sqrt(-1)*k_init+nair)).*... 

      ((nair-(index_init-sqrt(-1)*k_init))./...  

 (index_init-sqrt(-1)*k_init+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f'.*(index_init-sqrt(-

1)*k_init)*Thickness/c)); 

    jhi=real(NFFT*ifft(A(fr(1):fr1(end)))); 

    maxjhi=max(abs(jhi)); 

    lj=1; 

    for clap=1:200000 

        k_init=k_init+0.00001; 

        A_hat_init=(exp(sqrt(-

1)*2*pi*f'*(nair).*Thickness./c).*... 

            (2*nair./(nair+index_init-sqrt(-1).*k_init)).*... 

    (2*(index_init-sqrt(-1)*k_init)./(nair+index_init-sqrt(-

1)*k_init)).*... 

      exp(-sqrt(-1)*2*pi*f'.*(index_init-sqrt(-

1)*k_init)*Thickness/c))./... 

(1+(((index_init-sqrt(-1)*k_init)-nair)./...  

(index_init-sqrt(-1)*k_init+nair)).*... 

            ((nair-(index_init-sqrt(-1)*k_init))./...  

(index_init-sqrt(-1)*k_init+nair)).*... 

     exp(-2*sqrt(-1)*2*pi*f'.*(index_init-sqrt(-

1)*k_init)*Thickness/c)); 

        ghi=real(NFFT*ifft(A_hat_init(fr(1):fr1(end)))); 

        maxghi=max(abs(ghi)); 

        if abs(maxghi)<=abs(maxjhi) 

            break 

        end 

    end 

  

    %% Nelder Mead simplex search method 

    index=index_init(fr(1):fr1(end),:); 

    k=k_init(fr(1):fr1(end),:); 

    bam=[index, k]'; 

    N=2; 

    alfa=1; 

    beta=0.5; 

    gamma=2; 

    cla=1; 
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    swf=0.01;%change swf, only if optimization gets stuck 

    del1=swf*((sqrt(N+1)+N-1)/(N*sqrt(2))); 

    del2=swf*((sqrt(N+1)-1)/(N*sqrt(2))); 

    A1=A; 

    clear A 

    A=A1(fr(1):fr1(end)); 

     

    wght=1; 

    ttt=zeros(1,size(f_worth,2)); 

    for ik=1:size(f_worth,2) 

        cla=1; 

        xnew0=[bam(1,ik); bam(2,ik)]; 

        xnew1=[bam(1,ik)+del1; bam(2,ik)+del2]; 

        xnew2=[bam(1,ik)+del2; bam(2,ik)+del1]; 

        counting=0; 

        alfa=alfa; 

        P=phase(A(ik)); 

        P=P 

        while cla==1 

            counting=counting+1; 

            new0=(exp(sqrt(-

1)*2*pi*f_worth(ik)*(nair).*Thickness./c).*... 

                (2*nair./(nair+xnew0(1,1)-sqrt(-

1).*xnew0(2,1))).*... 

(2*(xnew0(1,1)-sqrt(-1).*xnew0(2,1))./...  

(nair+xnew0(1,1)-sqrt(-1).*xnew0(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik).*(xnew0(1,1)-sqrt(-1).*... 

xnew0(2,1))*Thickness/c))./... 

                (1+(((xnew0(1,1)-sqrt(-1).*xnew0(2,1))-

nair)./... 

(xnew0(1,1)-sqrt(-1).*xnew0(2,1)+nair)).*... 

                ((nair-(xnew0(1,1)-sqrt(-1).*xnew0(2,1)))./... 

(xnew0(1,1)-sqrt(-1).*xnew0(2,1)+nair)).*... 

                exp(-2*sqrt(-1)*2*pi*f_worth(ik).*... 

(xnew0(1,1)-sqrt(-1).*xnew0(2,1))*Thickness/c)); 

            anglenew0=angle(new0); 

            anglebla0=((phase(A(ik)))-(anglenew0)); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                if counting==1 

                    ttt(ik)=ik; 

                end 

                anglebla0=abs(anglebla0)-2*pi; 

            end 

            fxnew0=abs(abs(abs(A(ik))-

abs(new0))+wght*abs(anglebla0)); 

            (abs(fxnew0)) 
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            new1=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                (2*nair./(nair+xnew1(1,1)-sqrt(-

1).*xnew1(2,1))).*... 

                (2*(xnew1(1,1)-sqrt(-1).*xnew1(2,1))./... 

(nair+xnew1(1,1)-sqrt(-1).*xnew1(2,1))).*... 

                exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xnew1(1,1)-sqrt(-1).*xnew1(2,1))*Thickness/c))./... 

                (1+(((xnew1(1,1)-sqrt(-1).*xnew1(2,1))-

nair)./... 

(xnew1(1,1)-sqrt(-1).*xnew1(2,1)+nair)).*... 

                ((nair-(xnew1(1,1)-sqrt(-1).*xnew1(2,1)))./... 

(xnew1(1,1)-sqrt(-1).*xnew1(2,1)+nair)).*... 

                exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xnew1(1,1)-sqrt(-1).*xnew1(2,1))*Thickness/c)); 

            anglenew1=angle(new1); 

            anglebla1=((phase(A(ik)))-(anglenew1)); 

            if abs(anglebla1)>pi && abs(anglebla1)<2*pi 

                if counting==1 

                    ttt(ik)=ik; 

                end 

                anglebla1=abs(anglebla1)-2*pi; 

            end 

            fxnew1=abs(abs(abs(A(ik))-

abs(new1))+wght*abs(anglebla1)); 

            (abs(fxnew1)) 

            new2=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                (2*nair./(nair+xnew2(1,1)-sqrt(-

1).*xnew2(2,1))).*... 

(2*(xnew2(1,1)-sqrt(-1).*xnew2(2,1))./... 

(nair+xnew2(1,1)-sqrt(-1).*xnew2(2,1))).*... 

                exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xnew2(1,1)-sqrt(-1).*xnew2(2,1))*Thickness/c))./... 

                (1+(((xnew2(1,1)-sqrt(-1).*xnew2(2,1))-

nair)./... 

(xnew2(1,1)-sqrt(-1).*xnew2(2,1)+nair)).*... 

                ((nair-(xnew2(1,1)-sqrt(-1).*xnew2(2,1)))./... 

(xnew2(1,1)-sqrt(-1).*xnew2(2,1)+nair)).*... 

                exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xnew2(1,1)-sqrt(-1).*xnew2(2,1))*Thickness/c)); 

            anglenew2=angle(new2); 

            anglebla2=((phase(A(ik)))-(anglenew2)); 

            if abs(anglebla2)>pi && abs(anglebla2)<2*pi 

                if counting==1 

                    ttt(ik)=ik; 

                end 
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                anglebla2=abs(anglebla2)-2*pi; 

            end 

            fxnew2=abs(abs(abs(A(ik))-

abs(new2))+wght*abs(anglebla2)); 

            (abs(fxnew2)) 

            if (abs(fxnew0))<0.000000000000001 

                bam(:,ik)=xnew0; 

                bamp(:,ik)=angle(new0); 

                bamm(:,ik)=abs(new0); 

                cla=2; 

                continue 

            elseif (abs(fxnew1))<0.000000000000001 

                bam(:,ik)=xnew1; 

                bamp(:,ik)=angle(new1); 

                bamm(:,ik)=abs(new1); 

                cla=2; 

                continue 

            elseif (abs(fxnew2))<0.000000000000001 

                bam(:,ik)=xnew2; 

                bamp(:,ik)=angle(new2); 

                bamm(:,ik)=abs(new2); 

                cla=2; 

                continue 

            elseif 

std([(abs(fxnew0)),(abs(fxnew1)),(abs(fxnew2))])<=0.0000000001 

          if abs(abs(fxnew0))<=(abs(fxnew1)) && 

(abs(fxnew0))<=(abs(fxnew2)) 

                    bam(:,ik)=xnew0; 

                    bamp(:,ik)=angle(new0); 

                    bamm(:,ik)=abs(new0); 

                    cla=2; 

                    continue 

                end 

               if(abs(fxnew0))>=(abs(fxnew1)) && 

(abs(fxnew1))<=(abs(fxnew2)) 

                    bam(:,ik)=xnew1; 

                    bamp(:,ik)=angle(new1); 

                    bamm(:,ik)=abs(new1); 

                    cla=2; 

                    continue 

                end 

               if(abs(fxnew2))<=(abs(fxnew1)) && 

(abs(fxnew0))>=(abs(fxnew2)) 

                    bam(:,ik)=xnew2; 

                    bamp(:,ik)=angle(new2); 

                    bamm(:,ik)=abs(new2); 

                    cla=2; 
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                    continue 

                end 

            end 

            %%%%% 

            if abs(fxnew0)>abs(fxnew1) && 

abs(fxnew1)>abs(fxnew2) 

                fl=abs(fxnew2); 

                xl=xnew2; 

                fg=abs(fxnew1); 

                xg=xnew1; 

                fh=abs(fxnew0); 

                xh=xnew0; 

                centroid=0.5*(xnew1+xnew2); 

                xrf=centroid+alfa*(centroid-xh); 

        newrf=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                    (2*nair./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

  (2*(xrf(1,1)-sqrt(-1).*xrf(2,1))./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

 exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c))./... 

                    (1+(((xrf(1,1)-sqrt(-1).*xrf(2,1))-

nair)./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

                    ((nair-(xrf(1,1)-sqrt(-

1).*xrf(2,1)))./(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

                    exp(-2*sqrt(-

1)*2*pi*f_worth(ik)'.*(xrf(1,1)-sqrt(-

1).*xrf(2,1))*Thickness/c)); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(A(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

                fxrf=abs(abs(abs(A(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew0=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=centroid+gamma*(centroid-xh); 

             newe=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 
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                        (2*nair./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

      (2*(xe(1,1)-sqrt(-1).*xe(2,1))./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

      exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xe(1,1)-sqrt(-1).*xe(2,1))*Thickness/c))./... 

(1+(((xe(1,1)-sqrt(-1).*xe(2,1))-nair)./... 

(xe(1,1)-sqrt(-1).*xe(2,1)+nair)).*... 

 ((nair-(xe(1,1)-sqrt(-1).*xe(2,1)))./(xe(1,1)-sqrt(-

1).*xe(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xe(1,1)-sqrt(-

1).*xe(2,1))*Thickness/c)); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(A(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

                    fxe=abs(abs(abs(A(ik))-

abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew0=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew0=xrf; 

                        continue 

                    end 

                end 

                if fxrf>fg 

                    if fxrf>=fh 

                        xc=xh+beta*(centroid-xh); 

       newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

     (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 
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                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

                   fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew0=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew1=xl+beta*(xnew1-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=xh+beta*(centroid-xh); 

   newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

      (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

    exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

 ((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

           fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fxrf 

                            xnew0=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 
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                            xnew1=xl+beta*(xnew1-xl); 

                            continue 

                        end 

                    end 

                end 

            end 

            %%%%% 

            if abs(fxnew1)>abs(fxnew0) && 

abs(fxnew0)>abs(fxnew2) 

                fl=abs(fxnew2); 

                xl=xnew2; 

                fg=abs(fxnew0); 

                xg=xnew0; 

                fh=abs(fxnew1); 

                xh=xnew1; 

                centroid=0.5*(xnew0+xnew2); 

                xrf=centroid+alfa*(centroid-xh); 

     newrf=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                    (2*nair./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

(2*(xrf(1,1)-sqrt(-1).*xrf(2,1))./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c))./... 

(1+(((xrf(1,1)-sqrt(-1).*xrf(2,1))-nair)./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

((nair-(xrf(1,1)-sqrt(-1).*xrf(2,1)))./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

 exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c)); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(A(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

                fxrf=abs(abs(abs(A(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew1=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=centroid+gamma*(centroid-xh); 

       newe=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 
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                        (2*nair./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

     (2*(xe(1,1)-sqrt(-1).*xe(2,1))./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xe(1,1)-sqrt(-1).*xe(2,1))*Thickness/c))./... 

(1+(((xe(1,1)-sqrt(-1).*xe(2,1))-nair)./... 

(xe(1,1)-sqrt(-1).*xe(2,1)+nair)).*... 

 ((nair-(xe(1,1)-sqrt(-1).*xe(2,1)))./(xe(1,1)-sqrt(-

1).*xe(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xe(1,1)-sqrt(-

1).*xe(2,1))*Thickness/c)); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(A(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

                    fxe=abs(abs(abs(A(ik))-

abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew1=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew1=xrf; 

                        continue 

                    end 

                end 

                if fxrf>fg 

                    if fxrf>=fh 

                        xc=xh+beta*(centroid-xh); 

        newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

   (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

 exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

 ((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 
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                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

                fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew1=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew1=xl+beta*(xnew1-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=xh+beta*(centroid-xh); 

       newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

  (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

     fxc=abs(abs(abs(A(ik))-abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fxrf 

                            xnew1=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew1=xl+beta*(xnew1-xl); 
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                            continue 

                        end 

                    end 

                end 

            end 

            %%%%% 

            if abs(fxnew2)>abs(fxnew0) && 

abs(fxnew0)>abs(fxnew1) 

                fl=abs(fxnew1); 

                xl=xnew1; 

                fg=abs(fxnew0); 

                xg=xnew0; 

                fh=abs(fxnew2); 

                xh=xnew2; 

                centroid=0.5*(xnew0+xnew1); 

                xrf=centroid+alfa*(centroid-xh); 

   newrf=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                    (2*nair./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

(2*(xrf(1,1)-sqrt(-1).*xrf(2,1))./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

 exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c))./... 

(1+(((xrf(1,1)-sqrt(-1).*xrf(2,1))-nair)./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

((nair-(xrf(1,1)-sqrt(-1).*xrf(2,1)))./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c)); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(A(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

                fxrf=abs(abs(abs(A(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew2=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=centroid+gamma*(centroid-xh); 

       newe=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 
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                        (2*nair./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

      (2*(xe(1,1)-sqrt(-1).*xe(2,1))./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

 exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xe(1,1)-sqrt(-1).*xe(2,1))*Thickness/c))./... 

(1+(((xe(1,1)-sqrt(-1).*xe(2,1))-nair)./... 

(xe(1,1)-sqrt(-1).*xe(2,1)+nair)).*... 

((nair-(xe(1,1)-sqrt(-1).*xe(2,1)))./(xe(1,1)-sqrt(-

1).*xe(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xe(1,1)-sqrt(-

1).*xe(2,1))*Thickness/c)); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(A(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

                    fxe=abs(abs(abs(A(ik))-

abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew2=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew2=xrf; 

                        continue 

                    end 

                end 

                if fxrf>fg 

                    if fxrf>fh 

                        xc=xh+beta*(centroid-xh); 

       newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

   (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

 ((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 
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                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

   fxc=abs(abs(abs(A(ik))-abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew2=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=xh+beta*(centroid-xh); 

      newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

 (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

            fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fxrf 

                            xnew2=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew2=xl+beta*(xnew2-xl); 
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                            continue 

                        end 

                    end 

                end  

            end 

            %%%%% 

            if abs(fxnew0)>abs(fxnew2) && 

abs(fxnew2)>abs(fxnew1) 

                fl=abs(fxnew1); 

                xl=xnew1; 

                fg=abs(fxnew2); 

                xg=xnew2; 

                fh=abs(fxnew0); 

                xh=xnew0; 

                centroid=0.5*(xnew1+xnew2); 

                xrf=centroid+alfa*(centroid-xh); 

     newrf=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                    (2*nair./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

 (2*(xrf(1,1)-sqrt(-1).*xrf(2,1))./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c))./... 

(1+(((xrf(1,1)-sqrt(-1).*xrf(2,1))-nair)./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

((nair-(xrf(1,1)-sqrt(-1).*xrf(2,1)))./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c)); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(A(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

                fxrf=abs(abs(abs(A(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew0=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=centroid+gamma*(centroid-xh); 

    newe=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 
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                        (2*nair./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

  (2*(xe(1,1)-sqrt(-1).*xe(2,1))./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

 exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xe(1,1)-sqrt(-1).*xe(2,1))*Thickness/c))./... 

(1+(((xe(1,1)-sqrt(-1).*xe(2,1))-nair)./... 

(xe(1,1)-sqrt(-1).*xe(2,1)+nair)).*... 

((nair-(xe(1,1)-sqrt(-1).*xe(2,1)))./(xe(1,1)-sqrt(-

1).*xe(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xe(1,1)-sqrt(-

1).*xe(2,1))*Thickness/c)); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(A(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

                    fxe=abs(abs(abs(A(ik))-

abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew0=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew0=xrf; 

                        continue 

                    end 

                end 

                if fxrf>fg 

                    if fxrf>fh 

                        xc=xh+beta*(centroid-xh); 

      newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

 (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 
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                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

              fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew0=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf 

                        xc=xh+beta*(centroid-xh); 

      newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

    (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

 exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

                fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fxrf 

                            xnew0=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 
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                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    end 

                end 

            end 

            %%%% 

            if abs(fxnew2)>abs(fxnew1) && 

abs(fxnew1)>abs(fxnew0) 

                fl=abs(fxnew0); 

                xl=xnew0; 

                fg=abs(fxnew1); 

                xg=xnew1; 

                fh=abs(fxnew2); 

                xh=xnew2; 

                centroid=0.5*(xnew1+xnew0); 

                xrf=centroid+alfa*(centroid-xh); 

     newrf=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                    (2*nair./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

 (2*(xrf(1,1)-sqrt(-1).*xrf(2,1))./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c))./... 

(1+(((xrf(1,1)-sqrt(-1).*xrf(2,1))-nair)./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

((nair-(xrf(1,1)-sqrt(-1).*xrf(2,1)))./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c)); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(A(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

                fxrf=abs(abs(abs(A(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew2=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=centroid+gamma*(centroid-xh); 

           newe=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 
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                        (2*nair./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

(2*(xe(1,1)-sqrt(-1).*xe(2,1))./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xe(1,1)-sqrt(-1).*xe(2,1))*Thickness/c))./... 

(1+(((xe(1,1)-sqrt(-1).*xe(2,1))-nair)./... 

(xe(1,1)-sqrt(-1).*xe(2,1)+nair)).*... 

 ((nair-(xe(1,1)-sqrt(-1).*xe(2,1)))./(xe(1,1)-sqrt(-

1).*xe(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xe(1,1)-sqrt(-

1).*xe(2,1))*Thickness/c)); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(A(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

                    fxe=abs(abs(abs(A(ik))-

abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew2=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew2=xrf; 

                        continue 

                    end 

                end 

                if fxrf>fg 

                    if fxrf>fh 

                        xc=xh+beta*(centroid-xh); 

        newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

 (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 
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                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

              fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew2=xc; 

                            continue 

                        else 

                            xnew1=xl+beta*(xnew1-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=xh+beta*(centroid-xh); 

       newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

 (2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

                   fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fxrf 

                            xnew2=xc; 

                            continue 

                        else 

                            xnew1=xl+beta*(xnew1-xl); 
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                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    end 

                end 

            end 

            %%%%% 

            if abs(fxnew1)>abs(fxnew2) && 

abs(fxnew2)>abs(fxnew0) 

                fl=abs(fxnew0); 

                xl=xnew0; 

                fg=abs(fxnew2); 

                xg=xnew2; 

                fh=abs(fxnew1); 

                xh=xnew1; 

                centroid=0.5*(xnew0+xnew2); 

                xrf=centroid+alfa*(centroid-xh); 

      newrf=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                    (2*nair./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

 (2*(xrf(1,1)-sqrt(-1).*xrf(2,1))./(nair+xrf(1,1)-sqrt(-

1).*xrf(2,1))).*... 

 exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c))./... 

 (1+(((xrf(1,1)-sqrt(-1).*xrf(2,1))-nair)./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

((nair-(xrf(1,1)-sqrt(-1).*xrf(2,1)))./... 

(xrf(1,1)-sqrt(-1).*xrf(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xrf(1,1)-sqrt(-1).*xrf(2,1))*Thickness/c)); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(A(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

                fxrf=abs(abs(abs(A(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew1=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=centroid+gamma*(centroid-xh); 

       newe=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 
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                        (2*nair./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

     (2*(xe(1,1)-sqrt(-1).*xe(2,1))./(nair+xe(1,1)-sqrt(-

1).*xe(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xe(1,1)-sqrt(-1).*xe(2,1))*Thickness/c))./... 

(1+(((xe(1,1)-sqrt(-1).*xe(2,1))-nair)./... 

(xe(1,1)-sqrt(-1).*xe(2,1)+nair)).*... 

((nair-(xe(1,1)-sqrt(-1).*xe(2,1)))./(xe(1,1)-sqrt(-

1).*xe(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xe(1,1)-sqrt(-

1).*xe(2,1))*Thickness/c)); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(A(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

                    fxe=abs(abs(abs(A(ik))-

abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew1=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew1=xrf; 

                        continue 

                    end 

                end 

                if fxrf>fg 

                    if fxrf>fh 

                        xc=xh+beta*(centroid-xh); 

       newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

(2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 
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                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

                 fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew1=xc; 

                            continue 

                        else 

                            xnew1=xl+beta*(xnew1-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=xh+beta*(centroid-xh); 

      newc=(exp(sqrt(-

1)*2*pi*f_worth(ik)'*(nair).*Thickness./c).*... 

                            (2*nair./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

(2*(xc(1,1)-sqrt(-1).*xc(2,1))./(nair+xc(1,1)-sqrt(-

1).*xc(2,1))).*... 

exp(-sqrt(-1)*2*pi*f_worth(ik)'.*... 

(xc(1,1)-sqrt(-1).*xc(2,1))*Thickness/c))./... 

(1+(((xc(1,1)-sqrt(-1).*xc(2,1))-nair)./... 

(xc(1,1)-sqrt(-1).*xc(2,1)+nair)).*... 

((nair-(xc(1,1)-sqrt(-1).*xc(2,1)))./(xc(1,1)-sqrt(-

1).*xc(2,1)+nair)).*... 

exp(-2*sqrt(-1)*2*pi*f_worth(ik)'.*(xc(1,1)-sqrt(-

1).*xc(2,1))*Thickness/c)); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(A(ik)))-(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

                 fxc=abs(abs(abs(A(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fxrf 

                            xnew1=xc; 

                            continue 

                        else 

                            xnew1=xl+beta*(xnew1-xl); 
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                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    end 

                end 

            end    

        end 

    end 

    par=1; 

    indexar(par,:)=bam(1,:); 

    kar(par,:)=bam(2,:); 

    magar(par,:)=bamm; 

    phasar(par,:)=bamp; 

     

    k_f=abs(kar); 

    index_f=indexar; 

  

    k_f=abs(k_f); 

    real_perm=index_f.^2-k_f.^2; 

    imaginary_perm=(2*index_f.*k_f); 

    loss_tan=(imaginary_perm./real_perm); 

    ind(wj,:)=index_f; 

    kd(wj,:)=k_f; 

    

rp(wj,:)=real_perm;ip(wj,:)=imaginary_perm;lt(wj,:)=loss_tan; 

    ph(wj,:)=phasar; 

    mg(wj,:)=magar; 

     

    clear A 

end 

  

D=0; 

cima=0; 

%total variation - degree 1 

for ac=1:size(ind,1) 

    for bc=1:fr1(end)-fr(1)+1 

        if bc>1 

            cima=cima+1; 

       D(ac,cima)=abs(ind(ac,bc-1)-ind(ac,bc))+abs(kd(ac,bc-1)-

kd(ac,bc)); 

        end 

    end 

    TV(ac)=sum(D(ac,:)); 

    cima=0; 

end 

%total variation - degree 2 

D1=0; 
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for ac=1:size(ind,1) 

    for ghj=1:(size(D,2)-1) 

        cima=cima+1; 

        D1(ac,ghj)=abs(D(ac,cima)-D(ac,cima+1)); 

    end 

    TV1(ac)=sum(D1(ac,:)); 

    cima=0; 

end 

figure;plot(lvec,TV,lvec,TV1);grid; 

title('total variation degrees one and two') 

figure;plot(TV1);grid;title('total variation degree two') 

  

mintv1ind=find(TV1==min(TV1)); 

bista1=rp(mintv1ind,:); 

bista2=lt(mintv1ind,:); 

bista3=ind(mintv1ind,:); 

bista4=kd(mintv1ind,:); 

  

%extracted parameters (refractive index, extinction coefficient,  

%dielectric constant, loss tangent) 

figure;plot(f_worth,bista3);grid;title('Refractive Index') 

figure;plot(f_worth,bista4);grid;title('Extinction Coefficient') 

figure;plot(f_worth,bista1);grid;title('Dielectric Constant') 

figure;plot(f_worth,bista2);grid;title('Loss Tangent') 
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Appendix D 

The Self-Calibrating Method Matlab Material Characterization Code 

Description: This code extracts the material parameters (dielectric constant and loss tangent) 

of a dielectric substrate using the self-calibrating method. Prior to running, the self-calibrating 

method code the system artifacts removal procedure should be carried out. The code for the 

system artifacts removal procedure requires the following inputs: 

-Sample measurement file name 

-Archived measurement through air file name (for signal artifacts removal procedure) 

-number of multiple transmissions to remove the system response pattern from (specified by the 

number of transmissions due to a certain samples in the time window of the measured sample 

signal) 

Note:  

*The measured data text files, must have two columns with one being time and the other  being 

signal intensity. The unit for time should be picoseconds. Delete any other text from the text 

files. 

*The signal artifacts removal procedure is set up to remove the system response from four 

multiple transmissions at most. 

After running the system artifacts removal procedure, the self calibrating technique code is 

executed. The code for the self-calibrating technique requires the following inputs: 

-Thickness estimate 

-Upper frequency limit for material characterization 

-Lower frequency limit for material characterization 

Note:  
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*The optimization method used is the modified NELDER MEAD SIMPLEX METHOD in two 

dimensions.   

 The code for the signal artifacts removal procedure is: 

clc 

close all 

clear all 

  

format long 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Inputs%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 

Ref_Air=textread('Alumina_Ref_Air_0_p_025_in2.txt', '%s'); % 
archived                                                   

%measurement through air 

Ref_Air=str2double(Ref_Air); 

sample=textread('Alumina_Test_0_p_025_in1.txt', '%s'); % sample 
measurement 

sample=str2double(sample); 

cla=4;% number of multiple transmissions to remove system 
response from 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%Building Reference and Sample(Test) Matrices for  

j=1; 

for i=1:size(sample,1) 

    if mod(i,2)~=0 

    Ref_Air_c(j,1)=Ref_Air(i,1); 

    sample_c(j,1)=sample(i,1); 

    end 

    if mod(i,2)==0 

    Ref_Air_c(j,2)=Ref_Air(i,1); 

    sample_c(j,2)=sample(i,1); 

    j=j+1; 

    end 

end 

dff=find(abs(Ref_Air_c(:,2))==max(abs(Ref_Air_c(:,2)))); 

del=find(abs(Ref_Air_c(dff:dff+70,2))==min(abs(Ref_Air_c(dff:dff

+70,2)))); 
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del=del+dff-2; 

 

 

 

Ts=(Ref_Air_c(2,1)-Ref_Air_c(1,1))*10^(-12); 

Fs=1/Ts; 

  

%%% Reference and Sample Signals Collected from THz system 

figure 

plot((Ref_Air_c(:,1)),Ref_Air_c(:,2),':',... 

    (sample_c(:,1)),sample_c(:,2)) 

grid 

legend('Air - No Sample', ' Sample') 

xlabel('Time (ps)') 

ylabel('Recieved Signal Intensity (a.u.)') 

title('Time Domain Signals') 

  

himma=0; 

sample_c1=sample_c; 

clear sample_c 

sample_c=sample_c1(1:end-himma,:); 

  

Ref_Air_c1=Ref_Air_c; 

clear Ref_Air_c 

Ref_Air_c=Ref_Air_c1(1:end-himma,:); 

  

figure;plot(Ref_Air_c(:,1),Ref_Air_c(:,2),sample_c(:,1),sample_c

(:,2));grid 

  

if cla>=1 

max_ref=find(Ref_Air_c(:,2)==max(Ref_Air_c(:,2)));%maximum of 

reference %signal index 

max_sample=find(sample_c(:,2)==max(sample_c(:,2)));%maximum of 

sample signal %index 

diff=max_sample-max_ref;%difference of indices between 

aformentioned maximums 

  

  

one_ref=Ref_Air_c(1:(end-1*diff),2);%updated reference signal, 

tail cut off 

two_ref=sample_c(diff+1:(end),2);%update sample signal, aligned 

in time with %reference signal 

x=(0:1:(size(sample_c(:,1),1)-diff-1))*Ts;%updated x axis - time 

axis 
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diff_sigs=-

one_ref*max(sample_c(:,2))/max(Ref_Air_c(:,2))+two_ref;%signal=(

updated %sample signal)-(updated reference_signal) 

blip=one_ref*max(sample_c(:,2))/max(Ref_Air_c(:,2)); 

%%% Plot of the updated ref and sample signals with their 

difference signal 

figure;plot(x,one_ref,x,two_ref,x,diff_sigs);grid 

  

diff_sigs_mod=[zeros(1,diff)'; zeros(1,del)'; 

diff_sigs(del+1:end,1)]';%zero 5first pulse location in diff 

signal 

  

%%%plot of diff signal with zeroed out first pulse location 

figure;plot(diff_sigs_mod);grid 

end 

  

if cla>=2 

max_diff_sigs_mod=find(diff_sigs_mod==max(diff_sigs_mod));%maxim

um of sample %signal index 

  

  

diff1=max_diff_sigs_mod-max_ref;%difference of indices between 

aformentioned %maximums 

  

mult_peak_index_distance=diff1-diff; 

mult_tran_method_left_total_indices=size(sample_c(:,2),1)-diff-

max_ref; 

  

  

one_ref1=Ref_Air_c(1:(end-1*diff1),2);%updated reference signal, 

tail cut off 

two_ref1=diff_sigs_mod(diff1+1:(end))';%update sample signal, 

aligned in time %with reference signal 

x1=(0:1:(size(sample_c(:,1),1)-diff1-1))*Ts;%updated x axis - 

time axis 

  

diff_sigs1=-one_ref1*max(diff_sigs_mod)/max(Ref_Air_c(:,2))+... 

two_ref1;%signal=(updated %sample signal)-(updated 

reference_signal) 

  

%%% Plot of the updated ref and sample signals with their 

difference signal 

figure;plot(x1,one_ref1,x1,two_ref1,x1,diff_sigs1);grid 
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diff_sigs1_mod=[zeros(1,diff1)';zeros(1,del)'; 

diff_sigs1(del+1:end,1)]';%zero first pulse location in diff 

signal 

  

%%%plot of diff signal with zeroed out first pulse location 

figure;plot(diff_sigs1_mod);grid 

end 

  

if cla>=3 

max_diff_sigs1_mod=find(diff_sigs1_mod==max(diff_sigs1_mod(round

(del+... 

diff1+(diff1-diff)/2):end)));%maximum of sample signal index 

diff2=max_diff_sigs1_mod-max_ref;%difference of indices between 

aformentioned %maximums 

  

one_ref2=Ref_Air_c(1:(end-1*diff2),2);%updated reference signal, 

tail cut off 

two_ref2=diff_sigs1_mod(diff2+1:(end))';%update sample signal, 

aligned in %time with reference signal 

x2=(0:1:(size(sample_c(:,1),1)-1*diff2-1))*Ts;%updated x axis - 

time axis 

  

diff_sigs2=-

one_ref2*max(diff_sigs1_mod)/max(Ref_Air_c(:,2))+two_ref2;%signa

l=(updated %sample signal)-(updated reference_signal) 

  

%%% Plot of the updated ref and sample signals with their 

difference signal 

figure;plot(x2,one_ref2,x2,two_ref2,x2,diff_sigs2);grid 

  

  

diff_sigs2_mod=[zeros(1,diff2)';zeros(1,del)';  

diff_sigs2(del+1:end,1)]';%zero first pulse location in diff 

signal 

  

%%%plot of diff signal with zeroed out first pulse location 

figure;plot(diff_sigs2_mod);grid 

end 

  

  

if cla>=4 

max_diff_sigs2_mod=find(diff_sigs2_mod==max(diff_sigs2_mod(round

(del+... 

diff2+(diff1-diff)/2):end)));%maximum of sample signal index 

diff3=max_diff_sigs2_mod-max_ref;%difference of indices between 

aformentioned %maximums 
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one_ref3=Ref_Air_c(1:(end-1*diff3),2);%updated reference signal, 

tail cut off 

two_ref3=diff_sigs2_mod(diff3+1:(end))';%update sample signal, 

aligned in %time with reference signal 

x3=(0:1:(size(sample_c(:,1),1)-1*diff3-1))*Ts;%updated x axis - 

time axis 

  

diff_sigs3=-

one_ref3*max(diff_sigs2_mod)/max(Ref_Air_c(:,2))+two_ref3;%signa

l=(updated %sample signal)-(updated reference_signal) 

  

%%% Plot of the updated ref and sample signals with their 

difference signal 

figure;plot(x2,one_ref2,x2,two_ref2,x3,diff_sigs3);grid 

  

  

diff_sigs3_mod=[zeros(1,diff3)';zeros(1,del)';  

diff_sigs3(del+1:end,1)]';%zero first pulse location in diff 

signal 

  

%%%plot of diff signal with zeroed out first pulse location 

figure;plot(diff_sigs3_mod);grid 

end 

  

if cla==4 

    uv=diff1-diff; 

ux=diff2-diff1; 

uy=diff3-diff2; 

    if del<=mult_peak_index_distance 

clean_diff_sigs_mod=[sample_c(1:diff,2); two_ref(1:del); 

diff_sigs_mod(diff+del+1:diff1)';... 

    two_ref1(1:del); diff_sigs1_mod(diff1+del+1:diff2)'; 

two_ref2(1:del);... 

    diff_sigs2_mod(diff2+del+1:diff3)'; two_ref3(1:del); 

diff_sigs3_mod(diff3+del+1:end)']; 

  

    end 

    if del>mult_peak_index_distance 

clean_diff_sigs_mod=[sample_c(1:diff,2); two_ref(1:del); 

diff_sigs_mod(diff+del:diff1)';... 

    two_ref1(1+(del-uv):del); diff_sigs1_mod(diff1+del:diff2)'; 

two_ref2(1+(del-ux):del);... 

    diff_sigs2_mod(diff2+del:diff3)'; two_ref3(1+(del-uy):del); 

diff_sigs3_mod(diff3+del+1:end)']; 

    end 

end 

if cla==3 
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    uv=diff1-diff; 

ux=diff2-diff1; 

    if del<=mult_peak_index_distance 

clean_diff_sigs_mod=[sample_c(1:diff,2); two_ref(1:del); 

diff_sigs_mod(diff+del+1:diff1)';... 

    two_ref1(1:del); diff_sigs1_mod(diff1+del+1:diff2)'; 

two_ref2(1:del);... 

    diff_sigs2_mod(diff2+del+1:end)']; 

    end 

        if del>mult_peak_index_distance 

clean_diff_sigs_mod=[sample_c(1:diff,2); two_ref(1:del); 

diff_sigs_mod(diff+del:diff1)';... 

    two_ref1(1+(del-uv):del); diff_sigs1_mod(diff1+del:diff2)'; 

two_ref2(1+(del-ux):del);... 

    diff_sigs2_mod(diff2+del+1:end)']; 

    end 

end 

if cla==2 

    uv=diff1-diff; 

    if del<=mult_peak_index_distance 

clean_diff_sigs_mod=[sample_c(1:diff,2); two_ref(1:del); 

diff_sigs_mod(diff+del+1:diff1)';... 

    two_ref1(1:del); diff_sigs1_mod(diff1+del+1:end)']; 

    end 

        if del>mult_peak_index_distance 

clean_diff_sigs_mod=[sample_c(1:diff,2); two_ref(1:del); 

diff_sigs_mod(diff+del:diff1)';... 

    two_ref1(1+(del-uv):del); diff_sigs1_mod(diff1+del+1:end)']; 

    end 

end 

if cla==1 

clean_diff_sigs_mod=[sample_c(1:diff,2); two_ref(1:del); 

diff_sigs_mod(diff+del+1:end)']; 

end                                                          

if cla==0 

clean_diff_sigs_mod=[sample_c(:,2)]; 

end  

  

x=(0:1:(size(sample_c(:,1),1)-1))*Ts;%updated x axis - time axis 

  

%%%plot of diff signal with first pulse from sample signal                                                          

figure;plot(x,clean_diff_sigs_mod);grid 

  

%%%plot of diff signal with first pulse from sample signal and 

sample signal                                                          

figure;plot(x,clean_diff_sigs_mod,x,sample_c(:,2));grid 
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x=(0:1:size(sample_c,1)-1)*Ts; 

tot=[clean_diff_sigs_mod; zeros(himma,1)]; 

xstar=x; 

save total tot 

save xal xstar 

save himmal himma 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

The code for the self calibrating technique is: 

clc 

close all 

clear all 

format long 

load himmal 

load total 

load xal 

x=xstar; 

tot1=tot'; 

clear tot 

tot=tot1; 

Num_samples=size(x,2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Inputs%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

l=0.637*10^(-3);%thickness of substrate 

flow=200*(10^9);%lower frequency limit for material 

characterization 

fhigh=1600*(10^9);%upper frequency limit for material 

characterization 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  

figure 

plot(x,tot) 

grid 

legend('Sample') 

xlabel('Time (s)') 
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ylabel('Recieved Signal Intensity (a.u.)') 

title('Time Domain Signal') 

  

x1=x; 

clear x 

bimma=0; 

x=x1(:,1:end); 

  

tot1=tot; 

clear tot 

tot2=tot1(1:end-bimma-himma); 

  

tot=[tot2, zeros(1,bimma+himma)]; 

tot=tot'; 

  

  

figure 

plot(x,tot) 

grid 

legend('Sample') 

xlabel('Time (s)') 

ylabel('Recieved Signal Intensity (a.u.)') 

title('Time Domain Signal') 

  

lupper=0.1*10^(-3)+l;%upper bound of the substrate thickness 

llower=l-0.1*10^(-3);%lower bound of the substrate thickness 

many=0; 

l_eval=llower:(lupper-llower)/many:lupper;% thickness to try in 

the first %iteration of optimization 

l_eval=l; 

  

for par=1:(many+1) 

    l=l_eval(par) 

    nair=1.00027;%index of refraction of air 

    c=3e8;%speed of light in free space 

     

    %finding first pulse max 

    max_first_pulse=max(tot); 

    index_first_max=find(tot==max_first_pulse); 

     

    %finding second pulse max 

    min_del_t=2*l*nair^2/c; 

    min_index=find((x>=(x(index_first_max)+min_del_t))); 

    max_second_pulse = max(tot(min_index(1):end)); 

    index_second_max=find(tot==max_second_pulse); 

     

    %initializing the index of refraction 
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    del_t=(x(index_second_max)-x(index_first_max-1)); 

    Thickness=l; 

    index_initc=del_t*c./(2*Thickness); 

    index_init=ones(size(tot(:,1),1),1)*index_initc; 

     

    %initializing the extinction coefficient at k=0 

    k_init=0.0*ones(size(index_init)); 

     

    %creating zero padded tukey window, for first transmission 

multiple 

    %extraction 

    L=index_second_max+round((index_first_max-

index_second_max)*0.5); 

    ri=0.1; 

    tukey=tukeywin(L,ri); 

    tukeyzp=padarray(tukey,(Num_samples-L),'post'); 

    figure; plot(x(:),tukeyzp); grid 

     

    %applying window on complete signal to take out the first 

multiple 

    %transmission 

    first_multiple=tukeyzp.*tot;    

     

    %finding measured ratio 

    

first_multiple_ft=fft(first_multiple,size(first_multiple,1)); 

    Complete_signal_ft=fft(tot,Num_samples); 

    ratio_meas=first_multiple_ft./Complete_signal_ft; 

    Ts=x(1,2)-x(1,1); 

    Fs=1/Ts; 

    f=0:Fs/Num_samples:Fs-Fs/Num_samples;%Frequency axis 

    %measured ratio spectrum 

     

    fff=find(f>=2.5*(10^12)); 

    noise_level=20*mean(abs(Complete_signal_ft(fff(1):end/2))); 

     

    fr=find(f>=flow); 

    mista=abs(Complete_signal_ft((fr(1):end/2))); 

    sss=find(mista<=noise_level); 

    fr1=find(abs(Complete_signal_ft(1:end/2))==mista(sss(1))); 

    fg=find(f>=fhigh); 

    fr1(end)=fg(1); 

    f_worth=f(fr(1):fr1(end)); 

     

    init_calc_ration=1-(((index_init-sqrt(-1)*k_init-nair)./... 

(index_init-sqrt(-1)*k_init+nair)).^2).*... 
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    ((exp(-sqrt(-1)*2*(index_init-sqrt(-

1)*k_init)*2*pi.*f'*Thickness/c))); 

    jhi=real(Num_samples*ifft(ratio_meas(fr(1):fr1(end)))); 

    maxjhi=max(abs(jhi(5:end))); 

    

ghi=real(Num_samples*ifft(init_calc_ration(fr(1):fr1(end)))); 

     

    lj=1; 

    for clap=1:15000 

        k_init=k_init+0.00001; 

        init_calc_ration=1-(((index_init-sqrt(-1)*k_init-

nair)./... 

(index_init-sqrt(-1)*k_init+nair)).^2).*... 

    ((exp(-sqrt(-1)*2*(index_init-sqrt(-

1)*k_init)*2*pi.*f'*Thickness/c))); 

        

ghi=real(Num_samples*ifft(init_calc_ration(fr(1):fr1(end)))); 

        maxghi=max(abs(ghi(5:end))); 

        if abs(maxghi)<=abs(maxjhi) 

            break 

        end 

    end 

     

    %simplex search method 

    index=index_init(fr(1):fr1(end),:); 

    k=k_init(fr(1):fr1(end),:); 

    bam=[index, k]'; 

    N=2; 

    alfa=1; 

    beta=0.5; 

    gamma=2; 

     

    cla=1; 

     

    del1=0.1*((sqrt(N+1)+N-1)/(N*sqrt(2))); 

    del2=0.1*((sqrt(N+1)-1)/(N*sqrt(2))); 

    ration=ratio_meas(fr(1):fr1(end)); 

    save rational ration 

    ik=5; 

    save ikal ik 

    save f_worthal f_worth 

    save nairal nair 

     

    wght=1; 

    for ik=1:size(f_worth,2) 

        cla=1; 

        xnew0=[bam(1,ik); bam(2,ik)]; 
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        xnew1=[bam(1,ik)+del1; bam(2,ik)+del2]; 

        xnew2=[bam(1,ik)+del2; bam(2,ik)+del1]; 

        counting=0; 

        alfa=alfa; 

        P=phase(ration(ik)); 

        P=P; 

        while cla==1 

            counting=counting+1; 

new0=1-(((xnew0(1,1)-sqrt(-1)*xnew0(2,1)-nair)/... 

(xnew0(1,1)-sqrt(-1)*xnew0(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xnew0(1,1)-sqrt(-... 

1)*xnew0(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

            anglenew0=angle(new0); 

            anglebla0=((phase(ration(ik)))-(anglenew0)); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                if counting==1 

                    ttt(ik)=ik; 

                end 

                anglebla0=abs(anglebla0)-2*pi; 

            end 

            fxnew0=abs(abs(abs(ration(ik))-

abs(new0))+wght*abs(anglebla0)); 

            (abs(fxnew0)) 

new1=1-(((xnew1(1,1)-sqrt(-1)*xnew1(2,1)-nair)/... 

(xnew1(1,1)-sqrt(-1)*xnew1(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xnew1(1,1)-sqrt(-... 

1)*xnew1(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

            anglenew1=angle(new1); 

            anglebla1=((phase(ration(ik)))-(anglenew1)); 

            if abs(anglebla1)>pi && abs(anglebla1)<2*pi 

                if counting==1 

                    ttt(ik)=ik; 

                end 

                anglebla1=abs(anglebla1)-2*pi; 

            end 

            fxnew1=abs(abs(abs(ration(ik))-

abs(new1))+wght*abs(anglebla1)); 

            (abs(fxnew1)) 

new2=1-(((xnew2(1,1)-sqrt(-1)*xnew2(2,1)-nair)/... 

(xnew2(1,1)-sqrt(-1)*xnew2(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xnew2(1,1)-sqrt(-... 

1)*xnew2(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

            anglenew2=angle(new2); 

            anglebla2=((phase(ration(ik)))-(anglenew2)); 

            if abs(anglebla2)>pi && abs(anglebla2)<2*pi 

                if counting==1 

                    ttt(ik)=ik; 
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                end 

                anglebla2=abs(anglebla2)-2*pi; 

            end 

            fxnew2=abs(abs(abs(ration(ik))-

abs(new2))+wght*abs(anglebla2)); 

            (abs(fxnew2)) 

             

            if (abs(fxnew0))<0.000000000000001 

                bam(:,ik)=xnew0; 

                bamp(:,ik)=phase(new0); 

                bamm(:,ik)=abs(new0); 

                cla=2; 

                phg(ik)=1; 

                continue 

            elseif (abs(fxnew1))<0.000000000000001 

                bam(:,ik)=xnew1; 

                bamp(:,ik)=phase(new1); 

                bamm(:,ik)=abs(new1); 

                cla=2; 

                phg(ik)=2; 

                continue 

            elseif (abs(fxnew2))<0.000000000000001 

                bam(:,ik)=xnew2; 

                bamp(:,ik)=phase(new2); 

                bamm(:,ik)=abs(new2); 

                cla=2; 

                phg(ik)=3; 

                continue 

            elseif 

std([(abs(fxnew0)),(abs(fxnew1)),(abs(fxnew2))])<= ... 

0.00000000001 

    if abs(abs(fxnew0))<=(abs(fxnew1)) && 

(abs(fxnew0))<=(abs(fxnew2)) 

                    bam(:,ik)=xnew0; 

                    bamp(:,ik)=phase(new0); 

                    bamm(:,ik)=abs(new0); 

                    cla=2; 

                    phg(ik)=4; 

                    continue 

                end 

       if(abs(fxnew0))>=(abs(fxnew1)) && 

(abs(fxnew1))<=(abs(fxnew2)) 

                    bam(:,ik)=xnew1; 

                    bamp(:,ik)=phase(new1); 

                    bamm(:,ik)=abs(new1); 

                    cla=2; 

                    phg(ik)=4; 
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                    continue 

                end 

     if(abs(fxnew2))<=(abs(fxnew1)) && 

(abs(fxnew0))>=(abs(fxnew2)) 

                    bam(:,ik)=xnew2; 

                    bamp(:,ik)=phase(new2); 

                    bamm(:,ik)=abs(new2); 

                    cla=2; 

                    phg(ik)=4; 

                    continue 

                end 

            end 

             

            %%%%% 

            if abs(fxnew0)>abs(fxnew1) && 

abs(fxnew1)>abs(fxnew2) 

                fl=abs(fxnew2); 

                xl=xnew2; 

                fg=abs(fxnew1); 

                xg=xnew1; 

                fh=abs(fxnew0); 

                xh=xnew0; 

                centroid=0.5*(xnew1+xnew2); 

                xrf=centroid+alfa*(centroid-xh); 

newrf=1-(((xrf(1,1)-sqrt(-1)*xrf(2,1)-nair)/... 

(xrf(1,1)-sqrt(-1)*xrf(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xrf(1,1)-sqrt(-... 

1)*xrf(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(ration(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

      fxrf=abs(abs(abs(ration(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew0=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=(gamma)*xrf+(1-gamma)*(centroid); 

newe=1-(((xe(1,1)-sqrt(-1)*xe(2,1)-nair)/... 

(xe(1,1)-sqrt(-1)*xe(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xe(1,1)-sqrt(-

1)*xe(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                    anglenewe=angle(newe); 
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                    angleblae=((phase(ration(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

         fxe=abs(abs(abs(ration(ik))-

abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew0=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew0=xrf; 

                        continue 

                    end 

                end 

                if fxrf>=fg 

                    if fxrf>=fh 

                        xc=beta*xh+(1-beta)*(centroid); 

newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

       fxc=abs(abs(abs(ration(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew0=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew1=xl+beta*(xnew1-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=beta*xh+(1-beta)*(centroid); 

 newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 
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((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

        fxc=abs(abs(abs(ration(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<=fxrf 

                            xnew0=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew1=xl+beta*(xnew1-xl); 

                            continue 

                        end 

                    end 

                end 

            end 

             

            %%%%% 

            if abs(fxnew1)>abs(fxnew0) && 

abs(fxnew0)>abs(fxnew2) 

                fl=abs(fxnew2); 

                xl=xnew2; 

                fg=abs(fxnew0); 

                xg=xnew0; 

                fh=abs(fxnew1); 

                xh=xnew1; 

                centroid=0.5*(xnew0+xnew2); 

                xrf=centroid+alfa*(centroid-xh); 

newrf=1-(((xrf(1,1)-sqrt(-1)*xrf(2,1)-nair)/(xrf(1,1)-sqrt(-... 

1)*xrf(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xrf(1,1)-sqrt(-... 

1)*xrf(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(ration(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

      fxrf=abs(abs(abs(ration(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 
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                if fxrf<fg && fxrf>fl 

                    xnew1=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=(gamma)*xrf+(1-gamma)*(centroid); 

newe=1-(((xe(1,1)-sqrt(-1)*xe(2,1)-nair)/(xe(1,1)-sqrt(-... 

1)*xe(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xe(1,1)-sqrt(-

1)*xe(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(ration(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

 fxe=abs(abs(abs(ration(ik))-abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew1=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew1=xrf; 

                        continue 

                    end 

                end 

                if fxrf>=fg 

                    if fxrf>=fh 

                        xc=beta*xh+(1-beta)*(centroid); 

newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

      fxc=abs(abs(abs(ration(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew1=xc; 

                            continue 

                        else 
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                            xnew0=xl+beta*(xnew0-xl); 

                            xnew1=xl+beta*(xnew1-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=beta*xh+(1-beta)*(centroid); 

newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

         fxc=abs(abs(abs(ration(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<=fxrf 

                            xnew1=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew1=xl+beta*(xnew1-xl); 

                            continue 

                        end 

                    end 

                end 

            end 

            %%%%% 

            if abs(fxnew2)>abs(fxnew0) && 

abs(fxnew0)>abs(fxnew1) 

                fl=abs(fxnew1); 

                xl=xnew1; 

                fg=abs(fxnew0); 

                xg=xnew0; 

                fh=abs(fxnew2); 

                xh=xnew2; 

                centroid=0.5*(xnew0+xnew1); 

                xrf=centroid+alfa*(centroid-xh); 

newrf=1-(((xrf(1,1)-sqrt(-1)*xrf(2,1)-nair)/(xrf(1,1)-sqrt(-... 

1)*xrf(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xrf(1,1)-sqrt(-... 

1)*xrf(2,1))*2*pi*f_worth(ik)*Thickness/c))); 
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                anglenewrf=angle(newrf); 

                angleblarf=((phase(ration(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

       fxrf=abs(abs(abs(ration(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew2=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=(gamma)*xrf+(1-gamma)*(centroid); 

newe=1-(((xe(1,1)-sqrt(-1)*xe(2,1)-nair)/(xe(1,1)-sqrt(-... 

1)*xe(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xe(1,1)-sqrt(-

1)*xe(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(ration(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

          fxe=abs(abs(abs(ration(ik))-

abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew2=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew2=xrf; 

                        continue 

                    end 

                end 

                if fxrf>=fg 

                    if fxrf>=fh 

                        xc=beta*xh+(1-beta)*(centroid); 

newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 
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                            angleblac=abs(angleblac)-2*pi; 

                        end 

         fxc=abs(abs(abs(ration(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew2=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=beta*xh+(1-beta)*(centroid); 

 newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

         fxc=abs(abs(abs(ration(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<=fxrf 

                            xnew2=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    end 

                end 

            end 

             

            %%%%% 

            if abs(fxnew0)>abs(fxnew2) && 

abs(fxnew2)>abs(fxnew1) 

                fl=abs(fxnew1); 

                xl=xnew1; 
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                fg=abs(fxnew2); 

                xg=xnew2; 

                fh=abs(fxnew0); 

                xh=xnew0; 

                centroid=0.5*(xnew1+xnew2); 

                xrf=centroid+alfa*(centroid-xh); 

newrf=1-(((xrf(1,1)-sqrt(-1)*xrf(2,1)-nair)/(xrf(1,1)-sqrt(-... 

1)*xrf(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xrf(1,1)-sqrt(-... 

1)*xrf(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(ration(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

      fxrf=abs(abs(abs(ration(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew0=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=(gamma)*xrf+(1-gamma)*(centroid); 

newe=1-(((xe(1,1)-sqrt(-1)*xe(2,1)-nair)/(xe(1,1)-sqrt(-... 

1)*xe(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xe(1,1)-sqrt(-

1)*xe(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(ration(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

  fxe=abs(abs(abs(ration(ik))-abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew0=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew0=xrf; 

                        continue 

                    end 

                end 

                if fxrf>=fg 

                    if fxrf>=fh 

                        xc=beta*xh+(1-beta)*(centroid); 
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newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

         fxc=abs(abs(abs(ration(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew0=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    else 

                        xc=beta*xh+(1-beta)*(centroid); 

newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

fxc=abs(abs(abs(ration(ik))-abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<=fxrf 

                            xnew0=xc; 

                            continue 

                        else 

                            xnew0=xl+beta*(xnew0-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    end 

                end 
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            end 

             

            %%%% 

            if abs(fxnew2)>abs(fxnew1) && 

abs(fxnew1)>abs(fxnew0) 

                fl=abs(fxnew0); 

                xl=xnew0; 

                fg=abs(fxnew1); 

                xg=xnew1; 

                fh=abs(fxnew2); 

                xh=xnew2; 

                centroid=0.5*(xnew1+xnew0); 

                xrf=centroid+alfa*(centroid-xh); 

newrf=1-(((xrf(1,1)-sqrt(-1)*xrf(2,1)-nair)/(xrf(1,1)-sqrt(-... 

1)*xrf(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xrf(1,1)-sqrt(-... 

1)*xrf(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(ration(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

 fxrf=abs(abs(abs(ration(ik))-abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew2=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=(gamma)*xrf+(1-gamma)*(centroid); 

newe=1-(((xe(1,1)-sqrt(-1)*xe(2,1)-nair)/(xe(1,1)-sqrt(-... 

1)*xe(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xe(1,1)-sqrt(-

1)*xe(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(ration(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 

 fxe=abs(abs(abs(ration(ik))-abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew2=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew2=xrf; 
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                        continue 

                    end 

                end 

                if fxrf>=fg 

                    if fxrf>=fh 

                        xc=beta*xh+(1-beta)*(centroid); 

newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

   fxc=abs(abs(abs(ration(ik))-abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew2=xc; 

                            continue 

                        else 

                            xnew1=xl+beta*(xnew1-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=beta*xh+(1-beta)*(centroid); 

newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

      fxc=abs(abs(abs(ration(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<=fxrf 

                            xnew2=xc; 

                            continue 
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                        else 

                            xnew1=xl+beta*(xnew1-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    end 

                end 

            end 

             

            %%%%% 

            if abs(fxnew1)>abs(fxnew2) && 

abs(fxnew2)>abs(fxnew0) 

                fl=abs(fxnew0); 

                xl=xnew0; 

                fg=abs(fxnew2); 

                xg=xnew2; 

                fh=abs(fxnew1); 

                xh=xnew1; 

                centroid=0.5*(xnew0+xnew2); 

                xrf=centroid+alfa*(centroid-xh); 

newrf=1-(((xrf(1,1)-sqrt(-1)*xrf(2,1)-nair)/(xrf(1,1)-sqrt(-... 

1)*xrf(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xrf(1,1)-sqrt(-... 

1)*xrf(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                anglenewrf=angle(newrf); 

                angleblarf=((phase(ration(ik)))-(anglenewrf)); 

                if abs(angleblarf)>pi && abs(angleblarf)<2*pi 

                    angleblarf=abs(angleblarf)-2*pi; 

                end 

   fxrf=abs(abs(abs(ration(ik))-

abs(newrf))+wght*abs(angleblarf)); 

                (abs(fxrf)) 

                if fxrf<fg && fxrf>fl 

                    xnew1=xrf; 

                    continue 

                end 

                if fxrf<fl 

                    xe=(gamma)*xrf+(1-gamma)*(centroid); 

newe=1-(((xe(1,1)-sqrt(-1)*xe(2,1)-nair)/(xe(1,1)-sqrt(-... 

1)*xe(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xe(1,1)-sqrt(-

1)*xe(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                    anglenewe=angle(newe); 

                    angleblae=((phase(ration(ik)))-(anglenewe)); 

                    if abs(angleblae)>pi && abs(angleblae)<2*pi 

                        angleblae=abs(angleblae)-2*pi; 

                    end 
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 fxe=abs(abs(abs(ration(ik))-abs(newe))+wght*abs(angleblae)); 

                    (abs(fxe)) 

                    if fxe<fxrf 

                        xnew1=xe; 

                        continue 

                    end 

                    if fxe>fxrf 

                        xnew1=xrf; 

                        continue 

                    end 

                end 

                if fxrf>=fg 

                    if fxrf>=fh 

                        xc=beta*xh+(1-beta)*(centroid); 

newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 

                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

      fxc=abs(abs(abs(ration(ik))-

abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<fh 

                            xnew1=xc; 

                            continue 

                        else 

                            xnew1=xl+beta*(xnew1-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    else 

                        xh=xrf; 

                        xc=beta*xh+(1-beta)*(centroid); 

newc=1-(((xc(1,1)-sqrt(-1)*xc(2,1)-nair)/(xc(1,1)-sqrt(-... 

1)*xc(2,1)+nair))^2)*... 

((exp(-sqrt(-1)*2*(xc(1,1)-sqrt(-

1)*xc(2,1))*2*pi*f_worth(ik)*Thickness/c))); 

                        anglenewc=angle(newc); 

                        angleblac=((phase(ration(ik)))-

(anglenewc)); 
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                        if abs(angleblac)>pi && 

abs(angleblac)<2*pi 

                            angleblac=abs(angleblac)-2*pi; 

                        end 

    fxc=abs(abs(abs(ration(ik))-abs(newc))+wght*abs(angleblac)); 

                        (abs(fxc)) 

                        if fxc<=fxrf 

                            xnew1=xc; 

                            continue 

                        else 

                            xnew1=xl+beta*(xnew1-xl); 

                            xnew2=xl+beta*(xnew2-xl); 

                            continue 

                        end 

                    end 

                end 

            end 

        end 

    end 

    indexar(par,:)=bam(1,:); 

    kar(par,:)=bam(2,:); 

    magar(par,:)=bamm; 

    phasar(par,:)=bamp; 

end 

  

k_f=abs(kar); 

index_f=indexar; 

figure 

plot(f_worth,index_f) 

grid 

title('index') 

figure 

plot(f_worth,k_f) 

grid 

title('extinction') 

  

figure 

plot(f_worth,2*k_f.*f_worth*2*pi/(c*100)) 

grid 

title('abs coeff.') 

% k_f=abs(k_f); 

%real perm 

real_perm=index_f.^2-k_f.^2; 

figure 

plot(f_worth,real_perm) 

grid 

title('real perm') 
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%imaginary perm 

imaginary_perm=(2*index_f.*k_f); 

figure 

plot(f_worth,imaginary_perm) 

grid 

title('imag perm') 

%loss tangent 

loss_tan=(imaginary_perm./real_perm); 

figure 

plot(f_worth,(loss_tan)) 

grid 

title('loss tan')  
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Appendix E 

The Multiple Angle Method Matlab Material Characterization Code 

Description: The material characterization codes provided here can be used to extract the 

material properties of two different cases of dielectric stacks. The first case code is set up to 

extract the properties of a single layer dielectric stack (dielectric constant and loss tangent)  

along with thickness extraction. The second case code is set up to extract the properties of a two 

layer dielectric stack (dielectric constants and loss tangents)  having known physical thicknesses. 

The codes for both cases require certain inputs. These are: 

-Reference measurement and sample measurement files names 

-Upper frequency limit for material characterization 

-Lower frequency limit for material characterization 

-Upper and lower limits for the initial guesses of the unknowns (thickness, refractive index (real 

and imaginary parts) 

-Angles of incidence of the sample measurements 

-Dielectric layer thicknesses for the two layer stack 

Note:  

*The measured data text files, must have two columns with one being time and the other  being 

signal intensity. The unit for time should be picoseconds. Delete any other text from the text 

files. 

*The root finding method to solve the system of equations and extract the properties is the secant 

method.   

 The code for the first case (single layer material characterization along with thickness 

extraction) is: 
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clc 

clear all 

close all 

format long 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Inputs%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Ref_Air1=textread('ref_air_si.txt', '%s');%loading reference 

measurement 

Ref_Air1=str2double(Ref_Air1); 

Sample1=textread('si_60.txt', '%s');%loading first sample 

measurement  

Sample1=str2double(Sample1); 

Sample2=textread('si_50.txt', '%s');%loading second sample 

measurement 

Sample2=str2double(Sample2); 

 

theta1=60;%angle of incidence setting, first sample measurement 

theta2=50;%angle of incidence setting, second sample measurement 

upper_ind_g=3.8;%upper limit of initial guesses for refractive 

index (real) 

lower_ind_g=3;%lower limit of initial guesses for refractive 

index (real) 

upper_thi_g=2*(10^-3);%upper limit of initial guesses for 

thickness 

lower_thi_g=0.2*(10^-3);%lower limit of initial guesses for 

thickness 

upper_ext_g=0.15;%upper limit of initial guesses for refractive 

index (imag) 

lower_ext_g=0;%lower limit of initial guesses for refractive 

index (imag) 

 

flow=0.2*(10^12);%lower frequency limit for material 

characterization 

fhigh=1.2*(10^12);%upper frequency limit for material 

characterization 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

j=1; 
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for i=1:size(Ref_Air1,1)%reorganizing data into two columns, 

first column is time 

    %second column is signal intensity 

    if mod(i,2)~=0 

        Ref_Air1_c(j,1)=Ref_Air1(i,1); 

        Sample1_c(j,1)=Sample1(i,1); 

        Sample2_c(j,1)=Sample2(i,1); 

    end 

    if mod(i,2)==0 

        Ref_Air1_c(j,2)=Ref_Air1(i,1); 

        Sample1_c(j,2)=Sample1(i,1); 

        Sample2_c(j,2)=Sample2(i,1); 

        j=j+1; 

    end 

end 

  

%measured incident signal plot 

figure;plot(Ref_Air1_c(:,1),Ref_Air1_c(:,2),Sample1_c(:,1),Sampl

e1_c(:,2),Sample2_c(:,1),Sample2_c(:,2));grid 

  

del_t_ind1=find(Sample1_c(:,2)==max(Sample1_c(:,2)))-

find(Ref_Air1_c(:,2)==max(Ref_Air1_c(:,2))); 

  

Ts=(10^(-12))*(Ref_Air1_c(2,1)-Ref_Air1_c(1,1));%sampling period 

Fs=1/Ts;%sampling frequency 

N_samples=size(Ref_Air1_c(:,1),1);%number of discrete data 

points in the %incident signal 

freq=(0:Fs/N_samples:Fs-Fs/N_samples);%frequency array of the 

DFT of the time %domain signal 

  

Ref1_mod_freq=fft(Ref_Air1_c(:,2)); 

Ref_Air1_c_f=Ref1_mod_freq; 

sample1_mod_freq=fft(Sample1_c(:,2)); 

sample2_mod_freq=fft(Sample2_c(:,2)); 

  

fr=find(freq>=flow); 

fg=find(freq>=fhigh); 

fr1=fg(1); 

f_worth=freq(fr(1):fr1); 

  

Tm=sample1_mod_freq./Ref_Air1_c_f; 

Tm1=Tm(fr(1):end); 

Tm=sample2_mod_freq./Ref_Air1_c_f; 

Tm2=Tm(fr(1):end); 

  

%inputs 

cc=1; 
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lops=0; 

while cc==1 

n=50; %number of iterations for each frequency 

c=2.99*(10^8); 

fj=1; 

lops=lops+1 

ninitial=lower_ind_g+(upper_ind_g-lower_ind_g)*rand%initial n 

linitial=lower_thi_g+upper_thi_g*rand%initial thickness 

kinitial=0+upper_ext_g*rand 

delx=0.000000000001; 

lops_init(lops,:)=[ninitial,kinitial,linitial]; 

    for fj=1:size(f_worth,2) 

        no=ninitial; 

        ko=kinitial; 

        lo=linitial; 

        optmat=[no;ko;lo]; 

        for nj=1:n 

             

            w=2*pi*f_worth(fj); 

            k1=2*pi*f_worth(fj)*(no-sqrt(-1)*ko)/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no-sqrt(-1)*ko); 

            eta0=120*pi/(1); 

   kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*ko)^2-

sin(theta1*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

 Tc1=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

            func1=[abs(Tm1(fj))-abs(Tc1.*exp(sqrt(-1)*kz0*lo))]; 

            llps=angle(Tm1(fj)); 

            hyt=angle(Tc1.*exp(sqrt(-1)*kz0*lo)); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 
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                anglebla0=abs(anglebla0)-2*pi; 

            end 

            func2=[abs(anglebla0)]; 

             

            k1=2*pi*f_worth(fj)*(no-sqrt(-1)*ko)/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no-sqrt(-1)*ko); 

            eta0=120*pi/(1); 

            kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*ko)^2-... 

sin(theta2*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

Tc2=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

             

            llps=angle(Tm2(fj)); 

            hyt=angle(Tc2.*exp(sqrt(-1)*kz0*lo)); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            func3=abs(anglebla0); 

             

             

            func=[func1;func2;func3] 

             

            if abs(func(1,1))< 0.0000000000000001 

                if abs(func(2,1))< 0.0000000000000001 

                    if abs(func(3,1))< 0.0000000000000001 

                        index(fj)=optmat(1,1); 

                        ext(fj)=optmat(2,1); 

                        thi(fj)=optmat(3,1); 

                        break 

                    end 



211 

 

                end 

            end 

             

            k1=2*pi*f_worth(fj)*(no+delx-sqrt(-1)*ko)/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no+delx-sqrt(-1)*ko); 

            eta0=120*pi/(1); 

kz1=2*pi*f_worth(fj)*sqrt((no+delx-sqrt(-1)*ko)^2-

sin(theta1*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc1=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

   Jack11=[(abs(Tm1(fj))-abs(jTc1.*exp(sqrt(-1)*kz0*lo)))-

func(1,1)]; 

            llps=angle(Tm1(fj)); 

            hyt=angle(jTc1.*exp(sqrt(-1)*kz0*lo)); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            Jack21=[abs(anglebla0)-func(2,1)];  

             

 kz1=2*pi*f_worth(fj)*sqrt((no+delx-sqrt(-1)*ko)^2-

sin(theta2*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 
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            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc2=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

            llps=angle(Tm2(fj)); 

            hyt=angle(jTc2.*exp(sqrt(-1)*kz0*lo)); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            Jack31=[abs(anglebla0)-func(3,1)];   

             

            k1=2*pi*f_worth(fj)*(no-sqrt(-1)*(ko+delx))/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no-sqrt(-1)*(ko+delx)); 

            eta0=120*pi/(1); 

kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*(ko+delx))^2-

sin(theta1*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc1=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

Jack12=[(abs(Tm1(fj))-abs(jTc1.*exp(sqrt(-1)*kz0*lo)))-

func(1,1)]; 

  

            llps=angle(Tm1(fj)); 

            hyt=angle(jTc1.*exp(sqrt(-1)*kz0*lo)); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 
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            end        

            Jack22=[abs(anglebla0)-func(2,1)];  

             

 kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*(ko+delx))^2-

sin(theta2*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc2=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

            llps=angle(Tm2(fj)); 

            hyt=angle(jTc2.*exp(sqrt(-1)*kz0*lo)); 

  

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            Jack32=[abs(anglebla0)-func(3,1)];   

             

            k1=2*pi*f_worth(fj)*(no-sqrt(-1)*(ko))/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no-sqrt(-1)*(ko)); 

            eta0=120*pi/(1); 

 kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*(ko))^2-

sin(theta1*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 
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            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

 jTc1=(exp(-sqrt(-

1)*kz1*(lo+delx)).*T12.*T21)./(1+R12.*R21.*exp(-sqrt(-... 

1)*2*kz1*(lo+delx))); 

             

 Jack13=[(abs(Tm1(fj))-abs(jTc1.*exp(sqrt(-1)*kz0*(lo+delx))))-

func(1,1)]; 

  

            llps=angle(Tm1(fj)); 

            hyt=angle(jTc1.*exp(sqrt(-1)*kz0*(lo+delx))); 

  

anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            Jack23=[abs(anglebla0)-func(2,1)];  

             

  kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*(ko))^2-

sin(theta2*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc2=(exp(-sqrt(-

1)*kz1*(lo+delx)).*T12.*T21)./(1+R12.*R21.*exp(-sqrt(-... 

1)*2*kz1*(lo+delx))); 

             

  

            llps=angle(Tm2(fj)); 

            hyt=angle(jTc2.*exp(sqrt(-1)*kz0*(lo+delx))); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end 

            Jack33=[abs(anglebla0)-func(3,1)]; 

            Jack=[Jack11, Jack12, Jack13; 
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                Jack21, Jack22, Jack23; 

                Jack31, Jack32, Jack33]/delx; 

             

            if abs(det(Jack))<0.0000000000000001 

                index(fj)=0; 

                ext(fj)=0; 

                thi(fj)=0; 

                break 

            end 

            optmat=optmat-Jack\func 

            no=optmat(1,1); 

            ko=optmat(2,1); 

            lo=optmat(3,1); 

            TF=isnan(optmat); 

            Tff=find(TF==1); 

            if sum(Tff)>0 

                index(fj)=0; 

                ext(fj)=0; 

                thi(fj)=0; 

                break 

            end 

            if nj==n 

                index(fj)=no; 

                ext(fj)=ko; 

                thi(fj)=lo; 

            end 

        end 

        cnt(fj)=nj; 

    end 

    if fj==size(f_worth,2) 

        fvd=find(index>lower_ind_g & index<upper_ind_g); 

        fgh=find(ext>lower_ext_g & ext<upper_ext_g); 

        ffi=find(thi>=lower_thi_g & thi<upper_thi_g); 

        d=intersect(fvd,fgh); 

        cd=intersect(ffi,fvd); 

        if size(d,2)>0 && size(cd,2)>0 

            cc=0; 

        end 

    end 

end 

         

n=50; %number of iterations for each frequency 

for i=1:size(f_worth,2) 

    ninitial=index(i);%initial n 

    linitial=thi(i);%initial thickness 

    kinitial=ext(i); 

    if ninitial>=lower_ind_g && kinitial>lower_ext_g &&... 
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linitial>lower_thi_g && ninitial<upper_ind_g && 

kinitial<upper_ext_g &&... 

linitial<upper_thi_g 

        break 

    else 

        continue 

    end 

end 

delx=0.000000000001; 

  

    for fj=1:size(f_worth,2) 

        no=ninitial; 

        ko=kinitial; 

        lo=linitial; 

        optmat=[no;ko;lo]; 

            if fj==1 

        lops_init(lops+1,:)=optmat'; 

    end 

        for nj=1:n 

             

            w=2*pi*f_worth(fj); 

            k1=2*pi*f_worth(fj)*(no-sqrt(-1)*ko)/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no-sqrt(-1)*ko); 

            eta0=120*pi/(1); 

kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*ko)^2-

sin(theta1*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

Tc1=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

            func1=[abs(Tm1(fj))-abs(Tc1.*exp(sqrt(-1)*kz0*lo))]; 

            llps=angle(Tm1(fj)); 

            hyt=angle(Tc1.*exp(sqrt(-1)*kz0*lo)); 
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            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end 

            func2=[abs(anglebla0)]; 

             

            k1=2*pi*f_worth(fj)*(no-sqrt(-1)*ko)/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no-sqrt(-1)*ko); 

            eta0=120*pi/(1); 

  kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*ko)^2-

sin(theta2*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

Tc2=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

             

            llps=angle(Tm2(fj)); 

            hyt=angle(Tc2.*exp(sqrt(-1)*kz0*lo)); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            func3=abs(anglebla0); 

             

             

            func=[func1;func2;func3] 

             

            if abs(func(1,1))< 0.0000000000000001 

                if abs(func(2,1))< 0.0000000000000001 

                    if abs(func(3,1))< 0.0000000000000001 

                        index(fj)=optmat(1,1); 

                        ext(fj)=optmat(2,1); 

                        thi(fj)=optmat(3,1); 
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                            ninitial=index(fj); 

                            kinitial=ext(fj); 

                            linitial=thi(fj); 

                        break 

                    end 

                end 

            end 

             

            k1=2*pi*f_worth(fj)*(no+delx-sqrt(-1)*ko)/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no+delx-sqrt(-1)*ko); 

            eta0=120*pi/(1); 

 kz1=2*pi*f_worth(fj)*sqrt((no+delx-sqrt(-1)*ko)^2-

sin(theta1*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

           R21=-R12; 

jTc1=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

      Jack11=[(abs(Tm1(fj))-abs(jTc1.*exp(sqrt(-1)*kz0*lo)))-

func(1,1)]; 

            llps=angle(Tm1(fj)); 

            hyt=angle(jTc1.*exp(sqrt(-1)*kz0*lo)); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            Jack21=[abs(anglebla0)-func(2,1)];  

             

 kz1=2*pi*f_worth(fj)*sqrt((no+delx-sqrt(-1)*ko)^2-

sin(theta2*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 
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            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc2=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

            llps=angle(Tm2(fj)); 

            hyt=angle(jTc2.*exp(sqrt(-1)*kz0*lo)); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            Jack31=[abs(anglebla0)-func(3,1)];   

             

            k1=2*pi*f_worth(fj)*(no-sqrt(-1)*(ko+delx))/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no-sqrt(-1)*(ko+delx)); 

            eta0=120*pi/(1); 

 kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*(ko+delx))^2-

sin(theta1*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc1=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

  Jack12=[(abs(Tm1(fj))-abs(jTc1.*exp(sqrt(-1)*kz0*lo)))-

func(1,1)]; 
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            llps=angle(Tm1(fj)); 

            hyt=angle(jTc1.*exp(sqrt(-1)*kz0*lo)); 

  

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            Jack22=[abs(anglebla0)-func(2,1)];  

             

kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*(ko+delx))^2-

sin(theta2*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc2=(exp(-sqrt(-1)*kz1*(lo)).*T12.*T21)./(1+R12.*R21.*exp(-

sqrt(-... 

1)*2*kz1*(lo))); 

             

            llps=angle(Tm2(fj)); 

            hyt=angle(jTc2.*exp(sqrt(-1)*kz0*lo)); 

  

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            Jack32=[abs(anglebla0)-func(3,1)];   

             

            k1=2*pi*f_worth(fj)*(no-sqrt(-1)*(ko))/c; 

            k0=2*pi*f_worth(fj)*(1)/c; 

            eta1=120*pi/(no-sqrt(-1)*(ko)); 

            eta0=120*pi/(1); 

 kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*(ko))^2-

sin(theta1*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 
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            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc1=(exp(-sqrt(-

1)*kz1*(lo+delx)).*T12.*T21)./(1+R12.*R21.*exp(-sqrt(-... 

1)*2*kz1*(lo+delx))); 

Jack13=[(abs(Tm1(fj))-abs(jTc1.*exp(sqrt(-1)*kz0*(lo+delx))))-

func(1,1)]; 

            llps=angle(Tm1(fj)); 

            hyt=angle(jTc1.*exp(sqrt(-1)*kz0*(lo+delx))); 

anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 

            end        

            Jack23=[abs(anglebla0)-func(2,1)];  

             

kz1=2*pi*f_worth(fj)*sqrt((no-sqrt(-1)*(ko))^2-

sin(theta2*pi/180)^2)/c; 

            kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

             

            hjgop=find(imag(kz0)>0); 

            kz0([hjgop])=-kz0([hjgop]); 

            hjjop=find(imag(kz1)>0); 

            kz1([hjjop])=-kz1([hjjop]); 

             

            Z2=kz1*eta1./k1; 

            Z1=kz0*eta0./k0; 

            T12=(2*Z2)./(Z2+Z1); 

            T21=(2*Z1)./(Z2+Z1); 

            R12=(Z2-Z1)./(Z2+Z1); 

            R21=-R12; 

jTc2=(exp(-sqrt(-

1)*kz1*(lo+delx)).*T12.*T21)./(1+R12.*R21.*exp(-sqrt(-... 

1)*2*kz1*(lo+delx))); 

             

  

            llps=angle(Tm2(fj)); 

            hyt=angle(jTc2.*exp(sqrt(-1)*kz0*(lo+delx))); 

            anglebla0=(llps-hyt); 

            if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

                anglebla0=abs(anglebla0)-2*pi; 
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            end 

            Jack33=[abs(anglebla0)-func(3,1)]; 

            Jack=[Jack11, Jack12, Jack13; 

                Jack21, Jack22, Jack23; 

                Jack31, Jack32, Jack33]/delx; 

             

            if abs(det(Jack))<0.0000000000000001 

                index(fj)=0; 

                ext(fj)=0; 

                thi(fj)=0; 

                break 

            end 

            optmat=optmat-Jack\func 

            no=optmat(1,1); 

            ko=optmat(2,1); 

            lo=optmat(3,1); 

            TF=isnan(optmat); 

            Tff=find(TF==1); 

            if sum(Tff)>0 

                index(fj)=0; 

                ext(fj)=0; 

                thi(fj)=0; 

                break 

            end 

            if nj==n 

                index(fj)=no; 

                ext(fj)=ko; 

                thi(fj)=lo; 

                end 

        end 

        cnt(fj)=nj; 

    end 

  

figure;plot(f_worth,index);grid 

title('refractive index - real')  

figure;plot(f_worth,ext);grid 

title('refractive index - imaginary')  

figure;plot(f_worth,thi);grid 

title('thickness - m')  

%figure;plot(f_worth,cnt);grid 

  

er=index.^2-ext.^2; 

figure;plot(f_worth,er);grid 

title('real perm')  

tand=2*index.*abs(ext)./er; 

figure;plot(f_worth,tand);grid 

title('loss tan')  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 The code for the second case (two layer material characterization with known physical 

thicknesses) is: 

clc 

clear all 

close all 

format long 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Inputs%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Ref_Air1=textread('ref_air_glass_si.txt','%s');%loading 

reference measurement 

Ref_Air1=str2double(Ref_Air1); 

Sample1=textread('glass_si_30.txt', '%s');%loading first sample 

measurement  

Sample1=str2double(Sample1); 

Sample2=textread('glass_si_60.txt', '%s');%loading second sample 

measurement 

Sample2=str2double(Sample2); 

 

theta1=30;%angle of incidence setting, first sample measurement 

theta2=60;%angle of incidence setting, second sample measurement 

 

upper_ind_g1=3.8;%upper limit of initial guesses for refractive 

index (real) 

       %for the first dielectric 

lower_ind_g1=3;%lower limit of initial guesses for refractive 

index (real) 

               %for the first dielectric 

upper_ext_g1=0.08;%upper limit of initial guesses for refractive 

index (imag) 

                  %for the first dielectric 

lower_ext_g1=0;%lower limit of initial guesses for refractive 

index (imag) 

               %for the first dielectric 
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upper_ind_g2=2.5;%upper limit of initial guesses for refractive 

index (real) 

       %for the second dielectric 

lower_ind_g2=1.9;%lower limit of initial guesses for refractive 

index (real) 

               %for the second dielectric 

upper_ext_g2=0.08;%upper limit of initial guesses for refractive 

index (imag) 

                  %for the second dielectric 

lower_ext_g2=0;%lower limit of initial guesses for refractive 

index (imag) 

               %for the second dielectric 

 

l1=0.52*(10^-3);%thickness of the first dielectric 

l2=0.52*(10^-3);%thickness of the second dielectric  

 

flow=0.2*(10^12);%lower frequency limit for material 

characterization 

fhigh=1.2*(10^12);%upper frequency limit for material 

characterization 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

j=1; 

for i=1:size(Ref_Air1,1)%reorganizing data into two columns, 

first column is time 

    %second column is signal intensity 

    if mod(i,2)~=0 

        Ref_Air1_c(j,1)=Ref_Air1(i,1); 

        Sample1_c(j,1)=Sample1(i,1); 

        Sample2_c(j,1)=Sample2(i,1); 

   end 

    if mod(i,2)==0 

        Ref_Air1_c(j,2)=Ref_Air1(i,1); 

        Sample1_c(j,2)=Sample1(i,1); 

        Sample2_c(j,2)=Sample2(i,1); 

        j=j+1; 

    end 

end 

  

%measured incident signal plot 

figure;plot(Ref_Air1_c(:,1),Ref_Air1_c(:,2),Sample1_c(:,1),Sampl

e1_c(:,2),... 

    Sample2_c(:,1),Sample2_c(:,2));grid 
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Ts=(10^(-12))*(Ref_Air1_c(2,1)-Ref_Air1_c(1,1));%sampling period 

Fs=1/Ts;%sampling frequency 

N_samples=size(Ref_Air1_c(:,1),1);%number of discrete data 

points in the incident signal 

freq=(0:Fs/N_samples:Fs-Fs/N_samples);%frequency array of the 

DFT of the time domain signal 

  

Ref1_mod_freq=fft(Ref_Air1_c(:,2)); 

Ref_Air1_c_f=Ref1_mod_freq; 

sample1_mod_freq=fft(Sample1_c(:,2)); 

sample2_mod_freq=fft(Sample2_c(:,2)); 

  

 

fr=find(freq>=flow); 

fg=find(freq>=fhigh); 

fr1=fg(1); 

f_worth=freq(fr(1):fr1); 

  

Tm=sample1_mod_freq./Ref_Air1_c_f; 

Tm1=Tm(fr(1):end); 

Tm=sample2_mod_freq./Ref_Air1_c_f; 

Tm2=Tm(fr(1):end); 

  

hyt1=phase(Tm1); 

  

%inputs 

n=50; %number of iterations for each frequency 

c=2.99*(10^8); 

l1initial=l1; 

l2initial=l2; 

  

delx=0.0000000000001; 

fj=1; 

cc=1; 

lops=0; 

while cc~=0 

    lops=lops+1; 

n1initial=lower_ind_g1+(upper_ind_g1-lower_ind_g1)*rand; 

k1initial=lower_ext_g1+upper_ext_g1*rand; 

n2initial=lower_ind_g2+(upper_ind_g2-lower_ind_g2)*rand; 

k2initial= lower_ext_g2+ upper_ext_g2*rand; 

lops_init(lops,:)=[n1initial,k1initial,n2initial,k2initial]; 

for fj=1:size(f_worth,2) 

    n1o=n1initial; 

    k1o=k1initial; 

    l1o=l1initial; 
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    n2o=n2initial; 

    k2o=k2initial; 

    l2o=l2initial 

    optmat=[n1o;k1o;n2o;k2o]; 

    for nj=1:n 

         

        w=2*pi*f_worth(fj); 

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-... 

sin(theta1*pi/180)^2)/c; 

   kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

         

        func1=[abs(Tm1(fj))-abs(Tc1*exp(sqrt(-

1)*kz0*(l1o+l2o)))]; 
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        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end 

        func2=[abs(anglebla0)]; 

         

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

        kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta2*pi/180)^2)/c; 

 kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

         

Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

            (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

            .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

        func3=[abs(Tm2(fj))-abs(Tc2*exp(sqrt(-

1)*kz0*(l1o+l2o)))]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 
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        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end 

        func4=[abs(anglebla0)]; 

         

                 

        func=[(func1);(func2);func3;func4] 

         

        if abs(func(1,1))<0.0000000000000001 

            if abs(func(2,1))<0.0000000000000001 

                if abs(func(3,1))<0.0000000000000001 

                    if abs(func(4,1))<0.000000000000001 

                index1(fj)=optmat(1,1); 

                ext1(fj)=optmat(2,1); 

                index2(fj)=optmat(3,1); 

                ext2(fj)=optmat(4,1); 

                break 

                    end 

                end 

            end 

        end 

  

        k1=w*((n1o+delx)-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/((n1o+delx)-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt(((n1o+delx)-sqrt(-1)*k1o)^2-... 

sin(theta1*pi/180)^2)/c; 

  kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 
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        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

      Jack11=[(abs(Tm1(fj))-abs(Tc1*exp(sqrt(-

1)*kz0*(l1o+l2o))))-func(1,1)]; 

         

        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack21=[abs(anglebla0)-func(2,1)];        

                 

        k1=w*((n1o+delx)-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/((n1o+delx)-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt(((n1o+delx)-sqrt(-1)*k1o)^2-... 

sin(theta2*pi/180)^2)/c; 

 kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 
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        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

  

Jack31=[(abs(Tm2(fj))-abs(Tc2*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(3,1)]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack41=[abs(anglebla0)-func(4,1)];  

  

        

        k1=w*(n1o-sqrt(-1)*(k1o+delx))/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*(k1o+delx)); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*(k1o+delx))^2-... 

sin(theta1*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 
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        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

Jack12=[(abs(Tm1(fj))-abs(Tc1*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(1,1)]; 

         

        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack22=[abs(anglebla0)-func(2,1)];  

         

        k1=w*(n1o-sqrt(-1)*(k1o+delx))/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*(k1o+delx)); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*(k1o+delx))^2-... 

sin(theta2*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 
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        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

  

 Jack32=[(abs(Tm2(fj))-abs(Tc2*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(3,1)]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack42=[abs(anglebla0)-func(4,1)];  

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*((n2o+delx)-sqrt(-1)*k2o)/c; 

        eta2=120*pi/((n2o+delx)-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

 kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta1*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt(((n2o+delx)-sqrt(-1)*k2o)^2-... 

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 
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        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

 Jack13=[(abs(Tm1(fj))-abs(Tc1*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(1,1)]; 

         

        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack23=[abs(anglebla0)-func(2,1)];  

                 

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*((n2o+delx)-sqrt(-1)*k2o)/c; 

        eta2=120*pi/((n2o+delx)-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta2*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt(((n2o+delx)-sqrt(-1)*k2o)^2-... 

sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 
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        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

  

  Jack33=[(abs(Tm2(fj))-abs(Tc2*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(3,1)]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack43=[abs(anglebla0)-func(4,1)];  

         

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*(k2o+delx))/c; 

        eta2=120*pi/(n2o-sqrt(-1)*(k2o+delx));   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

 kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta1*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*(k2o+delx))^2-... 

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 
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        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

Jack14=[(abs(Tm1(fj))-abs(Tc1*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(1,1)]; 

         

        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack24=[abs(anglebla0)-func(2,1)];  

         

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*(k2o+delx))/c; 

        eta2=120*pi/(n2o-sqrt(-1)*(k2o+delx));   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

 kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta2*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*(k2o+delx))^2-... 
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sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

  

 Jack34=[(abs(Tm2(fj))-abs(Tc2*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(3,1)]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack44=[abs(anglebla0)-func(4,1)];  

         

        Jack=[Jack11, Jack12, Jack13, Jack14; 

            Jack21, Jack22, Jack23, Jack24; 

            Jack31, Jack32, Jack33, Jack34; 

            Jack41, Jack42, Jack43, Jack44]/delx; 

         

        if abs(det(Jack(1:4,:)))<0.0000000000000001 

                index1(fj)=0; 

                ext1(fj)=0; 

                index2(fj)=0; 
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                ext2(fj)=0; 

         break 

        end 

        optmat=optmat-Jack\func 

        n1o=optmat(1,1); 

        k1o=optmat(2,1); 

        n2o=optmat(3,1); 

        k2o=optmat(4,1); 

         

                    if nj==n 

                index1(fj)=n1o; 

                ext1(fj)=k1o; 

                index2(fj)=n2o; 

                ext2(fj)=k2o; 

                    end 

    end 

    cnt(fj)=nj; 

  

end 

    if fj==size(f_worth,2) 

        fvd=find(index1>lower_ind_g1 & index1<upper_ind_g1); 

        fgh=find(ext1>lower_ext_g1 & ext1<upper_ext_g1); 

        fvd1=find(index2>lower_ind_g2 & index2<upper_ind_g2); 

        fgh1=find(ext2>lower_ext_g2 & ext2<upper_ext_g2); 

        d=intersect(fvd,fgh); 

        cd=intersect(fvd1,fgh1); 

        flav=intersect(d,cd); 

        if size(flav,2)>0 

            cc=0; 

        end 

    end 

  

end 

%figure;plot(f_worth,index1,f_worth,index2);grid 

%figure;plot(f_worth,abs(ext1),f_worth,abs(ext2));grid 

%figure;plot(f_worth,cnt);grid 

  

er1=index1.^2-ext1.^2; 

er2=index2.^2-ext2.^2; 

%figure;plot(f_worth,er1,f_worth,er2);grid 

  

tand1=2*index1.*abs(ext1)./er1; 

tand2=2*index2.*abs(ext2)./er2; 

%figure;plot(f_worth,tand1,f_worth,tand2);grid 

  

n=50; %number of iterations for each frequency 

for i=1:size(f_worth,2) 
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    n1initial=index1(i);%initial n 

    n2initial=index2(i); 

    k1initial=ext1(i); 

    k2initial=ext2(i); 

    if n1initial>=lower_ind_g1 && k1initial>lower_ext_g1 && 

k2initial>lower_ext_g2 && n2initial>=lower_ind_g2 && 

n2initial<upper_ind_g2 && n1initial<upper_ind_g1 ... 

            && k1initial<upper_ext_g1 && k2initial<upper_ext_g2 

        break 

    else 

        continue 

    end 

end 

delx=0.00000000000001; 

  

for fj=1:size(f_worth,2) 

    n1o=n1initial; 

    k1o=k1initial; 

    l1o=l1initial; 

    n2o=n2initial; 

    k2o=k2initial; 

    l2o=l2initial 

    optmat=[n1o;k1o;n2o;k2o]; 

    if fj==1 

        lops_init(lops+1,:)=optmat'; 

    end 

    for nj=1:n 

         

        w=2*pi*f_worth(fj); 

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

 kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta1*pi/180)^2)/c; 

 kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 
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        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

               (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

         

        func1=[abs(Tm1(fj))-abs(Tc1*exp(sqrt(-

1)*kz0*(l1o+l2o)))]; 

             

        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end 

        func2=[abs(anglebla0)]; 

         

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta2*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 
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        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

         

Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

            (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

            .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

        func3=[abs(Tm2(fj))-abs(Tc2*exp(sqrt(-

1)*kz0*(l1o+l2o)))]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end 

        func4=[abs(anglebla0)]; 

         

  

                 

        func=[(func1);(func2);func3;func4] 

         

        if abs(func(1,1))<0.0000000000000001 

            if abs(func(2,1))<0.0000000000000001 

                if abs(func(3,1))<0.0000000000000001 

                    if abs(func(4,1))<0.0000000000000001 

                index1(fj)=optmat(1,1); 

                ext1(fj)=optmat(2,1); 

                index2(fj)=optmat(3,1); 

                ext2(fj)=optmat(4,1); 

                 n1initial=index1(fj); 

                 k1initial=ext1(fj); 

                 n2initial=index2(fj); 

                 k2initial=ext2(fj); 

                 fhh(fj,:)=[func']; 

                 break 

                    end 

                end 
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            end 

        end 

  

        k1=w*((n1o+delx)-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/((n1o+delx)-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt(((n1o+delx)-sqrt(-1)*k1o)^2-... 

sin(theta1*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

        Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

   Jack11=[(abs(Tm1(fj))-abs(Tc1*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(1,1)]; 

         

        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 
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        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack21=[abs(anglebla0)-func(2,1)];        

                 

        k1=w*((n1o+delx)-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/((n1o+delx)-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt(((n1o+delx)-sqrt(-1)*k1o)^2-... 

sin(theta2*pi/180)^2)/c; 

  kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

  

   Jack31=[(abs(Tm2(fj))-abs(Tc2*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(3,1)]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 
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        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack41=[abs(anglebla0)-func(4,1)];  

  

          

        k1=w*(n1o-sqrt(-1)*(k1o+delx))/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*(k1o+delx)); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*(k1o+delx))^2-... 

sin(theta1*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

Jack12=[(abs(Tm1(fj))-abs(Tc1*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(1,1)]; 
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        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack22=[abs(anglebla0)-func(2,1)];  

         

        k1=w*(n1o-sqrt(-1)*(k1o+delx))/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*k2o)/c; 

        eta2=120*pi/(n2o-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*(k1o+delx)); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*(k1o+delx))^2-... 

sin(theta2*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*k2o)^2-

sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 
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  Jack32=[(abs(Tm2(fj))-abs(Tc2*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(3,1)]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack42=[abs(anglebla0)-func(4,1)];  

                 

   

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*((n2o+delx)-sqrt(-1)*k2o)/c; 

        eta2=120*pi/((n2o+delx)-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta1*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt(((n2o+delx)-sqrt(-1)*k2o)^2-... 

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 
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+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

Jack13=[(abs(Tm1(fj))-abs(Tc1*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(1,1)]; 

         

        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack23=[abs(anglebla0)-func(2,1)];  

                 

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*((n2o+delx)-sqrt(-1)*k2o)/c; 

        eta2=120*pi/((n2o+delx)-sqrt(-1)*k2o);   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta2*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt(((n2o+delx)-sqrt(-1)*k2o)^2-... 

sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 
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 Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

  

Jack33=[(abs(Tm2(fj))-abs(Tc2*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(3,1)]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack43=[abs(anglebla0)-func(4,1)];  

         

     

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*(k2o+delx))/c; 

        eta2=120*pi/(n2o-sqrt(-1)*(k2o+delx));   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta1*pi/180)^2)/c; 

kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta1*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*(k2o+delx))^2-... 

sin(theta1*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 

        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 
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        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc1=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

         

Jack14=[(abs(Tm1(fj))-abs(Tc1*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(1,1)]; 

         

        llps=angle(Tm1(fj)); 

        hyt=angle(Tc1.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack24=[abs(anglebla0)-func(2,1)];  

         

        k1=w*(n1o-sqrt(-1)*k1o)/c; 

        k0=w/c; 

        k2=w*(n2o-sqrt(-1)*(k2o+delx))/c; 

        eta2=120*pi/(n2o-sqrt(-1)*(k2o+delx));   

        eta1=120*pi/(n1o-sqrt(-1)*k1o); 

        eta0=120*pi; 

                

        kz0=2*pi*f_worth(fj)*sqrt(1-sin(theta2*pi/180)^2)/c; 

 kz1=2*pi*f_worth(fj)*sqrt((n1o-sqrt(-1)*k1o)^2-

sin(theta2*pi/180)^2)/c; 

kz2=2*pi*f_worth(fj)*sqrt((n2o-sqrt(-1)*(k2o+delx))^2-... 

sin(theta2*pi/180)^2)/c; 

        hjg=find(imag(kz0)>0); 

        kz0([hjg])=-kz0([hjg]); 

        hjj=find(imag(kz1)>0); 

        kz1([hjj])=-kz1([hjj]); 

        hja=find(imag(kz2)>0); 

        kz2([hja])=-kz2([hja]); 

          

        Z2=kz2*eta2/k2; 

        Z1=kz1*eta1/k1; 

        Z0=kz0*eta0/k0; 

            

        T01=(2*Z1)./(Z1+Z0); 

        T12=(2*Z2)./(Z2+Z1); 
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        T20=(2*Z0)./(Z2+Z0); 

        R01=(Z1-Z0)./(Z1+Z0); 

        R12=(Z2-Z1)./(Z2+Z1); 

        R20=(Z0-Z2)./(Z0+Z2); 

           

 Tc2=(exp(-sqrt(-1)*kz1*(l1o)).*exp(-sqrt(-

1)*kz2*(l2o)).*T01.*T12.*T20)./... 

                (1+R01.*R12.*exp(-sqrt(-1)*2*kz1*(l1o))+... 

+R12.*R20.*exp(-sqrt(-1)*2*kz2*(l2o))+R01.*R20.*exp(-sqrt(-

1)*2*kz2*(l2o))... 

                .*exp(-sqrt(-1)*2*kz1*(l1o))); 

  

 Jack34=[(abs(Tm2(fj))-abs(Tc2*exp(sqrt(-1)*kz0*(l1o+l2o))))-

func(3,1)]; 

         

        llps=angle(Tm2(fj)); 

        hyt=angle(Tc2.*exp(sqrt(-1)*kz0*(l1o+l2o))); 

             

        anglebla0=(llps-hyt); 

        if abs(anglebla0)>pi && abs(anglebla0)<2*pi 

           anglebla0=abs(anglebla0)-2*pi; 

        end        

        Jack44=[abs(anglebla0)-func(4,1)];  

        Jack=[Jack11, Jack12, Jack13, Jack14; 

            Jack21, Jack22, Jack23, Jack24; 

            Jack31, Jack32, Jack33, Jack34; 

            Jack41, Jack42, Jack43, Jack44]/delx; 

         

        if abs(det(Jack(1:4,:)))<0.00000000000000001 

                index1(fj)=0; 

                ext1(fj)=0; 

                index2(fj)=0; 

                ext2(fj)=0; 

                fhh(fj,:)=[func']; 

         break 

        end 

        optmat=optmat-Jack\func; 

        n1o=optmat(1,1); 

        k1o=optmat(2,1); 

        n2o=optmat(3,1); 

        k2o=optmat(4,1); 

         

                    if nj==n 

                index1(fj)=n1o; 

                ext1(fj)=k1o; 

                index2(fj)=n2o; 

                ext2(fj)=k2o; 
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                fhh(fj,:)=[func']; 

                    end 

    end 

    cnt(fj)=nj; 

  

end 

  

figure;plot(f_worth,index1,f_worth,index2);grid 

title('refractive index - real')  

figure;plot(f_worth,abs(ext1),f_worth,abs(ext2));grid 

title('refractive index - imag')  

%figure;plot(f_worth,cnt);grid 

  

er1=index1.^2-ext1.^2; 

er2=index2.^2-ext2.^2; 

figure;plot(f_worth,er1,f_worth,er2);grid 

title('real perm')  

 

tand1=2*index1.*abs(ext1)./er1; 

tand2=2*index2.*abs(ext2)./er2; 

figure;plot(f_worth,tand1,f_worth,tand2);grid 

title('loss tangent')  
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