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ABSTRACT

DEVELOPMENT AND TEST

OF A MODEL OF

CONFLICT IN A TRUEL

BY

E. Alan Hartman

Pure conflict (called uelative conflict) was investigated

through the use of a three participant experimental gaming paradigm

called the truei. By devel0ping a mathematical model of the truel,

some conclusions about uelative conflict were developed and tested.

The major results of the study indicated that no single,

simple process Operates in a simple conflict situation. The assump-

tion that the participants in a conflict situation attack their

strongest attack choice was not consistently verified. The strongest

participant attacked his strongest attack choice as a function of the

type of power structure the triad was in. The remaining two power

positions quite consistently attacked their strongest attack choice.

The mathematical model was based on these assumed preferred

attack choices of the participants. Because the real choices were

not entirely consistent between or within power structures the model

was unable to account for some of the data. The points of bad fit

were indicated and alternative preferred attack choices suggested.

The value of a mathematical model for the testing of hypotheses was

indicated.

The final point of the study indicated some implications for

Caplow‘s classification of triad power structures for conflict



situations. The major result being a preference on the part of the

triads in the study for type i and type 2 power structures.

‘ ,/ 4 . ; ~ ‘ 3),/‘v /' , 0

Approved by ,vm/Ux/g oz ‘7- [14.41- '73,;

Date 7/3 0/7r)

Committee

James L. Phillips, Chairman

Lawrence A. Mess?!

David L. Wessei



DEVELOPMENT AND TEST

OF A MODEL OF

CONFLICT IN A TRUEL

By

T“. :f

E3 Alan Hartman

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF ARTS

Department of Psychology

1970



ACKNOWLEDGMENTS

The author wishes to thank Dr. James L. Phillips for his

criticism and guidance. Thanks is also extended to Dr. Lawrence

Messe' for his suggestions and to Dr. David Vessel. The author

also wishes to thank his wife for her kind words and forebearance

in this endeavor. Appreciation is expressed to Dr. and Mrs. Steven

Cole without whose assistance this thesis would not have been completed.



TABLE OF CONTENTS

PAGE

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . vi

INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . l

The Investigation of Conflict through the Truel . . . . l2

A Model of Attack Choices . . . . . . . . . . . . . . . IS

Probability Equations for Each Attack Vector and

Possible Transitions. . . . . . . . . . . . . . . . . . 29

The Model Axiomatized . . . . . . . . . . . . . . . . . 3A

Previous Test of the Model. . . . . . . . . . . . . . . A0

METHOD. . . . . . . . . . . . . . . . . . . . . . . . . . . A2

RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Results of the Analysis on the Estimates of P]. . . . . Sl

Test of the Model . . . . . . . . . . . . . . . . . . . 67

DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . 77

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . 96

APPENDIX. . . . . . . . . . . . . . . . . . . . . . . . . . iOO



TABLE

l0

il

l2

l3

LIST OF TABLES

General and Particular Payoff Matrices for the

the Prisoner's Dilemma and Chicken Games.

The Normal Payoff Matrices for the Three Person

Prisoner's Dilemma, Chicken and Truel Games .

Caplow's Classification of Types of Power

Distributions and the Distributions Used

in the Experiment . . . . . . . . . . . . . . . .

The Seven Possible Attack Vectors .

The Relationships Between Attack Vectors. . . . . .

Examples of the Determination of the State of a

Distribution with an Initial State of (0,0) . .

Examples of Obtaining the Initial State of a

Distribution. . . . . . . . . . . . . . . . .

Examples of the Determination of the State of a

Distribution with an Initial State Other Than (0,0)

Transitions Produced by Each Attack Vector from Each

Type of State With the Corresponding Equations. . .

The Eleven Initial States and the Distribution for

the Two Orders of Presentation. . . . . . . . . . .

The Three Sequences of Labels on the Scoreboard Used

for the Ten Groups in Each Condition. .

Estimates of P for Each Initial State, Game Number,

Power Position, Type of State, and Order of

Presentation. . . . . . . . . . . . . . .

The Combined Estimates of P Over Orders of

Presentation for Each Power Position of Each

initial State and Type of State .

PAGE

l0

l3

I6

22

24

26

27

33

45

A6

52

53



TABLE PAGE

IA Analysis of Variance on the Order of Presentation,

Type of State, Power Position, and Initial State (DRS) 57

IS The Combined Estimates of P Over Orders of Presentation

for Each Power Position of Each Game Number and

Type of State . . . . . . . . . . . . . . . . . . . . . 60

I6 Analysis of Variance for Order of Presentation, Type

of State, Power Position, and Game Number for

All Games 0 O O O O O O O O O O O O O O O O O O O 0 O O 62

I7 Analysis of Variance for Order of Presentation, Type

of State, Power Position, and Game Number for

Last Four Games 0 O O O O O O O O O O O O O O O O O O O 63

l8 The t' Values of the Multiple Comparisons of the

Estimates of P for the Six Game Numbers . . . . . . . . 6A

19 The Observed Attacks Made by Each Label on Each

of Its Choices. . . . . . . . . . . . .'. . . . . . . . 66

20 The Expected Values for the Number of Attacks on Each

Label's Choices, Assuming Random Behavior . . . . . . . 66

2] The Chi-Squares for Each Label's Two Attack Choices . . 66

22 Observed Frequencies for All Transitions from States

(0,0) to (5,5) for the Entire Data Set. . . . . . . . . 69

23 Expected Values for All Transitions from States (0,0)

to (5,5) for the Entire Data Set. . . . . . . . . . . . 70

2A The Chi-Squares for All Transitions from States (0,0)

to (5,5) for the Entire Data Set. . . . . . . . . . . . 7]

25 The Summary Results of the Four Tests of the Model. . . 72

26 The Equations for the Attack Vectors for the Three

Parameter Model . . . . . . . . . . . . . . . . . . . . 73

27 The Transition Equations for the Three

Parameter Model . . . . . . . . . . . . . . . . . . . . 7A

28 The Attack Vectors Which Contribute to Each

Directional Vector for Each Type of State . . . . . . . 89



FIGURE

l

lO

ll

LIST OF FIGURES

Probability Equations and Labels for

Each Attack Vector .

The Diagram of the

The Diagram of the

The Estimates of P

Type K States as a

The Estimates of P

Type L States as a

The Estimates of P

Each Type of State

The Estimates of P

Each Type of State

The Estimates of P

Each Type of State

Table Partitions: T0p View .

Scoreboard. . . . . . .

for the Three Power Positions for

Function of Initial State . . .

for the Three Power Positions for

Function of Initial State . . .

for the First Power Position for

as a Function of Initial State. .

for the Second Power Position for

as a Function of Initial State. .

for the Third Power Position for

as a Function of Initial State.

Representation of the State Component System .

Reduced Co-ordinate System for the Representation of

State Vectors. .

The Mean Observed Directional Vectors and the

Directional Vectors for the Fair Play and

Threat Minimization Strategies . . . . . . .

vi

PAGE

30

1+3

All

54

5A

56

56

56

8A

86

9I



Introduction

The present study was performed to investigate the problem of

peOple in conflict over goals. With its wideSpread occurrence within

and between nation-states, conflict, and its reduction, have become

major areas of research. Although war is the most severe type of

conflict it is by no means the only type. The cold war, confrontations

on college campuses, and political conventions are also types of

conflict and give just as much impetus to this research as do the

wars In the Middle East and Vietnam.

With the exception of the internation simulation game (Guetzkow,

I962; Burgess and Robinson, I969; and Hermann and Hermann, I969), the

research on conflict and cooperation has generally involved the use of

very abstract, and relatively simple gaming paradigms (prisoner's

dilemma, chicken, parchesi, political convention, and the Deutsch

and Krauss trucking game). The underlying premise of the research

using these simple, rather artificial laboratory games is that it is

necessary to understand the basis of conflict in its most elementary

form before it is possible to explain and control conflict in the real

world.

For this paper, it is assumed that conflict exists whenever at

least two participants are in a situation in which only one can fully

achieve his goal. A more detailed discussion of conflict is presented

below but for the present this rough definition will suffice to cate-

gorize situations as c00perative or conflictive. The former are

situations in which all parties can achieve their goals simultaneously,

and the latter are situations in which, at best, each party achieves

only a portion of his goal and, at worst, no party achieves any part.



In the real world, situations vary in the degree to which they

manifest conflict. These conflict situations range along a continuum

from c00perative (negotiated settlement of differences, formation of

a coalition against a third party, etc.) to pure conflictive (war).

The various experimental paradigms used to study conflict and cooperation

reflect these degrees of conflict. Presented below is a selected

summary of these paradigms that starts with games at the c00perative

end of the continuum and ends with the games at the conflictive end.

Those types involving the least amount of conflict are the

parchesi game (Vinacke and Arkoff, I957; Vinacke, Crowell, Dien, and

Young, I966; and Vinacke, Lichtman, and Cherulnik, I967), the political

convention (Chertkoff, i966; Nitz, I969; and DeYoung and Phillips, I970)

and the internation simulation game mentioned previously. The first

two types were designed primarily to study coalition formation, and

therefore little conflict is generated in either game. The last type

was designed to simulate nation-state Interaction and, thus, conflict

was a possible result rather than a necessary condition of the situation.

The parchesi game, used most extensively by Vinacke, presents

subjects with the opportunity to form a coalition which will insure

them of winning the game and thus sharing the payoff. The three par-

ticipants are assigned a certain amount of power, if no coalition is

formed the player given the most power will win. This paradigm

forces the participants to form a coalition if they want to win.

Although the subjects are in conflict over the goal, they are pre-

sented an Opportunity to cooperate and divide the payoff (partial ful-

fillment).

The political convention game is very similar to the parchesi game.



The three or more participants are assigned a certain amount of power.

For any one to win he must possess a majority of the power in the game.

Generally no one player has a majority and, therefore, for anyone to

win he must form a coalition. This is in contrast to the parchesi

game in which the strongest participant can win alone if no coalition

is formed. The difference between the two paradigms lies in the reason

for forming a coalition; in the parchesi game the only rational strategy

for two of the three players is to form a coalition, while in the

political convention they are required to form a coalition.

These two paradigms mirror the c00peratlve end of the real

world c00peration-conflict range described previously. Two of the

three participants are required to form a coalition to receive

a share of a divisible payoff, thus partial, simultaneous achievement

of the goal. The amount (degree) of conflict is small while

c00peration is high.

The internation simulation game differs from the parchesi

and political convention paradigms, and all subsequent paradigms,

in the unstructuredness of the situation. The participants can pro-

duce situations which cover the full range of conflict type situations

from cooperative to completely conflictive. The advantage of pro-

duclng all possible outcomes, however, limits the analysis and there-

fore the conclusions that can be drawn from the data. The situation

does, however, offer a starting point since It can be used to formu-

late hypotheses which later can be tested in more rigidly controlled

experimental settings.

Most of the research in the area of conflict has centered on the

mixed-motive situation, using various types of games as experimental



paradigms. Of those games that have been most widely used to study

some aspect of conflict, the prisoner's dilemma (Bixenstine, Potash,

and Wilson, l963; Bixenstine and Wilson, I963; Lave, l965; Oskamp

and Perlamn, I965; Radlow, I965; Rapoport and Chammah, I965; Sampson

and Kardush, I965; and Evans and Crumbaugh, I966), the Deutsch and Krauss

trucking game (Deutsch and Krauss, I962), and the chicken game (Scodel

and Minas, I960; Sermat and Greyovich, I966; and Ells and Sermat, I968)

have been the most widely used. All three of these paradigms employ

two peOple, and provide an Opportunity for the participants to

COOperate with each other. This is accomplished by giving them a

choice of performing one of two actions, with differential payoffs for

each combination of choices made by the two participants. The general

type of payoff matrix for the prisoner's dilemma and the chicken game

is presented in Table I. Since the trucking game does not involve

simultaneous choice by the participants, a payoff matrix is quite

difficult to construct and therefore is not presented.

Matrix l in Table I is the general matrix, with each cell identi-

fied by a capital letter to allow for easier identification. Matrix 2

in the same table presents the general payoff matrix for the two

paradigms, the numbers I and 2 designate the two alternatives. These

two alternatives and the relative values Of the ”high” and I'low"

payoffs differ between the two games. Following is a brief character-

ization of each experimental paradigms' payoff matrix. A more detailed

presentation of these types of payoff matrices has been made by Rapoport

(I963, I968) and Rapoport and Guyer (I966).

In the prisoner's dilemma, alternative ”I” is the choice of

cooperating with the other player, alternative ”2” is the choice of
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defecting to the police. In cell A, both players COOperate and

receive +l0¢; in cells B and C, one player cooperates and the other

defects, resulting in -l0¢ for the cOOperator and +l5c for the defector;

in cell D, both players choose alternative 2 and receive a -5c. The

preference structure for player X is B > A >ID > C, while player Y's

preference structure is C > A > D > B. Where the preference structure

is the order in which the players desire the outcomes in the particular

cells. Given the above structure, player X prefers the payoff in cell 8

to any other payoff, and prefers any other cell's payoff to the payoff

of cell C. The point of interest, in the choice structures, is the

congruence of the second preferences. It is this congruence that

allows for cOOperatlon between the participants.

In the chicken game alternative ”I“ is the COOperative choice and

alternative ”2” is the nonCOOperative choice. Thus, in cell A, both

players cooperate and receive +l0¢; in cells B and C, one player

COOperates, while the other does not, resulting in the cooperator

receiving -IO¢ and the nonCOOperator receiving +l5¢; and in cell D,

neither cooperates and both receive the higly negative outcome of

-l00¢. The preference structures for the two players are as follows:

X: B >»A > C > D; and Y: C >.A > B > D. The difference between

the prisoner's dilemma and the chicken game is the ordering of the

last two preferences for the two players. In prisoner's dilemma the

payoff in cell D is preferred by both players over the payoff in B for

player Y, and C for player X, while in chicken payoff D is the least

preferred outcome for both players.

In terms of the payoffs, the difference between the prisoner's

dilemma and the chicken game is the relative sizes of the low payoffs



in the two low cells for each player. In the chicken game the low

payoff in the low-low combination (cell D) is much lower than the low

payoff in the two high-low combinations (cells B and C). This is in

contrast to the prisoner's dilemma where the low payoff in the high-

low combination (cells B and C) is much lower than the payoff in the

low-low combination (cell 0).

In general the mixed-motive payoff matrix (matrix 2 Table I) can

be described in the following manner; one combination of choices results

in a low payoff for both participants (cell D), one combination In a

moderate payoff for both participants (cell A), and the remaining two

combinations result in a low payoff for one participant and a high

payoff for the other, with the receiver of the high payoff reversed

in the two high-low conditions (cells B and C). Thus the payoff matrix

allows for cooperation, by providing a cell in which both participants

receive a moderate payoff, and conflict, since any movement from the

COOperative cells results in a lower payoff for at least one participant.

Most of the studies performed with these two paradigms, as with

the parchesi and political convention paradigms, have been concerned

with the dimensions of COOperatlon rather than the exploration of con-

flict. Little research has been aimed at the interpersonal process

that arises when peOple are placed in a situation in which they have

no Opportunity to COOperate and, therefore, must compete. This type

of pure conflict (no COOperation between participants), represented in

the real world by nuclear war and the duel to the death, has been

labeled pure uelative conflict by Cole and Phillips (I969) and Cole,

Phillips, and Hartman (in preparation). Uelative conflict is defined

as a g_partlcipant system in which there is a single, indivisible



payoff for all participants. This means that at most one participant

can receive the payoff (achieve his goal) and all may lose. Note

that it is not a zero-sum game since there is the possibility that

all parties may lose, but it does contain a constant sum condition

in which when one person wins, all others lose.

This type of conflict falls at the extreme end of the COOperation-

conflict continuum defined previously. No COOperation between partici-

pants is possible because the payoff for each participant Is not

divisible. This is an important aspect of the situation; it is the

indivisibility of the payoff which distinguishes pure conflict from

the mixed-motive, or COOperative type situations (Boulding, I963;

and Schelling, I969). No player is able to achieve a partial goal;

either he achieves his total goal or he achieves nothing.

An experimental game paradigm, the truel, has been designed to

study this extreme conflict situation. Introduced by Shubik (I9SA)

and subsequently employed by Willis and Long (I967) and revised by

Cole (I969, l970), the truel is a game involving three players, each

of whom begins the game with a particular number of points. Prior to

the start of each game, the experimenter assigns a certain number of

points and a label to each player. The game itself consists of a

number of moves. On each move each player must destroy a point be-

longing to one of the other players. This is accomplished by each

player secretly indicating his attack choice to the experimenter,

who, when all three players have indicated their choices, announces

who attacked whom and removes a point from the attacked player's total.

This procedure allows each player to make his choice independently,

without the knowledge of who is going to attack him on that move.



The game continues until only one player has points remaining.

He is the winner of the game. If the two players remaining, when the

first player is eliminated, have the same number of points, or if all

of the players are eliminated on the same move, the game is a tie

with no player declared the winner.

The payoff matrices for the three person prisoner's dilemma

(matrix I), a three person chicken game (matrix 2), and a truel in

which all three players have one point (matrix 3) are presented in

Table 2.I The values presented in each cell represent the payoffs

to the participants. The first component in the vector in each cell

represents the payoff for player X, the second for player Y and the

third for player 2. The cells are labeled from A through H and the

preference structures for the three players are listed below each

matrix.

As the three preference structures listed below matrix 3

indicate, each player has two types of outcomes; a most preferred

and a least preferred. For the three players there are no points of

congruence for the most preferred cells and only two points of con-

gruence for the least preferred cells. Player X prefers cells D and

H to all other outcomes while player Y prefers cells E and F to all

others and player 2 prefers cells A and C to all Others. It is the

dichotomous preference structures and the noncongruence of the first

preferences caused by the indivisibility of the positive payoff, that

 

'Note that the truel is a three person game, while the other two

paradigms have generally been two person. The payoff matrix for the truel

is a 2 x 2 x 2, while the payoff matrix for the other two paradigms is

usually 2 x 2. However, for the purpose of comparison, the prisoner's

dilemma and the chicken game were expanded to a three participant system

and, thus, their payoff matrices were eXpanded to a 2 x 2 x 2.
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makes this situation one of pure conflict.

A comparison of the payoff matrices for the two mixed motive

paradigms with the payoff matrix for the truel reveals the differences

between the three types of paradigms.

In both matrix I and matrix 2 the three person prisoner's

dilemma and chicken game, respectively, alternative “I” is the

COOperative choice and alternative “2” the noncOOperative one. As

was pointed out in the discussion of the 2 x 2 payoff matrix, there

is a common second choice for all of the preference structures. The

difference between the chicken game and the prisoner's dilemma is

the ordering of the last two sets of preferences. These orderings

can be compared in Table 2. Those preferences of the same value in

the matrix are treated in the preference structure as being of equal

desirability. The difference between the mixed-motive situation and

the pure conflict situation is the absence in the latter's preference

structures of a common point in the orderings for the three players.

The truel game has the basic requirements for uelative conflict:

an inability of the participants to achieve their goals (winning)

simultaneously.2 In the actual playing of the game the motivation for

winning is assumed to be instilled by a monetary reward for doing so.

With motivation established, and an indivisible payoff structure, with

at most one winner, the truel satisfies all of the requirements for

uelative conflict.

 

2It might be argued that the basis of all conflict is the

belief of the participants that they cannot achieve their reSpective

goals simultaneously.
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This paradigm has two important prOperties in that it can be

extended to any number of players, and it characterizes the pure

conflict situation, which has been ignored to the present time.

By breaking the conflict situation down to its most basic elements,

however, the paradigm overlooks factors that affect conflict situations.

Some of the factors that are ignored are: (l) the effect of secondary

goals, (2) the formation of coalitions, and (3) the ability of the

participants to avoid the conflict situation. DeSpite these and other

limitations that introduce some degree of artificiality into the

situation, it seems an excellent starting point for the investigation

of pure conflict.

The Investigation of Conflict through the Truel
 

One aSpect of pure conflict that is quite easily investigated

through the use of the truel is the effect of power distributions

upon the conflict process. If it is assumed that the number of points

possessed by each of the players represents the power of that player,

then any distribution of points can be classified according to the eight

types of power distribution defined by Caplow (l956, I959, and I968) and

presented in Table 3. Although Caplow only analyzed the consequences

of each of the distributions for the COOperative type Of situation, an

extension to the pure conflict situation may prove profitable. In an

attempt to discover some of the consequences of the various power

distributions, several of them representing Caplow's type 2, type 3,

and type 5 were constructed. The exact distributions are also presented

in Table 3 and are discussed in more detail later.

Another aSpect of conflict that can be investigated through the

use of the truel is the determinants of attack choice, l.e., the reasons
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why a player will choose to attack a given other player on each move

of the game. Since in a truel, each player is forced to make just

such a choice, and he must do so with a limited number of cues available

Table 3. Caplow's Classification of Types of Power Distributions

and the Distributions Used in the Experiment.

 --.—'”-—.-._-..~ .— '—-—-'v

 

 

 

 

 

 

 

 

Types Power Distributions Distributions of Points

I A = B = c NONE

2 A'> B = c (A_>-(B + c)) (2A,9,9)

3 A B = c (19,19,A)

A A a . c (A (a + c)) NONE

5 A a c (A (3 + c)) (22,9,8) (20,9,7) (18,8,6)

(16.9.5) (18,17.A) (I7, 5,A)

(I6,I3,A) (15.11.10 (I_,9,A)

6 A B c (A (B + c)) NONE

7 A B c (A = (B + c)) NONE

8 A B = c (A = (B + c)) NONE
 

it Is possible to present a limited set of possible bases for this

decision. When persons engage in uelative conflict, they have many

cues upon which to make their decision of whom to attack. Within the

truel this set of cues is reduced to a finite number, with those cues

being immediately present or from several moves previous. Several of

the possible attack strategies that may be used are presented below.

A player may attack the player who attacked him last, or he may

attack a player who had not been attacked in several moves. A player

also may alternate his attacks from one player to another or continually

attack the same player. Several such heuristics may be used by the
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participants in selecting an attack choice. Although these heuristics

do not seem to be the most rational approach they still may be used

by the players to make their decision. However, if it is assumed that

the participants in a truel are rational, then strategies of play rather

than heuristics of attacks would be the most likely to be employed.

Phillips, Hartman, and Klein (I970) presented three strategies

of play that might be used by participants in a truel: (a) the

fair play strategy; (b) the threat minimization strategy; and (c) the

dyadic competition strategy. The fair play strategy assumes that a

player attacks the stronger of his two attack choices. This means

that the strongest player attacks the second strongest and the second

and third strongest players attack the strongest. In the threat

minimization strategy, a player makes the attack that minimizes the

threat to his survival. It is not the case that this is always the

stronger of the two attack choices. It has been demonstrated by Cole

and Phillips (I967) that the strongest player is in a position where

he is likely to be the object of the other two player's attacks. The

strongest player attacks the weakest player because this player does

just as much damage and is removed from the game more quickly than is

the second strongest player. By eliminating the weakest player and

thus reducing the number of attacks made on him, the strongest player

minimizes the threat to his survival in the fewest number of moves.

The threat minimization strategy for the other two power positions

results in the same attacks as in the fair play strategy with both

players attacking the strongest player.

In the dyadic competition strategy the players attack that

player who Is closest to them in the power structure. Both the
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weakest and the strongest players would attack the middle power position.

The person in the middle position would attack the player-~sometimes

the strongest, sometimes the weakest--whose power was closer to his Own.

Shubik (l95h) pointed out that when the participants in a three

person duel differ with reSpect to power, the more rational strategy

is to attack the stronger of one's two attack choices (the fair play

strategy). With respect to the truel, the power of a player is the

number of points he possesses and thus, for each player, a more rational

strategy is to attack that player of his two attack choices who has

the greater number of points. The assumption, that all three players

employ the fair play strategy, was used to build the mathematical

model of the truel (and therefore of uelative conflict) presented below.

A Model of Attack Choices
 

A one parameter model is prOposed to account for the interpersonal

process that Operates when three persons engage in a truel. The model

generates all predictions using the estimated probability (P) of

attacking the stronger of each player's two attack choices. If the

two attack choices of a player have the same number of points (power),

a probability of attacking each player is set at .50. The set of three

numbers representing how many points each of the three players has is

called the distribution of points. This distribution is represented

by a three component vector, with the numbers arranged in a decreasing

order of magnitude. As an example, if one player had I3 points,

another 7 points and a third 20 points, the vector representing the

distribution would be (20,13,7I.

A characteristic of the process that is of interest is the

pattern of choices made by the participants on each move of the game.
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Since on every move each player is required to attack one of the

other two players, it is possible to characterize combinations of

attacks within the truel in terms of who received an attack. The

set of three attacks made on any one move is called the attack vector,

with each number in the vector being the number of times a particular

player received an attack on that move. The order within the vector is

one of decreasing strength, l.e., the player with the most points is

listed first in the vector and the player with the fewest points is

listed last. For example, if the distribution of points was (lO,9,8)

an attack vector of (2,l,O) would indicate that the player with IO points

had been attacked twice, the player with 9 points had been attacked once

and the player with 8 had not been attacked at all. After this com-

bination of attacks the distribution would be reduced to (8,8,8) be-

cause two points were taken from the player with l0 points, one point

from the player with 9 points and none from the player who had 8 points.

In the truel there are seven such attack vectors and they are presented

in Table A.

Table A. The Seven Possible Attack Vectors

 

__i_ __,_ .32. .15.. 3:: __L__ Li

I 2 O l l O 2

l l I O 2 2 O

l O 2 2 O l l

 

There are two characteristics of interest in each distribution of

points. They are called the disparity of relative strengths and the
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projected level of equality. The disparity of relative strengths is

discussed at length here, and the eXplanation of the projected level

of equality follows.

The di5parity of relative strengths (DRS) is a term used to

describe how far apart the players are in the number of points they

possess. The term can be quantified by using the differences between

the players as the index of diSparity. For example, the (lO,9,8)

distribution has a lower disOarity of relative strengths than does the

(l5,9,3) distribution. Not only is this evident from visual inspection,

but the index of the DRS is (l,l) for the first distribution and (6,6)

for the second. The index was calculated by subtracting the second

component from the first and then subtracting the third from the second.

These two differences were then placed in a two component vector to

give the DRS for each Of the distributions. Further, it is possible

to sum the two components to obtain a scalar quantity that gives a

rough index of the DRS for any distribution. Later, an easier method

for determining the DRS is described.

To simplify referencing, each attack vector is given a single

letter label. The letter I is assigned to the (l,l,l) attack vector

to indicate that this attack vector, when applied to a distribution

of points, maintains the differences that exist between each of the

three players. In other words, the I attack vector maintains the

disparity of relative strengths.

Of the six remaining attack vectors, the vector (2,l,0) is

assigned the letter J. J"I designates the (O,I,2) vector since it is

the only vector that, when applied to a distribution of points, returns

the disparity of relative strengths to the level held prior to the
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application of the J vector. The sum of a J and a J" attack vector

is (2,2,2) or two I vectors, which by definition maintains the disparity

of relative strengths. The remaining attack vectors are assigned

letters by the same process. A vector is chosen and assigned a letter

and the attack vector, that when added to it maintains the DRS, is

given the inverse of that letter. All of the vectors and their labels

are listed in Table A.

The projected level of equality (PLE), the second characteristic

of the distribution of points, describes the nearest point at which

all of the players will have the same number of points. The PLE

can only be calculated for distributions in which the sum of the

components is divisible by three. It is only these distributions

that can be reduced to equality through combinations of three attacks

and therefore by the application of attack vectors. An example of a

distribution that cannot be reduced to equality by attack vectors is

(5.3.2). NO combination of attacks can reduce this distribution to

another distribution in which all the players have an equal number of

points. The attack vector which brings it nearest to equality is the

(2,l,0), or J vector. After the application of this vector the

distribution Is reduced to (3,2,2), and after the second application

of this vector, and the necessary arrangement, the distribution is

reduced to (2,l,l). At this point the application of any attack

vector will end the game, since any additional attack must eliminate

either one or two (but not all three) of the players. Since three

points must be taken away from the triad on any move, and there are

four points remaining, it is not possible to reach an all equal state

before one of the players is eliminated. The projected level of
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equality of a distribution is that distribution which is the nearest

and the attack vector, that when added to it maintains the DRS, is

given the inverse of that letter. All of the vectors and their

labels are listed in Table A.

The projected level of equality (PLE), the second characteristic

of the distribution of points, describes the nearest point at which

all of the players will have the same number of points. The PLE

can only be calculated for distributions in which the sum of the

components is divisible by three. It is only these distributions

that can be reduced to equality through combinations of three attacks

and therefore by the application of attack vectors. An example of a

distribution that cannot be reduced to equality by attack vectors is

(5,3,2). No combination of attacks can reduce this distribution to

another distribution in which all the players have an equal number of

points. The attack vector which brings it nearest to equality is the

(2,l,0), or J vector. After the application of this vector the distri-

bution is reduced to (3,2,2), and after the second application of this

vector, and the necessary rearrangement, the distribution is reduced

to (2,l,l). At this point the application of any attack vector will

end the game, since any additional attack must eliminate either one

or two (but not all three) of the players. Since three points must

be taken away from the triad on any move, and there are four points

remaining, it is not possible to reach an all equal state before

one of the players is eliminated. The projected level of equality

Of a distribution is that distribution which is the nearest all

equal distribution. The PLE of a distribution is characterized by a

single number, the number of points each player would have if the
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nearest all equal distribution were reached. The (ll,9,7) distribu-

tion, for example, has a PLE of 7, because after the application of

two J vectors the distribution is reduced to (7.7.7).

The distribution of points which any triad begins a truel is

called the initial distribution. If this distribution is divisible

by three then it can be described by a sequence of attack vectors.

Any subsequent distribution (those caused by attacks made within the

triad) is then described by the sum of the attack vectors used by

the triad and the sequence of attack vectors used to describe the

initial distribution. Thus any distribution of points whose sum is

divisible by three, can be described by a sequence of attack vectors.3

This sequence is composed of the attack vectors used by the triad in

the playing of the game and the attack vectors used to describe the

initial distribution. This sequence is called the decomposed distri-

bution of points. The sequence with the I attack vectors deleted is

called the deleted decomposed distribution of points. Later these two

sequences will be shown to be composed of at most two attack vectors.

This reduction results from the relationships between attack vectors that

are discussed next.

There are certain relationships that exist between attack vectors.

If two attack vectors, a and b, when applied to a distribution, have

the same effect as another attack vector, c, added to the I vector

and then applied to the same distribution, then the two vectors, a

and b, are defined as reducing to the third vector, c. The reduction

is based on the fact that the two vectors, a and b, have the same effect

 

3The necessity of having the distribution divisible by three is

discussed later.
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on the disparity of relative strengths as does the single attack

vector, c. The application of the single attack vector to a distribu-

tion does not result in the same distribution as the application of the

two vectors; it is only the differences between the players that are

the same in the two distributions. If the I vector is applied to the

distribution of the single vector, c, then the number of points

controlled by each of the players would be the same as if the two

vectors, a and b, had been applied. The rule for reducing attack

vectors is given in terms of their labels. Any two vectors raised to

the same power (I, or -I) and of different letter will reduce, when

added together, to the vector of the remaining letter raised to the

inverse of their common power. An example of a reduction is: J + K a L-',

or (2,l,O) + (I,O,2) = (l,l,l) + (2,0,l) or I + L-‘. Since the I vector

has no effect on the disparity of relative strengths, the difference

between the di5parity of relative strengths of the original distribu-

tion and the distribution resulting from the application of the J and K

vectors is equivalent to the difference that the L"I vector alone would

produce.“ The resulting distribution of points, after the application

of the L.l vector and the I vector, is the same as the distribution

resulting from the application of the J + K vectors. All of the attack

vectors and their relationships are presented in Table 5.

With the definition of the attack vectors, the definition Of the

disparity of relative strengths, and the rules for the combination

and reduction of attack vectors, it is now possible to describe whole

 

l'The equal sign indicated that the elements on each side are

equal with respect to the DRS.
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Table 5. The Relationships Between Attack Vectors

 

 

 

 

 

Combinations:1

2 0 1 1 0 2 1 1 1 1 1 1

1+1=1+1 2+O=1+1 O+2=1+1

0 2 1 1 1 1 1 1 2 O 1 1

J+r1-I+I L+L'1=I+I x+r1=I+I

Muctionsz" Sumnry

2 1 2 1 0 1 O 1 1

1+o=0+1 1+2=2+1 J+K-L"’

0 2 1 1 2 0 1 1 1 1

_1 1 1 J‘+K"-L

J+KIL+I J‘+K‘=L+I

2 0 1 1 O 2 1 1 1

1+2-2-i-1 1+o=o+1 J+L=K"

0 1 0 1 2 1 2 1

1 J'1+L'1=K

J+L=r1+I J'1+L’=K+I

1 O O 1 1 2 2 1 1

0+2-1-i-1 2+0=1+1 K+L=J’

2 1 2 1 0 1 0 1 1

1 1 r1+L’=J

x+L-J‘+I r1+L'=J+I

 

All Possible Types of States2

 

(2.14.10 (2r'.L) (21th) (mi-1.10 (2L".J) (2L".x)

(2.1.34) (2J.L") (2K.J") (2K.L") (2L.J'1) (2L.K")

 

1'11» numbers represent the components of the attack vectors.

21! the two components are equally represented, for example

(2J-1,2L), row one represents all possible types of states.
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distributions of points in terms of two attack vectors. Since it is

not possible to add more than two vectors together without two of them

being of the same letter and therefore combinable, or of the same power

and therefore reducible, a two component vector will suffice to character-

ize any distribution of points. Because the attack vectors are combined

on the basis of their effect on the diSparity of relative strengths,

this two component vector defines the minimum number of attack vectors

necessary to reduce the distribution of equality. The sum of these

two components is a simple index of the DRS for any distribution. This

two element vector is called the state vector.

When, a given a distribution of points, it is possible to determine

the state vector of this distribution and the constituent attack vectors.

The state in which all the players have the same number of points is

defined as the (0,0) state vector. With this definition it is now

possible to describe how to calculate the state vector of a distribution.

If one starts from an all equal state, the state vector of any sub-

sequent distribution is the reduced combination of all the attack

vectors used to produce that distribution. A few examples of distri-

butions and their state vectors should clarify the concept. If the

first five moves after an initial state of (0,0) were; J, K, K",

L and K, then the state vector of the resulting distribution would be

(0,0). The above result is arrived at by the following sequence of

reductions; J + K - _L_"', then L" + K" a i, J + L - _K_", i_<f' + K = I.

It is through a sequence of reductions such as this that one determines

the state of a distribution. Further examples are given in Table 6.
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with an Initial State of (0,0)

Encamples of the Determination of the State of a Distribution

 

 

Initial State 0 O

Att‘ck VBCtorSS LI Le K-lj J: J-1

 

 

 

Reductions: (O, 0) + L = (L,O)

(L,o) +. I. = (2L,0)

(2L,0) + K" = (2L,K")

(2L,r') + J a (zit-1,1.)

(git) + r1 = (gins-1)

Resulting State (2L,KE1)

State Vector (2,1)

Initial State (0.0)

Attack Vectors: J. .J'144...!

Reductions: (0,0) + J = (J,0)

(J,O) + J'1 = (0,0)

(0.0) + L = (L,O)

(Leo) + K = ($1.0)
 

Resulting State ($1.0)

State Vector (1,0)
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If one does not start from an all equal distribution the problem

of finding the state of the distribution Is complicated by the fact

that the state of the initial distribution is not known. Since it is

impossible to calculate the state of any subsequent distribution with-

out knowing the state of the initial distribution, it is necessary to

have a method by which this initial state may be determined. One such

method is to add to the distribution the attack vector which produces

the maximum reduction in the disparity of relative strengths.

The state of any initial distribution is the reduced sequence of

attack vectors, which when added to the initial distribution produces

the nearest all equal distribution from which the initial distribution

is reachable. Again an example should clarify the point. If the initial

distribution is (lO,9,8), the attack vector which reduces the disparity

of relative strengths the most is the (O,l,2), or J'I vector. When

the J" vector is added to the (lO,9,8) distribution, the resulting

distribution is (lO,lO,lO), the nearest all equal distribution from

which the (lO,9,8) distribution is reachable. The state of the initial

distribution is (J-l,0). (Further examples of the determination of

initial states are presented in Table 7.)

It is possible to find the state of a distribution only if

the sum of the three components of the distribution is divisible by

three, since only distributions which meet this restriction have at

least one all equal point. Only these distributions will be con-

sidered in this paper.

All distributions subsequent to the initial distribution are

described by the reduced combined sum of the initial state and all

the attack vectors produced by the triad. (If the sum were not reduced
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Tible 7. Examples of Obtaining the Initial State of a Distribution

 

 

Initial Distribution of (10.10.?)

 

(10.10.?) + (0.1.2)

(1091199) + (1.002)

(tr-1.0) +

J-1

K

(10.11.9)

(J'1.0)

(11.11.11)

($1.1!)

Initial State is ($1.1!)

State vector is (1.1)

 

Initial Distribution of (13.8.6)

 

(13.8.6) +' (0.1.2) 8

(13.9.8) +

(J'1.0) +

(13.10.10) +

(2J‘1.0) +

(13.11.12) +

(3.14.0) +

Jpl

(0.1.2)

J-1

(0.1.2)

J91

(0.2.1)

L

(13.9.8)

($1.0)

(13.10.10)

(2.1-1.0)

(13.11.12)

(3J".O)

(13.13.13)

(arm)

Initial State is (3J’1.L)

State vector is (3.1)
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it would be the decomposed distribution of points discussed earlier.)

An example of the determination of a state when the initial state was

not (0.0) follows. If the initial state was (2J",K) and the attack

vectors produced by the triad were J, KI and L the resulting state

would be determined by the following reduction sequence; (2J-I,K) +

J a (J",K), (J",K) + K"I a (J",O), (J",O) + L . (J",L).5 Thus

the resulting state would be (J-',L). More examples of the determina-

tion of a state when the initial state is not (0,0) are presented in

Table 8.

Table 8. Examples of the Determination of the State of a Distribution

with an Initial State Other Than (0,0).

 

 

 

 

 

Initial States (J",O) (2J",L)

Attack Vectors JJ_K, L L", J, L

(J",O) + J - (0,0) (2J",L) + L“ - (2J",O)

(0,0) + K - K (2J",O) + J - (J",O)-

(K,O) + L a (J",O) (J",O) + L . (J'I,L)

Resulting State (J",o) (J",L)

State Vector (l,O) (l,l)
 

The resulting reduced sum of attack vectors constitute the state

of the distribution. This state will be composed of a single type of

attack vector, or some combination of two types of attack vectors.

These two types will be any two vectors of different letter and power.

 

5Again the equal sign Indicates equality of DRS.
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(All possible states are listed at the bottom of Table 5.)

The number of each type of attack vector in the state of the

distribution, when listed without the type of vector, is designated

the state vector. The state vector, then. Is the pair of numerical

components of the state of the distribution. By convention the larger

of the two components is listed first in the vector. There are only

two types of state vectors: a pure state in which only one type of

attack vector is needed to characterize the distribution, and a mixed

state in which two types are needed.

At this point it is necessary to make an assumption about the

rearrangeability of the power positions within the triad. It is

assumed that it is of no importance which player is in which power

position over the course of the game. If, during the game, a power

position switches from one player to another, the states are treated

as if the same player was in that position throughout the game. This

results in a distribution of points always being listed in a decreasing

order, regardless of which player is in each position. The rearrangeabil-

ity assumption allows for the considerable simplification of the model

which follows.

With the stipulation that the distribution of points always be

listed in decreasing order of magnitude, all state vectors have J-I

as a basis. It is clear why this is so when one looks at the J", attack

vector, (O,l,2). and considers the rearrangeability assumption.

When the distributions are arranged in descending order, any pure

state will be some number of J.1 vectors. For instance a AK" state

representing a distribution of (S,l3,9) when rearranged as (l3,9,5)

Is a AJ-l state (four times (O,l,2) equals (O,A,8) added to the
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distribution results in a (l3,l3,l3), the nearest all equal state.

All mixed states also have J.I as a base, again due to the

rearrangeability assumption. For example, a (3,l) state vector

composed of (3L",K) could represent a (l2,20,l5) distribution.

Upon rearrangement it becomes a (20,l5,l3) distribution or a (3J'],L)

state. The state was determined in the same manner as all previous

states have been, by adding the attack vector which produces the great-

est reduction in the disparity of relative strengths until an all equal

state is reached. Any distribution can be rearranged so as to have

J-l
as a basis. As a result of the rearrangeability assumption, only

three types of attack vectors are used in the mixed states (J-',K or L)

while only one is used in the pure states (J'l).

Probability Equations for Each Attack Vector and Possible Transitions

Each attack vector is produced by a unique combination of attacks,

with the exception of the I vector which is produced by two such com-

binations. From these unique combinations of attacks, equations

predicting the probability of any attack vector occurring are derived

by constructing a probability tree, with P being assigned to the

probability of attacking the stronger from any decision point. The

tree is shown in Figure l. The letter designates which player is

making the decision. It is assumed that x > y > 2.

Because there are only seven attack vectors, each state vector

can be transformed to a maximum of seven different states. If (I,j)

designates any arbitrary state vector, then the seven possible states

after the application of each of the attack vectors listed in Table A

are: (I,j). (l+l.j). (i-I.l). (l.J+I). (Isj-l), (i-I.J+I). and (l+I.J'I).

Which transition is produced is determined by the types of attack
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EQUATIONS FOR

ATTACK PROBABILITY OF

I ATTACKS Y ATTACKS Z ATTACKS VECTORS LABEL OCCURRENCE

2

1 J P3

0

1 1
P 2 K? P°(1-P)

o

1 - P 1

x 1 I P’(1-P)

P 1

P

0

I 2 L P(1-P)a

1 - P 1

2 -1
0 L P3(1-P)

P 1

1

1 - P P ' 1 I P(1.P)a

1 - P 1

1

x O K P(1-P)3

P 2

1 - P

O -1
Y 1 J (1-P)°

1 - P 2

Figure 1 . Probability Equations and Labels for Each Attack Vector.
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vectors which make up the state, and the attack vector which is applied

to it. Different attack vectors have differential effects on different

states. For Instance a state vector composed of (2J",K) will go to a

(2,0) state vector with the application of a K-' attack vector, but a

(2J-‘,L) will go to a (2,l) with the application of the same K"I attack

vector.

If the state has a zero as the second component (pure state) then

at most five states are reachable from it, since both transitions re-

sulting in a state with j-l as the second component are, by definition,

nonexistent. No attack vector when applied to such a state, can reduce

the second component (0) to a j-l or -I. A -I has no meaning, since it

implies that a negative of an attack vector is needed to describe a

distribution.

The all equal state is the exception to the above transition

states. Only two states are reachable from the (0,0) state and they

are the (0,0) and (I,O) states. It is quite clear why this is so,

since no transition state which has a i-I, or a j-l as an element is

possible. As stated above, no attack vector when applied to a (0,0)

state, can produce a -l in either position. The application of any

attack vector, except the I vector, increases the state of the distri-

bution from (0,0) to (I,O). The sum of any attack vector added to O

is the attack vector. The (l,O) state also has a restricted transition

range with the (i-l,j+l) state being underfined, due to the restriction

that the largest element be listed first in the vector.

As was mentioned previously, the all equal state has transition

probabilities that are independent of the estimate of P. Since all of

the players have the same number of points in this state, they are
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assumed, for attack purposes, to be indistinguishable from one another.

Since they are indistinguishable, the probability of attacking either

of the attack choices for each player is .50. As was stated above

there are only two states reachable from the all equal or (0.0) state:

the same (0,0) state or the (l,O) state. The (0,0) state is reachable

only through the application of an I attack vector, of which there are

two (see Figure I). The probability of each I vector is .l25 (.50 for

each of the three decision points in the tree). The total probability

of remaining in the (0,0) state is the sum of the two I attack vectors,

or .25. The probability of going to the only other reachable state,

the (l,0) state, is one minus the probability of remaining in the (0,0)

state, or .75.

The equation for any transition from a state is determined by

the attack vector or vectors which produce that transition. The attack

vectors which produce each transition and the resulting equations are

shown in Table 9. With J"I being the basis of all of the states only

this single set of equations is needed to predict all possible transi-

tions. Although the K, L, K-', L"I attack vectors produce different

transitions on mixed states depending on which attack vector (K or L)

is the second component of the state vector, the resulting equations

are the same due to the fact that the K and L vectors have the same

I and L"1 vectors.equations, as do the K-

This transition table offers a general framework within which

data can be analyzed. All of the types of states encountered in a set

of data would be listed in the first column of the table and the

frequency of each transition from these states would be indicated

in each cell. The cells could then be compared with respect to the
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observed and expected frequencies using a chi-square goodness of fit

test. The expected values are calculated from the predicted probability

of the transition (calculated using the estimate of P from the data and

the transition equations presented in Table 9) and the marginal

frequency for each state.

The Model Axiomatized
 

Now that the model has been described, it is axiomatized to

present its logical organization.6

Definition l. The three numbers representing the number of points

each player has is called the distribution of points. This distribution
 

of points is the three component vector D.

Definition la. If the distribution of points is arranged so that

the three components are in a decreasing order of magnitude, the vector

will be called the ordered distribution of points 0*.

Definition lb. The differences which exist between the three

components in the vector D* are called the disparity of relative
 

strengths and is represented by a two component vector (i,j) where i

is the difference between the first two components, and j is the

difference between the last two.

Definition 2. The attacks on any single move are represented by

a three component vector called the attack vector, V, with each com-

ponent being the number of times that a particular player was attacked

on that move. The complete list of attack vectors is given in Table A.

Lemma l. Any distribution of points with a sum that is divisible

by three can be represented by the sum of a sequence of attack vectors.

 

6A simpler axiomization of this model was formulated by Phillips.

Klien, and Hartman (l970).
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Definition 3. The sequence of attack vectors that constitute a

distribution Of points is called the decomposed distribution of points.
 

Definition A. If all I attack vectors are removed from the de-

composed distribution Of points, the residual attack vectors constitute

the deleted decomposed distribution of points.
 

Theorem I. The I attack vector is the only vector which maintains

the disparity of relative strengths. Given any distribution of points

0*, with components (j,k,L), and a diSparity of relative strengths

vector of the form (m,n) where j - k = m, and k - I - n then the applica-

tion of any arbitrary attack vector with the components (x,y,z) results

in the distribution (j-x, k-y, L-z) and the DRS vector would be formed

by (j-x) - (k-y) - j - x - k + y and (k-y) - (L - z) - k - y - L + 2.

For the DRS of the distribution to be maintained the following must

be true.

I j-x-k-l-y ll 3 II

L
.
.
.

l

7
?

5 and;k - y - L + z = n = k - L

6 k-L-y+z=k-L

7 -y+z=0

8 y a 2

From A and 8, x = y = z is the only way the DRS is maintained,

the only attack vector for which this is true is the I attack vector

with (l,l.l), all other attack vectors have as components a l, a 0, and

a 2, definitely not equal.

A

Lemma 2. For a given distribution of points, D . the corresponding
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decomposed distribution of points and the corresponding deleted de-

composed distribution of points are said to be equivalent with respect

to the disparity of relative strengths (DRS) of that distribution.

This follows from the definitions of the I attack vector and the

disparity of relative strengths, definitions lb and theorem l.

Definition 5. If two vectors are equivalent with respect to DRS,

that is, the DRS vectors for the two vectors have the same values in

the correSponding positions, the equivalence will be denoted Vi a V].

Lemma 3. The identity rule:

I + V = V where V is any attack vector. This result follows

directly from Theorem I and Definition 5.

Lemma A. The complementation rule:

v + VI = l where V is any attack vector. This result follows

from the definitions of attack vectors in Table l.

Lemma 5. The combination rule:

nV + V = (n+l)V where n is any positive integer and V is any attack

vector. This result follows from definition 5.

Lemma 6. The reduction rules:

I
J + K a L“ J" + K" a L

J + L - K“ J'I + L" s K

K + L a J“' K"I + L" . J.

These rules follow from the definitions of attack vectors in

Table I, from the laws of addition for vectors, and from Lemma 3.

Theorem 2. A deleted decomposed distribution of points has,

at most two distinct non-zero attack vector components.

Prcuyf:

Let T and R be two distinct attack vectors such that T f R", and
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such that they are not reducible under Lemma 6. Consider a deleted

decomposed distribution of points, D, such that D = nT + mR.

Let us add an attack vector to D that is distinct from T, that

is not T", and that is not reducible in combination with T under

Lemma 5. We call this vector S.

If T is a member of the set J, K, L , then S must be a member

of the set J-], K-', L-' in order to meet the above conditions.

However, R must also be a member of the set (J", K-l, L-l) in

order to meet the conditions that have been placed on R.

Therefore, R and S must be reducible under Lemma 6. Similarly

If T is a member of (J", K'], L-I), then both R and S must be members

of (J, K, L) and must be reducible under Lemma 6. Thus the theorem is

proved.

Definition 6. The positive integers associated with the two

distinct vectors in a deleted decomposed distribution of points

constitute the components of a two component vector thCh Is called

the state vector 5. If all players have the same number of points,

S - (0,0). A pure state has a state vector in which at most one

component is non-zero. A mixed state has a state vector in which

both components are non-zero.

Definition 7. In each state the largest component is always

listed first.

Definition 8. Those two attack vectors which are in the deleted

decomposed distribution of points are those attack vectors which when

added to the vector 0*, produce the nearest all-equal state. In other

words these attack vectors reduce the disparity of relative strengths

to O in the fewest number of steps.
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Theorem 3. Each deleted decomposed distribution of points has

J-l

as its largest component.

This follows from the definition of the J" attack vector,

definitions lz, lb, and 8, and from theorem 2. Since the distribu-

tion of points 0* has its components in a decreasing order of magnitude,

the attack vector which reduced the DRS to O in the fewest number of

steps is the J" or (O,l,2) attack vector.

Theorem A. The second component of the deleted decomposed

distribution is a O, a K or an L. It follows that if it is a pure

state the second component is a 0. If it is not 0, then , from Lemma 6

and Theorems 2 and 3, it must be in the set (K,L).

Theorem 6. Each state can be transformed to a maximum of seven

different states. Given an arbitrary state (i,j) the reachable states

are (i,j). (i-I.j). (i+i,j). (l+l,j-l), (i,j-l), (i,j+l), and (i-l,j+l).

This follows from the fact that there are seven attack vectors.

Axiom I. On any given move, the probability of a player attack-

ing either of his attack choices is independent of previous moves.

Axiom 2. Two players with the same number of points are in-

discriminable to the third player, and thus each will be attacked with

probability .50.

Definition 9. Let S be a strategy that identifies, for each triad

member, his more preferred attack choice (MPAC). The sole basis for the

choice of MPAC is the number of points associated with each player

so this identification holds only if both players are distinguishable.

Axiom 3. Each player attacks his MPAC independently of the other

players' attacks and with probability P. Also each player attacks his

less preferred attack choice (LPAC) independently of the other players'
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attacks and with a probability of l-P.

Axiom 3a. P Is greater than l-p. (P is greater than .50.)

Lemma 7. P is invariant over power positions.

This follows directly from Axiom 3.

Lemma 8. P is invariant over games.

This follows directly from Axiom l.

Axiom A. P is invariant over all distributions of points.

Lemma 9. In the all-equal distribution the players are indistin-

guishable from one another, and the probability of each player attack-

ing either of his choices is .50.

This follows directly from Axiom 2.

Theorem 7. For any strategy 5, each player attacks his MPAC

Independently and with probability P on each move Off the game.

This follows directly from definition 9 and axioms I and 3.

Theorem 8. The theorem on rearrangeability:

Any distribution of points, D, can be rearranged so as to obtain

an ordered distribution of points D*, after each move, without affecting

any player's MPAC, or his probability of attacking the MPAC.

By Axiom l, each move is equivalent to an initial move, and by

definition 9 the choice of MPAC depends only on the distribution of

points. Hence the MPAC will not be changed by rearranging the dis-

tribution of points. From theorem 3, it is apparent that if the MPAC

is not changed, the probability of attacking him will not be changed

and the theorem is proved.

Axiom 5. The probability of the occurrence of each attack vector

is the joint probability of the occurrence of the attacks represented

by the three components of the vector.



AO

Definition lO. P(i) is the probability of attack vector i, where

the three components of the vector are (j,k,l).

Lemma iO. P(i) = PR(X) PR(Y) PR(Z)

Where PR(X) P if player X attacks him MPAC

l-P if player X attacks his LPAC

PR(Y) = P if player Y attacks his MPAC

l-P if player Y attacks his LPAC

PR(Z) = P if player 2 attacks his MPAC

l-P if player 2 attacks his LPAC

This follows from definitions IO and II, axiom 5, and theorems

3 and A.

Axiom 6. The probability of any transition from a state is the

sum of the probabilities of the attack vectors which produce that

transition.

Previous Test of the Model
 

Hartman and Phillips (I969) applied this model to a limited set

of data that consisted only of transitions from states that had a zero

as the second component (pure states). The results of the test were

inconclusive. The model fit the data only if the data points from the

first move of every game were excluded. It did not fit the first move

data alone, nor all of the data with the first move data included.

Hartman and Phillips (l969) proposed that the bad fit of the first

move data was due to the procedure used in the experiment. The crucial

point of the procedure was that the subjects were in a face to face

situation that allowed them to know which of the other players had

won the previous game. This generated the possibility that the subjects

were responding on the first move to who had won the previous game,

rather than on the distribution of points for that game. It was to
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eliminate the interference of previous games and to produce a larger

variety and number of data points that the present experiment was

designed.



Method

Subjects. Forty-three groups, each composed of three male under-

graduates were used in the experiment. The subjects were obtained

through a subject pool maintained by the COOperation/Conflict Research

Group at Michigan State University. The subjects had been originally

recruited through a newspaper advertisement offering to pay subjects

for participating in motivational research. The pool had been collected

to provide a group of subjects who were highly motivated to participate

in competitive game experiments. Since uelative conflict assumes a

desire on the part of the participants to achieve their goal (winning

in the truel), these subjects appeared better suited for the experiment

than the usual subjects obtained through introductory psychology cources.

The subjects were called one week prior to the beginning of the

experiment and asked to participate. If they consented to participate,

a time convenient for all parties (the three subjects and the experimenter)

was arranged.

When the subjects were called they were told that the experiment

was a three person game in which they could win up to three dollars for

the one hour. Only if they asked, were they told that the minimum was

75¢. Due to the importance of having everyone appear at the agreed upon

time, the importance of fulfilling the obligation was stressed.

Setting and materials: The experiment was conducted in a small

room with a rectangular table in the center. On tOp of the table was

a wooden partition which divided the table into four sections.

A2
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Figure 2 is a diagram of the partition and table.

a. a

Player on Player in Player on

left of the the middle right of the

eXperimenter experimenter

 “a...
 

Figure 2. The Diagram of the Table Partitions: Top View.

The partition was constructed so that subjects were able to see

the experimenter but not each other. The panels between the subjects

(labeled “a” in the diagram) were 30 inches high and 2A inches wide.

The panel between the subjects and the experimenter (labeled ”b” in

the diagram) was IO inches high but varied in width for the three

different positions. The center position had a 30 inch Opening while

the two end positions had l5 inches each.

To standardize the experimental situation, it was necessary to

give each of the three subjects a label, with the entire set of three

labels remaining constant over all groups. In previous gaming research

the labels A-B-C and VAF-ZEJ-YOV had been used for this purpose. To

find the least reactive label set, a pilot study was performed (Hartman,

I970). The most important result was that the label set ARGON-BORON-

KRYPTON appeared to have essentially no response biases for subjects.

It was this set that was used to represent the three players in all of

the games in the experiment.

To allow each player to indicate which other player he wished to

attack on each move of the game, three cards were placed in every

cubical with one label of the set appearing on each card. Each player

also had a wooden card holder on top of the panel separating him from
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the experimenter into which the experimenter Inserted a card with the

label of that player. This card was in full view of the subject and

the eXperimenter but out of sight of the other two subjects. This

allowed the experimenter to know the complete distribution of labels,

and each player to know only his own label.

An abacus like arrangement was used as a scoreboard. It was

mounted above and behind the experimenter in full view of all of the

subjects. The labels were listed in a vertical line on the left side

of the scoreboard with the points for each label listed to the right

of it. The points were represented by circular discs mounted on a

horizontal rod. The points taken away from each player were placed on

the right side of the scoreboard and covered by a wooden shield. Thus,

only the points still possessed by a player were visible, with all Others

concealed behind the shield. Figure 3 is a diagram of the shield and

the scoreboard.

 

 

 
 

 

 

a Shield

 

 

 

 

 

 

 

        
Figure 3. The Diagram of the Scoreboard.
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Procedure: In order to produce a large number of data points,

eleven different initial states were used, ten of which had a non-zero

second component (mixed states). All of the distributions and their

corresponding state vectors and orders of presentation are listed in

Table IO. Because each state vector from (5,0) to (5,5) represented

different disparities of relative strengths, ranging from 5 to ID, two

orders of presentation were constructed for the experiment. One order

increased the DRS over the six games played, l.e., the triad began

with the (5,0) state and ended with the (5.5). The other order presented

the games in a decreasing order of DRS. beginning with the (5.5) state

and ending with the (5,0)

Table IO. The Eleven Initial States and the Distribution for

the Two Orders of Presentation.

 

 

 

 

 

Game Order I l 2 3 A 5 5

Number Order 2 6w 5' A 3 2 l

State

Vector (5,0) (5.l) (5,2) (5I3) (5,A) (5.5)

D

l IA l5 l6 l7 l8 l9

s

t Type K 9 ll l3 l5 l7 l9

r

i A A A A A A

b

u

t lA I6 I8 20 22 2A

l

0 Type L 9 9 9 9 9 9

n

s A S 6 7 8 9    
 

Each group of subjects received one of the four conditions appearing

in Table l0, with ten groups in each condition. The four conditions were

<:reated by two types of initial states and two orders of presentation.
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These four conditions were numbered from one to four. In condition

one, type K states were presented in order one. In condition two,

type K states were presented in order two. In the third condition,

type L states were presented in order one, and in the fourth condition,

type L states were presented in order two. The conditions were pre-

sented in a constant I, 2, 3, A, order over the first AO groups, l.e.,

the first group received condition one, the second condition two, the

third condition three and the fourth condition four, with this sequence

repeated for the remainder of the AO groups'.

Since the labels were listed in a vertical line on the scoreboard

there was a possibility of a reSponse bias due to the label position

on the scoreboard. To eliminate this possibility the labels were

listed on the scoreboard in the three different sequences presented in

Table II. For the ten groups in each condition the first label

sequence was presented four times, while the second and third sequences

were presented three times each. This procedure counterbalanced any

effect due to label position on the scoreboard.

Table II. The Three Sequences of Labels on the Scoreboard Used for

the Ten Groups in Each Condition.

 

   

SEQUENCE I SEQUENCE 2 SEQUENCE 3

ARGON BORON KRYPTON

BORON KRYPTON ARGON

KRYPTON ARGON BORON

IThree groups had to replace thus the total of A3 groups

rr"antioned previously. More will be said about the replacement of groups

7'1 the section with the presentation of the results.
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To eliminate possible individual biases Of the subjects for a

particular label, each player was represented by each of the labels

once in each half of the experiment (once in the first three games

and once in the last three). Within each group of subjects each label

represented each power position (the most points twice, the fewest

twice, and the middle number twice) once in the first half and once

in the second half of the six games played.

At the beginning of the eXperiment, the subjects were told

that they would play several games (an unSpecified number), and that

one of these games would be chosen at random to determine payment.

The winner of that game would receive the $3.00, the other two players

each would receive 75¢. Further they were told that if the game

chosen had no winner (a tie) then all three would receive 75¢.2

A cylindrical urn, four inches high and two and one half

inches in diameter was used to obtain the random draw. The six games

played were represented by the numbers one through six pasted on six

poker chips. The subjects were told that the six chips were placed

in the urn, but the experimenter, out of sight of the subjects, put

only those chips into the urn which represented a game with a winner.

To give each player an equal Opportunity to win the three dollars

every player was assigned each power position twice. These assign-

ments were distributed such that the sum of the disparity of relative

strengths for the two assignments of each of the power positions for

 

2Although they were told ties resulted in all three receiving 75¢,

in fact it was not true. Since many of the subjects knew other people

in the subject pool, It was felt that one of the subjects must receive

the $3.00 in order to maintain the credibility of the reward, and to

make recruitment of subsequent subjects easier.



A8

each of the players was l5.3 As an example, a player would be in the

strongest power position in the game with an initial state of (5,0)

(DRS of 5) and in the game with an initial state of (5,5) (DRS of IO),

thus a total of l5 for the two games in which he was in the strongest

power position. This means that the sum of the disparity Of relative

strengths for the two presentations of each power position was equal

for all subjects.

After the subjects were seated at the table, the eXperimenter

read them the instructions (presented in Appendix), and all questions

regarding the playing of the game were then answered. Each game was

begun by designating the distribution of points for that game and

placing these points on the left side of the scoreboard. The players

were then given their labels for that game and the subjects indicated

the player they wished to attack on the first move of the game. On

each move Of the game all players indicated their choice by holding

up the card with the label of the chosen player. The card was held

so it was below the tOp of the panel separating the subjects but above

the panel separating the subjects from the experimenter. This procedure

allowed for simultaneous, concealed attacks. The game continued until

one player was eliminated (ran out of points); the player with the

most points at this time was the winner, but if no player had a plurality

of points the game was a tie.

When each group finished the six games, the winner of the three

dollars was determined by the experimenter shaking the urn and drawing

 

3The value of the DRS Is taken as the simple index which is

calculated by adding the two components in the state vector.
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out one of the chips. The number on the chip represented a game, the

winner of which received the three dollars. The subjects were then

questioned as to their knowledge of the labels of the other players

during the games and also asked to verbalize their strategies in

playing the game. Finally the subjects were told the purpose of

the eXperiment and thoroughly debriefed.



Results

Of the forty-three groups recruited for the experiment only

AO were used in the data analysis. Group l3 was discarded because

one of the subjects had participated in a pilot study performed nine

months previously. This subject won the first three games played and

three out of the four games which had a winner. The other subjects

felt he had an advantage and therefore the $A.50 was divided equally

between the players. This group was replaced by group Al. The 22nd

and 36th groups had to be discarded due to an error made by the experi-

menter in (at least) one of the games. (The second game in group 22

was started with the wrong distribution of points and group 36 was

presented with the wrong sequence of labels.) Group 22 was replaced

by group A2 and group 36 by group A3.

Although the major thrust of this section is to present the

results of the test Of the fit of the model to the data, a large

portion of the section is devoted to an extensive examination and

analysis of the estimated probability of attacking the stronger of

each player's two attack choices. Estimates of P were obtained for

the three power positions In every game played, resulting in 720 esti-

mates (three power positions, six games per group and A0 groups). The

estimates were analyzed from two different points of view. The first

approach was to determine the effect of the initial state, order of

presentation, type of state, and power position on the estimated value

Of P. The second analysis focused on the possible effects Of game

number, order of presentation, type of state, and power position on

the estimate of P. Because all distributions have J'I as a base, the

different types of states are referred to as pure, K, or L type states.

50
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Results of the Analysis on the Estimates of P'

Before the results of these analyses are presented, it is

necessary to eXplain some procedural difficulties in the determina-

tion of an estimate of P for each game and power position. Although

each game began as a definite state, It did not remain in that state

throughout the entire game. This would not be a problem if the type

of state remained the same throughout the game, for instance if the

game began as a mixed K and remained a mixed K. However, several

times throughout the experiment the type of state switched from one

type to another (either K to L, or L to K). To solve this problem

of nonhomogenous types of states within each group, the estimates of P

were analyzed according to the type of state from which the attacks

originated rather than according to the type of state the group began

with. In other words, attacks made while a group was in a K type state

would be analyzed within the K type factor, even if the initial state

had been a type L state.

The first group of estimates, classified as a function of initial

state, power position, type of state, and order of presentation

(increasing or decreasing) is presented in Table l2. These are the

combined estimates from all ten groups in each condition. The estimates

 

'It was necessary to separate the analysis of initial state from

the analysis of game number because the initial states were confounded

with game number. This meant that each game number was one of two initial

states and each initial state appeared in two different game numbers.

For example, the (5,0) initial state appeared in the first and last

game numbers and no others, while the first and last games represented

only initial states of (5,0) and (5,5). This confounding made it

impossible to analyze for either effect directly.
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indicate that there are few differences between orders, or consistent

trends over initial states. The exceptions to this are the first and

third power positions for the type L states, where the decreasing order

had consistently higher estimates than the Increasing order.

The estimates for both orders were then combined, resulting in

a single estimate for each initial state, type of state, and power

position. The estimates are presented in numerical form in Table l3,

and, to make for easier comparisons, in graphic form in Figures A to 8.

The first two figures compare the three power positions for each type

of state (K or L) as a function of initial state. For state type L

(Figure 5) there was a consistent difference between the three power

positions, with the second position having the highest estimate, the

third position the second highest, and the first position the lowest

estimate of P. The same pattern held for the type K states (Figure A)

with the exception of the (5,2) state where the ordering of power

positions was changed to a 3 > I > 2. The differences between the

power positions for the type K states were not as large as for the

type L states, but they were consistently in the same direction.

Table I3. The Combined Estimates of P Over Orders of Presentation for

Each Power Position of Each Initial State and Type Of State

 

 

 

 

Type of State ' K L

Power Position Power Position

Initial State ‘ I__ 2 3 I 2 3

(5.0) .A7 .91 :87 .38 .89 .63

(5,l) .66 .92 .87 .A9 .88 .79

(5,2) .82 .79 .87 .A5 .9A .83

(5.3) .7A .85 .82 .50 .95 .85

(5.1») .73 .91 .78 .34 .9l .8I

(5.5) .72 .77 .77 .37 .90 .80
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The last three figures of this set (Figures 6 to 8) compare the

estimates for each power position of type K states to each power

position of type L states. The differences for power positions two

and three were quite small, with neither type having estimates

consistently higher than the other. The first power position for

type K, however, had consistently higher estimates than the corres-

ponding power position for type L states. In none of the comparisons

in this set were there consistent differences over initial states.

To determine if the differences displayed in the figures were

significant, an analysis of variance was performed on the 720 estimates

of P (three for each of the six games played by the 40 groups). The

data were analyzed for type of state, order of presentation, power

position, and initial state. This resulted in a 2 x 2 x 3 x 6 design

with repeated measures on the last factor and ten observations per cell.

A summary of the results of this analysis are shown in Table lh. The

table indicates there was a significant main effect for power position,

as Figures 4 and 5 indicated. Significant main effects were also

identified for type of state, order of presentation, and initial state

(labeled DRS because each initial state had a different DRS, ranging

from 5 for the (5,0) initial state to i0 for the (5,5) initial state).

Significant effects were also identified for the first order inter-

action of power position with state type, and the first order inter-

action of order of presentation with initial state (DRS). All of these

findings, with the exception of the significant results for initial

state, and the interaction of initial state with order of presentation,

were indicated previously in the tables comparing the estimates.
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Table 114. Analysis of Variance on the Order of Presentation. Type

of State, Power Position, and Initial State (DRS)

 

 

Source df MS F

 

Between Subjects

 

 

Power Position (A) 2 9.431 126.412*

Type of State (B) 1 1.835 24.598'

Order of Presentation (0) 1 0.579 7.764**

A x B 2 1.724 22.113‘

AXC 2 04%

B x c 1 0.266

A x B x c 2 0.069

Subjects within Groups 108 0.075

mama...“

Initial State (DRS) 5 0.249 5.209*

A.X D 10 0.101

3x0 5 omfi

c x D 5 0.414 8.649

AXBXD m mmo

AXCXD w mm5

BXCXD 5 mm9

ixsxcxn m mM9

stmyaeuwm $0 0mm

Groups

Total War 719 0.091

* p < .0005

** p< .01
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The estimates of Table l2 were then arranged in terms of game

number (first game played, second played, etc.) for each type of

state, power position, and order of presentation. The estimates in

the first, third, and fifth columns (those labeled increasing) of

Table l2 are identical for the two dimensions of game number and

initial state (DRS). The estimates in the decreasing columns (the

second, fourth, and sixth) are reversed for the two dimensions, with

initial state (DRS) increasing going down the table while game number

decreases. This was caused by the confounding of initial state with

game number. This confounding results in the comparison of the

last game in the decreasing order with the first game in the increasing

order.

The estimates of the two different orders of presentation for

each power position of the type K states presented as a function of

initial states were previously presented in Table l2. The two orders

of presentation can be compared as a function of game number using

the same table by comparing the estimates for the (5,0) state of order

one (increasing) with the (5,5) state of the decreasing or number two

order of presentation, and then comparing the (5,l) state of order one

with the (S,h) state of order two, continuing until the final compari-

son is made between the (5,5) state of order one and the (5,0) state of

order two. The comparisons indicated that there were no consistent

differences between orders, nor a consistent trend over game number

for any power position.

The same comparison procedure that was used for the K type states

was also used for the L type. As Opposed to the K type states the L
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type states indicated consistent differences between the two orders.

In power position one the decreasing order had consistently higher

estimates of P than did the increasing order. In power position two

the decreasing order had higher estimates in four of the six games,

and in the third power position the decreasing order had higher

estimates in five of the six games played. Again no consistent

differences were indicated across game numbers.

The two orders of presentation (increasing and decreasing)

were again combined producing 36 estimates of P (one for each power

position, game number, for each type of state). These combined

estimates are presented in Table l5. Because the graphs of these

estimates did not differ from the graphs of the estimates when

presented as a function of initial state, they are not presented

here (see Figures 4 to 8).

Figures A and 5 compared the three power positions for each type

of state as a function of initial state, however, they also illustrate

the relationship between the power positions for each type of state

as a function of game number. The three power position for type K

are presented in Figure A and the three for type L in Figure 5. Table l5

indicates that in the type K states, the same 2 > 3 > i ordering held

for all but the third and sixth games. In the third game the ordering

was changed to 3 > I > 2, and in the sixth game to 3 > 2 > I. It will

be noticed, however, that the reversed estimates in both cases differed

by less than .06. In general the 2 > 3 > i ordering of power positions

held for the type K states. Across games there was a consistent trend

for all estimates to increase as game number increased.
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Table IS. The Combined Estimates of P Over Orders of Presentation

for Each Power Position of Each Game Number and Type

 

 

 

 

of State

Type of’State K L

Power Position Power Position

Game Number I 2 3 l 2 3

ll .59 .80 .76' .22 .80 .66

2 .66 .90 .80 .36 .87 .82

3 .83 .80 .86 .39 .92 .80

4 .72 .85 .83 .55 .96 .87

5 .79 .93 .8h .AA .92 .79

6 .6] .87 .89 .A9 .97 .82
 

Figure 5 presented the differences between the estimates for the

three power positions for state type L as a function of initial state

but it also illustrates the differences found between these estimates

as a function of game number. These differences are indicated in

Table l5. Here again the same 2 > 3 > i ordering of power positions

was found for all games but with no points of reversal as were found

for the type K states. As was found for the type K states, there was

a slight trend for the estimates to increase over game numbers for

all power positions.

Table l5 presents the estimates of each power position for the

type K states and the corresponding estimates for the type L states,

as a function of game number. As for the initial state analysis

(see Figures 6 to 8), power position one showed the only consistent

differences between the two types, with the estimates for the other

two power positions varying little from each other. The estimates

of the first power position for type K were consistently larger than

the corresponding estimates for type L. The differences between the

two types ranges from .l2 to .hh.
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To determine the significance of these trends an analysis of

variance was performed on the factors of order of presentation, state

type, power position, and game number. This analysis resulted in a

2 x 2 x 3 x 6 design with repeated measures on the last factor and

ten observations per cell. The results of the analysis are presented

in Table I6. Significant main effects were found for all four factors.

The factors of power position, state type, and game number were all

significant beyond the .0005 level. The main effect for order was

significant beyond the .Ol level. One first order interaction was

indicated with power position interacting with state type at the

.005 level of significance.

As was mentioned previously, there seemed to be a consistent

increase in the estimates of P over game number, with the largest

differences coming between the first three games. To test the

possibility that all of the differences were located in the first two

games, the same analysis of variance was performed on the last four

games separately. The design was thus reduced to a 2 x 2 x 3 x h,

with repeated measures on the last factor and ten observations per

cell. A summary of the results of this analysis appears in Table l7.

This analysis indicated a significant main effect for power position,

state type, and order of presentation. The main effects for power

position, and type of state were significant beyond the .0005 level,

while the main effect for order was significant beyond the .Ol level.

A significant first order interaction was also indicated for the inter-

action of power position with type of state, which had a probability

of less than .0005. No main effect nor interaction effects with game

number were indicated. This indicates that most of the variance was
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'Ihble 16. Analysis of Variance for Order of Presentation. Type

of State. Power Position. and Game Number for All Games

 

 

 

 

Source df MS F

Between Subjgcts

Power Position (A) 2 9.031 126.012,“

type of State (B) 1 1.835 24.598"

Order of Presentation (C) 1 0.579 7.769"

A x B 2 1.724 22,113“

A X C 2 0.132

B X C 1 0.266

A X B X C 2 0.069

Subjects within Groups 108 0.075

Within Sllbjgcts

Gene Number (D) 5 0.606 12.662*

A X D 10 0.008

B X D 5 0.068

C I D 5 0.057

A I B X D 10 0.041

A X C X D 10 0.089

B X C I D 5 0.075

A X B X C X D 10 0.078

0 x Subjects within 540 0.048

Groups

Total Error 719 0.091

'I' p < .0005

** p< .01
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Table 1?. Analysis of Variance for Order of Presentation. Type of

State. Power Position. and Game Number for Last Four Games

 

 

Source d! MS F

 

Between Subjects

 

Pouer Position (A) 2 5.473 97.009"

type or State (B) 1 0.821 14.5.95"

Order of Presentation (0) 1 0.444 7.871"

A x B 2 1.083 19.198*

A X C 2 0.037

B x c 1 0.111

A x B x c 2 0.150

Subjects within Groups 108 0.056

Within Subjects

Game Number (D) 3 0.024

A X D 6 0.098

B x D 3 0.073

c x D 3 0.080

A x B x D 6 0.014

A x c x D 6 0.071

B x c x D 3 0.105

AIBxch 6 mm1

0 1 Subjects within 324 0.041

Groups

Total Error (+79 0.075

* p < .0005

*‘I' p < .01
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due to the first two games played. This interpretation if further

emphasized by the relative size of the error terms of the six and

four game analysis. The error term for the last four games is almost

one half as large as the error term for all of the games. Thus one

third of the data produced almost one half of the error variance.

To test this interpretation a multiple comparison test was

performed on the estimates of P for the six game numbers. The test

was designed by Scheffe' (l955) and described in Edwards' (l960).

The results of this test, presented in Table l8, partially support

Table l8. The t' Values of the Multiple Comparisons of the Estimates

of P for the Six Game Numbers

 

 

 

Estimate Game

of P Number l 2 3 A 5 6

.597 I --- 3.79* 5.90** 6.79** 6.10** 5.62**

.704 2 --- --- 2.l2 2.65 2.33 l.83

.76“ 3 "' "‘ -'- .88 .2] .28

.789 A --- --- --- --- .67 l.l6

.770 5 --- --- --- --- --- .A9

-.756 6 --- --- --- --- --- ---

Mean Square within Subjects = .0283 * p < .05

** p < .00l

the hypothesis that all of the variance was coming from the first

two games. As the table indicates, the difference between the first

two games was significant beyond the .05 level while all other differ-

ences between the first game and the last four were significant beyond

the .OOl level. The second game had no significant differences with
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any of the last four games. These tests indicated that the differ-

ences were generated by the first game, with little of the variance

coming from the remaining games. Although the tests indicated that

the second game was not significantly different from the last four

games, its lower estimate of P and its significant difference with

the first game at only the .05 level cast doubt on the assumption

that it was not played differently from the last four games.

To test the hypothesis that the subjects had no response biases

for the labels used in the experiment, the number of attacks made on

each label was counted. By counting only attacks in which the attacker

had a choice between two players of equal power (points), and there-

fore indiscriminable except for their labels, a who to whom matrix of

attacks was constructed (Table l9). These data were not completely

independent since each player could contribute more than one attack

for each label. Because only a few subjects contributed more than

one attack for each label, the non-independence of these few data

points, out of a total of 800, would have a negligible effect on a

chi square goodness of fit test. Therefore, the test was performed

on the data, with the assumption that the probability of any label

attacking either of his choices was .50. The chi square for the entire

table was 2.52 with three degrees of freedom. The observed, expected,

and chi square values are presented in Tables l9 to 2l respectively.

The fact that the chi square was less than the degrees of freedom

indicates that no response biases were present in the data set.
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Table 19. The Observed Attacks Made by Each.Label on Each of

Its Choices

 

 

Thble 20. The Expected values for the Number of Attacks on

Each Label's Choices. Assuming Random Behavior

 

 

Tible 21. The Chi-Squares for Each Label's The Attack Choices

 

Shm.for'whdle table is 2.52 with 3 degrees of freedom
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Test of the Model
 

Although many data points were generated within the eXperiment,

several cells in the following analyses had expected values of less

than one and several more had expected values less than five. These

low values were caused by very low predicted probabilities for these

cells. These cells violated the condition for the chi-square good-

ness of fit test, that no cell have an expected value less than one

and only 20% of the cells be less than five (Hays, l963). To guard

against accepting the model by using Spurious data, due to the few

cells with values less than one, the data were collapsed over parti-

cular types of states. Which states were collapsed together was

determined by the number of transitions possible from the state.

For each of the following tests, all pure states, excluding the (0,0)

and (l,0) states, were collapsed to form one transition state, the

mixed states with equal components ((l,l) to (5,5)) were collapsed,

those differing by one ((2,l) to (5,4)) were collapsed, and those

differing by more than one ((3,1) to (5,3)) were also collapsed.

Each of these three types of mixed states, and each of the three types

of pure states is characterized by a particular number of transitions

which are possible from it. The (0,0) state has two possible transi-

tions, the (l,0) state has four possible, and all other pure states

have five possible transitions. The three types of mixed states are

characterized by four possible transitions for the equal component

state, six possible for the state whose components differ by one, and

seven possible for the states having components differing by more

than one.
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The chi-square goodness of fit test was then applied to these

collapsed transition states, none of which had a cell with an expected

value less than one. This was done for all of the tests that are

presented in this section. The results of the analysis on the collaps-

ed data were not different from the full analysis. Due to the

similarity of the results and the fact that the full table provides

a more detailed picture of the results, only the results for the

complete table and its chi-square are presented. By presenting the

entire table rather than the collapsed data, it is possible to deter-

mine more precisely the cells in which the model does not fit.

Despite the invalidity of many of the assumptions of the model,

the test of the model was performed. The data were analyzed in the

general table discussed previously. Because so few data points occurr-

ed beyond the (5,5) state only transitions between (0,0) and (5,5)

were used in any of the following analyses. The estimate of P was

obtained by dividing the frequency of attacks on the stronger by the

total number of attacks.

The frequency of all of the transitions in the data set are

presented in Table 22, the expected values in Table 23, and the chi-

squares in Table 20. The estimate of P for the entire data set was

.77. The chi-square for the entire table was 529.26 with 89 degrees

of freedom. The degrees of freedom were produced by lll cells, 2] rows

with marginal constraints, and one estimated parameter. Because the

model did not fit, the data were broken down in several ways in an

attempt to find a set of data that the model did fit.

As the analysis of the estimate of P consistently indicated,

there were differences between the three power positions, between the
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types of states and between the first two games and the last four.

These differences directed a series of changes in the model, beginning

with a change from one parameter to three parameters, progressing to

Splitting the data by type of state, and ending with only the data

from the last four games. The results of these tests are presented

in Table 25. For each disection of the data, the chi-square goodness

of fit, and correlation coefficient were calculated. The chi-squares,

their degrees of freedom, the correlation coefficient, and the esti-

mates of P used in calculating the predicted probability of each '

attack vector and thus each transition, are presented in Table 25.

Table 25. The Summary Results of the Four Tests of the Model

 

P for Power Position

 

Data Set I 2 3 Chi-square I dfn ‘ r. ' Ratio

All Data .77 .77 .77 524.26 89 --- 5.89

K States .69 .88 .83 l97.67 87 .9l 2.27.

L States .02 .9l .8] 257.72 87 .86 2.96

K Types without

Pure states .70 .88 .82 l58.05 68 .9l 2.32

L Types without

Pure States .36 .90 .79 l9h.h7 68 .80 2.86

Pure States .55 .9l .85 52.75 17 .93 3.l0

K Last Games .72 .89 .86 l36.52 68 .90 2.05

L Last Games .40 .93 .82 l89.73 68 .85 2.78

Pure Last Games .63 .93 .87 3l.57 I7 .93 l.85
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The introduction of a three parameter model produced some prob-

lems for the transition equations. The transition table had previously

been simplified by the fact that the equations for the crucial K and L

vectors were the same as were the equations for the crucial K") and L"I

vectors. As was mentioned earlier, these are crucial vectors because

they produce differential transitions depending on the type of state of

the triad. Because rearrangeability causes J'l to be the basis of all

states, the J, J'], and l vectors produce the same transitions regard-

less of the type of state they are applied to. When three parameters

are introduced, the equations for the crucial vectors are no longer the

same. Because the equations for the vectors are not the same, the equa-

tions for the transitions produced by these vectors are not the same.

The new equations for the attack vectors are presented in Table 26, and

the new equations for the transitions are presented in Table 27.

Table 26. The Equations for the Attack Vectors for the Three Parameter

 

 

Model

Attack Vectors Equations

I PR + Q - QP - QR

J PQR

1" (l-P)(l-Q)(l-R)

K R(I-P)(I-Q)

K" PQ(l-R)

L P(l-Q)(l-R)

L" QR(l-P)
 

probability of strongest player attacking his MPAC

probability of middle player attacking his MPAC
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e
t
a
-
o

u
u

I



T
a
b
l
e

2
7
.

T
h
e

T
r
a
n
s
i
t
i
o
n

E
q
u
a
t
i
o
n
s
f
o
r

t
h
e

T
h
r
e
e

P
a
r
a
m
e
t
e
r

M
o
d
e
l

 

I

 

,
S
t
e
t
e

i
1
.
1

1
+
1

(
1
+
1
.
3
-
1
)

(
1
.
3
-
1
)

(
1
.
3
8
)

i
-
1
.
:
i
+
1
)

m
%
—
~
J
—
z
‘
¥
u

..
.

4
—
4
9
-
9
9
.

..
-

..
.
 

(
1
-
P
)
(
1
-
Q
)

R
I
-
P

l
-
Q

(
1
,
0
)

Q
'
I
'
R
P
-
Z
P
Q
R

P
0
3

3
:
(
1
-
3
)

W
"
"
’

P
(
1
-
Q
)
(
1
-
R
)
+

"
"

 

(
1
-
P
)
(
1
-
Q
)

R
(
1
-
P
)
(
1
-
Q
)
+

P
0
(
1
-
R
)
+

P
u
r
e

P
u
r
e

P
R
-
I
-
Q
-
Q
P
-
Q
R

P
0
8

3.
(
1
-
3
)

-
-

"
"

P
(
1
-
Q
)
(
1
-
R
)

Q
R
(
1
-
P
)

(
1
.
0
)
?

 

(
L
E
G
-
W
:

P
(
I
-
l
e

P
Q
R

'

K
P
R
+
Q
-
Q
P
-
Q
R

-
-

(
1
-
1
1
)
+
t
h

'
(
1
-
R
)
+

+
-
-

-
-

 
 

(
1
.
1
)
1

(
1
-
P
g
é
l
-
Q
;

1
-
P

(
1
-
2
2
1
3

(
1
-
P

1
-
0

B
-
P

P
Q
R

L
I
P
R
+
Q
-
Q
P
-
O
R

-
-

(
i
-
R
)

+
P
x

(
1
-
9
)

+
+

m
a
m
-
3
L

E
g
g
-
R
)

(
1
-
P
)
Q
R

74

 
 

P
R
+
Q
~
Q
P
-
Q
R

(
1
-
P
)
(
1
-
Q
)

P
(
1
-
Q
)

(
1
-
R
)

R
(
1
-
Q
)

(
1
0
.
3
7
2

K
+

(
1
-
P
)
Q
R
~

P
Q
R

I
(
1
"
R
)

1
(
1
-
R
)

x
Q
P

1
(
1
-
P
)
.

-
-
.
.

 

L
P
R
-
I
Q
-
Q
P
-
Q
R

(
1
-
P
)
(
1
-
Q
)

R
(
l
-
Q
)

(
1
-
P
)

P
(
l
-
Q
)

+
(
1
-
R
)
P
Q

P
9
3

2:
(
1
-
8
)

x
(
1
-
P
)

an
O
R

a
n
d
-
R
)

"
"
 

x
P
R
+
Q
-
Q
P
-
Q
R

F
O
R

(
2
1
3
2
)
:
?
)

£
8
2
3

0
4
0
0
?

£
8
3
3
;

’
(
1
-
P
)
Q
B

 

(
1
.
3
)
3

(
1
-
P
)
(
1
-
Q
)

R
(
1
-
Q
)

P
(
1
-
Q
)

L
‘
P
R
'
I
'
Q
-
Q
P
-
Q
R

F
O
R

x
(
1
4
;
)

x
(
1
-
P
)

(
1
'
P
)
Q
R

1
(
1
_
R
)

“
-
3
7
0
?

 
 

 
 

 
 

 
 

 
 
 

1
i
>
1
i
f
p
u
r
e
s
t
a
t
e
.
i
>
0
1
f
m
i
a
n
e
d
l
(
o
r
L

2
1
-
3
.
.
.

3
i
-
;
)
>
1



75

The estimates of the three parameters for each of the separations

are listed in Table 25. These estimates show no consistent trend over

the various splits of the data. After the estimates were made for

each power position separately in the first disection of the data

(rows 4, 5, and 6 of Table 25), the estimates remained fairly constant

for each type of state. The only consistent differences between the

estimates for the various disections of the data were the higher

estimates for all power positions for each state for the last four

games than the same estimates but for the entire data set.

The data were first split by separating all transitions from

mixed L states from transitions from mixed K states. The pure states

were divided on the basis of the type of state the remainder of the

initial states were for that group. For example, a transition from a

pure state would be placed in the K data group if the initial states

of the remaining games were K, or in a L data group if the remaining

games were type L's.

As Table 25 shows, the model again failed the test of having a

chi-square less than the degrees of freedom, with the type L data

differing considerably more from the model than the type K data. The

chi-square for the type K was l97.67 and for the type L 257.72, both

with 87 degrees of freedom.

The second splitting of the data, rows 0, 5, and 6, was done

by type of state (pure, mixed K or mixed L). Again the model did not

fit, with a chi-square of 52.75 with l7 degrees of freedom for the

pure states, a chi-square of l58.05 for the mixed K and l94.47 for the

mixed L, both with 68 degrees of freedom.
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The data were finally reduced to only transitions which occurred

in the last four games played by each group (rows 7, 8, and 9). The

data were left in the three state form and all transitions which

occurred in the first two games were removed. The chi-square for the

pure states was 3i.57 with l7 degrees of freedom, for the mixed K it

was l36.52 and for the mixed L l89.73, the later two had 68 degrees of

freedom.

The results presented in Table 25 are listed in a decreasing order

of generality. As the data were Split, and made less general, the

chi-squares were reduced, however, as the chi-Squares were decreased so

were the corresponding degrees of freedom. These nonconstant degrees

of freedom made the interpretation of the decreases in the chi-squares

difficult to make. To solve this difficulty the ratio of the chi-

square to its degrees of freedom was calculated for each test of the

model. These ratios are presented in the last column of Table 25.

In general these ratios decreased as the data were split and made

less general. The only disection of the data that produced no reduc-

tion in the ratios was the separation of the pure states from the mixed

K and mixed L states (rows A, 5, and 6). These decreases indicate

that the fit of the model is improved with continued separation of the

data, but the fit does not improve enough to allow acceptance of the

model.

In all of the tests of the model the chi-squares were larger

than their degrees of freedom. After the initial splitting of the

data the transitions from each state became so meager that any test of

the model would be meaningless. For this reason the search for a fit

of the model to the data was abandoned.



Discussion

The extensive analysis of the estimates of P revealed that many

of the assumptions of the model were invalid. The invariance of P

over power positions, state type, initial state, and order of presenta-

tion were all called into question.

The main effect for power position was found in all of the analyses

performed. The significant effect for power position shown in the

analyses of variance and illustrated in Figures A and 5 indicated a

2 > 3 >'I ordering of the estimates of P for the three power positions.

The relatively low estimates for the first power position was due

to the fact that each of the two weaker power positions could take away

one point, and therefore were equally threatening to the strongest

player. The weakest player had a slightly lower estimate of P than

did the middle palyer. Although it was to the weakest player's advantage

to attack the strongest player, both of the other two players were

stronger than he and, therefore threatening to him. The threat of the

strongest player, however, was considerably greater than that of the

second strongest and therefore the weakest player attacked him more

often than he did the second strongest. The second power position had

the highest estimate of P in almost all of the games played. This

high estimate was caused by the fact that the strongest player was by

far the greatest threat to the second strongest player. As the estimates

show, the second power position attacked the strongest player in over

90% of the attacks made.

One of the most interesting results of the experiment was the

implication that at least the first game and possibly the first two

games were played differently from the remaining games. The Scheffe'

77
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multiple comparison test showed that the difference between the first

game and the last four were significant at the .00l level and the

difference between the first and second game was significant at the

.05 level. Although the second game did not differ significantly from

the last four games, the t' values of the Scheffe' test for those

differences were all much larger than the t' values for the differences

between any of the last four games. These t' values suggest that the

last four games were played differently from the first two.

The error variance that is produced by the first two games is

approximately one half as large as the error variance for the entire

data set, and the large differences between the first two games and the

last four indicate that this effect was very likely due to a learning

effect that was concentrated in the first two games. The small t'

values for the differences between the last four games indicate that

the estimates of P stablized after the second game. This stabalization

indicates that any effect due to learning was eliminated after the

second game.

The main effect for initial state is difficult to locate. None

of the figures indicated any consistent trends over initial state for

any of the power positions. Because there was a significant effect

for game number, and game number was confounded with initial state, it

is possible that the significnat effect for initial state

was an artifact of game number. The confounding of initial state

with game number caused the (5,0), (5,l), (5,A), and (5,5) initial

states to have lower estimates of P than the (5,2) and (5,3) states.

It was the former set of initial states that occurred in the first

and second game numbers for the two orders of presentation, and for



79

this reason had lower estimates of P than did those states which

occurred in the third and fourth games only ((5,2) and (5.3)).

The two orders of presentation were originally inserted into

the design to counter any effects due to game number. The assumption

had been that the effect of game number would be linear, thus a lower

estimate of P for an initial state in an earlier game would be countered

by a higher estimate when that initial state appeared in a later game.

The fact that the effect of game number was not linear after the second

game caused the two orders of presentation to be ineffectual. Because

the first two games, and thus the four initial states mentioned

previously, had lower estimates of P in one order of presentation and

because the estimates of P asymptote at the third game and thus change

little after that, the initial low estimate for the four initial

states cannot be compensated for by placing them in a later game. The

elimination of the significant effect for game number by the removal

of the first two games, and the significant differences between the

first game and the remaining five, lend support to this interpretation.

The interaction between initial state and order of presentation

was significant at the .0005 level. This effect would also seem to

be caused by the significant effect of game number. In the increasing

order the (5,0) and (5,l) states were in the first two game positions,

thus both had low estimates of P, however in the decreasing order of

presentation these same states were in the fifth and sixth game numbers

and therefore had high estimates of P. The states (5.5) and (5,A) were

in the same situation except they appeared in the earlier games in

the decreasing order and in the later positions in the increasing

order. Thus different orders of presentation produced different
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estimates of P for different initial states. Some initial states

increased their estimates from one order to another, while others

decreased their estimates making the same transition, and still others

maintained their estimates for both orders of presentation. From the

results of the analyses performed it seems that it is this kind of

process that caused the significant order by initial state interaction.

In general the order of presentation was significant at the .0l

level. No interpretation of this result is possible since there

seemed to be no consistent differences between the orders. More sub-

stantial evidence is needed before any meaningful explanation can be given.

The significant interaction for type of state with power position

is apparently due to the difference between the two first power positions.

The estimate of P for the first power position for state type L was

much lower than its counterpart for the K type states. The estimate

of P for this power position for the type L states is much lower than

the estimates of P for either of the other two power positions for

either state type. As opposed to the first power positions' estimates

there seemed to be little difference between the estimates of P for the

two lower power positions (see Figures A and 5).

The significant main effect for state type is clouded by its

highly significant interaction with power position. The large difference

between the first power position of state type K and the same position

for state type L could cause the main effect for state type. The

extremely low estimate of P (.A9) for the first power position of

state type L drives down the estimate of P for the entire state type.

Since this reduction did not occur in the type K states, the first

power position could very well have caused the significant effect.
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These analyses of the significant effects for state type

illustrate a fundamental difference between the type of play in the

two states. In the type K states the estimate of P indicates a pre-

dominant tendency for all players to employ the fair play strategy.

The type L states, however, differ from the type K states with respect

to the action of the first power position. This power position seemed

to fluctuate between the fair play or the dyadic competition strategies

and the threat minimization strategy, with the latter slightly

favored over the former. The reason for this difference between

states is obvious when one looks at the power structure of each state

type. As pointed out previously, the type L state is characterized

by a power structure of one stronger and two weaker players, and the

power structure for the type K states is characterized by two stronger

players and one weaker player. In type L states the two weaker players

are equally threatening to the strongest player and therefore the

strongest player predominantly employs the threat minimization strategy.

The K type distributions, however, have two stronger players, each of

whom is the greatest threat to the other. Neither of the two stronger

players can afford to attack the weakest for an indefinite number of

moves since the weakest player will attack him in retaliation. This

internal constraint against attacking the weakest in the K type states

produces different transitions and estimates of P from those produced

by the type L distributions.

The power structure (distribution) of the two types of states

Seemed to produce different types of strategies for the first power

position, with the type K states tending to produce the fair play

strategy and the type L the threat minimization strategy. The two
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strategies are indiscriminable for the two lower positions because

they result in the same attacks. This indicates that two processes

are involved in the truel, one for each type of state. Ignoring these

differences between the types of states the simple model was tested

on the entire data set.

The test of the model showed that there was no single process

occurring in the truel. Therefore, the simple model prOposed did not,

in any way, capture the interpersonal process within the truel nor

did it mirror behavior in pure conflict situations. Contrary to expecta-

tion, the participants did not blindly attack the stronger of their attack

choices.

Based on the results of the analyses on the estimate of P, the

data were segregated in various ways and the model was changed from

one having one parameter to one having three. Estimates were made for

the three parameters, and transition equations generated for each of

the state types. These separations of the data generally resulted in

a reduction of the chi-squares, but the reduction was not substantial

enough in any of the cases to permit acceptance of the model. These

negative results indicated that even within types of states there was

no simple, single process operating.

If the players had used the strategies the analyses of the

States types indicated, then the fair play model should have at least

fit the K type states where this type of strategy was the most

prevalent. As the analyses of the model indicated, even the data from

the K type of states were not reproducible by the model. In general,

the results of the tests of the model indicated that at least one type

of process was Operating within each of the three types of states

I
f I 
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defined (pure, mixed K, and mixed L). These processes were not being

captured by the fair play model nor its three parameter variate. All

attempts to select particular types of states which produced correspon-

dence between the model and the data proved fruitless. Although there

was a tendency for higher levels of DRS to produce larger chi-squares,

it did not hold consistently enough to produce any change in the fit of

the model when those states were excluded from the analyses.

Since neither the proposed model nor its post hoc variation

fit the data, an additional examination of the results through a

visual representation of the subjects response was performed. A geo-

metric representation of the state component system was previously

developed by Phillips, Hartman, and Klein (l970). Because all state

vectors can be represented by a pair of numbers it is possible to repre-

sent the state component system in a two dimensional coordinate system.

Such a representation is presented in Figure 9.

Figure 9 shows some arbitrary state, (i,j), and the six possible

transitions from that state. Each of these changes corresponds to

one given attack vector. For example the change from (i,j) to

(i-l,j) is along the axis labeled J and correSponds to a J attack

vector. A transition in the Opposite direction, toward a (i+l,j)

state, is along the J axis but toward the J'I end. This transition

is caused by the J'l attack vector. Similarly movements along the

other axes are caused by the corresponding attack vectors. The

seventh attack vector, I, results in no transition from any state

vector.

All possible state vectors can be represented in this coordinate

system. The state (0,0) falls at the origin of this system and any
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attack vector moves the system in one of the six possible directions.

Because it has been stipulated that the distribution of points be

listed in a decreasing order of magnitude, only a limited area of

this coordinate system is needed. With each state having J-] as a

base, only a 60 degree wedge of the entire coordinate system is needed

to represent the state component system. Thus, all possible states

correspond to points within the region bounded by the dashed lines in

Figure l0. Those states falling directly on the J axis are pure

states, those falling above this axis are mixed K, and those falling

below it are mixed L.

Since the boundaries represent states of the form (iJ",iK) or

(iJ'l,iL) only moves which result in states of the form (i+l,i), (i,i-i),

(i+l,i-l), or (i,i) are possible. This is due to the fact that only

these transition states maintain the decreasing order in the distribution

of points. As was proven in the devel0pment of the model, only states

which have the J-‘ component larger than the second component are

listed in a decreasing order of points. Movements beyond these

boundaries result in states of the form (i-l,i), (i,i+l), or (i-l,i+l)

and therefore violate the restriction that the points be listed in a

decreasing order of magnitude, and, thus, these boundaries are im-

permeable.

The impermeability of the boundaries results in a reduced number

of possible transitions from those states that lie on or near to them.

Those states which lie on the boundaries have only four possible

transitions. For example the point below the J axis labeled (3,3)

has only three other reachable states (besides remaining at that

state): (A.3): (A,2): and (3,2). Since all attack vectors are still
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possible, it is necessary to introduce the term directional vector
 

to deal with the collapsing of attack vectors into one transition.

The transition from (3,3) to (3.2) is in a direction parallel to

the L axis and in the L'l direction along that axis. Thus, this

transition will be referred to as an L.I or an L-I directional vector.

This directional vector would occur whenever an L"l or J attack vector

occurred. This can be verified by noting that the lower (3,3) state Fqlfi

represents a 3J'], 3L state. Thus, an L"l attack vector changes the '

(3,3) state to a 3J'I, 2L state, while the J attack vector changes the h

(3,3) state to a 2J-l, 3L state. By virtue of rearrangeability, those j 
two states are equivalently (3,2).

Those states which fall adjacent and parallel to the boundaries

also have restricted transition ranges. The (i-l,j+l) transition

violates the restriction that the points be in a descending order of

magnitude since the second component is larger than the first.

This follows from the fact that all states on this line are of the

form (i,i-l) and a transition of the form (i-l,j+l) would result in

states of the form (i-l,i) in which the first component is smaller

than the second. When this state is rearranged a transition of the

form (i,i-l) is produced, the same transition that is produced by the

1 attack vector.

The (l,0) and (0,0) states also have restricted transition ranges.

The (l,0) state has five possible transitions with the (l,-l) and

(2,-l) transition states being undefined. The (0,0) state has two

 possible transitions, the (l,0) state and the (0,0) state: all other

transition states are undefined.

In each of the states presented above, the type of directional
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vector is determined by the axis to which the vector is parallel.

For those states which have no restrictions on the transition range,

the directional vectors are isomorphic to the attack vectors and,

therefore, take on the label of the attack vector that produced the

transition. These attack vectors correSpond to the three axes, and

the sign of their eXponents corresponds to direction.

For the entire data set, a mean directional vector from each

state was calculated by the following method. A resultant directional

vector was calculated for each of the axes intersecting a state. This

vector was represented by the lower case letter corresponding to its

axis (j,k, or 2). The vectors were computed by subtracting the prob-

ability of the inverse directional vector from the probability of the

directional vector. As an example the resultant directional vector

for the J axis was the probability of the J directional vector minus

I directional vector. Each directionalthe probability of the J-

vector was calculated by adding the probabilities of all those attack

vectors which contributed to it. The directional vectors and those

attack vectors which contribute to their formation are presented in

Table 28. Following are the equations for the resultant directional

vectors.

j =J‘ -J"'

k = K' - K-"

2 -L' -L"'

From the three resultant directional vectors a mean directional

vector was calculated for each state. By using the parallelogram

law, two coordinates were determined from the three resultant directional

vectors. The x coordinate lies on a line which is parallel to the



T
a
b
l
e

2
8

.
T
h
e
A
t
t
a
c
k

V
e
c
t
o
r
s

W
h
i
c
h

C
o
n
t
r
i
b
u
t
e

t
o
E
a
c
h

D
i
r
e
c
t
i
o
n
a
l

V
e
c
t
o
r
f
o
r

E
a
c
h

‘
l
y
p
e
o
f

S
t
a
t
e

  

1
'

J
‘

J
'

2
9
3
2
2
:
:
:
 

K
I

 

(
0
,
0
)

P
u
r
e

J
+
K
‘
1
+

K
+
L
'
1
+
L

-
-
-
 

L
L
O
)

P
u
r
e

K
‘
1
+
L
'
1
+

I
 

(
1
,
1
)
1

-
1

 

 

L
-
+
I
 

K
‘
l
-
r
I
  

 
 

 
 

 
 

 
 

 dBE-‘dOM enact-comm

 
 

89



90

J axis and intercepts the state from which the mean directional

vector was being calculated. Type y coordinate lies on the line that

is orthogonal to the x axis and intercepts that state.

x = j - (COS. 60 degrees) (k4-2)

y a (COS. 30 degrees) (k-£)

The j resultant directional vector contributes nothing to the F.q

y coordinate because it is orthogonal to the line which in which it F

lies, while the ltand 2.resultant vectors contribute to both coordinates.

These two coordinates describe the mean directional vector for each

state for which they were calculated. The mean directional vectors were

r l 
calculated for all of the states presented in the wedge in Figure l0

and are presented in Figure ll.

This visual representation shows the diverse processes that are

Operating when people engage in a truel. The strategies mentioned

previously can be identified by directional vectors. The fair play

strategies mentioned previously can be identified by directional

vectors. The fair play strategy would be represented by the J

directional vector and the threat minimization strategy by the L'1

directional vector. These vectors are represented by dashed lines

from each state, thus showing how closely each state's mean directional

vector corresponds to each type of strategy. As the figure shows,

the fair play strategy was employed at the boundries while the threat

minimization strategy was employed in the inner regions of the wedge.

An exception to this was the slight preference for the former strategy

in the lower pure states. At the extreme states, the threat minimiza-

tion strategy was employed more frequently than the fair play strategy,

while this tendency reversed for those less extreme states.
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These analyses indicate that at least two processes are involved

in the playing of the truel. The fact that the processes were not

separated along state type lines, but rather by proximity to boundaries

and extreme states, illustrates why separation of the data by state type

did not produce an acceptable fit of the model.

An interesting point about the results was the fact that all

initial states of type L and the three lower initial states of type K

have threat minimization as the predominant stragegy, whereas the

initial states of (SJ-1,3K), (SJ-1,4K), and (SJ-1,5K) have the fair

play strategy as the most predominant. The boundary of the K type

states has two stronger players of equal strength and therefore the

fair play strategy is that movement which is parallel to the K axis

but in the K'l direction. Whether the threat minimization strategy was

employed at the extreme states because they were initial states or because

they represent some kind of threshold for the strongest player is im-

possible to determine from the data.

The threat minimization strategy and the fair play strategy

have particular consequences for the distribution of points. The

first strategy results in the increasing of the difference between

the two weaker players and a decreasing of the difference between the

two stronger players. This indicates a movement from two weaker

players to two stronger or a type K state. This tendency for a

preference for the type K states is clearly seen in Figure ll.

The second movement results in the simultaneous decrease in both

differences and therefore toward the all equal distribution.

Using the above analysis of the processes involved, some

implications for Caplow's types of power structures can be formulated.
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All states which fall on the lower boundary represent the type three

distribution of Caplow. These distributions have one strong player

and two weak players, with the weak players equal in strength. Those

states which fall on the upper boundary represent Caplow's type

two distribution, with two strong players of equal strength and one

weaker player. All of those states which fall between these two

boundaries represent Caplow's type five structure.

Although the interior distributions are technically type five's

they also resemble either a type two or a type three structure, with

the exception of the states on the J axis which resemble neither.

Which type of distribution a state resembles depends on the relative

size of the differences between the first and second power positions

and the second and third power positions. If the former difference is

larger than the latter, the distribution resembles a type three structure;

if the latter difference is larger, then the distribution resembles a

type two structure.

The pure states are the exception to the above discussion be-

cause the differences between the three power positions are equal.

The pure states are, thus the clearest type five power structure.

Those distributions which are found between the two boundaries in

Figure l0 and ii form a continuum of Caplow's type five power structure.

These states Span the range from his type two structure to his type three.

As Figure ll indicates there are several different types of

movements within each type of power structure. At the type three

boundary there are two types of movements; one toward the type one

distribution (all equal) and one toward the type two distribution.

The latter movement occurred when there were extreme differences
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between the power Of the three participants. These points include

the initial states for the type L states. The former movement

predominated on the boundary and on the type five structures

between the boundary and the J axis. In the type two power structures

the predominant movement was toward the type one or all equal state.

The exceptions to this were the states with extreme differences between F11

the participants, with these states moving toward a pure type two

power structure.

An interesting result of this visual representation was to

 indicate that the triads in the pure type five distributions preferred

‘1
i
n

to move toward a type two power structure than to a type three structure.

This tendency to prefer type two distributions decreased as the DRS

of the state decreased, and the power structure approached the type

one or all equal state.

The implications for Caplow's types and for theories about group

processes in general are quite clear. Given the Opportunity to

choose between a type two distribution, characterized by two strong

players and one weak player, and a type three distribution, characterized

by one strong player and two weaker players, the triads, in this

experiment, preferred the former to the latter. In other words,

groups prefer distributions of points in which there are two strong

players of relatively equal strength and one weak player with

considerably less strength, to distributions of one stronger and

two weaker players.

In summary, although the model did not fit the data, it afforded

the Opportunity to test hypotheses about conflict situations. There

was much evidence to indicate that more than two processes were
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involved in these situations. Through the test of the model and the

visual representation generated by the model insights into the inter-

personal process occurring within the truel were obtained. The test

of the model allowed for the rejection Of the single, simple assumption

that all participants attack their stronger attack choice, and additional

examination of the data explored more complex alternatives.

It is through this type of quantification, and axiomatization P111

Of psychological processes, that allows for the acceptance or

rejection of theories. The results of this experiment indicate to

what extent even negative results can advance knowledge. Despite j 
the inability Of the model to predict the interpersonal processes of

the truel, it served well the function of validating and testing the

asSUmptions about the processes. It offered the framework within

which it was possible to define particular processes that were in

operation within the truel and it gave the Opportunity to test other

predictions about the processes involved.
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APPENDIX



Instructions

This is an experiment in decision making. The experiment is a

game consisting of several moves and I will keep track of each move

that is made.

We will play several games. To begin each game, each player

will be assigned a specified number of points. These points will be

displayed on the scoreboard behind me. For the first game player

Argon will have _____ points, player Boron will have y____ pOints,

and player Krypton will have _____ points.

The game consists of moves, each move consisting of each of you

taking a point away from one of the other players. You are required

to take a point away on each move, but you may choose from which other

player. You may not take a point from yourself. When a point is

taken away from a player it belongs to no one and is taken out of the

game. When a player looses all of his points he is out of the game.

The game is ended when only one player has points remaining, he is the

winner. It is possible for no one to win, i.e. two or more players

may run out of points on the same move.

At the end of the experiment a number will be chosen at random

from this glass. This number represents a game and the winner of that

game wins the three dollars. This number corresponds to the order

in which the games were played, for instance if the number three were

chosen, the winner of the third game would win the three dollars.

The other two players will receive 75¢. If the number chosen represents

a game in which there was no winner, i.e. a tie, then all three of you

will receive 75¢.

l00



ID]

The front of your cubical is Open so you may see the scoreboard

and so you may communicate with me. In your cubicals there are three

cards with the three names that will be used in the experiment. It

is with these cards that you will indicate to me which of the other

two players you wish to attack. On each move of the game hold up the

card with the name of the player you choose. After you have indicated

who you wish to attack I will record your choice and then tell you to

put your cards down. I will then read who took a point from whom

and remove the point from the board.

Some people like to keep track of which games they have won.

It is for this reason that the paper and pencils have been placed

in your cubicals.

The purpose of the partitions is to keep you from knowing

which of the players the other names on the board represent, so please

do not talk or attempt to communicate, in any way, with the other

players. Noises also make you identifiable to the other players,

so please refrain from making noises of any kind during or between

games.

Are there any questions? If not hold up the card with the

name of the player you wish to attack on the first move of the game.
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