A BRIEF STUDY OF WELDED JOINTS OF STRUCTURAL STEEL

THMSIS FOR MHE DEERER OR B.S.
A. J. Hawkins
$193!$

Sleel- Jedug copil Then peeded jruet en

Comengmenting pliughe of mokens
A Livor stuaj of melaca Juints of istructural stoel
A Ticesis Cutulutica to
metronly of
Mromar it am:m corarat0

352
A.. J. Hawkins
Conlidate for the nemmo of
Encholor of eotenco
nerch 2.9?1

THESIS
$\therefore 00.1$

The subjeot of "roldod Joints of struotural steel" was sclected beoouse of its peisonal interest to me. The object of this brief study was to secure data for my own infomation and for the Jarvis Engineerin; Co., who supplied mo Wth the samples for the various tests. Very little information unon this suisjeot is available, ond that whioh is avallable has been in use only a short time, and only by those companies who have had special tests made for their own use. This beine the reason for Jarris Encineerinc Co. desiring information of this k : nd in connection with their purposed types and methods of welaing of strustural steel.

This experinontal study was the oomparison of weided joints with similar rivetel jointse All data coneerning rivets in tansion and shear is known and a comparison of the tro types of joints may be made from the folluwing data as found by test of their special welded joints.

Sanple Ho, 1 was a $5 / 8^{n}$ diameter round atruotaral steel rod with an acetylene taper weld. This rod was tested In tension and found to neok and break at 15,950 年. This wes the actual tonsile strongth of tho rod and the aoetylene weld showod no derects due to the tension test.

Smple No. 2 was a 8/4n dicmoter round etruotural stcel rod with en ecetylene taper weld. This rod was tested in tension and found to break at 24,320 lbs. This break ald not ocour in the weld but in the parent metal adjaoent to the weld. This is ovidence enouch to prove that the steel was defcotive, due to the process of welaing alone.

Round Structural Steel Rods Tested in Tension

$2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4$ \& Weld. Sample TESTED FOR Shear in Weld.

> NotE: This Method USED INSTEAD OF GUSSET PLATE AND RIVETS

Somplo No. 3 was a $5 / 3^{\prime \prime}$ dinnotor round struatural stecl rod with an elcotzio taper meld. miso sarmle mas placed In tension and founs to neole and brock in the rod at 11,060 lbs. The meld showed no defects due to tho tost in tonsion, and may be used as a comparison to tho test or samplo yo. 1 With the acctjlono teper wold.

Sanple Fo. 4 was also a $5 / 3^{n}$ dianoter round structural stecl rod with an elootrio taper woll. This sample nas placed in tonsion and found to neck and brock et 14,000 1bs. showinc no derects in the wold due to the tost. This test oheoks vory olusely with that of semple No. 3.

Sumplo No. 5 was a 3/4" diomoter round etructural stecl rod with an cleotrio toper wold. This samplo was tested In tension and found to neck end broek at $24,680 \mathrm{lbs}$. with no defcots duo to tho process of testing the veld.

Smple lo. 6 vas also a $3 / 4^{\prime \prime}$ ciameter round stiuctural stecl rod with en cleotrio teper veld. This rod was tested in tonsion end was found to neck ond breck at 24,950 lbs. with no doreots in the wold. This 13 also a very cood cheak on the reldin: of sample lo. 5.

Sarmle lio. 7 was oxmoso? of tro $2^{n} x^{2 n} x_{2}^{2}$ encles With ono log or each cagle welded tocether ty a in ifet veld. This reld was medo by punching troo-" holes in one les of ono anclo and oarefully fillin these holes wh th weld after the two ancles had becn olamped toccther tichtly. this suple was tosted in tension, or for shear in the rivet wolds. The first rivet weld shoared at 28,270 lbs., but the scoond
started to puil the stocl or anslo 1 with it. The shoar test was slowly oontinuca and the weld finally choarcd at 29,790 lbs. but left the stecl of ancle 1 ereatly deformed. This type of weld is beinc used. renlacinc, in many caces, the mothod and practioe of cusset plates and rivet construction for similar joints.

Sarple No. 8 was a $5^{\prime \prime}$ etandard I-becm out thon weldo: beck tocether, the weld beinc on oll surfaces of the boom. Mis smple mas tested for tension in the wela in the lower part of the I-beom by a nothod of plaoing tho load in too placos es shown in tho followin- clacron. Tho lond was eppliod unt1l the boam become so doformed thet tho test could be continued no farther. the load applicd mas about 22,000 lbs., end the test proved that the veld mas far stronecr then the bean in bonding and there wero no defoots in the weld arising from tho test. The followine alaura will show how the beom wes supported and the 1 ed applied.

Sample Nio. 9 was mado of a $5^{\prime \prime}$ I-berm in the sarie manner as ample lio. 8 exoont there rore two 4"xons:" plates woldod on the top and bottom as shomn in tho flcure. ih1s sermio wes testod in prectionlly the eame manner as lo. 8 excent the lood was npplic: at one point only, directly over the weld. This somple was obviously much stroncer thon

SAMPLE * 9

5"I-BEAM WELDED ON ALL SIDES WITH 4" $\times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ Plates Welded On TOP AND BOTTOM
(2 point Loading Used - TESted in Bending)
the other one, so the aupports were arranced as shown in the Ifgere, thus inereasinc the load of the testing machine a great cmount and obtaininc a more desired result than if the mow porte had been apaced farther apart. The only informaticm obtalned from this test was that the weld was far atronger than the ample of I-been in bendinge

The lead was carried to 46,000 Lbs., and the only defeet was the cefomation of the web of the I-bean richt at the weld, and the bending of the bean.

Samples No. 10, FO. 11 ware construeted cractiy
 angles out then wolded together, the reld being on all aurfaces of the ancles bat were ground amooth an the outer side of cach ancle. They were supported and loaded as ahown in this diagre.

The lead was carried to 7000 Ibs, before 1t was evident that the wald was much atronger in bending resiatace than the struetaral stoel itself. Theso angles were plattemed ont under

4-ス"×ス"×1/4 Structural StEEL LS
 TEsted In Bending

 SAMPLES * $10,{ }^{*} / 11, \# / 2, * / 3$
 $\begin{array}{ll}2 \angle s & \text { Tested By } 3 \text { Point Loading } \\ 2 \angle \mathrm{~B} \text { TEsted } & \text { By } 2 \text { Point Loading }\end{array}$
 Note: All Welds Ground Smooth On Outside of 45

5"Channel With 4"x1/4" Plate Welded To BACK OF CHANNEL

Note: WELD TESTED FOR BENDING AND ShEAR AT SAME TIME
the load but the weld remaine unchanged and secmed as strong as evor.

Samples Ho. 12. No. 13 wera of the same construction as I:O. 1 j and Ho. 11. The only difforenoo beine in the test made. Those entos wero supported and 1 oded as shom here.

The lied mas corricd to 5,000 lbse and the only deformation was in bending but there were no defects in the wold due to the test. This mothod of construction oould be used in plaoe of the oplico enclo construction at a much lesser oost.

Sample ITO. 14 was a sonewhat difficult sarple to luad but due to the fact that such a struoture is often used In steci construction it was important to obtain aome very cood recults if possible. The inmple was composed of two parts, a stenderd $5^{\prime \prime}$ chennol 1 th a $4 " x_{6}^{1 / n}$ plate woldol to tho back of the abannel, Hith the vold on the uppor side only, es shown in the ficure. This scmple is used in preotioe in supporting brick venecr over doors and windows or any small archos. The exact why in mids this woula be loaded is not known, 80 for the tesi a load was used which would be the naximum in any case. The lad was built up as shorn in the following ficure in auch a manner that the load was almost uniformaliy aistributed.

A load was appilat as shown and carried to 18,000 2bse before eny deform tion was notioable. This is far mare than any loadin: on on arch from vencerina. At tils point the plate started to bend domwards the locine vas continued and was carried 20,000 lbs. and hero the test wos holted. The plate wes bent dorm on the outor edee about $3^{\prime \prime}$ belw its oricinel position. All of this particular deformation wes not in the plato elone, but a croct pert of it occurred in the ohannel 1tself. Tllis sketch will 1llustrate hom the defomation oocurrea.

The weld soemod as strong as provious to the t st cid shorre: no sicns of puling from tie adjacont steel, nor dad it flske In the process of testinc. This emple was not welded on the under side of the plate beomuse it is scldom easy for a velder to weld the under side of a structure when it is in place anl this typo of construation is entircly fleld work. It also makes a muoh smoother struoture for the fittinc of fromes such as doors and windows.

It is seen from these tests, olso from reoent tosts conduoted by many oonstruction ompanies, that the adFantaces end disadvantaces of welded joints are somemat aifferont fran those of riveted joints. The folloring lists
are somo of the advantaces ani disadvantaces of oech type of joint.

Mreted Jointse

Advant acos:-

1. Dependable and calculable strencth.
2. Iificity duc to the addec metal of tho lap or butt joint.
3. nesistance to Fibration, impaot, and to rapid chnnces in tomperaturc.
4. Parts aro dram tichtly tocother.

Disadrantacesi-

1. Difficulty of repair.
2. Inor ased opportunity for corrosion throurh holes and rivor heads.
3. Compronises in design to accomodate riveting macinnery.
4. ookonine of pletos at holes.

Meldod Jointse
Advantaces:-

1. Full seotion of plato is evrilable beoause no holes are neoessary.
2. Low oost.
3. sipecd with wich repalrs may be made.
4. smooth surfices for linincs and Insul tions.
5. Deorcases weint epproximately 15%.

Disadrantacess.

> 1. Tendonoy towrard brittloness of wolds cast in place.
2. Unoertainty of strength.
3. Lack or unifomity in composition betwoen the veld and tho parent netal, resulting in variable oorrosion resistanco.
4. Unirorkmonlike appearanoe of much wolded work. Many architects and builaers have had a longinc desire to ercot a one-hundred ato: builine. This desire mey nom be reolized onl.f efree the developmont of tha new type of elccirlcilly volded flocing mich matavially reduoes the woicht of the structure.

Fooontily a nety floor construction, known as the "battlomenip" tyee, was ennounce and elven its first publio demonstration et E1loxi, :II.s. This flcor is one in whioh stecl pletes and steal beams arc used and ere stitched tojether to form the floomine. Nachines for welaing this tyye of floorIn a have becn decience by the Ceneral Eleotrio Co., so that hand litor is recuired only to ruido the meo ine end the akilled electrio aro wolder is no more nee ed. The speed of this maonine is automatically controlled and ray be edjusted to verious frades of weldice thus elininating eny chence of overn heatin; the porent netal of the weld.

Thia stocl plata floorin: or stecl deok mill ect as a efréer to prevent ony torsional distortion of the build-

Ince won subjeot th oina or earthcuate ection, erd in coneral a tuilaing hevin; tis tipe of ilvor construotion is much more ri:id in every respeot.

Corparative oosts have boen flured for this type of floor usinc a henty erado of linoloum and perhaps a rus to reduce roise, and tho old tipe of concete slab construction with a pood floring end a mes wion wes reguired for culetness. It was fourd that the "batitie-sh1p" flooring with the linoleun coverine wes mich bettor bcocuse of the lomer costs and because there is no chenoe whatsocver of cheintego and crackinc. Also it is consideres in a desicn that is a purt of tha fouruation should fail the floors of this typo rould ensily taso care of the fallure without allowe ins oracirs to eppear.
mis type of floorific is equaliy applicable to residenoes, riltiple story bulldines, and ovon to brideos. For builiinc, construci: in it will geve fiom 20 to 60 pounds per si. ft. of floor in doad welint. In a 75-8tory builaine,
 the sevinc in dead load on the foundations for each column is nearly two million pounds, wich indiontos that 1 ts use will permit on increaso of is peroent or more in the heint of buildincs or in the number of floors aithout increasin E the locds on the fuundations.

Prootioal tests have beon mado in oonnootion with laded roof trasses, One aromwolded roof truss with a

54 ft. span mas erosted and found to withstond the maximum loadine for tho beans and semles and pes zuch rore ri-id
 roof tuss. The watine in preint of this melec tinus bos found to to 15.5 pereont for the entiro roof. In some cases it hes been impossiblo to weld all joints in a structure in the field but new equiment and metrods of construotion are beine introducei whion will enable the wolder to weld all trpes of joints, at presant sme comnanies wold all joints ountructed within the fabileatine shop end rivot ell field goints; others raverse the order tut soon cil joints in atel work vill be constructoe sy the weling piooess only. yray objections have been made by city oominesioners to the noiso of tho rivoting harmer end in ame oases oriers have ben issuas to cirminato the noise of the rivetine homer by cronsin? it or $k, 7$ use of the olectelo wold. Blectrio weleing docs n"t ellwinete all of the aniso of ereotInce a steal frme but it ajes matcilaly lessen it.
leotrio wilaln; hes been cppiled to about eevents buildines, reryin; in hoicht from one to eleven storles, to a creat many ralliocil bricies, to meny stell borces, to some ships, and to many miles of stecl pipe for transportins oil or vater. It is becouse of these epplicatione in meotiss end tests that the desi n of weled steel struoturcs is no 1 :cer fuess mork. Tho factor of efety used is 4.5 , or 6 whioh elves the safe or permiosible stresses used in welded joint desicn.

To cecurs the ereatest viluo possible fron weldinc, the desifn of the main steci mer,bors, as well es of the joints, shoula be made wh wolaine in viciz. Cholf andes are now bein: woldod to colunns.and firders pithin the fabriontine shop thes climineiting a ereat emount of shon heniling of beans, eleders, end column to the difforent purch presses.

Tha builline oode of rany cities does not perm mit a contraotor to use walsod conatruction within the olty. Misa neens thet la me uso the rivitine homen and oreato the undesimble noise fuin. 1 th this in vien most of the
 and perifteine the constmotion and crection of veldad kulgancs.

Aroneg tine firat to rake tic oorcetion whs Dittsficld, lass. It ma tia first oftj to ineormazte welane into its builans code in any fom and the fret onstarn eity to adopt the suericn \quad ilving ociety code. smong tis larcest of cur cities the nes no alid not zoka any ohonge ares- Fhilecelptio. Ner York Cits, Chion o, iolles, Sohencetacy, and Ifttsburin. Eut it is ry oninion the these cities will edopt tho cods pemitilng wilinz as ono meons of securing cuict in the viocity of ho:pitals, botels, epartmont houses, schools, and office bullunces.

ROOM USE ONLY

ROOM USE ONLY
-

