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ABSTRACT

Methods of solving the two dimensional wave

equation assuming wave guide boundary conditions are

discussed. In particular, numerical methods are mainly

stressed. Difference equations, relaxation methods,

and iteration methods receive the most emphasis. The

objective of the thesis is to find a method for deter-

mining characteristic values.

The result is an iteration program which will

determine characteristic values for a uniform cross

section wave guide. The method approximates the wave

equation by difference equations. The eigenvalues are

then computed by an iteration process. Alternative

methods of solving the wave equation and methods of

improving the existing program are given. The results

of two applications are given as a check on the method.

Finally, more difficult problems to which the same

method might be applied are discussed.
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CHAPTER I

INTRODUCTION

A. Guided Waves
 

As is obvious from the name itself, the purpose

of a wave guide is to transfer electromagnetic radiation

or energy from one place to another by means of some

sort of guiding structure. The design of the wave guide

may be as varied as the applications to which it is

applied. In many cases the wave guide is a length of

hollow pipe which has as its physical characteristics

the critical dimensions of its cross section, the

conductivity of the metal structure, and the magnetic

permeability, dielectric constant, and conductivity of

the dielectric material in its interior.

This type of wave guide is not the only type of

interest, but it is this general type of wave guide which

will be considered in this thesis. In other words, the

wave guides considered in this thesis are wave guides for

which: (1) the cross section is uniform, (2) the

dielectric material in the wave guide has constant

dielectric constant e, constant magnetic permeability/u,

and zero conductivity, (3) the metal of which it is made



is assumed to be a perfect conductor. This last

stipulation is of no great practical concern since most

wave guides are constructed out of metal with high

enough conductivity so that the metal can be assumed

to be a perfect conductor for all practical purposes.

A wave guide has many modes of operation and, in

fact, infinitely many. However, it is usually only the

lower order modes which are of interest.

Propagation of electromagnetic energy in the wave

guide is governed by a homogeneous partial differential

equation called the wave equation. This equation has

solutions only for certain discrete values of one of its

parameters. These discrete values are the characteristic

values or eigenvalues of the wave equation. Each

characteristic value corresponds to its own mode as was

mentioned in the preceeding paragraph.

Once the characteristic values are known, it is

then a somewhat simpler matter to solve for the eigen-

vectors of eigenfunctions which represent the field in

the wave guide.

As it turns out for a uniform cross section wave

guide, it is only necessary to solve a two dimensional

wave equation in order to determine the characteristic

values. The dimensions involved are of course the X and

Y dimensions of the cross section. Solution of the two

dimensional wave equation then becomes a matter of
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finding the characteristic values for the modes of

interest.

The wave equation is not unique in form but is

found in problems involving many different branches of

science. It so happens, that the wave equation is

identically the same as the equation governing the

vibrations of thin elastic membranes of arbitrary cross

section, which are rigidly clamped on some or all of

their edges. The vibrating membrane is brought up here

because it has certain analogies which help understand

the wave guide. The analogies will be explained after

a few brief remarks on the wave guide.

From the characteristic value of a mode of

prOpagation in a wave guide, it is possible to calculate

from classical formulas (l) the associated character-

istics of the wave guide such as the cut-off frequency,

the attenuation of the guide, the power handling

capacity, and the mode separation. The latter is

naturally dependent on more than one eigenvalue.

Now for the analogies. The characteristic values

associated with the vibrating membrane are related to the

extreme positions in which it is possible for the

membrane to vibrate. The lowest possible frequency at

which the membrane will vibrate is analogous to the

lowest cut-off frequency or cut-off frequency of the

dominant mode of the wave guide.
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The lowest frequency at which the membrane will

vibrate in a more complex nature corresponds, clearly,

to the cut-off frequencies of the higher order modes.

The cut—off frequency of the wave guide, is the frequency

below which prOpagation of energy in the wave guide is

not possible for that mode. The rate at which the

oscillations of the membrane are damped is analogous

to the attenuation of the fields in the wave guide. The

power handling capacity, which is determined by the

maximum fields allowable before the dielectric material

breaks down, is analogous to the extreme amplitude in

which the membrane can vibrate without damage. Obvi-

ously, mode separation is its own analogy.

It is these properties which are of final interest,

however, it is not the intent of this thesis to discuss

these properties of the wave guide but rather the

characteristic values or eigenvalues, from which these

properties can be calculated.

In order to analyze a wave guide of particular

shape, it is first necessary to determine the eigenvalues.

This is a very difficult job in all but the very simplest

cases. The purpose of this thesis can now be stated.

The object of this thesis is to develop a general

program for a digital computer, in particular the MISTIC,

which will, when given the necessary details about the

boundary conditions, compute the desired characteristic



values.

B. The Wave Equation

In the introduction the wave equation was

mentioned as a homogeneous partial differential equation

which governs the electromagnetic fields in a wave guide.

The wave equation in general form is

VP:- /«- g3}: or Viv-7% :1 (1-1)

These equations are easily derived from Maxwell's

equations. They are based on the assumption that the

dielectric material has zero conductivity, is homo-

geneous, linear, and isotrOpic. They are identical for

the electric or magnetic field and must be satisfied by

all components of the electric and magnetic field.

If it is now assumed that the fields vary with

hat
time as eJ , the wave equations become

VIE-v —-w:ae F/ 72/“: 'wfaefl (1-2)

If it is further assumed that the propagation in the Z

direction (the direction of prOpagation) varies as eF’2,

where J is known as the prepagation constant, the

equations then become:

1' 1. 1. "" 7’ 1- 1..

va E: ’(k {OJ/.Lé)£‘/ ng H: ’[’+w/‘¢)H (1-3)
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In these equations ViyE is now the two dimensional

Laplacian in the transverse plane; the third partial

derivative having been set equal to r23 because of the

(Z
assumption that Ez varies as e- . Finally, it is

convenient to replace 62 +tdgfltrby K3 and the equations

are then, simply

I-

VHF—14:? [7,; //.—.- —/«‘// (1-4)) c

where K: =f2 +W2/‘6’

These equations have solutions only for discrete

values of Ki. It is the Kc's with which the thesis is

2‘ 2" 2 4.
=K=K =

c1 02 c3

. . . . etc., where K0 is the eigenvalue of the dominant

1

mode and K0 is the characteristic value of the next

2

highest order mode, etc. Once the Kc is known the cut-

concerned. These numbers are such that K

off frequency fc, for example, is easily found by

letting X'= 0 so that:

K
: ._ (5)

.{i 2?W'W7¢e-

It is common to classify solutions to the wave

 

equation inside a wave guide into three general types.

These modes of operation are called transverse electro-

magnetic, transverse electric, and transverse magnetic;

TEM, TE, and TM respectively. The TEM mode has no E or H

component in the Z direction (i.e. direction of prOpa-

gation) and may in many cases not even be a possible mode
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of Operation. Its prepagation usually requires at least

two separate conductors. The TE and TM modes are the

usual modes of propagation in the wave guide. The TE

modes are called transverse electric modes because they

have no E component in the axial Z direction, and

likewise, the TM has no H component in the Z direction.

As was mentioned before, the wave equation must

be satisfied by all of the individual components of

the electric and magnetic field present in the problem

being analyzed. For this reason, it is not necessary to

solve the wave equation for the entire electric or

magnetic field if the main interest is merely the

characteristic values. One is at liberty to pick the

component of E or H field which is most convenient in

applying the boundary conditions. What can be done in

practice is to decide what mode is to be analyzed and

pick for solution the component of the electric or

magnetic field, for example, Ex’ Ey’ Ez’ Hx’ Hy’ or Hz,

which allows the easiest application of boundary

conditions.

Thus far the wave equation has been considered

only in a rectangular coordinate system. This is

because the detailed method given in the following

chapters uses the rectangular coordinate system.

However, it is just as logical to write the wave equation

in a cylindrical or spherical coordinate system or any



other coordinate system.

A common method of solution of the two dimensional

or the three dimensional wave equation in any coordinate

system is known as separation of variables (1, p. 145)

or as the product solution method. The solution is

assumed to be a product of functions, each of which is a

function of only one variable of the coordinate system.

The assumed product solution is substituted into the

differential equation, and it is then possible to separate

it into ordinary differential equations which can be

solved individually. Of course, there still remains the

application of the boundary conditions. When this is done

the individual solutions are multiplied together giving

the final product solution.

This is easily done when the geometry of the wave

guide matches nicely the coordinate system. For instance,

the solution to the wave equation for a retangular wave

guide can be found quite easily by writing the wave

equation in the rectangular coordinate system. The

solution turns out to be trigonometric functions which

are easily matched to the rectangular geometry of the

wave guide. In the case of the cylindrical wave guide,

Bessel functions result for the radial variation in the

solution, having written the wave equation in cylindrical

coordinates. Again, the Bessel functions are easily

matched to the circular boundary. In a like manner it
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is even possible to solve a parabolic wave guide (2)

using a parabolic coordinate system. However, when the

cross section of the wave guide does not fit the

coordinate system, applying the boundary conditions

becomes quite difficult. As a result, solution of the

wave equation is very difficult except for these few

special cases above.

A great deal of work has been done during the

past decade or so on analyzing the ridge wave guide.

S. B. Cohn has shown (3) the ridge wave guide to have a

lower cut-off frequency and higher mode separation than

the corresponding rectangular wave guide. This partic-

ular feature has lead to its commercial use in airline

weather penetration radar.

The only difference between the rectangular wave

guide and the ridge wave guide is the superposition of a

rectangular indentation on one of the sides of the

rectangular cross section. Yet, this simple change is

enough to make the problem extremely difficult to solve.

More recently, work has been done on a semi-

circular ridge wave guide. The solution of this problem

has shown (4) the semicircular ridge wave guide to be

superior in power handling capicity as compared with a

rectangular ridge guide of the same mode separation

factor.

There are other means of solving the wave equation
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analytically besides a product solution, but each seems

to require a great deal of ingenuity and specialization

to a particular problem. It would be valuable to have a

general method of solution to the wave equation. A

convenient subterfuge is a numerical solution.

Many types of numerical solutions are possible.

Some of these will be discussed broadly so as to give

a wider outlook on the problem, and then the particular

method used will be discussed in detail.

One numerical method is to substitute difference

equations for the differential equation. It is then

possible to write a difference equation for each node of

a grid system imposed on the cross section of the wave

guide. The next step is to effect a simultaneous

solution of all the difference equations. Since the

number of equations necessarily must be great in order

to obtain accuracy, the simultaneous solution of these

finite difference equations is not always easy.

The following chapters will discuss the difference

equations and methods of solving the difference equations.

Finally, Chapter IV will discuss a program for MISTIC,

embodying these ideas, which will solve the wave

equation given any arbitrary cross section of wave guide.



CHAPTER II

DIFFERENCE EQUATIONS

A. First Order Difference Equations

Writing difference equations for a differential

equation involves two procedures. First, it is necessary

to impose a grid system on the domain of the problem so

that a difference equation can be written for each node.

The second is to find a suitable approximation or

difference equation for the original differential

equation. Thus, instead of having to solve one differ-

ential equation, the problem reduces to a matter of

finding a simultaneous solution for the numerous

difference equations.

The wave equation for which one would like to

find a difference equation is

 

1'_ ‘27 L" 1

Actually, once one finds a difference expression for 72E

the entire equation (2-1) is easily written in difference

equation form. Therefore, the main objective of this

chapter will be to discuss difference expressions for

VQE.

To begin with one imposes on the cross section of

11
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the wave guide a grid system. A portion of this grid

system is shown in Figure 2.1.
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Figure 2.1

The solid lines show the actual grid lines; while the

dotted lines are only for the purpose of deriving the

difference equation. A derivation of the first order

difference equation in rectangular coordinates (5, p. 51)

will now be given.

Since E is a function of two variables, the

definition of jL—-is

 

(BX

. "' x+.‘.‘. E x ~19. ‘5)

i, __ Ltwt t( o 31 Ho) — ( o 1. j o (2-2)

ex 0 " W” k

as . . q; .
where -——- means the partial derivative at the p01nt

‘AX.O .3x

0, etc. If h is taken small enough,

.95., z 5.21:5. (2-3)

ex 0 k



and similarly,

 

 

E7 _. ’ -

53—71 % ___F2F0 anJ 5.9.5) A, E; F“ (2_4)

‘9 G k .9)( g h

Now, since

3’? = 3;... at?
9x1 9x “532

it follows that

3E] ”35'

(32; ex A ”7 a

§1~ A; (2.5)

° )1

By substituting equations (2-4) into equation (2-5) one

 

 

 

obtains

915' A, EJE‘I "259
‘— 1, ~ (2-6)

29x c, ha.

1

This is the finite difference equation for 3%...

I.

In a similar manner §}§wbecomes:

92? (V F‘I‘F - 25:
.——-—1I N I 3 (2_7)

9;; o ht.

Combining equations (2-6) and (2-7) one obtains

£3'*£;.+EEI+E;{—-VEEI

ha.

In equation (2-8) the expression E1+E2+35+E4-4EO is the

“‘5

V7151 (2-8) 

finite difference approximation for the Laplacian, VZE.

As a check on the error (5, p. 52) of this

approximation, assume the function E(x,y) can be expanded

in a Taylors series. First, check the error in the





 

 

l4

approximation for 6X49. Assume E(x,y) to be a function

of X with Y constant; one may write

F09) ‘-'" 4.. +4:(X.'Y43+ 01094;)"

1 (2-9)

+a3(x.-X;) + aq(g-x,-)+ ...

Where i = 2,4,0 0 o o .

With X = X0 as the origin, one then obtains

a

4055:” 959‘1/ “42:15:- 3|a=9£

I ext 0 ' ' 3 OX3)

Now letting i = 2 and 4, one obtains:

t 4

E1 ”‘0 +4.14 “'1" +43A’1—q,é + " ' (2-10)

L

E, =4o—Q,A+az‘1 ~43A3+aqlty+ . ' ' (2-11)

Adding equations (2-10) and (2-11),

I A“ ‘/ ‘1+5]: 2410 +944 +2441: {- .. ° (2-12)

Now solving equation (2-12) for a2, one obtains

2 E: f- :

«9)! 0 vhl )2, git

Therefore, the error in the finite difference equation

(2-6) is given by the algebraic sum of the terms

”k:L$E'ooo 0 etc.

H N"

By an analogous procedure, one can find an

analogous error associated with‘;Y4; 'Hence, the total

error in approximatingV2 is just twice that assumed
x
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by %%)0 alone .

B. Higher Order Difference Equations

Thus far only first order difference equations

have been mentioned. A great deal more accuracy can be

accomplished by using higher order difference equations.

, For example, in an auxiliary method of solving the wave

equation for a rectangular wave guide with a grid system

of ten pivotal points, the error in determining the

lowest characteristic value was 2.26% for the first order

difference equation. However, applying the second order

difference equation in the same method produced an error

of only 0.08%; while a third order difference equation

produced a low error of 0.0lOS%.

The second order difference equations can easily

be found by assuming a power series expansion. Given

the points of a grid system as shown in Figure 2.2,

first, compute %§%i .

 

 

«L 5'

.. i

‘8 ,fi 0 .2 ‘6

T I T V

3 Jr» 3

L X ‘P' 7

Figure 2.2

Assume that the E field existing at these points is given
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as a power series expanded about the center point. i.e.

E(X’J) 2: ”0+ ‘4,(Xo*&)+a1(xo —x’" )14‘ a3 (xg"X,(' )3
L (2—14)

4- (MUCH) + ' ' '

Where i = 2, 4, 6, and 8.

It then follows that

F = E, +a,h + a1h1+43h3+ at, h 4 (2-15)

E9 :: E;*Q'I’l+allt1-a3 L3+4qhq (2-16)

’2

A; =- 5, +2q,h #14111 + 843134144qu (2-17)

x H
E8 :- Eo—JQ,A~ 4:40.114 '843112't-IGQ‘II" (2-18)

Adding equations (2-15) and (2—16) and adding equations

(2-17) and (2-18) it follows that

.— 7.

5+5, = 2601524,). +,?a.,l.‘/ (2-19)

F ~ 9+8 lit-r324 ‘1"
54E; - 3 o a, ‘I (2-20)

By multiplying equation (2-19) by sixteen and then

subtracting equation (2-20) from equation (2-19), a4

is eliminated, and the resulting equation can be solved

for 2a2. Finally one has

 

20 __ at} = /6(E;+€v)-[E;+Eg) ”305. (2 21)

2 9X‘ 0 lent

Equation (2—21) is the second order difference equation

‘5

for %}%u,.

Similarly the second order partial derivative in



 

 

 

 

 

 

-+>- I

T 1

F11» l (a) rst Order

-<>- -l

-0- H.

-l 16 lb -1

1 i '60 i 1

T T T T

-0- lb

- b Second Order1? t ( )

A».z

-"~ -27

-0- 270

Z ‘27 270 780 210 -37 2

i 1 ' 1 1

i T v if r + 1

4» 270

-27

Z (c) Third Order

Figure 2.3



18

the other direction is

922:] -.- /6(E,'+E3)—-(Erf€7) “-7050

<9?g ° 131."

Combining equation (2-22) and (2-21) one obtains

,2 715: “(an-9&5.) -— .(E{+E;+§,+E,.) —éoEo

h1-

The V72 Operator in difference equation form has

 

(2-22)

 (2-23)

been derived for the first and second order cases. V 2

operators which consider higher orders, points on the

diagional, or even three dimensions can be derived in a

perfectly analogous manner. Some of these Operators

(6, p. 170) are shown in Figure 2.3.

C. Special Type Difference Equations

Besides difference equations of higher orders

there are many other ways in which a difference

expression can be written for the Laplacian. For one

thing, it is not absolutely necessary to use a grid

system with constant h. One might use a rectangular

grid with h as the distance between nodes in the X

direction and k as the distance between nodes in the y

direction. It would be nice if h could be entirely

variable. This would allow fitting a very close grid

in regions of high irregularity and allow a very coarse

grid in regions where there is little variation of the

fields.

Many types of coordinate systems may be used,
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for example, a skew rectangular coordinate system or a

triangular coordinate system. One other system which

does hold a great deal of interest is the cylindrical

coordinate system.

The two dimensional Laplacian, to which one is

restricted here, in the cylindrical coordinate system

is

2.— 1” at: ’"E’
Vt 39—52:? Jgfs'F‘l‘JFI 953—1. (2-24)

The grid system for this equation is shown in Figure 2.4.

The difference expressions for the derivatives of

equation (2-24) can be derived in a similar manner to

those in the rectangular coordinate system (6, p. 224)

54¢, a“
o ’1

+ 2 f

&

‘fl

4‘

43’ /
{p

c.  

Figure 2.4
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and are

’37; v-

at" q E -- 5’

5‘11; :: E; +Ey “'95::

a¢t Y‘

where h =Ar, =4¢

Substituting equation (2-25) into equation (2-24) one

Obtains in cylindrical coordinates.

v72” =(t+—’—‘-— )2’. (J:— )1:- +(I——‘—*'- )E
0 are I to! 1 rat 3

* tale ”04:13)? E
where rO is the distance from the origin to E0.

Equation (2-26) is the first order difference equation

(2—26)

for the Laplacian.V72EIin a cylindrical coordinate

system.

It is entirely possible to write higher order

difference equations in cylindrical coordinates or with

a variable h or X'. However, the equations become very

complex with these increasing variations.



CHAPTER III

METHODS FOR SOLVING THE

DIFFERENCE EQUATIONS

A. Matrix Methods

Many methods of solving difference equations are

possible, but just a few will be discussed here. The

first to be discussed are two matrix methods which were

investigated by the author. They were not found too

helpful because of the lack of digital computer programs

to handle large enough matrices or determinants. But

they will be discussed since the only missing link is

a computer with sufficient memory. By using a computer

with larger memory, solution by these methods may be

feasible.

The wave equation, equation (2-1), can be written

in matrix form as:

  

, FE.” ’ 1 “PE."

2 z 2 t

. 2 — 0 (3-1)v : Kc ’H :

i. i , E31 _ J _ Egd      
In equation (3-1) {V1} represents the V2 Operator matrix.

21
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Its typical entries can be filled in directly from the

difference equation (2-8) and the grid system of the

particular cross section of wave guide for which the

wave equation is to be solved. Each row of the V72

matrix corresponds to a difference equation for a single

node, and the columns correspond to the coefficients of

the E values. The [u] is, of course, the unit matrix.

The column matrices are n dimensional space vectors_

representing the E field in the wave guide.

By multiplying Kg times the unit matrix and

subtracting the right hand side of the matrix equation

from both sides of equation (3-1); one Obtains

  

1p 1 T? r 'fi

q'I’Kc qua qua ' " am E’

all sz'k: . .1

. :r C?

an ' ' . ' (3-2)

- ' . 2 F
. H  

This matrix equation has non zero solutions only

when the determinant of the coefficient matrix is zero.

Obtaining an approximate solution to the wave equation

is, then, just a matter of finding the eigenvalues and

eigenvectors of the coefficient matrix. Programs for

the MISTIC are available to compute eigenvalues and

eigenvectors of symmetric matrices up to forty by forty.

Once the wave equation is written in this form its
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solution follows simply by using these programs.

This method was used by the author to determine

the characteristic values of a rectangular wave guide,

Of aspect ratio two to one, using a grid mesh of ten

points. Very good accuracy for the dominant mode was

obtained by using second and third order difference

equations, as was mentioned in Chapter II.

However, there is an inherent problem. A grid

system of more than just a few points, in this case ten,

can not be used because the boundary conditions make the

matrix asymmetrical even if the boundary of the guide is

symmetrical. This is because boundary conditions enter

the difference equations for nodes on the boundary of the

mesh but not for those equations in the interior of the

mesh.

A program to compute the determinant of up to

forty by forty asymmetrical matrices is available for

MISTIC. This routine could be used by first making an

approximation to the value of an eigenvalue. Using

this value one could compute the determinant of the

matrix. If the approximation were correct, which is

highly unlikely, the determinant would be zero. Most

likely the determinant would not be zero, so another

approximation would be made. Again the determinant

would be computed. If this approximation is not correct

either, some method would be used to pick a better value
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on the basis of the previous two. This process could be

continued until a sufficiently accurate answer is

obtained.

A program of this nature is conceivable. However,

one would still be limited to a grid system of forty

points. This is certainly better than ten points, but

it is desirable to have as many nodes as possible so as

to be able to handle irregular shapes with more accuracy.

B. Relaxation

Since 1938 Sir Richard Southwell and a small

group of his followers have been busy developing their

numerical method known as relaxation. Relaxation (7) is

a method for solving a number of simultaneous equations

by successive approximations. It is a very convenient

way Of solving the difference equations representing the

wave equation.

Rather than discuss relaxation for the general

difference equation, the discussion here will be limited

to the form of difference equation which repreSents the

wave equation. The form of the difference equations for

the wave equation is easily obtained. The finite

difference expression for the two dimensional Laplacian

was given in equation (2-8). Substituting this into the

two dimensional wave equation (2-1), one Obtains
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Eff/:2 IE3 +54 ’45: 2 "' Lil/(alga (3-3)

Equation (3-3) is the basic difference equation form of

the wave equation and will be used later.

The subject of the wave equation will now be left

for a moment. The following is strictly about relaxation.

For the sake of simplicity in understanding relaxation

assume equation (3-3) is instead

E1+E2+Ea-+E9 ’95) ‘7 “'/0 (3-4)

In equation (3-4) so is the value of the field at

the central point of a grid system and El, E2, E3, and E4

are the values of the fields at nodes about the central

point. A simple example using difference equations like

equation (3-4) will suffice to show the principle of

relaxation.

Assume there are only two nodes in the grid system,

as shown in Figure 3.1, and hence only two simultaneous

equations. Call the value Of the E's at the two points,

0
 

O E: E1 0
 

    
 

Figure 3.1
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El and E2. If the boundary points are all zero as shown,

the two simultaneous equations would be, from equation

(3-4)

£2_+-C>+-<D + C) * fi/éa ==“/C7

o+0+E}+o—4/El '5 —-/0 (3—5)

As the first step in relaxation, rewrite the equations

in residual form as

Eff/£5, + /0 = A), (3-6)

F, 4/52 4- lo sz (3-7)

If one arbitrarily picks values of El and E2, the

left hand side of equation (3-6) determines a value of

R1, which is a measure of the error introduced by these

arbitrary values, El and E2. In the same manner one

Obtains a value of R2. R1 and R2 are called residuals

and are a function of the values El and E2. Obviously if

E and E2 are both correct, R1 and R2 will both be zero.
1

The object of the relaxation method is to reduce the

residuals to zero, since the equations are satisfied if

the residuals are zero.

This is usually done by changing the node value

about which the difference equation is written, so as

to decrease the residual to zero. It can be noticed,

in larger examples than the one given here, that

reducing a residual to zero may not reduce the total



27

residuals, as they may just spread to adjacent points.

This is the case for both points in the example. So the

process becomes one of pushing the residuals over the

boundaries.

If special methods are not used, convergence is

obtained as quickly as is possible by looking for the

highest residuals and "relaxing" them before points with

lower residuals. Numerous special methods are available

for speeding up the process of convergence. But most of

them depend upon the judgement and experience Of the

person applying the relaxation process.

C. Iteration and Eigenvalue Methods

Imagine a great number of equations to be solved

by a relaxation process. If the number of equations is

large enough, it is conceivable that just finding the

equation with the highest residual may pose some problem,

at least require a considerable amount of calculation.

The iteration process is basically the same as relaxation,

except that the iteration process does not search first

for the point with the highest residual. It just relaxes

each point in order, in a systematic manner. Convergence

is still obtained since when a point next to the

boundary is relaxed the total residuals are reduced.

However, convergence is usually slower.

If equation (3—3) is solved for E0, one obtains
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Ea'ffawféz-ffir

 

 

t' :'
O

'1’- ‘714’2’ (3-8)

Let 4-h2Ki = 5, equation (3-8) then becomes

E’ #5 +1: +5
En = I 2.5 3 ‘/ (3_9)

Equation (3-9) is a simple formula for reducing

the residual at any node to zero. This can be seen from

equation (3-10) which is equation (3-9) written in

I? =- F, +52 +5 +5; ..gg; (3-10)

residual form. To find Eo at any node one merely adds

up the surrounding points, El, E2, E3, and E4 and

divides bygS. This automatically gives a new value of

ED for which the residual is zero.

The iteration process is just a matter of relaxing

all points in the grid system one by one in this manner.

It can be clearly seen from equation (3—10) that

changing a node point by one unit changes the residual

of that point by.§ while only changing the residual of

the surrounding four points by one. Thus, the residuals

are either reduced or are spread toward the boundaries

where they are eventually reduced.

So far the problem has been simplified. A value

of 5 has been assumed when actually it is S which one

wishes to find, or rather Ki which differs from 5 only

by the constant 4. What this means is that the residuals
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can not be reduced completely in the above iteration

process unless the value of Slis correct.

The complete iteration method will now be

described. A grid system is first drawn on the cross

section of the wave guide to be solved. The nodes are

numbered from one to n. A set of E values are assumed

at the nodes and an approximate average for S'is found

by the formula (3-11).

2" (E, IE2. +E3+Eq)
K8!

5 = (3-11)
K

2 E,
k3!

where E0 is the value of E at a node and E1, E2, E3, and

E4 are the points surrounding E0. This value of.£ is

then used to compute a whole new set of E's by use of

formula (3-9). This should reduce the residuals some-

what. However, further relaxation may not tend to

reduce residuals much more. So, after one iteration

through all points of the mesh, equation (3-10) is again

used to produce a more accurate 6: Then the residuals

are reduced again by computing a new set Of E's. This

process is continued until the value of 5 becomes

constant within the degree desired.

A proof of the convergence of this method is not

available. All that can be said is that it has provided

convergence in several problems that have been inves-

tigated, and the answers Obtained by this method agree
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theoretically with other methods.

A heuristic discussion Of this convergence is as

follows. Suppose one is given a set of node values, and

from these values a J'is computed which comes closest to

fitting all of the node values. By fitting the node

values, is meant that by adding up any four nodes around

a central node and dividing them.by'5, one obtains a

value for the central node as close to the existing value

as is possible, for all nodes and that value Oftgo This

value of 6 should be closely approximated by equation

(3-11). Now, if the node values are all relaxed by-

equation (3-9), using this new value of36,the total

residuals will be reduced. Therefore these node values

should be closer to the true values. Since these node

values are better than the first set it follows that a

new é'computed from these node values will be better

than the first 5, etc.



CHAPTER IV

DIGITAL COMPUTER PROGRAMS

A. The Iteration Program

This chapter deals specifically with a program,

written for MISTIC, to solve the wave equation. The

actual program is written as a closed subroutine and is

given in Appendix I. The general method used in this

program will be given here briefly, and then it will be

gone over again in slightly more detail.

The first step in writing the program was to

decide on a difference equation. The program uses a

first order difference equation written in rectangular

coordinates, in particular equation (3-3).

One equation of this form is assumed at each

node of a rectangular grid system imposed on the cross

section of the wave guide. These equations form a set

of simultaneous equations and are solved in this program

by the iteration method discussed in Chapter III.

When the eigenvalue has converged to the desired

accuracy, it can be printed out along with the values

of the field at the nodes. These node values are called

the eigenvectors. The number of iterations can also be

51
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printed out if desired.

The program stores the eigenvectors in memory

locations 17 through 17+n-1. Locations l7+n through

l7+2n-1 are reserved for the interconnection information

consecutively, for example, location l7+n contains the

information as to how node 1 is connected. The

information for the 1's interconnection in Figure 4.1 is

punched on tape as 020 04K OOO 1S2. Each group is a
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Figure 4.1

three digit sexadecimal number. The order in which the

four groups are punched on the tape is irrelevant. Node

0 corresponds to a zero boundary condition. If there

were a normal derivative boundary condition rather than

a zero boundary condition, the tape would appear as

020 04K 001 132 indicating node 1 as its own neighbor.

This information is read in and assembled into a

MISTIC word with nine binary bits per node number and

stored consecutively starting at location 17+n. This is

done by the packing routine and must be done before the

main routine is entered. When the packing routine is

through, each node has stored in some memory location
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the addresses of its surrounding four points. This

information is used by the program time and time again

in computing both new node values and new values OfJ .

The packing routine is given in Appendix II.

When the number of nodes is great, writing the

interconnections can be quite tedious, especially since

they must be written in sexadecimal. Therefore, a program

was written to write the interconnection tape auto-

matically.

This program requires four bits of information

about the grid system. It requires the number of points

in the grid system and the number of horizontal rows

of points. It also must be given the number of points

in each horizontal row. Finally, it also requires the

number one must add to a point in a row to obtain the

point below it in the next lower horizontal row. This

number is the same for each individual row, but one must

be given for each horizontal row. The interconnections

are then written assuming zero boundary conditions. With

a slight modification the program can be used with other

types of boundary conditions. This program is given in

Appendix III.

When the iteration program is entered, the first

thing it does is to compute a value of J} using equation

(3-11), the initial E values, and the interconnection

information. Now that the program has a value of.S to
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use it starts one complete iteration, changing the E

values, using equation (3-9) and the interconnection

information. While it computes new E values it also

computes the numerator and denominator of equation

(3-11). Then when it has completed an iteration, it has

only to divide the sum corresponding to the numerator,

by the sum corresponding to the denominator of equation

(3-11) in order to obtain the trial eigenvalue for the

next iteration. The iteration process can now begin all

over again.

After each iteration the absolute value of the

new JTis compared with the absolute value of the old I.

When the absolute difference Of these two values is less

than a predetermined amount called the accuracy constant,

the program quite and transfers control back to a master

program. Before it transfers control it puts the final

eigenvalue in location 16. Location 17 and up contain

the correct E values. Thereafter, the print out of this

information is easily available.

B. Application of the Program

The values at the nodes may represent any

rectangular component of the electric or magnetic field

one wishes. However, the boundary conditions are entirely

dependent upon which component is used. These boundary

conditions then show up in the interconnections. If a
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TM mode is to be investigated, the most probable choice

of component would be Ez since everywhere on the boundary

Ez must be zero no matter what the shape of the cross

section. The most probable choice for 3 TE mode would

be Hz' In this case, the normal derivative Of Hz must

be zero at the boundary. This implies that a node point

next to the boundary must have the same value as the

point on the boundary.

If the cross section of wave guide has any

physical symmetry it is usually possible to solve only a

partial region, the other points being filled in by

symmetry. The boundary conditions on the new boundary

between the regions of symmetry have boundary conditions

of the same nature as the actual boundaries. If the

field has even symmetry with respect to this boundary,

the normal derivative of the field must be zero. If the

field has odd symmetry with respect to the boundary, the

field itself must be zero along the boundary. By using

symmetry it is possible to get considerably more accuracy

because more points are concentrated in a smaller area

of the total cross section.

Besides the interconnection tape, the program

also requires initial values. Of course the closer the

initial values are to a normal mode, the faster the

convergence. Convergence will be to the mode which

comes closest to the initial distribution Of E values.
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If the initial values are assumed to be identical,

convergence is not necessarily to the dominant mode.

Consequently, one must use as initial values, values

which are thought to approximate the desired mode. Since

the lower modes are usually the ones of interest, one

usually does have a general idea as to what the fields

will look like. If necessary the desired cross section

could be slowly changed from some known shape, each time

using for the initial E values on a newly perturbed

cross section, the final E values for the unperturbed

shape.

C. Program Improvements

Most likely the greatest improvement with the

least amount of change to the program could be accom-

plished by using second order or higher difference

equations. This would, nevertheless, mean a considerable

cut in the maximum number of nodes which could be used.

For the second order difference equation eight inter-

connection addresses would be needed for each node rather

than four. It would probably reduce the maximum number

of nodes available from about four hundred at present to

less than three hundred.

If the cross section to be analyzed was more

similar to a circle than to a rectangle, it follows that

a similar program written using a cylindrical coordinate
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system difference equation would give more accurate

results than the present program. This would be due to

the fact that the cylindrical grid system would more

nearly fit the boundary. In order to get an idea of

this type of error, the present program was used to

compute the characteristic value of the TM01 mode for

a circular wave guide. These results are given at the

end Of this chapter.

More accurate results, using this program could

be obtained by using extrapolation. A number of

characteristic values could easily be obtained, each

from a smaller mesh size. From these values a more

accurate characteristic value could be extrapolated.

A more classical method of approximating Ki after

each iteration was found after the program had been

written. It is called the Rayleigh quotient (7, p. 173)

and is supposed to give a good approximation to Ki. It

is possible that use of the Rayleigh quotient would give

faster convergence. It is a weighted average rather

than just a simple average. The Rayleigh quotient is

shown in equation (4-1).

1 "" EVzE—JX/

/’{c = // ‘7 (4-1)

flElJXJj.

As a summation equation (4-1) becomes equation (4-2).

 

Obviously, whenever the grid system does not
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exactly coincide with the boundary some error will result.

This error can be made smaller by using Fox's correction

2..

/(L “EEO-V to

c —- 2 E2- (4-2)

0

 

formula (7, p. 65) for points next to a boundary. Fox's

formula would be used rather than equation (3-9) and

is given in equation (4-3). A typical boundary on which

it might be used is shown in Figure 4.2.

I I
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Figure 4.2

The more complicated procedures like this one were not

employed because it was hOped to keep the program as

simple as possible to allow for the maximum number of

nodes.
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D. Results

Two results will be discussed. The first shows

the accuracy of this method versus other methods and the

second shows what type of accuracy can be-expected when

the boundary is such that it does not fit the grid system

very well.

In the first example a simple rectangular wave

guide was solved. The dominant mode was investigated by

using the Ey component. Ey must be zero on the vertical

sides, and the normal derivative of Ey must be zero on

the upper and lower boundaries. A grid system of ten

points was used as shown in Figure 4.3.
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Figure 4.3

The dielectric material is assumed to be free space.

The aspect ratio is two to one. The initial values used

agreed with the known solution of the TElO mode only in

the first digit.

This very same problem was solved using the matrix

method of Chapter II. If h is given as one meter, which
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is convenient for comparison purposes, the eigenvalue

obtained by the matrix method for the TElo mode is

2

Kc
= .26794919. This value is the exact value of the

lowest order eigenvalue for this ten by ten matrix. Any

other method should approach this value as the correct

one. It is not the correct value for the wave guide, in

fact, it is in error by some 2% as was mentioned before,

but it is the correct eigenvalue for the ten by ten

matrix. Therefore, if the iteration method is as

accurate, one should get the same answer.

The eigenvalue obtained by the iteration method,

again for the TE10 mode, is Ki = .2679473. Even greater

accuracy is possible since the accuracy constant of the

iteration program was not set at its minimum.- It is just

as well, for this accuracy is much more than is needed.

Greater accuracy would only require more computing time.

The answer above was obtained in nineteen iterations.

In the first example only ten points were used.

In this next example a total of three hundred forty-one

points were used.

Since a circular wave guide does not fit a

rectangular grid system very well it was felt by trying

to solve the circular wave guide one might gain insight

into the errors involved. An outline of the grid system

placed on the circular wave guide is shown in Figure 4.4.

The TMOl mode was the mode investigated. The Ez component



41

was used since it is zero everywhere on the boundary.
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Figure 4.4

The initial values used somewhat approximated a sine

wave, with maximum values toward the center and small

values toward the edge.

Seventy iterations were required for convergence.

This is to be expected since the percentage of boundary

points is much lower than in the first example.

In this example the cut-off frequencies will be

compared rather than the characteristic values. The

cut-off frequency of the TM01 mode in a cylindrical

wave guide (1, p. 376) of radius a is given in equation

('4-4).
. 383

+; -=
0‘ ‘V/U: (4-4)

For a cylindrical wave guide with a radius of 11 cm. the

 

cut-off frequency for the TM01 mode is calculated from

equation (4-4) to be 2,090 mcs.

The eigenvalue computed by the program was
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KO = .2228. From it the cut-off frequency can be obtained

by using equation (1-5). The cut-off frequency as

calculated from the iteration program is fo = 2,130 mcs.

This answer should be more exact for the polygon

approximating the circle than for the cylindrical wave

guide, but this answer still only differs from the value

for the cylindrical wave guide by 1.8%. This is

sufficient accuracy for numerous engineering applications.

Slightly greater accuracy could be obtained by using

four hundred points rather than three hundred forty-one.



CONCLUSION

While the program described here is far from

perfect it does describe a very practical method of

solving this type of problem. Many improvements for

the program have been mentioned.

A battery of three or four programs using

different variations could fit mesh points into almost

any type of configuration. The accuracy one can obtain

is limited only by the ingenuity of the program writer

and most important by the size of the digital computer

memory. The greater the memory the greater the number

of nodes which can be used.

This thesis has dealt exclusively with the two

dimensional wave equation. There is no reason why the

same procedure can not be extended to the three

dimensional wave equation. Again the major problem

would be to obtain sufficient memory space. It would

then be possible to consider discontinuities in wave

guides or wave guides of non-uniform cross section.

Finding such things as the resonant frequency of a

resonant cavity could be easily done. By using a

different type of boundary condition the field patterns

of antennas could be studied.

43
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It has been tacitly assumed that the dielectric

medium contains no electric charges and no conduction

currents. It is possible by modifying the wave equation

that even these effects could be studied by this same

procedure. Problems of this type would require computers

with quite extensive memories, however.
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0

APPENDIX I

THE ITERATION PROGRAM

ORDER

KSF "

4268L

5017s

J080L

SSF

109?

468L

102F

428L

50173

J081L

85F

469L

1023

429L  L582L _

L4F 7

L4F

L4F  L4F

NOTES

Unpack interconnection addresses

Compute first E value using

equation (3-9)

45



46

LOCATION ORDER NO ES

10 40891. I

5089L

ll 7J9OL

5082L

l2 L537L

4213L

13 2213L

LSF .J

14 4084L '1 Add to sum representing

L49lL numerator and denominator of

15 409lL equation (3—11)

LSlOOL

l6 4031L

508L

1? J097L

83F

18 3619L

2620L

l9 F531L

4031L

20 508L

J099L

21 83F  3222L
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22

23

24

25

26.

27

28

29

30

31

32

33

ORDER

2223L

F531L

4031L

509L

JO97L

83F

3626L

2627L

FSBIL

403lL

509L

JO99L

33F

3229L

2230L

F531L

4031L

L582L

2231L

2632L

L484L

2633L

L484L

2634L  

47

NOTES
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LOCATION ORDER NOTES

34 L484L

2635L

35 L484L

L492L

36 4092L

2637L

37 L584L

40l7F

38 2640L

00F

39 00F

00F __

4O F54L -7 Reset to compute second and

404L following E values by equation

41 L51L (3-9)

L485L

42 401E

F537L

43 4037L

2645L

44 00F

00F

45 F586L  4086L
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LOCATION ORDER NOTES

46 LO3F ‘

3247L

47 26lL

2648L _

48 L569L ‘ Reset for new iteration

4012L

49 L577L

4013L

50 L54L

L03F

51 404L

0020F

52 46lL

L587L

53 2654L

00F

54 4237L

L582L

55 4086L

F588L

56 40881.

26571. J

57 50921. 7 Compute new I by equation (3-11)

7J90L  
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LOCATION ORDER NOTES

58 5082L

669lL

59 S5F

4083L

6O L582L

409lL

61 L582L

40921. ..4

62 15931:.-1 Check convergence of' S

4094L

63 L783L

4093L

64 L593L

L094L

65 4095L

L795L

66 L096L

361L

67 2267L

L583L

68 40l6F

22F J

69 66831.‘1 Program constants

SSF  
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70

71

72

75

74

75

76

77

78

79

so

81

e2

83

e4

e5

86

87

88

89

90

91

92

93

51

ORDER NOTES

OOFOOF

OOFOOF

OOFOOF

OOFOOF

OOFOOF

OOFOOF

OOFOOF

2614LOOF

OOFOOF

OOFOOF

3L3584FLL2048F

00511F002044F

OOFOOF

00F00400000000000J (Location of S )

OOFOOF

OOlFOOF

OOFOOF (Counts E's computed during one

iteration)

OOl7FOOl7F

OOFOOF (iteration count)

OOFOOF

OOFOOlOOOOOOOOOOOJ

OOFOOF

OOFOOF

OOFOOF
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LOCATION ORDER NOTES

94 OOFOOF

95 OOFOOF

96 OOFOOlOOOOOJ (Accuracy constant)

97 004095FOOF

98 OOFOOF

99 OOFOO4095F

lOO 2231L2632L

The following is required before entering the routine:

1. n must be in location 3

2. n must be added to the left hand order in

cell 1L

3. location zero (OF) must be cleared

4. n initial conditions must be stored in location

17F through (17 + n - 1) F

5. n interconnections must be stored in locations

(17 + n) F through (17 + 2n - 1) F

where n = the number of nodes in the grid system



APPENDIX II

PACKING ROUTINE.

LOCATION ORDER NOTES

0 KSF -‘ Pack one word

4215L

l 5124L

8012F

2 OO29F

L417L

3 40l7L

L52L

4 L018L

402L

5 L52OL

L023L

6 402OL

3611. ~

,7 L517L '7 Reset for following words

40l7F

8 L524L

40l7L  
53
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LOCATION ORDER NOTES

9 F57L

407L

lO L52L

L422L

11 402E

L516L

12 4020L

F521L

13 4021L

LO3F

l4 3215L

2615L

15 26lL

22F A

16 OOFOOBF I Program constants

17 OOFOOF

18 OO9FOOF

l9 OOFOOF

2O OOFOO3F

21 OOFOOF

22 OO36FOOF

23 OOFOOlF

24 OOFOOF d

The following is required before entering the sub-routine:
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l. n must be stored in 3F

2. 7L must have n added to it before entering

3. n sets of interconnections as shown on page

32 must be in the reader

where n = the number of nodes in the grid system
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APPENDIX III

INTERCONNECTION PROGRAM

ORDER NOTES

L598FL486L

4086L262L

F588L40100F

4088LL086L

3615LF52L

402L262L

OOFOOF

OOFOOF

OOFOOF

OOFOOF

OOFOOF

OOFOOF

OOFOOF

OOFOOF

OOFOOF

F589L4089L

LO6OOF3622L

L5101F2226L

409OLL589L
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LOCATION

19

20

21

22

25

24

25

26

27

28

29

5o ‘

31

52

55

54

55

36

57

38

59

4O

41

42

45

ORDER

L087L3624L

L591LL49OL

0016F2225L

L591L2628L

409OL2218L

L599FL49OL

OOl6F8224F

263OL5091L

0012F2618L

5091L0012F

2623LOOF

L57OOFL089L

3633LL591L

409OL264OL

L57OOFL089L

LO91L3231L

L592LLO7OOF

4237L2237L

OOFL5F

0012F409OL

264OLOOF

L56OOFL089L

LO7OIF3648L

L5601FL46OOF

L089LLO701F

57

NOTES
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LOCATION ORDER NOTES

44 3645L2648L

45 L592LL4701F

46 0020F4647L

47 L5F2649L

48 2248LL591L

49 L49OL4090L

50 L59OL0016F

51 8224F92131F

52 2653LO0F

55 F592LL493L

54 4O92LL517L

55 L495L4OI7L

56 L524LL493L

57 4024LF594L

58 4094LL06OOF

59 , 3664L2615L

60 OOFOOF

61 OOFOOF

62 OOFOOF

65 OOFOOF

64 F558L4058L

65 4242L0020F

66 4616L464OL

67 LO95L4654L

68 F558LOOZOF
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LOCATION ORDER NOTES

69 4642LL53OL

7O L493L403OL

71 4633LF543L

72 4043L4245L

73 OO2OF4641L

74 L591L4089L

75 4094LF535L

76 4035LF562L

77 4062LLO99F

78 3679L2615L

79 OFFOOF

80 OOFOOF

81 OOFOOF

82 OOFOOF

83 OOFOOF

84 OOFOOF

85 OOFOOF

86 OOFOOI6F

87 OOFOOZF

88 OOFOOl6F

89 OOFOOF

9O OOFOOF

91 OOFOOF

92 L5100FL5100F

93 OOlFOOF
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LOCATION ORDER NOTES

94 OOFOOF

The following specification tape must immediately follow

the program:

9.0992

OOFOOnF where n = total number of nodes

OOFOOaF where a = total number of

horizontal rows

006OOK

OOFOOblF where ba = number of points in

OOFOObZF horizontal row number a

OOFOObaF

OOZOOK

OOFOOF where Xa = the number one must

OOFOOX1F add to a point in row a to

OOFOOXZF obtain the point below it in row

3 (a + l).

OOFOOXa_1F

OOFOOF

243N
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