

DESIGN OF FLEXIBLE TEST ENGINE

THESIS FOR THE DEGREE OF M. E. ELWOOD K. HARRIS

1946

T6:1.4 H 2:2

.

DESIGN OF FIEXIBLE TEST ENGINE

Вy

Elwood K. Harris

A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MECHANICAL ENGINEER

Department of Mechanical Engineering

TABLE OF CONTENTS

Introduction
Specifications
Cylinder Head Design
Overhead
Ell Head 6
Breathing System General 8
Valve Operating Mechanisms
Variable Timing
Variable Duration
Variable Lift
Cylinder Elevating Mechanism 14
Inertia Forces of Reciprocating Parts 16
Primary Inertia Forces
Secondary Unbalanced Forces
Appendix
Indicator Card
Cylinder Head Designs
Movement, Velocity Acceleration and Inertia Force Graph for
Reciprocating Parts
Typical Balance Weight Computation Primary and Secondary
Graph Camshaft Angle Versus Drive Gear Angle
General Design Layout

INTRODUCTION

Instruction in the internal combusion engine field is complicated by the number and idiosyncrosies of the numerous component parts. In contrast to electrical engineering where the units follow a given pattern accurately and can therefore be predicted by mathematical expressions including the calculus, the effect of changing a single adjustment of an engine is difficult enough to forecase accurately and may be entirely different when made in conjunction with other improvements in design. The one real way to find out whether a unit will perform as desired or not is to try it. As a matter of fact, the early "automotive engineers" were simply individuals who took the time and effort to build a number of engines and automobiles. After several failures, it was quite evident that certain features were good and others bad. Mr. Kettering's advice often is to ask the question "What does the engine think about it?"

At times, accidents resulting in the destruction of valuable experimental equipment serve a useful purpose in subjecting our formulas to the ultimate test. As an example of this, water got into the combustion space of an experimental engine without the operator knowing anything about it. This particular engine had individual cylinder heads which usually are torn loose from the cylinder block when an incompressible fluid such as oil or water fills up the combustion space. In this case, however, the crankshaft was broken into many pieces when the engine was turned over to start in the usual manner, indicating to the engineer in charge that his analysis of the

crankshaft did not agree with complete factual data.

Granting that the experience gained by building, testing and discarding engines has constituted the training of many engineers in positions of importance in the industry, limitations of time and expense rule out this elaborate method for the large numbers of beginning engineers needed to keep increasing the comfort, economy and safety of automobile transportation. We need a faster and cheaper yet highly efficient system suitable for "mass production" at least in comparison with the method outlined above.

The curriculum for such a program should include technical engineering subjects to create a background of knowledge by which the size and arrangement of various units may be determined; but even more important, practical problems dealing with the actual operation of engines and automobiles. Technical data on a printed page is useful only to the extent that it is applied in such a way as to become an integral part of the reasoning process.

Two types of instruction are very important in assisting the student to create vivid sensory impressions associated with textbook information:

- 1. Establishing engine performance under stated conditions on the dynamometer.
- 2. Studying the effect of operating variables on engine performance by using special test engine equipment, and an electronic indicator.

The latter method has not been utilized sufficiently in many programs and deserves serious consideration in course planning.

This enables the student to set up a development program for changing the performance of the engine, estimate the result on the basis of technical information available, and then find out for himself by personal observation just what actually does happen.

Such instruction has been a part of the curriculum in the design of engine and chassis units at General Motors Institute for a number of years but has been limited by the available equipment to the following types of tests:

Variable speed.

Variable load.

Variable compression ratio.

Variable spark advance.

Suggested test demonstrations possible with suitable equipment are:

Effect of spark plug location and multiple plugs firing simultaneously on rate of pressure rise.

Effect of valve timing and duration upon the power peak speed.

Investigation of possible air/fuel ratios especially with lean mixtures.

Performance possible with new "super fuels."

Possible saving in fuel consumption by varying valve timing with load.

The purpose of this paper is to set forth the specifications and design suggestions for a single-cylinder test engine with which this instruction may be accomplished.

SPECIFICATIONS

Specifications for possible changes in the engine operation to be made while it is running.

Compression ratio from $3\frac{1}{2}$ to 15 to 1.

At least 2 indicator holes (18 mm.) and spark plug hole.

Opening for 4 or more spark plugs and 2 indicators.

Variable valve lift.

Variable duration of valve opening in camshaft degrees.

Variable timing for inlet and exhaust valves.

Adjust either valve by itself.

Because of the vibration inherent in a single-cylinder engine, balancing of reciprocating forces is recommended.

CYLINDER HEAD DESIGN

Overhead

High compression work is almost necessarily done on a valvein-head type of cylinder arrangement since the valve space in an ell head limits its maximum ratio to about 10. Most laboratory engines of this type have a flat, cylindrical space as shown in Fig. 1.

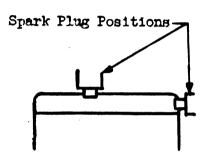


Fig. 1

Even with a central spark plug location the area to volume relationship is higher than normal, and when using the side plug location (which is often done) the flame pattern is distorted so as to be virtually useless for investigating

the performance of conventional engines.

Following this line of reasoning, the first trial is illustrated in Fig. 2. The domed head permits a normal flame propagation with centrally located spark plug. Four other openings are provided - exhaust valve, inlet valve and two 18 mm. indicator holes. Because

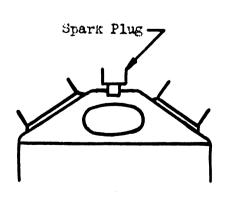
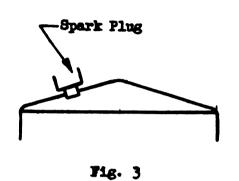



Fig. 2

of the space occupied by the spark plug, the valves were small by comparison with similar engines but since the maximum ratio was 12 to 1, this design was discarded. (See appendix for layout of this chamber space.)

The design finally adopted is a compromise. The head is slightly domed as illustrated in Fig. 3 with valves of reasonable size. With this arrangement it is not possible to put the spark plug in the center of the space, therefore it is located as nearly there as possible. This gives a 15 to 1 maximum ratio easily, but there is

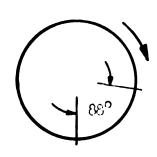
openings. The solution arrived at is illustrated in the appendix and consists of a small connecting passage from the combustion chamber to the two 18 mm. openings.

This chamber permits reasonable flame propagation patterns with varying ratios and is superior to any now in use. The maximum value (15 to 1) is just barely sufficient to test the latest fuels under best conditions. Pure triptane has a critical compression ratio of 15 to 1, but to test this fuel with added tetra ethyl lead, it is necessary to supercharge the cylinder.

Ell Head

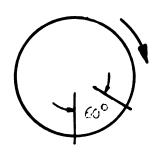
While limited insofar as maximum compression ratio is concerned, this arrangement lends itself very easily to investigation in the area of flame propagation. The proposed design allows for four 10 mm. spark plug openings and two 18 mm. indicator openings. Maximum ratio from the preliminary layout was 10 to 1, but an increase in the height of the valve chamber is suggested so that the cylinder will breathe better with maximum ratio about 9 to 1. (See the general design layout for further information.)

These two designs will satisfy all of the requirements and are easily interchanged. The valve mechanism is designed purposely to allow a small variation in assembled dimensions by using the hydraulic valve lash adjuster.

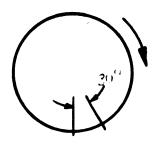

BREATHING SYSTEM -- GENERAL

The breathing system of an internal combustion engine is vital in assuring good power output and economy as installed. The usual development program in this area is to make several experimental camshafts and try each under varying conditions until the best apparent combination is selected. Adjustments in timing are very coarse since the gears or chain sprockets must change to the next tooth unless a special driving hub is provided with three keyways indexed to split the tooth space into equal parts. This cut-and-try process is exceedingly time-consuming and expensive. An experimental camshaft, for example, costs several hundred dollars.

This means that only a few in the engineering department even have the opportunity of working out a problem of this sort and then only seldom since the expense is so great. For students in school a series of camshafts would be expensive and their use inconclusive since the timing change affects both valves at the same time and one is never <u>sure</u> whether the effect noted is due to one, the other, or the combination. The proposed specifications create an opportunity of changing any part of the valve movement for either, separately, while the engine is running, so that the actual effect may be noted. As Mr. Kettering so often says, we <u>think</u> that we know why a given mechanism performs as it does, but the only way of finding out for sure is to test it. As mentioned earlier, a typical assignment would be to set specifications similar to a commercial engine designed to operate economically at low speeds and establish


the characteristics including power peak. Then by changing specifications to those for a high speed automotive-type engine the effect is shown clearly. Carrying this farther, we know that the mechanism

į.,


High Speed Diesel Exhaust Valve Timing

F12. 4

Automotive Type Engine Exhaust Valve Timing

Fig. 5

Industriel Engine Exhaust Valve Timing

Fig. 5

adopted about fourteen years ago for adjusting the spark advance according to load increased the fuel ecnomy about 10% at small initial cost. We also know that present engines are designed to give maximum output at high speeds with reasonable economy at ordinary speeds. This means that the exhaust valve opens considerably before bottom dead center so that the products will have a chance of escaping in the short time available. The two-cycle diesel is an extreme example of this with the exhaust valve opening 88° early which literally wastes the energy still in the fuel at that point. Four-cycle engines do not need quite so much time, and the usual exhaust valve opening is 50-70° before bottom dead center in the high-speed automotive type. Slower speed engines open their valves later and are therefore able to utilize more of the energy stored up in the gases after combustion.

In addition to this point, while the engines are designed to operate on full load at high speed, in an automobile the load factor is usually one half or less which imposes a completely different set of conditions on the engine from those on which the design was based.

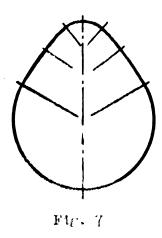
Assuming that the economy of engine operation in an automobile at constant speed on a level load, especially at low speeds, would be increased by allowing the products of combustion to expand as far as possible by opening the exhaust valve later, the following questions are important:

- 1. What increase in economy will result from the proposed installation?
- 2. How much will it cost per car?

The proposed design makes possible a laboratory demonstration of this problem to check the hypothesis and answer the first question.

It should be noted, however, that the inlet valve operation must be unchanged and the exhaust valve closing remain constant. This is done by altering the timing and the duration until the opening and closing events occur at the desired interval. A later valve closing changes the scavenging of the cylinder which may or may not affect the engine output.

Following the same line of reasoning, the power output is limited mostly by the inlet valve timing and duration. While we want the breathing capacity to be maximum at all times, it may be that optimum operations at half speed and load actually dictate completely


different specifications. These we do not know at present except by opinion, since no one has tried it so far as the writer is aware.

VALVE OPERATING MECHANISMS

Production valves were selected for both arrangements for ease of procurement, and cam dimensions are established by the ell head design since the follower operates directly upon the can with no rocker arm as is the case with the overhead design. The valve sizes are 1 7/8 inlet and 1 5/8 outlet with 5/16 lift.

This is a modification of the 3-curve cam as usually designed consisting of a nose radius, with an involute and a radial flank blending to the base circle. (See Fig. 7.)

This cam is characterized by rather high initial accelera-

tion on the radial flank, decreasing to zero on the involute flank then decelerating at nearly constant rate. (See Fig. 8 and the Appendix for a more complete analysis of inlet and exhaust cams.) It is noted that there is a short ramp on this cam, much less than

is common with fixed lash adjustment. When using the hydraulic lash adjusters, it is usually recommended that the ramp be very short or eliminated altogether.

Variable Timing

The proposed mechanism

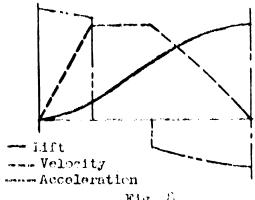


Fig. 8

for altering the angular relationship between crankshaft and camshaft utilizes one of the most common gear forms. With the worm in a given position, lengthwise, the angular velocity of the camshaft is exactly

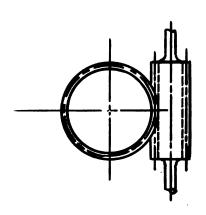


Fig. 9

proportional to that of the crankshaft. To change the angular relationship simply move the worm
lengthwise in its bearings. This
advances or retards the camshaft
as desired. With a 4-cycle engine
having a ratio of crankshaft to
camshaft of 2 to 1 and a quadruple
worm, it is necessary to turn the

worm at twice engine speed. The gears will probably be noisy but in combination with the geared balance weights should not be objectionable.

Variable Duration

Any one of several quick-return mechanisms is suitable for

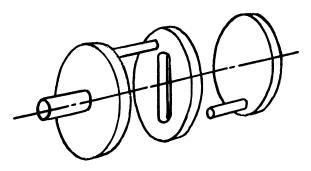


Fig. 10

increasing or decreasing the duration of valve opening while the engine is running. The one selected consists of a driving flange and pin, driven flange with pin 180° from the former, and

a link which rotates about its own axis and may be offset from the

axis of driving and driven flanges. With the link "on center," motion is transmitted uniformly from driver to driven, but when off-set up the driven member has a non-uniform motion, faster in the upper position (opposite from that shown) and slower in the one shown.

Graphical layout and maximum non-uniformity are illustrated in the appendix.

Variable Lift

The conventional pivoted lever is used to vary the valve lift from 25% over that of the cam (to 3/8 total) and decrease to

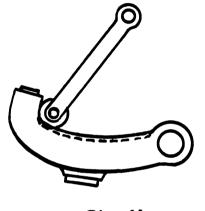


Fig. 11

about 30% of the actual maximum lift or one eighth inch approximately. This enables the operator to vary the breathing capacity simply while the engine is running by increasing or decreasing the valve lift.

Cylinder Elevating Mechanism

Engines of this type usually use a worm or thread arrangement for raising and lowering the cylinder with respect to the piston, and differences are in the locking device used. A positive lock as shown in the illustration is preferred. Using four sets of right and left hand screws, each one opposite, and driving from a pair of gears, worm "A" turns opposite from worm "B" but since threads A, B are themselves opposite, the upper casting moves up or down with respect to the lower. By turning A alone, the two screws

are opposed and the set locks in a given position.

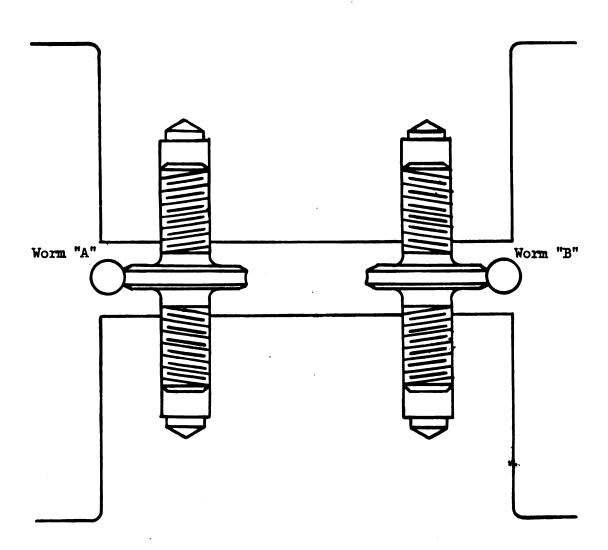


Fig. 12

INERTIA FORCES OF RECIPROCATING PARTS

Movement of the piston by a crankshaft and connecting rod

$$S = L + R - 1 \cos 0 - R \cos \theta \tag{1}$$

$$L^2 = R^2 \sin^2 \theta + L^2 \cos^2 \theta$$

$$L \cos 0 = /L^2 - R^2 \sin^2 \theta$$

substituting back into equation (1)

$$S = R - R \cos \theta + \frac{L}{R} (1 - \sqrt{1 - \frac{R^2 \sin^2 \theta}{L^2}})$$

or approximately
$$S = R(1 - \cos \theta) + \frac{R}{4L}(1 - \cos 2\theta)$$
 (la)

Velocity =
$$\frac{d\theta}{dt} \cdot \frac{dt}{d\theta} = Rw \left(\sin \theta + \frac{R}{L} \sin 2 \theta \right)$$
 (2)

Acceleration =
$$\frac{dv}{d\theta} \cdot \frac{d\theta}{dt} = Rw^2 (\cos \theta + \frac{R}{L} \cos 2 \theta)$$
 (3)

Inertia Force =
$$\frac{\mathbf{W}}{\mathbf{g}} \operatorname{Rw}^2 \left(\cos \theta + \frac{\mathbf{R}}{\mathbf{L}} \cos 2 \theta \right)$$
 (4)
= .0000 284N²WR (cos $\theta + \frac{\mathbf{R}}{\mathbf{L}} \cos 2 \theta$)

PRIMARY INERTIA FORCES

The R ratio for this engine is $\frac{2.25}{11}$ = .2045. Working the L 11 problem in pound units at 2500 rpm the primary inertia force is F = .0000284 N²WR cos θ with maximum value at 0°.

Maximum value $F = .0000284 \times 2500^2 \times 3.75 \times 2.25 = 1500$ lbs.

Equal and opposite forces are introduced by attaching reciprocating weights to the crankshaft by means of short connecting

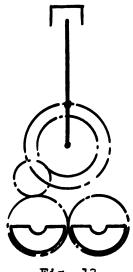


Fig. 13

rods and an eccentric, or pairs of counterrotating unbalanced weights which create a simple harmonic force in a vertical direction equal and opposite to the disturbing force.

Horizontal forces are equal and opposite therefore cancel each other.

Since the primary is by definition the component part of the total piston motion which is a simple harmonic motion at crank-shaft speed, the force exerted by the two

weights will always be equal to the disturbing primary and opposite in direction. These weights must be located immediately beneath the piston or, using two sets or two gears each, so that the resultant force will be. (See appendix for further analysis and sample computation of weights.)

SECONDARY UNBALANCED FORCES

From inertia force equation (4) the expression for secondary inertia force is

 $\mathbf{F} = .0000284 \mathbf{N} \mathbf{W} \mathbf{x} \mathbf{R} \left(\underbrace{\mathbf{R}}_{\mathbf{L}} \cos 2 \mathbf{\theta} \right)$

In this instance the secondary force amounts to

 $F = .0000284 \times 2500^2 \times 3.75 \times 2.25 \times .2045 \cos 2 \theta$ with a maximum value when $\theta = 0$ or $180 F_0^0 = 306 \%$.

These forces are opposed by two sets of counter-rotating weights driven at twice crankshaft speed and disposed so that their resultant force is equal in amount to the disturbing secondary but opposite in direction.

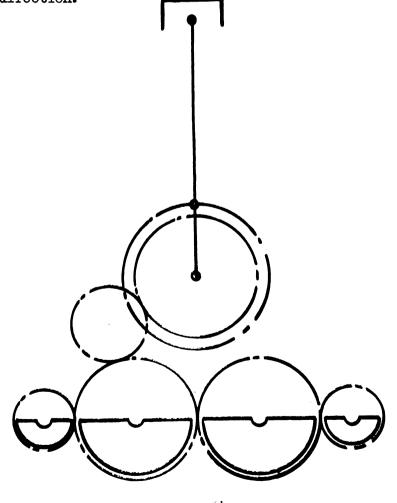
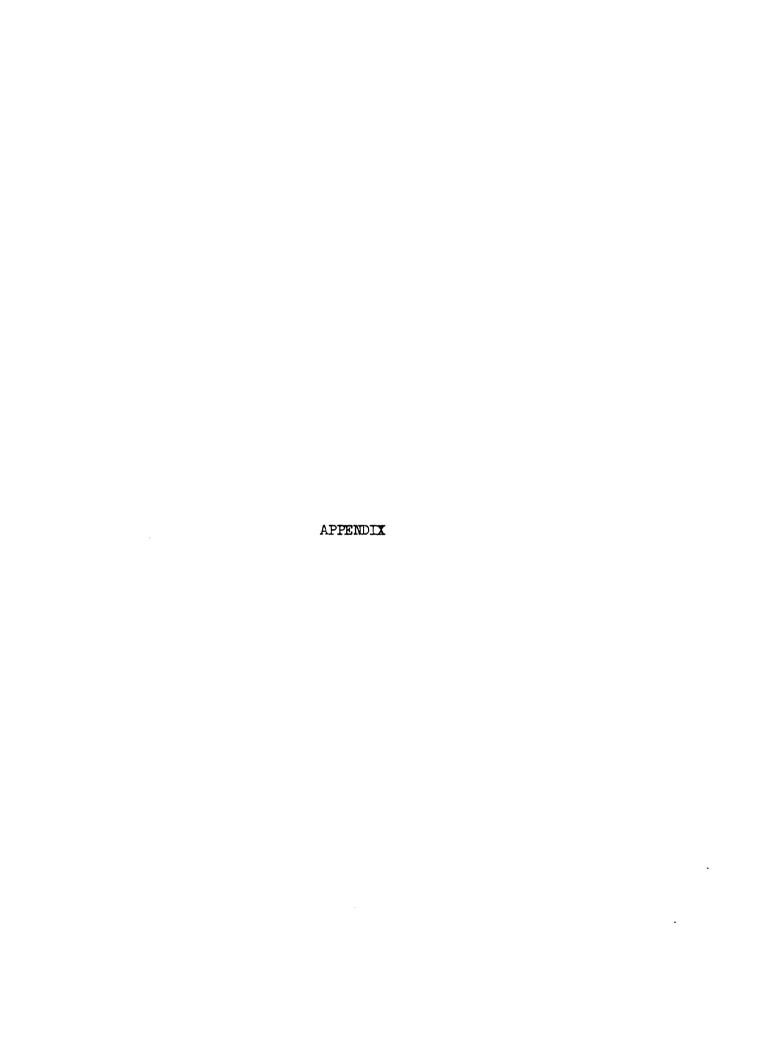



Fig. 14

Diagram for primary and secondary balance weights.

 8.29 in^2

C. Ratio	Clearance in ²	Clearance @ 3½ Dia.	Less •521
15	2.66	•321	0
14	2.87	•346	.025
13	3.11	•775	.054
12	3•39	.409	.088
11	3•73	•450	.129
10	4.15	•5	.179
9	4.67	•554	• 233
8	5•33	.641	• 320
7	6.22	•75	•429
6	7.46	•9	• 579
5	9•33	1.125	.804
14	12.42	1.5	1.179
3-4	14.9	1.8	1.479

for 15/1 clearance = 2.66 in³ (37.3)

subtract 1.94 leaving .72 in3

@ 3.3125 dia. .72 in^3 corresponds with

.72 area = .084

.

•

•

•

.

•

,

.

•

.

.

•

•

•

	V _x (in.)	5.14286 V _x	() ^{1.33}	X 12	v_x/v_3	50/ () ¹ •38 ⁵⁷⁰	0/()1.28
0	.64286	8	15.9	191	1	1	570
2	.64451	7-97	15. 8	189.8	1.0025	1.003	569
4	. 64946	7.91	15.6	187.2	1.0104	1.0134	563
6	.65766	7.81	15.45	185.5	1.022	1.0283	555
8	.66926	7.69	15.1	181.2	1.04	1.0515	542
10	. 68396	7.51	14.6	175.2	1.064	1.0826	526
12 <u>1</u>	.70 696	7.26	14	1 68	1.1	1.1282	506
1 5	•73486	7	13.3	1 59 . 8	1.143	1.1867	481
17 <u>1</u>	.76786	6.69	12.5	1 50	1.195	1.254	455
20	.80566	6.36	11.7	140.5	1.257	1.34	425
25	.89436	5•75	10.25	123	1.39	1.525	374
30	1.00186	5.14	8.82	106	1.56	1.766	323
35	1.12586	4.56	7•77	93.4	1.752	2.05	278
40	1.26486	4.06	6.45	77.4	1.97	2.382	239
45	1.41786	3.63	5•55	66.5	2.2	2.75	207
50	1.58186	3.24	4.78	57.4	2.46	3.16	180.3
60	1.94286	2.64	3.635	43.6	3.024	4.13	138
70	2.32286	2.21	2.87	34.4	3.62	5.2	110
80	2.72486	1.881	2.32	27.8	4.25	6.39	89.4
90	3.12480	1.64	1.93	23.2	4.865	7.6	75
100	3.50886	1.465	1.663	19.9	5.46	8.8	64.8
120	4.18686	1.228	1.314	1 5.8	6.5	11	51.8
140	4.70286	1.09	1.123	13.5	7.31	12.8	44.6

V _x (in.)	5.14286 v _x	() ^{1.33}	X 12	v _x /v ₃	750/() ^{1.38} 570/()1.28
160 4.94286	1.04	1.0535	12.7	7.68	13.6	42	
180 5.14286	1	1	12	8	14.3	40	

Assuming ratio of 8/1 decreases, inches = $\frac{4.5}{7}$ = .64285

Assume P_L = 12 psi abs.

$$P_1 V_1^n = P_1 V_x^n$$
 $P_x = P_1 (\underline{v_1})^n$

$$P_{3}v_{3}^{n} = P_{x}v_{x}^{n}$$

$$P_{x} = P_{3}(\underline{v_{x}})^{n}$$

$$\overline{v_{3}}$$

Use
$$n = 1.33$$
 compression

$$P_{\mathbf{x}} = P_{3} \left(\frac{\mathbf{v}_{\mathbf{x}}}{\mathbf{v}_{3}} \right)^{n}$$

1.29 expansion

2500 rpm 208.73 x 2.500 x 2.25 = 49.1

	l cos θ	Sin θ	Sin 2 0	x K	S Factor	RX Factor _ Stroke
0	0	0	0	0	0	0
2	.00061	•0349	.00122	.0001248	.000735	.00 1 65
4	.00244	•06976	•00486	.000497	.002937	•0066
6	.00548	.10453	. 0 1 09	.001115	.006595	.0148
8	•00973	.13917	.0194	.001985	.011715	.0264
10	.01519	.17365	.0301	•00308	.01827	•0411
12 <u>1</u>	.02370	.21644	•0469	•0048	.0285	.0641
15	•03407	• 25882	.067	•00685	.04092	•092
17 <u>1</u>	.04628	.30071	•0902	•00923	•05551	. 1 25
20	.06031	.34202	-117	.01197	• 272 28 •	.1 628
25	•09369	.42262	.178	.0182	.11189	· 25 1 5
30	.1 3397	•5	•25	•0256	. 1 5957	• 359
35	.18085	•57358	•328	•0335	.21435	•483
40	•23396	.64229	.413	.0422	.27616	.622
45	•29289	.70711	•5	.0511	• 34399	•775
50	•35721	.76604	•589	.0602	.41741	•939
60	•5	.86603	•75	.0766	• 5766	1.3
70	. 65798	•93969	.88	•090	•74798	1. 68
80	.82635	.98481	•969	•099	•92535	2.082
90	1	1	ı	•1055	1.1022	2.482
100	1.1 7365	98481	•969	•099	1.2 7268	2.866
120	1.5	.86603	•75	.0766	1. 5766	3.544

	l cos θ	Sin 0	Sin 2 0	I K	S Factor	RX Factor Stroke
140	1.76604	.64279	•413	•0422	1.80824	4.06
160	1.93969	.34202	.117	.01197	1.95166	4.3
180	2	0	0	0	2	4.5

Assuming ratio of 8/1 decreases, inches $\frac{4.5}{7} = .64285$

Assume $P_L = 12$ psi abs.

$$P_1V_1^n = P_xV_x^n$$
 $P_x = P_1(\frac{V_1}{V_x})^n$

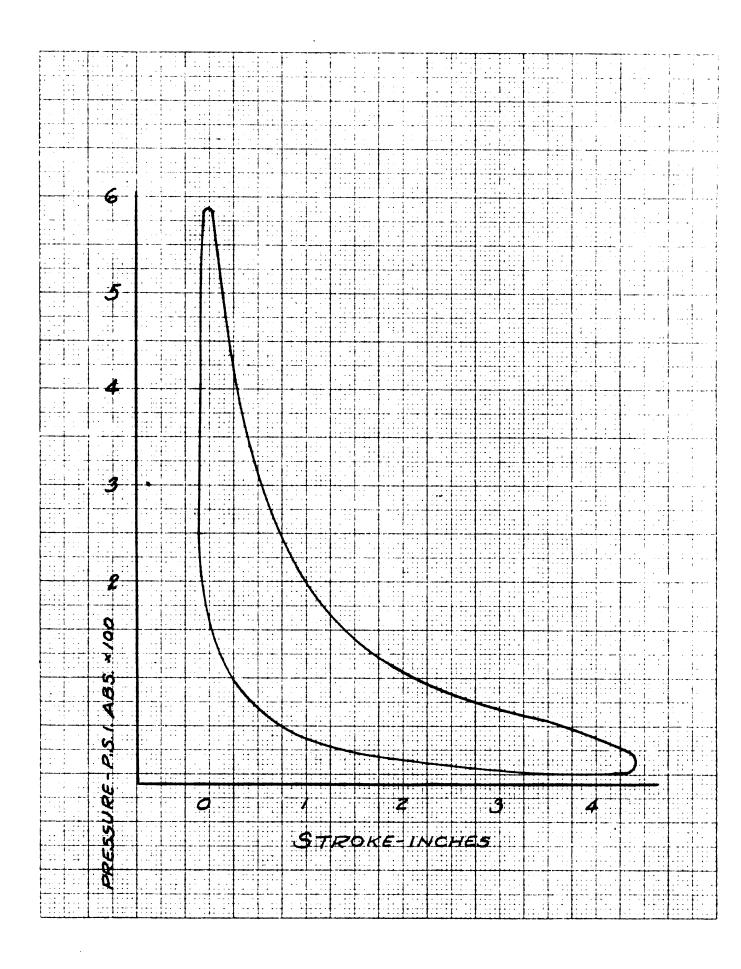
Use n = 1.33 compression

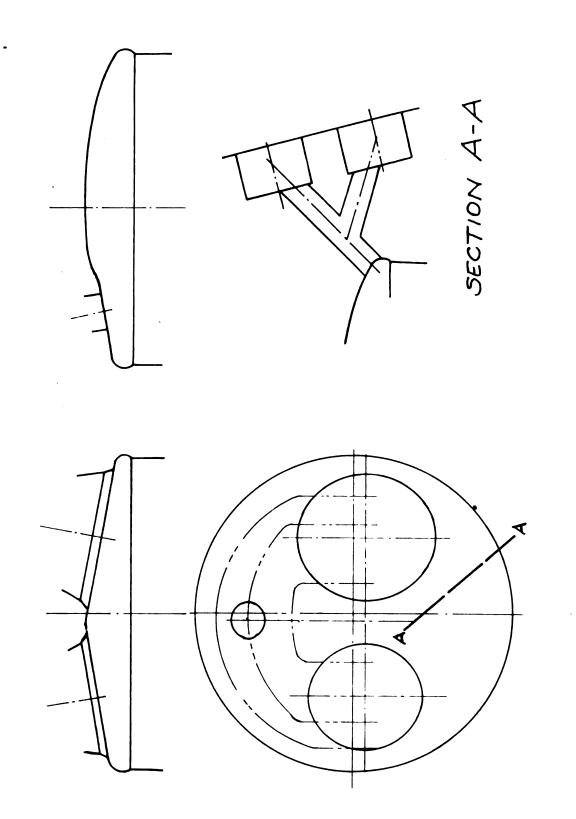
 $P_3 V_3^n - P_x V_x^n$ $P_x = P_3 + (V_x)^n$

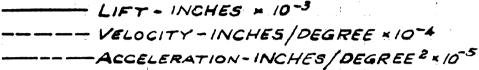
1.29 Expansion

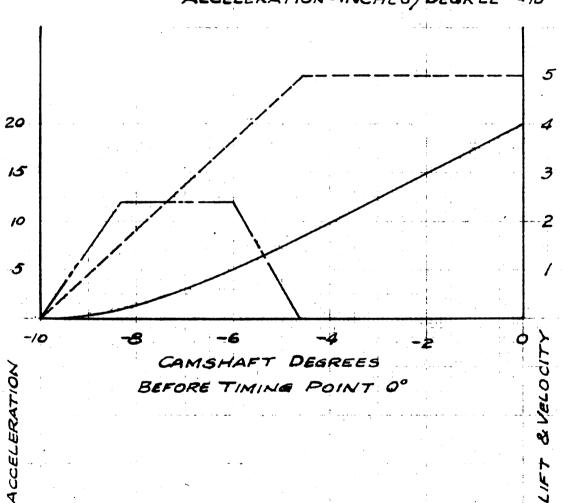
•					In Force0000	0000284 N WR(cos 0 + K cos 2 0)	K COB 2 8	•
	Sin 2 0	X • 1022	Sin 0	Vel Factor	1 1	Cos 2 0	XX	Cos 0
0	0	0	0	0	0	H	. 2045	н
a	92690•	4I700.	.03490	40240.	2.06	95156	.102	.99939
4	.13917	.01425	96290•	.08221	†0 °†	12066•	.1012	.99756
9	.20791	.02125	.10453	.12578	92.59	.97815	. t.	.99452
8	.27564	:02817	.13917	.16734	8.21	.96126	1 860•	.99027
o r	.34202	.035	.17365	. 20865	10.24	•93969	960•	.98481
121	.42262	.0436	.21644	.26004	12.78	•09631	.0928	.97630
15	ı,	.0511	. 25882	• 30992	15.2	.86603	.0886	.96593
$17\frac{1}{2}$.57358	.0586	.30071	.35931	17.62	.81915	.0837	.95372
8	.64279	•06565	.34202	19204.	8	10991.	.0785	.93969
25	16604	.0785	.42262	.50112	24.6	61249.	.0657	.90631
30	.86603	•0886	ı,	• 5886	28.85	i,	.0511	. 86603
35	•93969	960•	• 57358	• 66958	32.8	.34202	•035	.81915
2	.98481	1008	64270	74350	36.45	17365	27710	10992

	Sin 2 0	Sin 2 0 X 1022	Sin 0	Vel Factor		Cos 2 0	X K	Cos 0
\$±2	н	.1022	.707.	.80931	39.7	0	0	.1071
ß	.98481	.1008	£099L.	18998	42.6	19081	0195	· 64279
8	.86603	9880•	.86603	.95463	46.8	·	0511	ř.
70	.64279	•06565	• 93969	1.00534	ग •6ग	 76604	0785	.34202
75	ِر ن	.0511	.96593	1.01703	8.64			
8	.34202	•035	.98481	1.0198	50•	93969	960*-	.17365
85	.17365	.01776	.99619	1.01395	L.64			
8	0	0	н	ť	1. 64	.	1022	0
300	34202	035	.98481	18646.	46.5	93969	960*-	17365
120	866	0886	.86603	•7743	38	5	0511	.5
130	98481	1008	10992.	48999	32.8	17365	01775	64279
140	98481	1008	.64279	.54199	56. 6	4.1 7365	4.01775	1 099L•-
150	866	0886	·	4114.	20.2	+. 5	+. 0511	86603
160	64279	06565	.34202	.28637	14.08	₩2991•	4. 0785	93969
170	34202	035	.17365	.13865	6.8	6 93869	960.+	98481
172	27564	02817	.13917	.11	5.45	4. 96126	.0985	99027
	Section 1	The second secon						

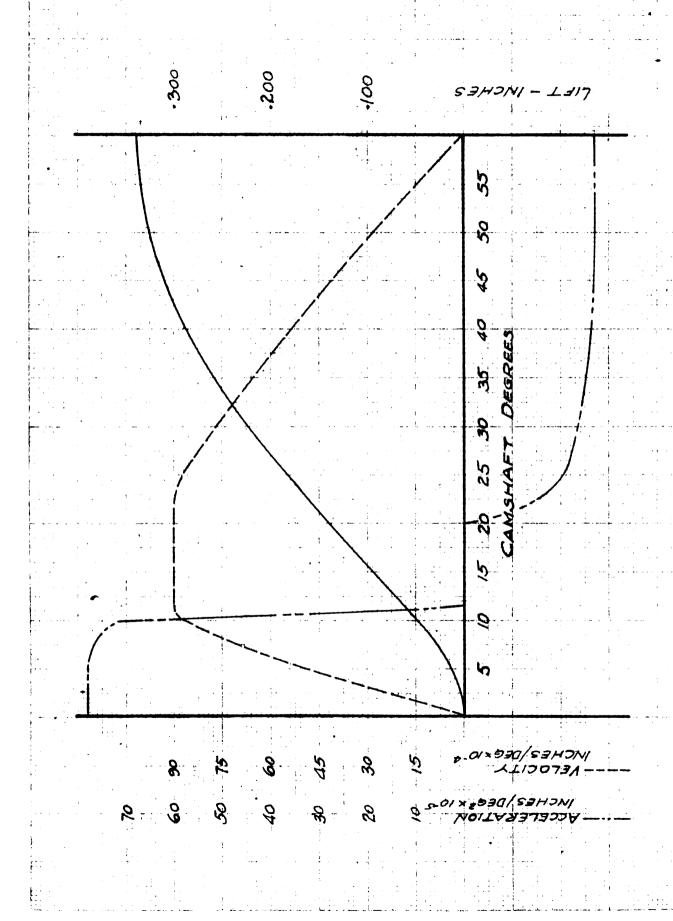

Cos 0	99452	-,99756	99939	-
X K	٠.	4.1012	4. 102	4.1022
Cos 2 8	4. 97815	+. 99027	4. 99756	H
	4.09	2.72	1.36	0
Vel Factor	.08328	.05551	•02776	0
Stn 0	.10453	92690•	.03490	0
X • 1022	02125	01425	+1CL	0
Sin 2 0	20791	13917	96290*-	0
	174	176	178	188

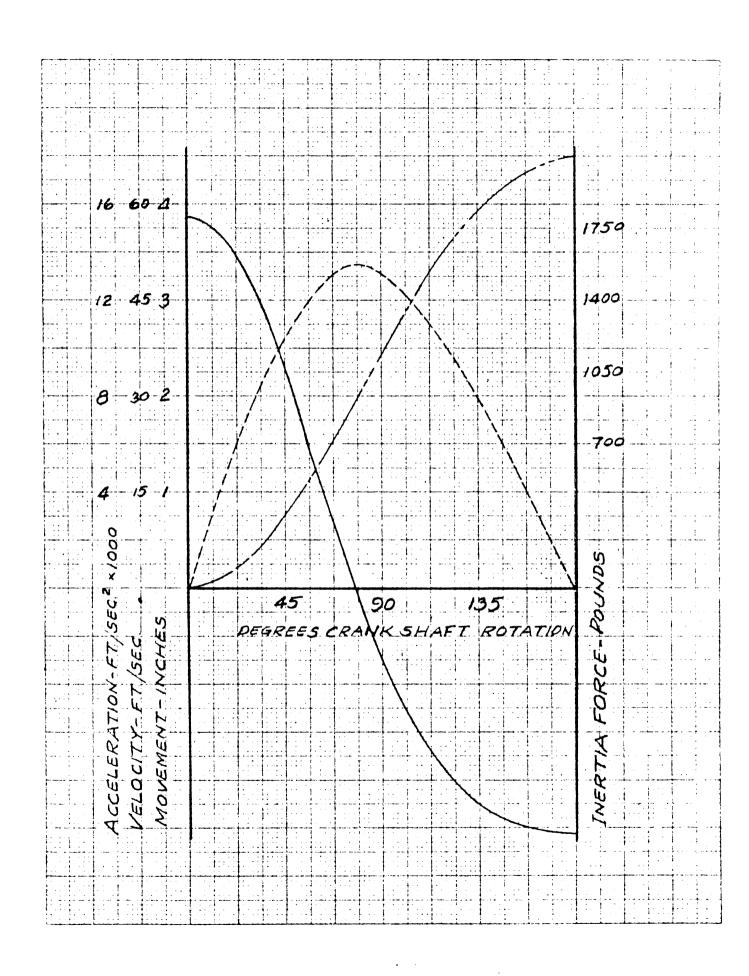

```
Acceleration = .000914 \text{ N}^2\text{R}(\cos \theta + \text{K} \cos 2 \theta) = 12,850 ( )

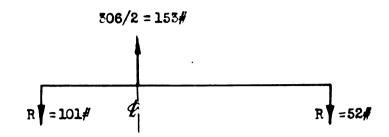

Inertia Force = .0000284 \text{ N}^2\text{WR}(\cos \theta + \text{K} \cos 2 \theta) = 1500 ( )
```


	Cos 2 0	X K	Cos 0	Factor	Accel.	In Force
0	1	. 2045	ı	1.2045	15,480	1800#
2	•00756	. 204	•99939	1.2034	15,470	1800
4	•99027	.2025	•99756	1.20	15,410	1796
6	.97815	•2	•99452	1.1945	15,340	1785
8	.96126	.1 968	•99027	1.1871	15,220	1775
10	•93969	•192	.98481	1.1768	15,100	1 759
121	.90631	.1 853	•97630	1.1616	14,910	1740
15	.86603	.1771	•96593	1 .14 38	14,700	1711
17 <u>1</u>	.81915	.1671	•95372	1.1208	14,400	1679
20	.76604	.1 569	•93969	1.09659	14,100	1641
25	.64279	.1313	.90631	1.03761	13,300	1550
30	•5	.1022	.86603	.96823	12,420	1450
35	.34202	•0699	.81915	.88905	11,410	1 330
40	.1 7365	•0357	.76604	.80174	10,300	1200
45	0	0	.70711	.70711	9,090	1 058
50	19081	039	.64279	.6058	7,800	909
60	 5	1022	•5	•3928	5,110	595
70	76604	1 57	.34202	.1 850	2,376	276
80	 93969	1 92	.17365	018	-231	26.9
90	-1	2045	0	2045	2,625	306
100	-9 7969	1 92	17 365	-3. 6565	4,695	545•5
120	 5	1022	5	-6022	7.740	900

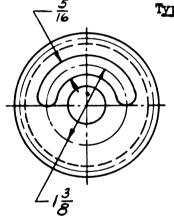
	Cos 2 0	X K	Cos 0	Factor	Accel.	In Force
130	17 365	0354	64279	67819	8,700	1012#
140	4.17 365	+. 0354	76604	73064	9,390	1091
1 50	1.5	+.1 022	86603	 76383	9,800	1140
160	+. 76604	+.1 57	93969	78269	10,050	1168
170	1 • 93969	. 1 92	98481	79281	10,180	1182
172	. 96 12 6	. 1 968	99027	79347	10,195	1185
174	•97815	•2	99452	79452	10,200	1189
176	•99027	. 2025	-•99756	 79506	10,210	1190
178	•99756	. 204	-•99939	-•7 9539	10,220	1191
1 80	1	.2045	-1	 7955	10,230	1193







CHARACTERISTIC CAMSHAFT CURVES



BALANCING WEIGHTS FOR SECONDARY INERTIA FORCES

Limitation of space available immediately beneath the piston necessitates using two sets of 2 weights each. These are not equally situated on each side of the piston center-line, lengthwise, and therefore will not be the same on each end. The diagram above indicates the relative positions and amount of force necessary to oppose the inertial force of the piston.

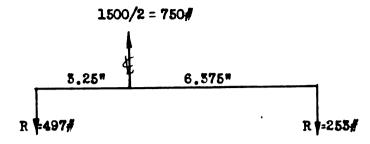
Steel Gear - 1" Thick

Typical Computation for Weights Shown at Fight,

In Liagram Above

Area Lever Arm Moment 1.12 .359 .401

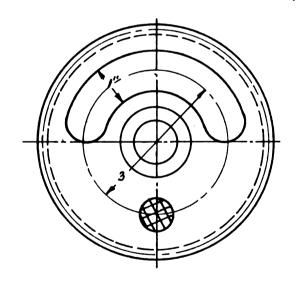
.44 .225 .099 0.68 0.502


Centroidal distance .302 = .444 .68 Weight x Radius .194 x .444 = .086

Weight removed .68 x 1" x .284 = 0.194

Centrifugal force corresponding with this weight x radius:

.0000284 x 5000 x 5000 x .086 = 60#


BALANCING WEIGHTS FOR PRIMARY INERTIA FORCES

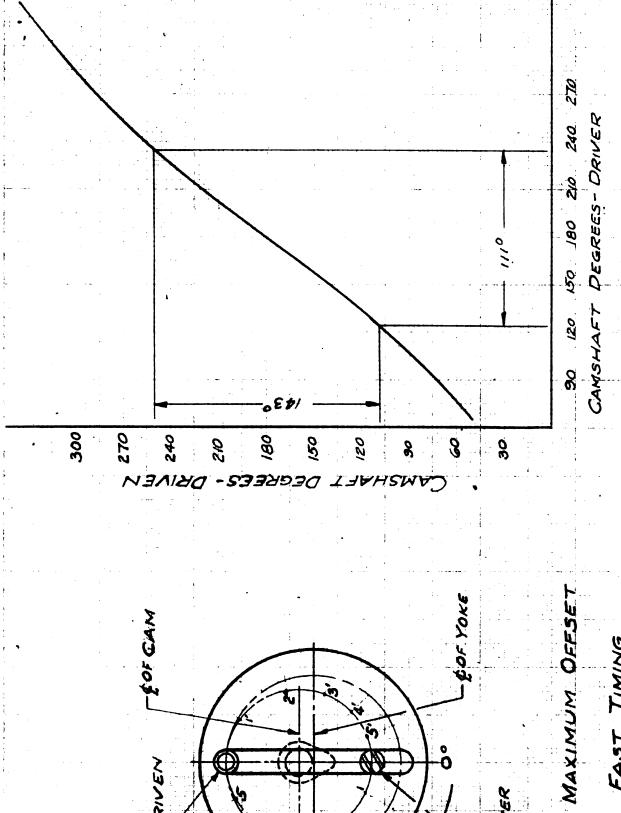
Limitation of space available immediately beneath the piston necessitates two sets of 2 weights each. These are not equally situated on each side of the piston center-line, lengthwise, and therefore will not be the same on each end. The above diagram indicates relative positions and amount necessary to oppose the inertia force of the piston.

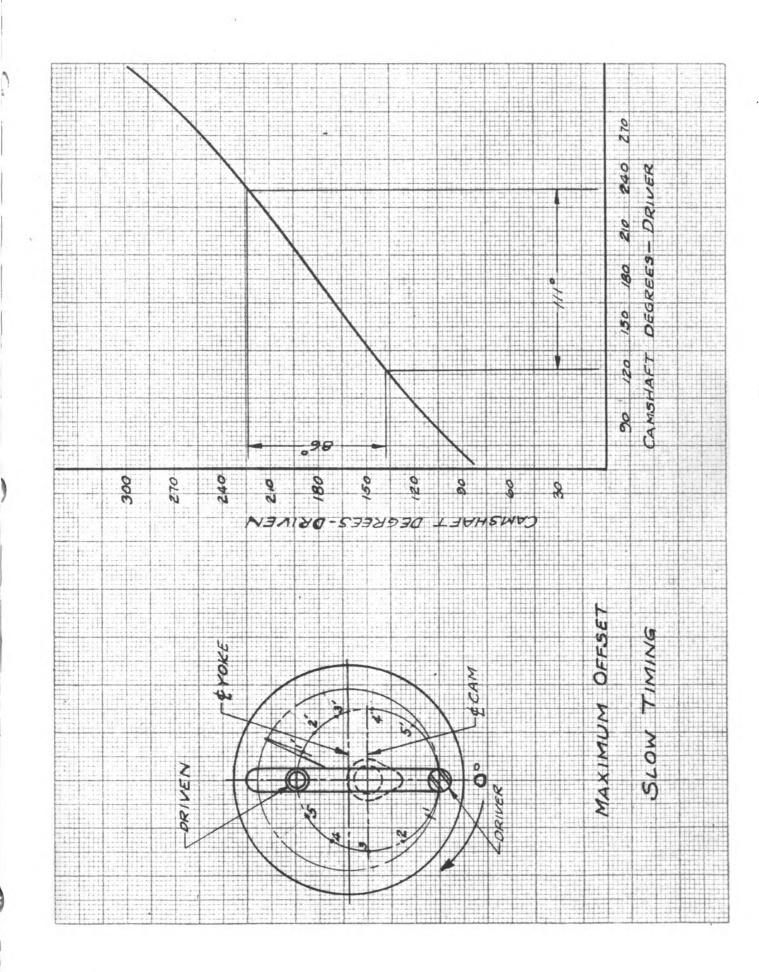
Typinal Computation For Weights Shown At Right, Above

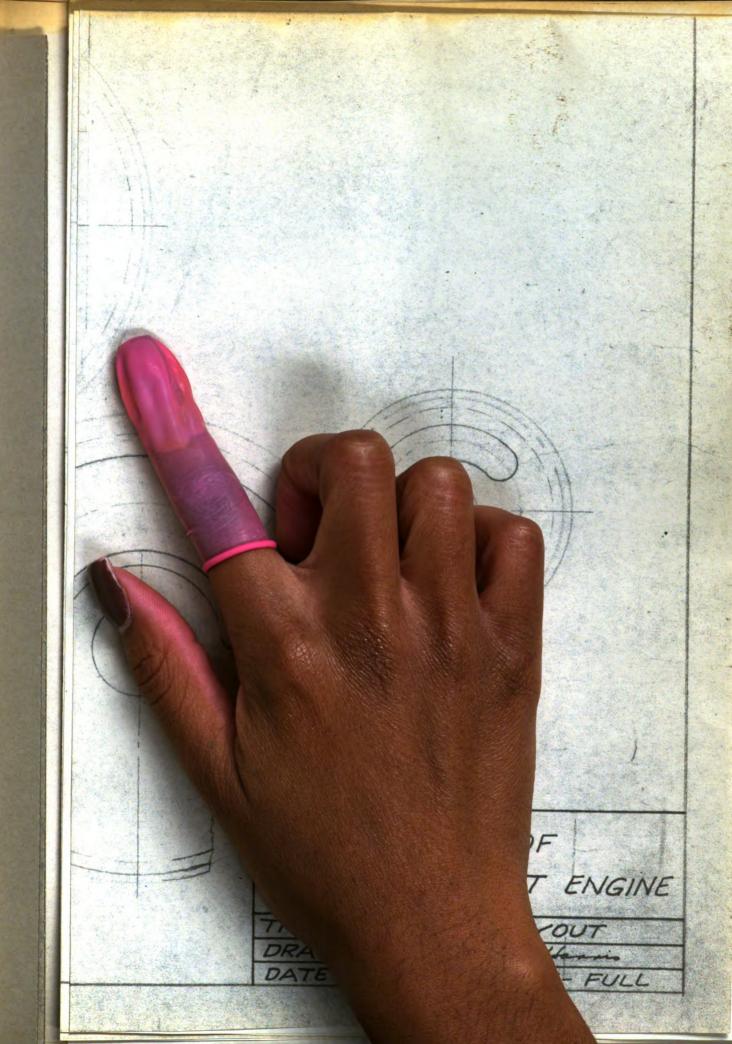
Force due to weight removed

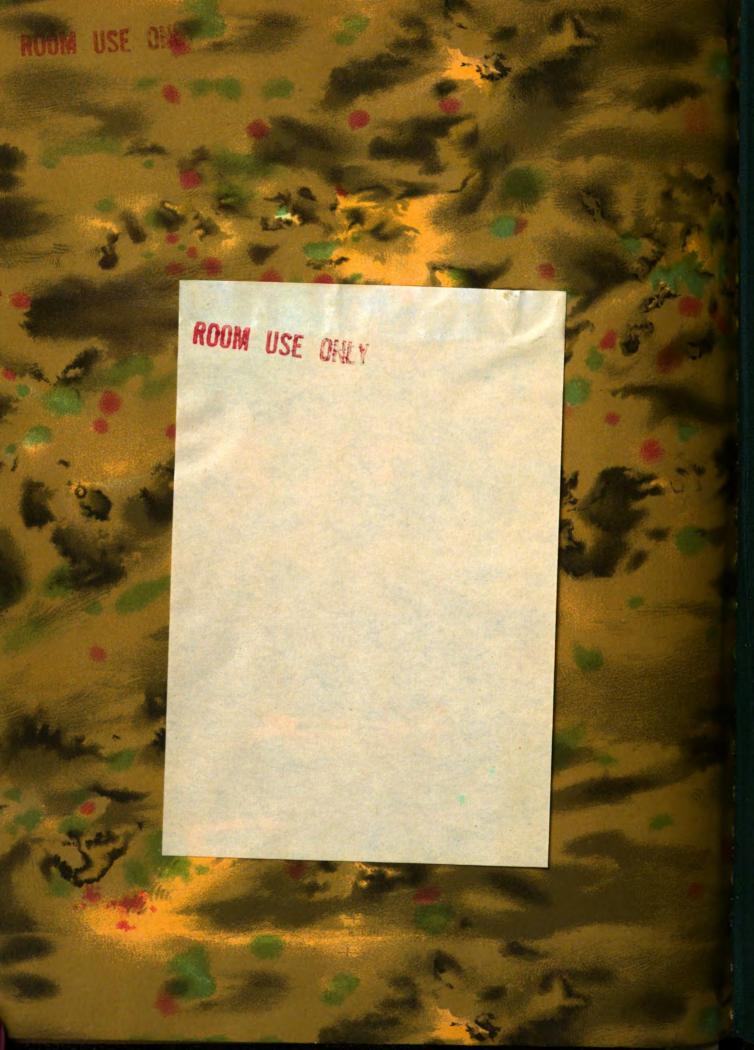
Steel Gear - 1" Thick

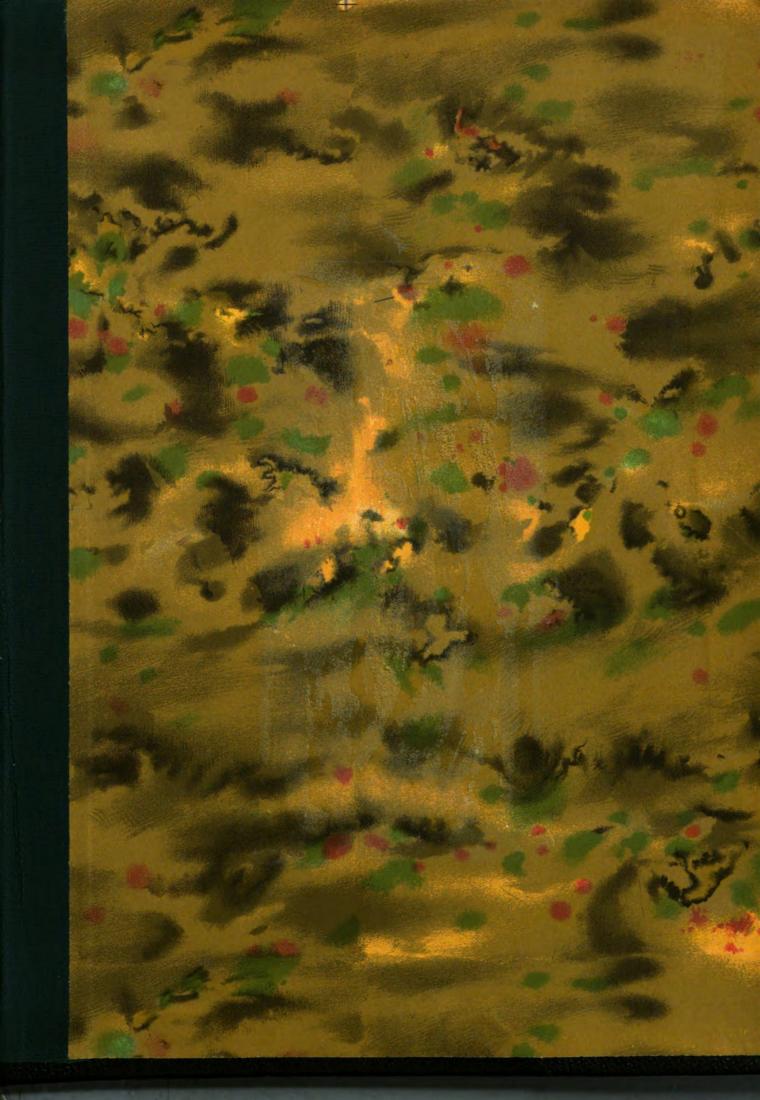
by semi-circular slot:


Area	Lever Arm	Moment
6 .28	.850	5.54
1.57 4.71	.425	<u>.67</u>


Centroidal distance $\frac{4.67}{4.71}$ =0.99° Weight removed 4.71 x 1° x .284 =1.54#


Weight x Radius 1.34# x .99 = 1.55 For 5/4 dia. hole filled with lead Weight x Radius .442 x .1275 x 1.5


=0.0845


Centrifugal force corresponding with this is: $.0000284 \times 2500 \times (1.55 + .0845) = 250\%$

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03084 9164