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ABSTRACT 
 

TOWARD THE DETECTION OF LANDSCAPE FEATURES: 
CLUSTERING 3D POINTS USING SPATIAL AND THEMATIC CHARACTERISTICS 

 
By 

 
Boleslo Edward Romero 

 
The study of Geography generally concerns phenomena at or near the surface of the earth. High 

resolutions of 3D quantitative and qualitative data can represent such phenomena as objects or 

fields. The data can be grouped to reveal representations of contiguous regions of spatial and 

thematic homogeneity. My thesis is concerned with finding groups of 3D points with similar 

locations, spatial relationships, and thematic values of spectral reflectance. To accomplish this 

successfully, I synthesized elements of two geographic theories: point aggregation from 

cartographic generalization and hierarchical geographic ontology. My experimental design used 

synthetic 3D point data with spectral values. I employed the multi-dimensional Mean Shift 

clustering technique from the discipline of Computer Vision, and adapted a 3D range image 

segmentation accuracy assessment technique. I also contributed new techniques for segmentation 

quality assessment including two area under the curve indices and the development of new 

segmentation surface plots. Experimental evaluations included comparisons of the Mean Shift 

results with K-means clustering results, spatial resolution results, noise evaluation results, and 

the results of an alternative color configuration. I modified the variable sets to address uneven 

lighting conditions and employed the experimental methods to grouping real-world terrestrial 

LiDAR scan data. Though my new spatial relationship variable needs improvement, the methods 

yielded groups of points representing features in the LiDAR data and provided evidence of the 

potential for grouping richly attributed 3D points that represent geographic features. 
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Chapter 1 - INTRODUCTION 

1.1 Major Concepts 

The study of Geography generally concerns phenomena at or near the surface of the earth. With 

the advent of technologies such as remote sensing, humans have boosted their ability to sample 

and measure characteristics of this environment. We are now able to sample vast regions of 

previously inaccessible locations on the earth's surface as well as in the atmosphere and below 

the surface of land and water bodies. Higher resolution data are also being collected as sensors 

and computer processing power are improved. Due to these new capabilities, geographical data 

sets have become very large. With more geographical characteristics being sampled at higher 

resolutions, it is difficult to ascertain the general geographic phenomena through their data 

representations. The data are qualitative or quantitative values of some characteristic at particular 

locations in space and time: a finite sampling of locations representing geographic phenomena. 

They can be grouped to reveal representations of contiguous regions of spatial and thematic 

homogeneity, either parts of or whole geographic phenomena. 

 

My thesis is concerned with finding groups of data representing geographic phenomena in the 

environment: specifically, groups of 3D points with similar locations, spatial relationships, and 

thematic values of spectral reflectance. Major relevant concepts include the representation of 

geographic features as objects or fields, cartographic generalization, and geographic ontology. I 

rely on the subfields of GIScience, Cartography, and Remote Sensing from the discipline of 

Geography; Image Analysis and Computer Vision from the discipline of Computer Science; and 

Cluster Analysis from information sciences. The main topics I incorporate are representation, 

sets, generalization, aggregation, classification, segmentation, and clustering. 
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Following this Introduction, I discuss these concepts and topics in my Conceptual Framework 

section. Implications and decisions relating to my experimental design are also covered in my 

Conceptual Framework. The Methodology section involved details of my actual experimental 

procedures as well as two case studies. The Results and Discussion and the Conclusions follow. 

1.2 Focus of Work 

As an introductory preview, I now briefly describe my topics. Later, in the Conceptual 

Framework section, I will discuss these topics in detail. Figure 1, is a general graph summarizing 

the theory, processes, methods, and results of my work, excepting the experimental accuracy 

assessment. The next few paragraphs elaborate on these components. 

 
 

Figure 1. General summary of theory, processes, methods. 
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Representation of geographic phenomena is my main concern. I employ a three-dimensional 

(3D) point data structure. From the GIScience literature, I recognize these 3D spatial locations 

are samples of phenomena that could be considered either objects or fields. The points are 

considered unstructured in the sense that there are no topological connections or relationships 

initially defined. As 3D points, they could represent locations on surfaces or throughout volumes. 

Spatial location is an inherent property of the samples. However, I also developed a measure of 

each point's spatial relationship to its neighbors to identify similar groups of points representing 

particular orientations or spatial arrangement of the geographic phenomena. 

 

The point locations also have thematic attributes associated with them. The thematic attributes 

could be any quantitatively measured or qualitatively labeled characteristics of some geographic 

object or field phenomena; I selected spectral reflectance. In proposing groups of data points that 

represented some geographic phenomena, two important considerations arose. First, the concept 

of spatial autocorrelation was relevant as characteristics of nearby locations are more likely to be 

similar than distant locations. This supports the idea that spatial location itself is a primary 

indicator in finding locally similar points. Contiguous sets of similar points are further defined 

with respect to their spatial relationships or thematic characteristics. Secondly, local groups of 

points can, to some degree, be employed to predict the thematic character of unsampled locations 

within the region they encompass.  

 

Keeping focus on what such groups of points represent: geographic phenomena. I am interested 

in synthesizing elements of two geographic theories. I notice similarities between cartographic 
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generalization and geographic ontology. A particular process of cartographic generalization 

known as aggregation is used to group points that represent homogeneous regions. Likewise, in 

geographic ontology, low-level observable points are grouped into sets representing simple 

objects. This shows conceptually parallel processes, both developing regions of similarity from 

groups of points. 

 

Grouping sets of data by measures of similarity is an initial step in the common process of 

classification, before the sets are actually labeled as belonging to a class. I am interested in 

grouping 3D point data into locally homogenous groups representing geographic phenomena. 

Finding component parts of objects or geographic phenomena with many smaller groups is 

preferable to finding too few groups which do not adequately separate the geographic 

phenomena. The component parts can be aggregated later, if necessary. 

 

As described in the Methods section, my experimental design used synthetic 3D point data sets 

with various spectral values as thematic attributes. I employed the Mean Shift clustering method 

for grouping points based upon their spatial location, relationships, and thematic attributes. 

Along with a brief comparison to a K-means clustering, I extended an accuracy assessment 

framework to quantitatively evaluate the clustering performance for synthetic data and two case 

studies. 

1.3 Contributions 

This is a summarized list of my research contributions. Details of the topics, implications, and 

experimental decisions are covered in the Conceptual Framework section. The Results, 

Discussion, and Conclusions sections also add insights related to these contributions. This listing 



 

5 
 

is loosely based on the order of introduction of the topics with earlier topics building a 

foundation for subsequent topics. Here are my contributions to the discipline of Geography: 

 

1) My research utilized a 3D point data

 

 structure. Though relatively uncommon in 

Geography, this type of data is becoming more prevalent as it offers more flexibility for 

complex geographic representation than the historically common 2D point or 2D raster 

data. 

2) I developed a measure of spatial neighborhood relationship for unstructured 3D points 

called the Mean Vector

 

. The name refers to the process of finding the (average) mean of 

3D vectors from each point to its local neighbors.  

3) For thematic attributes, I evaluated the effectiveness and potential benefits of three 

common color spaces

 

 (RGB, LUV, and LAB) for grouping 3D points. 

4) I employed the Mean Shift clustering

 

 technique which is rarely used in geographical 

data analysis. It is a successful segmentation technique commonly used in Computer 

Science for 2D image analysis and computer vision. 

5) I employed a remote sensing segmentation performance accuracy assessment

 

 

framework developed for 3D range scans. 

6) I extended the accuracy assessment to include numerical area under the curve indices. 
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7) I developed new segmentation performance surface plots

 

 for comprehensively 

evaluating three dimensions for my segmentation performance assessment (tolerance, 

bandwidth, and instances of correct segmentation). 

8) Theoretically, I combined elements of two geographical concepts, cartographic 

generalization and geographic ontology

1.4 General Hypotheses 

, formalizing a particular process and method of 

geographic representation. 

My first general hypothesis is that groups of data representing geographic phenomena in the 

environment can be identified using spatial location, spatial relationship, and thematic 

characteristics with the Mean Shift clustering technique. 

 

My second general hypothesis is that combinations of up to three variable sets (spatial location, 

spatial relationship, and thematic attributes) enhances the ability to find groups of data 

representing components of geographic phenomena, as compared to single variable sets. 

 

The next chapter describes the conceptual framework in more detail. Chapter three presents the 

experimental methods. Chapter four reports the results and includes discussion, and chapter five 

concludes with some general thoughts. 
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Chapter 2 - CONCEPTUAL FRAMEWORK 

2.1 Overview 

The Conceptual Framework section discusses previous research and implications to the current 

work. My experimental design decisions and innovations are also included. The chapter begins 

with a discussion of theoretical viewpoints on geographical representation and data models. 

Then, particular topics relating to cartographic aggregation and geographic ontology are 

introduced. From these two fields of study, I draw a parallel between two similar conceptual 

processes and discuss a theoretical synthesis. I then provide conceptual background on the 

methods. First, classification and multivariate clustering methods are introduced. Next, the Mean 

Shift clustering is described. Finally, an established accuracy assessment framework is both 

presented and extended. This Conceptual Framework introduces and explains portions of the 

methods, reducing lengthy discussion in the following chapters. 

2.2 Geographic Representation 

The study of geographic features involves at least two components, spatial location and thematic 

attributes (Goodchild, 1990). Data for analysis are obtained by sampling features in the 

environment. The data are never as complete or as detailed as the feature being sampled. 

Therefore, geographic data are always generalized representations of some environmental 

phenomena with the information often presented in maps. When the data are entered into a 

computational environment, models are used for representation and prediction of some 

phenomena in geographic space (Frank, 2000). 

 

A review of geographic representation and many types of data models (Pequet, 1988) described a 

dual identity for maps: the data are represented as either as images or as geometric structures in 
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graphic form. Many versions of raster models, for images, and vector models, for objects, have 

been employed for analysis in computing environments (Pequet, 1988). 

 

Subsequent academic work on the dual representation models has argued that there is a 

complementary role that the two models offer for representation of features in geographic space 

(Couclelis, 1992). The work of Couclelis (1992) described the vector data as objects, treating 

geographic phenomena similar to geometric shapes or table-top items that can be manipulated. 

Couclelis (1992) addressed the common challenge of region delineation, and noted that the 

majority of hard boundaries were related to human artifacts such as engineered structures and 

administrative boundaries. The use of vector structures for geographic objects also provides 

benefits such as the potential for specification and analysis of spatial and topologically connected 

relationships. Couclelis (1992) also pointed out that raster data usually represents geographic 

phenomena as fields. Groupings of clustered pixels that share particular values of some thematic 

attribute can be identified as features. However, the boundaries of such regions are not as 

discrete as in the object model. The field model described by Couclelis (1992) also allowed the 

possibility of different features being found in the same location if different thematic attributes 

are observed. Geographic features could be represented with either model, though the model 

should be chosen to best fit the geographic phenomena or properties being studied. 

 

A recent article (Goodchild, Yuan, & Cova, 2007) formally synthesized the two data models by 

first considering the previous discussions (Pequet, 1988; Goodchild & Wang, 1989; Couclelis, 

1992) and distinctive perspectives of geographic phenomena. The object-view perspective  

characterized geographic space as mostly empty and containing objects discretely defined as 
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points, lines, polygons, or volumes in two, three, or 4 dimensions. The field-view perspective 

characterized geographic space as filled with variable values of some measureable continuous 

phenomena. The synthesis of these two representational models was accomplished through 

reference to the nature of the geographic feature of interest. The shared foundation of both 

models was termed the atomic form of geographic representation (Goodchild, Yuan, & Cova, 

2007). The first primitive of this representation, the geo-atom, was defined as the association 

between a point in space-time and some property, or thematic attribute. In essence, there may 

exist an infinite number of infinitesimal (vector) point locations associated with some measured 

value of any (field) property. Geographic features represented by many (sampled) points of 

similar values for the particular property may be considered either an object or a region within a 

continuous field. 

 

For my thesis, the theory of atomic geography helped to connect the vector model of point data 

with the regions of similar spatial and thematic properties that they represent. My synthetic data 

sets, for controlled experiments and accuracy assessment, consisted of points representing simple 

shapes with very separable color attributes. Points were configured as groups, each having 

similar values, intended to represent individual objects or components of objects. The 

experimental methods were then employed with the data sets of my case studies to demonstrate 

the potential for identifying regions of homogeneity in the environment. These data were 

sampled with a terrestrial LiDAR sensor and represented real-world scenes having complex 

spatial and thematic properties. They were discrete samples of a particular point in 3D space and 

a measureable thematic property (spectral reflectance). The vector point data were entered into a 

computational environment to identify groups of points representing regions of similar spatial 
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and thematic properties. The theory of atomic geography provided a link between the vector 

point data model and the 3D features the points represented in a continuous field of measurable 

spectral reflectance. 

2.3 Cartographic Generalization 

In Geography, paper maps have traditionally provided a generalized representation of geographic 

phenomena. A relatively recent comprehensive theory of generalization was presented by 

McMaster and Shea (1992). Beginning with a review of definitions and numerous theoretical 

frameworks which preceeded their work, McMaster and Shea (1992) ultimately offered a theory 

of cartographic generalization suitable for computational use in a digital environment. Of the 

main reasons stated for generalization was the aim of reducing complexity. As such, 

generalization essentially reduced the amount of application-specific data and detail to retain 

clarity of a map, especially when the map scale was reduced.   

 

Of particular importance for this thesis is the generalization of point objects representing regions 

of similar spatial and thematic properties. McMaster and Shea (1992) define the term 

aggregation as the spatial transformation operator which aggregates, or groups, (nearby) points 

having similar attributes and represents them as polygonal area features. They note a 

dimensionality transformation from a point representation to an area representation. They also 

reference Keates' (1973) example of aggregating individual buildings which are near to each 

other and representing them as built-up areas. This thesis is concerned with aggregating 

individual (synthesized or sampled) 3D points into groups which represent regions of spatial and 

thematic similarity. 
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Though this thesis is mainly concerned with representation of geographic features, the methods 

employ computational processes. Weibel (1997) discusses two views of generalization: 

representation-oriented and process-oriented. Representation-oriented generalization is 

concerned with the representation of particular features at different map scales. He mentions that 

a multi-scale database may be required to provide different sets of information at different scales, 

and if alterations to the data are made at one scale, they may not be automatically updated at the 

other scales. The process-oriented view is the focus of Weibel's (1997) work. This is described as 

being more automatic and flexible as all of the map scales are derived from a single spatial 

database using generalization algorithms. As detailed in my methods, I employ semi-automatic 

algorithms that only require certain input parameters: number of output groups for k-means 

clustering, and number of neighbors and bandwidths for Mean Shift clustering. These belong to 

the global and bandwidth classes, respectively, of spatial data generalization algorithms 

described by Weibel (1997). 

 

Weibel (1997) mainly contrasts the expert-driven, creative techniques of knowledge-based 

cartography with the use of generalization algorithms. However, he notes that they can be used 

together for improved results and that both approaches still require key decisions by the user. 

Human input guides cartographic generalization with either subjective and intuituve elements or 

with control of algorithmic processes. He also implies that well-defined objectives improve the 

result of either approach. 

2.4 Geographic Ontology 

To produce representations of geographic features from point data with 3D coordinates and 

thematic attributes, certain objectives are required. In other words, a conceptual model, or 
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ontology, for the features of interest must be defined. Ontology, as a philosophical discipline,  is 

concerned with conceptualizations or particular categories for particular views of the world 

(Guarino, 1998). The concepts are ideas of things in existence depending upon particular 

perspectives. Another related meaning for the term ontology has become popular due to 

developments in information systems and computer sciences. Guarino (1998) mentions that this 

meaning generally refers to domain modeling as implemented by various methodologies. In 

geographic information sciences, ontology also relates to the specification of a conceptualization 

and both lines of investigation are pursued: top-level categories from a formal perspective, and a 

domain-specific ontology from a task-oriented approach (Agarwal, 2005). 

 

I followed a particular domain ontology in this research. In practical terms, this can be generally 

described as knowledge representation, defining features as components of the concept 

(Schwering, 2008). My ontology related to both the conceptual categories and physical 

properties of spatial and thematic data representing 3D features. I aimed to find components of 

objects in a scene that have similar spatial and thematic characteristics. 

 

Features in a landscape scene can become more distinctive when additional information is added. 

Couclelis (2009) recently described 7 levels of feature representation depending upon the amount 

of semantic information attached to a feature and its components. A description of relevant 

portions of her hierarchy follows. At the lowest ontological level, only points in space-time 

(locations) relating to a particular purpose exist. Adding crude, qualitative knowledge at the 

point locations provides the next higher level of  information, as (thematic) observables. 

Separating the points into classes, based upon the observable qualities, provides additional 
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another level of (generalized) information. Then, spatially connected homogeneous regions are 

identified as simple objects (real-world entities). Assemblages of simple objects can be 

associated, providing what she terms as complex objects (this is one level beyond my methods, 

but included in my discussion.) I follow her hierarchical levels of features and their components. 

 

The three types of characteristics which made up my ontological framework were: spatial 

location, spatial relationship, and thematic attributes. The data employed in this thesis initially 

had 3D coordinate values for the x, y, and z axes as well as red, green, and blue color values. 

These basic characteristics were used with additional variables calculated from this data: a 

measure of spatial relationship and additional color spaces, each described in more detail later. 

The data values were expected to differentiate separate groups of data points representing 

different components of the 3D scene. As exemplified in the following three paragraphs, I 

intended to identify components that: 

• were in different locations (in 3D space) 

• had differing spatial relationships to neighboring points (planar or non-planar) 

• had different thematic attributes (colors) 

 

Spatial location can be a very useful characteristic to distinguish different features having similar 

thematic attributes or local spatial relationship. For example, walls of separate buildings may 

have a similar color and (a locally planar) spatial relationship, though we generally consider 

them as components of different buildings based upon their location. The same could be said of 

similarly shaped and colored groups of vegetation in different locations. 
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Local spatial relationships could provide an additional set of information, separating features 

having similar colors and being in close proximity. Examples of objects that could be separated 

based on (locally planar) spatial relationships include a concrete sidewalk that is adjacent to gray 

boulders or a grassy area that leads to green bushes. 

 

Thematic attributes, such as spectral reflectance in the red, green, and blue wavelengths, can be 

used to separate nearby regions with the same spatial orientation. For example, a study on the 

percentage of impermeable ground cover in an urban scene may have data representing an 

asphalt roadway, a sidewalk, and grassy landscaping. All of the features may be relatively flat 

and level. Color can be used to separate the regions. 

 

My aim is to identify features in a scene represented by 3D points by using the three basic 

characteristics of location, spatial relationship, and spectral values. The resulting aggregated 

groups of points may represent simple objects that could be subsequently assembled into 

complex objects, if necessary. The generalized representation and separation of groups with 

distinctly different characteristics are expected to ease interpretation of complex 3D data and 

landscape scenes. 

2.5 Synthesis of Cartographic Generalization and Geographic Ontology 

This thesis closely followed two theories: the cartographic generalization of McMaster and Shea 

(1992), and an ontological hierarchy from Couclelis (2009). These two theories, though they 

came from separate threads of geographic inquiry, are very parallel in relation to this 

investigation. Both are related to geographic representation of features in the landscape and both 

present processes that similarly combine information to better understand those features. The 
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generalization process of aggregation was a transformation that grouped 3D points into 

representations of areal regions having similar spatial and thematic characteristics (McMaster & 

Shea, 1992). The ontological hierarchy also developed simple objects from spatially connected, 

homogeneous space-time points with similar observables (Couclelis, 2009). These two theories 

eased interpretation of complex data sets by providing a theoretical basis for the development of 

groups of  points that represent recognizable features in the landscape. 

2.6 Spatial Characteristics 

The initial data included 3D spatial location coordinate values in the x, y, and z axes (XYZ). 

Though spatial location was the lowest-ontological level of information, it provided a measure of 

proximity between points and group points representing contiguous regions. 

 

Ledoux and Gold (2008) argue that processing objects in 3D may have advantages over common 

raster computations, despite the ease of computing with raster arrays. Spatial data consisting of 

x, y, and z values can be sampled; they maintain natural discretization; map algebra operations 

are still available; and there are potential benefits for analysis and visualization stages (Ledoux & 

Gold, 2008). One of the first steps in using 3D point data is to identify features in the scene for 

further quantitative analysis and qualitative evaluation.  

 

2.6.1 

To augment the available variable sets, I propose a metric for 3D spatial relationships intended 

for identifying planar regions. It is calculated for each point using the relative locations of 

neighboring points. With 2D raster grids, the slope, curvature, and roughness could be calculated 

from adjacent cells and used as neighborhood characteristics. Similarly, if a digital surface model 

Derived Spatial Variables - Neighborhood Relationships 
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was already created from the 3D data points, the topological structure and connectivity could be 

used to determine which points were adjacent to calculate similar measures as in the 2D raster 

case. However, the goal of my thesis is to identify groups of unstructured 3D points where no 

topological connectivity between the points is defined. By identifying groups first, interesting 

data can be selected before spending the time and computing power on such processes as surface 

interpolation. This also allows the method to be more generalizable and applicable to any 3D 

spatial data, representing surfaces or other phenomena. Therefore, a new measure of spatial 

neighborhood relationship is considered: the mean vector (MV). This is simply the mean of 

vectors from each point to its neighbors, as defined in the Methods section. 

 

The neighboring points in the MV calculation could be determined in several ways: number of 

neighbors, distance with an absolute radius, distance with an adjusted radius based upon local 

density, or even a hybrid method of sampling points within a radius. For simplicity, I chose the 

number of neighbors method. I decided 8 neighbors would be beneficial as a small set of 8 

neighbors helps to boost differentiation between local regions by not averaging across too many 

points. It would also be computationally efficient and is somewhat comparable to the queen's 

case of neighbors in a 2D grid. 

 

I expect that the MV would help to group 3D points representing planar regions as opposed to 

edges, corners, or regions of high variability. Figure 2 helps to illustrate the following example. 

First, I'll describe the situation considering points toward the interior of the planar region, away 

from edges, on the top side. The vectors to its neighbors would not vary in the Z axis, the X 

values of the vectors to the points to the left and to the right would offset, and the Y values of the 
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vectors to the points above and below would offset. This results in a mean vector at or very near 

zero. Most points on each side would have this same near-zero value for the mean vector. This 

value will help to distinguish planar regions as being different from edges, as described next. 

 

Points near an edge, or a change in the surface orientation, on one side may have neighbors 

representing a different side or orientation. When the coordinates from different sides are used 

for the mean vector calculation, the non-planar neighbors will result in a mean vector that varies 

in up to three dimensions. The mean vector metric could be considered beneficial for edge-

finding or, as in my aims, for separating points with near-planar spatial relationships from points 

representing edges, corners, or highly variable regions. 

 
Figure 2. Mean vector relationships of 3D points representing an object. 

(For interpretation of the references to color in this and all other figures, 
the reader is referred to the electronic version of this thesis.) 
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2.7 Thematic Characteristics 

By adding measureable values of thematic attributes, the data have a higher ontological level and 

more information is available for cartographic generalization processes. Studies that use both 

spatial and spectral properties for segmentation are of particular importance to this thesis, since 

this is how I aim is to identify components of objects within a 3D scene. For instance, laser scans 

provide detailed geometry but still require interpretation for mapping and  segmentation of a 

complex scene is not possible with a single spatial cue (Barnea & Filin, 2008). 

 

The previous work by Barnea and Filin shows that segmentation methods using either range or 

color alone have limitations, but together they have better results. The most promising method 

they implement, which I will also evaluate, is the use of Mean Shift clustering  (Comaniciu & 

Meer, 2002). I will describe the Mean Shift clustering in the Conceptual Framework section on 

Clustering. Compared to other clustering methods, it is relatively low-parametric and only 

requires a bandwidth window of evaluation as described. It can also work with multi-variate 

data. For their study, Barnea and Filin used range information, surface normals, and color along 

with an iterative approach to further separate under-segmented clusters. However, to address 

issues of relatively high LiDAR point density near the scanner, they make a data representation 

transformation from the 3D object-view (empty space with objects) to a more traditional remote 

sensing computational model, the 2D field view (a raster grid with all cells filled with a value). 

 

I followed their approach in regard to the combination of spatial and thematic information and 

the use of Mean Shift clustering. However, I maintain 3D object-view representation of the data, 

having unstructured 3D points in space with additional thematic attributes. 
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2.7.1 

The basic synthetic data included a set of red, green, and blue (RGB) values which can be 

considered a surrogate for any thematic variable. There are alternative color spaces for visible 

wavelengths which I was interested in evaluating. These were expected to assist in reducing the 

impact of shadows or environmental illumination on the spectral values. For instance, the the 

CIE Luv (LUV) and CIE L*a*b* (LAB) color spaces isolate lightness into one variable and have 

two variables for color. They are also designed to have values that more evenly represent the 

humanly perceptual differences between colors. Research has deemed CIE L*a*b* as an 

appropriate color space for raster image segmentation along with the Mean Shift clustering (Paris 

& Durand, 2007). 

Derived Thematic Variables - Spectral Color Space Alternatives 

 

I chose to evaluate the original RGB along with the LUV and LAB color spaces. For my 

experiments with synthetic data I made use of the RGB and all three variables in each of the 

LUV and LAB variable sets. However, the LiDAR case studies had highly variable RGB values, 

changing material reflectance, and shadows. To address these issues and improve segmentation 

performance, I made use of supplementary variable sets, UV and AB, removing the (L) lightness 

variable from the LUV and LAB variable sets. 

2.8 Classification and Segmentation 

Using basic characteristics for classification of landscape features is common. The variable 

spatial and thematic characteristics can be quantitatively evaluated and converted into a 

generalized representation of classes. Instead of attempting to deal with an infinite variety of 

variables and values for an entire region, the sampled data can be reduced to a more 
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understandable set of thematic classes (Foody, 2002). This classification provides another set of 

semantic information, raising the ontological level up in the Couclelis (1992) hierarchy.  

 

Computational environments have greatly aided the processing of such abundant information. 

From the computer science literature, Haralick and Shapiro (1985) describe processes such as 

image segmentation which have created many possible avenues for classifications of land cover, 

clarifying and aiding in our interpretation landscape features.  

 

Figure 3 shows an example of image segmentation based on classified spectral values. For this 

classification, a Landsat 7 ETM+ satellite image is used, showing a region in the vicinity of the 

Michigan State University campus. The first image displays the region in true color, using bands 

1, 2, and 3 (blue, green, and red). The second image displays the region in false color, using 

bands 3, 4, and 5 (red, near-infrared, and mid-infrared). The third image displays the 

classification results. Pixels are grouped into 4 classes of land cover using all of the spectral 

values available in the satellite image. This generalization techniques helps to represent and 

evaluate landscape features.  

 

 
 

Figure 3. Segmented satellite image (true color, false color, and classified). 
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In a theoretical sense, classification is often related to both cartographic generalization and 

geographic domain ontologies, since observable properties are selected and used to represent 

features in the landscape. In a practical sense, classification often employs clustering, described 

in more detail in the next section. This can be implemented in either supervised or unsupervised 

methods. For the supervised case, data are selected by an analyst to provide training signatures 

for the desired classes. Each of the remaining data are assigned to the most similar class through 

a clustering process. For unsupervised classification, no classes are initially specified. Clustering 

is performed on the entire data set and the resulting groups are labeled by the analyst. 

2.9 Clustering 

In this section, I discuss multi-dimensional clustering, starting with the general theory and 

following with specific clustering methods. I present the Hierarchical, K-means, ISODATA, and 

the Mean Shift types of clustering to show a lineage of methods related to my implementation of 

the Mean Shift clustering. To offer a basis of experimental comparison, the well-known and 

popular K-means method is used to evaluate the performance of the Mean Shift method. 

 

In general, clustering can be beneficial to understanding multidimensional data sets. A review of 

data clustering (Jain, Murty, & Flynn, 1999) states that the aim of data clustering is to determine 

natural groupings and they explain that this is typically achieved by minimizing within-group 

variance while maximizing between-group variance. They describe two conceptual approaches 

to this goal. One approach is agglomerative clustering, adding similar data to a group in 

sequence. The second approach is divisive clustering, sequentially separating the most differing 

data apart. Finally, they point out that differing results that can be achieved by clustering. Hard 

assignment considers the destination cluster for a point to be one single group. On the other 
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hand, fuzzy probability clustering can allow for a point to potentially belong to one of several 

groups with differing degrees of probability. 

 

My experiments follow the concepts of unsupervised, agglomerative clustering with hard 

assignment. Numerous types of clustering are available; a few are described below since they 

relate to the Mean Shift clustering approach which was ultimately selected for finding groups of 

points with similar spatial and thematic characteristics. 

2.9.1 

The basis of clustering philosophy can be easily conceptualized with a description of hierarchical 

clustering. Hastie, Tibshirani, and Friedman (2009) explain that hierarchical clustering starts 

with each and every point in a cluster of its own. Then, the (typically Euclidean) distances in the 

multi-dimensional variable space from every point to every other point is determined and the two 

closest points are combined into a cluster. Once they are clustered, the values of the points will 

be averaged to create a new value for the center of the cluster. This continues iteratively until all 

of the clusters have been combined into one group. A dendogram is created and used to select a 

cutoff point for a reasonable number of clusters. 

Hierarchical 

2.9.2 

The k-means algorithm minimizes the within cluster variability and maximizes the between 

cluster variability (MacQueen, 1967). The number of seed clusters must be selected a priori; a 

non-trivial drawback, since this parameter is often unknown before hand. Xu and Wunsch (2009) 

provide a description for the iterative K-means process which can be followed in 

K-means 
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Figure 4, below. The K-means clustering starts with (K) randomly placed seed values. In this 

example, four initial seed locations are shown with black squares. For each point in the data set, 

the multi-dimensional distances to the seeds are calculated. All of the points closest to each seed 

are grouped together into clusters, as shown in the lower images with group boundary lines. For 

each group, the mean is calculated, creating new cluster centers. Then, for the next iteration, new 

groups of points are selected as being closest to the cluster centers and new means are calculated. 

This continues iteratively as the groups minimize the within-cluster variance and maximize the 

between-cluster variance. The process tends to produce hyperspherical clusters and will have 

different results with different initial seed values or different initial seed locations. 

 

Figure 4. K-means clustering process. 
 

To demonstrate the effect of different seed values on K-means clustering, a second iterative 

sequence is shown in Figure 5. From the previous example, the same set of data points and only 
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three of the four original seed values are used. This represents a mismatch between number of 

data clusters (four) and number of seed values (three). By selecting a different set of seed values 

at the onset, the results are considerably different. All of the resulting groups are different than 

the previous example, but the most notable difference is that the cluster in the top left was 

effectively split and combined into nearby clusters. This shows that, by selecting the different 

numbers of desired clusters for the K-means method, the results may not reflect natural 

groupings in the data. 

 

Figure 5: K-means clustering mismatch between 4 clusters and 3 seeds. 
 

2.9.3 

An example of numerous alternatives related to K-means clustering is ISODATA (Iterative Self-

Organizing Data Analysis Technique) (Ball & Hall, 1967). Though the two algorithms are 

similar, a distinct difference is that the K-means assumes the number of clusters is specified a 

ISODATA 
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priori, while the ISODATA algorithm allows for the adjustment of different numbers of clusters 

based upon a specified threshold. The original cluster locations are devised by calculating the 

mean of all variables, expanding the range of cluster origins to one standard deviation, and 

finally dividing the range per number of cluster origins for starting positions (Tou & Gonzalez, 

1974). Though the ISODATA method is not compared here, it shows that the K-means has 

inspired new ways of finding natural groupings of data. This provides support for methods 

moving beyond the K-means and is an example of clustering techniques that do not require the 

number of groups in a scene to be known a priori, like the Mean Shift method discussed next. 

2.9.3.1 

The Mean Shift clustering (Comaniciu & Meer, 2002) is again similar to K-means. However, the 

number of output groups is not required. Instead the Mean Shift uses a bandwidth distance, or 

window of evaluation, for calculating local density. First, windows are placed at either uniform 

or selected locations, depending upon the implementation. Then, for all of the points within the 

window,  the mean for each variable is determined. A vector from the original location to the 

mean location is calculated and the window is shifted to the mean, or center of local density. 

This continues iteratively, calculating new means and shifting the window until a specified 

convergence threshold is reached and the shift is considered small enough to terminate. It is 

considered a mode-seeking process. Segmentation of multidimensional data sets with the Mean 

Shift is achieved by placing many windows for the mean shift process, possibly at data point 

locations, and grouping data that converged to the same local density values, or destination 

"modes." 

Mean Shift 
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Figure 6 illustrates an example of the Mean Shift using the U and V dimensions (from the LUV 

color space) of one of my case studies (the Indoor LiDAR data, described in the Methods 

section). The first of the three images shows the two variables spatially mapped with their U and 

V values (in standard deviation units) and colored with their RGB values for reference to the real 

world objects they represent. The second and third images are color and grayscale examples of 

the same Mean Shift calculations. Both images have 5 selected points with a circle showing the 

first bandwidth window of evaluation. Here, the bandwidth is 0.5 standard deviation units. The 

iteratively calculated local density means are also shown, demonstrating 5 paths that lead to 5 

different cluster centers. For segmentation using the Mean Shift clustering technique, all data 

points will be evaluated in similar manner. 

 

Figure 6. Mean Shift on 2D point set, finding modes. 
 

To extend the example to multidimensional (3D) space, Figure 7 shows the three LUV variables 

spatially mapped to the x, y, and z axes. To aid visual reference of the real objects they represent 

(in the Indoor LiDAR scan), the data are colored with their associated RGB values in the first 

image. The second image shows the Mean Shift clustering results. After all of the data points 

have been evaluated with the Mean Shift clustering, they are colored per their output cluster 
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groups.  Points that arrived at the same local density point have the same color. Even though a 

few points were not found to be associated with clusters when using the 0.5 standard deviation 

bandwidth, the Mean Shift clustered the majority of points into 6  clusters without the need for 

specifying the number of clusters. 

            

 
Figure 7. Points in a 3D LUV color space clustered into 6 groups by the Mean Shift. 

 

The performance of the Mean Shift has been well documented and extended in the image 

segmentation literature. For instance, Shimshoni, Georgescu, and Meer (2006) have implemented 

a version to improve speed by using locality-sensitive hashing to partition the data and reduce 

the number of iterations needed to find approximate cluster centers.  

 

The Mean Shift has also been applied as a means in quantifying vegetation in an agricultural 

setting by using raster image color values (Zheng, Zhang, & Wang, 2009), in shoreline extraction 

using geometry derived from aerial LiDAR (Lee, Wu, & Li, 2009), and in object extraction of 

urban features from aerial LiDAR points (Yao, Hinz, & Stilla, 2009). 
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My thesis bridges these studies by implementing the Mean Shift clustering using both spatial and 

spectral values. As previously mentioned, the spatial location, spatial relationship, and thematic 

characteristics relate to low-level ontological components in a landscape. With the Mean Shift, 

the 3D points can be aggregated into locally similar groups for a quantitative and qualitative 

evaluation. 

2.10 Accuracy Assessment 

2.10.1 

My thesis is concerned with finding groups of 3D points with similar spatial and thematic 

attributes, possibly representing components of objects. Considering this is multi-dimensional, I 

have chosen to proceed using clustering aiming to identify groups of similar 3D points. This is 

essentially a form of unsupervised segmentation of 3D points. Range image classification and 

segmentation performance assessments offer a means of evaluation. I'll first describe the general 

types of clustering and segmentation assessments. 

Types of Clustering Assessment 

 

A survey of methods for evaluating image segmentation processes (Zhang, 1996) shows there are 

two main categories to consider. Analytic methods are for evaluating the algorithms themselves; 

the concepts, principles, and characteristics that are used. Empirical methods, on the other hand, 

evaluate the performance of the processes through the results. This type of evaluation is very 

common and can be found to have different branches of study as well. One branch of empirical 

evaluation is concerned with goodness measures, leaning heavily upon human intuition of a 

visually "good" segmentation along with measures of intra-region uniformity or inter-region 

contrast. Another branch of empirical evaluation concerns measures of discrepancy. This deals 

with differences between ground truth data and the output. Mis-segmentation of pixels, groups, 
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positions, or a variety of characteristics may be evaluated. I will generally make use of empirical 

discrepancy methods in evaluating my experimental results and the level of performance for the 

variables of interest. 

 

One of the most basic evaluations of clustering output is simply the number of output groups 

closest to a predetermined number of reference groups (Zhang, 1996). A more informative 

metric is the number of correctly or incorrectly segmented points, usually shown as a percentage. 

These could be helpful as guidance toward a selection of segmentation parameters to be used for 

more detailed analysis. 

2.10.2 

Traditional classification performance assessments establish an error matrix for  evaluation 

(Foody, 2002). In this section I will describe a typical version for classification (having the same 

number of reference and output classes.)  Then, in the next section, I describe a modified matrix 

that handles my clustering results (having different numbers of reference and output classes.) 

Confusion Matrices - Typical Classification Approach 

 

As described by Foody (2002), in a typical supervised classification the desired classes to be 

found in an image are defined. Pixels in an image are selected as training sets and classified as a 

particular class by an analyst. Every other unclassified pixel is then compared to the training sets 

and assigned to the class with the most similar multispectral values. All of the pixels are 

typically assigned to one of the defined classes. An important point here is that a square 

confusion matrix is used to compare the same number of classes in both the reference data and 

the output.  
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Traditional confusion matrices can be used to calculate accuracy metrics (Foody, 2002). The 

square confusion matrix has columns and rows for the specified classes and conventionally 

represent the reference and output labels respectively. In the cells are the number of sampled 

pixels corresponding to each reference and output class. As Foody (2002) describes, the diagonal 

sum of this matrix represents the total number of correctly classified pixels in every class and the 

percentage of correctly classified pixels to the total number of sampled pixels offers the Overall 

Accuracy of the classification. He also notes that two other metrics are available for each class, 

the Producer's Accuracy and the User's accuracy. The Producer's accuracy is a percentage 

measure calculated as the number of correctly  classified pixels in a reference column to the total 

number of pixels in that reference column. This shows how well the classification did to avoid 

errors of omission, or reference pixels that were labeled as some other class. The User's accuracy 

is a percentage measure calculated as the number of correctly classified pixels in an output row 

to the total number of pixels in that output row. This shows how well the classification did to 

avoid errors of commission, or output  classes that contain pixels from other reference classes. 

 

Enhancement of the traditional classification accuracy assessment discussed in the literature 

(Congalton, 1991) compares significant differences in several matrices using kappa and khat 

metrics. However, with my synthetic data, the number of Mean Shift clustering output groups is 

not specified and may not equal the number of input reference groups. Not having a square 

matrix negates the possibility of using the kappa and khat values for determining if a 

classification is significantly better than another. Nevertheless, the traditional confusion matrix 

lays a theoretical foundation for evaluating accuracy, though it requires a modification, as 

described below. 
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2.10.3 

As the number of object components in a landscape scene is often unknown, it is preferable not 

to specify the number of output groups in advance. This may result in a (rectangular) asymmetric 

confusion matrix having different numbers of columns and rows. A symmetric, square matrix, 

only results if the algorithm happens to produce the same number of output groups as there are 

reference groups. There were typically 6 reference groups (columns) specified for my synthetic 

data, though the alternative color configuration had 12 reference groups. The output groups 

(rows)  in my experiments had the potential to range from many groups containing one point 

each at small bandwidths to one group containing all of the points at larger bandwidths. 

Overlapping Area Matrices - Modified Segmentation Approach 

 

A modified type of performance matrix, the Overlapping Error Matrix (OAM), was developed 

for segmentation evaluation (Ortiz & Oliver, 2006). This segmentation accuracy assessment 

works with unequal numbers of reference and output groups. 

 

As described in the Methods section, I had the benefit of a known ideal number of groups in my 

synthetic data set. The Mean Shift clustering output allows for a flexible number of  output 

groups to be found. Thus, the confusion matrix consisted of six columns representing reference 

groups and a variable number of rows representing the output groups. If there were fewer than 

six output groups, the clustering resulted in some level of under-segmentation. If there were 

more than six output groups, the clustering resulted in some level of over-segmentation. A 

hypothetical under-segmented example output is shown in Table 1; it has six reference groups 

(columns) and three output groups (rows). The lower and right margins are the column and row 

totals, respectively. 
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Ref. 

Group 1 
Ref. 

Group 2 
Ref. 

Group 3 
Ref. 

Group 4 
Ref. 

Group 5 
Ref. 

Group 6 Total 

Output 
Group 1 5 15 45 55 45 44 209 

Output 
Group 2 0 40 15 4 10 9 78 

Output 
Group 3 59 9 4 5 9 11 97 

Total 64 64 64 64 64 64 384 
 

Table 1. Hypothetical overlapping error matrix showing under-segmentation. 
 

2.10.4 

To address 3D spatial point data directly, I followed the literature regarding range image 

segmentation and implemented the accuracy assessment framework by Hoover, et al. (1996) that 

extended the measures of an overlapping area matrix. In this assessment framework, several 

metrics were defined and additional stages were used to determine whether every cell in the 

matrix was initially labeled as at least one of 5 classifications: correctly segmented, over-

segmented, under-segmented, a missing (reference) segment, or a noise (output) segment. The 

metrics basically related to proportions of intersecting cell values (numbers of points) to their 

reference (column) and output (row) values. If a matrix cell value was a high proportion in both 

the reference and output groups, it was generally considered correctly segmented. Ultimately, the 

cells were used to determine the number of output groups that are associated with each type of 

classification. Tolerance levels, measures of acceptance or rejection with which the proportions 

of points were evaluated, helped gauge the degree of segmentation performance. The tolerance 

levels employed ranged from a majority of points (>50%) to a perfect, correctly-segmented 

group with all points (100%) in an output group comprising 100% of a reference group. An 

Range Data Segmentation - Extended Metrics 



 

33 
 

introductory description of this assessment method follows, including hypothetical examples; a 

detailed description is presented in the Methods section. 

 

First, the reference and segment metric values, Mr and Ms, were generated for each cell by 

calculating the proportions of points in each cell to the column total for the reference group and 

to the row total for the output group. This was somewhat similar to the Producer's and User's 

accuracy in a typical confusion matrix evaluation. Continuing with the under-segmented example 

OAM, shown below as Table 1, the resulting values from this stage are shown in Error! 

Reference source not found. and Table 3 with the Mr being proportions of points per reference 

side (column) and the Ms being proportions of points per output segment (row) respectively. 

Two cells, shown in bold, illustrate that each pair exceeds the tolerances mentioned in the next 

section. 

 

 
Ref. 

Group 1 
Ref. 

Group 2 
Ref. 

Group 3 
Ref. 

Group 4 
Ref. 

Group 5 
Ref. 

Group 6 
Output 

Group 1 0.08 0.23 0.70 0.86 0.70 0.69 

Output 
Group 2 0.00 0.63 0.23 0.06 0.16 0.14 

Output 
Group 3 0.92 0.14 0.06 0.08 0.14 0.17 

Total 1.00 1.00 1.00 1.00 1.00 1.00 
 

Table 2. Mr values, proportions of points in each cell relative to the reference totals. 
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Ref. 

Group 1 
Ref. 

Group 2 
Ref. 

Group 3 
Ref. 

Group 4 
Ref. 

Group 5 
Ref. 

Group 6 Total 

Output 
Group 1 0.02 0.07 0.22 0.26 0.22 0.21 1.00 

Output 
Group 2 0.00 0.51 0.19 0.05 0.13 0.12 1.00 

Output 
Group 3 0.61 0.09 0.04 0.05 0.09 0.11 1.00 

 
Table 3. Ms values, proportions of points in each cell relative to the output totals. 

 

2.10.4.1 

For the second stage, and as a means of determining the level of segmentation performance, the 

proportion values in every cell in both matrices were evaluated against tolerances increasing 

from 0.5 to 1.0, in specified steps. By having a cell proportion value relative to the column and 

row totals that is larger than a tolerance value, this pair of reference and output groups was 

considered an instance of correct segmentation at this tolerance level. If the tolerance level was 

0.5, the number of points in the cell are at least a majority of points in both the reference group 

and the output group. Of course, 50% of the points for such a cell is a relatively low level of 

tolerance. So, by increasing the tolerance in specified steps up to 1.0, for 100% of the points, it 

was possible to reveal which pairs of reference and output groups had a high proportion of 

shared points.  

Segmentation Performance per Tolerances - Correct Segmentation 

 

Using the example metrics in Table 1 and Table 3, above, the segmentation performance was 

evaluated as proportions of points exceeding increasing tolerance levels. Table 4, shows whether 

two corresponding cell pairs meet the criteria and are considered instances of correct 

segmentation since the proportions of points in Table 1 and Table 3 are both greater than or 
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equal to the 0.5 tolerance. As shown in Table 4, increasing the tolerance to 0.6 resulted in only 

one correctly segmented cell pair, shown in Table 5. 

 

 
Ref. 

Group 1 
Ref. 

Group 2 
Ref. 

Group 3 
Ref. 

Group 4 
Ref. 

Group 5 
Ref. 

Group 6 
Output 

Group 1 0 0 0 0 0 0 

Output 
Group 2 0 1 0 0 0 0 

Output 
Group 3 1 0 0 0 0 0 

 
Table 4. Cells with proportions greater than or equal to a tolerance of 0.5. 

 

 

 
Ref. 

Group 1 
Ref. 

Group 2 
Ref. 

Group 3 
Ref. 

Group 4 
Ref. 

Group 5 
Ref. 

Group 6 
Output 

Group 1 0 0 0 0 0 0 

Output 
Group 2 0 0 0 0 0 0 

Output 
Group 3 1 0 0 0 0 0 

 
Table 5. Cells with proportions greater than or equal to a tolerance of 0.6. 

 

2.10.4.2 

The third stage of evaluation addressed instances of over-segmentation. This generally proceeded 

with the same theoretical concept of meeting the criteria of proportions per reference column and 

output row. However, over-segmentation occurs when one reference segment is represented by 

several output groups. Here, instead of simply one row, the sum of the cells from every row that 

are participating in the column was determined and a proportion of the column total is again 

calculated for the metric Mro (over-segmentation metric for  reference groups). However, to be 

Instances of Over-segmentation and Under-segmentation 
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sure that each of these rows was participating more in this column than any other column, each 

participating row cell must have met the tolerance value with regard to the proportion of points 

compared to the row total. If this additional criteria is met, the cells for all the participating rows 

were summed, and a proportion relative to the row total was calculated for the metric Mso (over-

segmented metric for output segments). Both Mro and Mso must have then met the tolerance for 

the cell to be classified as an instance of over-segmentation. 

 

The fourth stage of evaluation addressed under-segmentation. This is where one output group 

represented several reference groups. It is evaluated in the same fashion as over-segmentation, 

although it uses several columns to derive the Mru and Msu metrics (under-segmented metric for 

reference groups and output segments, respectively). 

2.10.4.3 

In this framework, each cell could be classified as a member of up to three classes (Hoover, et 

al., 1996). The fifth stage of evaluation simply determined which classification the cell was 

mostly participating in by averaging both measures for each of the three classifications of correct 

segmentation (Mr and Ms), over-segmentation (Mro and Mso), and under-segmentation (Mru 

and Msu). The highest average value of the cell's classifications (relating to the proportions of a 

cell's participation in each classification) is selected as the final classification for that cell. In 

circumstances with equal averages of the metrics, preference is given to correct segmentation, 

then to over-segmentation, then to under-segmentation. A cell not classified as correct 

segmentation, over-segmentation, or under-segmentation is labeled as a missing reference in the 

reference column and also labeled as a noise segment in the output row. 

Final Classification 
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The five potential final cell classifications ultimately determined how many groups belonged to 

each classification, based on the intersecting cell values representing proportions of the reference 

and output groups. Of these five classifications, I was mainly concerned with the number of 

correctly segmented groups as the single measure of segmentation performance. 

2.10.4.4 

By charting the number of groups for each tolerance value, with the tolerance on the x-axis and 

the number of correctly segmented groups for each tolerance on the y-axis, it is possible to 

graphically present the performance of each variable set. The segmentation performance curves 

of Hoover, et al. (1996) easily allowed for a visual evaluation of the persistence of correctly 

segmented groups for each variable set as the tolerance increased. An example of a hypothetical 

segmentation performance curve is shown below in 

Segmentation Performance Curves 

Figure 8, having the number of correctly 

segmented groups specified for tolerances from 0.5 to 1.0 in steps of 0.1. Also shown at the top, 

is an "Ideal" value of 6 correctly segmented groups, equivalent to most of my experiments' pre-

labeled reference groups (only one of my synthetic experiments had 12 groups.) The 

segmentation performance curve shows that 6 output groups are classified as correctly 

segmented at the 0.5 and 0.6 tolerance values, meaning 6 groups had a number of points that was 

at least 60% of a reference group and 60% of an output group. At the 0.7 tolerance level, only 5 

groups met the criteria for being correctly segmented (over 70% of the points of both the 

reference and output group.) Eventually, the segmentation performance curve reveals 2 correctly 

segmented groups at the 1.0 tolerance level, indicating that 2 groups contained 100% of the 

points of both the reference group and the output group. 
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Figure 8. Example segmentation performance curve. 
 

2.10.4.5 

To obtain a single numeric performance value as a quantitative metric, I extended the accuracy 

assessment of Hoover, et al. (1996) by calculating an area under the curve index (AUC) so 

several results could be compared. This was helpful for summarizing the numerous segmentation 

performance curves generated for the variable sets in my experiments. The highest AUC ranking 

indicated the highest performing variable set.

Area Under the Curve Index  
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Chapter 3 - METHODS 

3.1 Methods Overview 

My thesis concerns the separation of 3D point data into groups with similar spatial and thematic 

characteristics. To that aim, my methods were concerned with clustering segmentation 

performance using 3D point data, different variable sets, and multiple perturbations of the data. 

The specific processes employed are described below. Images in this thesis are presented in 

color. 

 

In the context of segmentation, my thesis generally involved the Mean Shift clustering algorithm. 

Based upon the computer vision and segmentation literature, I expected the Mean Shift 

clustering to segment a large group of multidimensional point data satisfactorily. A notable 

benefit of the Mean Shift method is that a selected bandwidth window of evaluation, which is 

applied to locations throughout the data space, can yield any number of clustered groups, as 

opposed to setting the number of groups with prior knowledge.  

 

I used the K-means clustering technique, to compare the Mean Shift to a more familiar clustering 

method. The K-means requires the specification of the number of output groups as a parameter. 

The number of groups was selected based upon the known number of reference groups. 

However, it is important to note that the reference groups were selected intuitively, based upon 

spatial and thematic characteristics. The K-means algorithm has the potential to reveal different 

types of groups than the intuitively selected reference groups. A qualitative evaluation of the 

output groups helped to explore this situation, as discussed in the Results and Discussion section. 
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The synthetic data set initially consisted of 3D points with thematic information. From this, 

additional spatial and thematic variables were derived as explained in the Data Sources and 

Processing sections below. Several stages of evaluation were used to address issues individually, 

as described below. 

 

Multi-variate data analysis, spatial resolution, sensor accuracy, and more complex attribute-

coordinate associations are all important components for this research. As an introductory 

comparison of the clustering methods, the first stage of experimental evaluation considered the 

parameters and results of the Mean Shift and K-means clustering. The second stage compared 

the effects of higher and lower spatial resolutions. The third stage of evaluation considered signal 

error by introducing increasing levels of noise in spatial and attribute variables. The fourth stage 

used an alternative color configuration. All of the stages up to this point were evaluated with an 

accuracy assessment framework incorporating various quantitative metrics, graphed results, and 

3D perspective plots. After evaluating the experimental results of the synthetic data, I applied the 

concepts and techniques to two LiDAR case studies. These steps are described in the Processing 

and Accuracy Assessment sections below as well as in the Results and Discussion section. 

3.2 Data Sources 

Most of the data in this thesis were processed with the open-source software "R" (v. 2.10.0) (R 

Development Core Team, 2009). I also used a C++ implementation of the Mean Shift clustering 

algorithm, "Code for adaptive mean shift in high dimensions" (Georgescu, Shimshoni, & Meer, 

2003), obtained from the Rutgers University Robust Image Understanding Library. I collected 

the case study LiDAR data in August of 2009 with an Optech 36D terrestrial LiDAR scanner and 

parsed those data with the Optech Parser (v.4.3.8.6).  
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3.2.1 

A series of synthetic datasets were generated for the first sets of experiments. Each consisted of 

3D vector points regularly spaced along the six faces of a cube, 10 units on a side. Thematic 

information— color—was assigned to each point. The number and spacing of points, spatial 

configuration of color on the cube, and degree of additive coordinate and spectral noise varied by 

dataset and are detailed in the following paragraphs. The use of synthetic data provided known 

reference values for each observation, which is valuable in any validation effort. The design 

mimicked a basic real-world application of directing a LiDAR scanner at an object with clearly 

defined facets and attributes. Finally, the relatively small size of each dataset minimized the 

computational burden, enabling additional experiments and analysis.  

Synthetic Data Sets 

 

The first step in my processing was to create synthetic data sets. The initial synthetic data set 

represented a cube that had points on each of its six sides in 3D (XYZ) coordinates ranging from 

0.0-9.0. Since there is often uncertainty regarding exact boundaries or edges of regions in most 

measurements of real world phenomena, the synthetic data excluded point representation of 

edges and corners (values 0.0 and 9.0). This resulted in an 8 x 8 array of 64 points representing 

each of the six sides, totaling 384 points for the data set. For the accuracy assessment, all of the 

points were labeled as belonging to one of 6 reference groups representing the sides of the cube 

(front, back, top, bottom, left, and right). 

 

Thematic properties were represented by different levels of red, green, and blue (RGB) colors. 

The value of visible color reflectance is often collected by remote sensors, though these data 

were simply a surrogate for any other spectral wavelengths or thematic information that may be 
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included with 3D spatial data. For this experiment, values for color were added to the points. 

Groups of points representing each side of the cube had a different level of R, G, and B color 

values in a range from 0.0-1.0. Three sides had full-intensity red, green, or blue values of 1.0, 

while three sides had half-intensity red, green, or blue values of, 0.5 as shown in Table 6 below. 

A 3D perspective of the synthetic cube is also shown in Figure 9, below; it is an oblique view 

from above the top, front, left corner. These initial data are called the "noise-free" data set from 

here on. 

 

Red (R) Green (G) Blue (B)
Reference Side 1 - Left 1 (Full) 0 0
Reference Side 2 - Top 0 1 (Full) 0

Reference Side 3 - Front 0 0 1 (Full)
Reference Side 4 - Right 0.5 (Half) 0 0

Reference Side 5 - Bottom 0 0.5 (Half) 0
Reference Side 6 - Back 0 0 0.5 (Half)  

Table 6. Color assignment for thematic variables of the initial synthetic data set. 
 

 

Figure 9. Synthetic test cube from the top, front, and left corner. 
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The accuracy assessment required reference groups against which the segmentation output could 

be compared. Since I expected that the spatial and thematic characteristics of each side of the 

cube would provide sufficiently separable groups of points, each set of observations comprising 

one face of the cube was also considered a reference group. These synthetic groups are 

experimental surrogates for any groups of points with similar spatial and thematic characteristics 

in a real-world data set, potentially representing components of an object. 

 

The data set now included a reference label (Ref.), spatial attributes (XYZ), and thematic 

attributes (RGB). I expected that the XYZ coordinates would help to group points by their 

absolute position. This is a very important determinant of a group of spatial data points, 

particularly for the aim of representing a locally contiguous region of similar spatial 

characteristics. The thematic attributes of RGB spectral values are a very common set of 

characteristics that could also help to differentiate local regions of similarity.  

3.2.2 

Beyond my synthetic data experiments, I employed the methods on two terrestrial LiDAR scans 

collected from observations of real-world objects in order to evaluate its potential for geographic 

feature segmentation. The first was a scan of simple, constructed shapes and colors represented 

in an indoor scene (subsequently called "Indoor"). The second was a scan of an archaeological 

site (subsequently called "Archaeological Site"), which provided rugged shapes and numerous 

colors of built structures and background landscapes. All three data sets are summarized in 

LiDAR Data - Case Studies 

Table 

7. 
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Data Set Purpose

Indoor LiDAR Data
To apply thesis methodology to simple man-made shapes and 

colors for discussion purposes.

Archeological Site LiDAR Data
To apply thesis methodology to complex structures and 

background landscapes for discussion purposes.

To provide source and reference data for methodology and 
assessment framework included in this thesis.

Experimental Data
(initial and modified versions)

 
 

Table 7. Data sets. 
 

3.3 Processing 

3.3.1 

The next step in the generation of my synthetic data set was to derive additional spatial 

information from the existing basic data. The aim here was to represent the spatial relationship 

between each 3D point and its neighbors. Therefore, a basic measure of spatial neighborhood 

relationship was conceived and calculated: the mean vector (MV). This is simply the mean of 

vectors from each point to some of its neighbors. 

Spatial Variables - Neighborhood Relationships 

 

To calculate the mean vector, the eight nearest neighbors to each point were determined. The 3D 

(XYZ) vector was calculated for each neighbor. Finally, the average values of change in each 

axis were returned as a single set of 3D distances in the X, Y, and Z directions (MVx, MVy, and 

MVz). The formula for each MV is as follows: 

𝑀𝑉𝑖 =
∑𝑖𝑛
𝑛

 

where i is the coordinate value for each axis (x, y, and z), and n is the number of neighbors (8 in 

this case). 
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3.3.2 

The initial synthetic data included a set of basic RGB values. This is one of numerous color 

spaces that can be used for analysis. As described in the Conceptual Framework, alternative 

color representations were considered to address issues of varying lightness in real-world data. 

From the RGB variable set I chose to derive values sets for both Luv (LUV) and CIE L*a*b* 

(LAB) color spaces, using the R software "colorspace" library(R Development Core Team, 

2009). 

Thematic Variables - Spectral Color Space Alternatives 

3.3.3 

The synthetic data set included all of the variables that I intended to use: Ref., X, Y, Z, MVx, 

MVy, MVz, R, G, B, L, U, V, L*, a*, b*. These variables are shown as "variable sets" in  

Standardized variables 

Table 8. Variable sets, variables and descriptions..  

Variable Set Description
Reference Side Labels 1-6:

Left, Front, Bottom, Right, Back, Top
X, Y, and Z coordinates
(For absolute position)

Mean Vector X, Y, and Z  coordinates
(For neighborhood relationship)

RGB R G B Red, Green, and Blue color space values
LUV L U V CIE LUV color space values
UV U V CIE LUV color space values (No Lightness)

LAB L* a* b* CIE L*a*b* color space values
AB a* b* CIE L*a*b* color space values (No Lightness)

MV MVx MVy MVz

Variables

Ref Reference Group

XYZ X Y Z

 
 

Table 8. Variable sets, variables and descriptions. 
 

 
The variable sets had various distributions of values and also had different ranges (e.g., 1-9 for 

XYZ and 0-1 for RGB). To remove the possibility of weighting one variable more than another 
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due to the magnitude of its values, I standardized each variable by transforming data values into 

their z-scores using the following formula: 

𝑧 =
𝑥 − 𝜇
𝜎

 

where 𝑧 is the standardized z-score, 𝑥 is the point value, 𝜇 is the variable's mean value, and 𝜎 is 

the variable's standard deviation. Though the synthetic variables did not have normal 

distributions of values (real-world values may have a more normal distribution), the results of 

this process expressed the variability in a standard, unit-less way for the subsequent clustering 

operations. 

3.3.4 

With all of the variables prepared, I was able to enter them as combinations into the clustering 

processes. The 23 possible combinations of variable sets are shown in 

Variable Sets and List of Experiments 

Table 9. I used 15 variable 

set combinations for the synthetic data evaluation and 8 additional variable set combinations for 

the case studies. 
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Yes Yes XYZ
Yes Yes MV
Yes Yes RGB
Yes Yes LUV
Yes Yes LAB

(No) Yes UV
(No) Yes AB
Yes Yes XYZ MV
Yes Yes XYZ RGB
Yes Yes XYZ LUV
Yes Yes XYZ LAB

(No) Yes XYZ UV
(No) Yes XYZ AB
Yes Yes MV RGB
Yes Yes MV LUV
Yes Yes MV LAB

(No) Yes MV UV
(No) Yes MV AB
Yes Yes XYZ MV RGB
Yes Yes XYZ MV LUV
Yes Yes XYZ MV LAB

(No) Yes XYZ MV UV
(No) Yes XYZ MV AB

Variable 1 Variable 2 Variable 3
Used for 

Experimental 
Data Sets

Used for 
Case 

Studies 

 
 

Table 9. Combinations of sets of variables, steps, and sequences. 
 

 
I conducted 5 general sets of experiments, as listed in Table 10, below. They are described in the 

following sections and were compared throughout the assessment. 

Experiment Set Topic
1 Mean Shift/K-means clustering comparison
2 Spatial resolution comparison
3 Noise evaluation
4 Alternative color configuration
5 LiDAR case studies  

 
Table 10. List of experiments. 
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3.3.4.1 

The first stage of evaluation for the synthetic data compared the Mean Shift and the K-means 

clustering outputs using the noise-free data set for both. Because the K-means algorithm requires 

the number of output groups as an input parameter, this was specified to match the number of (6) 

reference groups. This was the ideal set of labeled reference groups that could be found by either 

clustering method. The k-means clustering algorithm, as implemented through the R software 

"stats" library(R Development Core Team, 2009), is based upon an algorithm presented by 

Hartigan and Wong (1979). The Euclidean distance measure was used for the k-means 

clustering. 

Experiment Set 1 - Mean Shift/K-means Clustering Comparison 

3.3.4.2 

The data sets for the spatial resolution comparison were prepared similarly to the initial noise-

free data set, though they had different point spacing. In comparison to the noise-free data set's 

spacing of 1 unit, the lower resolution set had a point spacing of three units, while the higher 

resolution set had a point spacing of 0.2 units. These values were selected as the first even-

valued multiples below and above the initial spacing of one. These point spacings avoided  

computational rounding errors. More importantly, each data set could be divided perfectly in 

half, able to meet an accuracy assessment tolerance value of 0.5, or 50% of points on each side. 

Experiment Set 2 - Spatial Resolution Comparison 

 

The total number of points in the set in the low resolution set, was 24 with (2 x 2) 4 points per 

side. The total number of points in the set in the high resolution set, was 11,616 with (44 x 44) 

1,936 points per side. These are large differences in numbers of points, but it emphasized the 

effects of under-sampling and over-sampling during the data collection phase of an investigation. 
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3.3.4.3 

This set of experiments consisted of data sets that had an incremental amount of noise added. 

Random samples of a Gaussian distribution with a mean of zero and an incrementally increasing 

value of variance from 0.02 to 0.10, in steps of 0.02 units were added to the initial raw (XYZ and 

RGB) data values.  

Experiment Set 3 - Noise Evaluation 

3.3.4.4 

The data for Experiment Set 4 was intended to help evaluate the clustering ability with a more 

complex, alternative color configuration. As described in the Conceptual Framework section 

regarding Ontology, objects in the landscape may be close to each other and have the same 

orientation, though they may be considered separate components due to varying color. To 

address such circumstances, this data set was prepared with separate groups of points that only 

varied in color (RGB, LUV, or LAB) while being in close (XYZ) proximity and having the 

similar (MV) neighborhood. Each side had a different color configuration having 2 colors per 

side, as shown in 

Experiment Set 4 - Alternative Color Configuration 

Table 11. Some colors had the same varying levels of RGB as the original data 

set, 1.0 or 0.5 for each R, G, or B. Other colors were combinations of R, G, and B, with values of 

either 1.0 or 0.5. To evaluate whether the clustering would create groups on different sides 

(across an edge of the cube), the configuration was prepared to have situations where two of the 

halves on different but adjacent sides had the same color (e.g., Reference Sides 1 and 5, Table 

11). Conversely, the same color was also used on non-adjacent halves of sides (e.g., Reference 

Sides 1 and 3, Table 11).  



 

50 
 

Red (R) Green (G) Blue (B)
Reference Side 1 - Left Side, Top Half 1 (Full) 0 0

Reference Side 2 - Left Side, Bottom Half 0.5 (Half) 0 0
Reference Side 3 - Right Side, Top Half 1 (Full) 0 0

Reference Side 4 - Right Side, Bottom Half 0 0 1 (Full)
Reference Side 5 - Front Side, Left Half 1 (Full) 0 0

Reference Side 6 - Front Side, Right Half 0 0 0.5 (Half)
Reference Side 7 - Back Side, Left Half 1 (Full) 1 (Full) 0

Reference Side 8 - Back Side, Right Half 0 0.5 (Half) 0.5 (Half)
Reference Side 9 - Bottom Side, Left Half 0 0 1 (Full)

Reference Side 10 - Bottom Side, Right Half 0 0 0.5 (Half)
Reference Side 11 - Top Side, Left Half 0.5 (Half) 0 0

Reference Side 12 - Top Side, Right Half 0 0 0.5 (Half)  

Table 11. Alternative color configuration values. 
 

3.3.4.5 

After completing the work with the synthetic data sets, the methods were applied to real-world 

terrestrial LiDAR data sets. The first real-world data set was the Indoor scan of simple, man-

made shapes having very basic and separable colors, though there was certainly more variability 

in both the spatial and thematic (RGB color) variables as compared to the synthetic data. The 

scan originally included over three million points and was sub-sampled to a much more 

computationally efficient set of ~5,000 points by selecting every 512th point in the data set. This 

resolution still provided plenty of spatial and spectral detail regarding the objects in the 

approximately 3 x 2 x 1 meter scene. The original 3 million point data set, before sub-sampling, 

is shown in 

Experiment Set 5 - LiDAR Case Studies 

Figure 10, below. 
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Figure 10. Indoor LiDAR data set. 
 

 
The second real-world data set was the Archaeological Site scan of complex built-up and natural 

landscape features having considerable variability in both the spatial and thematic (RGB color) 

variables. The scan included a stone-lined and capped water channel (diagonally from the lower-

left to the upper-right of the scene), bare soil (in the lower-right), and grassy vegetation (on the 

upper-left). This allows for the evaluation of spatial position and complex orientation, as well as 

the spectral values for different materials. The scan originally included approximately 0.5 million 

points and was sub-sampled to a much more computationally efficient set of ~8,000 points by 

selecting every 64th point in the data set. This resolution still provided plenty of spatial and 

spectral detail regarding the objects in the approximately 4 x 3 x 1 meter scene. The original half 

of a million point data set, before sub-sampling, is shown in Figure 11, below. 
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Figure 11. Archaeological Site LiDAR data set. 
 

3.3.5 

For the Mean Shift clustering, I used the Fast Adaptive Mean Shift (FAMS) algorithm, as 

implemented in the C++ programming language by researchers at Rutgers University 

(Georgescu, Shimshoni, & Meer, 2003). It is based upon previously established concepts from 

work by Comaniciu and Meer (2002). Though the FAMS algorithm is intended to address 

computational performance by sampling the data set, I simply ran the algorithm using all of the 

data points. Thus, only two parameters were required for this implementation of the algorithm: a 

bandwidth distance and the number of nearest neighbors to use. I initially selected both 8 and 24 

neighbors for the FAMS algorithm. Since there was no difference in the number of output groups 

for initial stages of several variable sets between these two nearest neighbor selections, I 

maintained only 8 neighbors for the full evaluation of all of the experiments. The more important 

Mean Shift parameter was the distance selected for the bandwidth of evaluation. I used 

Euclidean distances initially ranging from 0.0 to 3.9 standard deviation units, in increments of 

0.1. After initial results were evaluated, this was reduced to a range of 0.0 to 2.9 standard 

Clustering 
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deviation units because the larger bandwidths yielded only one under-segmented group of all 

data points, with no benefit arising from the evaluation of bandwidths higher than 2.9 standard 

deviation units. Therefore, each of 30 bandwidths was used for clustering each variable set. The 

results were evaluated, in terms of the number of output groups that most closely matched the 

number of reference data groups. 

3.4 Accuracy Assessment 

The accuracy assessment of the clustering followed the previously employed concepts and 

techniques described in the Conceptual Framework (e.g., Hoover, et al., 1996). However, as 

discussed in detail below, there were some alterations and innovations to address the 

implementation of the Mean Shift clustering. 

3.4.1 

The implemented FAMS algorithm for the Mean Shift method used the previously mentioned 

parameters (bandwidths and number of neighbors) to cluster the variable sets providing two 

outputs. One Mean Shift output is a listing of the destination mode for every point, in terms of 

each variable. Occasionally, the bandwidth of evaluation may not calculate an exact destination 

mode; it repeatedly bounces between two very close destinations. A small convergence value is 

used to stop the algorithm from running continuously in such cases. 

Mean Shift Clustering 

 

The next step in the algorithm is a routine that "prunes" the modes. Because many points have 

destinations that are very close to each other but not with exactly the same values, this pruning 

routine determines points that are very close to each other, within a small tolerance distance, and 

re-assigns them to a "pruned mode". The routine reduces a larger number of modes (with few 
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points each) to a smaller number of pruned modes with relatively more points. The outcome is 

the second set of results, the Mean Shift pruned modes. 

3.4.2 

The second Mean Shift output, showing pruned mode locations, does not specify which 

particular points are associated with the pruned mode location; it simply returns a count of the 

points at that location. Furthermore, the total of points at pruned modes did not equal the total 

number of points in the data set. Some points were not in close enough proximity to be 

considered a member of any pruned mode. To determine which points were nearest to each 

pruned mode location, I post-processed the results. I identified a bandwidth tolerance in the 

FAMS algorithm used for pruning the modes. This was 3000 in 1/(216) units of the data set, 

which was approximately a value of ~0.045 in each variable's standardized units. To post-process 

the clustering results, I first found the closest pruned mode for every point in the data set and 

then evaluated if it was within the bandwidth used for pruning the modes. If it was, then the point 

was labeled as belonging to that particular pruned mode, or output group. However, in 

comparing the resulting number of groups and points in each output group to the number of 

pruned modes for each and every experiment, variable set, and bandwidth, I actually found that 

the numbers of my labeled groups and points within those groups was close to, but not exactly 

matching the number of groups and points in the pruned modes. Some were a few groups or a 

few points less. To get closer to the Mean Shift pruned mode output, I expanded the bandwidth 

for labeling the points to 1.1 units, which matched the numbers of post-processed groups to the 

number of Mean Shift output groups with only a very small proportion of exceptions between the 

numbers of points in the corresponding groups. These errors were considered negligible since 

they were mostly found in very small clustering bandwidths (0.0-0.2 standardized units) which 

Pruned Mode Labeling Modifications 



 

55 
 

had very few groups, indicating under-segmentation or missing segments. The only notable 

exceptions were with some bandwidths around 1.3 , usually with the LUV variable set and again 

involved under-segmentation. 

3.4.3 

With the points finally labeled as belonging to specific pruned mode output groups, I proceeded 

with an accuracy assessment that was mainly guided by Hoover, et al. (1996). First, I created 

overlapping area matrices (OAMs) for every experiment, variable set, and bandwidth. Then, the 

number of points in each cell was used to derive the proportional metrics per column and row 

used for correct segmentation, Mr and Ms, as well as the corresponding metrics for over-

segmentation, Mro and Mso, and the metrics for under-segmentation, Mru and Msu. The labeling 

convention for the symbols metrics follow this convention:  

Segmentation Performance Classification 

M - indicates a metric 

r - indicates the metric is in relation to a reference group (OAM column) 

s - indicates the metric is in relation to an output group, or segment (OAM row) 

o - indicates the metric is in relation to a measure of over-segmentation 

u - indicates the metric is in relation to a measure of under-segmentation 

 

The metrics are formalized after a mention of a modification to the reference column metrics 

(Mr, Mro, and Mru) and the tolerance values used. The final 5 classifications of corresponding 

reference and output groups were derived from all 6 metrics, as described in sections that follow. 

3.4.3.1 

One important modification was made to the calculation of the proportional metrics. The intent 

of the accuracy assessment described by Hoover, et al. (1996) is to evaluate a data set that had 

Modification to the Reference Column Metrics 
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every point labeled; this was not the case for the Mean Shift pruned modes. Some of the points 

were left out of the Mean Shift pruned modes and the subsequent point labeling. A column of the 

overlapping area matrix represents all of the points in a reference group. If a subset of points (the 

set of points belonging to the pruned mode) existed in a column, it did not actually represent a 

proportion of the reference group's initial number of points. To correct this issue, the column 

total was set to the original number of points in the input reference group, usually 64 points (or 

1936 points for the high resolution data set and 4 points for the low resolution data set). Then, for 

the Mr, Mro, and Mru metrics, the proportion of points in each cell was calculated as a 

proportion of the original number of points in the reference groups. 

3.4.3.2 

As mentioned in the Conceptual Framework section on Accuracy Assessment, the process 

included the evaluation of the metrics against the specified tolerance values from 0.5 to 1.0 (a 50 

to 100% proportion), in steps of 0.1 (10%). If each cell's metrics met the required criteria, it was 

temporarily labeled in separate matrices for each of three segmentation classifications (correctly 

segmented, over-segmented, and under-segmented). 

Tolerance Values 

3.4.3.3 

An instance of correct segmentation is determined when the reference group and output segment 

meet two criteria, shown below, with the majority of points defined by the incremental tolerance 

values: 

Correctly Segmented Metrics 

1) The majority of points in the reference group are labeled as members of a single output 

segment, calculated with the formula: 

𝑀𝑟 =
𝑁𝑟𝑠
𝑁𝑟
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where 𝑀𝑟 is the ratio of intersecting points (𝑁𝑟𝑠 ) to the total number of points in the 

reference group (𝑁𝑟). 

2) The majority of points in the output segment correspond to a single reference group, 

calculated with the formula: 

𝑀𝑠 =
𝑁𝑟𝑠
𝑁𝑠

 

where 𝑀𝑠 is the ratio of intersecting points (𝑁𝑟𝑠 ) to the total number of points in the 

output segment (𝑁𝑠). 

3.4.3.4 

Over-segmentation occurs when one reference group is represented by more than one output 

segment. In this case the number of intersecting points is the sum of intersecting points in all of 

the participating output segments. The criteria and metrics are similar to the correctly segmented 

metrics. However, the second criterion has two stages. The over-segmented criteria and metrics 

are: 

Over-segmented Metrics 

1) The majority of points in the reference group are comprised of the majority of points in 

many output segments (Ss1+Ss2+...), calculated with the formula: 

𝑀𝑟𝑜 =
𝑁𝑟𝑠1 + 𝑁𝑟𝑠2 + ⋯

𝑁𝑟
 

where 𝑁𝑟𝑠1, 𝑁𝑟𝑠2, ... are the number of intersecting points in Ss1, Ss2, ... respectively. 

2a) There is a majority of points in each and every one of the participating output 

segments (Ss1+Ss2+...) participating in the corresponding reference group, calculated 

with the formula: 

𝑀𝑠𝑜1 =
𝑁𝑟𝑠1
𝑁𝑠1

, 𝑀𝑠𝑜2 =
𝑁𝑟𝑠2
𝑁𝑠2

, … 
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where 𝑁𝑟𝑠1, 𝑁𝑟𝑠2, ... are the number of intersecting points in Ss1, Ss2, ... respectively 

and 𝑁𝑠1, 𝑁𝑠2, ... are the number of total points in Ss1, Ss2, ... respectively. 

2b) The majority of points in all of the participating output segments (Ss1+Ss2+...) 

correspond to a single reference group, calculated with the formula: 

𝑀𝑠𝑜 =
𝑁𝑟𝑠1 + 𝑁𝑟𝑠2 + ⋯

𝑁𝑠
 

3.4.3.5 

Under-segmentation occurs when more than one reference group is represented by one output 

segment. In this case the number of intersecting points is the sum of intersecting points in all of 

the participating reference groups. The criteria and metrics are similar to the over-segmented 

metrics. The under-segmented criteria and metrics are: 

Under-segmented Metrics 

1) The majority of points in the output segment are comprised of the majority of points in 

many reference groups (Sr1+Sr2+...), calculated with the formula: 

𝑀𝑠𝑢 =
𝑁𝑟𝑠1 + 𝑁𝑟𝑠2 + ⋯

𝑁𝑠
 

where 𝑁𝑟𝑠1, 𝑁𝑟𝑠2, ... are the number of intersecting points in Sr1, Sr2, ... respectively. 

2a) There is a majority of points in each and every one of the participating reference 

groups (Sr1+Sr2+...) participating in the corresponding output segment, calculated with 

the formula: 

𝑀𝑟𝑢1 =
𝑁𝑟𝑠1
𝑁𝑟1

, 𝑀𝑟𝑢2 =
𝑁𝑟𝑠2
𝑁𝑟2

, … 
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where 𝑁𝑟𝑠1, 𝑁𝑟𝑠2, ... are the number of intersecting points in Sr1, Sr2, ... respectively 

and 𝑁𝑟1, 𝑁𝑟2, ... are the number of total points in Sr1, Sr2, ... respectively. 

2b) The majority of points in all of the participating reference groups (Sr1+Sr2+...) 

correspond to a single output segment, calculated with the formula: 

𝑀𝑟𝑢 =
𝑁𝑟𝑠1 + 𝑁𝑟𝑠2 + ⋯

𝑁𝑟
 

3.4.3.6 

For the final classification, each set of proportional metrics was first averaged for the correctly 

segmented, over-segmented, and under-segmented classifications as shown below:  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑀𝑟 ∗ 𝑀𝑠

2
 

𝑂𝑣𝑒𝑟 − 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑀𝑟𝑜 ∗ 𝑀𝑠𝑜

2
 

𝑈𝑛𝑑𝑒𝑟 − 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑀𝑟𝑢 ∗ 𝑀𝑠𝑢

2
 

Final Classification 

 

Then, each cell was classified according to the highest value of the averaged metrics. If the 

averaged values were equal, classification preference was given in the order of correctly 

segmented first, then over-segmented, then under-segmented. The corresponding sets of 

reference groups and output segments were considered an instance of either correct 

segmentation, over-segmentation, or under-segmentation. 

 

If any cell was not labeled as either correctly segmented, over-segmented, or under-segmented, it 

received two classifications: as a missing segment with respect to the reference group, and as a 

noise segment with respect to the output group. 
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3.4.4 

As described in the Conceptual Framework, segmentation performance curves were generated. 

They show the number of instances of each classification, evaluated at the each tolerance level. 

The number of graphs would have been very large for each of the 5 classifications from 9 

experiments, with 15 variable sets, and 30 bandwidths—20,250 graphs. Therefore, I chose to 

overlay the results of 30 bandwidths in each graph, reducing the number of graphs to 675. Each 

graph for each classification included the segmentation performance curves for every bandwidth 

plotted in gray and the highest performing bandwidth plotted in black. Also, I was mainly 

concerned with instances (paired reference and output groups) classified as correctly segmented. 

This selection further reduced the number of graphs to 135; 15 correctly segmented graphs for 

the variable sets of 9 experiments. Examples of these graphs are shown and discussed in the 

Results and Discussion section. 

Segmentation Performance Curves 

3.4.5 

While a segmentation performance curve is a useful visualization of experimental results, the 

information content can be condensed to a metric for quantitative comparison. I extended the 

previous accuracy assessment of Hoover, et al. (1996) by calculating an additional metric. An 

area under the curve index (AUC) was calculated from the segmentation performance curves, 

with a range from a minimum of zero to an ideal index value of one. Since the ideal result of 

correct segmentation was specified as the number of reference groups, the actual results could be 

measured against this value. For each bandwidth of each variable set for each of the Mean Shift 

experiments, the AUC was calculated with the following formula: 

𝐴𝑈𝐶 = 𝐴 ∗
𝑇ℎ
𝑇𝑙

∗
1
𝑛

 

Area Under the Curve Index  
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where 𝐴𝑈𝐶 is the area under the curve index for each bandwidth of each variable set of each 

experiment, 𝐴 is the area under the segmentation performance curve (calculated with the 

trapezoidal rule), 𝑇ℎ is the high tolerance value, 𝑇𝑙 is the low tolerance value, and 𝑛 is the 

number of reference groups. The typical values for the formula are shown for 6 reference groups 

below:  

𝐴𝑈𝐶 = 𝐴 ∗
1.0
0.5

∗
1
6

 

The AUCs of different experiments provide information for a quantitative comparison of the 

performance of different variables for segmenting observations. I employed two comparative 

approaches with the new AUC information. The first approach uses the maximum AUC value of 

all bandwidths for each variable set and experiment (called "Max. AUC" from here forward). 

The Max. AUC values were ranked to reveal the highest performing bandwidth(s) and variable 

set(s) for each experiment. The second approach uses the average AUC of all bandwidths for 

each variable set and experiment (called "Avg. AUC" from here forward). The Avg. AUC values 

were ranked to reveal the highest performing variable sets (over all bandwidths) for each 

experiment. The AUC rankings are shown in the Results and Discussion section. 

3.4.6 

Though the segmentation performance curves and the AUC Rankings are helpful aids to 

understanding the performance of the variable sets, they both failed to provide all available 

dimensions of performance. The segmentation performance curves lacked a clear view of each 

particular bandwidth and the AUC Rankings lacked a visual indication as to the character of a 

variable set's  performance over all of the bandwidths. A better way of visualizing the results was 

necessary. 

Segmentation Surface Plots 
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In addition to the other assessments, I produced an innovative representation of the Mean Shift 

clustering results. It is an extension of the segmentation performance curves for each variable set. 

I used a common raster surface plot, showing the tolerance values (on the x-axis), the Mean Shift 

clustering bandwidth (on the y-axis), and the number of correctly segmented groups (as a 

classified color) for each bandwidth and tolerance, totaling three dimensions. The number of 

correctly segmented groups is simply represented with color patches ranging from white, for the 

minimum of zero, to black, for the maximum ideal number of 6 groups (or 12 groups for the 

alternative color configuration). The segmentation surface plot visualization revealed which 

variable sets and which bandwidths perform well for each experiment. The Max AUC was 

readily apparent in many variable sets, bandwidths, and tolerance levels. However, this 

visualization particularly helped to identify which variable sets performed well over many 

bandwidths and tolerance levels. It visually demonstrated the characteristics and nuances of the 

Avg. AUC metric. The segmentation surface plots are shown in the Results and Discussion 

sections. 

3.4.7 

Even though the segmentation surface plots and the Avg. AUC showed potential for indicating 

the persistence of the variable sets' performance over all bandwidths, a more rigorous means of 

determining the variable sets' performance was through statistical analyses. Several statistical 

tests were conducted to more precisely understand the relative performance of variable sets. The 

noise evaluations offered an opportunity to generate enough samples for statistical testing. These 

multiple realizations of data also allowed for the evaluation of particular variable sets, addressing 

objectives relating to the most influential color spaces and overall characteristics: spatial 

Statistical Analyses 
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location, spatial relationship, or thematic attribute. The following paragraphs describe the 

information used and the statistical tests employed: one-sample t-tests, analysis of variance tests 

(ANOVA), and Post-ANOVA tests. The output is shown in the Results and Discussion section. 

3.4.7.1 

To statistically evaluate the resulting effects of increasing levels of noise in the raw data, 19 

realizations of each level of noise were generated. The 5 levels of noise were simulated by 

adding to the noise-free data set individual samples from random distributions with means of 

zero and a variances ranging from 0.02 to 0.10 units, in increments of 0.02 units. The 19 

realizations for each 5 levels of noise were sufficient to run 5 separate one-tailed, one-sample t-

tests, comparing each level of noise to a single mean value from the noise-free data set. The 

Mean Shift clustering results from each variable set was tested with 5 levels of noise. The null 

hypothesis is that the with-noise data sets have a mean that is equal to the noise-free data. The 

alternative hypothesis is that the with-noise data sets have a mean that is less than the noise-free 

data. A rejection threshold alpha value of α = 0.05 was employed. The noise evaluation 

hypotheses were: 

One-sample t-tests for the Noise Evaluation 

Ho:  the mean of the with-noise results  =   the noise-free result 

Ha:  the mean of the with-noise results  <  the noise-free result 

3.4.7.2 

I employed an ANOVA test to compare multiple variable sets and determine if the means are all 

equal or if at least one of the means is significantly different. On the assumption that some noise 

is commonly present in most observations and data collection, I used the 19 iterations of data 

containing the 0.02 level of noise. The Avg. AUC of all variable sets were submitted to the 

ANOVA test. The hypotheses were: 

The ANOVA and Post-ANOVA Tests for All Variable Sets 
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Ho:  the mean of variable set 1  =   the mean of variable set 2  =  ... 

Ha:  not all of the means are equal 

Since this only offers an indication of whether there is a difference of means, it was necessary to 

follow-up with a Post-ANOVA test to determine which means were significantly different from 

each other. Three Post-ANOVA tests were conducted: the Dunnett-Tukey-Kramer (DTK) test, 

the Tukey Honestly Significant Differences (HSD) test, and the Least Significant Different 

(LSD) tests. The outcomes are shown in the Results and Discussion section. 

3.4.7.3 

To determine which color space had the highest performance and the most correctly segmented 

groups over all the bandwidths, an ANOVA test was run solely on the RGB, LUV, and LAB 

variable sets. The tests used similar data, information, and procedures as mentioned above for all 

variable sets: the Avg. AUC of 19 iterations of the 0.02 noise level were evaluated. Again, the 

three Post-ANOVA tests (DTK, HSD, and LSD) followed for a more detailed evaluation. 

The ANOVA and Post-ANOVA Tests for Color Variable Sets 

3.4.7.4 

With the highest performing color space identified, an ANOVA test was conducted to evaluate 

the three variable types: spatial location (XYZ), spatial relationship (MV), and the thematic 

attributes (highest performing color). The tests used similar data, information, and procedures as 

mentioned above for all variable sets: the Avg. AUC of 19 iterations of the 0.02 noise level were 

evaluated. Again, the three Post-ANOVA tests (DTK, HSD, and LSD) followed for a more 

detailed evaluation. 

The ANOVA and Post-ANOVA Tests for Variable Type 
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3.4.8 

 In addition to the quantitative metrics, it was important to see which particular points were 

grouped together. For a visual representation of the data, 3D perspective plots were generated 

from an oblique viewpoint, looking from the top, left, and front perspective. Spheres were used 

to symbolize each point to aid the perception of three-dimensional depth and understanding of 

which points were in the foreground and which were in the background. The points were colored 

based upon their membership in an output group. For most of the plots, if a point was not in a 

group it was appropriately invisible, though a few plots would show these as white. These plots 

offered a valuable way to view and interpret the patterns of grouped points. Selected plots are 

shown in the Results and Discussion section. 

3D Perspective Plots 

3.4.9 

In contrast to the Mean Shift clustering, the K-means method had no bandwidths, so only one set 

of results was produced. Segmentation performance curves, AUC rankings, and segmentation 

surface plots were generated and 3D perspective plots were produced for visual analysis. 

Examples of the output are in the Results and Discussion section along with a comparison of the 

parameters of the two clustering methods. 

K-means Clustering Comparison 

3.4.10 

Building on the understanding of the Mean Shift clustering performance from the synthetic data 

experiments, my attention turned to understanding a real-world scene. The Indoor and 

Archaeological Site data sets were used.  The same Mean Shift clustering methods were 

employed. The synthetic experimental results guided attention to particular bandwidths and 

variable sets.  

LiDAR Case Studies 
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To perform a quantitative analysis with the segmentation performance curves, Max. AUC and 

Avg. AUC rankings, and segmentation surface plots, it was necessary to select groups of points 

representing objects or features in the scenes. The Indoor LiDAR scan was labeled as 9 groups: 8 

reference groups representing objects and one background group. The 8 reference objects were 

the following items: the brown box, red toolbox, blue pail, black case, green case, yellow ball, 

blue cup, and yellow ducks. For the Archaeological Site LiDAR data, the entire scan was labeled 

as three groups representing features in the landscape: the grass, the dirt, and the stone canal. 

Results were generated by employing the Mean Shift clustering to all of the initial 15 variable set 

combinations and 8 additional variable sets for alternative color spaces with the lightness 

removed. The quantitative accuracy assessment was performed and generated segmentation 

performance curves, the Max. AUC and Avg. AUC rankings, and segmentation surface plots. 

Finally, 3D perspective plots were also generated for a qualitative visual assessment and  

discussion of potential applications for geographic landscape representation. 
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Chapter 4 - RESULTS and DISCUSSION 

4.1 Overview 

The main goal of this thesis is to develop a concept and a means of finding features in a 

landscape. As there is a potential for abundant 3D data sets augmented with additional attribute 

information, it is beneficial to aggregate the observed data points into generalized regions of 

homogeneous characteristics. These regions may represent landscape features or components of 

more complex objects. Groups of data points having similar spatial locations, spatial 

relationships, and thematic attributes might be found with clustering techniques such as the Mean 

Shift method. First, the experiments with synthetic data provided a controlled environment and 

included pre-selected reference groups for the accuracy assessment of 3D point segmentation. 

Then, for the case studies, the methods were applied to real world data. Though the case studies 

also included an investigation into more complex variation, such as spatial and spectral variation 

(e.g., rugged surfaces and shadows), knowledge gained from the synthetic data analyses guided 

the interpretation of the case study results. There was an abundance of output from the 

experimental analysis; I present a condensed assessment of that output in this chapter. 

4.2 Synthetic Data Set 

The first result of my processing was simply the creation of an initial synthetic data set 

consisting of 3D (XYZ) point data with thematic (RGB) attributes, shown below. 
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Figure 12. Initial noise-free data set. 
 

This initial noise-free data set served as the basis for the selection of ontological properties for an 

intuitive selection of reference groups. The planar regions of each side were assumed to have 

distinctive spatial locations (XYZ) and relationships (MV) compared to other sides. So, the 

points representing each side might be clustered together to identify aggregated groups of points 

representing each planar region. Though the sides were components of the more complex cube 

object, each side of the cube also had distinctive thematic attributes (RGB, LUV, or LAB), 

which helped to intuitively identify them as uniquely different features or reference groups. 

4.3 K-means clustering 

Using the noise-free data set, a brief comparison between the well-known K-means and the more 

recent Mean Shift clustering was done to describe differences in the processes and results. As an 

input parameter, the K-means requires the number of output groups to be specified. This is not 

commonly known for many data sets. However, 6 reference groups were labeled in the synthetic 

data set so 6 groups were specified for the K-means. Instead of specifying the number of output 
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groups, the Mean Shift clustering requires a bandwidth distance of evaluation. As mentioned in 

the Methods section, segmentation performance curves for 30 Mean Shift bandwidths were 

overlaid on the graphs. A comparison of selected segmentation performance curves is shown in 

Figure 13. The black lines show the number of correctly segmented groups found at each 

tolerance level. The K-means clustering yielded one set of results for each variable set. For 

comparing to the K-means, the highest performing of the 30 Mean Shift bandwidth results are 

shown in black (lower performing bandwidths are shown in gray). 
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Figure 13. K-means and Mean Shift Segmentation Performance Curves. 

K-Means Mean Shift 
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The segmentation performance curves showed that the Mean Shift clustering performs better 

than the K-means. One of the highest performing K-means variable sets, XYZ-MV-LAB, was 

matched by the Mean Shift with both meeting the ideal number of 6 reference groups up to a 

tolerance value of 1.0, or 100%. When the color variable set was switched, giving the XYZ-MV-

RGB set, the K-means only reached three correctly segmented groups up to a tolerance value of 

0.9, dropping down to two groups when evaluated against a tolerance value of 1.0. This means 

there were three output groups with each having at least 90% of the points of some 

corresponding reference group, though only two of the groups contained a full 100% of the 

points in the reference groups. The Mean Shift again had at least one bandwidth that found all of 

the 6 reference groups perfectly. With only two characteristics included, the Mean Shift was still 

able to maintain a high performance, while the K-means remained lower. However, when one of 

the two variable sets was the spatial relationship MV variable set, even the Mean Shift dropped 

from having 6 correctly segmented groups through the 0.9 tolerance value down to zero correctly 

segmented groups at the 1.0 tolerance. The K-means had even less success and only had two 

correctly segmented groups up to the 0.6 tolerance, meaning the two groups had at least 60% of 

their points in common with some reference groups. These examples show the Mean Shift 

clustering performing much better than the K-means, even when the K-means was set to find the 

exact number of reference groups in the noise-free data. 

 

Used in computer science, computer vision, and machine learning disciplines, the conventional 

segmentation performance plots offer some level of quantitative and visual insight into the 

character of the resulting output segments. With many experiments to compare, however, the 
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first extension of the accuracy assessment was introduced, the area under the curve. Since the 

Mean Shift included 30 bandwidths for each variable set in each experiment, both the Max. AUC 

and the Avg. AUC were calculated, as described in the Methods section. The K-means AUC 

results and the Mean Shift Max. AUC results are shown in Table 12 as a ranked graph with the 

highest performing variable sets on top. 

 
K-means 

 
Mean Shift 

AUC Variable Set 
 

Max AUC Variable Set 
1.00 RGB 

 
1.00 XYZ 

1.00 LUV 
 

1.00 RGB 
1.00 LAB 

 
1.00 LUV 

1.00 XYZ-LAB 
 

1.00 LAB 
1.00 XYZ-MV-LAB 

 
1.00 XYZ-RGB 

0.50 XYZ-RGB 
 

1.00 XYZ-LUV 
0.50 XYZ-LUV 

 
1.00 XYZ-LAB 

0.48 XYZ-MV-RGB 
 

1.00 XYZ-MV-RGB 
0.47 XYZ-MV-LUV 

 
1.00 XYZ-MV-LUV 

0.10 XYZ-MV 
 

1.00 XYZ-MV-LAB 
0.10 MV-LUV 

 
0.90 XYZ-MV 

0.03 MV-LAB 
 

0.02 MV-RGB 
0.00 XYZ 

 
0.00 MV 

0.00 MV 
 

0.00 MV-LUV 
0.00 MV-RGB 

 
0.00 MV-LAB 

 
Table 12. K-means and Mean Shift AUC rankings. 

 

 
This table shows that, for many variable sets, some bandwidth in Mean Shift resulted in a higher 

Max. AUC than the AUC of the K-means method. In fact, with this noise-free data set, the Mean 

Shift had a perfect Max. AUC value of 1.0 for most of the variable sets and their combinations, 

meaning that through the tolerance value of 1.0, 100% of the points were correctly segmented 

into 6 groups matching the reference groups. The only drop off in Mean Shift performance was 

where the MV variable set was alone or in small combinations. The K-means seemed to do well 
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with some variable set combinations with color included, especially the LAB color space values. 

Overall, the common K-means clustering results rarely matched the performance of the highest 

performing Mean Shift bandwidths.  

 

Affecting the results was a difference in the way each clustering process identifies clusters. With 

the K-means, the initial cluster seed locations are random and eventually move to the highest 

density of nearby points. With the Mean Shift, the bandwidth of evaluation is placed on every 

point, moving to the local center of density. The Mean Shift may be a more comprehensive 

search and offers the flexibility of finding any number of modes, or cluster centers. 

 

For a visual evaluation, several 3D perspective plots from the K-means are shown in Figure 14; 

the Mean Shift plots are discussed in later sections. 

 

 

Figure 14. K-means 3D perspective plots. 

RGB XYZ-RGB 

MV XYZ 
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These plots offered an opportunity to learn more about the characteristics of the clustering 

results. Each variable set had particular properties and therefore particular tendencies in the 

clustering process. For instance, the XYZ variable set was intended to provide a measure of 

proximity, with similar valued points clustered. The expected output was locally contiguous 

groups of points. This was viewed as essential to separating different sides of the cube, or similar 

objects in a landscape separated by some distance. The 3D perspective plot for the XYZ variable 

set shows an unexpected K-means clustering result. The points from three sides, near corners of 

the cube, were grouped together. This is a reasonable outcome: points near a corner on one side 

are closer to points on a second side than they are to other points on the same side. 

 

The 3D perspective plot for the MV variable set also revealed a partially unexpected result. The 

MV variable was intended to provide a value of each point's relationship to the neighboring 

points in an unstructured 3D space. As described in the Conceptual Framework, by averaging the 

vector values from a point to its neighbors, the Mean Vector was shown to have different values 

in a planar region than near an edge or in an area of high variability. The formula and values did 

follow that presumption, MV values of points representing planar regions had different values 

than those near edges. It was assumed that the XYZ variable set would help to separate planar 

regions with different locations or orientations. It was also expected that points near edges would 

have different values. However, it was not expected to majorly degrade planar regions near the 

edges. To notable effects arose. First, the values for all planar regions were so similar that they 

were all clustered together. Second, the number of points representing sides were almost always 

reduced (and effectively degraded) because the edges and corner points were separated into other 
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clusters. Though this may be helpful for applications interested in finding planar regions and 

edges, it was not perfectly matched  for finding the solely planar regions. The 3D perspective 

plot for the 6 K-means groups clearly shows the edges as separated into different groups from the 

sides. Additionally, since only 6 groups were specified, the edges along the back side were not 

separated from the group of all planar regions. If 7 groups had been specified, the edges may 

have been separated from the 6 planar regions. Though the MV may be helpful for finding edges, 

for this thesis the MV generally degraded the output groups by reducing the number of points per 

side. 

 

The 3D perspective plot for the K-means clustering of the RGB variable set shows a perfect 

segmentation. All 6 reference groups were perfectly segmented based upon the RGB values of 0, 

0.5, 1 for red, green, and blue as specified in the Methods section. Though this was very helpful 

for clustering, it is important to note that this synthetic data structure greatly influenced the 

outcome. The small number of unique RGB values were very separable compared to the uniform 

distribution of more XYZ values (0-9) or the highly variable and less separable values of the 

MV, LUV, and LAB variable sets. Thus, the distribution of the RGB values and the structure of 

the initial synthetic data set appeared to boost the segmentation results of the variable sets 

including the RGB values.  

 

The XYZ-RGB 3D perspective plot shows strong RGB influence. Recalling from the K-means 

segmentation performance curve and the AUC value, the XYZ-RGB variable set had three 

correctly segmented groups throughout all of the tolerance values. The 3D plot shows three sides 

perfectly grouped (left, front, and right), two sides as one group (top and bottom), and one side 



 

76 
 

split in half (back). The XYZ component may have influenced the splitting of the back side, 

though it did not create groups near corners as did the individual variable set. The RGB portion 

held together three sides individually and two sides as a group (the top and bottom were both 

levels of green, 1.0 and 0.5, respectively.) This begins to show that the synthetic experiments 

were strongly influenced by the pre-defined structure of the RGB variable set. 

 

The K-means has been shown to have lower performance than the Mean Shift using several 

assessment aids. However, the K-means clustering was beneficial as it provided a baseline 

comparison of results, as well as insight into the processes and parameters of the two techniques. 

The visual evaluation helped to further understanding of the segmentation performance curves 

and the AUC rankings. It also offered an opportunity to discuss some of the key issues involving 

the synthetic data and XYZ, MV, and RGB variable sets. The remaining results and discussion 

concern the higher performing Mean Shift clustering method, as it shows relatively higher 

potential for being able to identify homogeneous regions in the landscape and group observations 

together by spatial location, spatial relationship, and thematic attributes. 

4.4 Spatial Resolution 

The results for the low-resolution (2 x 2 points per side) and the high resolution (44 x 44 points 

per side) data sets will now be presented and compared to the noise-free data set. Starting with 

the low resolution data, the selected segmentation performance curves and Max. AUC rankings, 

Figure 15 and Table 13, respectively, show that there was a maximum of one correctly 

segmented group throughout all of the variable sets and Mean Shift bandwidths. The MV again 

degraded the results, especially considering the 8 nearest neighbors for the calculation used 

points from 3 sides. This shows that if the MV variable were used to identify edges, the number 
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of neighbors and the relationship between distances to planar and non-planar neighbors is an 

important consideration. 

 

 
 

Figure 15. Low resolution segmentation performance curves. 
 
 

 

 
Table 13. Low resolution Max. AUC rankings. 

 

For the high resolution data set, the segmentation performance curves shown in Figure 16 are 

examples that the variable sets yielded between zero and 6 correctly segmented output groups. 

Apparently, the Mean Shift bandwidths reached certain distance thresholds that abruptly changed 

Max AUC Variable set 
0.17 XYZ 
0.17 MV 
0.17 RGB 
0.17 XYZ-MV 
0.17 XYZ-RGB 
0.17 XYZ-LUV 
0.17 XYZ-LAB 
0.17 MV-RGB 
0.17 MV-LUV 
0.17 MV-LAB 
0.17 XYZ-MV-RGB 
0.17 XYZ-MV-LUV 
0.17 XYZ-MV-LAB 
0.00 LUV 
0.00 LAB 
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the performance, but were stable through all tolerance values. The performance held steady 

through all tolerance values for every variable set, except the XYZ variable set. 

 

 

 

Figure 16. High resolution segmentation performance curves. 
 

This evaluation of resolution made use of multiple bandwidths for the Mean Shift clustering. 

Though the Max. AUC may have been achieved for at least one bandwidth, it was difficult to 

determine how many of the 30 overlaid bandwidths reached the maximum. For example, the 

XYZ, XYZ-LAB, and XYZ-RGB variable sets in Figure 16 may have all reached the maximum 

at some point, but it was more important to know the degree to which each variable set's highest 

performance persisted through all of the bandwidths evaluated. To address this aim, the Avg. 

AUC (averaged across all bandwidths) for each variable set was calculated. This quantitative 
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metric provided a number with which to rank a variable sets' overall performance across all of 

the bandwidths evaluated. In summary, the Max. AUC can show which variable sets had the 

highest performing bandwidths and the Avg. AUC can show which variable sets performed well 

over all of the bandwidths. The complementary high resolution Max. AUC and Avg. AUC 

rankings are shown in Table 14. 

 

Max AUC Variable Set 
1.00 XYZ 
1.00 RGB 
1.00 LUV 
1.00 LAB 
1.00 XYZ-RGB 
1.00 XYZ-LUV 
1.00 XYZ-LAB 
0.00 MV 
0.00 XYZ-MV 
0.00 MV-RGB 
0.00 MV-LUV 
0.00 MV-LAB 
0.00 XYZ-MV-RGB 
0.00 XYZ-MV-LUV 
0.00 XYZ-MV-LAB 

 

Avg AUC Variable Set 
0.30 XYZ-RGB 
0.27 XYZ-LUV 
0.27 XYZ-LAB 
0.20 RGB 
0.20 LUV 
0.19 LAB 
0.19 XYZ 
0.00 MV 
0.00 XYZ-MV 
0.00 MV-RGB 
0.00 MV-LUV 
0.00 MV-LAB 
0.00 XYZ-MV-RGB 
0.00 XYZ-MV-LUV 
0.00 XYZ-MV-LAB 

Table 14: High resolution Max. AUC and Avg. AUC rankings. 
 

Beyond the Max. AUC and Avg. AUC rankings, a second innovation uses the segmentation 

performance curve information to create new segmentation surface plots which illustrate the 

performance over every bandwidth. These plots provided an additional means of evaluating the 

quantitative measures of segmentation performance over all of the bandwidths using a single 

visualization. As described in the Methods section, the x-axis represents the tolerance values (0.5 

to 1.0), the y-axis represents each bandwidth (0.0 to 2.9 standard deviation units), and all 

locations in the graph contain color patches indicating the number of correctly segmented groups 
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(0 to 6, from white to black, respectively.) Examples are shown Figure 17. 

 

Figure 17. High resolution segmentation surface plots. 
 

The new segmentation surface plots readily display the number of correctly segmented output 

groups in shades of gray from zero (white) to 6 (black). The XYZ-RGB variable set, with an 

Avg. AUC of 0.30, has many bandwidths that have the ideal 6 groups correctly segmented in 

bandwidths ranging from 0.3 to 1.1 standard deviation units. The XYZ-LAB had an equal Max. 

AUC of 6 groups, but a slightly lower Avg. AUC of 0.27. This was apparently due to fewer 

correctly segmented groups (in levels of gray) in the 1.0 and 1.1 bandwidths; lower bandwidths 

to 0.3 performed as well as the XYZ-RGB. The segmentation surface plot for the XYZ set shows 

that its performance peaked at 6 groups, but dropped off at varying tolerance levels for some 

bandwidths. This was a curious effect, that performance would increase, then decrease, and 

increase again before finally degrading with higher bandwidths. To investigate which points 

were being grouped together for the high resolution data set, the 3D perspective plots are shown 

in Figure 18.  
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Figure 18. High resolution 3D perspective plots. 
 

 
The 3D perspective plots revealed several unexpected results for the XYZ variable set. The 0.1 

bandwidth (whose plot is a closer view and not at the same scale as the others) was apparently 

the lower threshold for generating a corner grouping as previously noted for the XYZ variable 

set However, only one corner was created; why other corners were not found was unclear. At the 

0.3 bandwidth, rectangular regions on each side were grouped, though it was still not enough 

points to meet the majority criteria for correctly segmented groups. At the 0.5 bandwidth, the 

circular edges reappeared in the spatial pattern, at least indicating that some points were being 

clustered at some distance from the center of each side. At bandwidth 0.6, the high resolution 

XYZ variable set clustered 6 correctly segmented groups in a circular pattern from the center of 

each side; this persisted through the 0.8 tolerance value as shown in the segmentation surface 

plot. At a larger bandwidth of 0.7, the circular shape reduced in size and the number of clustered 

points decreased, with the 6 correctly segmented groups having over 70% of the points in the 

reference group, a drop from the previous bandwidth's percentage of over 80%. The only 

Bandwidth=0.1 Bandwidth=0.3 Bandwidth=0.5 Bandwidth=0.6 

Bandwidth=0.7 Bandwidth=0.9 Bandwidth=1.0 Bandwidth=1.3 
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explanation I can provide for this is the possibility that the bandwidth is now just large enough to 

create competition between different modes that the Mean Shift cannot resolve. As the 

bandwidth grows to 0.9, the circle grows again and maintains 6 correctly segmented groups 

through a tolerance value of 0.8, or over 80% of the reference points. Eventually, between the 

1.0 and 1.2 standard deviation bandwidths, the variable set reaches a perfectly segmented cube; 

each planar side has 100% of the points included in an output group. This is shown in the both 

the 3D perspective plot (Figure 18) and the segmentation surface plot (Figure 17). Finally, at the 

bandwidths of 1.3 and higher, the points are contained in one single group. This under-

segmentation is a common result for large bandwidths in all variable sets. This evaluation 

demonstrates the complementary value of the new segmentation surface plots and the 3D 

perspective plots. 

 

 To compare the different resolutions (point spacings of 0.2, 1.0, and 3.0), the visualizations 

offered great potential for revealing the character of the clustering results. However, to make a 

final determination of the importance of various levels of resolution, I made use of the Avg. 

AUC metrics, shown in Table 15. It was a convenient way to quantitatively rank the variable sets 

and reach conclusions about the different resolutions. The rankings show that the lower 

resolution was problematic and there were too few points to find locally homogeneous groups. 

The higher resolution provided numerous points and intriguing results. However, it did not 

appear necessary to have a very high density of data to correctly segment the points. The 

moderate spacing of 1.0 units actually had an equal or higher Avg. AUC for most variable sets; it 

performed much better with the XYZ variable set and even had some success with the MV 

variable set. 
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Spacing 3.0 
 

Spacing 1.0 
 

Spacing 0.2 
Avg AUC Variable set 

 
Avg AUC Variable set 

 
Avg AUC Variable set 

0.06 XYZ 
 

0.31 XYZ-RGB 
 

0.30 XYZ-RGB 
0.06 MV 

 
0.28 XYZ-LUV 

 
0.27 XYZ-LUV 

0.06 XYZ-RGB 
 

0.28 XYZ 
 

0.27 XYZ-LAB 
0.06 MV-RGB 

 
0.27 XYZ-LAB 

 
0.20 RGB 

0.06 MV-LUV 
 

0.20 RGB 
 

0.20 LUV 
0.06 MV-LAB 

 
0.20 LUV 

 
0.19 LAB 

0.06 XYZ-LUV 
 

0.19 LAB 
 

0.19 XYZ 
0.06 XYZ-LAB 

 
0.15 XYZ-MV-LUV 

 
0.00 MV 

0.05 XYZ-MV-RGB 
 

0.13 XYZ-MV-RGB 
 

0.00 XYZ-MV 
0.05 XYZ-MV-LUV 

 
0.13 XYZ-MV-LAB 

 
0.00 MV-RGB 

0.04 XYZ-MV-LAB 
 

0.03 XYZ-MV 
 

0.00 MV-LUV 
0.04 XYZ-MV 

 
0.00 MV-RGB 

 
0.00 MV-LAB 

0.03 RGB 
 

0.00 MV 
 

0.00 XYZ-MV-RGB 
0.00 LUV 

 
0.00 MV-LUV 

 
0.00 XYZ-MV-LUV 

0.00 LAB 
 

0.00 MV-LAB 
 

0.00 XYZ-MV-LAB 
 

Table 15. Comparison of various resolutions' Avg. AUC. 
 

4.5 Noise Evaluation 

The experiments up to this point only made use of noise-free data sets; equally spaced spatial 

patterns and perfectly selected attribute information. In practice, any investigation is subject to 

error. The source of error may be in the experimental design, data collection, processing steps, or 

analyses. Considering 3D spatial point data, observational equipment (e.g., range scanners, GPS 

receivers) or complex environmental variability (e.g., leaves on vegetation, varying temperature 

or moisture) could potentially lead to noisy data sets with some level of uncertainty as to the 

location and boundaries of landscape features. Before working with real world data, I created 19 

sets of data for 5 levels of noise in order to gain a more thorough understanding of the variable 

sets and Mean Shift clustering results. The synthetic experiments leveraged computational tools, 
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generated data samples with increasing levels of noise, and  produced the most reliable results of 

this thesis through statistical analyses and hypothesis testing. 

 

The Methods section provided details of the data set production. As a visual reference, the 

examples below show in Figure 19 the spatial variability of the noise-free data and sets with 5 

levels of increasing noise. The (non-noisy) colors represent the 6 reference groups (the plots are 

at different scales to show outliers.) 

 

 

Figure 19. Examples of adding noise to the spatial data. 
 

Only one noise-free data set was created and 19 data sets of each level of noise were created. The 

noise, randomly selected from a Gaussian distribution having a mean of zero and variance 

ranging from 0.02 to 0.10 in increments of 0.02 was added to the spatial (XYZ) and thematic 

(RGB) values. Next, other derived values (MV, LUV, LAB) were  processed and all variable sets 

were standardized as with the noise-free data set. The 19 sets of noisy data provided a sufficient 

number of random samples to perform statistical analyses. The accuracy assessment was 

performed on all the data sets in this experiment to find the number of correctly segmented 

groups at each bandwidth for each variable set. Then, the Avg. AUC values were calculated as 

measures of overall performance of each variable set; this value was used for all statistical 

analyses. 

 

Noise=0.00 Noise=0.02 Noise=0.04 Noise=0.06 Noise=0.08 Noise=0.10 
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4.5.1 

The first aim was to determine what level of noise produced significantly lower results compared 

to the noise-free data set. A one-tailed, one-sample t-test was performed for each variable set and 

each level of noise, comparing the mean of the 19 samples of each level of noise to the noise-free 

value. A rejection threshold alpha value of α = 0.05 was employed. The hypotheses are presented 

below and the Mean Avg. AUC and p-values are shown in 

One-sample t-tests for All Variable Sets at All Levels of Noise 

Table 16. 

 

Ho:   the mean of the 19 noisy Avg. AUC results for each variable set 

 = the noise-free Avg. AUC for each variable set 

Ha:   the mean of the 19 noisy Avg. AUC results for each variable set  

 ≤  the noise-free Avg. AUC for each variable set 
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Table 16. Mean Avg. AUC and P-values for one-tailed, one-sample t-tests. 
 

Based on the fact that many noise-free variable sets produced perfect segmentations (6 correctly-

segmented groups through tolerance levels ranging from 0.5 to 1.0), I expected a small amount 

of noise would not significantly degrade the performance. However, the p-values from the one-

sample t-test showed that even a small amount of noise produced significantly lower results than 

the noise-free data. Because the noisy samples for each variable set and level of noise had small 

variability, they produced very small margins of error (~ ±0.003). This provided assurance that 

Noise-free With-noise
0.00 0.02 0.04 0.06 0.08 0.10

XYZ Mean Avg. AUC 0.275 0.243 0.174 0.101 0.061 0.041
P-value <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 ***

MV Mean Avg. AUC 0.000 0.000 0.000 0.000 0.000 0.000
P-value - - - - -

RGB Mean Avg. AUC 0.200 0.206 0.198 0.182 0.165 0.153
P-value - 0.065 <<0.001 *** <<0.001 *** <<0.001 ***

LUV Mean Avg. AUC 0.200 0.134 0.083 0.045 0.030 0.018
P-value <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 ***

LAB Mean Avg. AUC 0.189 0.122 0.077 0.043 0.026 0.017
P-value <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 ***

XYZ-MV Mean Avg. AUC 0.032 0.011 0.009 0.006 0.005 0.005
P-value <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 ***

XYZ-RGB Mean Avg. AUC 0.306 0.304 0.295 0.281 0.264 0.253
P-value 0.159 <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 ***

XYZ-LUV Mean Avg. AUC 0.283 0.266 0.228 0.171 0.125 0.092
P-value <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 ***

XYZ-LAB Mean Avg. AUC 0.272 0.260 0.217 0.186 0.149 0.128
P-value <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 ***

MV-RGB Mean Avg. AUC 0.002 0.008 0.031 0.030 0.019 0.014
P-value 0.999 0.999 0.999 0.999 0.999

MV-LUV Mean Avg. AUC 0.000 0.007 0.008 0.004 0.002 0.001
P-value 0.999 0.999 0.999 0.999 0.977

MV-LAB Mean Avg. AUC 0.000 0.004 0.008 0.004 0.002 0.001
P-value 0.999 0.999 0.999 0.999 0.999

XYZ-MV-RGB Mean Avg. AUC 0.128 0.168 0.164 0.155 0.138 0.126
P-value 0.999 0.999 0.999 0.999 0.133

XYZ-MV-LUV Mean Avg. AUC 0.145 0.154 0.121 0.084 0.050 0.030
P-value 0.999 <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 ***

XYZ-MV-LAB Mean Avg. AUC 0.128 0.137 0.115 0.093 0.068 0.050
P-value 0.998 <<0.001 *** <<0.001 *** <<0.001 *** <<0.001 ***

*** indicates significance at α = 0.001
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the true mean value for each variable set and level of noise was most likely within small 95% 

confidence intervals around the sampled means. 

 

There were a few issues with the tests that require explanation. The 19 RGB data sets with 0.02 

noise yielded the same exact Avg. AUC value. There was no variation in the samples and the t-

test resulted in a null value. In similar fashion, the MV variable set performed poorly in the 

noise-free data and could not perform any worse with noise. The zero values generated a null 

output from the t-test. Most of the other combined variable sets which included the MV set 

actually managed to improve the Avg. AUC slightly for low levels of noise. This was probably 

due to the noise actually reducing the negative effect of the Mean Vector, allowing the other 

variables (e.g., XYZ, RGB, etc.) to have a positive effect on the performance until high levels of 

noise eventually degraded the entire set. Regardless of any slight improvement, most of the t-

tests with the MV set did not have significantly lower values since they were very low in the 

noise-free set. 

 

Nearly all of the other noisy variable sets performed significantly lower than the noise-free 

values. The only variable sets that were not significantly lower were the XYZ-RGB at the 0.02 

noise level and the RGB at the 0.04 noise level. Both of these variable sets performed very well 

compared to the noise-free sets and likely benefitted from the strong separability of the RGB 

values, as previously noted. 

4.5.2 

One of the purposes of evaluating which level of noise was not significantly different from the 

noise-free level was to provide a means of obtaining many samples. In practice, a two percent 

Selection of the 0.02 Noise Level for Additional Analyses 
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level of noise could be considered common, whether due to variability in the environment, or 

errors in observations or sensors. Though the 0.02 noise level was often significantly lower for 

many of the variable sets, the 0.02 level of noise was selected as a reasonably low level to 

generate enough randomly sampled synthetic realizations for further statistical analyses. This 

was deemed acceptable because the values of the highly performing RGB variable set indicated a 

performance threshold near the 0.02 level of noise. The RGB values had no variance at the 0.02 

level of noise; reducing the level of noise may result in more variable sets with no variance. 

Increasing the level of noise resulted in more variable sets having significantly lower 

performance. 

4.6 Comparison of Multiple Means with Analysis of Variance (ANOVA) tests 

The objectives of this thesis were to determine the highest performing variable sets, color spaces, 

and which type of variable set was most helpful (spatial location, spatial relationship, or thematic 

attribute.) It was therefore necessary to compare multiple mean values. The One-way ANOVA 

test is suitable for comparing multiple means with different variances and sample sizes. This test 

determines if the means are equal or if any one of them is significantly different. A Post-

ANOVA test is necessary to determine which particular mean values are significantly different. 

The three Post-ANOVA tests I employed were the Dunnett-Tukey-Kramer (DTK) test, the 

Tukey Honestly Significant Differences (HSD) test, and the Least Significant Differences (LSD). 

They are all very closely related and generally find the least significant differences for each 

mean. The DTK and HSD tests result in sets of pairwise comparisons. These two tests had 

similar, though not exactly the same, results. The differences are attributable to the numerous 

adjustments available as extensions to the main test. The LSD had similar results regarding the 

mean, confidence intervals, and the least significant difference values. However, this test simply 
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outputs all of the means, the least significant differences and determines groups of means that are 

not significantly different. Since the LSD output is more clear than the multitude of pairwise 

comparisons, I first show the ANOVA results and the LSD results follow. 

4.6.1 

Continuing investigation as to which variable sets have the highest performance, all of the Avg. 

AUC values from 19 samples (from the 0.02 noise level) of 15 variable sets were used for the 

ANOVA test. A rejection threshold alpha value of α = 0.05 was employed. The hypotheses are 

presented below and the results are shown in 

The ANOVA and Post-ANOVA Tests for All Variable Sets 

Table 17. The p-value shows there is a significantly 

low probability that the means are equal; as such, the null hypothesis is rejected. 

Ho:   the mean of the 19 noisy Avg. AUC results for variable set (1) 

 = the mean of the 19 noisy Avg. AUC results for variable set (2) 

 = ... 

 = the mean of the 19 noisy Avg. AUC results for variable set (15) 

Ha:   not all of the means of the 19 noisy Avg. AUC results for the variables sets were 

equal 

 

Analysis of Variance Table: All Variable Sets
Response: Avg. AUC
              Df  Sum Sq  Mean Sq F value    Pr(>F)
Variable_Set  14 3.09301 0.220929 3889.4 < 2.2e-16 ***
Residuals    270 0.01534 0.000057  

Table 17. ANOVA results for all variable sets. 
 

The Least significant differences Post-ANOVA test followed. A rejection threshold alpha value 

of α = 0.05 was employed. The resulting graph, Figure 20, shows a bar for the mean of all 19 
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samples of each variable set and whiskers for the least significant difference for the mean of each 

variable set. Groups of means are also labeled with letters. Mean values belonging to the same 

group are not significantly different from each other. 

 

Figure 20. Least significant differences results for all variable sets. 
 

Compared to the one-sample, noise-free Avg. AUC ranking, this graph contains a more reliable 

ranking of variable sets because it was based on the mean and variance of 19 samples of a 

realistic value of 2% noise (0.02 variance). As noted previously, the margin of error and 95% 
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confidence intervals were sufficiently small, as well. The whiskers represent the least significant 

difference for each variable set's mean. The letters indicate groups of means that were not 

significantly different from each other; variable sets with a shared letter were not significantly 

different. 

 

The most obvious pattern in the graph is that the MV and two-set combinations with MV 

performed very poorly. The performance of the MV improved only when used in a three-variable 

set combination. However, these are still relatively low compared to the XYZ and color variable 

sets. The MV evidently degrades segmentation performance. This indicates a conceptual 

mismatch between the selected reference groups and the implementation of the spatial 

relationship metric, MV. This metric resulted in different values (and thus different output 

groups) for points near some edges as compared to other edges, corners, and planar regions. This 

may be helpful for some applications. Unfortunately, for this experimental framework, removing 

the edge points from the planar points degraded the percentage of points belonging to groups 

representing sides. 

 

The remaining results for the XYZ and color variable sets also offered an answer for the general 

hypotheses of this thesis: that multiple variable sets enhance the ability to find groups of data as 

compared to single variable sets. With the three-variable set combinations degraded by the MV, 

it was readily apparent that the two-variable set combinations of XYZ and color had significantly 

higher performance than the individual XYZ and color variable sets. Even the poorly performing 

MV variable set had boosted performance when combined with two additional variable sets. So, 

the identification of points representing regions of homogeneity is boosted by the use of 
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additional variable sets. Spatial location and thematic attributes help to increase the number of 

points correctly segmented as sides, or components, of the more complex 3D cube object. The 

least significant differences graph of all variable sets provided  clear and encouraging results of 

higher performance with additional variable sets. 

 
 

4.6.2 

To identify the best performing color space, all of the Avg. AUC values from 19 samples (from 

the 0.02 noise level) of the 3 individual color space variable sets were used for the ANOVA test. 

A rejection threshold alpha value of α = 0.05 was employed. The hypotheses are presented below 

and results are shown in 

The ANOVA and Post-ANOVA Tests for Color Variable Sets 

Table 18. The p-value shows there is a significantly low probability that 

the means are equal; as such, the null hypothesis is rejected. 

Ho:   the mean of 19 noisy Avg. AUC results for the RGB variable set 

 = the mean of 19 noisy Avg. AUC results for the LUV variable set 

 = the mean of 19 noisy Avg. AUC results for the LAB variable set 

Ha:   not all of the means of the 19 noisy Avg. AUC results for the RGB, LUV, and 

LAB variables sets were equal 

Analysis of Variance Table: Color Variable Sets
Response: Avg. AUC
             Df   Sum Sq  Mean Sq F value    Pr(>F)
Variable_Set  2 0.07741 0.038704 817.54 < 2.2e-16 ***
Residuals   54 0.00256 0.000047  

Table 18. ANOVA results for color variable sets. 
 

The least significant differences Post-ANOVA test followed. A rejection threshold alpha value 

of α = 0.05 was employed. The resulting graph in Figure 21 shows a bar for the mean of all 19 
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samples of each color variable set and whiskers for the least significant difference for each group 

mean. Groups of means are also labeled with letters. Mean values belonging to the same letter 

group are not significantly different from each other. 

 

Figure 21. Least significant differences results for color variable sets. 
 

First, it is important to note that the RGB variable set did not have least significant distances 

because the 0.02 noise samples for RGB all had the same Avg. AUC value; there was no 

variance. The 19 RGB samples, therefore, had no margin of error. As the test results show, the 

RGB variable set had a significantly higher performance than the LUV, and LAB variable sets. 
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This was most likely related to the construction of the synthetic data set. The RGB values were 

much more separable and able to cluster much better than the LUV or LAB sets. For example, 

the color space and standardized values for both full intensity red and blue are shown in Table 

19. The range and variance for the difference of the standardized RGB, LUV, and LAB values 

for red and blue are also shown. In the example, the RGB values had a much larger range and 

variance providing for highly separable clusters compared to the LUV and LAB values. The 

design of the synthetic data set provided values that helped the RGB variable set cluster more 

successfully. To overcome this, a wider variety of different colors should have been used. This 

would also more readily parallel the potential variation in thematic attributes in a real world 

investigation. Though the basic data used here were meant to be a simplistic representation in a 

test environment, it brought about useful insights relating to the clustering process, color variable 

sets, and thematic data values. 

 

Variable Set Color Space Values Standardized Values Range Variance

RGB (red) 1.00 0.00 0.00 1.96 -0.65 -0.65
RGB (blue) 0.00 0.00 1.00 -0.65 -0.65 1.96
Difference 1.00 0.00 -1.00 2.62 0.00 -2.62 5.23 6.84

LUV (red) 53.24 175.01 37.76 0.14 1.58 0.37
LUV (blue) 32.30 -9.40 -130.34 -0.81 -0.34 -1.56
Difference 20.94 184.42 168.09 0.95 1.93 1.93 0.98 0.32

LAB (red) 53.24 80.09 67.20 0.14 0.82 0.70
LAB (blue) 32.30 79.19 -107.86 -0.81 0.81 -1.54
Difference 20.94 0.91 175.06 0.95 0.01 2.24 2.22 1.25  

 
Table 19. Color space value examples favoring clustering of the RGB variable set. 
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4.6.3 

Determining the highest performing variable type is also a research question in this thesis. 

Spatial location, spatial relationship, and thematic attributes are represented in this test by XYZ, 

MV, and RGB, respectively. RGB was chosen here because it was the highest performing color 

space, even though the data were created in a fashion that increased the possibility of RGB 

clustering successfully. Also, at this point in the evaluation, the MV variable set was expected to 

reduce the number of correctly segmented groups, though these statistical tests offer a 

confirmatory test. All of the Avg. AUC values from 19 samples (from the 0.02 noise level) of the 

3 selected variable types were used for the ANOVA test. A rejection threshold alpha value of α = 

0.05 was employed. The hypotheses are presented below and the results are shown in 

The ANOVA and Post-ANOVA Tests for Variable Types 

Table 20. 

The p-value shows there is a significantly low probability that the means are equal; as such, the 

null hypothesis is rejected. 

Ho:   the mean of 19 noisy Avg. AUC results for the XYZ variable set 

 = the mean of 19 noisy Avg. AUC results for the MV variable set 

 = the mean of 19 noisy Avg. AUC results for the RGB variable set 

Ha:   not all of the means of the 19 noisy Avg. AUC results for the XYZ, MV, and 

RGB variables sets were equal 

Analysis of Variance Table: Variable Types
Response: Avg. AUC
            Df Sum Sq Mean Sq F value    Pr(>F)
Variable_Set  5 1.9979 0.39958 45.006 < 2.2e-16 ***
Residuals  393 3.4892 0.00888  

Table 20. ANOVA results for variable types. 
 

The Least significant differences Post-ANOVA test followed. A rejection threshold alpha value 

of α = 0.05 was employed. The resulting graph, Figure 22, shows a bar for the mean of all 19 
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samples of each variable type and whiskers for the least significant difference of the group mean. 

Groups of means are also labeled with letters. Mean values belonging to the same letter group 

are not significantly different from each other. 

 

Figure 22. Least significant differences results for variable types. 
 

After looking at the previous tests of all variable sets and selecting the highest performing color 

variable set, RGB, this test was aimed at finding the most beneficial type of variable set: spatial 

location (XYZ), spatial relationship (MV), or thematic attribute (RGB). Already noting the 
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effects of MV, it was easy to deduce that performance was much higher without the MV and 

much lower with the MV. As for the XYZ and RGB variable sets, a higher mean was found with 

the XYZ, though it was not significantly higher than with the RGB. This is indicated by both 

"With XYZ" and "With RGB" belonging to the same group of means, "B". These two collections 

performed significantly better than without either of the XYZ or RGB sets, which were in a 

group of lower means, "C". This indicates that using the spatial and thematic variable sets 

improved segmentation performance in the experiments. The process of grouping points 

representing sides, or parts of the whole cube, benefitted from having both the XYZ and RGB 

data included. 

4.7 Alternative Color Configuration 

The alternative color configuration was intended to address the question of identifying regions 

having similar spatial location and relationship and differing in the values of thematic attributes. 

The previous noise evaluation did alter colors as well as spatial properties, though it was meant 

to impose increasing levels of variability in the data. The alternative color configuration used the 

noise-free spatial values and only altered the colors per side. Instead of one color per each side, 

different colors were applied to each half of a side. The initial red, green, and blue color 

combinations were used along with new combinations as noted in the Methods section. Adjacent 

sides, across edges of the cube, had either the same or different colors to test the clustering 

ability when encountering edges. The accuracy assessment tested the results for 12 reference 

groups containing 32 points per group. The segmentation performance curves only showed a few 

instances when the clustering produced one correctly segmented group which lasted through a 

tolerance value of 0.7, at the most. Two examples are shown in Figure 23 with the only two 

resulting patterns. 
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Figure 23. Alternative color configuration segmentation performance curves. 
 

The variable set combination of XYZ and each color had the best results as shown on the left. 

Adding the MV to the XYZ and color variable sets again degraded the performance.  

Interestingly, none of the color variable sets correctly segmented groups individually. This 

suggested that when new color combinations were used (beyond solely red, green, or blue), the 

color variable sets did not have any success. The Max. AUC and Avg. AUC rankings, in Table 

21 below, show the level of performance for the variable sets in the alternative color 

configuration.  
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Max AUC 12 Reference Groups (Alt. Color) Avg AUC 12 Reference Groups (Alt. Color)
0.08 XYZ-RGB 0.01 XYZ-RGB
0.08 XYZ-LUV 0.01 XYZ-LUV
0.08 XYZ-LAB 0.01 XYZ-LAB
0.02 XYZ-MV 0.00 XYZ-MV-RGB
0.02 XYZ-MV-RGB 0.00 XYZ-MV-LUV
0.02 XYZ-MV-LUV 0.00 XYZ-MV-LAB
0.02 XYZ-MV-LAB 0.00 XYZ-MV
0.00 XYZ 0.00 XYZ
0.00 MV 0.00 MV
0.00 RGB 0.00 RGB
0.00 LUV 0.00 LUV
0.00 LAB 0.00 LAB
0.00 MV-RGB 0.00 MV-RGB
0.00 MV-LUV 0.00 MV-LUV
0.00 MV-LAB 0.00 MV-LAB  

Table 21. Alternative color Max. AUC and Avg. AUC. 
 

The 3D perspective plots offer the best insight into the clustering performance with the 

alternative color configuration, shown in Figure 24. 

 

 

     

     

Figure 24. Alternative color configuration 3D perspective plots. 
 

XYZ-RGB 
Bandwidth=0.1 

XYZ-RGB 
Bandwidth=0.3 

MV-RGB 
Bandwidth=0.1 

RGB 
Bandwidth=0.1 
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One of the highest performing variable sets, with only one correctly segmented group, was the 

XYZ-RGB. At a very small bandwidth of 0.1 standard deviation units, only 18 out of 32 points 

in the reference group were clustered together. At the 0.3 bandwidth, the group combined with 

an adjacent group across an edge of the cube. The MV-RGB variable set with a small 0.1 

bandwidth grouped portions of several halves together into two groups. The points near edges 

were excluded, as was also the case for the individual MV variable set. The XYZ variable set 

managed to group three sides into separate groups and three other sides into one group. 

However, since the aim here was to find 12 reference groups, two groups per side, this result was 

not correctly segmented. The influence of thematic information was readily apparent with the 

RGB variable set. Halves of sides were in separate groups, since they had different colors. 

However, some halves on different sides were grouped together and not correctly segmented per 

the assumption of 12 reference groups. The individual XYZ and RGB variable sets exhibited 

some expected tendencies. The XYZ did group many points that were close to each other and the 

RGB and other color spaces grouped similar colors together. Though they clustered well per the 

input data values, they did not find the 12 separate reference groups. This effect supported the 

idea that features with different spatial or thematic attributes could result in correctly segmented 

groups with respect to the input data. However, the combinations of spatial and thematic variable 

sets did not perform as well. One additional observation, however, is that smaller bandwidths 

appeared to work better in the alternative color configuration. This may be due to the smaller 

distances between values of both the spatial and thematic attributes as compared to the other 

experiments with 6 groups. Bandwidths may be sensitive to the range of the variable set values, 

as well as the number and spacing of modes within each variable set (e.g., more sets of colors 

would have more modes for the thematic variable). 
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4.8 LiDAR Case Studies 

The final investigations of this thesis involve data collected from real-world scenes. Terrestrial 

LiDAR scans were collected in two scenes, an Indoor and an Archaeological Site scene. The 

details of both are described in the previous Methods section. All of the same 15 variable set 

combinations were generated and supplemented with 8 new combinations including two new 

variable sets UV and AB (simply the LUV, and LAB without the lightness component). Since 

shadows were a concern,  using color spaces that ignored lightness was expected to allow 

clustering features based upon their chromatic properties without the influence of lightness or 

shadows. As this was an extension from the synthetic data experiments, the same Mean Shift 

clustering methods, number of neighbors, and bandwidths were employed and the same accuracy 

assessment was performed. 

4.8.1 

The first case study, in a progression from the synthetic data, I initially worked with the Indoor 

LiDAR scan which contained spatial and thematic (spectral) data collected from simple 

constructed shapes having contrasting colors. Various objects in the scene had different 

properties. Some were planar, some were cylindrical, and some were spherical. The objects had 

different smoothness and colors. One notable challenge was to reduce the effect that shadows 

and lighting had on the segmentation. Though shadows may be helpful for some applications, it 

was considered beneficial to remove their effects to improve the correct segmentation of objects 

in this scene. 

Indoor Scan 

 

First, the Indoor LiDAR scan was sampled to boost computational efficiency. Then, the scan was 

labeled as 9 groups: 8 reference groups representing objects and one background group. The 8 
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reference objects were the brown box, the red toolbox, the blue pail, the black case, the green 

case, the yellow ball, the blue cup, and the yellow ducks. Figure 25 shows images of the 

unsampled data, the sampled data in RGB color, and the sampled data colored per their reference 

groups.   

 

 
 

Figure 25. Indoor LiDAR scan, sampled data, and labeled reference groups. 
 

After the Mean Shift clustering was complete, the accuracy assessment generated segmentation 

performance curves. Two of these are shown in Figure 26 and are examples of higher performing 

variable sets. The two images both show that 6 of the 9 reference groups were correctly 

segmented through the 0.6 tolerance level, meaning that the 6 groups had between 60-70% of 

their respective reference groups' points. Four output groups had over 80% and three output 

groups had over 90% of their respective reference groups. 

Indoor LiDAR 
(Unsampled) 

Indoor data 
(Sampled) 

Indoor data 
(Reference groups) 
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Figure 26. Indoor LiDAR segmentation performance curve examples. 
 

The Max. AUC and Avg. AUC rankings, shown in Table 22, allow for a performance evaluation 

of all variable sets in relation to each other. The Max. AUC, relating directly to the largest  area 

under the curve for each variable, shows that the alternative color spaces generally produce the 

highest performing results, whether they include the lightness variable or not. The XYZ and MV 

variable set are spread throughout the ranking list, however the XYZ set is evidently associated 

with some of the highest Max. AUC values. On the other hand, the RGB variable set is included 

in the lowest of the Max. AUC values. When all of the bandwidths are averaged for the Avg. 

AUC, a relative measure of performance is generated. The ranking of the Avg. AUC values 

reinforces the fact that the UV, AB, LAB, and LUV variable sets produce higher levels of correct 

segmentation overall. The XYZ variable set follows and generally performs better than the MV 

or RGB variable sets. 
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Table 22. Indoor LiDAR Max. AUC and Avg. AUC values. 
 

The segmentation surface plots allow for a quick evaluation of the performance of all of the 

variable sets throughout all of their Mean Shift bandwidths. Guided in part by the AUC rankings, 

a selection of 6 segmentation surface plots are shown in Figure 27. The UV and AB variable sets 

plots are similar and illustrate their ability to segment throughout a large range of bandwidths. 

Though performing well overall, their peak performance is not as high as the LAB or the XYZ-

LAB and XYZ-LUV combinations. Though these three sets are again similar and show that the 

addition of XYZ slightly degrades the performance at small and large bandwidths. This is 

possibly due to the different real world objects sizes, and therefore different XYZ distances in 

 
Max AUC Variable Set

0.47 LAB       
0.47 XYZ-LUV   
0.47 XYZ-LAB   
0.47 XYZ-MV-LUV
0.47 XYZ-MV-LAB
0.42 LUV       
0.41 AB        
0.39 UV        
0.39 XYZ-AB    
0.35 MV-LUV    
0.33 XYZ-UV    
0.33 MV-LAB    
0.33 XYZ-MV-AB 
0.31 MV-AB     
0.31 XYZ-MV-UV 
0.29 XYZ-MV-RGB
0.28 XYZ-RGB   
0.28 MV-UV     
0.27 RGB       
0.10 XYZ-MV    
0.09 XYZ       
0.08 MV-RGB    
0.00 MV

 
Avg AUC Variable Set

0.28 UV        
0.28 AB        
0.27 LAB       
0.26 LUV       
0.24 XYZ-LUV   
0.23 XYZ-LAB   
0.21 XYZ-UV    
0.20 XYZ-AB    
0.15 XYZ-MV-LUV
0.14 XYZ-MV-LAB
0.13 MV-LUV    
0.11 MV-LAB    
0.11 MV-UV     
0.11 XYZ-MV-UV 
0.11 XYZ-MV-AB 
0.09 MV-AB     
0.09 XYZ-RGB   
0.07 RGB       
0.06 XYZ-MV-RGB
0.03 XYZ       
0.03 MV-RGB    
0.01 XYZ-MV    
0.00 MV  
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the data. The lower performing XYZ-RGB variable set is also shown to illustrate the difference 

between the synthetic data and the real world data. The highly separable distribution of RGB 

values in the synthetic data readily generated clusters and the variable set had much higher 

performance compared to the LUV and LAB color spaces. However, in the real world data, the 

RGB values were less separable. The alternative color spaces evidently had values that were 

much more separable, allowing for improved clustering results that may be in line with the way 

different colors in the landscape are perceived by humans. 

 

Figure 27. Indoor LiDAR segmentation surface plot examples. 
 

The evaluation also involved a subjective visual inspection regarding particular objects 

represented in the source data set and the properties of their variables. Four Mean Shift clustering 

results are shown in Figure 28 as 3D perspective plots for discussion purposes. The plots for the 

MV variable sets were not selected for discussion here because they separated points 

representing edges from the output groups. 
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Figure 28. Indoor LiDAR 3D perspective plot examples. 
 

Smaller Mean Shift bandwidths (~ 0.3) segmented the Indoor scene better than the preferred 

bandwidths in the synthetic data (~ 0.6). This reinforces the notion that the bandwidths may need 

to be selected to fit the distribution of data values and size of the clusters. In fact, the only three 

objects that rarely clustered were the small objects with very few points (the yellow ball, the blue 

cup, and the yellow ducks) as they had an entirely different scale and were relatively under-

sampled in the scan. The XYZ-LUV results illustrate the effect of the spatial location variables. 

Larger regions that exhibited similar thematic (color) characteristics were segmented into 

different groups by the XYZ variable set. This XYZ-LUV set was also sensitive to lightness; 

regions with different lighting or shading were in separate groups, as seen in the upper right 

region of the bookshelves. The XYZ-LAB variable set continued to break up similarly colored 

features, such as the brown wood box at the bottom of the scene. Both of these variable sets 

created many groups for the objects on the shelves. Over-segmentation could be viewed as 

preferable in this application since it is easier to combine groups of data than it is to separate 

XYZ-LUV 
Bandwidth =0.3 

AB 
Bandwidth =0.3 

LAB 
Bandwidth =0.3 

XYZ-LAB 
Bandwidth =0.3 
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groups. The LAB variable set, on the other hand, had less over-segmentation, yet effectively 

generalized the scene. Some of the features, however, were not found at all (the two yellow 

ducks in the center of the shelves, and the yellow ball) and some were combined with larger 

groups (the blue coffee cup toward the upper left.) With this set, the shadow region in the upper 

right was not found, possibly because the shadow was not as influential as in other regions. Of 

particular interest, is the black rectangular case on the left side of the book shelf. It was easily 

segmented as a separate group with the LAB variable set. However, when the lightness variable 

was removed for the AB variable set, the black case was combined with the white background. 

Though the AB variable set did well at removing the effect of shadows, the clustering process 

could not find any difference between black case and white background points for two reasons: 

lightness was not used for clustering and both of these extremes in lightness (black and white) do 

not have much difference in color. In practice, it may be helpful to remove the effect of shadows, 

though one should exercise caution if clustering white and black objects is not desirable. To 

summarize, the XYZ variable set separated the data into local regions, the MV separated edges 

from planar regions, and the thematic (color) attributes did the best at segmenting easily 

recognizable objects in the scene. The inclusion or exclusion of lightness is a potential option for 

refinement of spectral segmentation of a real world scene. 

4.8.2 

The second case study was the Archaeological Site LiDAR scan. The scene, shown in 

Archaeological Site Scan 

Figure 29 

contained nearly flat (not necessarily level) soil in the right foreground, a stone-lined and capped 

water canal running diagonally from the lower left foreground to the upper right of the scene, 

and grassy vegetation toward the left background portion. This scan provided rugged features 

with the stones in the water canal which also had highly variable color values. The grassy 
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vegetation and soil provided relatively flat surfaces, though the blades of grass presented some 

variation. Intuitively, the spectral values help to quickly differentiate three basic features: a patch 

of soil, a constructed canal, and a vegetated area. This type of real world data set inspired this 

line of research since the ability to create aggregated groups from abundant 3D point data, 

separating distinctly different features in a scene, would be helpful, efficient, and revealing. If 

the data collected from the three features in this scene were segmented into separate groups, then 

theoretically the characteristics, variable sets, clustering methods, and parameters may be 

extended to geographic features of larger extents. 

 

First, the Archaeological Site LiDAR scan was sampled for computational efficiency. Then, the 

scan was labeled as 3 groups: the grass, the stone canal, and the soil. Figure 29 shows images of 

the unsampled data, the sampled data in RGB color, and the sampled data colored per their 

reference groups. 
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Figure 29. Archaeological Site LiDAR scan, sampled data, and labeled reference groups. 
 

After the Mean Shift clustering was complete, the accuracy assessment produced segmentation 

performance curves. Four of these are shown in Figure 30 and are examples of higher performing 

variable sets. Three of the four images show that all three of the reference groups were correctly 

segmented through the 0.6 tolerance level, meaning that the three output groups had between 60-

70% of their respective reference groups' points. The XYZ-MV-RGB variable set maintained 

two groups with above 70% of their respective reference groups. 

Archaeological Site LiDAR 
(Unsampled) 

Archaeological Site data 
(Sampled) 

Archaeological Site data 
(Reference groups) 
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Figure 30. Archaeological Site LiDAR segmentation performance curve examples. 
 

The Max. AUC and Avg. AUC rankings, shown in Table 23, show the highest performing 

variable sets for one bandwidth and across all bandwidths, respectively. Variable sets including 

RGB had the highest performing bandwidths, probably due to the high separability of values for 

the green grass. However, the alternative color spaces like AB, UV, and LAB performed well 

overall. The MV did not perform well, except where it was combined with the XYZ set. The 

spatial location XYZ variables may not have performed well over all of the tests,  but were 

included in several of the highest performing bandwidths. 
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Table 23. Archaeological Site LiDAR Max. AUC and Avg. AUC values. 
 

The segmentation surface plots reveal more clearly the characteristics of the previous results. 

The 6 selected images are shown in Figure 31. The top three show that the RGB, the XYZ-RGB, 

and the XYZ-MV-RGB achieved three groups having over 60% of their respective reference 

groups. They achieve the highest performance at a few bandwidths. The bottom three images 

show how persistent some of the variable sets were over all of the bandwidths. The thematic 

variables showed ability to segment the data as previously in the other case study. The difference 

here is that the RGB did well, probably due to the highly separable set of data representing green 

  
Max AUC Variable Set

0.50 RGB       
0.50 XYZ-RGB   
0.50 XYZ-MV-RGB
0.44 LUV       
0.44 XYZ-LUV   
0.44 XYZ-MV-LUV
0.40 LAB       
0.36 XYZ-LAB   
0.36 MV-RGB    
0.34 UV        
0.34 AB        
0.34 XYZ-UV    
0.34 XYZ-AB    
0.34 MV-LUV    
0.34 MV-LAB    
0.34 MV-UV     
0.34 MV-AB     
0.34 XYZ-MV-LAB
0.34 XYZ-MV-UV 
0.34 XYZ-MV-AB 
0.20 XYZ       
0.00 MV        
0.00 XYZ-MV

  
Avg AUC Variable Set

0.32 AB        
0.32 UV        
0.32 LAB       
0.30 RGB       
0.30 LUV       
0.24 XYZ-RGB   
0.22 XYZ-LAB   
0.22 XYZ-AB    
0.22 XYZ-LUV   
0.20 XYZ-UV    
0.14 MV-RGB    
0.14 XYZ-MV-LAB
0.14 XYZ-MV-RGB
0.14 XYZ-MV-LUV
0.14 MV-LAB    
0.14 MV-LUV    
0.14 MV-AB     
0.14 MV-UV     
0.14 XYZ-MV-AB 
0.12 XYZ-MV-UV 
0.02 XYZ       
0.00 MV        
0.00 XYZ-MV
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grass. Finally, when the XYZ variables were combined with color variables, the range of 

effective bandwidths was reduced and the performance for limited bandwidths was increased,  

 

Figure 31. Archaeological Site LiDAR segmentation surface plot examples. 
 

The 3D perspective plots again illustrate which points were grouped together. In Figure 32, there 

are 6 images showing the effects of using different spatial location, spatial relationship, and 

thematic variable sets. The results show segmentation characteristics that were similar to 

previous experiments, though they offered an opportunity to discuss the methods as applied to 

landscape features. 
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Figure 32. Archaeological Site LiDAR 3D perspective plot examples. 
 

First, the XYZ-RGB separated different features into small localized patches. With a relatively 

small bandwidth of 0.2, small groups were created. Since the scene was divided into many 

groups of nearby points having similar thematic attributes, it could be considered over-

segmented. The XYZ-MV-LAB variable set, having a small bandwidth of  0.2, again broke up 

the scene into small groups, though the MV reduced the number of points included in groups 

overall. The UV variable set drastically generalized the scene; the majority of points were in two 

groups. Without the lightness variable, the scene was segmented based upon the two dimensions 

of color. This was effective at separating the green grass from the brownish soil and rocks. With 

XYZ-LUV 
Bandwidth =0.4 

UV 
Bandwidth =0.3 

LUV 
Bandwidth =0.4 

XYZ-RGB 
Bandwidth =0.4 

XYZ-RGB 
Bandwidth =0.2 

XYZ-MV-LAB 
Bandwidth =0.2 
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the lightness included in the LUV variable set, the landscape was generalized into three large 

groups of points. The soil and rocks were mostly separated since the rocks were generally darker. 

However, working with only spectral values, the clustering grouped the lighter tones on top of 

the rocks together with the sandy soil. The XYZ-LUV and XYZ-RGB variable sets demonstrated 

how local proximity was helpful in separating the tops of rocks from the soil. The XYZ 

component did separate the grass into a several groups, though there were fewer due to a larger 

bandwidth of 0.4. Also, upon close inspection of the results, the separate group at the top of the 

grassy area was actually brownish in the original LiDAR scan indicating a small sliver of soil. 

This nuance in the data was identified with the aid of the cartographic generalization process 

implemented with the Mean Shift clustering. Ultimately, both the XYZ-LUV and the XYZ-RGB 

variable sets generalized the scene enough to separate different features in the landscape. Not too 

many groups were created and some could be combined for subsequent processing. The XYZ-

RGB variable set appeared to have a slightly more refined output as it completely separated the 

rocks from the soil. Features were grouped per their spatial and thematic characteristics and the 

complex landscape was simplified. 
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Chapter 5 - CONCLUSIONS 

5.1 Overview 

To conclude this thesis, I address several previously stated propositions. The main topics are 

organized in the following sections: two general hypotheses, five sets of experiments, 

contributions, and future research. 

5.2 Two General Hypotheses 

High level conclusions drawn from my work are related to my two general hypotheses. First, this 

research supports the idea that groups of data representing geographic phenomena in the 

environment can be identified using spatial location, spatial relationship, and thematic 

characteristics with the Mean Shift clustering technique. Second, combinations of variable sets 

enhance the ability to find such phenomena compared to single variable sets.  

5.3 Five Sets of Experiments  

The five sets of experiments listed in the Methods chapter each provided insights to the process 

of aggregating thematically attributed 3D data. The knowledge gained from developing 

controlled experiments with synthetic data guided the successful application of the methods to 

the real-world terrestrial LiDAR data. Notable results are listed in the following five paragraphs. 

 

The first evaluation compared the K-means and Mean Shift clustering methods. It illustrated that 

benefits to using the Mean Shift clustering are that it is more flexible regarding the number of 

output groups and had a higher overall performance. This offered initial evidence for the 

potential success of clustering multivariate geographic data with the Mean Shift technique. 
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The second comparison, regarding spatial resolution, showed that a potentially under-sampled 

low-resolution data set greatly degraded the grouping of points. However, the high-resolution 

data set, with considerably more points, did not improve performance compared to the baseline 

data set. This suggests that only a moderate amount of data (in relation to the bandwidth of 

evaluation) is required to find groups of points representing features in the scene. 

 

The third evaluation studying the effects of noise provided evidence that even a reasonably small 

amount of noise in the data can significantly degrade the segmentation results. A benefit of the 

noise evaluation was that it allowed for the generation of multiple synthetic realizations of the 

data which provided a way to evaluate the performance of different variables through statistical 

testing. The results showed that combinations of variable sets were found to perform higher than 

individual variable sets. In comparing the color variable sets in the synthetic data, the RGB had 

higher performance. However, this was ultimately found to be influenced by the structure of the 

synthetic data, which had higher separability for the RGB set as compared to the LUV and the 

LAB sets. The MV spatial relationship variable set was found to perform poorly with regard to 

the measures of the accuracy assessment, though this variable may provide other benefits for 

separating planar and non-planar regions. The spatial location (XYZ) and thematic (RGB) 

variable sets both showed high performance when included in the synthetic data evaluation. 

 

The  fourth evaluation involved an alternative color configuration in the synthetic data. It 

resulted in spatially disjoint sets of points with similar colors being grouped together This 

indicated that the thematic variable set had a strong influence on the clustering results. Again, the 
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structure of the synthetic thematic data was more separable than either the spatial location or 

spatial relationship. 

 

Finally, the real world case studies of the Indoor and Archaeological Site LiDAR data provided 

the most encouraging results. They demonstrated that the variable sets, clustering techniques, 

and parameters can have success in grouping points representing simple objects and landscape 

features. Supplementing the spatial data with the appropriate thematic information allowed for 

features to be grouped while alleviating the effects of shadows and environmental lighting. 

Including spatial and thematic data improved the cartographic generalization process and 

aggregating real-world point data effectively simplified the scene. This ultimately resulted in a 

higher-level of ontological information about features in the real-world scenes. 

5.4 Contributions 

Relating to my contributions listed in the introduction, I've reached a variety of conclusions. 

Though the unstructured nature of the data, without topological connectivity or relationships, 

presented difficulty, the 3D vector point data structure was a good match for the Mean Shift 

clustering technique. This is especially so considering multiple thematic attributes can be 

associated with the spatial locations.. The Mean Vector variable, a variable derived from local 

points in a spatial neighborhood provided insufficient information to fully represent 

neighborhood relationships. This variable only managed to help group all points representing 

planar regions together, with edges, corners and areas of high variability each grouped 

separately. It is noteworthy to mention that, although the Mean Vector degraded results for this 

accuracy assessment, it also shows potential for other applications. This thesis was concerned 

with finding points representing homogeneous regions. If, on the other hand, an aim is to find 
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edges, corners, or areas of high variability in contrast to planar regions, then the Mean Vector 

show potential. It could be used in edge-based segmentation processes, possibly by finding sets 

of points that could be used to generate vectors representing the edges of homogeneous regions. 

 

The evaluation of color spaces

 

 provided two main insights. First, this common type of thematic 

attribute greatly aided the grouping of points and helped separate features in close proximity with 

similar Mean Vector values. Second, the LUV and LAB variable sets both allowed lightness to 

be removed and showed success in alleviating the degrading effects of shadows and 

environmental lighting in the process of segmenting real-world data. However, an important note 

is that when the segmentation used only the UV and AB color variables for handling shadows, 

white and black features were indistinguishable as they vary primarily in lightness. Generally, 

the LUV and LAB color spaces can help to separate colors into separate clusters. However, the 

RGB variable set effectively segmented the Archaeological Site LiDAR scan since the grass was 

particularly greener than the rest of the scene. 

The Mean Shift clustering technique provided a flexible and generally successful method for 

clustering similar points in a multi-variate data set. This technique, used often in the discipline of 

Computer Vision, showed potential for segmenting real-world geographic data having three 

spatial dimensions and thematic attributes. A general guideline regarding the Mean Shift process 

is that the bandwidth distance of evaluation should be carefully selected to find different scales 

of features. This will guide the process in finding different sizes of clusters in variable space. If 

smaller bandwidths are used, smaller clusters may be found as the bandwidth will not bridge a 
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large gap between clusters. If bigger bandwidths are used, the results will eventually show one 

large, under-segmented, cluster. 

 

The segmentation performance accuracy assessment

 

 included elements from traditional 

classification assessments and image analysis disciplines. These elements had previously been 

applied to range image segmentation research and, as such, were suitable for the terrestrial 

LiDAR data in this investigation. They could be very beneficial for geographic data analyses in 

general. 

My extensions of the previous accuracy assessment framework were key to fully evaluating the 

numerous variables, methods, and parameters. The area under the curve indices condensed the 

information from the segmentation performance curves. The Max. AUC values provided a single 

metric for determining the highest performing Mean Shift bandwidths. A second metric, the Avg. 

AUC, provided a measure of a variable set's persistence in performance throughout all 

bandwidths. The Avg. AUC also provided an overall performance measure for the statistical 

analyses, helping to identify the most effective variable set combinations. The segmentation 

performance surface plots

5.5 Contributions to Theory 

 were complementary to the AUC metrics and particularly helpful for 

understanding the various levels of performance for each variable set through all of the Mean 

Shift bandwidths. Finally, the 3D perspective plots, common for visual evaluation, revealed the 

which points were grouped in relation to the features they represent. 

As a contribution to theory, I combined elements of two geographical concepts, cartographic 

generalization and geographic ontology, formalizing a particular process and method of 
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geographic representation. Two specific theories were discussed, the cartographic generalization 

of McMaster and Shea (1992), and an ontological hierarchy from Couclelis (2009). These two 

theories, though they came from separate threads of geographic inquiry, are very parallel in 

relation to this investigation. Both are related to geographic representation of features in the 

landscape and both present processes that similarly combine information to better understand 

those features. The generalization process of aggregation was a transformation that grouped 3D 

points into representations of areal regions having similar spatial and thematic characteristics 

(McMaster & Shea, 1992). The ontological hierarchy also developed simple objects from 

spatially connected, homogeneous points with similar (thematic) observables (Couclelis, 2009). 

These two theories ease interpretation of complex data sets by similarly developing groups of 

points that represent recognizable features in the landscape. 

 

To identify features in the landscape, a well-defined ontology is necessary. Certain properties 

and relationships must be understood, clarified, and explicitly modeled with the data. An 

example from this thesis that could be improved is the interaction between the Mean Vector and 

the accuracy assessment. While the Mean Vector may have fulfilled the purpose of separating 

planar regions from non-planar regions and is potentially helpful for other applications, it 

reduced the number of points per region and reduced the performance with respect to the 

accuracy assessment. 

 

Another example of refining an ontological model in this thesis relates to the relationship 

between the distribution of spatial or thematic data values, the level of precision, and the Mean 

Shift bandwidth of evaluations. The bandwidth distance should be selected to guide the 
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clustering process in finding certain sizes of clusters. For instance, small features may be found 

with small bandwidths. This could apply to either the spatial or thematic data. This also relates to 

the level of precision of data collection. The ability to find features is dependent upon the 

number of data points collected. If more data points were used to represent the blue cup, yellow 

ball, or yellow ducks in the Indoor data set, they would have composed a sufficiently dense 

cluster in variable space to be grouped by the Mean Shift. The red toolbox and blue pail show 

that increasing spatial resolution relative to the size of the feature can improve clustering 

performance. Collecting a sufficient amount of data to identify a feature could be an important 

component of the domain ontology. The selection of variables that relate to particular 

characteristics can be guided by their distribution of values. For instance, the Archaeological Site 

scan benefitted from the distribution of green values, resulting in segmentation of the grassy 

areas. It didn't have as many colors or shadows as the Indoor scan, which had better 

segmentation with the alternative color spaces. A specific definition of ontology of 

characteristics and relationships for segmenting desired features is evidently important in 

cartographically generalizing thematically attributed 3D data. 

5.6 Future Research 

Considering future directions from this investigation, three main topics that come to mind. First, 

this thesis extended an evaluation of experimental methods to real world LiDAR data. Applying 

the methods to a larger extent would allow for the selection of points representing larger 

geographic features. A mosaic of terrestrial LiDAR scans or a data generated through fusion of 

aerial LiDAR and photographs could be used. A second topic would be to incorporate spectral 

reflectance with more variation or in different bandwidths, such as the near infrared or 

hyperspectral data. The third main topic for future investigation would be to conceptualize and 
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employ a better 3D neighborhood relationship metric than the Mean Vector; it only separated 

planar regions from other configurations. A more complete metric would identify different 

planar orientations or possibly address regions of similar curvature. Overall, this thesis 

demonstrated how diverse techniques and theories from other disciplines can be integrated with 

those of Geography and in the process developed new approaches for indentifying geographic 

features represented by richly attributed 3D data. 

 

Applications that this research could potentially benefit are varied. Spatial and thematic data 

representing geographic features in natural or urban settings could be segmented. The methods 

may help to select and quantify vegetation. Models of under-story vegetation could complement 

canopy information. Landforms such as dunes, outcrops, and caves could be segmented from 

high resolution data. Data relating to different constituents of soils, water bodies, or the 

atmospheric could be mapped in 3D. The potential for studying objects at different scales, such 

as atomic, biophysical, or astronomic, and the movement of such objects could benefit from 3D 

feature segmentation. Finally, this study can provide information for basic research in 3D spatial 

analysis and uncertainty which aid cartographic representation of regions and their boundaries. 
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