[7- . CHEMICAL CONTROLS 0N TETRAHEDRAL SITE OCCUPANCY IN AMPHIBOLES Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY STUART D. HANSON .1971 '1 uh L-‘ A LIBRARY Mich £32m State University ~.— amnmc av =’ ‘9 semaanatmlcmmj ABSTRACT CHEMICAL CONTROLS ON TETRAHEDRAL SITE OCCUPANCY IN AMPHIBOLES BY Stuart D. Hanson Amphiboles from an amphibolite in Ontario, Canada, show a range of compositional variation that is independent of the metamor- phic grade as reflected in the plagioclase compositions. Composi- tional changes in the amphibole include increases in Mg and Si associated with decreases in A1 and Fe. As there are only two mineral phases present in the amphibolite, amphibole and plagio— clase, the Mg in the amphibole is the bulk Mg in the rock. The Changes in composition suggest that the variation observed is not directly associated with changes in temperature or pressure, but is a direct function of the bulk chemical composition of the rock. CHEMICAL CONTROLS ON TETRAHEDRAL SITE OCCUPANCY IN AMPHIBOLES BY Stuart DP‘Hanson _ A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geology 1971 ACKNOWLEDGEMENTS The writer wishes to thank Dr. Vogel for suggestions and aid rendered throughout the course of the work and for the patience and encouragement demonstrated during the time this work was being accomplished. Appreciation is also extended to Dr. R. Ehrlich, Dr. C. M. Spooner and Dr. H. B. Stonehouse for aid and constructive criticism offered during the work and on the manuscript. ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ..................................... ii LIST OF TABLES .......................................... iv LIST OF FIGURES ......................................... v Chapter I. INTRODUCTION ................................... 1 II. METHOD ......................................... 2 III. PROCEDURE ..................................... 3 IV. DISCUSSION OF DATA ............................ 6 V. CONCLUSION ..................................... 15 LIST OF REFERENCES ........................ I ............ 17 APPENDIX ................................................ 19 iii LIST OF TABLES Page TABLE 1. DATA .......................................... 6 iv FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE LIST OF FIGURES Page Metavolcanic zone in Cashel Township. Ontario, Canada ..................... 8 Graphs of Si and Al in terms of weight percent vs. plagio- clase composition in terms of anorthite Percent .............................. 9 Graph of amphibole Mg vs. whole rock Mg in terms of WBight Percent ................................ 11 Graph of amphibole Mg vs. amphibole Si in terms of weight Pel‘cen’c ................................ 12 Graph of amphibole Mg vs. amphibole Al in terms of weight percent ..................... _ ............ l3 Graph of amphibole Mg vs. amphibole Fe in terms of weight percent ................................. 14 INTRODUCTION The purpose of this thesis is to determine whether there ex- ists a systematic relationship governing the relative Al and Si oc- cupancy of the tetrahedral site in amphiboles. The ionic radius of Al allows the cation to coordinate with oxygen in either the Octa- hedral or tetrahedral mode. The amphibole structure is composed of double chain tetrahedral layers with cation layers in between. The cations occur in a layer of three good octahedral sites labeled M1, M2, and M3, a less perfect six— or eight-fold M4 site and a single twelve-fold A site on the other side of the tetrahedral layer. Al, as one of the smaller cations, has the Option in terms of size of occupying the tetrahedral, or the M1, 2, or M3 octahedral Sites (Gibbs, 1966). Harry (1950) prOposed that a systematic relationship between A1 and Si in amphibole tetrahedral sites may exist, and that it may serve as an effective geothermometer in metamorphic rocks. Using amphibole analyses selected from the literature, Harry observed an increase in the Si as temperature increased. Engel and Engel (1962 a, b) found no such relationship in amphiboles when passing from the amphibolite facies to the granulite facies. Dodge, Papike and Mays (1968) suggested that the relationship might hold as modified by pressure, and Leake (1965) suggested that composition and asso- ciated minerals may also affect tetrahedral site occupation. 1 The major thrust of this paper is to select an amphibole- bearing rock body whose composition is relatively constant and which has been subjected to a metamorphic gradient. In such a case the controls on A1, Si tetrahedral site occupancy can be determined. On this basis a series of basic metavolcanics in Tudor, Grims- thorpe and Cashel Townships, Ontario, Canada were selected. They are described by Lumbers (1968, 1969) as largely mafic flows ori— ginally basalt and andesite with minor inclusions of mafic pyroclas- tics and felsic flows. Lumbers defines a regional metamorphic gradient for the townships increasing from a greenshist facies in Tudor and Grimsthorpe Townships to an amphibolite facies in the central and northern parts of Cashel Township. He defined the gra- dient on the basis of zoned albite, oligoclase and andesine isograds which he extended from Limerick Township on the west into the amphibolite band. These isograds are truncated by the metamorphic aureole of the Westlemkoon Batholith in eastern Cashel Township. For the purposes of this study this appeared to be an ideal area, for apparently chemically similar rocks were subjected to a steep metamorphic gradient . METHOD Leake (1965) suggested that the nature of the associated min- erals could affect the elemental variations within the amphibole structure. Therefore, in order to limit the number of possible variables, amphibolites which contained only plagioclase and amphi- bole were selected for testing. The advantage of using these am- phibolites is that all the elements are partitioned between only two mineral phases (amphibole and plagioclase) and such rocks are fairly common over the whole area. Whole rock, plagioclase, and amphi- bole major element analyses were done. PROCEDURE Samples were collected along the amphibolite belt in Cashel Township and at one location on the Jordan Road in Tudor Town— ship south of Cashel Township. Seventy samples were thin-sectioned and examined microscOpically to insure that the amphibole and pla- gioclase were the only primary phases present. From these, twenty- six thin sections containing only the two phases were polished for micrOprobe examination, and one hundred milligrams of each sample was also prepared for X-ray fluorescence analysis. The polished sections were analyzed on an ARL EMX electron micrOprobe equipped with three channels. The beam was focused to a diameter of approximately 0.5,: at an accelerating voltage of 15 kV and a specimen current of 0.020 flamps. The low specimen current precluded the volatilization of significant amounts of Na from the samples. Nine thin sections from a geographic array approximately at right angle to Lumbers' 1968 isograds and covering the entire area 4 were analyzed. Five point analyses per grain were made on two grains of amphibole and two grains of plagioclase per sample. Point analyses were carried out for Si, Al, Mg, Fe, Ca, Na, using SiOZ, Al O MgO, Fe 2 3, albite and anorthite as standards. Two tra— 2 3’ verses were necessary for each grain to analyze for the six ele- ments. Another continuous beam sweep was made of each grain for Al and Si in order to insure the homogeneity necessary to dexnon- strate equilibrium conditions. The raw micrOprobe counts were then reduced to weight per- cent analyses using a modification of the Bence and Albee, Electron Probe Oxide Analysis Computer Program (Bence and Albee, 1968). The program, named Mprobe, was originally written as Specimen by Mrs. Kook Huber and debugged by L. G. Medaris and C. J. Bowser (all from the University of Wisconsin at Madison) using correction factors for ten elements and requiring count—ratio in- put instead of raw micrOprobe counts. The program was further modified and debugged by the author to accept raw micrOprobe data and calculate weight percent analyses of up to fifteen elements from an array of thirty—five elements using the Albee and Ray (1970) correction factors (Appendix). As only three elements could be analyzed onthe micrOprobe at one time, it was decided to run three traverses of each amphibole grain and two of each plagioclase grain. The first traverse in each case was a continuous sweep of the entire grain which was recorded on an X-Y plotter. If the grains in one sample were consistently homo- geneous, this traverse would demonstrate that the rock was at or near equilibrium. All samples measured were homogeneous with the exception of the two southernmost, CA 7-4 and CA 7-1. For the amphibole grains, the next two analyses consisted of five points, each fifty/4 apart, with one traverse for Si, Mg and Fe and the other for Al, Ca and Na. The elements chosen are the major con- stituents of most amphiboles, and the larger the constituent percent- age measured, the more accurate the weight percent analysis from the modified Bence and Albee program. These six elements com- prised an average of 94.5 percent of each sample and were never less than 89.0 percent. The use of Al, Ca and Na for plagioclase analysis also allowed athree way cross-check of the determination. The three final de- terminations were in each case i 1 percent. The fluorescence samples were run on a General Electric X- ray fluorescence unit in a helium atmosphere at 45 kV and 49.5 milliamps for 100 seconds for each of the elements Si, Al, Mg, Ca, and K. Calibration curves were prepared based on five U. S. Geological Survey standards run with the samples. Least square curves Of best fit were calculated with the aid of the M.S.U. Agri- cultural Experimentation Station least squares (LS) program. The X-ray fluorescence of each sample provided a weight percent analy- sis of the bulk composition in terms of Si, Al, Mg, Ca, and K. w o 2 0 mm N. N mq< Na: N N N 2 N mm 0 <0 N E N 3 o e mNq< e 2 a o e E m am NN <0 0 2 a 3. m m NNHH< w 2 H NH N Na N 3 .3. <0 N 2 m we a N oma< 0.: N a m E I. am oN <0 «0 E N S. N e ONe< if N Na N 2 s 3. 3 <0 Cocoa . so-om . N 3 e 3 o e q< m 2 m I o 2 m E, TN. <0 a. 2 e we m: qu< 92 o N. NE o mm 2 <0 0 NH N43. a e AwNn< HoN N s 93 e om mm <0 pmcou . . . No--mN . o f m S. N e dh< s m: a: o S a 3. Te <0 NONH< NOE Om: 8333800 NoNom ONE NONE NONw Cnfisz mezm0mmm Hmona M0Om mqoma Hm<40OH0<1E mezm0mmm H.305; maomims? mane/2m w?” 302 CE XOOQ MNOINS «£95m mo ARNOLD .m Chaim o m 0N 0.0 0.0 0+ o.n god) 0.? q _ _ _ _ _ C28 4 N Own .0 .. no.0 Om<0 V - 6.0 M Own .0 H w ONN <0 I . 7 u o 0.3 W 9 1 1 . : Owe <0 0 OZ «.0 u .. 0N. O: .0 _ _ PO 2.. 10 p _ _ 12 00000ch 03$)...» .5 2.0.75 «.2. Am OMONZAMQHAMC .m... v.2 OMOCSEPAO .«O £90.20 .0 0.234% 0.va 0%? 0%? \m 0.00. 000 0.00 00». 0.3.. 023 Omm <0 I Om <0 1 000 <0 , .. Omm <0 I OYN <0 O I <0 . I O 3. <0 .. OR. <0 _ _ _ _ _ . 0.0 0.0 0% 02 0.00 0.00 0.3 l3 00700.30 30.5.5 we 0.6000 5. #4. 030.3050 .0.» w E OHOQMJQEN .«O £0000 .m 0.30me . .0 0mm 00m 0% 0.2 < 0.3 0Q 00‘ 0.0 _ _ _ . _ _ 0.? - i 0. 0 00:0 0% <0 I 00 <0 1 O. m 08 <0 03 .. 0% <0 .. 0.0\ Owns <0 OT“ <0 I OB < vv<0 1 O. N\ - .. 0.3 14 .0940pr 0:303 00 mgfiou £0 0h oaonmrfiQEm .m> w E oaonfifiagm mo £0000 .0 0.313% mu . . 0.5 0.0m 0.9 0.9 0.5 0.2 0 9 0 3 . T . _ _ _ _ 0.? r -00 OS <0 Omm <0 . : Om<0 LO m 02 08. <0 .. O~w<0 106‘ Quin <0 OE <0 r OB<0 Ovv<0 IO.N\ r - 0.3 15 balanced by an increase of Ca in the A sites or by an increase of Si in the tetrahedral sites. The increase in Si associated with the increase in Mg in the amphibole and the constantly high Ca levels demonstrate that the latter is the case. ' The closer spatial asso- ciation of the tetrahedral sites and the octahedral sites and the twelve-fold coordination of the A sites compared with the six-fold coordination of the octahedral sites also suggest that a charge gain in the tetrahedral site could balance an octahedral charge loss with less structural strain than could the A site substitution. CONCLUSION The increase of Mg in amphibole in the amphibolite is a direct function of the bulk Mg content of the rock. This increase, asso- ciated with the decrease of Fe and Al, suggests that Mg is accepted into the octahedral site preferentially with respect to Fe and Al. That this increase in Mg is also associated with an increase in Si while Ca remains constant indicates that the tetrahedral sites are required to make up the octahedral site charge deficits associated with an increase of Mg. Therefore, the major conclusion of this paper is that the Si content of the tetrahedral site in amphiboles-- the Al/Si ratio--is not directly associated with temperature and pressure conditions during cooling or during later metamorphic events. The amphibole composition of these plagioclase amphibole rocks is a direct function of their bulk rock composition. It seems 16 by pressure or temperature. It is also worthwhile to point out here the importance of using whole rock analyses along with indi- vidual mineral analyses, for without this type of analysis pairing, an erroneous conclusion could have been made. LIST OF REFERENCES LIST OF REFERENCES Albee, Arden L. and Lily Ray (1970) "Correction factors for elec- tron probe microanalysis of silicates, oxides, carbonates, phosphates, and sulfates". Analytical Chemistry, 42, 1408- 1414. Bence, A.E. and Arden L. Albee (1968) "Empirical correction fac- tors for the electron microanalysis of silicates and oxides". J. Geol., 76, 382-403. Deer, W. A., R. A. Howie and J. Zussman (1962) Rock-Forming Minerals. John Wiley and Sons, Inc., New York, New York, vol. 2, pp. 203-210 and 234-320. Dodge, F. C. W., J. J. Papike, and R. E. Mays (1968) "Horn- blendes from granitic rocks of the central Sierra Nevada Batholith, California". J. Petrology, 9, 378-410. Engel, A. E. J. and Celeste G. Engel (1962a) "Hornblendes formed during progressive metamorphism of amphibolites, northwest Adirondack Mountains, New YOrk”. Geol. Soc. America Bull., 73, 1499-1514. (1962b) "Progressive metamorphism of amphibolite, north- west Adirondack Mountains, New York". pp. 37-82 in Engel, A. E. J., James, H. L., and Leonard, B. F., Editors, Petrologic studies: A volume in honor of A. F. Buddington. Geol. Soc. America, 660p. Ernst, W. G. (1968) Amphiboles. Springer-Verlag New York Inc., New York, New York, 125p. Hallimond, A. F. (1943) "On the graphical representation of the calciferous amphiboles”. Am. Min., 28, 65-89. Harry, W. T. (1950) "Aluminum replacing silicon in some silicate lattices". Min. Mag., 29, 142-149. 17 18 Leake, Bernard E. (1965) "The relationship between composition of calciferous amphibole and grade of metamorphism”. pp. 299-318 in Pitcher, W. S. and Flinn, G. W., Editors, Controls of Metamorphism, John Wiley and Sons, Inc. , New York, New York, 368p. Lipman, Peter W. (1964) "Mineralogy and petrogenesis of amphi- boles from Gibson Peak Pluton, northern California". Am. Min., 49, 1321-1330. Cooper, A. F and J. F. Lovering (1970) "Greenschist Amphi— boles from Haast River, New Zealand". Contr. 1\/Iinera1. and Petrol., 27, 11-24. Lumbers, S. B. (1968) "Geology of Cashel Township". Ontario De- partment of Mines, Geological Report 71, Toronto, Ontario Canada, 54p. (1969) "Geology of Limerick and Tudor Townships". Ontario Department of Mines, Geological Report 67, Toronto, On- tario, Canada, 110p. APPENDIX FRanAM NPPOIE A 1 C _m"_~ .,_ _ A 2 c * ‘”‘" ' A“’ 3'—_“"“' C THIS PROGRIH HILI ICFEFT RAH ARL HICPOPRPBE DATA AND OUTPUT A DECK A 4 .,L _.C SUITABIE FOR INPLT IITP PROGRAM FUFMULA. IT CAN HANFLE A 5 C [P TO PIPTEEP 0F TPE ELEPEHTS LIFTFD Tn :ATA bTATtHEAT ELE AT A ‘" ”A " 6 t TIIE, A 7 5 "~”__ .- .“1. _" A 8 c "_'"“' "“’A"”’“9"‘“"""‘ IIIEHSIOII IEIEIifi). CRATII5IT NELIESI. NEMI1SI. RDIIE). AI35.35) A 10 fig _ IIIEPSIOP (SIEI3). A¥I75.3E) A 11 IIIENSION CoIcIlf), ((15), 8(15), 1(35), FACTI35), ATMPERI15), HXI" A ' jg fi‘S) A 13 IIIEISTOM c1r(15), EIEI§ELLM¥§L3151. Cp‘15), JZ(15): BN‘15)D R‘15) A 14 1, 111(8), FTRISST ” w” " ' '“"”""" """—""“A”“’15'”"“ IATA ((ELEIL).L=1.?5)=?H C 3H F.3H NA,3H MG. 3H AL, 3H 81.3H P.3H A 16 __~, _________ 1__c 3H CL,3A_ v, 3H cr,:H TI.3H CP,3H M“,3H FE,3H CO. 3H NI,3H CU.3H A 17 2 ZI 3H RF 3" 56,3H 9, 3H 2P,3HH BA,3H LA,3H CE-, 3H PR 3H ND,3H SM.3H”“A" is 7 ' ' 3 Or 3H Dv,3H EP 3H HF.3H TP,3H I) ~ A 19 _IATA IICODEII).I= 1. 3)=6HCASE 1. 6+CASE ?. 6HCASE 3) _ ' 1-1 A 20 KATA (IHII).I=1.351=1.15.5.73.1.t7o1.29.1.17.1.08o1.06.1.03.1.10.1 A 21 1.06,1.n3,1.oF.1.11.1.15.1.14,1.1t.1.14.1.19.1.19,1.41.1.34.1.25.1, A ?2 -__________ _2(4,1.46,1'42,1,;(a1."2 1'44OI0470105201054!105711058019 301065) A 23 [A‘A (INXII). 1:1.59>=1.18.8.97.1.98.1.44.1.24.1.12. 1. 09. 1.04.1.1§T"”A’ '24' 11.r6.1.o3.1.c7.1.09.1.12.1.11.1.14.1.11.1.16.1.17 1.36.1.29.1.24.1 A 25 2 20 1 37.1.34,1,26.1.33,L_34,1.37...41.1.44.1.46,1.47.1.56.1.56I A 26 IATA ((FACTII).I=1.3E1:28.n11. 18.998.31.989.4u.3o4.50.981 ,6o.o76,7 A” 27”““_“” 1T. 977.80. 062, 35 .453, 47. 102.56. 079, 79. 899, 76. 485,70. 937. 71. 846,74. 9 A 23 .___, ........ 2L3.74.7o9.79.539.81.36!.93.469,1c3.619.112.9o4.126.219.153.339.162 A 29 3.919 1C4.119.164.906,166.239,174.349.181.249.186.499o191.259.210.4_‘m”_3bflfl.wu_a 4E9, 264. 037. 270. 029) A 31 IATA 00191351118) A 92 c A 33 c A 34 ..__ _MC__ _ _IRPAv rTR COITAINS CORRECTION FACTORS FOR THF STANDARD USED, A 35 C ANY CHANGE I\ THE STAN? ARD HUST RE ACCOMDAVIEL BY AN APPROPRIATE MA'“ 36 """"" f C CHANGE IN THE CORRECTICN FACTOR,1.0 FACTORS INDICATE A PURE A 37 3 CXIDF,SIA&EAPD __ A 38 -_ c A 39 c A 40 [ATA (fFTR‘J10931035)=1.00110I011046'1-0I1000100I1I0'1-OI1'010'1?§._5M_ 51_____- 1'. n .18“3 1.0.1.0616000.7685116n010091.00160!1.01100010001000100310 A 42 2‘01. 0: .00 1. 011.001.001.001.011lo'10001.0) A- 43 _J 1“”1“___Laan____.-_.wu,-u_m_11"AW__‘t____r_ 3 A 45 C DATA INPUT A 46 ___H_u_" 3___“ _ , h 1 .--. , h_ 1",- . _ A 47 c Flcsf CARD . NUMBER or chwrs ANALVSED IN COLDHHS 1 THROUGH Z."”"“”’A” AD" ” c TH; NUMBER 3: ELEICVTS ANALYSED TOP AT EACH POIHT IN COLUHHS 5 A 49 .hi. Jflogugugg, THE VCLTAGE AT U410H THE “ICROPQJQE AAS RUN (FITHER 15 A 50 3 CI 29 «v, Iv CCLUAVS 9 THROJG H 12. THE CASE NAME ICASE‘IT‘CASE"2. A 51 3 0R CASE 3. SEE EXDLAVATION) [A COL LUW\S 13 THPCUSH 13. AND THE A 52 "___“__3, ._FLEWENT SY“3OLS_IN SAC“ 3 C0LQfififi§80U8wfl3gfi 19 THfioUGj 63. ALL A 53 3 DATA HUsT 95 RIGHT JUSTIFIEO. "” A’“’39“"”"”' 3 A 55 .2 SECONDLCARD.EHANYCALPHAVUHERI_C ID: “IIFICAT' 3“ 191991913311.I319!§H A 56 C 3? AND THE 3A3KGRJUID VALUES FOR TH; POINT AHALysto 11 PQOR A 3 “)LJ?N"GRQHBLHQSHEBQ¥ COLUHI 33 0V. A 3r:c0: n77 CARD7 ML! RP _USED IF A 33 3 WéCéSSARY. ' """A'“"59"‘ C A 63 7____;__ m-.. #7 77 ___7_ _ __ A 61 C TIIID CARD . IAH COUNTS HITI ONE JECIMAL P'IINT IV ElaiT‘C JLUWN"""A ‘62 ‘ 3 GIOJPIMOS FJR UP TO FIFTEEH VALUES. A SEC).D CARD MAT HE USED IF A 63 C ESSARY. A 64 3 ’“““_”"“‘ "‘”—”—”"‘“ A‘”‘65"““" 3 FJHIITH CARD . COR.IF«;TED STAIDAPD IALUES HITH 01E DECIIAL POINT IN A 66 _______;_n__ FI IT COLUMI IROUPIICS FOR JP TO 'IrTFPI VALUES, A S C'INJ CARD A 67 3 HIV BE USED IE IECF ,SARY. - -“ ~w ~~«--~- .A ..... 63" -_ C A 69 3 ptprg_ CARD . 429 O9 _OH IEICHT PER CE“T IV FIRST EIGHT COLUMNS WITH A 70 3 FIJR DECIHAL PLACcS Ir KHOII II. E. CARD IIVE UILT II CASE TAO). ‘”“A"’7I“’““‘ c A 72 _ C C113572.~}._5,.ANQ75_(IE_INCLUDED) APE IPPPATIO POR PICH POINT A 73 3 AUALYSPD. -—-a~m~ A11174-___A c A 75 C ___mu_m_ A 76 REA?) 6'5: (‘4‘[1J)IJ=1035711311357 K"__77_"—— REAI) 65, ((AX(!.J).J=l.55).1=1.$5) A 73 _~ PRIIIT 51___ A 79 PI.-A3 67. HPT.NE. KV. CASE.__ IF (IszTCH.3) 13 36 16 13 IF (IszTCHo?) 18 17.18 6 I a )_ n o _~_17_FEAD 53. HT3 __ __1__Mwu-u_nnh_‘n_223_,Mni H__"nr_q-wu__22w2h1-_u PFINT 59} “TR wLTPERawTR/dFACT TCINTzTOTNTokTR 18 N:O !:HEM(M) DO 22 K=1QNE - IF (xv-15) 26:20.21 23 381M): QB(M)+A(I, )*CONC(K) GO T0222 3" ...... w_-..m__ww_nmmw-,wm.*v33_mm~.__n__2____3 21 BB;Ax(I J)rCOVC(K) 22 CCHTINUE If (KV 15) 23 23. 24 23 FB(M)= °B(M)+W(l)*WTR 60 T0 25 ‘24 FB(M)= QB(M)¢A 'X(I)*HTR i i E I I E lx>n>> » vb (A A 25 n(4)=1, /T0TthRB(H) 26 CGYTINUE F0127_5$13351_ b:>)J>->)> 1 i i l I v CO!C(M)=CRAT(M)*9(”) TOT: T0T+C014C(M) lfiwilthEtlll_2§133j33 3n TOT=TOT+HTR TOTAI=TOT 701:3.0 I .______mu’38(M)=g. o -ukw"___u_fi__1____”222___ 153 27 CO'TlNUE 154 PRINT so. (c3N3>-.oos1) 29733730 157 29 l=l+1 158 D0 31 1:1.VE 31 C(I)= CONC(I) \:_'J+1* 134 135 [F (q‘ 10) 1903’: 32 32 pRINT 61 60 To 9 167 >J-)1)->a>x->J-x-’->x>)->z>1->J>J->:>It’d»x-> p \a U: *5 0* a» 136—_— 31 €01=5.A A 169 Dal‘fiflflfi ___MH“11 A 1” 34 SU {:‘EU'HCOWCLH Mfl“ W _-__._A.._,1.7l._.__ - Su1=GQA+NTR A 172 ____11_ 11h_vu:cu 6611(1W('):1=1;8) .111__ 1 1 _ 1 A 175 Duncu :43 (CON7(KLA).KLA:1,NE),HTR "g“”174 “ PRINT as. SJH A 175 no,3§“A=1.flam_. _____ A 176 I:JEA(M) A 177 ’ 35 AIAPFR*anC(K) A 187 (“1.111-140 ._.,.__--- A 188 39 98(M)=nB(M>.Ax(1.J).Cowc A 199 "HJMIEQJG A 200 45 cosrtmue ' A '201 PRINT an; tanC(I>,l:1.NE) A 202 !F_Lh-4) 16137,50 . A 203 46 “3";4-1 hi- ___________,,,____V_ "-—___'-'fi”""_-r‘”zu‘4'—"‘_— TOTNTzTOT ‘ 2”5 TOT§§;gj A 206 so To 37 A 207' 47 IF (TOT-1.00) ‘8049049 A 208 4" mane-JCT A 2’09 FRINI s9; vrp ""*“”“_“‘fl‘ “"““‘ A 210 VA'PEszyR/AFACI A 211 PR1N1_§4. VATPFR - A 212 Far 91 ‘ . A 213 TO’NT=1,00 A 214 T07:6 A 215 60 TC 37 A 216 49 PRINT 59; wrn A 217 f Gngfi 30F A 218 5a PRINT 62. NJM A 219 c ’ A 220 51 rogMAIW51H1L7x.58fl_gl§fipFR08E ANALYSES 0F MINERALS HITH UNKNOWN co A 221 1~prstryors//) ' “‘m“‘““”“”"”"“’_""”“ "“““”“““"“““‘“““_”T“‘222““”*“ 59 FornAT (1Hc,9x,A6) A 223 51 ForHAt (1ors.4) A 224 ‘.;-—-'"vv<.- - . 7-”..._—__.—_"_._. -_-..—-- 54 FOFHAT (10F8.4/5F8.4) 53 rochr (8x,19A4,/) “55“‘0““‘T ‘ END * 236— 2?5 226 ,277_m_ 228 279 2301“ W 231 232 233“ 234 235 237 238 239-“”~W 240 241 ‘242'A_”"’ 243 .. _______~1.08 5.19-1.5? 1.1a~1.09—1.é3~1.07 1.00 1.07 1.04 1.01 1.06 1.09 1.13 1.15 1.14 1.17 1.17 1.18 1.34 1.27 1.23 1.10 1.42 1.39 1.39 1.39 1.41 __.—__._~_1.44 1.49-1.51.1.55.1.55.1.§7.1.58 1.43-1.00 1.89 1.40 1.23 1.11 1.07 _ 1. 02 1. 08 1. 03 1.10 1.05 1.07 1.10 1.10 1.19 1. 09 1.14 1.15 1. 41 1. 33 1 27.1. 23.1.39.1..30.1.30.1.35.1 37..1...11.1. 45 1.48.1150.1.51.1.50_L57- 2. 84 2. 29 1. 01 1.95 1.51 1. 31 1. 21 1.13 1.17 1.09 1.05 1.09 1.10 1.14 - L16 1.15.1.1} 1.10 1.10.1.00.1 51 1.42-1. 30 1.42_1. 40 1.40 1.39_1.41-- 1. 44 1. 49 1. 51 1.93 1. 54 1. 00 1. 91 .93 3.17 1.18 1.00 1.02 1.39 1.27 ,........-_1.18 1. 21.1.12 1.18 1.11.1.i3_1.10.1.15 1.18 1.15_1.20 1.21-1.6°.1159-- - 1. 43 1. 42 1. 47 1. 44 1. 43 1.43 1. 45 1. ca 1. 52 1. 55 1. 57 1.58 1.07 1.07 .4 93.3 00.1.25-_1me0.1.33.1.2°._1.1.9.1.21-1.11.L0.-L 10- 1.11.1114“ .13 1.15 1.13 1.18 1.18 1. 74 1. 63 1. 51 1. 44 1. 42 1.40 L 39 1. 39 1. 41 _......_ 1. 44 1. 48 1. 51.1.53 1.51.1.01 1. 00-..75 4.11 1.35 1. 09.1. 04 1.00 1. 34 - 1. 22 1. 24 1.13 1.28 1.11 1.12 1.10 1.15 1.17 L 14 1.19 1.20 1. 30 1. 24 1.55 1. 49 1 40 1.43 1 42.1.42-1.44 -1.17.1.51 1. 53 1. 50 1.56 1. 00 1. 66 - 7. 49 4 51 1. 39 1.11 1. 08 0. 99 L 00 L 75 1.25 1.13 1. 08 L 10 L 11 1.14 _...._.___1 11.1.15.1.12.1412.1.13.1.21.1.21.1.18.1.15 1.42.1139.1.39- 1.38.1.L10 L 49 L 47 1. 51 1.62 1. 59 1. 01 L 00 8.00 4. 85 1. 46 1.16 1.08 1. 02 1.01 1.01.1.28-1.15.1.09.1.11.1.12.1.15.1.14.1.10 1.13-1.18 1.19 1-32.1.25-- 1.21 1.17 1.45 1.42 1.41 1.41 1.43 1.46 1.59 1.52 1.54 1.55 1.67 1.66 _........31-49-3.20.1.19-0.98-0.95.0.91.0-92.0.90.1.00,1.26_1.10.1.13-1.10.1-12-.. 1.11 1.11 1. 0- 1.13 1.13 1.18 1.13 1. 09 1.07 L 43 1. 39 1. 38 1. 30 1. 37 1-41.1 42.1.41.1.10-1.40.1.11.1.10.1+21.1.8z_-1.13.1.1E.1101.1100.11.&.. o. 95 1. 01 1. 06 1.25 1.15 1.12 1.14 1.12 1.13 1.10 1.14 1.14 1. 20 1.?0 11- 1 40.1.38.1.39 1.41 1. 44 1.46 1.47 1.47 1.43 1.44 - 3.10 5. 75 1. 05 1. 20 1.14 1. 05 1.03 0. 99 1. 05 0. 99 1. 00 1.17 1.14 1.10 _-—-____.~1.1ifl1. 15 1.17 1.10 1.11.1.33.1.20.1.21.1 18 1. 49.1.15 1. 43 1.42.1._43.- 1. 45 1. 48 1. 49 1.51 1. 51 1. 50 1. 51 3 .12 7. 20 1. 83 1. 34 1.18 1. 00 1. 03 9_93.1.02.0.90.0.92-1+00_1.09.1.11.1..9.1.10.1.02.1.11.1.11.1.32.1.25 1.17 1.15 1. 29 1.27 1. 27 1. 35 L 30 1.38 1. 40 1.42 1.43 1.43 1.41 1.42 ._____..._-4.13 8.70 2.11.1.56 1. 28.1.12 1. 00-1.0 0.1. 03 0.90-0.91 5 °0 1.09.1403--- 1. 08 1. 09 1. 00 1.09 1. 09 1. 38 1.30 1.2 3 1.18 1. 21 1. 23 1.23 1.23 1.25 _.___...._.1. 28 1. 39 1.45 1. 41 1. 40.1.32.1. 37 5-25 9. 74 2. 39 1. 63 1.37-1.1z-1.09.. 1. 00 1. 03 0. 94 E. 90 0. 89 0. 94 1. 00 0. 99 1. 07 1.03 1. 07 1.06 1.40 1. 32 _——_——1 2L1T1L14LL104404.18_1.20-1124_L28.1$111374 324.35.14.35... 0. 07 2 .32 2. 07 1. 70 1. 44 1. 23 L 13 1. 44 1.05 0. 90 0. 92 0.91 0. 88 0. 98 L 01.1. 62.1. on 1.18 1. 02.1.42.1.38_1.29 1. 231.21.1.18 1.18 1.17 1.18- 1. 25 1. 29 1. 3? L 34 1. 38 1. 38 1. 38 0. 90 2. 34 2. 86 1.89 1. 53 1.27 1.16 1.05 1. 05 0. 9s 3. 91 0.90 0.87 0. 8 0.94.1.00 0. 98.1. 00 1. 05 1.51.1. 41.. 1. 31 1.25 1.15 1.10 1.15 1. 14 1.10 1.18 1.25 1. 29 1. 31 1.36 1. 35 1. 35 a 17 2 SWBJLWWZWDJ9913 4_£..91.£.21.fl_.9.0_. 0. 84 0.97 1. 05 1. 04 1. 08 1. 00 1. 49 1.38 1. 31 1. 23 1.20 1.19 1.18 1.19 _.........1. 2l 1. 24 -1.3i.1.3 4 1 .35.1.11.1 40 9. 50.2,51 1. °8-2. 19 1.72 1.35.1._?§. ' 1. 09 1. 08 0. 9s 0. 91 0. 91 0. 89 0. 8? 0. 83 0. 80 0.90 1.00 1.00 1.02 1.50 13 1.31.1 11_1.15 1.14.1.14.1.1E.1.10.1 19 1.20_1.27-1.29-1.35-1.31... 11.11 2. 02 2. 45 g. 30 1. 83 1. 45 1. 28 1.12 1.10 0. 97 0. 92 0 .92 0. 90 0. 90 0L8? n 83.0.70.0.93.1.nn.1.09.1.51.1111.1.35.1.18.1.15.1 15.1.1A.1.15_ 1.17 1. i9 1. 25 1.20 1. 27 1.30 1. 352L 82 3. 51 1. 90 0. 93 6.88 0. 82 1. 57 1. 39.1. 25-1.03 a. 94 0.92.0.90.0.91-0.90 0. 91 0. 89-0 .92.0. 92.1.00.1. 00... 1. 79 1. 00 1.13 1.09 1. on 1. E8 1. 08 1.10 1.12 1.13 1.15 1.10 1.37 1.33 -._._____48.11.4. 60 1. 32.1. 00 0.90.0.80_1 05.1.40- 1. 30 1.06 0.97 0.95-8192.0.94 0. 92 0 .93 0. 91 n. 74 0. 94 1. L4 1. 00 0.90 1. 08 1.10 1.12 L 11 1.10 1.11 ____L12.1.15_1.10_1.11_1.18.1.41.L311A.00.L45 .1. 38.1.11 5.13. 9 7.11.82.11.96... 1. 35 1. 33 1. 09 n. 99 0. 90 0. 94 0. 90 0. 94 0. 95 0. 93 0. 90 9 .97 1. 09 1. 04 _.........1. 0; 0. 97.1-17 1.15 1.15.1.13 1.14.1.10_1. 18 1. 20 1.21 1.72 1. 46.1.42 10. 34 4 .90 1. 49 1.11 1. 02 0. 92 0. 91 1.41 1.37 1.11 1. 02 0. 98 0. 90 0. 97 0. 96 0. 97 0. 94 0.08 0. 98.1.12.1. 07 1. 03 1. 00 1. 21 1.18 1.17 1.16 1.16... 1.13 1. 70 1. 27 1.23 1. 24 1. 49 1. 45 7.38 2.19 1. 95 1. 73 1. 01 1. 20 1.15 I]. 9BLMMJ8JJULEMAQWL 9? "(-18L1L59J:q9_14__8 .1.L3..6._.. 1. 27 1.18 1. 01 n. 98 0. 97 0. 97 0. 98 1.11 1.13 L 12 1.12 1.11 1.11 L 10 -.....-...2.07-2.21.1.95-1.JA.1.12.1.20-1.1A-8.22.0.97-0.85 0.79-0.80-0.§A.Q.93 .. _.__—_._-_ —____..-__ . ....-_....1.01 0.92 0.92 0.84 3.91 6.91 1.53-1.40 1.29 1.21 1.03 1 00 1.09 1.13 1.15 1.15 1.14 1.14 1.13 7.44 2.39 2.10 1.58 0.98 0.84 8.80 0.81 0.84 -0.91,_0.91 0.92 0.88 0 91 1. 33 1. 24 1. 01 1.00 1.00 0. 99 1. 01 1. 02 1.11 1.14 1.15 7 84.2.38 2.19 1.01.1.55.1.34.1.28.1.r4.1.:0-0187 0. 81. 0. 89 0. 93 0. 89 0. 8i 0. 91 1.03 L 48 1.30 1. 27 1.02 c. 99 1. 03 1.11 1.15 1.10.1.15 1.17 1.12 8.21 2. 4i 2. 26 1.5? 1. 04 1.00 0.87 0. 81 0. 78 0 85 o. 85 0.88 o. 91 0.88 0. 9c 1. 3: 1. 28 1. 01 0. 98 1.00 0. 99_1. 00 1.02 1. 04 1.11 1.13 8.97 2. 40 1. 01 1. 60 1. 48 1. 43 1. 27 1.07 1.01 0. 87 0. 81 r 0.82-0 87 0. 85 0.19.0.88.1.59.11§1.1.44- 1. 32.0.97. 0. 95 L 00 1. 02 1. 04 1.09 L 12 1.17 1.14 9.98 2.53 1.01 1. 69 -1. 09 1. 02 0. 87 0. 80- 0. 77 0. 72 0. 77- 0.8 0 0. 81 0. 82 0 66 L 49 1. 30 0. 9s 6 .93 0. 93 0. 92 0. 95 0. 98 1. 00 1. 01 1. 03 _.{0 82 2. 00 -L 03 E. 83.1. 47.1.20 1.25.1. 12 1.04 0. 88 0. 80 0. 7 9.80 0. 79 .84 0. 84 1. 54 1. 40 1. 42 1. 30 0. 96 0. 93 .0.9i.1.90_1. 05- 1.01.1100.1_17.1.1A11.48 2. 68-1.04 0.84 ........-_1. 39.1. 35 0. 90 .._ 0.71 0.08 0.72 L 19 1. 00 0. 88 .81 0.78 0. 73 0.72 0. 75 0. 74 0. 77 0. 60 _ _ .93.0. 91.0 .90 0.90.0-91 0. 95 0. 96-1. 00 14.99 3.05 1.14 .89 0.85 1.30 1.21 1.08 1.13 0.93 0.84 .12-o.79 1.10 1.80-1.35-1.24-0.97 0.94 ,9 3..34844(151.29 CSID'D‘D'DI' 0.92 0.93 0. 93 7 1. 00 1. 22 1.1835. 0.82.0.85-0 81.0..0.0.91.0.91.0.Bfi_1.85 0. 35-0.82 0 0119.0.84-- 1.01 1.00 1.59 1.37 11.90 1.00 1.13 1.17 0.76 0,78 0.90.0.96 1.40 1.56 5.80.1.05 1.07 1.10 0.77-0.73 0.92 0.90 1.55-1.21 0.82 1.48 1.01-1.18 0.80 0.75 5.93-0.91 1.12 0.90 1.00-- 1.17 1.41.. 1.14 0082.. 1.01 1.22-- 1.51 1.15-- 0.893 0.90.- 1.31 1.49-- 1.14 0.77 0.91 ..L.§Q.. 1.34 -1.1§.. 0.74 0.91.. 0.94 6 4 131.85.. 1.1. S -1...02.. 1.04 0.98 1. 04 1. 05 1. 07 1.35 L 07 1. 05 1. 05 1. 05 1. 05 1.04 1.00 0.99 ._.....-_.39. 59 5.17 1. 73 1. 25 1.10.0 98 0.20-1.80 0.85 0.80 0. 82 0. 92 0. 90 0. 89 0. 86 0. 85 0. 82 0.84 0. 84 1.18 L 10 1.05 1. 00 1.10 1. 07 1. 05 1. 03 1. 05 1.07 1 00 1. 05-1.05.1.01.1.01.1.00...... ..... - ....._ .—___. - - ._-_ ,._.__.___ H7H————.. _-__—__——- 155.1 03 1.4 0 1-08 1.04 1. .09 1.12 1. 09 1.14 1.15 1. 28 1. 21 1.18 1.14 1.33 1. ._____.___1. 34 1. 38 1. 41.1443 1.44.1.4921.5081.55 1.00 2.3 2 1. 1. 05 1.11 1. 04 1.60 1. 04 1.35 1. 08 1.17 1.09 1. 07 1.12 1.12 1. 38 1. 31 1 22.1 2L 1.31.1.28 L2LL2L132..L.81.1.35_ 1374.39.14.41 .1. 49.1.1.8. 3. 4- 3. 02 1. 01 2. 27 1. 75 1. 46 1. 31 1.80 1. 23 1.10 L 05 1. 08 1. 08 1.11 1.10 1.12 1. 09 1.14.1 14.1.64_1.54 1.44 1. 38 1.16 1. 31 1. 30 1. 29 1.31.- 1.33 1.37 1.39 1.41 1.42 1.53 1.52 4.92 4.43 1.26 1.00 1.92 1.58 1.40 ..._...._.1.27. 1. 29- 1.11.1.19 -1.11 -1.12.1.14 L 13 1.15 1.12 1.17-1.1? 1. 76 1.65- 1.53 1. 46 1. 39 1.36 1. 35 1. 34 1. 36 1.38 1. 42 1. 44 1. 46 1. 47 1. 61 1. 60 5.47 5 68-1.38.1.86.1.fin_1.61_1.46.1.36.1.31.1.15- 1.02.1.11.1 11.1251_. 1.12 1.14 L 11 1.15 1.16 1. 86 1. 73 59 1.51 1.35 1. 33 1. 32 1. 31 1. 33 ___.______4.35 1.38 1.41 1.43-1.43.1;5z.1.55 7. 62 6. 23 1.-1 L 15-1. 05 1. 00.1.53_.- - 1.36 1. 36 1.14 1.19 1.13 1.12 1.15 1.13 1.15 1.12 1.17 1.17 1. 21 1.16 ;i.66 1. 58 1. 32.1.36-1.35_1.34.1.36 1. 38.1.42 1. 44 1. 46 1. 46 1. 63.1.61... 10.34 7 ns 1. 59 1.18 1. 07 1. 60 L on 1. 40 1. 39 1.18 1.12 1.12 1.11 1.13 1.11 1 13 1.11.__1_.15.L1J.L_1_9.1_.L4.-_1.11.1.119_1."5 1.113.414.3124 31-1..-.2... 1. 34 1.37 1. 41 1. 41 1.42 L 59 1. 5611. 89 7 61 1. 69 1. 24 1.11 1. 03 1.02 L04 1. 43 1 21.1.14.1.13_1.12-1.14-1.13.1.14 1.11 1.16 1.16 1. 24.1.18 1.15 1.12 1. 33 1.35 1. 35 1. 33 1. 35 1. 37 1. 40 1. 42 1. 44 1. 45 1. 65 1. 62 47 03-4. 68-1. 3i.1.2fi.fi.24.8.20 -0-91 0. 89.1.20 1. 49 1. 29.1-19 1.13 1 33“ 1.10 1.11 1. 09 1.11 1.11 1.07 L 03 L 01 0. 99 1.41 1. 36 1. 34 1. 32 1. 33 1 35 1 35 1 35 1-37 1 37 1 86 1.79 .22_Z.62.1.73.1.2._1.12_1.02.J.JJ_._ 0.96 1. 03 1. 05 1.35 1. 23 1.16 1.16 1.13 1.13 1. 09 L 13 1.13 1.19 1.14 1 10.1. 07 1. 45.1.4fi_.1.34.1.35.1.32 L 36.1.37 1.68 1. 59 1. 39.1. 34.1.34- 3. 78 9 .20 L 97 1.40 1.22 1.10 1. 06 1. 01 1. 08 1.00 1. 00 1. 26 1.18 1.18 1 1?_L 16-1.12_1:16-1.15.1.28.1.22 1.12.1.14.1.49_1 43.1.41- 1. 39.1l39.__ 1. 3° 1. 41 1. 42 1. 43 1. 43 1. 41 1. 42 3 .8812.17 2. 29 L 56 1. 31 1.15 1.08 i 62 1 67 0 98 6 93.1.64 1-14 1 14.1.11.1.11.1.01.1.11.1. 10.1 31.1.21... .18 1.14 1. 21 1.19 1.19 1. 33 1.33 L 33 1. 35 1.35 1. 36 1. 36 1. 34 1. 34 ..._.._...5.4§15.24-2.81-1.82.1.4e.1.25.1.16_1.07.1.10_0.99-o.94.6;92-1.00.1.03.._ 1.13 1.12 1.08 1.11 1.16 1.42 1.53 1.25 1.20 1.16 1.16 1.16 1.16 1.17 1.2.2 1. 36 1. 36.1.36 1. 34.1.32 ..1.31. 6. 9217.223 .18 2.. 03.1. 62 .L 31.1.2.1— 1.10 L 11 o. 99 0. 93 0. 91 0. 95 1.00 0. 99 1.11 1.06 1. 09 1. 08 1. 47 1. 38 1.29 1 23 1 11 1.15.1 11 1 12.1 14 1 1z_1.2fi_1.22 1.341.32_1.32_1.31___ 8.19 3. 21 3. 56 2. 24 1. 76 1.43 1.28 1.15 1.15 1. 01 0. 96 6. 94 0. 90 0. 99 _._______.1.00 1. 62 1. 08 .11.1.1fi.1.56.11.46.1.:6.1.30_ 1.16 1.13.1.13 1.12-1.13... 1.18 1. 22 1. 24 1.25 1 34 1.35 1. 34 9. 55 3. 27 3. 96 2.45 1. 89 1. 51 1. 33 1.18-1..17.1-02.E.95.0. 94.8.28.6.89- c. 95.1.00 0. 98 1.10.L 08 1. 63.1.52... - 1. 41 1. 34 1.15 1.12 1.11 L 10 1.10 1.12 1.18 1. 21 1. 23 1. 33 1. 34 1. 32 _________51.32_3.52.4.46_2.12.2.81.1.64.1+43.1. 25_1.23.1.86.2.22_fi.9Z.fl.33.8422___ 0. 88 0. 99 1. 01 1.14 1.12 1. 76 1. 63 1. 51 1.43 1.19 1.16 1.15 L 13 1.14 ____.____.1.16 1.18 1.24 -1.26 1 28.1+AD~143913.46.3.57_ 4.18 2.94 2.20 1. 22.1.97“ 1. 26 1. 22 1.04.97 0. 95 0. 91 0.09 0. 86 0. 84 0. 92 1.00 L 00 1. 81 1. 68 1. 5.1 45 1. 1-4.1.114 15.1.89_L10 1.11-143 1. 14 L 221. 22 1.35.1.33.. 15. 97 3. 77 3. 33 3. 23 2. 38 1. 82 1. 55 L 32 1. 26 1. 06 o. 99 5. 96 0. 92 0. 92 .n 88 6 86.0.82_n..5_1+06.1.92.1.11_1.62.1.52.1.15.1.12_1.11.1.18_1.10.__ 1.14 1.13 1.14 1.15 1. 20 1. 38 1. 3534. 02 5. 57 1. 46 1. 06 g. 97 0.89 2.10 1 84 1. 61.-1. 23-1.16 1. 03.0.98.6.97 0. 95.0. 95 0. 93 0. 95 E. 95 1. 00- 1.93— 2.18 1. 99 1.18 1.13 1.12 1.10 1.10 1.10 1.12 L 12 1.13 1.13 1. 53 1.47 57 54 6 .52 1. 61 1.15 1. 64.6.34._2. 19 1. 92.1.66 1. 26 1.12.1. 05 0. 99.0. 92... 99 0. 97 0. 94 fi. 97 0. 97 1. c4 1. 00 0 .96 2. 04 1.19 1.15 1.14 1.12 L 12 w3.1.14.1.15.1 16.1.56.141221LMQ_Z.22.1 69.1.28.1.0Z_ 0. 96.8.25_ 1.73 1. 69 1. 27 1.13 1. 06 1. 00 1. 00 0. 98 0.98 n. 95 0.98 5.98 1. 08 1. 04 __......_.1.00 0. 98 1. 22 1.18.1.16.1..14-1. 14 1.14-1.16 1.16 1.17 1.18 L 61.1.28... 24.40 8 .10 1. 83 1.28 1.13 1. 00 0. 97 L 80 1. 73 1.30 1.16 1. 07 1. 01 1 01 0.99 0. 99 0. 96 n. 99 0. 99.1.12.1. 07 1.02 1.00 1. 23 1.19 1.17 L 15 1.15“ 1.16 1.17 1.18 1.18 1.19 1. 63 1. 5610. 45 3.05 2. 63 2. 31 2.12 1. 61 1.43 1.19 1 12- 0 21.6.86.0.88.1.21.1.0..1..1.n.22_0 94.8..2_L.94-1.18.1.21... 1. 49 1. 36 1. 01 n. 97 0. 97 0. 96 0. 96 1.16 1.18 1.16 1.14 1.12 1.16 1.13 _........io. 08 3. 31 2. 67.2.34.2.1i.1.61.1..42 1.12.1,14 0. 96.9. 88 .0. 87_ o .88_1.05 01—1.05 1.07 1.11.. 31 1.30 1.30 1.31 62-1035 ll18 i012“..- ———~—_”~— 1.02 1.60 0.95 5 .97 o. 95-1.7921.63 1.50 1.45 1.03 1.00 6.99-0.96 0.99-- 1.14 1.17 1.19 1.17 1.14 1.20 1.1710.65 3.41 2.90 2.09 2.21 1.68 1.47 ._____111 1. 23 1.17 0.95 0.991n.an 0.68.1.0011.01_1.01 0.99 0.97 0.96 1.87 1.69-- 1.56 1.44 1.02 1.01 1. 00 0.99 1. 00 1.11 1.13 1.17 1.19 1.15 1. 22 1.19 11. 39.3-52 3. 01 2.19_2105 1. 75111§3_1127 1. 21 01.99. No.91 1 05 W0109 01.90 0. 97 1.93 0. 97 n. 9e o. 97 1.95 1. 76 1. 62 1. 5o 1. 04 1. 00 L 01 1.00 1.01 __.____11.1.02 1.14 1.19 1.19 -1.16 1. 24 142111.92 3. 59 3.20 2. 00 .13 1. 51 1. 5? 1.29 1.22 1. 01 6. 91 0. 86 0. 99 0.89 0. 97 1.00 0. 97 0.98 6.96 2.01 1. 81 ________1 1.66 1.53 1. 03 1.06.1. 01 1.10.1.00 1.21 1. 01 1.13 1.17 1.16 1.25 1. 21 {3. 21 3 71 1.19 2.16 1. 97 1. 93 1. 66 1. 35 1. 25 1. 02 0.92 c. 96 0.85 0. 89 n 81_6 95 0.91.1123_¢196.119°.1193_1126 1. 6111.01 0. 99.i.9a_1.97 0. 99 1. 0C 1. 02 1. 05 1.11 1.15 1.27 1. 2314. 92 3. 88 1. 22 2. 33 1.96 1. 83 1. 75 ._____~_1-1.40 1. 28 1. 03 E. 93 o. 37 0. 00 0. 84 0. 95 0. 86 0.90 0.95 5.94 2.04 1.831_ 1.89 1. 69 1. on 0.97 0. 96 0. 94 0. 97 0. 99 1.00 1.01 1.02 1.09 1.29 1.24 .._.____»16. 35 4. 03 1. 25 0.96 1199.1 68 1. 67 1. 47. 1. 33 1.05 0.99 0.88 0.81 0.811“ 0. 81 0.85 0. a3 0. 91 6. 92 1. 59 1. 7c 1. 77 1. 61 1. 01 0. 99 6. 96 0. 94 0. 94 ______.___n .9§_1;9711-05 1.11.110511132.112111.80 4.19.1.29 0. 99 2113.1 60- 1.11.. .54 1. 38 1. o5 g. 96 g. 09 0. 92 0.79 0. 91 0. 86 n. 92 0. 83 0.99 1. 60 1. 62 _________L1.6911.7o 1.02 n.9a,g19610.94 0.94.3.94ho.97.0.9711.00 1.01 1.35 1.29_m 23.25 4.89 1.45 1.06 0.99 1.96 1.61 1.41 1.51 1.15 1.01 0.92 0.85 0.82 .—————~—_m0. 75 0. 75 0. 7s a .23 0.91 1.23 1. 81.1.67 1. 52 1.04 1. 01 E. 90 c. 96 0. 96“. 0. 9’ 0. 95 0. 94 n. 97 1. on 1. 42 1. 3555. 01 7. 56 2.13 1. 47 1. 33 1.11 1.08 0.95.0;94 0 as.1111_1403_11.32_0.96_L1£1.0. 90- 0125.0. 66.;.05_1123_1.11__ 1.10 1. 05 1.15 1.11 1.14 1.10 1.13 1.09 1. 07 1.05 1. 04 1.01 1.00 0. 98 _____._“152.26 8.51 2. 21 1.55_i.4h 1.16 1.12 0.98 0. 96-0. 87 0. 91 1. 06 1. 01 0. 92.- o. 93 0.91 0. as n. 96 o. 86 1. 28 1.19 1.14 1.08 1.19 1.15 1.11 1.08 1.12 1.1;_1-10 L 02-1.05_1+03.1..02.1.09 __-— —.—_.- --.__ . ----__.—__ MICHIGAN STATE UNIVERSITY LIBRARIES 0 3014 8687 3 1293 Mf‘w «A 'f.""‘"~ -a‘, w. -— ‘ , - "~)- ~., b‘.~i _7_ , L