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ABSTRACT

KINETICS OF SMALL SYSTEMS

by Lowell E. Jacobs

Chemical kinetics is usually approached in a deterministic

way, i. e. , once the state of the system is known it can also be

determined at any other time. However this approach does not allow

for fluctuations in the system. The present work approaches chemi-

cal kinetics from a stochastic viewpoint which will allow fluctuations

in the system to be recognized.
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INTRODUCTION

There has recently appeared a treatment of the classical

thermodynamics of small systems, in which the well-known relations

of classical thermodynamics have been extended to be applicable to

small systems [I]. A similar extension is also possible in chemical

kinetics and this thesis is part of a study in this direction.

The extension of kinetics to small systems (e. g. , systems with

one hundred particles or less) is effected by an application of stochastic

processes to chemical kinetics. The classical approach to chemical

kinetics can be called deterministic since once the state of the system

is known at some time t1, the state at any other time is automatically

fixed, and no fluctuations or deviations about this value are recognized.

A However, in a stochastic model of kinetics the state of the system,

for instance the concentration at time t, is represented by an integer-

valued random variable and the fundamental solution to the problem

is the probability density function of the random variable, from which

various moments may be calculated. Fluctuations are then recognized

through the second central moment, the variance.

Delbriick [2] seems to have the earliest representation of a

chemical reaction by a stochastic model, in whichrhe discussed fluctu-

ations in an autocatalytic reaction. Singer [3] used this approach next

in 1953 when he discussed apparent irreproducibilities in some chemi-

cal reactions and gave several examples of systems in which fluctuations,

or irreproducibilities, have been reported. The reactions treated by

Singer were a chain reaction without branching and one with branching.

Renyi [4] next used this idea about a year later when he discussed the

reaction A f B —-> C. Bartholomay [5, 6] has treated the irreversible



unimolecular reaction A —->- B and shown the connection between

the two previous approaches and stationary Markov chains. Ishida [7]

then used a multidimensional stochastic treatment to discuss the

unimolecular-decomposition theory of Kassel. Bartholomay [8] also

has discussed a stochastic model for the Michaelis-Menten formu-

lation of an enzyme-substrate reaction.

The contribution that an idea such as the stochastic representation

of chemical kinetics could make to the field of biology seems very useful.

Several papers have already been published which use the stochastic

approach to discuss reactions in cells and transitions of one type of

cell to another. Berger [9], for example, discussed the transition of

reticulocytes to red blood cells using a stochastic interpretation.

Shea [10] has discussed histology from a statistical standpoint, and

Fraser [11] has used this approach to study genetic systems._

The most recent work in applying stochastic models to chemical

kinetics is that of McQuarrie [12], in which he discussed the systems,

A—>— B, A_<_—>-_ B, and A—L B, Alia—>— C. McQuarrie also

has another paper [13] in which the stochastic model for the bimolecular

reactions, zA—->- B, A + B ——>- c, and A-—->— B autocatalytically

are discussed.

The purpose of the present work was to apply a Monte Carlo

process to a pure "death" reaction, similar to Kendall's procedure [14]

for a simple "birth and death" reaction, and to calculate the individual

fluctuations in the system in order that they might be compared graphically

'to the ensemble average fluctuations obtained from McQuarrie's

formula. Kendall's procedure and the modifications applied to it will be

discussed in detail later.

. The general idea was simply to derive certain fundamental equa-

tions of probability concerning the system and then to set up a mathe-

matically equivalent sampling process in order to solve the equations.



This is the general technique used in the Monte Carlo process. In this

problem the sampling process and the calculations were carried out

on the 160A computer at Michigan State University. The sampling

process was simply a series of random digits obtained from The Rand

Corporation [15]. The complete program appears on page 16. This

amounts to a simulated kinetics experiment. The reactions under con-

sideration are A ———>— B and 2A—9— B.

Let us look at an example in order to see just what procedure

was followed in this problem. Suppose we take the reaction A ——9- B

and look at a system of five particles for five different runs. That

means we have five particles in our system initially and we let them

decay according to our probability equations. When this process is

repeated five times we have a system of five particles for five runs.

This is equivalent to an ensemble of five systems, each of which contains

five particles initially. The systems that were constructed are listed

on page 12 . From the results of computations on these systems the

graphs of the mean and variance were drawn.

Examination of the System: A ——>— B

Let us now consider the reaction A—->- B [12] using~ a

stochastic model. Let the integer-valued random variable, X(t), be .

the number of A molecules in the system at time t. Then the stochastic

model is. completely defined by the following three assumptions:

(1) The probability of a transition (x) —-—>- (x-l) in the interval

(t,t + At) is kxAt + 0(At), where k is a constant and

0(At) means that [0(At)/At—>- 0 as At ——>- 0.

(2) The probability of a transition (x) —>- (x - j), where j > 1,

in the interval (t, t, + At) is 0(At).

(3) The reverse reaction occurs with probability zero.



Now let Px(t) =tProb (X(t) = x} . That is, Px(t) is the prob-

ability that the number of A molecules is x at time t. 'Let Px(t +f At) =

‘Prob {X(t + At) = x}. That is, Px(t + At) is the probability that the

number of A molecules is x at time t + At.

The state X(t + At) = x can be obtained in two ways. First, X(t)

may equal x and no transition occurs in time At; and second, X(t) may

equal x + l and a transition does occur in time At. Px(t + At) is thus

a sum of two probabilities as follows:

Px(t + At) = [k(x+1)At] Px+1(t) + [1 - k x At] Px(t) + 0(At) (1)

where k(x + 1)At is the probability of a transition from the state X(t) =

x + l to the state X(t + At) = x; Px+1(t) is the probability that X(t) =

x + l; [1 - kx At] is the probability of no transition from the state X(t) = x;

and Px(t) is the probability that X(t) = x. The term, 0(At), is added

on-in order to compensate for any higher order terms. Transpose Px(t)

and divide through by At to get:

13,,“ + At) - pxm
 

 

At = “X + 1)Px+l(t) - kxPxM + 0(At)/At (2)

Th lim of the left hand side of this e uation is b defi 't' d?

e At->- 0
C! Y n1 ion Jdt ,

Therefore:

dP

dtx 3 k(x + 1) Px+1(t) ' kXPx“)
(3)

whichis the differential-difference equation of the process. Now, by

using the generating function of Px(t) [16], that is,

co _

F (s,t) = xgo Px(t) sx , (4)

where I s I < 1 equation (3) may be transformed into a partial dif-

ferential equation by multiplying through by 3x and summing over x

from O to co.



m dP x a) X m X
E —2‘-dt s = k E (x + l) Px+l(t) s - k xPx(t)s (5)

x=o x=o x=o

and so by noting equation (4), one obtains

9F _ cDF
at - k(1-S) ()s (6)
  

The solution of this equation uSing the initial condition F(s, o) = s o, 15

kt xo

F(s,t): [1+(s-1)e' ] (7)

By using the following relationships:

 

. 00

E {X(t)] = (%{)s=l E XPX(t) and

x=o

2

Dz ( X(t)} = ( 8a sF2 )s=1 + (3:)s=1 - (g: 25:1

where E {X(t)} is the expectation value or mean of X(t), and D2 {X(t)}

is the variance, the following equations result:

E [xm] O '1“ (a)

D’- {x003

Note that the mean value of the stochastic representation is

l
l

X (
D

er-kt (1 - e-kt) (9)

identical to the deterministic result, showing that the two representations

are consistent in the mean. The stochastic model, however, also gives

higher moments and so fluctuations can now be included in chemical

kinetic s .

Examination of the System 2A —->- B

Now consider the reaction 2A -—->- B [13]. Here the procedure

is similar to that for A —->- B, i. e. , the bimolecular reaction is



considered to be a pure "death" process with a continuous time para-

meter and transition probabilities. Fir st consider a system of - X0

.molecules of reactant A at time t: 0. - Let X(t) equal the random

variable, i. e. , the number of A molecules is the system at time t.

Then the stochastic model is completely defined by the following

assumptions:

(1) The probability of the transition x -—>- x - 2 in the time

interval (t, t + At) is %—k'x(x - 1)At + 0(At) where k' is

a constant and 0(At) is defined so that 0(At)/At ->- O as

At—->- 0. The factor of i— eliminates counting collisions

between the same two molecules twice. We shall let

fk' = k in subsequent equations.

(2) The probability of the transition x—->-— x - j where j > 2,

in the time interval (t , t + At) is 0(At).

(3) The probability of the transition x —+— x + j, where j > 0,

in the time interval (t , t + At) is zero.

Thus the following probability equation can be written,

- Px(t + At) = [k(x+2)(x+l)At] Px+2(t) + [1 —kx(xa=1)At] Px(t) + 0(At) (10)

where the notation is the same as before. - Now, by the standard procedure

of transposing *Px(t), dividing through by At, and taking the limit, the

following differential-difference equation results;

.%?& -.- k(x+2)(x+l) Px+z(t) - kx(x = 1) Px(t)- (11)

This is transformed into a partial differential equation for the generating

function, F(s,t) , viz:

3F _ 53F
Tt " (1- $2) "—z'as

(12)

whose solution for the initial condition F(s, o) = s 0 is:



x0

 

 

i

F(s,t) = l. + Z AjCj T (3) exp {-i—jU-Ukt} (l3)

j=2

where r ,xo - j+ 1)

25 - 1 f (x +1) ‘ 2,

A ‘ [ l l 9 l (14)
2 — +1 + +1J f‘ (X0 1 )f' (x2.1_p____)

_i

and Cj T (s) are Gegenbauer polynomials [17],

and j= 2,4,6,-—-,xo (x0 even).

It can be easily shown that:

xo

<X > = 2: A. exp [-é— j(j - mitt] (15)
\ j: 2 J

X0 . .

<X‘X ' 1)> = .74 2 Aj [Lil—1)] exp [- i- j (j - 1m] (16)
J:

A study of second order reactions by the stochastic approach pro-

vides an excellent method of determining to what extent the deterministic

rate equation is applicable to systems where the inherent statistical

fluctuations are relatively large. McQuarrie [12] has stated "that when

dA

a deterministic rate equation such as - 21?- = kAZ is considered

there is a tacit assumption that A" = (AV, which is true only for a

delta function type density function, i. e. , all central moments equal

zero. " Dole and Inokuti [18] have studied the first and second order

kinetics for systems in which the number of reacting species was of the

order of 10 or less. They considered the conditions under which the

ratio 1 3/ (A)2 approaches unity. Their calculations seemed to indicate

that the ratio approaches unity much more rapidly than one might expect.

Monte Carlo A —-->- B

The procedure used in this problem was similar to that employed

by Kendall [14]; the equations being modified to fit a pure "death" process.



Kendall derives three differential-difference equations based on the

probability equation for—the birth and death) process [16]:

Px(t+ At) = ,1 (x + 1)At Px+1(t) + X(x-1)At Px_l(t) + [1-(i+(1)xAt]Px(t) (17)

where X is the expected birth rate and p. is the expected death rate.

The standard procedure of transposing Px(t), dividing through by At,

and taking the limit, leads to:

(18))L (x+1) Px+1(t) + MX-l) Px-1(t) - (Hp) X Px(t)

dPx(t) =

dt

IInagine now the portion of the system represented by the following diagram:

J l 1

f I I

-l x x+1x

we can write threeBy forbidding transitions out of the states xi 1

equations which give the probability of the system being in any one of

the above three states at time t + At.

Px+1(t+At)= ()txAt)Px(t) + Px+1(t)

(19)Px(t + At) = [1 - (,1 H.) x At]Px(t)

Px_1(t+ At) = p x Ath(t) + Px_1(t)

These equations lead to:

dP‘S'tfit) = x x M)

(20)
dde(tt) = _ (H + x) x PX“)

J—L—dp- (t) = p. x Px(t)

dt



Introduce a new variable u where u = NT; N is the number of

particles present and ’C’ is the length of time until the next "incident. "

Then, from the second equation in (20) it follows that the distribution

of ’Z,’ is: e'()‘ + “NT (x + u)NdT (o < T< oo ).

Kendall [14] has shown that this "birth-and-death" process is

mathematically equivalent to a scheme of sequential sampling using

random numbers. This process of deriving equations to explain a

particular phenomenon and then employing a mathematically equivalent

scheme to obtain a solution is called the "Monte Carlo" method. _This

was exactly the procedure used in this problem, a pure "death" process

(i. e. ,' x 3' 0). Here we are concerned with the second equation in (20).

The solution of this equation is mathematically equivalent to the follow-

ing scheme of sequential sampling: random variables are drawn

independently from a series of random numbers. After each step in

the sequential sampling process the following quantities are calculated:

Nr =- Nr-l ' 1

(21)

+ ur ( > 1)r
r-l Nr-l _

 

tr=t

The construction of the sample of u-variables is most easily effected

by employing the transformation, x = e"u so that the x-variables must

be uniformly distributed in- (0, 1).

I Suppose we look at a typical set of calculations for a run with 10

particles.
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i 33 Er IZir-l Zr _t_r-l

1 .32025 1.139 10 0.114 0.000

2 .27574 1.288 9 0.143 0.114

3 .79141 0.234 8 0.029 0.257

4 .33940 1.081 7 0.154 0.286

5 .53963 0.617 6 0.103 0.440

6 .39754 0.922 5 0.184 0.543

7 . 18502 1.687 4 0.422 0.727

8 .65081 0.430 3 0.143 1.149

9 .41346 0.883 2 0.441 1.292

10 .18978 1.662 1 1.662 1.733

11 .66021 0.415 0 00 3.395

Each interval is first assigned a random number X which is chosen

independently. The u-variable is then obtained from the relation

x = e’u. The values of N are listed from 10 to 0 since the reaction

is unimolecular and hence decays one particle at a time. Next '7," is

calculated from the equation 11 = NT. And finally t, the cumulative

time, is obtained by adding the subsequent values of T .

After we repeat this process for a series of runs we can tally the

number of particles, N, in each run at various time. intervals and thus

obtain a mean for the system at each time interval. . We can also obtain

2

the variance at each time interval from the equation 82 = 71— - N“

where Ni is the number of particles present at time ti'

Thus we can now graph the mean and the variance for each system

and compare it with the theoretical curve obtained from McQuarrie's

formula [12].
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Monte Carlo 2A—+ B

- For the reaction 2A —>— B we can again write three equations

which give the probability that the system is in one of the states,

x-2, x, orx+2 attime t+At.

Px+2(t + At) = [1 - k (x+2)(x+1)At] Px+2(t) + k(x+4)(x+3) Px+4(t)At

Px(t + At) = k(x+2)(x+1)Ath+z(t) + [1 — kx(x=1)At]Px(t) (22)

Px_2(t + At) = k x (x-1)At Px(t) + [1-k(x-2)(x-3)At]Px_2(t)

By restricting transitions from x :1: 2 we get:

dPxiZ(t) _

dt - k (x+4)(x+3)Px+4(t)

513311- = -k x (x-l) Px(t) (23)

dP t
“"2329 = kx(x-1)Px(t)

Now it is clear that the distribution of (E, is:

e-kNm'lW kN(N-l)d’E’ (24)

This necessitates a change in equations (21) to:

Nr 3 Nr_1 '2

+ “r (25)

tr = tr-l N.,;(Nr-1)

Now the sampling process and the calculations can be carried out in an

exactly analogous manner to that for the reaction A ——->- B. .
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Discus sion of Graphs

‘The graphs which resulted from this study are shown on the

following pages. For the reaction A—->- B the graphs shown are

(1) mean, XBAR, vs time and (2) Variance vs time and for the reaction

2A—>— B the graphs shown are (l)  
1 . .

XBAR vs time and (2) Variance

vs time. The graphs correspond to various systems which consisted

of differing numbers of runs and particles as outlined in the table , ,,

below. . Inspection of the graphs shows how the individual fluctuations

tend to follow the theoretical curves obtained from McQuarrie's formula.

  

Reaction: A -—>- B - Reaction: 2A —->- B

Systems Systems

Particles Runs Particles Runs

5 5 6 5

5 25 6 10

5 50 6 20

5 100 6 50

10 5 20 5

10 10 20 10

10 25 20 20

10 50 20 50

20 5 100 4

20 10 100 10

20 25

20 50

100 5

100 10
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L. E. JACOBS 21-1016T A-B No. 4 8-1-63

100

101

230

15

102

200

502

503

504

505

506

507

508

DIMENSION X(l 1), U(11), N(11, 20), A(1 1), T(l l), NMOL(42, 20)

READ 100, L, K

FORMAT (I 3, 3X, 13)

PRINT 1

FORMAT (lHO, 23H10 PARTICLES FOR 5 RUNS)

DO 230 I=1, L

READ 101, (N(I, IRUN), IRUN?I l, K)

FORMAT (2613)

CONTINUE

DO 220 IRUN=1, K

PRINT 15, IRUN

FORMAT (1H0, 5H1RUN=I3

PRINT 2

FORMAT (1HO, 49H X U N A T)

T(1)=0. 000

READ 102, (X(I), I=1, L)

FORMAT (6F8. 8)

DO 200 I=1, L

U(I)=-LOGF(X(I))

A(I)=U(I)/N(I, IRUN)

PRINT 3. X(I), U(I), N(I, IRUN), A(I), T(I)

FORMAT (1H2. F11. 8, 3X, F8.4, 3X, 14, 3X, F8. 4, 3X, F8.4)

T(I+1)=T(I) + A(I)

TI=0. 000

NMOL(l, IRUN)=N(I, IRUN)

1:2

IY=1

DO 210 IFORTY=1,40

TI=TI + 0.1

IY=IY + 1

IF (TI-T(II) 502, 503, 504

NMOL (IY, IRUN)=N(I- 1, IRUN)

GO TO 210

NMOL(IY, IRUN)=N(I, IRUN)

GO TO 209

IF (TI-T(I+1)) 505, 506, 507

NMOL(IY, IRUN)=N(I, IRUN)

GO TO 209

NMOL(IY, IRUN)=N(I+1, IRUN)

GO TO 210

IF (TI-T(l+ 2)) 508, 509, 510

NMOL(IY, IRUN)=N(I+1, IRUN)

GO TO 210
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509 NMOL(IY, IRUN)=N(I+2, IRUN)

GO TO 209 ‘

510 IF (TI-T(I+3) 511,512,513

511 NMOL(IY, IRUN)=N(I+2, IRUN)

GO TO 209

512 NMOL(IY, IRUN)=N(I+3, IRUN)

GO TO 210

513 IF (TI-T(I+4)) 514, 515, 516

514 NMOL(IY, IRUN)=N(I+3, IRUN)

GO TO 210

515 NMOL(IY, IRUN)=N(I+4, IRUN)

GO TO 209

516 IF (TI-T(I+5)) 517, 518, 519

517 NMOL(IY, IRUN)=N(I+4, IRUN)

GO TO 209

518 NMOL(IY, IRUN)=N(I+5; IRUN)

GO TO 210

519 IF (TI-T(I+6)) 520, 521, 522

520 NMOL(IY, IRUN)=N(I+5, IRUN)

GO TO 210

521 NMOL(IY, IRUN)=N(I+6, IRUN)

GO TO 209

,522 IF (TI-T(I+7)) 523, 524, 525

523 NMOL(IY, IRUN)=N(I+6, IRUN)

GO YO 209

524 NMOL(IY, IRUN)=N(I+7, IRUN)

GO TO 210

525 IF (TI-T(I+8)) 526, 527, 528

526 NMOL(IY, IRUN)=N(I+7,IRUN)

GO TO 210

527 NMOL(IY, IRUN)=N(I+8, IRUN)

GO TO 209

528 IF (TI-T(I+9)) 529, 530, 531

529 NMOL(IY, IRUN)=N(I+8, IRUN)

GO TO 209

530 NMOL(IY, IRUN)=N(I+9, IRUN)

GO TO 210

531 IF (TI-T(I+10)) 532, 533, 534

532 NMOL(IY, IRUN)=N(I+9, IRUN)

GO TO 210

533 NMOL(IY, IRUN)=N(I+10, IRUN)

GO TO 209

534 IF (TI-T(I+ll)) 535, 536, 537

535 NMOL(IY, IRUN)=N(I+10, IRUN)

GO TO 209
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536 NMOL(IY, IRUN)=N(I+11, IRUN)

GO TO 210

537 - IF (TI-T(I+12)) 538,539,540

538 NMOL(IY, IRUN)=N(I+11,IRUN)

GO To 210 _

539 NMOL(IY, IRUN)=N(I+12, IRUN)

GO TO 209

540 IF (TI=-T(I+13)) 541, 542, 543

541 NMOL(IY, IRUN)=N(I+12, IRUN)

GO TO 209

542 NMOL(IY, IRUN)=N(I+13, IRUN)

GO TO 210

543 IF (TI—T(I+14)) 544, 545, 545,

544 NMOL(IY, IRUN)=N(I+13, IRUN)

GO TO 210

545 NMOL(IY, IRUN)=N(I+14, IRUN)

209 I=I+l

210 CONTINUE

220 CONTINUE

PRINT 8

8 FORMAT(1H1, 50HL. E. JACOBS A-B No.4 10 PARTICLES FOR

5 RUNS 1-8) 5 . .

PRINT 6

6 FORMAT (1H0, 65H TI SUMXSQ EXSQ XBAR XBARSQ

1 VAR STDEV) 1

TI=0. 000

D0 203 IY=1,41

SUMXSQ=OOO. 00

DO 201 IRUNzl. K

201 SUMXSQ=SUMXSQ + (NMOL(IY, IRUN)**2

EXSQ=SUMXSQ/K

SUMeooo. 00

DO 202 IRUN=1, K

202 SUM=SUM + NMOL(IY, IRUN)

XBAR=SUM/K

XBARSQ=XBAR**2

VAR=EXSQ-XBARSQ

STDEV=SQRTF(VAR)

PRINT 7, TI, SUMXSQ, EXSQ, XBAR, XBARSQ, VAR, STDEV

7 FORMAT (1H2, F7. 3, 2X, F7. 0, 2X, F9. 2, 2X, F7. 2, 2X,- F9. 2, 2X, F7. 3,

2X,F7.3)

203 TI=TI + 0. 1

STOP

END
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* L.E. JACOBS 21-1016T 2A-B_No. 7 87-15-63.

100

101

230

15

102

200

502

503

504

505

_ 506

507

508

DIMENSION X_(ll),U(11),N(11,10),A(11),T(11),NMOL(46, 10)

READ 100,- L,K,

FORMAT (13, 3X, 13)

PRINT 1 _

FORMAT (1H0, 24H20 PARTICLES FOR ~110 RUNS)

DO 230 I=1, L

READ 101, (N(I, IRUN), IRUN-:1, K)

FORMAT (2613)

CONTINUE

Do 220 IRUN=1, K

PRINT 15,IRUN

FORMAT (1H0, 5HIRUN=I3)

PRINT 2

FORMAT (1112,4914 x U N A T)

T(1)=0. 000

READ 102, (X(I),I=1,L)

FORMAT (6F8.8)

DO 200 I=1, L

U(I)=-LOGF(X(I))

A(I)=U(I)/(N(I, IRUN)*(N(I, IRUN)-1))

PRINT 3, X(I), U(1), N(I, IRUN), A(I), T(I)

FORMAT (1H2, F11. 8, 3x, 118.4, 3x, 14, 3x, F8. 4, 3x, F8. 4)

T(I+1)=T(I) + A(I)

TI=0.000

NMOL(1,IRUN)=N(1, IRUN)

I=2

IY=1

DO 210 IFORT=1,45

TI=TI + 0. 005

IY=IY + 1

IF (TI-T(I)) 502,503,504

NMOL (IY, IRUN)=N(I- 1, IRUN)

GO To 210

NMOL(IY, IRUN)=N(I, IRUN)

GO TO 209

(IF (TI-T(I+1)) 505,506,507

NMOL(IY, IRUN)=N(I, IRUN)

GO TO 209

NMOL(IY, IRUN)=N(I+1, IRUN)

GO TO 210

IF (TI-T(I+2)) 508,509,510

NMOL(IY, IRUN)=N(I+1, IRUN)

GO TO 210
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509 NMOL(IY, IRUN)=N(I+2, IRUN)

GO TO 209 _

510 IF (TI-T(I+3)) 511,512,513

511 ‘ NMOL(IY, IRUN)=N(I+2, IRUN)

GO TO 209 .

1512 NMOL(IY, IRUN)=N(I+3, IRUN)

GO TO 210

513 IF (TI-T(I+4)) 514, 515, 516

514 NMOL(IY, IRUN)+N(I+3, IRUN)

GO TO 210

515 NMOL(IY, IRUN)=N(I+4, IRUN)

GO TO 209 ,

516 IF (TI-T(I+5) 517, 518, 519

517 NMOL(IY, IRUN)=N(I+4, IRUN)

GO TO 209

518 NMOL(IY, IRUN)=N(I+5, IRUN)

GO TO 210

519 IF (TI-T(I+6)) 520, 521, 522

520 NMOL(IY, IRUN)=N(I+5, IRUN)

GO TO 210 ‘

521 NMOL(IY, IRUN)=N(I+6, IRUN)

GO TO 209

522 IF (TI-T(I+7)) 523, 524, 525

523 NMOL(IY, IRUN)=N(I+6, IRUN)

GO TO 209

524 NMOL(IY, IRUN)=N(I+7, IRUN)

GO TO 210

525 IF (TI-T(I+8)) 526, 527, 528

526 NMOL(IY, IRUN)=N(I+7, IRUN)

GO TO 210

527 NMOL(IY, IRUN)=N(I+8, IRUN)

GO TO 209

528 IF (TI-T'(I+9)) 529, 530, 531

529 NMOL(IY, IRUN)=N(I+8, IRUN)

GO TO 209

530 NMOL(IY, IRUN)=N(I+9, IRUN)

GO TO 210

531 ~ IF (TI-T(I+10)) 532, 533, 534

532 NMOL(IY, IRUN)=N(I+9, IRUN)

GO TO 210

533 NMOL(IY, IRUN)=N(I+10, IRUN)

GO TO 209

534 IF (TI-T(I+11)) 535,536,537

535 NMOL(IY, IRUN)=N(I+10, IRUN)

GO TO 209



536

5.37

538

539

.540

541

542

543

544

545

209

210

220

201

202

203

10

21

NMOL(IY,- IRUN)=N(I+11, IRUN)

GO TO 210

IF (TI-T(I+12)) 538, 539,540

NMOL(IY, IRUN)=N(I+11, IRUN)

GO To 210

' NMOL(IY‘,IRUN)=N(I+ 1 2 , IRUN)

GO TO 209 ,

IF (TI-T(I+13)) 541,542,543

NMOL(IY, IRUN)=N(I+12, IRUN)

GO To 209

NMOL(IY, IRUN)=N(I+13, IRUN)

GO TO 210

IF (TI-T(I+14)) 544,545,545

NMOL(IY, IRUN)=N(I+13, IRUN)

GO To 210

NMOL(IY, IRUN)=N(I+14, IRUN)

I=I+1

CONTINUE

CONTINUE

PRINT 8

FORMAT (1H1, 50HL. E. JACOBS 2A-B No. 7 20 PARTICLES FOR

RUNS 8-15)

PRINT 6

FORMAT (1H0,65H TI SUMXSQ Exso XBAR XBARSQ

VAR STDEV)

TI=0. 000

Do 203 IY=1,46

SUMXSO=000. 00

DO 201IRUN=1,K

SUMXSQ=SUMXSQ + (NMOL(IY, IRUN)**2

EXSQ=SUMXSQ/K

SUM=000. 00

DO 202 IRUN=1-, K

SUM=SUM + NMOL(IY, IRUN)

XBAR=SUM/K

. XBARSQ=XBAR* >1< 2

VAR=EXSO-XBARSQ

STDEV=SORTF(VAR)

PRINT 7, TI, SUMXSQ, EXSQ, XBAR, XBARSQ, VAR, STDEV

FORMAT (1H2, F7. 3, 2x, F7. 0, 2x, F9. 2, 2x, F7. 2,2x, F9. 2, 2x

F7.3,2X,F7.3)

TI=TI+0. 005

STOP

END
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