- ~ - ---0N¢I¢v~rnq.ygwr1r \g’I'Tr w "w' 0"" “TV 'Y ' PY A REINFORCED CONCRETE - mow Deals-N T Thai: for fin Degree of 3., S . MlcflchNi-ST‘ATB..-COLLEGE . Bill E. 'Hanelfi jut-15:5 A Reinforced Concrete Stadium Design A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE by / \ Bill Efiifianel Candidate for the Degree of Bachelor of Science June 1943 THESIS ACKNOWLEDGMENT Going on the theory that "two heads are better than one", help was secured throughout the working of the thesis from various professional men about the college and the city of Lansing. For their help, patience and suggestions, the author wishes to express his sincerest thanks and appreciation to Professors C. L. Allen \and C. A. Miller of the Civil Engineering Department of Michigan State College and to Mr. C. Thornton, Assistant City Engineer of Lansing, Michigan. ‘ f ‘5 b:- .I (.0 {O G) x 3 INTRODUCTION Because of the need for individualistic thinking, a thesis is undertaken by each senior in his final term of school to put to actual use some of the highly theoretical knowledge he has obtained throughout his four year stay at the institution. It is in most cases the students first "real" design problem. Each student picks a problem that he thinks would be to his liking and at the same time educational as far as learning something new in his field. For my problem I have chosen the analysis of design of a reinforced concrete football stadium. Because a new school has been recently built in the City of Lansing proper, namely, Sexton high School, it was thought to be timely to analyze a football stadium that could be built at this school if and when the opportunity presents itself after the war. The first question that must be answered is: Of what type and how large must this stadium be? The concrete stadium proper should seat approximately six thousand persons. A stadium of this kind then can be built along only one side of the playing field without benefit of any horseshoe curves. The football stadium at Pattengill Field answers these Qualifications nicely, so an analysis of this design will be made accompanied by various design changes. The Pattengill Stadium was originally designed in 1922 by Mr. J. N. Churchill. Various constants were assumed in figuring the stadium section line curve and will appear in the compiled computations. 1| The concrete and steel used in this design will be taken as ZSOd‘and 2000le" respectively. Because of the highly erratic costs of concrete, steel and labor in these war times, no attempt will be made to compute the cost of building this stadium. COMPUTATION S a“ __‘___. ”rm“; -gn-,,. s ' . . ‘~___—._ ‘Vi \§‘/UH[ luvs- (2/44/6- (”/ba #63 Q) i i / s I- ._i l_-._ ”1/? /«._.l. __ To- ___,i_.._ ! . // ,/’ <3 / NOMENCLATURE FUR GJUL Vlad FOEEULas a= horizontal distance from assumed sight point to spectator in first row of seats. nt to lowest b-vertical distance from assumed sight poi first spectator. ‘0 ,. floor elevation of s adium at feet .. c: assumed vertical measurement froms top of head or hat. also Lie verti his focal ray to the eyes of LLB preceding spectator. sp;ct atcr's Q)€S to ( #1 Cl guruflfic from d: width of treads or sack to back distance of assumed vertical measurement from floor to ezss J: W " C. e: hqual to sitting height lea- seated spectator. f: assumed focal or sight point taken as origin of the sight line curve. o-origin of stadium section curve at oase of first riser or e units below eyes of first spectator. organ. xy. co—ordinates of stadium section cueve wit” o a: X u=.14X z' z=1.077z' y (ft.) ft. ft. ft. ft. Computed Actual 2.08 .29 .50 .54 .83 .75 4.17 .58 .90 .97 1.55 1.50 6.25 .87 1.38 1.49 2.36 2.25 8.33 1.17 1.92 2.07 3.2' 3.00 10.42 1.46 2.40 2.59 4.05 3.83 12.50 1.75 2.31 3.03 4.78 4.67 14.58 2.04 3.20 3.45 5.49 5.50 16.67 2.33 3.92 4.22 6.55 6.33 18.75 2. 2 4.43 4.77 7.39 7.25 20.83 2.92 5.01 5.40 8.32 8.17 22.92 3.21 5.43 5.85 9.06 9.08 25.00 3.50 6.20 6.68 10.18 10.00 27.08 3.79 6.70 7.22 11.01 11.00 29.17 4.08 7.40 7.97 12.05 12.00 31.25 4.37 8.00 8.62 13.00 13.00 33.33 4.66 8.60 9.27 13.93 14.00 35.42 4.96 9.30 10.00 14.96 15.08 37.50 5.25 10.00 10.77 16.02 16.17 39.58 5.54 10.50 11.30 16.34 17.25 41.67 5.83 11.20 12.08 17.91 18.33 43.75 6.13 12.00 12.92 19.05 19.49 45.83 6.42 12.70 13.70 20.12 20.67 47.92 6.71 13.30 14.33 21.04 21.83 50.00 7.00 14.05 15.10 22.10 23.00 SIGHT LINE DATA: Constants assumed: a: e=4 " b = 50 feet 3 I! c =0.5 feet 1.1: d==25 inches or 2.08 feet (b+ e)x :: a ( w 50 3+4)X=.14X From table 111a p. 28 "Stadium" \ Coefficient of z for values of c=*0.45', d==2.083 is 1.077 y=u+z DESIGN OF TREAD SLABS: Width of slab - 25 inches Person is assumed to weigh 143# and have a seating width of 18 inches. The impact load will be taken as 100? live load. Live load: Area occupied by one person :18 x 25::3.12 sq. ft. 1" . 4% Live load 140# Impact load 140# Total live and impact==280# distributed over 3.12 sq. ft. or 280 = 89.8 lbs./sq. ft. 3.12 Dead load: ,. .‘ ~ ’1 Assume slab thickness to be 4" at front and 45" at rear for drainage purposes. Average thickness = 4.25" Weight of slab = 1 x 4.25 x 150==53.2 1bs./sq. ft. 12 Assume width of riser stem==5n Clear span = 25 - 5 =20" .. - a” a . . , r, 2 . Bending .anznent = on :51 =(89. 8153.29: 20 =476 in. lbs. 12 ‘~ 12 k = l = 1 = 0428 1+_£§_ 1+ 20003 j‘l-_1§=l-.143=.857 say.86 3 Bi‘vlzgdjkbd A 4 476 =1_QQQ(.86)(.428)12d2 2 min. d = 76 33.51." T1835 min. h = d+-clearance = .51:+1.5-P.25 a 2.26 For tOp protection use h = 4" Note: hin. d was less than req'd. cover of 2". Commercial d = 4 - 2 = 2" M Shear = gel-ell? x 20 —_-. 118.2 lbs. 2 2 x 12 bjd 12(.36)2 Bond: Use wire mesh Steel req'd. A5 = 416 =.0139"" OK zoooo(.36)2 DESIGN OF RISER BEATS: Design of 9" risers: Assume: Span = 19' Inclined beams = 12" wide Clear span = 18' Riser stem = 9"): 5" assuming a 2 to 1 ratio as most economical for h and b. Load on riser: Total slab load = 143.0 x 2.08 = 297.5 Riser weight :32 x 15’_ .-. 46.8 144 344.3 say w = 35032 Using: Concrete: 1:4 .30 /cu. ft. Steel = .03 /lb. Cost r = 5'20 2L9. : 98 30 Econ. d: “98 x_£_3_?fl___ + 20000 x b M“- 534 = sf = 250 x_l§"= 11340” or 136030” 10 10 h) "5 Therefore, Econ. d = 10.22nwhen b = 10" Corrected weight with b = 10" Dead load and live load 8 297.5 Riser weight=l x 9 x 10 x 15Q=93.8 144 391.04 say W = EM.“ 179:: 400 X 182: 1.2980“. or 1555001”?- 10 10 BMr‘.ElT= 400 X 181x 12 = 129800"” 12 12 Econ. d= #155500 x 98-+ 2 = 10.72" 20000 x 10 h = 10.72+-2.63==13.35" Too Large Try b = 11" Econ. d = 10.32" h = 10.32 + 2.63 = 12.95” 0K Commercial d =13.00 — 2.63 = 10.37" 0.92 at supports (negative) 0.86 between supports (positive) Assume: j 3' II II Positive steel: A, = 129800 e .727“ 20000 x .86 x 10.37 Use l—l'th bar A = 1.0“" Negative steel: A, . 155500 = .815 °“ 20000 x .92 x 10.37 Use 1-1" 0 bar A = 1.0““ Shear: Vsll=400 x18 e 3600* 2 2 v e v e. 3600 - 36.7%.. 0K bjd 11 x .86 x 10.37 Bond: ,a. v .. 3600 = 101*? OK QM ..jd 4 x .86 x 10.37 Design of 10" riser: Assume: b = 10" h- t g 2 (max.) b 11:1 _. 10 ‘ 1 OK Dead load slab/ft. riser 111.0 Dead load riser 1 x 10‘3.10 x 150 104.0 144 Live and impact loads 18626 Total 401.67. Use w = 4027 Econ” d= 98 xh156200 + 2 =10.75" 20000 x 10 h =-10.75-+ 2.63 1: 13.38" 0K Commercial d = 14.00 - 2.63 = 11.37" 130300“ a: I52. 1 II F. a) N r4 ‘N H to u 3:11.: 402 x 13.3.1; = 156200 “* Positive steel: 1?: _1_3_g}ppm_“n___ = .666 °" 20000 x .86 x 11.37 Use 1—1" <1» bar A = .73 “"1 Negative steel: A“ —. 156200 = . 747 ““ 2 v r. __3~6.8 ‘ = 37.01%” OK 10 x .86 x 11.3 Bond: )4 = __.3_.€>_8. -,,__ _ = 1132,, 0K 3.14 x . 6 1.37 Design of 11" riser: Assume: b = 11" 1‘; - 4 es 1.38 0K 8 Dead load slab/ft. riser Dead load riser 1 x ll‘x 8 x 150 144 Live and impact loads Total Bm = 320 {18.3.1.2 =126300M 12 13:1“: 320 3C 133: 12451700.... 10 Econ. 6.: 28 x -5, 700 + 2 = 11.63" 20000 x 8 ' h "‘ ll.63+ 2.63 7-14.26" Commercial d = 15.00 - 2.63=:12.37" Positive steel: AP=___126300 = .593“ 20030‘) X .86) \ 12. 37 Use l-l'Nb bar A = .73 Du Negative steel: 1§1700 = .666 ““ 20000 x .92 x 12.37 Shear v —— 390 x 1 =35101r _§ 2 41.2%.. V: _3_510 8 x .86 x 12.37 Bond: 1 ll ‘03 \11 H C) I — 10517111 314 x .86 x 12.37 111.0 91.8 186. ___6 389—: 4/. Use w -- 3907/, OK OK Design of 12" riser: b = 6" 16 - 5 6 Ass ne: 2 OK Dead load slab/ft. riser Dead load riser l x 12 x 6 x.150 144 Live and inpact loads Total 132.1,: 373 3: 181412 12 120800"* BM”: =73 $321342 = 145000” 10 Econ. d = Fegggggg + 2 = 12.87" zoo 00 x 6 h = 12.87'+ 2.63 = 15.50" OK A “ = J Commercial d = 16.00 - 2. 13.37“ Positive steel: Ar = “QIEQEEOO 20000 x .86 x 13.37 Use 1-7/8" cpbar - I 11 Negative steel: A u = _.112399_. 20000 x . ‘GO——'-' 92 X 13.37 Use 1-7/8" 4: bar 43.67,“ Bond: 435.7 = 1067... x4 2.75 x .86 x 13.37 Note: Continue to use h - d bar diameter has been decreased. 111.0 75.0 186.6 372.6”Z Use w =37372 OK OK 2.63" even though reinforcing Design of 13" riser: Assume: b = 6.5" 6.5 Dead load slab/ft. riser Dead load riser l x.12 x _;§ x 150 11.4 Live and impact loads BMP==380 x_13zx l§_= 123030": 12 3.1“: 3_so x 18‘}: 12 .. 147800” 10 Econ. 01: ‘93 x14jggga- 2 = 12.53" 20000 x 6.5 h = 1.2053 + 2063 = 15016" OK Commercial d = 17.00 - 2.63 = 14.37" Positive steel: 1, = "123900 A - .49 zoo-00 x .36 x 14.37 Use 1-7/8" 4’ bar Negative steel: L: / Au 3 $2.893. ._ _ = 20000 X .92 X 14.37 Use 1-7/8" ¢ bar Shear: v=380x1§ = 32.20" 2 V- 343:) -.. = 42. 6.5 X .86 X 14.3 2.75 x .86 x 14.37 .3£9___A = 1000 57 A = 63 ““ OK Design of 14" riser: Assume: b = §;:_£ =3l§L:_é;= 7n ’7 n I ‘- 5. Dead load slab/ft. riser Lead load riser l_; 12 x 7 x 150 144 Live and impact loads Total 132.1,: 38g xlis‘x 1,3 = 124800”: 4' Blur-3.85 x 18‘}: 12 = 150000” 10 Econ. d- 23;}.1‘10009 4.. 2 = 10.23" 20000 x 7 h 3 10.23‘+ 2.63 = 12.86" 111.0 87.4 186.6 385.0 OK Commercial d‘= 18.00 - 2.63‘=-l5.37" Positive steel: AP =__ 124803 = .472un 200033736 1: 15.3? Use l—7/8"4’bar A ‘ .60"“ Negative steel: A N = ——-l59999_‘ = . 530 a“ 23003 x .92 x 15.37 Use 1—7/8" 4’ bar - Shear: v = 385 xig. 3465* 2 V = “2&5 = 37.4%,, 7 x .86 x 15.37 M = 2465 — 95.2% 2.75 x .86‘E—15.37 OK OK Use w 385% DESIGN OF INCLINED BEAMS: Upper inclined beam: Assume beam 12" x 30" Clear span: ~14. 833' horizontal, 16. 88' inclined Angle beam makes with horizontal==28° 17' Eight riser beams carry load to inclined beam, 4 @ 385% 403W“ Uniform load carried to beam1=838§ x AI+§§79 x gala = 3590 16.17 Assume weight of inclined beam 32§ Note: w==vertical unit load of beam N==unit load on beam normal to beam = 3915 x .8806 = 3448?. Maximum BM 1 _N_1‘ 342g x 16.852). 12 —-= 1175000"1t 10 10 Min. ch" 1175000 = 23.0" .86 x .428 x 12 x 500 Econ. d=v 98 3: 1175000 = 21.9" 20000 x 12 D'= 23.0—F3.0.= 26.0" OK is less than designed 30" Commercial d‘= 30.0 - 3.0 = 27.0" Positive steel: BMP= 3448 x 16.88;): 12 = 979000W 12 = 979000 = 2.12““ 20000 x .86 x 27 Use 3-1"41 bars = 2.36"" Negative steel: A”: 1175000 = 2.36 20000 x .92 x 27 Use 3-1" 0 bars Minimum width of beam: 3 bars @ l" 3.0 2 spacings @ 1.5" 3.0 2 coverings @ 2" 4.0 2 stirrup bars @ 0.5" 1.0 Total |._.o F" 0 O O W Shear: v = 3448 x 16.88 = 29100“ 2 v: 29100 = 104.4%“ 12 x .86 x 27 Using ordinary anchorage and web steel v==.06fg v = .06 x 2500 4502“ allowable Bond: Point of inflection at 0.1!. for EMF: 0 0.1 x 16.88 = 1.688' or 22.2" v,“ = 29100 - 3448 x 1.688 = 23280“ ..-. 23280 = 106.1?" OK Using deformed 3 x 3.14 x .86 x 27 bars 1252.15 allowable. Stirrups: Inflection point .215l.for M“: O .215 x 16.88 X 12 = 43.6" Allowable shear stress = .021} = 502 'u=uoaa';“ Shear stress diagram 1 Shear stress of v = 104.47%“ is less than allowabkefor web steel, therefore the stirrups for maximum Spacing is: s e 3/4d = 3/4 x 27 = 22.5" Using em: stirrups A = .20“ rs= 160007... v = vuv. = -02fét_(_a_f.)__ bs(sina9 118 = SO-r.2 x 2 x 16000 12 x s x 1 min. 8 = 9.8" Stirrup Spacing: v = 50'+ 523 s 2-9" Spacings until passed x 10" which is 18" out. l_l5 I! I! I! H x 24" I! ll 33 H N 1-21" n n u x 53" n n 54" n . Middle inclined beam: Assume beam 12" x 30" to conform with upper inclined beam. Clear Span = 15.00' horizontal. 16.50'inclined Angle beam makes with horizontal = 24340' Eight riser beams carry load to inclined beam. 4 @ 390‘1and 403vt. Assume weight of inclined beam 325 Uniform load carried to beam Ii§90 x 42 (373 x 4iI1.-= 3550 16.33 w = 387551 N’= 3875 x .90875 = 35205:normal to beam Maximum BM = E17: 3520 x 16.5?x 12 = 1150000"* 10 10 Min. d= \{1150000 ‘5' =. 22.8" say 23" .86 x .428 x 12 x 500 D=2300+ 300-12600" OK Econ. d: 98 x 1150000 a 21.6“ 0K ' 20000 x 12 Use D = 30" Commercial d =30 - 3 = 27" Positive steel: Bmvzflz': Bizo X 1605zx 12 = 9580001!“ 12 12 A,—— _958000 a 2.07““ 20000 x .86 x 27 Negative steel: AN=- 1150000 2 2.31“" 20000 x .92 x 27 Use 3—1"4> bars bent as in upper inclined beam. Minimum width = 10 5/8" 0K allowable is 12" Shear: v = 3520 x 16.5 = 29050": 2 v = 29050 = 104.353" Use ordinary anchorage and 12 x .86 x 27 web steel. Allow.s150*/m. Bond: Point of inflection at 0.12. for MP=-O or 0.1 x 16.5 = 1.65' or 19.8" v“: 31680 — 3520 x 1.65 = 25870“ = 25370 = 118.326" 0K 3 x 3.14 x .86 x 27 Stirrups: Use «3% stirrups A .. .20“ r, = 160009.... Max. Spacing = 22.5" V: .02 fc'*‘asf$2 bs sinx 104.3 = 50-k533 5 Min. 5 =53; -.-. 9.8" 54-3 v = 50 +.233 s Stirrup Spacing: Spacing Stress Dist. from column face 8 v x 9" ....... ._.... 12" 94 10" 15" 86 17" 18" 80 23" 21" 75 28" -— 40 61" 2—9" Spacings until passed 1 10" which is 18" out. l__15" SpaCing I! I! X 23" H I! 33" I! . 2—21" Spacings n n X 61" n n 75" n . Lower inclined beam: Assume beam to conform with upper and middle inclined beams 12" X 30" Clear Span = 14.833' horizontal, 15.92' inclined Angle beam makes with horizontalat2lfl7.2' Eight riser beams carry load to inclined beam, 4 @ 350§1and 4 @ 40232 Assume weight of inclined beam 325 Uniform load carried to beam 0 x 02 x 1 = 35§5 16.17 w = 3860‘4 N = 3860 x .93178 = 3600‘): Max. BM = 111} .-. L600 x 15.59;): 12 -_ 1095000.... 10 10 Note: Complete design of lower inclined beam will be the same as for upper inclined beam since BM for design are practically the same. Beam was designed for larger BM. DESIGN OF INCLINED END SECTION BEAMS: Clear span = 14. 833' horizontal Assume beam 8" x 30" Load from 8 risers carried to inclined beam 4 @ 385"? and 4 @ 379“/. 3056 x 19.5 = 184.0% Beam.weight‘= 2175{ w = 2057 ‘7. N = 1810?. Max. BM = 618000"‘ Min. d = 20.5“ Use Commercial d =-27" Positive steel: BMP=-515000"* A..= 1.11“" Negative steel: BM": 618000“ A. = 1.25 ‘1“ Use 2-1" 4) bars 16.17 x 2 D = 30" U“ A = 1.57 Minimum width of beam: 2 bars @ l" 2.00 2 coverings @ 2" 4.00 2 stirrups @ .375" .75 3/8"0- A 1 - 4— _;__L “will..- i “H.“qu__.-._.-_ _w, _.,__.,_,_.. Mr.” _A,. 5 Arm .954:- v . 1 ‘ 11.“; _._.,. , \ 1 : ' , __.-l.;_______ll_i..._. ,_ J W. m 2.. 7 er. Mm 1: 1‘ -;l.~-_.-_ , ZINE ' ‘INE ’ [Giff re V 06- 5.9 4-2.“. -~._a_.-2- _.1 ... __.__.‘4_., .. ¢ .. . . r .. / . [64/26/29 445—50510 . / 46 X" l; /' / \\ // ' // l / 44 {/9545 / I // ‘// / / 449 (Awe V2“ AVA/4 / / / 36. r2— TIE 3.6; . / [/59 , - .. H... r _ ./, r... 5 .fi/ / W _ F I, ,2. _ / .. 1. M V/t . 1 e r M _ . é / r .6. / e. e / , Q. N . // / o I .2. .1 - - ,_ . w ‘/ 2 - 1 2M. ‘5: . 7.2 _ e , f w _ . /» : I . I] Z M i.(iz;lxliiilsi.!£r 2-3-} 4 W7. _ . _ 2 MW . pm . . : , N. . A. .H/ .2“ m 5 gm/ @ I- - 50L ,2 f 7‘0 . . . . . .. .. 4.4 I l _..- 1.. z c l ' ‘ .1 3 ( ‘ '.- -r4-.—-». . _.‘_._., ‘ , v I —-:- r—‘-- I I : ' i I E . . l - - _H-r_-,_..._:_-..l —d-..<. 2 .1. .- .-..4 .. _.. ( . . , , , . , , . . . . , . _ . 4 ~ ( ‘ - . ‘ . 1 ~--n->r~.7- .A.. e ,<,, J O u , . l 5 . D ‘ . ..-_-.- _ -- .4 .2 -. . Ln 1 . I ’ ‘ T— .. ... -r: -..~ .— “_... . L ‘.' 4.612%.- , . w . T 3 "' , . . _ 1 ’ . , . . .._l...a....7._ .... - .--L.- .-.. a. l, 4» ‘. I r . ‘ - - v 1 _ l ,' - ‘ i I _1'-l‘. _ . _.l...__.... .t . 3.... . _--4 __ -. j. .. .1 7 . . ‘. .. .1 . . —.— v , _.. ‘. ',.., .1 r I ‘ . , . .. 1. . 1. .. ;_.. .. "_.- . l ! { l . ‘ ' } I . . . _....l..._._..r- TIT-J . _- ., _ A....--..- .. .I- .J . 4 . . . I ' ‘ . ‘ - ,.. f i . i 1 c~1r~f~ynv‘-“-L -: "1 . . . . ' v ‘ ...... _..“... ICONC€£773O JuPPOQ/‘J Foe li/boo 25.921775 ./ i 23‘ I” ’1 111 1 'S Q? 2 802p: r0 é'ACH 2509/3042; W000 5214].: ioifi. 7 M _... . n. _ :fl-\ 11 ---_--H.JE1 “ll 1 ml _ l he _ 1.1.. _ .u..r : n Qir+ ...... .1“.._-._L Q _ we»: I: m . .. \\\ MM. .1 I eon. 1.— 5 W \l I .3. "I /' f/J/ ’. . 5527* DEf/vlz "14”“ n 41. / 5567/0A/ ,4 r/J AND 411/125'5” / I. I 40 "r #61: /o'0 ‘7 f’z'QQé‘ /r / 1%. Z) "// ' 732 00(4).» #2 , a:- J /’ // 10“”.an NV. vb. __ \ xx ND\ Q L *ul-.\h III It! 1-1.x . :... \ 5'5/9' / «(2671? 54/96 8 H ( ~c iV/fun II I C €A/L. " // <55 SD 542 s C—‘(X/V/‘VA/(Af' r— 4 I (i. 2‘? 164/2. /,. / “Z 1L; 1. 4'. fine ORA/0 ¢ ” (larvaeé-fév 11,711 4115. .1!!! 7|! 7.1114! 1.4%! 4.1 ll: .... .+-1 .11. ,1. .12- 1;; --r e=,- e11-.e-i .ellmm - r11 r1 Figl- ll: :1 in .Ill :.le .||\!u {it (3.31:. \ . 1 I 'tll.|11||llllul.ll1“ . i: 1.1 Ti 7% Till .3. fl Jr- 1”; ,,.¢_ if / l _ ...- I..I'._r -1114! '11. _ ”70”.. . l x q - - .L_-___________l- - J..._.‘ (.1... I..- 3. .. ..*_.__.._-_...__._____._.- -11., _ .. l €19,405- ,7 A i 1 Li: .r.1l TINT; . \ .0"_ #1 \\ --lll,Llei- ll ./3.'_’2 , __ 117117.171 .7! l--- +1 _ fl 1.! Ll 1?. 1T L. In] ..-LII,/_. T: 91--...-— . “4.1.1.7111. A 2|. . +11 up... I 0111------ Bags ' 3 27,: ......L..-, I Q! Q\. . . .Gws .gllm C4305: Jar/70M 73491044. ’1 I = 3 56,426 / l52222715= 2?’ 11‘s.,“ a ‘IIII’IIIIIIIII 5729p: / /gl—6” m A. 5 L WHHIIIIIWHN 1rHHI11111111H111H1HI11111 [F 11111111 11111.1 “I. 11 H]; [I M L A _ 1... L 13:; 1L _ f L m L . L L L_ .... _ _ L _ 2 L L .... _ Er L _ ./ L L m 1 UTWMIIIHHHHHHI Hr ....11.H1....111.M1 1......1;L 1.1.151...r 11.. J A _ A 1+ 111.10.11.14 u L L W _ _ L M L L m L L E L / L . L 11110111: 1.11% 111111111 N111L1 TIUIIWl1111 Ilmvlli-1 -IIIVIIL L _ L L _ _ _ L L L L 1111.“...1111h111 111110n1..i 1111111111.! 11.11|1|1II1111111 ”0 111.”...111mmn1111m. IIIIIIIIIII L ,o_. L L / — _ _ L a L . I _ 1 1 .1 L S _ _ W L L a L —/ 1. Llrl1111111111n|1 1111.11.an In. . .::..|.|H1IIIHI1|1.Lr1 9 m Llllmuxlll. _.L1 IIMIIIH IIIWIIILI / L _ L m L L w L L L N a .... _ . L e _ L 1V 1 Q U. T 4 .H1111111111111n-|11.l1.1h1 Illllll- m _1111111111,11.U1l11.11.l.li llllllmlllL [11111]?” 111T W L L F _ L ...... _ _ _ .2. H L _ \ L L .. L llllllll 1.4111111111111111 l.|l11 1101.1 41-0111 .L 1 1 3;: L L L LLLL L _ LL _ L L L L_ _ akawm. L 11.11: L LL . L _ L .1 1. .1 1.1.. l 141 11HW1H. 1H.HWI%I1F.1WH 11110.11121T1111 L o _ _ L L _ 11111/L. 71211111111111 L L L L . L L T...|Il.1.1.1.|1l11.111 JL1111111|11|H11111 IrlliiHHHl 1 L11!!!“ llllllll "W 1111111 I1 11.1.1012 1 LL L L L L L .6 L ,_ L ... 9 L . L W / L L r 11111 3111111131111... _ \ 11.1 L . . b m. I 1 N M 01. m u/ me. la We N U a S” r; We _o/l 06 Fm ..., e. BEAM 1.527150 UL r." .a ”0 3 3 ”x J .. p. .2 5 € 3 a v/ s F m. x 5 we 5 fl ,6 m 2. gm .6 M r e 2 cc, 8 x / 5 ”2 mm P 8 .0, F. ,0: rd: / ¢ A. 4 0 F. H 5.4 F. .24 Z . ' . H m. m. a 5 5 5 5 ... B m I m 7 ~ m ./ m u E u. t e C .. m. m G F L1 :Qdm. .01..” II 3 u ..1I1 all Idl. J1 .I1u111lq L .... .2. _ _ . _ (V — F\.I:1I|I/l—.I\\._ Ear/— L1 L T :9 1L L1 ..b\ 1L I11 . 411 ii l, .. _ 1 1 .... 1. . l. 1 .1. 1 6 L .0\ L 11.11 .m.1 +|1IA1LT 1|. _1 L Q. .a 6 ”o m 7 ..o\ J 1|.1.111| I1|1|1|. 1+1IJIIIIILL1 :3 Lrl... L_.L ,,. LT + .. 1+ 1.. l, .. 1||Lr J1|1 e 1e 1e a. e. L .10 7.0 .. 0 .. 50445- /” = 6’ ” ,, Couceafév Juppoef: W000 55.473 I3; X .92“ Foe W000 155-1475 2 304;: 7'0 é'ACH Jupmef —\ j 5” J— : {7.77—74 _______ L11" "‘3; —————— -——-—-—-§ 0 ‘0 ’ a',’."-0.'or.“‘300'o'snco;¢.n.,.'o’o0.1‘..'n1.'p.-_I.’0..o.o.-O. .o.:'.c-.¢.. £3'.".:".".°.'. 33-3'-‘--'~.';':':'-.'('.'.‘.' - '-.'-':"-,'-3n' s - "'1. ' "--.’\'-'.“‘:1"".°-:‘:- . : -".':"’-‘-.C : . . - :.. -' .' -' ‘ LL‘ /fl 4- Emcee: 55c IOA/ A 'A Q, 7 flND 5&Af 36/7111 (7710/0/74) 4— 843256: @ /\'.? II . . 1 '+.\‘.—'.- “I \ 7’12 uscoM Meé' Ma's” ._ \ #250 -// w 40* ”ac ma M 4 19/5566 // " It; \Z- 33:” 93 5.4423 [—- 4 ”(021/625va- 54/95 5,3 ”¢ 51435 gucac \Q (ON/'M/aév MEE- M515” \ Kg”: 189/1. 4 1 Isa-.05 I 0 T.— /-’4- /4’—/0” ‘ 1- 659406- ’7 ‘ T— \\ :Qq \ x L \ \ l file/(K 1.29/0 F44)" '- ”fife/N060”? °'. \ \ \ \ \ ‘ \ \ '5' Q _J _ \ \\ :: \§§1\:\ \\\ __ / 5ANO 544616 .....i m l r ‘ ‘ \ L “\‘~=L - “ \ 4” (”a/““75 \ ‘ \ \J: : \ \ _J 2",! T- __ __ ‘ \ \ __ \‘: é \ \ \ r— :. . h \ ‘ \ \\ \ \ x \ .' '0’: \ \ \ \1 \ \‘_ _’ :'.. ' : l l \ \ ‘ t —‘ ‘ 221.; L 310” ‘ /31.2” _L 3:0,, l3l_4ll J— T" 'I‘ "T' TYPICAL Cleo.” Jar/way I 5044.:- /” = 3 P447!- 3 a. .) " '. 1311.17; j 11- L 11 .11. 1 1 1-- 11”....111M1 .7. -L.1 .....ml..1.11-.1n-.-H11..1111111....1. ”1.1.11.1. 11 1 L 2 11.11.1111. Ll% ,v L1LL.-....LL1L m» fiww W11 11 11 L L / 1H1 11:1... 1-11 1 1-1 -1 1 11 11 11 1- w - .1- 1- 11 11 11 1.- 1 J . 1.- 11 1111 1.- -.1 1 1 11 -1 1 1......1111 U1. LL :1. --- 1.-- 11- 111.11. 1HM1LLL L 1U\ 1 \1 FD Q L L 5v? X II /2 fix: ‘ 1527/50 U4 6" /0 ’ x 54 ” P4 A/‘f' 5 I 6‘ I 5 ¢ 5,918.5 /Z”x /6 I - / fl 513 5985 324” 9:1 2'41 ” ¢ 19/4165 1 11 f1 1&1. H ',1 {"7 1 1 £1. 1 11 1 ..1 '1 F“? ‘1 Q1. ”31‘! :1 £111 55/2/14 2L 1 1 5&4M 24, 6 ,c" C 6" x 30” 5579M D, A? BEAM // 5574M 6’ /EXp/9N5/OA/ Jaw; I awe/V TH/eé‘ve 54/5 54V L L L _ L L L L L L L L L L L . L L L , . L .1 1.11111 11, 111 111 1.1 , -..1 111 1 1:1 1..-. -1 . 1 1..L.1wL. L L 1111. H-1111111111111MH m 11 11 1 11 1 11 L4 L L _ L_ -1 ... _- 1 1 1 1 .. L L L _ L L _ . L L _ L er4 N /’/t/0l 7' 149/094 N (a) _/9 > 5,4145 7 5644:5- I": 6' 507/. 5’ 1 1 1.1. 11 11 1 [1 fl 1 1. ‘VI 1131‘ LL] 1' Q1' F—fi L 11' F0 O'ND/ff/ON £1 away/0N €5.42 1-11: -. 1, w 1111 L 3/ EXPANS ION L/O/Nf CONC/Eéfé’ p144“. Che/105 1 Lear" . -~ ——-~-~~—~--~—~~—-~ -~~~»~»—+—- \ . “\ \\ ‘\ \ l OHUS ITLLL 1 1’ . \. 1 1 1 1 1b— LL L L11 .111. .- fl 1 111m.. 1111 11%111 1.1.11 11%| 4 1.:11111 1111 +111 . \\ 1 1 :11 1 1:L L L L...— L FOOf/NGJ“ c? J/A/éé 6" C04 UM/V I 1 1 1 1 1 1 1 1 .L 1 ~ 1 1204/64 4: 1 1 *_ >1? 1 . 1 ~11.— LJIL ,, 1 b-r‘ 3 F you 1 1 1 .5]- m: N’ homo mm g _N wwLmdmm: >.:mmw>.z: wh ‘ “ ‘ ‘h _ ._ L- —-___-.A.L__‘s - ’