DESIGN, CONSTRUCTION, AND CALIBRATION OF A SIXTY-INCH WTEGRATING SPHERE PHOTOMETER

MHENS FOR THE DEGRDE OR N. S.
Walter Alfred Hedrich
1932

Photonitry
Thel Inategrating ephace phationinear
Tide Chtrineto

SUPPLEMENTARY MATERIAL N BACK OF BOOK

\qquad

-

DESIGN, COISSTRUCTION, AND CALIBRATION

 OF A SIXTY-INCHINTEGRATING SPHERE PHOTOIETER

A Thesis
Submitted to the Faculty of

Michigan State College of

Agriculture and Applied Science
by

Walter Alfred Hedrich
Candidate for the Degree
of
Haster of Science

June 1932

The writer is indebted to the members of the Department of Electrical Engineering and Engineering Shops for their worthy cooperation in this project. He also wishes to express his gratitude to nembers of the Department of Mathematics whose services have been invaluable in the preparation of the theoretical treatment of the subject. For the generous opinions, advice, and criticisms contributed by Dr. J. E. Powell and Dr. W. S. Kimball of this department I am particularly grateful.

Hy gratitude is especially due to Professor L. S. Foltz of the Department of Electrical Engineering for helpful criticisms and generous attention in checking the manuscript.

W. A. H.

Introduction 1
General Considerations 2
Theoretical Considerations 10
Design and Construction, with Photographs 57
Photometric Uses and Nethods 68
Calibration 80

mprenterich

This thesis comprises the desicn, construction, and calitration of a sixty-inch intecrating sphere photor:eter. Unless other ise indicated, the expression "sphere photoreter" in this mork shall invariably refer to the sphere as an auxiliary unit in the photoretry of lieht sources.

If the sphere photometer is to constitute part of the photometric equipnent of a laboratory, it is desirable to desien and dirension the sphere in accordance with the prisciples of laboratory precision and commercial rractice. The features incorporated in the design of this photoneter afford the possibility of photoreterinc over a wide range of luminous irtensities as associated with various tymes of commercial lamps and lichtinc units. The sphere must provide for raric hancling of lamps in quantiter tests. As a mecharical unit, it should be surficiently flexible to permit ready replacerent of rarts, ease of conveyance, and should combine lightness with stability.

It is the purpose of this work to attain a desiralle balance in the desien, construction, and calibration of a sphere intended to meet the requiremonts of laboratory and commercial tests.

CMRDL CORIDRETIOUS

Fistorical Develoment

Early deterninations of total luninous fine from a light source :-ere rade $\because i t h o u t$ the use of intecratire devices. The point by foirt method, consistine of the measurement of candle power of the source at difierent aneles in a vertical plare, was then employed. From these candile nower values the total lurirous output was obtained by sumation of the various zonal fluxes previously conputed. The measurerent of cancle power at various ancles in a vertical plane throuch the source is still in vogue today, larcely for the purpose of deterninine the distribution of luminous intensity. The uns tretrical nature of the source nakes it necessary to rotate the larp about its vertical axis, or to concuct measurements in a nunher of vertical planes throuch the source. Very accurate results can be ontained by the point by point method. Equally reliahle results obtained thouth the use of interratine devices have erphasized the lahorious esrect, of the point by point metrod, and unquestionably justified the use of the intecrating sphere photoreter.

A number of photometric apmiances ::ore devised and ved for obtainine the mean spherical cancle porer of a lanp. Thererere designed to give the $1 . \mathrm{S} . \mathrm{C} . \mathrm{F}$. in a single readine. Disacivantaces inherent to these forms of interators and their practical liritations lead early investicators in this field to turn their attention to the hollow sphere, which mas first investiçated by Dr. Tlibricht in the rear 1900. At that tine Dr. Ulbricht was uninformed of an earlier publication on the dif-
fusion of licht, which appeared in 1893 in the Phil. Vag. and was written by Dr. Sumpner. His photonetric calculations revealed the strifing conclusion that the illumination on the irner wall of the hollo:r sphere is ever where the same, due to diffusely reflected liçht. Obtained unCer the ryothesis of Lambert's cosine law of er:ission, this result was the theoretical foundation for the developrent of the sphere photometer. Apparertly Dr. Surpner dic not maire specific use of tris irportant decuction, however, as applied to photonetric considerations and particularly to the problem of measurine the $h . S$. C. P. ry means of the hollow sphere. Contemporary investicators who dic much to promote valuable experimental work on spheres of different sizes were Floch, Corsepius, larchant, Drir, and lonesch. There has been very little chance in, or addition to the theory of the integrating shere beyond that erbocied in the beriming treatment of the subject. Much has teen done, however, to rale the sphere ketter suited to practical application. In recent years the sphere has served rerarlably well in connection with other methocis of photoretry which are quicler anc more reliarle than the lone established visual comparison process.

Description of the Snhere Protoreter

General.

The interratire sphere is, as its nane implies, an interatire device. It intecrates the illuminatire effect of any source of licht rounted or suspended within its enclosing spherical wall. The latter must be as nearly perfectly diffusing as possible. A srall window of diffusion glass replaces the equivalent surface area on the irner wall
of the sphere. According to the theory of the sphere, if a source of licht be placed an where rithin the enclosure, every point on the inner surface will receive both direct and reflected lieht. If a wite, diffusely reflectine, and opaque screen be interposed between the source of light and the window in such a manner that the latter is shielded from direct radiation only, the illumination on the indow will be due to diffusely reflected light, and will te directly proportional to the mean spherical candle nower of the source. Since the tot:al luninous output of the source is proportional to the li. $2 . C . P$. , the brichtness of the window is a measure of the total lumens emitted by the source. Trobably the most general use of the sphere photometer is confined to the measurement of this total luninous output, althouch it serves a number of other practical purposes wich will be mentioned later. The mathematical development of the theory assunes an empty sphere with continuous inner surface obeving Lamiert's cosine law of emission. In order to realize a practical development, certain variations are unavoidable. They are caused by the necessary use of screens, imperfect diffuse reflection from sheere surface, selective absorption by paint, presence of non-luminous bodies within the sphere, imperfect diffusion of window, position of lamps and lur.inaires in the sphere, inconstancy of wall paint, and difference in window and wall absorption factors. These are some of the most important sources of error in the sphere. Thile it is possible to minimize these errors throush the selection of suitable methods of measurement or the arplication of genoral corrective mensures to overcome such departures, it is nevertheless essential to investiagate the order and macnitude of some of these sources of error inasmuch as they may become appreciable in certain

Photometric measurements. This quantitative treatment of the matter of errors is discussed in the section on theore'ical considerations.

Ecreens.

The screen, wich is necessary for the proper functionine of the sphere phometer, reauces the illurination on the wincorr in two ways. fll direct lieht from the source intercepted by the screen must first be reflected from the latter before it can reach the diffusing wall of the sphere. Hence this flux is diminished by an amoun equal to the screen absorption before it illuminates the sphere, from whence it is reflected to the window. The screen acts as a secondary source of lower intensity. The screen also obscures a portion of the surface of the sphere from tre window. Light from this hidden area must be reflected to some other portion of the surface winch re-rerlects it to the window. Cuch licht flux reaching the window has suffered greater absorption and in consequence the window illumination due to this component is lower. Since the screen and the inner surface of the sphere have the sare ciffusine quality, that side of the screen facine the rindoy will reflect ligh from the sphere to the window and thus compensate for some of the loss. $\mathrm{E} V$ increasinc the size of the sphere, the screen error may be sufficiently reduced to render its effect nefliçible. The ratio of screen surface to sphere surface is less. The screen absorption is less in the sare proportion. woro other important considerations in reducine the screen error are its dimersions and relative position in the sphere. This matter is civen quantitative attention in the discussion under "Theoretical Considerations."

Ion-luminous Rodies within the Sphere.

Included in this classification are screens and their fittines, lamp suprorts, lanp fittincs, shades and reflectors. All of these will absorb part of the direct licht from the source. The error involved due to the prescnce of these bodies is materially reduced by Eiviñ all non-luminous hodies except the source and accessocies inteeral to it, a matte white finish like that used on tho inner wall of the sphere. Ionuniforin diffuse anc specular reflection due to lamp shades, reflectors, etc., constitute a departure from ideal conditions. This and other errors resultine fron causes heretofore outlined are minirized by following tre substitution method in photometerine.

Sphere Paint.

The material used to render the inner surface of the sphere diffusely reflectinc must closely approxinate theoretical requirements. The latter derand non-selective absorption, perfect diffusing quality, and a uniform and minimum absorbine nower. Departure fron these specifications must be expected. Furthermore, the diffusinc paint should be permanent over a lone period of time and not arprecially affected by moisture or moderate chances in temperature. From time to time the surface rust be refinished, as it becomes soiled due to collection of dust and foreign metter. Sefinisting should not be done over the soiled surface. i sphere coating made up of a perament oil base should form the foundation for the finishing paint. The latter should he readily removable when soiled, by the application of a suitable and quick-actine solvent. It is obvious that such a finishins naint will expecite the re-
finishine process. It is not marranted, however, unless it possesses to a high degree the qualities prescrihed hy theoretical requirements.
"indow •

The window consists of an approrriate diffusion glass, wich may be located almost anyrhere on the inner surface of the spere. It is desirable to have the window flush with the inner surface in order to rinimize the error that otherwise would exist trrough the discontinuity. In practice, the offset is small. In order to facilitate measurements with a bar photometer, the rindow is generally located so that the line through its center and normal to the surface lies in the equatorial plane. This position of the windor affords ereater flexibility in obtaininc measurements with various types of photometric devices. The window openine is small compared to the inner surface of the sphere. Glass used for this purnose must te uniformly and hichly diffusine as well as non-selective in absorbing power. It is important that the interior surface bo matte, preferably of the same diffusing quality as that of the sphere paint. The windor error can be mininized by careful wormanship and selection of class.

Iethod of Obtainine Photometric Palance.

Tro eeneral methods of obtaining a photometric balance are customarily classified as the "Direct" and "Eubstitution" procedures. The former, sometimes called the "Direct Comparison" method, involves the direct comparison of the test lamp with a calibrated standard lamp. The rethod is simple, but open to objection oring to the possibility of errors which cannot be elirinated from the measured results. Although the
errors inherent to the integrating sphere become less as the diameter of the latter is increased, the substitution method should ve used to insure maximu accuracy under the most unfavorable conditions. This method involves the use of a third lizht source lmom as a comparison lamp. It must be a constant source but need not be a calibrated standard. A standard lamp and a test lamp are interchanced as sources of illumination within the sphere. Conditions rithin the sphere will then have the same effect on the window illumination in both cases. This illunination in each case is compred with the illurination produced on the photoretric screen from the comparison lamp. The readines obtained from the settines for photonetric balnnce in each case are evaluated r the anplication of the Law of Inverse Squares, whereby the candle porer of the tost lamp is obtained in terms of thet of the standard lamp. In some cases the scale on the photometer har is eradurted accordine to the Inverse Square Lav or in lumens. This is done to simplify the work. The use of either method for the purpose of determinine the R. S. C. P. or total luminous output of the source, assures a lnowledee of the constant of the sphere as determined by calibration.

When the candle power of the test lamp is much in excess of that of the comparison lamp, the quantity of licht transmitted from the gindow to the photoneter head is reduced by means of an iris diaphracm. This is, in effect, a variable aperture for control of the licht flux from the window.

Trequently the light fron the test source and that from the comparison lamp show slight difference in color. In making a photometric balance this color difference is a disturbing factor, often preventing satisfactory comparison. Colored Elass plates, mom as color filters,
of lno:m transmission coefficients for the ranees of spectrum over Wich they are to be used, are interposed either between the rindow and the photoretric head or ketiven the latier and the comparison lamp. Color filters and iris diaphrans serve to obtain a :ell defincd and reliable photometric balance.

Illurination Ene to Diffusely Reflected Lieht.

Let r rerresert the radius of the sphere. issume inner surface of sphere to give perfectly diffused and non-selective reflection, and let L be a source of licht of rean spherical cande rower I_{0}. Iet $\boldsymbol{\phi}$ represent the total luners flux eritted by L.

Fig. 1

Then $\boldsymbol{\phi}=\boldsymbol{y} \boldsymbol{r} \boldsymbol{I}$. recardless of the candle pover distribution of L. It is desired to investigate the illumination at any point A on the surface of the sphere.

Let B represent any other point on the surface, and consider the differential element of area $d B \quad a t B$. since $\boldsymbol{\phi}$ is the total flux from L, let $d \phi$ represent the lumens flux incident on $d B$. The illumination at B is $E_{B}=\frac{d \phi}{d B}$ lumens per square centimeter (phots). By hypothesis there is no specular reflection, hence let k represent the diffuse reflection factor, where k is defined as the ratio of light flux diffusely reflected from a surface to that incident on it. Then $\frac{d \boldsymbol{\phi}}{\boldsymbol{d} \boldsymbol{B}} \cdot$ te represents lumens per sq . cm . reflected from $\mathrm{d} B$. Since the surface of the sphere gives a reflected flux distribution following Lambert's Cosine La: of Emission, this quantity represents the brightness of the surface att B.

$$
f=\frac{d \phi}{d \boldsymbol{\theta}} \cdot \boldsymbol{\beta} \text { lamberts (emitted lumens } \mathrm{fer} \mathrm{sq} \cdot \mathrm{~cm} . \text {) and is the }
$$

same in all directions from within the sphere. Then

$$
f=\frac{1}{\pi} \frac{d \phi}{d \boldsymbol{B}} \cdot k \text { is the brightness in candles per sq. cm. }
$$

$\boldsymbol{k} \cdot \boldsymbol{d} \phi=\boldsymbol{d} \phi_{2}$ gives the reflected flux from d, and the brightness at B may also be formulated according to

$$
\mathscr{C}=\frac{1}{\pi} \frac{d \phi_{n}}{d B} \text { candies per sq. cm. }
$$

The luminous intensity of $d B$ in direction $B O$ is

$$
I_{\Delta o}=\frac{1}{\pi} \frac{d \phi}{d \theta} \cdot \hbar \cdot d B=\frac{1}{\pi} d \phi \cdot k \quad \text { candles. }
$$

luminous intensity of $d B$ in direction $P A$ is

$$
I_{m}=\frac{1}{m} \cdot d \phi \cdot k \cos \varepsilon \text { candles. }
$$

The Inverse Square Law gives the illumination at A :

$$
E_{A_{1}}=\frac{d \phi \cdot k \cdot \cos \varepsilon \cdot \cos \varepsilon}{\pi d^{2}} \quad \text { lumens per sq. cml. (phots), }
$$

but $d=2 t \cos \varepsilon$,
therefore $E_{A_{1}}=\frac{d \phi \cdot k \cdot \cos ^{2} \varepsilon}{4 \pi r^{2} \cos ^{2} \varepsilon}=\frac{d \phi \cdot k}{4 \pi r^{2}}=\frac{d \phi \cdot k}{S}$, where $S=4 \pi \boldsymbol{r}^{2}$ is the area of the sphere.
$\boldsymbol{E}_{\boldsymbol{A}}$ is the illumination at A due to the flux $\boldsymbol{d} \boldsymbol{\phi}$ incident on B and once reflected. The expression for \boldsymbol{E}_{A}, is obviously inciepencient of $\boldsymbol{\mathcal { E }}$, and hence $\boldsymbol{E}_{\boldsymbol{A}_{\boldsymbol{\prime}}}$ is the sarnie for all positions of A. It folloris that all elements of area on the surface of the sphere are equally illaminated hey diffusely reflected light emitted from any surface element on the encore and orevire Iartert.'s Cosine Lar of mission.

That this is true for trice and multiply reflected light ray be seen by considering the illumination at A due to twice reflected lilt. Consider once reflected light at any point C on the surface of the sphere. Sone light flux from C will be reflected diffusely alone the path Ch. From the above discussion, the illuriration at C due to once reflected licht is

$$
E_{G}=E_{A_{1}}=\frac{d \phi \cdot k}{4 \pi r^{2}}
$$

Frichtness of dC is $\boldsymbol{f}=\frac{d \phi \cdot \boldsymbol{k}^{2}}{4 \pi h^{2}}$ larterts.
Expressed in canciles per sq. cr., $f=\frac{d \phi \cdot k^{2}}{4 \pi^{2} h^{2}}$.
Intensity of illumination (candle power) of $d C$ in direction $C A$ is

$$
I_{C A}=\frac{d \phi \cdot k^{2}}{4 \pi^{2} \Lambda^{2}} \cdot \cos \theta \cdot d C
$$

Illumination at A due to twice reflected list is

$$
\begin{aligned}
& E_{A_{2}}=\frac{d \theta \cdot h^{2} \cos \theta \cdot \cos \theta d C}{4 \pi^{2} h^{2} \cdot l^{2}} \text { phots. } \\
& \text { Since } l=2 h \cos \theta, \text { therefore }
\end{aligned}
$$

$E_{A_{2}}=\frac{d \phi \cdot \phi^{2} \cdot \cos ^{2} \theta \cdot d C}{4 \pi^{2} h^{2} \cdot 4 R^{2} \cos ^{2} \theta}=\frac{d \phi \cdot \phi^{2} \cdot d C}{\left(4 \pi R^{2}\right)^{2}}=\frac{d \phi \cdot \phi^{2} d C}{S^{2}}$ phots.
Since $\boldsymbol{\theta}$ does not appear in the final expression for $\boldsymbol{E}_{A_{2}}$, the illunination at A due to twice reflected licht is independent of the position of $A . \mathcal{E}_{A_{2}}$ is the illumination at A due to twice reflected flux $\boldsymbol{d} \boldsymbol{\phi}$ from $d C$. En extension of the above to multiply reflected light leads to the following important result:

All points on the surface of a share are equally illuminated by diffusely reflected light emanating fran every irfiritesiral element of that surface.
The total illumination at A due to all light flux from L once reflected is readily obtained as

$$
{ }_{t} E_{A_{1}}=\int_{0}^{\phi} \frac{d \phi \cdot \beta}{S}=\phi \frac{\beta}{S} \quad \text { phots }
$$

The total illumination at Λ due to all flux from L twice reflected is

$$
{ }_{t} E_{A_{2}}=\int_{0}^{\phi} \int_{0}^{S_{k^{2}} d \phi d C} \frac{S^{2}}{S^{\phi} \lambda^{2} S} \underset{S^{2}}{S^{2}} d \phi=\frac{k^{2}}{S} \cdot \phi
$$

Similarly,

$$
\begin{aligned}
& { }^{r 1 y,} E_{A_{3}}=\frac{k^{3}}{S} \phi \\
& E_{A_{n}}=\frac{k^{\psi}}{S} \phi \\
& ---k^{-} \\
& { }_{t}^{A_{n}}=\frac{k^{n}}{S} \phi
\end{aligned}
$$

The resultant illumination at A due to an irfiritude of reflections is

$$
\begin{aligned}
& R_{A}^{E_{A}}=\frac{k_{\phi} \phi}{S}+\frac{k^{2} \phi \phi}{S}+\frac{k^{3} \phi}{S}+\cdots+\frac{k^{\prime \prime} \phi}{S}+\cdots \\
& R_{A}=\frac{k_{\phi}}{S}\left(1+k+k^{2}+k^{3}+\cdots+\cdots+k^{4}+\cdots\right.
\end{aligned}
$$

It is known that the infinite series within the parenthesis convenes
for all values of k within the interval $-/<\nless \ll 1$ and defines the function $f(k)=\frac{1}{1-k}$ for all values of k within t $\because: i$ is interval. In practice, k :rill always lie in the interval $0<k<1$;

Discussion of Results.

Introducing the direct illumination from source I, the result is

$$
{ }_{R} E_{A}^{\prime}=\frac{I_{B} \cos \beta}{\rho^{2}}+\frac{\phi}{4 \pi \Lambda^{2}} \cdot \frac{k}{1-\hbar} \quad \text { phots. }
$$

The illumination at A due to direct rave from I is governed entirely by the photometric distribution of light from the source and its renafive location within the sphere.

The significance of the expression $E=\frac{\phi}{4 \phi \mu^{2}} \cdot \frac{\phi}{l-\notin}$ is at once aprarent. The illumination at and point on the surface of the snterc due to diffuse reflected light is directly proportional to the total luwens exited from the source. (Perfect Diffusion)

Te may $\operatorname{mrite} E_{A}^{E}=\frac{4 \pi I_{0}}{4 \pi r^{2}} \cdot \frac{k}{1-k}=\frac{I_{0}}{r^{2}} \cdot \frac{R_{0}}{1-k}$ phots
from which it is seen that the illumination is proportional to the mean spherical candle porer of the source. If at the point \therefore a small :indow of diffusion glass is inserted and shielded from the direct rays of light coning from I, the illumination of the window will be directly proportional to the total luminous output of the source. Thus by moaspring the illumination at the window, either the mean spherical candle power or the total luminous out put of the source can te readily calculated. It is likewise significant to note that $\boldsymbol{R}_{\boldsymbol{A}} \boldsymbol{E}_{\boldsymbol{A}}$ is the sara regard less of the position of the source L within the sphere. In practice, however, the source should not te made to approach the mall of the sphere too closely; otherivise, the error introduced in consequence of later considerations may become appreciable. A single measurement of
 carefully executed, is sufficient to give a very fair value of the i. . C. F. or total luminous output of the light source under consideration. Certain refinements in construction and methods serve to minimize the error within the limits commensurate with the size of sphere employed. The following consideration will serve to clarify the simile relations involved in the direct and reflected illumination. The average illumination due to direct light from L is

$$
E_{A r}=\frac{\phi}{4 \pi \Omega^{2}}=\frac{I_{Q}}{\Omega^{2}} \quad \text { lumens per sq. cm. (phots) }
$$

The average total illumination is

$$
{ }_{T} E_{A V}=E_{R}+E_{A V}=\frac{I_{0}}{R^{2}} \cdot \frac{k}{1-k}+\frac{I_{0}}{\Lambda^{2}}=\frac{I_{0}}{R^{2}} \cdot \frac{1}{1-k},
$$

in which $\boldsymbol{E}_{\boldsymbol{R}}$ is synonymous with $\boldsymbol{E}_{\boldsymbol{A}}$ as employed in the above.

Assuming an average k, for example, $k=0.80$,

$$
\begin{array}{ll}
E_{R}=\frac{I_{0} \cdot 0.80}{\Lambda^{2}(1-0.80)}=4 \frac{I_{0}}{\Lambda^{2}} \quad \text { lumens per } \mathrm{sq} \cdot \mathrm{~cm} \\
T^{E_{1 V}}=4 \frac{I_{0}}{\mu^{2}}+\frac{I_{0}}{\Lambda^{2}}=5 \frac{I_{0}}{\Lambda^{2}} \quad \text { lumens per } \mathrm{sq} . \mathrm{cm}
\end{array}
$$

The average total illumination would be five times as great as the illurination of the will if the latter were black with a zecoreflection factor. tain by placing the source L at the center of the sphere, the average direct illumination would be $\mathcal{E}_{A V}=\frac{\boldsymbol{L}_{0}}{\mu^{2}}$ and in the event L is a source of uniform intensity in all directions, the illumination on the rall you ld be the same at a points and equal to

$$
E_{u}=\frac{I_{0}}{\Lambda^{2}} \quad \text { limens per sq. cm }
$$

Jarring invisible radiation, the source supplies energy in the form of visible radiation sufficient to balance the loss due to absorptron. If a is the absorption factor for the inner surface of the sphere, the total absorbed light flux is $\boldsymbol{\phi}$, and the total reflected flux is $\boldsymbol{\phi} \cdot \frac{\boldsymbol{1}-\boldsymbol{a}}{\boldsymbol{a}}$. These deductions follow from elementary considerlions.

Iicht flux absorbed

Light flux reflected

First absorption $\boldsymbol{a} \boldsymbol{\phi}$ First reflection $(1-\boldsymbol{a}) \boldsymbol{\phi}$

Total absorbed flux $=a \phi+a(1-a) \phi+a(1-a)^{2} \phi+\cdots+a(1-a)^{2} \phi+\cdots$

$$
" \quad n=a \phi\left[1+(1-a)+(1-a)^{2}+\cdots \cdot \cdot+(1-a)^{n}+\cdots \cdot\right]
$$

Let \mathscr{E}_{n} represent the sum of the first n terms of the series in the parenthesis. Then

$$
S_{n}=\frac{1}{a}-\frac{(1-a)^{n}}{a}
$$

$$
\lim _{n \rightarrow \infty} S_{n}=\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{a}-\lim _{n \rightarrow \infty} \frac{(1-a)^{n}}{a}
$$

$$
\text { since }(1-a)<|1|, \quad \lim _{n \rightarrow \infty} \frac{(1-a)^{n}}{a}=0
$$

$$
\text { Therefore, } \quad \operatorname{Lim}_{n \rightarrow \infty} S_{n}=\frac{1}{a}
$$

$$
\text { Hence, total absorbed flux }=a \phi \cdot \frac{1}{a}=\phi
$$

Similarly,

$$
\begin{array}{rlrl}
\text { total reflected flux } & =(1-a) \phi+(1-a)^{2} \phi+\cdots+(1-a)^{n} \phi+\cdots \\
" & " & =(1-a) \phi\left[1+(1-a)+(1-a)^{2}+\cdots+(1-a)^{n}+\cdot\right] \\
" & " & " & =\phi \frac{1-a}{a}
\end{array}
$$

The source supplies every to overcome the loss ϕ, which is constant as lon:- as the quality of the reflecting medium and the luminous output of the lamp remain the same.

The window in the mall of the sphere may have an area of $t \mathrm{sq}$. cnn. The flux incident on the window is $\phi_{w}=E_{R} \cdot \boldsymbol{A}$.

$$
\phi_{w}=\frac{\phi A}{4 \pi r^{2}} \cdot \frac{k}{1-k}=\frac{\phi A}{S} \cdot \frac{k}{1-k} \quad \text { lumens }
$$

rightness of window as viewed from outside is f_{w}.

$$
G_{w}=E_{R} \cdot \boldsymbol{J} \text { lamberts, in which } \boldsymbol{J} \text { is the coefficient of transmission }
$$ for diffusion glass.

$$
\begin{aligned}
& f_{w}=\frac{E_{R} \cdot J}{\pi} \text { candles per sq. cr. } \\
& f_{w}=\frac{\phi}{S} \cdot \frac{J k}{\pi(1-k)}=\phi \frac{J k}{4 \pi^{2} r^{2}(1-k)}=K \phi \text { candies per } \mathrm{sq} \cdot \mathrm{~cm} \cdot
\end{aligned}
$$

r is the so-called constant of the sphere. The constant of the sphere as determined by calibration can be formulated mathematically in a nombet of mys, depending upon wether the brightness or the luminous intensity of the diffusion glass window: is measured. It is neither necessay to know or to determine the values of k and \boldsymbol{J}, as these quintidies are bodied in K as determined by calibration.
$K=\frac{b_{w}}{\phi}=\frac{\boldsymbol{f}_{w}}{4 \pi I_{0}}$, in which f_{w} is expressed in candies per sq. cm., $\boldsymbol{\phi}$ represents total luminous output, and I_{0} is the li.S.C.P. of light source.
\therefore cain, since $I_{w}=f_{w} \cdot A_{w}, K=\frac{I_{w}}{A_{w} \phi}=\frac{I_{w}}{4 \pi A_{w} I_{0}}$, in wish A_{w} is the area of the rincio\% in sq. cr., and I_{w} is the normal candle power of the window.

However, the constant oi the where r: bise calculated to conform with the simple ratios $\frac{f_{w}}{\phi}, \frac{f_{w}}{I_{0}}, \frac{I_{w}}{\phi}, \frac{I_{w}}{I_{0}}$; whence it should be observed that the Y 's are essentially different. K may also be expressed as the reciprocal of these ratios. Favinc obtained Y by mensurfing the brightness of the window as even by a source of boom total lumens $\boldsymbol{\phi}$, the luminous output o? a jest source wy be readily obtanned as $\boldsymbol{\phi}_{\boldsymbol{t}}$, in which $\boldsymbol{\phi}_{\boldsymbol{t}}=K \boldsymbol{f}_{\boldsymbol{t}}$, where $\boldsymbol{f}_{\boldsymbol{t}}$ is the brightness of the window due to the test lamp, ϵ messed in candles per sq. cm.

Effects of lion-Luminous Eodies within tre Sniere
 unon Foriulations jeduced under Ideal Conditions

Tre presence of non-lwinous bodies in the sphere such as the screen, lamp fixtures, supporting devices for lighting uni亡s, etc., must have an effect on the uniform illumination produced on the diffusing surface within, for these bodies absorb sore of the direct as well as reflected licht flux. Point sources of illumination rust be excluded fron the discussion, for all practical sources of licht have firite dimensions. There follows a discuscion of the effect of nonluminous zodies within the sphere unon diffusely reflected light.

Mon-Iuminous Eodies within the Sphere

 and their Effect upon Diffusely Reflected Light.Consider a non-lurainous diffusely reflectine body in screened from all direct rays of light, and let the surface aren of in be U. Its reflection factor is $\boldsymbol{K}_{\boldsymbol{\mu}}$. If M occupies any position in the sphere such that it receives only reflected licht, it will absorb a snall amount of licht from each of the infinite reflections intercepted bre its outer surface. See Fiz. 2. Let dU represent a differential eleront of area on the surface U. A simple photometric calculation will disclose that any surface :rhose dimensions are ne-lieible in comparison with the distance from the source of light to the surface will have an illurination $\boldsymbol{E}^{\prime}=\boldsymbol{\pi} \boldsymbol{b}$, recardless of the orientation or position of this element of surface $d U$ within the sphere. The quantity b represents the unifora brightness of the source; namely, the
interior surface of the sphere. It may be well to establish the relation $E^{\prime}=\pi b$ now, and then proceed with the discussion.

Referring to Fig. 2, consider a sphere of inner radius r, and whose inner surface has a uniform brightness b. The brightness of any element of area on the inner surface of the sphere will, therefore, be the same when viewed from every direction, and its luminous intensity

will vary as the cosine of the angle of emission. Nathematically, $I_{a}=b \cdot d A$, where I_{a} is the candle power in any direction a from the normal to the surface $d S_{1}$, and $d A$ is the projected area $\mathrm{dS}_{1} \cdot \cos \alpha$. Let P be any point within the hollow sphere and $d P$ a differential element of area free to assume any fixed position at P. Since $b d S_{1}=I_{n}$ is the normal candle power of $d S_{1}$ in direction 10, $b d S_{1} \cos \alpha=I_{\alpha}$ is the candle power of $d S_{I}$ in direction 1P. But $\mathrm{dS}_{1} \cos \alpha=\mathrm{dA}$, therefore, $\mathrm{bdA}=I_{\alpha}$, and
$\frac{f \cdot d A \cdot \cos \theta}{n_{1}^{2}}=d E_{p}^{\prime} \quad$ i: the illumination or incident flux density at P due to dS_{2}.
since $d A=\mu_{1} d \theta \cdot \mu_{1} \sin \theta d \phi=\mu_{1}^{2} \sin \theta d \theta d \phi \quad$, therefore $\frac{f \cdot d A \cdot \cos \theta}{r_{1}^{2}}=\frac{f \cdot r_{1}^{2} \sin \theta \cos \theta \cdot d \theta \cdot d \phi}{r_{1}^{2}}=b \cdot \cos \theta \sin \theta d \theta d \phi=d E_{p}^{\prime}$ Hence $d E_{p}^{\prime}=f \cos \theta \cdot d \omega$, where $\frac{d A}{n_{1}^{2}}=d \omega=\sin \theta d \theta d \phi$ is the solid anele subtended by $d \therefore$. If E_{p}^{\prime} represents the total illusmination received on the right side of $d P$, then $E_{p}^{\prime}=\int d E_{p}^{\prime}=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} t \sin \theta \cos \theta d \theta d \phi=2 \pi b \int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta d \theta=2 \pi b\left[\frac{\sin ^{2} \theta}{2}\right]_{0}^{\frac{\pi}{2}}$ a. $\quad E_{p}^{\prime}=\frac{1}{2} \cdot 2 \pi=\pi b \quad$ incident lumens per sq. cr. To incident flux density on the onnosite side of $d P$ is

$$
\begin{gathered}
E_{p}^{\prime}=\int_{\frac{\pi}{2}}^{\pi} \int_{0}^{2 \pi} b \sin \theta \cos \theta d \theta d \phi=-2 \pi b \int_{\frac{\pi}{2}}^{\pi i n} \theta \cos \theta d \theta=-2 \pi b\left[\frac{\sin ^{2} \theta}{2}\right]_{\frac{\pi}{2}}^{\pi} \\
E_{p}^{\prime}=\pi b \quad \text { lumens per sq. cm. }
\end{gathered}
$$

Thus the flux density is the sane at every point within the sphere, and hence the illumination or incident flux density will be the are at every point on the outer surface of a body r immersed in the flux within the sphere. This result also holds for mention of any wave length λ. It is interesting to note the reciprocal case, where the flux exited per sq. cm. area of uniform brightness b is $E^{\prime}=\pi b$. This accounts for the existence of the conversion factor π whereby brightness emressed in candles fer sq. on. can te converted to lariberts (merited lumens per sq. cm.).
low, if E represents the total uniform incident illumination on the inner surface of the sribere, then
$\frac{\boldsymbol{E} \boldsymbol{k}}{\boldsymbol{\pi}}=\boldsymbol{b} \quad$ candles rear sq. cm. uniform brightness of sphere.
Therefore, $r b=E=E^{\prime}$ is the illumination or incident density in lupens nee sq . cm. at every point on surface of $\overline{\mathrm{I}}$, and $\pi \mathscr{H}=E \boldsymbol{\&} \boldsymbol{U}=\boldsymbol{\phi}_{\boldsymbol{N}}$ is the total flux incident on II in lumens. Of this, I absorbs $\phi_{N}\left(1-\mathcal{R}_{\mu}\right)=E \cup \notin\left(1-\mathcal{R}_{\mu}\right) \quad$ lumens. Total flux incident on the sphere to five it an illumination E mould be $\phi=4 \pi \boldsymbol{\Lambda}^{2} E$ lumens. Of this, there is absorbed a flux equal to $4 \pi h^{2} E(1-k)$ lumens. The total loss of flux due to absorption within the enclosed sphere must be equal to $\boldsymbol{\phi}$.
Hence, $4 \pi R^{2} F(1-\mathcal{R})+E U R\left(1-\mathcal{R}_{n}\right)=\phi \quad$. Solving for I, we have $E=\frac{\phi}{4 \pi h^{2}(1-\alpha)+U \beta(1-\beta u)} \quad$ lures for sq. cr: The averse direct illumination is $F_{A V}=\frac{\&}{4 \pi h^{2}}$. Therefore, $E_{R}=E-E_{A V}-\frac{\phi}{4 \pi n^{2}(1-k)+U k\left(1-k_{R}\right)}-\frac{\phi}{4 \pi r^{2}}$.
were E_{R} is the illumination on the surface of the sphere due to difffuse reflected lint. Removing the body II from the sphere, the illusrination due to diffuse reflected lint mould then be

$$
E_{R}=\frac{\phi}{4 \pi \Omega^{2}} \cdot \frac{k}{1-\beta}
$$

Thus the illumination on the wall of the sphere and therefore at the window has keen dirirished by an amount $\Delta \operatorname{EP}_{\boldsymbol{p}}$ due to the presence of IV.

$$
\begin{aligned}
& \Delta E_{R}=\frac{\phi}{4 \pi h^{2}} \cdot \frac{k}{1-k}-\frac{\phi}{9 \pi h^{2}(1-k)+U k\left(1-k_{n}\right)}+\frac{\phi}{4 \pi R^{2}} \\
& \Delta E_{R}=\frac{\phi}{4 \pi h^{2}}\left[\frac{k}{1-k}+1-\frac{4 \pi h^{2}}{4 \pi h^{2}(1-k)+U k\left(1-h_{k} k\right.}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Delta E_{R}=\frac{\phi}{S}\left[\frac{k}{1-k}+1-\frac{S}{S(1-k)+U k\left(1-k_{u}\right)}\right] \\
& \Delta E_{R}=\left[\frac{1}{(1-k) S}-\frac{1}{S(1-k)+U k\left(1-k_{n}\right)}\right] \phi
\end{aligned}
$$

It was assumed that b represents the uniform brichtress of the sphere, which in practice is not true because no matte surface obeys Lanhert's Cosine Law exactly. Nevertheless, the ratio of diffuse reflected light to direct light in the sphere is so large as to reader the error due to assumed uniform brightness, neflicible. The wall of the sphere can be mace to meet the requirements of perfect diffusion to a decree satisfactory for all laboratory and practical measurements.

The last expression: ainoro for ΔE_{R} can be written
(1)

$$
\Delta E_{R}=\frac{\phi}{(1-k) S}\left[1-\frac{1}{1+\frac{4 k\left(1-k_{R}\right)}{(1-k) S}}\right]
$$

and shows at once the effect on the window illumination with chances in U. Accessories within the sphere such as screens, fittings, supports, etc., which are not a part of the lamp or lighting unit, are customarily coated with the same diffusing paint as employed for the inner surface of the sphere. For these parts then, $k_{u}=k$, and the above expression simplifies to

$$
\begin{equation*}
\Delta E_{R}=\frac{\phi}{(1-k) S}\left[1-\frac{1}{1+\frac{4 k}{S}}\right] \tag{2}
\end{equation*}
$$

It follows that the constant of the sphere K decreases with increasing values of U, since K is proportional to $F_{\ldots} \cdot K=\frac{\boldsymbol{b}_{w}}{\boldsymbol{\phi}}=\frac{E_{R} \boldsymbol{J}}{\boldsymbol{\phi}}$.

The expression (1) for $\Delta E_{P^{w}}$ would indicate that the recuction in windo: illumination due to the presence of a non-lminous body In deperds entirely unon the surface area and absorption factor of \because, anc: is independent of its position in the field of reflected lizht. Very accurate experimental work would undoubtedly disclosc sone variation in ΔE_{R} with chance of position of $I T$. To account for this change which, it is reasonable to believe, must be well witrin the allowable lirit of error, ereator refinement is necessary in the aralysis.

The hirnothesis uncerluire tre corivation of $\Delta E_{\mathcal{P}}$ assumed the resultant illumination E due to direct and reflected licht to te uniform over the incer surface of tho sphere. Likerise, it assumed a diffusely reflecting body 3 with no mention relative to the degree of diffusion. $2 l l$ foreign bodies in the sphere exceft polished fittings, glass, porcelain, metal, and sirilar surfaces strone in specular reflection are more or less diffusely reflecting or transmittinc, but to a varyine and lesser decree than the imer surface of the sphere. Purther considerations will disclose the imnortance of remerirg all bodies within the spiere excent the lamp or lichting unit includinc reflectors, shades, and integral accessories, diffusely reflectinc, preserably usirc the sane diffusire paint employed for the inner surface of the sphere.

The body I in tre precedine discussion ray be terned an isolated body. The term "isolated" refers here to all objects within the sphere wich are wolly distirct from the source and its auxiliary equipment. It is important to investimate the effect of an isolated rody upon $\Delta \boldsymbol{E}_{\boldsymbol{R}}$ under the assumption that $I f$ is acain diffusely reflectire and the inner surface of the sphere is pronouncedy :on-uniformly lifhted.

```
Effect of Isolated Podies vi thin the Non-TMiformly
Illuminated Sphere uron Diffusely Reflected Light.
```

The total illumination at any point P on the inner wall of the sphere varies for different positions of P except those screened from direct light, and was found to be

$$
E_{A}=\frac{j_{B} \cos \beta}{\rho^{2}}+\frac{\phi}{4 \pi r^{2}} \frac{k}{1-k}
$$

In the following, consider the isolated diffusely reflecting body N within the sphere. Then the distribution of luminous intensity from the source is very irregular, it becomes necessary to separate the losses at N due to direct and reflected light received on the sphere. If ϕ_{t} is the loss of flux due to absorption $b y$, N, then

$$
\phi_{t}=\phi_{R}+\phi^{\prime}
$$

where $\phi_{R}=E_{R} k\left(1-k_{k}\right) \boldsymbol{U} \quad$ represents the flux absorbed by N as a result of the uniform illumination E_{R}, and ϕ^{\prime} is that absorbed resulting from the non-uniform component $\frac{I_{\beta} \cos \beta}{\rho^{2}}$. The sum of the losses in the sphere must equal $\boldsymbol{\phi}$. Therefore, $\quad E_{R} \notin\left(1-K_{U}\right) U+\phi^{\prime}+(1-k) \phi+4 \pi \kappa^{2} E_{R}\left(1-K_{R}\right)=\phi$ from which $E_{R}\left[k\left(1-k_{u}\right)\left(x 4 \pi \kappa^{2}(1-k)\right]=k \phi-\phi^{\prime}\right.$
and $\quad E_{R}=\frac{k \phi-\phi^{\prime}}{\alpha\left(1-\phi_{\mu}\right) U+4 \pi \mu^{2}(1-k)}$
lumens.

If $\boldsymbol{\phi}^{\prime}$ is neclicible compared to $t \boldsymbol{\phi} \boldsymbol{\phi}$.

$$
\phi_{R}=\frac{k \phi}{1+\frac{4 \pi r^{2}(1-k)}{k\left(1-k_{k}\right) U}}
$$

The loss $\boldsymbol{\phi}_{\boldsymbol{R}}$ is a function of U, but remains practically constant for all positions of N in the sphere. This would no loner hold when N is sufficiently close to the wall of the sphere to cast a pronounced shadow, whereby a portion of its surface would not be exposed to the component of uniform illumination E_{R}.

The absorption $\boldsymbol{\phi}^{\prime}$ will vary considerably, depending upon the

Fig. 3
constants k_{u} and U for the body N as well as in a large measure upon the proximity of N to strongly illuminated parts of the sphere. This relationship is apparent from the following differential notation. See Fig. 3. If dE_{u} represents the illumination at point \mathbf{u} on surface of N due to the uniformly bright source at P, then

$$
\begin{array}{cc}
d E_{u}=\frac{I_{\alpha} \cos \varepsilon}{d^{2}} & \text { lumens per sq. cm. (phots) } \\
d \phi^{\prime}=\frac{I_{\alpha} \cos \varepsilon}{d^{2}}\left(1-k_{u}\right) d U & \text { lumens, }
\end{array}
$$

where $d U$ represents a differential element of surface at U, and $d \phi^{\prime}$ the light absorbed by N at u as the result of the reflected component I_{α} of non-uniform illumination at P.

Since E_{R} depends upon both ϕ^{\prime} and ϕ_{R}, N should not be allowed to approach the more intensely illuminated portions of the sphere. As previously noted, ϕ_{R} is practically constant for all positions of N within the sphere.

When N is located at the center of the sphere, \mathcal{F} is constant for all variations in candle-power distributior of the source as long as the M. S.C. P. remains the same. The average illumination is unchanged with $I_{0}=$ const., and hence the $\alpha \beta^{\prime}$ will give the same absorption ϕ_{c}^{\prime} for different candle power distributions.

The decrease in ΔE_{R} (window illumination) due to the loss $\left(\phi_{C}^{\prime}+\phi_{R}\right)$ is accounted for when calibratirg the sphere. The error is offset by operating the standard lamp with bodies such as N in the same relative positions which they occupy when lighting the test source. The effect in both cases on the window illumination will be the same.

Scroen Fiffect and Screcn Frrors

Effect of Screms upon Diffusely Reflected Light.

The screon is usuelly a flat, opaque body interposed between the source of light and the window in order to exclude all direct rays from the latter. When properly dimensioned and located within the sphere, it permits only diffused light to reach the vindov of which the brightness is a measure of the total luminous output of the source. The screen is ar isolated body exposed to direct and reflected light,
and in consequence lowers the window illumination due to absorption of both components of light flux. The following discussion is initially confined to the effect of the screen pron diffusely reflected light.

Let the screen be a pine surface provided with diffusing point of the same quality as that employed on the inner surface of the sphere. If As represents the area of one face of the scree in square centirefers, then $U=22$. Its reflection factor is 1 . The light arsonbed by the screen is readily calculated to be ϕ_{s}, where

$$
\phi_{s}=\pi \mathscr{L} \cdot 2 A_{s}(1-\not \subset) \quad \text { Iurens, }
$$

and b is the uniform brightness of the inner mall of the spore in cardies per sq. cm . The reicrtness b is the result of the total uniform illumination on the amer surface, which is

$$
E_{T_{0} t .}=E_{R}+E_{0}=\frac{\phi k}{4 \pi R^{2}(1-k)}+\frac{\phi}{4 \pi r^{2}}=\frac{\phi}{4 \pi R^{2}(1-k)} \quad \text { phots, }
$$

in which E_{R} is the wall illumination due to diffusely reflected light, and E_{D} is the average direct illumination on the sphere. Then
and $\quad \phi_{s}=\frac{\pi \cdot \phi}{4 \pi \pi^{2}(1-k)} \cdot \frac{k}{\pi} \cdot 2 A_{s}(1-k)$;
that is, $\phi_{s}=\frac{k A_{s}}{2 \pi R^{2}} \cdot \phi=\frac{2 k A_{s}}{k^{2}} \cdot I_{0} \quad$ lumens.
The absorption of diffusely reflected light is a linear function of the total lumens output of the source. With $\boldsymbol{\phi}_{S}$ lumens arsorbed by the screen, the window illumination suffers a reduction. Then expressed as a fraction of the original window illumination, the reduction is

$$
\delta=\frac{E_{R}-E_{R}}{E_{R}}
$$

where ${ }_{S} E_{n}$ is the reduced wall illumination due to diffuser reflectted light reich obtains in the presence of the screcr.

$$
\begin{aligned}
& \delta=\frac{\frac{\phi k}{4 \pi R^{2}(1-k)}-\left(\frac{\phi}{4 \pi R^{2}(1-k)+k(1-k) 2 A_{s}}-\frac{\phi}{4 \pi R^{2}}\right)}{\frac{\phi k}{4 \pi R^{2}(1-k)}} \\
& \delta=\frac{\frac{\phi k A_{s}}{4 \pi R^{2}(1-k)\left[2 \pi R^{2}+k A_{s}\right]}}{\frac{\phi k}{4 \pi R^{2}(1-k)}}=\frac{A_{s}}{2 \pi r^{2}+k A_{s}}
\end{aligned}
$$

Likewise,

$$
\delta^{\prime}=\frac{E_{R}-E_{R}}{E}=\frac{\frac{\phi k A_{s}}{4 \pi \Lambda^{2}(1-k)\left[2 \pi R^{2}+k A_{s}\right]}}{\frac{\phi}{2(1-k)\left[2 \pi r^{2}+k A_{s}\right]}}
$$

gives the reduction in window illumination as a fraction of the feral
wall illumination, from which

$$
\delta^{\prime}=A_{s} \frac{k}{2 \pi h^{2}}
$$

In the above, F is the reduced total will illumination which obtains in the presence of the screen.

Similarly,

$$
\begin{aligned}
\delta^{\prime \prime} & =\frac{E_{R}+E_{D}-\left(E_{R}+E_{D}\right)}{E_{R}+E_{D}}=\frac{E_{R}-E_{R}}{E_{R} r o t} \\
\delta^{\prime \prime} & =\frac{\frac{k \phi A_{S}}{4 \pi h^{2}(1-R)\left[2 \pi R^{2}+k A_{S}\right]}}{\frac{\phi}{4 \pi r^{2}(1-k)}}
\end{aligned}
$$

$$
\delta^{\prime \prime}=\frac{k A_{s}}{2 \pi \kappa^{2}+k A_{s}}
$$

where $\delta^{\prime \prime}$ gives the reduction in wall illumiration as a fraction of the original total wall illumination.

The quantities $\delta^{\prime}, \delta^{\prime}$, and $\delta^{\prime \prime}$ are essentially constants. Comparing δ and $\delta^{\prime \prime}$, it is apparent that the per cent drop in window illumination is somewhat greater than that on the wall. The error incurred as the result of $\boldsymbol{\delta}$ is completely eliminated when calibrating the sphere. Since its evaluation depends only upon the constents A_{s}, k, and the radius of the sphere, the error will be the same when calibrating the sphere with a standard lamp. In other words, the reduction in window illumination due to the presence of the screen in diffusely reflected light will be the same for the standard and test lamps. Thus, when determining the luminous output of a lighting unit, all necessary screening should be adjusted to accommodate both standard and test lamps. With this arrangement unchanged, concurrent readings are taken, once with the standard lamp lighted, followed by the latter extinguished and the test lamp lighted. This procedure leaves the measurements unaffected by the absorption of diffusely reflected light.

Direct Light Absorbed by Screen.

The screen is at all times exposed to direct light rays from the source, and must absorb part of this incident flux before it can be diffusely reflected, eventually to reach the window. It is proposed to determine the resultant reduction in illumination at the window.

Referring to Fig. 4, let L be a finite source of light, and consider the screen parallel to the window. Since the size of the screen
and its position relative to the source must combine to exclude all direct light from the window, let a proper balance be obtained without allowing the screen to approach either the source or the wind ow too closely. The line WL joining lamp and window centers makes an angle

a with the diameter through W. Consider a uniform distribution of luminous intensity emitted by L. It is within the limit of allowable error to assume the illumination on the screen to be uniform. This may be seen from the following consideration.

Since the candle power of L is the same in all directions, we may replace L by a point source of equivalent candle power, and compare the uniform and average values of illumination on the screen for a normally convenient position of the source as shown in Fig. 5. From Fig. 4 it is apparent that the illumination at the center c of the screen is

$$
E_{D}=\frac{J_{0} \cos \alpha}{x^{2}}=\frac{\phi \cos \alpha}{4 \pi \cdot x^{2}}
$$

phots.

If this illumination were uniform over the area A_{s} of one side of the screen, the direct flux absorbed by A_{s} would be

$$
\phi_{s}=E_{\omega} \cdot a \cdot A_{s} \quad \phi_{s}=a \frac{\phi}{4 \pi} \cdot \frac{\cos \alpha}{x^{2}} \cdot A_{s}
$$

where a is the absorption factor of the screen, and $E_{u}=E_{D}$. In practice, the window area is small compared to the area of the sphere, ranging from 0.06 to approximately 0.17 per cent. The angle 2θ, which is largely determined by the relative positions of L and s, does not become excessive even in cases where L may represent a fairly large lighting unit.

Consider L vertically suspended from the top of the sphere at a convenient distance $\frac{h}{2}$ from the center C. Fig. 5. The illumination
at the center of the screen due to L was found to be

$$
E_{u}=\frac{I_{0} \cos \alpha}{x^{2}}=\frac{I_{0} \cos ^{3} \alpha}{x^{2}}
$$

Since $\tan \alpha=\frac{1}{2}$, and $\alpha=26^{\circ} 34^{\prime}$

$$
E_{u}=\frac{I_{0}}{h^{2}} \cos ^{3}\left(26^{\circ} 34^{\prime}\right)=0.71547 \frac{I_{0}}{h^{2}} \quad \text { lumens per sq. cm. }
$$

The maximum illumination on the screen, which will be assumed circular for purposes of illustration, is

$$
E_{\text {max }}=\frac{I_{0}}{x^{2}} \cos ^{3}(\alpha-\theta)=\frac{I_{0}}{L^{2}} \cos 3\left(16^{0} 34^{1}\right)
$$

Therefore $E_{\text {max }}=0.88059 \frac{J_{0}}{h^{2}} \quad$, where θ was chosen 10. Minimum illumination on the screen is

$$
F_{\min }=\frac{J_{0}}{h^{2}} \cos ^{2}(\alpha+\theta)=\frac{J_{0}}{h^{2}} \cos ^{3}\left(36^{\circ} 34^{\prime}\right)
$$

or

$$
E_{\text {min }}=0.51809 \frac{J_{0}}{\ell^{2}}
$$

The average illumination on the screen will be proportional to the avrage value of the cosine-cube function over the interval whose limits are $a-\theta=\alpha_{1}$ and $a+\theta=\alpha_{2}$.
The average value of $y=\cos ^{3} \alpha$ over the interval α_{1} to α_{2} is

$\frac{1}{\alpha_{2}-\alpha_{1}}\left[\int_{\alpha_{1}}^{\alpha_{2}} \cos \alpha d \alpha-\int_{\alpha_{1}}^{\alpha_{2}} \sin ^{2} \alpha \cos \alpha d \alpha\right]=$
$\frac{1}{\alpha_{2}-\alpha_{1}}\left[\sin \alpha-\frac{\sin ^{3} \alpha}{3}\right]_{\alpha_{1}}^{\alpha_{2}}=\frac{1}{\alpha_{2}-\alpha_{1}}\left[\frac{1}{3} \sin \alpha\left(\cos ^{2} \alpha+2\right)\right]_{\alpha_{1}}^{\alpha_{2}}$

Noting that $\alpha_{1}=16^{\circ} 34^{\prime}$, and $\alpha_{2}=36^{\circ} 34^{\prime}$, al so $\alpha_{2}-\alpha_{1}=20^{\circ}=0.349$ radians, the last expression, when evaluated, gives the average value of the cosine-cube function as 0.7102 . Hence,

$$
E_{A V}=0.7102 \frac{I_{0}}{h^{2}}
$$

This also compares very favorably with the arithmetic average of $E_{\text {max }}$. and $\mathrm{E}_{\mathrm{min}}$., which is 0.6993. The close agreement is due to the velaLively small value of 2θ. However, it is obvious that E_{u} may replace E_{AV}. in this consideration. As a approaches 2 eros, the difference between $E_{A V}$. and E_{u} becomes extremely small, and vanishes for $a=0$. Again, a is limited to values appreciably below 45, owing to the centrally located lamp structure which extends some distance below T. It may be shown that the error involved is also negligibly small for any position that L may occupy in the sphere when making measurements. Thus, the illumination on the screen may be considered uniform and equal to

$$
E_{D}=\frac{I_{0} \cos \alpha}{x^{2}}=\frac{\phi}{4 \pi} \frac{\cos \alpha}{x^{2}}=\frac{\Sigma_{0}}{h^{2}} \cos \alpha
$$

The error caused by the screen absorbing direct light from the source may be expressed as

$$
E_{s}=\frac{s E_{R}-\dot{E}_{R}^{\prime}}{E} \quad \text { where }
$$

$S^{E_{R}}$ represents illumination on sphere.
(screen present and absorbing diffuse light only)
represents illumination on sphere.
(screen present and absorbing diffuse and direct light)

E represents total uniform illumination on sphere.
(screen present and absorbing diffuse light only)

E' represents total uniform illumination on sphere.
(screen present and absorbing diffuse and direct light)
E_{D} represents average illumination on sphere due to direct light.

Since

$$
\begin{gathered}
S_{R}=E-E_{D}, \text { and } S_{R}^{E_{R}^{\prime}}=E^{\prime}-E_{D} \\
E_{S}=\frac{E-E^{\prime}}{E}
\end{gathered}
$$

An expression for E was obtained in previous considerations; namely,

$$
E=\frac{\phi}{2(1-k)\left[2 \pi \Lambda^{2}+k A_{s}\right]}=\frac{\phi}{2 a\left[2 \pi h^{2}+(1-a) A_{s}\right]}
$$

E' is obtained at once fran the following equation, which states that the sum of all the flux absorbed must be equal to the total lumens emitted by the source.

$$
\begin{aligned}
& 4 \pi n^{2} E^{\prime} a+E^{\prime}(1-a) 2 a A_{s}+\phi \cos \alpha \cdot a \cdot A_{s}=\phi \\
& E^{\prime}\left[4 \pi n^{2} a+2 a(1-a) A_{s}\right]=\phi\left(1-\frac{\cos \alpha}{4 \pi x^{2}} \cdot a \cdot A_{s}\right) \quad \text {. Solving for } E^{\prime},
\end{aligned}
$$

we obtain

$$
E^{\prime}=\frac{\phi\left(9 \pi h^{2}-a A_{s} \cos \alpha\right)}{8 \pi x^{2} a\left[3 \pi h^{2}+(1-a) A_{s}\right]}
$$

Since

$$
\begin{aligned}
& \cos \alpha=\frac{l}{2 h} \\
& E^{\prime}=\phi \frac{\left(8 \pi x^{2} h-a A_{s} l\right)}{16 \pi x^{2} a R\left[2 \pi R^{2}+(1-a) A_{s}\right]}
\end{aligned}
$$

and, $\quad \epsilon_{s}=1-\frac{8 \pi n x^{2}-a A_{s} l}{8 \pi x^{2} h}=\frac{a A_{s} l}{8 \pi x^{2} h}$

$$
\epsilon_{s}=\frac{A_{s} \cdot a}{\pi r} \cdot \frac{l}{8 x^{2}}=\frac{A_{s} \cdot a}{\pi r^{2}} \cdot \frac{h l}{8 x^{2}}
$$

Since E' is proportional to I_{0}, an irregular distribution of candle power from the scurce will affect E, in the ratio $\frac{I_{S}}{I_{0}}=\xi_{S}$, where I_{s} is the intensity in the direction Lc toward the screen. The error, that is, the reduction in window illumination, becomes

$$
\epsilon_{s}=\frac{A_{s} a}{\pi r^{2}} \xi_{s} \cdot \frac{n l}{8 x^{2}}
$$

and varies inversely as the square of the distance from the source to the screen.

Occlusion of Luminous Flux Reflected
from Portion of Sphere Obscured by the Screen.

That portion of the inner surface of the sphere obscured from the window by the screen cannot reflect the direct light received from the source to the window without the aid of same other portion of the spherical surface. This lessens the window illumination. Fig. 6.

The flux from JV is readily obtained if the area represented by JV can be expressed in terms of known quantities.

$$
\frac{A_{s} \cos \alpha}{A_{M N}}=\frac{(l-\alpha-x)^{2}}{l^{2}}
$$

$$
A_{M N} \cong A_{J v} \cdot \cos \alpha
$$

$$
A_{J v}=A_{s} \frac{l^{2}}{(l-\alpha-x)^{2}}
$$

, where $A_{J V}$ represents
the approximate area on the sphere.
Extending the analysis as above for \mathcal{C}_{s}, we find

$$
\epsilon_{w}=\frac{A_{s} a}{\pi h^{2}} \cdot \frac{l^{3} / 2}{8(l-x-d)^{2} d^{2}}
$$

If I_{w} represents the intensity along I_{w}, them $\frac{I_{w}}{I_{0}}=\xi_{w}$

$$
\epsilon_{w}=\frac{A_{s} a}{\pi r^{2}} \xi_{w} \frac{l^{3} h}{8(l-x-d)^{2} d^{2}}
$$

The errors C_{s} and C_{w} are functions of $x_{\text {. }}$ However, if we consider the dimensions of the screen to remain fixed, the source L may be offectively screened from W by modifying either d or x while the

other quantity is held constant. Since both errors are a function of either x or d, the minimum total error for variable x and constant d is obtained by differentiating the sum $\xi_{s}+E_{w}$ with respect to x, and allowing the resulting function to vanish.

$$
\begin{gathered}
\frac{\partial}{\partial x}\left(\epsilon_{s}+\epsilon_{c}\right)=-\frac{A_{s} a}{8 n n^{2}} \rho_{s} l l_{\cdot 2}+\frac{A_{s} a}{x^{3} n^{3} w} \frac{l^{3} h_{2} \cdot 2}{d^{2}(l-x-d)}=0 \\
\sqrt[3]{\xi_{3} d^{2}}(l-x-d)=\sqrt[3]{\xi_{w} l^{2} \cdot x} \cdot
\end{gathered}
$$

$x=\frac{(\ell-d) \sqrt[3]{\xi_{j} \cdot d^{2}}}{\sqrt[3]{\xi_{s} d^{2}}+\sqrt[\beta]{\xi_{w} \ell^{2}}}=\frac{l-d}{1+\sqrt[3]{\frac{\xi_{w}}{\rho_{s} \cdot \frac{l^{2}}{d^{2}}}}}$
When $x=$ constr., and d is permitted to vary, we have
$\frac{\partial}{\partial d}\left(\epsilon_{s}+\epsilon_{w}\right)=\frac{A_{s} l^{3} h}{8 \pi h^{2}} \xi_{w}\left\{\frac{(l-x-d)^{2} \cdot 2 d-2 d^{2}(l-x-d)}{(l-x-d)^{4} d^{4}}\right\}=0$ from which $d=\frac{l-x}{2}$

Eliminating x, we have

$$
l-2 d=\frac{l-d}{1+\sqrt[a]{\frac{2 k}{s_{3}} \cdot \frac{l^{2}}{d^{2}}}}
$$

from mich, $\quad \frac{(\ell-2 d)^{3}}{d^{5}}=\frac{s_{s}}{\rho_{w}} \cdot \frac{1}{\ell^{2}}$
The quantity d may be obtained from the last equation for known values of the constants involved, and when substituted in the expression solved explicitly for x will give a value of x consistent with a minimum total error $C_{S}+\epsilon_{W}$. In practical work, d is frequently fixed by the manner in which the source must be suspended or mounted, in which case the distance from the source to the screen may be obtained directly by evaluating

$$
x=\frac{l-d}{1+\sqrt[3]{\frac{\rho_{w}}{\rho_{s}} \cdot \frac{l^{2}}{d^{2}}}}
$$

At this time it will be well to investigate the upper and lower limits of x. These results have a practical bearing on the design of the sphere.

Screen Location.

The screen must always be situated so that it excludes any direct rays that would otherwise reach the window. Unless an adjustable screen is provided, one or possibly two diffusing screens must fulfill this requirement for the entire range of lighting units to be accommodated by the sphere. Heretofore, the area of the screen was considered constant, and with a definite location of lamp, the distance between source and screen, denoted by x, assumes a definite value consistent with the minimam error $\epsilon_{s}+\epsilon_{w}$ Practical luminous sources, however, vary consderably in size, so that for the customary alignment along the vertical axis of the sphere, a large lamp will require a larger screen at the same distance x than a smaller lamp similarly located. Again, if we permit x to vary, a larger lamp will be effectively screened by a smallIer screen as x increases. Excluding from this discussion a variable screening device created to accommodate different sized lamps at a more or less fixed distance from the source, let us consider the effect of variation in screen upon the x for minimum total error $\mathcal{C}_{s}+C_{w}=C_{t}$ Practical considerations will dictate the working limits essential in arriving at an adequate screen-to-source separation.

Referring to Fig. 7, the window opening at W may be assumed to approximate a circular disc of diameter d_{w}. L represents the light source with center at C_{1} on the vertical axis through C. As before, A_{s} is the area of one side of the screen. Let A_{∇} represent the area of the base of the shadow on VV'. Then

$$
\frac{A_{s}}{A_{v}}=\frac{(l-d-x+p)^{2}}{(l-d+p)^{2}} ; \quad A_{s}=A_{v} \frac{(l-d-x+p)^{2}}{(l-d+p)^{2}}
$$

Substituting this expression for A_{s} in C_{s} and ϵ_{w}, gives rise to the following two equations:
(1) $\epsilon_{s}=\frac{A_{0}(l-d-x+p)^{2}}{(l-d+\rho)^{2}} \frac{a}{\pi \pi^{2}} \frac{\rho_{s}}{s} \frac{a l}{\delta x^{2}}$
(2) $\quad \epsilon_{w}=\frac{A_{2}(l-d-x+b)^{2}}{(l-d+p)^{2}} \frac{a}{\pi n^{2}} \cdot \rho_{i} \frac{n l^{3}}{8(l-x-d)^{2} d^{2}}$

The geometry of Fig. 7, triangle CQG , requires that

$$
\begin{gathered}
\frac{d}{k \tan \alpha}=\frac{\sin (90-2 \alpha)}{\sin \alpha}=\frac{\cos 2 \alpha}{\sin \alpha} \\
d=\frac{1 \cos 2 \alpha}{\cos \alpha} . \\
\text { Also, } l=2 \operatorname{ros} \alpha \quad l-d=\frac{R}{\cos \alpha}
\end{gathered}
$$

and $\frac{p}{\ell-d+p}=\frac{d w}{d_{v}}=\frac{1}{n} \quad$, ice $d_{v}=m_{1} w_{2}$ is the
distance intercepted by the boundary rays on the vertical axis VV'.
It will be noted that this relation holds only approximate? s, since for different values of a, the tangent lines and the line throne' C, ard center of window, will not converge to a common point. For nl l nracticol purposes, whether the lighting unit is spherical in form or othervise, the trent lines to the maximum dimension of the Inminnus source os viewed from the window will meet in a point f wen mesine the circurserence of the window orenire, and a line drawn from p tromp center cf window will, in Eenerul, not pass through C_{1}, but the anele race $E y$ this line with the horizontal GW will differ little from a especial? if a rares only from 0 to 30 . It follows that

$$
\begin{gathered}
\frac{p}{l-d+p}=\frac{1}{n} \\
b=\frac{l n-1)}{n-1}=\frac{l-d}{(n-1) \cos \alpha}
\end{gathered}
$$

Substitution in Eq. (1) and (2) rives

$$
\begin{aligned}
& \epsilon_{t}=\frac{A_{v} a}{\pi h^{2}} \frac{(n-1)^{2}}{n^{2}} \cos ^{3} \alpha\left\{\frac{f_{4}}{4} \frac{\left(\frac{\Lambda}{\cos \alpha}-x+\frac{h}{(n-1) \cos \alpha}\right)^{2}}{x^{2}}+\right.
\end{aligned}
$$

Differentiating partially with respect to \mathbf{x}, simplifying, and equating to $z e r o$, we obtain

$$
\frac{\partial \epsilon_{t}}{\partial x}=\xi_{s} \cos ^{2} 2 \alpha\left(\frac{h}{\cos \alpha}-x\right)^{3}-\frac{4 \xi_{w} x^{3} \cos ^{4} \alpha}{n}=0
$$

Solving for x, we have (3)

$$
x=\frac{n}{\cos \alpha\left(1+\sqrt[3]{\frac{\rho_{w}}{\rho_{5}} \cdot \frac{4 \cos ^{4} \alpha}{\cos ^{2} 2 \alpha} \cdot \frac{1}{n}}\right)}
$$

This gives the distance x for minimum total error, and is a function of a. The limits of x for a typical case of a source suspended vartically along W' with $\alpha=30$, obtain as follows. Let $\frac{\xi_{w}}{\xi_{s}}=/$ and $n=1$. Then the shadow is bounded by parallel rays, and the expression (3) reduces to $x=0.37488 r=0.325(1-d)$. For $\frac{S_{w}}{S_{S}}=/$ and $n=9$, we have $x=0.57735 r=0.500(1-d)$.

Lamps and lighting units tested in spheres of commercial sizes, 40 inches in diameter or larger, will seldom permit $d_{v}<d_{w}$. For all practical purposes $\frac{d w}{d v} \geqq \frac{1}{9}$; that is, $d v \leqq q d w$. For a $60^{\prime \prime}$ sphere $n=\frac{d v}{d w}$ will rarely exceed 5. Note that d_{v} is the maximum dimension of an equivalent luminous sauce in the vertical plane through the lamp center, and may be greater or less than the maximum dimension at the base of the luminous cone intercepted by the actual light source. See Fig. 8. Nearly all practical illuminants will disclose symmetry about a single axis, and many types display symmetry about a vertical axis. Although d_{v} does not represent the maximum dimension of luminosity, it serves very well to establish an approximate upper limit for x. Thus, to a first approximation, x may be said to lie within the limits

$$
\begin{aligned}
& x=0.3(1-d)=0.346 \cdot r \\
& x=0.5(1-d)=0.577 \cdot r
\end{aligned}
$$

for $\alpha=30^{\circ}, \xi_{w}=\xi_{s}$, and covering values of n from less than unity to and including $n=9$. If we wore to use an average of these values, then

$$
x=0.4(l-d)=\frac{0.4 r}{\cos \alpha}=\frac{0.4 h}{\cos 30^{\circ}} \quad \text { and } h=0.4 \kappa
$$

This gives the distance of the screen from the vertical axis of the sphere $\left(\alpha=30^{\circ}\right)$ for minimum error due to occlusion and absorption of

light, and agrees very well with figures quoted in general discussions on the sphere photometer.

Referring to a 60" sphere, it was stated that n rarely exceeds 5. This follows almost immediately fran Fig. 7, in which $C C_{1}=30 \cdot \tan 30^{\circ}$,

$$
C C_{1}=17.32^{n}, \quad d_{v}=5 d_{w}=5.3 .5=17.5^{\prime \prime}
$$

This would still permit a convenient position of the source with reference to V without incurring any serious error due to proximity to the wall. An average value for x may be obtained from the following tabulated values:

The average of smallest and largest x is $x_{A V}=0.4811 r$.

$$
h_{A V}=0.4811 \mathrm{~h} \frac{\sqrt{3}}{2}=0.416 \mathrm{~h}
$$

Again, 0.4 r comes very c lose in fulfilling requirements for minimum screen error.

It is important to gain an impression of the order and magnitude of the minimum total error $m_{f} \epsilon_{f}$ for a given set of conditions, and equally essential to show that $m_{f} C_{f}$ exhibits a minimum. There follows the calculations for minimum total screen error $\left(\epsilon_{f}\right)$ due to absorption and ocelusion of light for a $60^{\prime \prime}$ sphere under the following conditions:

$$
n=5, a=30^{\circ}, r=30^{\prime \prime}, a=0.2, \frac{\xi_{w}}{\xi_{3}}=\frac{1}{2}
$$

The x for minimum error is $x=0.58749 r$.

$$
{ }_{n} \epsilon_{t}=\epsilon_{g}+\epsilon_{w}=\frac{A_{v}}{8} \frac{(l-d+p-x)^{2}}{(l-d+p)^{2}} \cdot \frac{a}{\pi h^{2}} \xi\left\{\frac{l}{x^{2}}+\frac{1}{2} \frac{l^{3}}{(l-d-x)^{2} d^{2}}\right\}
$$

Evaluating ϵ_{f}, we have

$$
{ }_{m} G_{t}=\frac{1,2850 A_{v} \xi_{s}}{4500 \pi}
$$

For a 60" sphere, $r=30^{\prime \prime}, d_{w}=3.5^{\prime \prime}$,

$$
d_{v}=n \cdot d_{w}=5 \cdot 3.5=17.5^{\prime \prime}
$$

Hence

$$
\begin{aligned}
A_{v}=\frac{\pi}{4}(17.5)^{2} & =240.528 \mathrm{in}^{2} \\
m C_{f} & =0.02186 \mathrm{~J}_{s}
\end{aligned}
$$

, from which

Thus, for $\xi_{s}=\frac{I_{s}}{I_{0}}=1, \cos _{t} \cong 2.1 \%$;

$$
\text { for } f_{s}=\frac{1}{2} \quad, \quad{ }_{n} \cong 4.3 \%
$$

To show that $x=0.58749$ r represents the screen distance for minimum error under above conditions, it is sufficient for practical purposes to calculate the error for a slight variation in x to the right and left of the critical point. The usual mathematical criteria may be applied to show that

$$
X=\frac{h}{\cos \alpha\left(1+\sqrt[3]{\frac{s_{n}}{f_{s}} \frac{4 \cos ^{4} \alpha}{\cos ^{2} 2 \alpha} \frac{1}{n}}\right)}
$$

represents a minimum for all practical values of n and $\frac{S_{w}}{S_{S}}$. Let x increase from $0.58749 r$ to $0.60000 r$.
$\Delta x=0.0125 / 1 \cong 1.25 \% 1 \cong 0.37^{\prime \prime}$

$$
E_{t}=\frac{1.2863}{4500 \pi} A_{v} \xi_{5}=0.02188 \xi_{5}^{0}
$$

$$
\epsilon=\frac{\epsilon_{t}-\epsilon_{t} \epsilon_{t}}{m \epsilon_{t}}=\frac{0.00002}{0.02186}=0.1 \% \quad \text { increase in min. error. }
$$

Let x decrease 1.25%, then $x-\Delta x=0.67498$ 凡

$$
E_{y}=\frac{1.2866}{4500 \pi} A_{r} \xi_{5}=0.02189 \xi_{5}
$$

$\epsilon=0.1 \%$ increase in minimum error.

Screen Error Influenced by Angle.

Up to this point it was merely stated that x is a function of a . The expression for total error may be written

$$
\epsilon_{t}=f(x, \alpha)
$$

from which E_{t} is a function of x and a. It is important to investigate what general effect the position of the source will have upon the screen error \mathcal{F}_{t} and in particular to determine the angle α and x for minimum total screen error.

Te have

$$
\begin{aligned}
\frac{\partial}{\partial x} \epsilon_{t} & =\frac{A_{\imath} a}{\pi n^{2}} \frac{(n-1)^{2}}{n^{2}} \frac{\partial}{\partial x}\left\{\frac{\xi_{s}}{4 x^{2}}\left(\frac{n}{\cos \alpha}-x+\frac{n}{(n-1) \cos \alpha}\right)^{2} \cos ^{3} \alpha\right. \\
& \left.+\xi_{\omega}\left[\frac{\frac{n}{\cos \alpha}-x+\frac{h}{(n-1) \cos \alpha}}{\frac{h}{\cos \alpha}-x}\right]^{2} \cdot \frac{\cos ^{2} \alpha}{\cos ^{2} 2 \alpha}\right\}=0
\end{aligned}
$$

substitutions having been made for the quantities $p, 1-d, l$, and d in terms of n and functions of a. See page 41. The solution of this equation for x was found to be

$$
x=\frac{h}{\cos \alpha\left(1+\sqrt[3]{\frac{\xi_{w}}{\xi_{s}} \cdot \frac{4 \cos ^{4} \alpha}{\cos ^{2} 2 \alpha} \frac{1}{n}}\right)}
$$

In order to simplify the simultaneous solution of $\frac{\partial}{\partial x} \epsilon_{f}=0$ and $\frac{\partial}{\partial \alpha} \epsilon_{f}=0$. we can, without loss of generality, let $r=1$. We confine the discussion to a definite set of conditions for $\frac{\xi_{w}}{\xi_{S}}$ and n. The quantity r, although essential to any particular solution for x, would not appear in the solution of $\frac{\partial}{\partial \alpha} \epsilon_{t}=0$. Let $n=5$, and $\xi_{s}=2 \xi_{w}$. Then

$$
\begin{aligned}
& x \cos \alpha\left(1+\sqrt[3]{\frac{2}{5} \frac{\cos ^{4} \alpha}{\cos ^{2} 2 \alpha}}\right)=1 \\
& x \cos \alpha+x \cos \alpha \sqrt[3]{\frac{2}{5} \frac{\cos ^{4} \alpha}{\cos ^{2} 2 \alpha}}=1
\end{aligned}
$$

Transposing xosa and combining,

$$
\begin{aligned}
& x^{3} \cos ^{3} \alpha \cdot \frac{2}{5} \frac{\cos ^{4} \alpha}{\cos ^{2} 2 \alpha}=(1-x \cos \alpha)^{3}=1-3 x \cos \alpha+3 x^{2} \cos ^{2} \alpha-x^{3} \cos ^{3} \alpha \\
& 2 x^{3} \cos ^{4} \alpha=\left(5-15 x \cos \alpha+15 x^{2} \cos ^{2} \alpha-5 x^{3} \cos ^{3} \alpha\right)\left(2 \cos ^{2} \alpha-1\right)^{2}
\end{aligned}
$$

Expanding and combining in parers of x,

$$
\begin{aligned}
& x^{3}\left(22 \cos ^{7} \alpha-20 \cos ^{5} \alpha+5 \cos ^{3} \alpha\right)+x^{2}\left(-60 \cos ^{6} \alpha+60 \cos ^{4} \alpha-15 \cos ^{2} \alpha\right) \\
& +x\left(60 \cos ^{5} \alpha-60 \cos ^{3} \alpha+15 \cos \alpha\right)+\left(-20 \cos ^{4} \alpha+20 \cos ^{2} \alpha-5\right)=0
\end{aligned}
$$

Now, differentiating ϵ_{t} partially with respect to a, we have

$$
\begin{aligned}
& \frac{\partial C_{t}}{\partial \alpha}=\left[\frac{n n-(n-1) x \cos \alpha}{(n-1)(n-x \cos \alpha)}\right]^{2}\left(\frac{8 \sin \alpha \cos ^{8} \alpha-7 \sin \alpha \cos \alpha \cos 2 \alpha}{\cos ^{3} 2 \alpha}\right) \\
& -2\left[\frac{n n-(n-1) x \cos \alpha}{(n-1)(n-x \cos \alpha)}\right] \frac{n(n-1) x \sin \alpha}{(n-1)^{2}(n-x \cos \alpha)^{2}} \cdot \frac{\cos ^{2} \alpha}{\cos ^{2} 2 \alpha} \\
& +\frac{\cos ^{3} \alpha}{x^{2}}\left[\frac{n n-x(n-1) \cos \alpha}{(n-1) \cos \alpha}\right]\left(\frac{x(n-1) \sin \alpha \cos \alpha+[n n-(n-1) \cos \alpha] \sin \alpha}{(n-1) \cos ^{2} \alpha}\right) \\
& \omega^{2}-\frac{3 \sin \alpha \cos ^{2} \alpha}{2 x^{2}}\left[\frac{n n-x(n-1) \cos \alpha}{(n-1) \cos \alpha}\right]^{2}=0
\end{aligned}
$$

Substituting $, \underline{n}=5, r=1$,

$$
\begin{aligned}
& {\left[\frac{5-4 x \cos \alpha}{4(1-x \cos \alpha)}\right]^{2}\left(\frac{8 \sin \alpha \cos ^{8} \alpha-7 \sin \alpha \cos ^{6} \alpha \cos 2 \alpha}{\cos ^{3} 2 \alpha}\right)-\omega \frac{x \sin \alpha \cos ^{2} \alpha}{2(1-x \cos \alpha)^{3} \cos ^{2} 2 \alpha}} \\
& +\frac{\cos ^{3} \alpha}{x^{2}} \cdot \frac{5-4 x \cos \alpha}{4 \cos \alpha} \frac{\sin \alpha}{4 \cos ^{2} \alpha}-\frac{3}{2} \frac{\sin \alpha \cos ^{2} \alpha}{x^{2}}\left(\frac{5-4 x \cos \alpha}{4 \cos \alpha}\right)^{2}=0
\end{aligned}
$$

Multiplying both members by $16 \cos \alpha \cos ^{3} 2 \alpha(1-x \cos \alpha)^{2} x^{2} \neq 0$, $x^{2} \cos \alpha(5-4 x \cos \alpha)^{2}\left(8 \sin \alpha \cos 8 \alpha-7 \sin \alpha \cos ^{6} \alpha \cos 2 \alpha\right)$
$-2 x^{3} \cos \alpha \cos 2 \alpha \frac{5-4 x \cos \alpha}{1-x \cos \alpha} \sin \alpha \cos ^{5} \alpha$
$+5 \sin \alpha \cos \alpha \cos ^{3} 2 \alpha(1-x \cos \alpha)^{2}(5-4 x \cos \alpha)$
$-\frac{3}{2} \sin \alpha \cos \alpha \cos ^{3} 2 \alpha(1-x \cos \alpha)^{2}(5-4 x \cos \alpha)^{2}=0$
Clearing of fractional expressions,
$2 x^{2} \cos \alpha(1-x \cos \alpha)(5-4 x \cos \alpha)^{2} \cdot\left(8 \sin \alpha \cos ^{8} \alpha-7 \sin \alpha \cos ^{6} \alpha \cos 2 \alpha\right)-$
$4 x^{3} \cos ^{8} \alpha \cos 2 \alpha(5-4 x \cos \alpha) \sin \alpha$ $+10 \sin \alpha \cos \alpha \cos ^{3} 2 \alpha(1-x \cos \alpha)^{3}(5-4 x \cos \alpha)$ $-3 \sin \alpha \cos \alpha \cos ^{3} 2 \alpha(1-x \cos \alpha)^{3} \cdot(5-4 x \cos \alpha)^{2}=0$

Division by $(5-4 x \cdot \cos \alpha)$ is permissible in view of the fact that $0 \leqq x \leqq \sqrt{2}$. For if $5-4 x \cdot \cos \alpha=0$, then for $a=0^{\circ}, x=\frac{5}{4}$ But, physical conditions of the problem require $0<x<1$ for $a=0$. Therefore, $5-4 x \cdot \cos \alpha \neq 0$. Likewise for $\alpha=45^{\circ}$, to satisfy the above condition, $x=\frac{5}{4} \sqrt{2}$. But, for $\alpha=45^{\circ}$, x must be at the most equal to or less than $\sqrt{2}$. Hence, again $(5-4 x \cdot \cos \alpha) \neq 0$. Thus, $\quad \frac{2 x^{2} \cos \alpha\left(8 \sin \alpha \cos ^{8} \alpha-7 \sin \alpha \cos ^{6} \alpha \cos 2 \alpha\right)}{(1-x \cos \alpha)(5-4 x \cos \alpha)}$
$-4 x^{3} \cos ^{8} \alpha \cos 2 \alpha \sin \alpha+10 \sin \alpha \cos \alpha \cos ^{3} 2 \alpha(1-x \cos \alpha)^{3}$
$-3 \sin \alpha \cos \alpha \cos ^{3} 2 \alpha(1-x \cos \alpha)^{3}(5-4 x \cos \alpha)=0$
which simplifies to
$\frac{2 x^{2} \cos \alpha\left(8 \sin \alpha \cos ^{8} \alpha-7 \sin \alpha \cos ^{6} \alpha \cos 2 \alpha\right)}{\frac{1}{(1-x \cos \alpha)(5-4 x \cos \alpha)}}$
$-4 x^{3} \cos ^{8} \alpha \cos 2 \alpha \sin \alpha-\sin \alpha \cos \alpha \cos ^{3} 2 \alpha(1-x \cos \alpha)^{3}(5-12 x \cos \alpha)=0$

Therefore,

$$
\begin{gathered}
\sin \alpha \cdot \cos \alpha \cdot J=0 \\
\sin \alpha=0 ; \alpha=0 \text { is one solution. } \\
\cos \alpha=0 ; \alpha= \pm \frac{\pi}{2} \text { solution ruled out. }
\end{gathered}
$$

Thus, $2 x^{2}\left(5-9 x \cos \alpha+4 x^{2} \cos ^{2} \alpha\right)\left(8 \cos ^{8} \alpha-7 \cos ^{6} \alpha \cos 2 \alpha\right)$

$$
-4 x^{3} \cos ^{7} \alpha \cos 2 \alpha-\cos ^{3} 2 \alpha(1-x \cos \alpha)^{3}(5-12 x \cos \alpha)=0
$$

Expanding and rearranging in powers of x, we have

$$
\begin{aligned}
& x^{4}\left(-144 \cos ^{10} \alpha+200 \cos ^{8} \alpha-72 \cos ^{6} \alpha+12 \cos ^{4} \alpha\right) \\
& +x^{3}\left(428 \cos ^{9} \alpha-614 \cos ^{3} \alpha+246 \cos ^{5} \alpha-41 \cos ^{3} \alpha\right)+
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}\left(-468 \cos ^{8} \alpha+682 \cos ^{6} \alpha-306 \cos ^{4} \alpha+51 \cos ^{2} \alpha\right) \\
& +x\left(216 \cos ^{4} \alpha-324 \cos ^{5} \alpha+162 \cos ^{3} \alpha-27 \cos \alpha\right) \\
& +\left(-40 \cos ^{6} \alpha+60 \cos ^{4} \alpha-30 \cos ^{2} \alpha+5\right)=0
\end{aligned}
$$

This equation together with the one derived from the explicit solution for x emanating from $\frac{\partial}{\partial x} \epsilon_{t}=0$, may be reduced to give the following simultaneous set:

$$
\begin{aligned}
& x^{3}\left(22 \cos ^{4} \alpha-20 \cos ^{5} \alpha+5 \cos ^{3} \alpha\right) \\
+ & x^{2}\left(-60 \cos ^{6} \alpha+60 \cos ^{4} \alpha-15 \cos ^{2} \alpha\right) \\
+ & x\left(60 \cos ^{5} \alpha-60 \cos ^{3} \alpha+15 \cos \alpha\right) \\
+ & \left(-20 \cos ^{4} \alpha+20 \cos ^{3} \alpha-5\right)=0
\end{aligned}
$$

and, $\quad x^{2}\left(-38.4 \cos ^{4} \alpha+51.2 \cos ^{2} \alpha\right)$

$$
+x\left(96 \cos ^{3} \alpha-120 \cos \alpha\right)
$$

$$
+\left(-60 \cos ^{2} \alpha+70\right)=0
$$

One solution of these is $\alpha=0, x=0.57577$.
To effect the solution of these equations for x and α for other solutions, if any, one may turn to a dialytic process of elimination. We write these equations in the form

$$
f(x)=a_{0} x^{3}+a_{1} x^{2}+a_{2} x+a_{3}=0
$$

and $g(x)=b_{0} x^{2}+b_{1} x+b_{2}=0 \quad$.
Then, if $f(x)$ and $g(x)$ have a common root, and if the first equation be multiplied by x, and the second by x^{2} and x in turn, the resultent of $f(x)$ and $g(x)$ is the determinant

$$
\left|\begin{array}{lllll}
a_{0} & a_{1} & a_{2} & a_{3} & 0 \\
0 & a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & 0 & 0 \\
0 & b_{0} & b_{1} & b_{2} & 0 \\
0 & 0 & b_{0} & b_{1} & b_{2}
\end{array}\right|=0
$$

which is zero if the two equations $f(x)$ and $g(x)$ have a common solution. Expanding this determinant, we get

$$
\begin{aligned}
& a_{0}\left(a_{0} b_{2}^{3}-a_{1} b_{1} b_{2}^{2}-a_{3} b_{1}^{3}+2 a_{3} b_{0} b_{1} b_{2}+a_{2} b_{1}^{2} b_{2}-a_{2} b_{0} b_{2}^{2}\right) \\
& +b_{0}\left(a_{1}^{2} b_{2}^{2}+a_{1} a_{3} b_{1}^{2}-2 a_{1} a_{3} b_{0} b_{2}-a_{1} a_{2} b_{1} b_{2}-a_{0} a_{2} b_{2}^{2}+a_{0} a_{3} b_{1} b_{2}\right. \\
& \left.+a_{2}^{2} b_{0} b_{2}+a_{3}^{2} b_{0}^{2}-a_{2} a_{3} b_{0} b_{1}\right)=0
\end{aligned}
$$

in which

$$
\begin{aligned}
& a_{0}=22 \cos ^{7} \alpha-20 \cos ^{5} \alpha+5 \cos ^{3} \alpha \\
& a_{1}=-60 \cos ^{6} \alpha+60 \cos ^{4} \alpha-15 \cos ^{2} \alpha \\
& a_{2}=60 \cos ^{5} \alpha-60 \cos ^{3} \alpha+15 \cos \alpha \\
& a_{3}=-20 \cos ^{4} \alpha+20 \cos ^{3} \alpha-5 \\
& b_{0}=-38.4 \cos ^{4} \alpha+51.2 \cos ^{2} \alpha \\
& b_{1}=96 \cos ^{3} \alpha-120 \cos \alpha \\
& b_{2}=-60 \cos ^{2} \alpha+70
\end{aligned}
$$

Substituting the values of $a ' s$ and $b ' s$ and simplifying, we obtain $-1,007,769.6 x^{20}-9,555,148.8 x^{19}-9,566,899.2 x^{18}+81,330,291.2 x^{17}$ $+27,844,646.4 x^{16}-227,126,476.8 x^{15}+27,734,956.8 x^{14}+$ $262,624,870.4 x^{13}-101,777,612.8 x^{12}-108,795,494.4 x^{11}+$ $55,141,632 x^{10}+220,774.4 x^{9}-221,379.2 x^{8}+43.2 x^{6}=0$ in which $x=\cos a$, where x was chosen to represent $\cos a$ to simplify the expressions, and has no relation to the x employed to represent the distance from source to screen.

From the last equation it appears that $x^{6}=\cos ^{6} \alpha$ is a factor which may be discarded, since $\cos \alpha \neq 0$. We have finally
(1) $f(x)=62985.6 x^{14}+597196.8 x^{13}+597931.2 x^{12}-5083143.2 x^{11}$
$-1740290.4 x^{10}+14195404.8 x^{9}-1733434.8 x^{8}-16414054.4 x^{7}$
$+6361100.8 x^{6}+6799718.4 x^{5}-3446352 x^{4}-13798.4 x^{3}+13836.2 x^{2}$
$-2.7=0$.
The arccosines of the roots of this equation may be critical points for the function $\epsilon_{t}=f(x, \alpha)$. Any possible real roots in the closed interval $\alpha= \pm \frac{\pi}{6}$ are of importance; roots outside this interval are of little or no practical significance.

According to Budan's Theorem, successive derivatives $f^{\prime}(x)$,

χ	f	f^{\prime}	f^{2}		$f^{\text {(v) }}$	$f^{\text {f }}$	4^{81}		f	$f^{\prime \prime}$	70	$f^{\prime \prime \prime}$	f	${ }^{\prime}$	(r	Vari	
1	+	-	-	-	-	-	+	+	+	+	+	+	+	+	+	2	
$\frac{1}{2}$	+	+	-	+	+	-	-	+	+	+	+	+	+	+	+	4	
0	-	0	+	-	-	+	+	-	$+$	$+$	-	-	+	+	+	7	

$f^{\prime \prime}(x), f^{\prime \prime}(x)$, • • • $f(n)(x)$ were obtained for $f(x)$ and evaluated for three significant values of the argument given in the above tabulation.

It appears that the number of real roots between $x=0$ and $x=1$ is either five, three, or ane. Between $x=\frac{\sqrt{3}}{2}$ and $x=1$, there may be either two real roots or no real root. The result is ambiguous and reveals nothing more than the fact that there can be not more than two real roots between $\frac{\sqrt{3}}{2}$ and 1 . It will be noted that $f(0)$ and $f(1)$ have opposite signs, hence $f(x)=0$ has at least one real root between these values of the argument.

It is possible to determine in this prongom whether there are any real roots of $f(x)=0$ between $\frac{\sqrt{3}}{2}$ and 1 hy noting the following. An upper limit to the number of real roots of $f(x)=0$ between a ant b is ohtained, if ive set

$$
x=\frac{a+b y}{1+y}, \text { from mion } y=\frac{x-a}{b-x},
$$

and mitirly $f(x)=0 \quad y \quad(1+y)^{n}$, wherenpon Cescartes' rule can he arFlied to the resulting equation in y. For, when $x=a, y=0$, and when $x=k, y \rightarrow \infty$. Thus, the uner lirit to the numer of real roots is ottainod for y rancine from zero to infinity.

We proceed to expund $f(x)$ in porers of $(x-1)$, mich is equivalent to sinthetic division amlied to $f(x)$ - Te oricin is therety transferre? to the point $(1,0)$, wortain a second equation, wich is $f\left(x_{1}+h\right)=$ $f(x)$, in which $x_{1}=1$ and $h=x-x_{1}$. The resulting emontion hos the following form:
(2) $62,952.5 x^{14}+1,478,617.2 x^{13}+14,000,713.2 x^{12}+71,500,267.0 x^{11}$ $+215,698,347.0 x^{10}+421,803,2 ? 9.0 x^{0}+48 ?, 626,364.8 x^{8}+208,006,220.4 x^{7}$ $+87,810,107.8 x^{6}-26,948,817.2 x^{5}-38,147,888.5 x^{4}-20,023,876.4 x^{3}$ $-5,600,732.5 x^{2}-138,508.2 x+197,066.9=0$.

Subsequent substitutions are simplified by considering roots between 0.9 and 1 in the original function, which correspond to those between -0.2 and 0 in (2) - Again, $a=0$ and $b=0.2$ may be conveniently used in $x=\frac{a+b y}{1+y}$, provided
(2) is modified for $x=-x$. The resulting equation is:
(3) $62,958.6 x^{14}-1,478,617.2 x^{13}+14,090,713.2 x^{12}-71,590,267 x^{11}$ $+215,628,347 x^{10}-401,803,228 x^{9}+462,626,364.8 x^{8}-308,906,029.4 x^{7}$ $+87,810,107.8 x^{6}+26,948,817.2 x^{5}-38,147,888.6 x^{4}+20,023,876.4 x^{3}$ $-5,600,732.6 x^{2}+138,508.2 x+197,066.9=0$.

Since $X=\frac{0.2 y}{1+y}$, substituting in (3) and multiplying by $(1+y)^{n}$, we obtain the following equation, which is significant in the uniformity of the signs of its coefficients.
$(4)+111,182.36 \mathrm{y}^{14}+1,683,495.92 \mathrm{y}^{13}+772,347.24 \mathrm{y}^{12}+$ $50,398,117.82 \mathrm{y}^{11}+147,579,811.15 \mathrm{y}^{10}+312,700,908.21 \mathrm{y}^{9}+$ $494,370,840.91 \mathrm{y}^{8}+592,328,500.50 \mathrm{y}^{7}+540,317,707.20 \mathrm{y}^{6}+$ $373,256,922.54 \mathrm{y}^{5}+192,101,766.37 \mathrm{y}^{4}+71,364,918.88 \mathrm{y}^{3}+$ $18,069,179.91 \mathrm{y}^{2}+2,786,638.24 \mathrm{y}+197,066.9=0$.

By Descartes' rule, there are no positive real roots of (4), consequently no real roots between -0.2 and 0 in (2), and hence no real roots between 0.8 and 1 in the original function (1). For an angle (-a), the screen is symetrical with respect to the equatorial plane, and the analysis holds for negrtive angles within the same range. Thus, there are no real maxima or minima for \mathcal{C}_{t} in the intervals

$$
0<\alpha \leqq \frac{\pi}{6} ; \quad-\frac{\pi}{6} \leqq \alpha<0
$$

The solution, $\sin \alpha=0,(\rho .48)$ is the only critical value within the above limits, and as jet may represent a maximum, minimum, or point of inflection in E_{t}. That $\sin a=0$ renders \mathcal{E}_{t} a minimum, may be most conveniently show by evaluating it for a somewhat greater than and less than zero. To satisfy any doubt in the mind of the reader, this conclusion may be confirmed by applying the customary mathematical criteria to the above analysis.

Calculations for minimum total error min $_{t}$ are given for reference.
Since $a=0$ represents the angle for minimum error, determined for the conditions $a=0, n=5, \quad \frac{\xi_{w}}{\xi_{s}}=\frac{1}{2}$. The value of x corresponding to $a=0$ is $x=0.57577 r$. Evaluating min ϵ_{t}, we have

$$
\min E_{t}=1.02768 \frac{A_{r} \xi_{s}}{4500 \pi}
$$

Since $A_{\nabla}=240.528 \mathrm{sq}$. in. for $n=5$, therefore

$$
\min \epsilon_{t}=0.01748 \xi_{s}
$$

This value of ϵ_{t} is the least value for all angles from -30° to $+30^{\circ}$. Similar calculations for $a= \pm 30^{\circ}, n=5$, and $\frac{f_{w}}{f_{s}}=\frac{1}{2}$ afford

$$
\epsilon_{t}=0.02186 \xi_{s}
$$

For $\alpha= \pm 5 ; \frac{\xi_{w}}{f_{s}}=\frac{1}{2}$, and $n=5$, the following values of x and $\boldsymbol{\epsilon}_{\boldsymbol{t}}$ obtain:

$$
x=0.557672 \mathrm{~h}
$$

$$
\epsilon_{t}=1.02831 \frac{A_{v} \xi_{s}}{4500 \pi}=0.01749 \xi_{s}
$$

Thus, the position for minimum error mine f_{t} corresponds to the source located at the center of the sphere. The largest C_{t} will obtain at $\pm 30^{\circ}$ with no intermediate real critical points. These calculations based on the analysis cover the conditions $n=5, \frac{\boldsymbol{\xi}_{w}}{\xi_{s}}=\frac{1}{2}$ only. A like procedure may be extended to cover all practical values of n and $\frac{\xi_{w}}{\xi_{s}}$, if desired. For a given set of conditions, the fer cent error will depend largely upon $\xi_{s}=\frac{I_{s}}{I_{0}}$, whereas the variation in ϵ_{t} is small over the entire range of a for given ξ_{s}.

Error Due to Absorption of Reflected Light from Screen by Lamp Assembly.

A reduction in window illumination is also caused by reflected light from the screen being absorbed by the lamp assembly. The error due to this absorption will vary with the surface exposed to reflected light, and will depend upon the mean absorption factor for parts of the assembly exposed to such reflected light. Although it will modify to some extent the distance x for minimum total error $\epsilon_{s}+\epsilon_{w}+\epsilon_{L}$, this error will not permit x to fall below $0.4(l-d)$. The practical range for x will lie between $0.4(2-d)$ and $0.5(\mathcal{l}-d)$; that is, $h=0.4 r$ to $h=0.5 r$. The $60^{\prime \prime}$ sphere was constructed with allowance for $h=0.416 r=12.5^{\prime \prime}$ - Again referring to Fig. 7, it is well to keep in mind that within the range $x=0.4(l-d)$ and $x=0.5(\eta-d)$ with $a=30^{\circ}$, ϵ_{w} will be from four to nine times as effective compared to C_{s}. Consequently, whenever possible, it will be necessary to guard against strongly illuminating any portion of the sphere such as in the neighborhood of Q which is hidden from the window opening by the screen.

It is not permissible to allow the screen to approach the window too closely even though the errors ϵ_{w} and C_{s} vary inversely with x_{0}^{2} As the screen approaches the window, the illuminated part of the wall hidden from view by the screen increases very rapidly especially when the screen is near the window. Thus, a large part of light from the first reflection cannot reach the window except in the course of successive reflections. The resultant decrease in window brightness introduces an error which may not be negligible.

When determining the luminous output of a source, the screen errors discussed in this work do not affect the final results in the measure indicated. For, in calibrating the sphere for a given lamp assembly, similar screen errors obtain. The actual error in any case Will be the difference of the two obtained for successive operation of standard and test sources. Although this difference is quite close to zero in many instances, it is nevertheless essential to know what errors are involved and to what extent they may affect the final results in questionable cases.

DEEIN: AM COTOPDTCNIOA:

Pody of Ephere

The sphere, constructed in accordance with the requirements of this thesis, is built of cast aluminum and made in sixteen sections as per Detail No. l. The master patern mace of aluminu is fashioned after a mood pattern constructed on the basis of the dirensions on the above detail. The aluminum used is alloyed with l2 copper to eive riEidity to the construction. These castines were poured with allomance for one-sixteenth inch finish on surfaces indicated on the blue print. One casting of Detail ro. 1 is converted into a door larce enouch to adrit any comercial lichtine unit consistent with the size of the sphere, which measures sixty inches on the inside diamcter. The castines forming the body of the sphere were machined, filed, and when assembled, were ground alonc the inner contours to insure proper alienment. Then bolted toecther, they form the quarter-inch spherical hull.

Cover Plates

Upper and lower cover plates were cast of the same material as per Detail Fo. 3, in order to provide for lamp assemblies normally suspended and mounted vertically upright. The plates, cast in halves, were bolted torether on a finished surface. The cover plate surfaces exposed to light from the sphere, conform to the curvature of the latter. The interior surface of castings forming the body and cover plates was given a light sand blast to prepare them for the inside finish descrined in a subsequent statement.

Sunnorting Pranerork

The sphere rests on a supnortine franewor: made of standard onehalf and one inch black wrought iron pipe welded toeether as per Detail No. 12. Flange plates welced to the risers and bent to conform to the curvature of the sphere, are bolted to the body. The risers are provided with swivel bearing casters for easy movement of the photometer. The pipe frame:rork is fastened to the body in tiro sirilar constructions, permitting the photometer to he separated into vertical herispheres when it is desired to move it from one room 'to another. filhoumh vertical, the risers are amply spaced to eive stability when the photometer is divided.

Tindow

The window opening of three and one-half inches dianeter, counter bored to receive the diffusion elass, is formed by the aligment of two semi-circular openincs in an upper and lower section respectively. The center of the window lies in the horizontal plane throunh the center of the sphere and midway between the meridian flanmes. This location of the window, althourh theoretically non-essential, makes it convenient to use the sphere in connection with almost any auxiliary photometric devices. The center of the windo:r arproximates 52 inches from the floor level, a convenient height for the eye of the observer in conducting measurements. A diffusion glass cut to fit the counter bore is held in place by a framerork of steel bolted to the castings. Thin Vellumoid eas?cts protect the class from slicht irregularities in the bearing surfaces. It is essential that the surface of the g lass exposed to
incicent licht from the sphere be ratte. \therefore surface disclosinc any visible specular reflection would tranmit varinlle arounts of equal incidert fluxes, dependine upon the ancle of incidence. Thus, lieht incident on the windor woulc not be transmitted equally for all aneles of incieence betweon zero and nincty decrees. A matte surface exposed to incident flux of uniform brięhtness will, if honocceously translycert, anpear as a uniformly bright disk from the outside. Such a surfece differs sorewhat in diffusine qualities from the srhere raint, tut will transmit light more nearly equally for different ancles of incicence.

Screens and Screen Sunnorts

In order that the incicient flux on the windor produce a surface of uniform brightness, it is necessary to screen off all direct rays of lieht from the source to the class. The location of screens for minimum total error was discussed at leneth in the theoretical treatrent. A screen rod of $5 / 16^{\prime \prime}$ cold rolled stock rests in a hearine on the under side of the sphere, and fits into a similar device located on a vertical line atove. Screens of sheet retal are provided and held in place on the rod by setscrews.

The screen dinensions were obtained $b y$ actual measurenent and observation in the use of the lareest bare lann and lightine unit consistent with the size of the shore. Tre largest screen will effectively obscure any direct light from a unit of 18 " maximum dimension. Normally, no licht assemblies exceeding $16^{\prime \prime}$ maximum dirension will he under consiceration for test. Three screcns are provided for use with licht sources. The small one rith transverse memers serves for measurcrents on
rare lamns. The remainine tro may he used when larp asombly tests are to he conducted. Flexirility otains thrach rotetion and axinl adiustment.

Esserblies for inght Sources ard Circuits
i side assembly made ur alrost entirely of stancord equipment provides for measurement of hare lamps with base dom or up. Toro standard locul recentacles with adanters for medium lase larrs are comectec to a lencth of curvec conduit remeans of a suitable T unilet. The whole assembly is beld ricidly in plnce ${ }^{2} y$ loc'mutu cran arainst stcel face plates on the sphere. The ustor and lower assemties, also constructec of standnrd equinnent areet for the rood bus:ir: and stecl riñ in the unper cover plote castine, maie it possible to use the photonetor for testins lighting units. Current leacis project fron the unpor assemby and are provided with insulated clips for ready conrection to larn terninals. Each assembly comprises a current and rotential circuit troueht out throuch starciard fittincs arc flexible corduit to a terrinal konrd rounted on the sumporting frareworl. The rotertial lends are tanned near the larn recentacle in eac: case, in order to rinirize the drop in potential throun the rower circuit. The latter is arnly cirensioned with Io. l2 stranced coper wire to take care of loads as high as 16 amperes. $\dot{A} 11$ conrections to lerp receptacles and iunctions are solcered to insure cood contact.
"hen ready to assemble, the irrer surfoce of the srere was washed and cleaned with carion tetrachorice to rerove any remainirc crease or oil throuch hanclirc, and machining. Two coats of white shellac were aprlied, allowed to cir: and sancied. Four coats of flat wite interior naint form the base for the finishing material, which is a special sphere paint used in the photonetric laboratory of the thited ctates 「ureau of Stancarćs. Two coats of swhere paint were ampied with eood results. The rest results ray ke ortained ry sprorine. ill permanent parts of the sphere such as screens and conduit assertlics are liferise finished in the ramer descrihed. Leterrination of tre mean reflection factor k of the firjshed interior is a mollem mich should te of interect to those concucting experiments \because ith this moto-
 the reflection factor of the sphere pant and the diffusion class constant.

Techricsl Mata

The followine specifications are listed for reace refererce:
laterise of Dody
Teicrt corrlete with coessovies
Inside Eiareter
Wall Thichess
Certer of Window to Eloor Ievel
Door leasuroments

525 rounds
60 inches
$1 / 4$ inch
52 incles

Yidh, 23 inches; Lencth, 25-1/4 inches
Inxirum Noicht8 feet, 2 inches
I.aximur Diameter$66 \quad 1$
Diareter of Liffusion Glass 4
$"$
Diameter of window$3-1 / 2$Tall PointSonnehorn Flat Thite Interior Paint
Sphere PaintSpecial Reflectinc Mite Paint lanufactured butSenjamin loore \& Conpane, Yer York City

SIXTY-INCH CAST ALUMINUM SPHERE PHOTOMETER IN PROCESS OF CONSTRUCTION

SPHERE PHOTOMETER WITH DOOR OPEN WINDOW TO THE RIGHT

VIEW OF INTERIOR FROM DOOR ENTRANCE SHOWING CONDUIT ASSEMBLIES, SCREENSUPPORT, SCREEN, ANO WINDOW

ASSEMBLED SPHERE WITH CLOSE VIEW OFSUPPORTIVG STRUCTURE AND TERMINAL PANEL FOR CURRENT ANO POTENTIAL LEADS

SPHERE PHOTOMETER WITH AUXILIARY EQUIPMENT

The method employed in mescurira the luninous output of a lamp or lighting unit will depend won the relative size and reflection coefficient of the test unit compared to these quantities when referred to the sphere. Commercial illuminants ma. be subciviced into two cenaral classes in accordance with the above; viz., bare lamps and lightinc units, the latter including all lory assembles for reflectinc, refractirc, and diffusing media exemplified by the variety of semi- and totally inclosine tires on the market.

Pare Tams

All present commercial bare lares are small compered to the $60^{\prime \prime}$ sphere; consequently, one routine tine of measurement rill, in the majority of cases, satisfy requirements. The mean reflection factor of such lamps is quite high. It was shown that the illumination at the window is diminished by an mount ΔE_{R} due to the presence of a nonluminous diffusely reflecting body $\%$ screened from all direct light, where

$$
\Delta E_{R}=\frac{\phi}{(1-k) S}\left[1-\frac{1}{1+\frac{U k(1-R)}{(1-k) S}}\right]
$$

Although the lamp represents the source of light, the enclosing class acts as a non-lurinous body for diffusely reflected lick. If we interpret k as the mean reflection factor of the class, the analysis may te extended to cover this case. The window illumination decreases in the ratio

$$
1+\frac{1}{(1-k)} \frac{1}{\frac{S}{\left(1-k_{u}\right) U}-1}: 1
$$

and the constant of the sphere, if expressec to vary inversely as H_{n}, will increase in te reciprocal ratin. The per cent ircerase in K is given by $\quad \Delta K=\frac{1}{(1-k)\left(\frac{S}{\left(1-k_{a}\right) U}-1\right)} \cdot 100 \%$

Wen this is less than unity, the e..-cet of the lan is neelicible, for the error in F is less than one per cent. The ratio $\frac{S}{U}$ is sufficiently large for a $60^{\prime \prime}$ sphere to render $\Delta \mathbb{K}</$. in arranement for photoneter-

Fiॄ. 9
ing bare larps is show in Fig. 9. The side conduit assembly provides for bare lamp neasurements. It is advisable to use the suostitution method wherety the calitrateo lam, which mar be either a primary or secondary standard, is mounted in the sile assembly in the same position as that demanded r the test larp for normal oneration. A readine is obtained with the comparison lamp on the photometer bench. The calinrated larp is then replaced by the test lamp, and a second reading is oftained
for balance of test lamp against comparison lamp. It is not necessary to know the candle power of the comparison lamp, but it is essential to operate this lamp at a constant voltage either equal to or somewhat less then its rated voltage. Operative it at values in excess of its rated voltage causes undue filament deterioration and atterdant variations in luminous intensity. The position of the screen remains fixed throughout this procedure. The formulation whereby the luminous output of the test lamp obtains is as follows:

$$
\phi=\phi_{3} \frac{A_{1}^{2} \cdot B^{2}}{B_{1}^{2} \cdot A^{2}}
$$

This result is readily deduced E y referring to FiE. S. Let I_{S} and I denote the intensities of standard and test sources respectively: in this case, the candle powers of the window as viewed from P. Let is and E be as show in the ficure when the standard lamp is lighted. Then \dot{A}, and B, will conveniently represent the distances involved when the standard lap is replacer by the test source. We rave

$$
\frac{I_{s}}{I_{c}}=\frac{A^{2}}{B^{2}} \quad \text { and } \frac{I}{I_{c}}=\frac{A_{1}^{2}}{Q_{1}^{2}} .
$$

Therefore, $\quad \frac{I}{I_{s}}=\frac{A_{1}{ }^{2}}{B_{1}{ }^{2}} \cdot \frac{B^{2}}{A^{2}}$
since $\quad I=K \phi \quad I_{s}=K \phi_{s} \quad$,
here

$$
\phi=\phi_{s} \frac{A_{1}^{2}}{B_{1}^{2}} \cdot \frac{B^{2}}{A^{2}}
$$

In addition to following the "Substitution lethoc" in order to reduce the probable errors in sphere photometry, the procedure to be described under "Lamp Assemblies" may be aprilied to tare lamp measure-
ments with even creator weruction in error and less hurding of larnse Then saller sheres are used for tastine bare lams, it rocowes necessary to have available a laree supar of stancardized lams of various sizes and tupes similar to those mich are to be submitted to tost. For instance, if it were ciesired to concuct testis on frosted lamps in one of the smaller spheres, standardized frosted larms rust de provided. Clear cas-filled 150 mitt lamps would requre a clear gas-filled 150 att stmdardised lamp. This impracticability is rerovod by conductinc tests with sheres 30 inches in dinneter or creater. The error involved by usine ore or pronably two standardized lanns to coror all cowercial sizes and tipes, is noclicible for a sixty-inch shere. The stancind and tost lamps can occupy posi"ions in the sphere simaltaneously. They can te operated with base up or dom accordine to desien. The starcard remains in the shere, trus requirine no further handing. larns for testinc are introcuced irto the sphere in succession, and readines talen. ibsorption due to class and lamn tases is compensated for in this procedure. The test lampoutput is acain calculated as described above; namely,

$$
\phi=\phi_{s} \frac{A_{1}^{2}}{B_{1}^{2}} \frac{B^{2}}{A^{2}}
$$

Then the set of lamps under test are alife, the absorption is practically constant, hence $\frac{\boldsymbol{\beta}^{2}}{\boldsymbol{A}^{2}}$ is a constant, and it will not be necessary to check this ratio for each lamp. Wen the lamn tested in succession differ ridely, readings for A and B are followed by those for \dot{A}_{1} and B_{1} for each lamp. Fo further hardin, of the standardized lamp is necessary aîter insertion in its place in the shere, until tests are corrleted.

Lamp Assemblies

Searly all lamr assemblies absorb sufficient licht to render ΔK 풀 . Calibration and tests on lamp assemblies canot be conducted in the manner described under "Fare Lamps" without introducine an aprecialle error. Then dealine with a lichtine unit whose w. ©. \mathcal{C}. or total luninous output is desired, it is customar. to insert the unit and stancard lam in the sphere simultaneously. Consider, for exanie, a suspension trpe wich mould normaly be hune from the ceilire. It is converiently located alone the vertical axis of the sphere and directly over the calibreted lamp rounted along the same axis thrount the opening at the botiom. Fith the test unit on oren circuit, the sphero is calibrated first. Thder these conditions, the trightness of the window is a measure of the relative ahsorption in the sphere when the test unit is lichted. Cpenirg the standerd lamp circuit and closine that of the test lamp, anctier briohtness readinc is obtained for the window. The two reacines thus obtained, flus the known lurinous outout of the stancard lamp, enable one to compute readily the luminous outrut of the test urit. The arrancement is shom in Fi . . 10. Separate screens are provided for both test and standard larps. The screens are located parallel to the vertical axis of the sphere. This simplifies the adjustment, since bot! screens are convenientiy raised or lowered alone a comon screen support. Fig. 10 also discloses a small screen s' placed so as to intercent the rays of licht from L_{1} to L. Whis refinenent should le considered when the intensity of illumination of L_{1} in the direction of $L_{1} \dot{Z}$ is reasonably pronounced, and when the surface area of L exposed to rays from L_{1} is large. "hether the auxiliary screen
s' shall be employed in testing lamp assemblies will depend upon the distance $L_{1} L$, the intensity of I_{1} in the direction $L_{I} L_{\text {, }}$, the surface area of L exposed to direct light from L_{1}, and the coefficient of absorption of L. Careful consideration of these factors will in each case determine the advisability of using s'. Generally, however, when the diameter of the sphere is $60^{\prime \prime}$ or greater, the use of s^{\prime} will be limited.

In the avent that s^{\prime} should be called into service, it will be necessary to determine the luminous output of the ageregate; namely, L_{1} provided with s^{\prime}. This is accomplished by comparing the aggregate with a well calibrated bare lamp, which is equivalent to calibrating the combination $I_{1} s^{\prime}$. Knowing the luminous flux emitted by $L_{1} s^{\prime}$, tests are made in the manner described above. Equations (1) and (2) page 40 serve as a check on the probable screen errors $\mathcal{E}_{\boldsymbol{S}}$ and $\mathcal{E}_{\boldsymbol{w}}$ in any particular lamp assembly test.

It is desirable to have one or more diffusing glasses available to replace an impaired or broken glass. To meet the contingency in the event breakage occurs during a period of continued tests, it is possible to operate the sphere without the diffusing glass. A slight, temporary change in design will readily solve the problem. Remove the existing screen rod with its screens. The resulting recesses in the wall of the

sphere may be filled with dry, white blottine paper tightly wrapped to fit the holes. Locate points v_{1} and V_{2} symmetrically with respect to W_{1} and W_{2}, and press rubber vacuum bushines coated with sphere paint into place with centers at ∇_{1} and ∇_{2} as indicated in Fig. 11 . Insert screen rod into the rubber bearings. The rubber bushings must be sufficiently rigid to hold rod and screens in normal vertical position; hence, the rubber should be only mildly flexible. When determining the luminous output of lamp units in this manner, it is self-evident that a screen must be employed whose dimensions will not obstruct the bright spot on the wall of the sphere diametrically opposite the window
opening. The screen should be as srall as possible in keenine with mirimum screen atsorftion, ari "et sufficiently laree so that ro portion of the field of view in the photometer head is illuminated by once reflected licht coring from the mall opnosite the window. In other words, for all possible positions of the photoneter hearl over the oreratinc rance, the ficld must be illuminated by diffusely reflected licht emanatinc from that portion $G_{1} G_{2}$ of the sphere screened from the direct rays of the source. The screen supyort has a fixed location relative to VW^{\prime} for minimum screen error; the adiustrent is attaince by modifinc the size of the screen, the rane of the photometer henc, or both. The area of uniform brichtness $G_{1} G_{2}$ now recomes the test source. leasurenents, including calibration, follo:s in exactly the same manner as outlined for the photometer equirned with diffusirs Elnss. It is at once apparent that L cannot occuny all rositions along W, from $a=\frac{\pi}{6}$ to $a=-\frac{\pi}{6}$. This constructional restriction is minirized men photometering bare lamns.

$$
\begin{gathered}
\text { Vensurement of Transmiscion and } \\
\text { Reflection Coefficients for Diffusire Yedin }
\end{gathered}
$$

Diffusine media nlay an important role in a variet: of larn accessories used to overcome flare and produce the soft shadows and cenerally flensinc effect characteristic of man types of cirect and semiindirect units. The latter not only dirinish the lient, but scatier the flux in such a manner as to produce much the same effect as obtained fron a ciffusely reflecting surface. The shore photometer can re used conveniently to determine the coefficient of transmiscion of diffusine redix, since the sinhere can be relied uron to integrate the effect produced by
these suhstances. Te heein by measurine the total lunens of a source Without the diffusinc unit. Then the source is enclosed ry the diffusing gless, and the readincs obtained for balance of window and comerison lamp enable one to obtain the totol lunens of source with diffusine howl. The ratio of flux thus obtained to the rare lamp flux is the coefficient of transmission. In case the borl does not completely surround or enclose the source, the above ratio still represents tre averace transmission fector, since $\boldsymbol{\phi}^{\prime}=I_{0} \omega=\frac{\phi}{4 \pi} \omega$.

In order to ontain the diffuse reflection factor, one may utilize the circular opening at the top of the swere to admit light from an exterior source. If this flux be measured with the aid of a convenient standard lamp, ard then allo:red to foll unon a plane specimon of the diffusely reflecting material arranced at any desired ancle within the sphere, a second measurment will enarle one to cormute the flux reflected and the coefficient of diffused reflection for the eiven anele of incidence. The reflectine mecium here functions simultaneously as source and screen.

Reflection Pactor of Snhere Paint and

Transrission Coefficient of Diffusion Class Tindow

It was shown in the discussion of the theory of the sphere thet the constant is $K=\frac{\theta_{w}}{\phi}=\frac{I_{w}}{A_{w} \phi}$. If ϕ is a knowm flux from a carefully calibrated lamp, and I_{W} is balanced acainst a lnom intensity I_{c} of a connarison lamp, then K, the constant of the sphere, is determined. The constant may be expressed in a sonermat different form.

Since

$$
\begin{aligned}
& K=\frac{f_{w}}{\phi}=\frac{E_{R} J}{\pi \phi} \\
& K^{\prime}=K A_{w}=\frac{I_{w}}{\phi}=\frac{E_{R} A_{w} J}{\pi \phi} \\
& E_{R}=\frac{\phi}{4 \pi \Omega^{2}} \cdot \frac{\beta^{\prime}}{1-k}, K^{\prime}=\frac{\sigma R \rho^{2}}{S(1-k)} \\
& \beta=\frac{K^{\prime} S}{J \rho^{2}+K^{\prime} S}=\frac{I_{w} S}{\tau \rho^{2} \phi+I_{w} S} \\
& \beta=\frac{I_{w} S}{\phi \rho^{2}+I_{w} S} \text { for } \tau=1 \quad \text { (no diffusion Elass) }
\end{aligned}
$$

Thus, the reflection factor of the sphere paint my be obtained from measurements of sphere constant K without diffusion glass and the radii r and ρ of sphere and window respectively. The source of mom lumens ϕ must be screened so that no direct rays will fall upon the part of the sphere wall opposite the window and visible to the observer stationed at the photometer head. If this precaution is not talon, the brightness of that portion of the sphere will be ron-uniform due to the component of direct illumination from the source which follows the nhotoretric distribution curve. The reflection factor thus obtained, however, rill not be the true coefficient for the wall point, since the inner surface of the window will generally reflect dificently than the paint. The result for k will be sufficiently accurate for practical considerations. Since k is independent of T, reasurerent of Y may he made with the window in place and T computed from loom values of the constants.
Maxilinry Equinrent

The sphere photometer can be used with any of the modern equiprent ciesicned to measure luminous intensity, brightness, or illumination.

The Sherp-illar photoreter, the lacbeth illur inoreter, and the wobor photoneter are well adanted to sphere photoretry. The weston Erotronic Cell, if calibrated to read in foot-cercles, ray be nsed to reasure the illurination produced on the sersitized disc ty the windor oneninc in the sphere. Due to the fact that certain marts of the snectrun of the illumination rroduced ? the window affect the cell anc eve cifferently, the cell can be relied unon orly when used to reasure licht of the same character for which tie cell ms stancarcized. This liritation ray te overcore by the use of color filters, wheroby a civen source of rild color tore ma: be made to rerister the illurimation on the cisc which in turn is pronortional to the lurinous ou'sput of the source.

Advantases of toc Share Trotometer

To derive all oi its nossille admataces, certain caro in bnciline the sphore must; ke closely obsorved. Since all rarts of the suberical shell are rore or less in tension, it is recomended not to serarate the sphere into urer and lorer hemispheres, in order to preserve the aliznent at the wincor. "hen necessary to semarate the spere irto herispheres rearadory to ravinc a choree in location, the contour along tio plare of semation should be refinished with surere raint of ter asserbly. It is anvissile to cleck the constant of the shere before and after moving, usine the sare standare toth tires. The sphere raint coatinc will recore soiled and discolored with aee ard should te renewed. If soilec, the finish should le cleaned with carhon tetrachlorice and given a lig:t cont of shere naint. If clean but discolored, it is sufficient to annly one coat of shhere nant. The urmer and lorer conduit;
assembies ma: be refinished ousside the sphere. The siie asserbly can be renoved and minted, rut a sirpler procecure is to refinish it in position, taine care to mrotect the adiacent surfaces from stray mant. Some ackantaces in the use of the sphere rhotoneter are:

1. Simplicity in construction.
2. Liritec acjustment of parts.
3. Absence of flic!er cue to rotation of lamps.
4. lore flexilility in arc lamp tests.
5. Llimination of broatage due to rotation of lamps.
6. Use not confined to darl room.
7. Greater accurace than other tipes of interratine rhotoreters.

CALIBRATION

As previously described, the constant of the sphere will depend upon the nature of the interior finish, and is affected by the presence of light absorbing surfaces.

It was shown that the constant may be expressed in various forms. It is convenient, when using the bar photometer, to standardize the

sphere in terms of candles per lumen; that is, candle power of window per lumen output of source.

The $60^{\prime \prime}$ sphere was standardized using a two meter bar photometer. A fixed point near the left end of the latter was set at a distance of 60 centimeters from the surface of the window. See Fig. 12.

Notes and Data

Standard Lamp. Std.
Tungsten Filament, B. S. No. 3264, standardized base up by the United States Bureau of Standards.

Volts	105.0
Amperes	4.227
Lumens	8040

Comparison Lamp. C.
Vacuum Tungsten Standard Lamp, B. S. No. 4772, E.T.L. 5452, standardized by the United States Bureau of Standards tip up and stationary.

Volts	109.0
Amperes	0.350
Candles	33.8

The above figure, 33.8 , represents the candle power in the direction normal to the screen in the Lumer and Brodhun photometer head.

The sphere was standardized with upper conduit assembly remored, top closed, lower conduit assembly in place, and wall finished with one coat of sphere paint. The diffusion glass was used as furnished by Leeds and Northrup Company.

Photometer Bench Readings.

The mean value for A from the table is $A=82.21 \mathrm{~cm}$.

Calculations

$$
\begin{aligned}
& \frac{I_{w}}{I_{c}}=\frac{A^{2}}{(260-A)^{2}} \\
& I_{w}=I_{c} \frac{A^{2}}{(260-A)^{2}} \\
& K^{\prime}=\frac{I_{w}}{\phi}=\frac{I_{c}}{\phi} \cdot \frac{A^{2}}{(260-A)^{2}} \\
& K^{\prime}=\frac{33.8(82.21)^{2}}{8040(260-82.21)^{2}}=0.00089 \quad \text { candles per lumen. } \\
& G_{w}=\frac{I_{w}}{A_{w}}=\frac{7.22}{62.07}=0.116 \\
& b_{w}=0.364421 \text { lamberts }=364.42 \mathrm{millilamberts} \\
& I_{0}=\frac{\phi}{4 \pi}=\frac{8040}{4 \pi}=639.8+C . P .
\end{aligned}
$$

The discrepancy in the current readings is due in part to the current taken by the voltmeters, $i_{\nu}=\frac{E}{R_{\nu}}$, as well as to slight variations in effecting the scale readings.

The constant of the sphere for the conditions above described is $K^{\prime}=0.00089$ candles per lumen.

Calibration curves for the sphere may be obtained with various sizes and types of bare lamps. As pointed out in a previous discussion, however, the variation in K^{\prime} will be negligible when conducting tests on such lamps in the larger spheres. It is advisable to check K^{\prime} when measuring the luminous output of lighting units having an appreciable absorption.

PIRLIOGRAPIY

Transactions of Illurinating Encineerirg Society. Vol. III, No. 7, Octoter 1908, F. EO2.

Text in Illuriration, by Kunerth.

Illumirating Engireering, by F. E. Cady and F. B. Dates, 1925.

Liçht Fhotometry and Illuminatirg Engineering, by N. E. Rarrows, 1925.

Illuminating Engineerirg Practice.
Lectures on Illuminating Engineering delivered at the University of Pennsylvania in 1917 under Joint Auspices of the University and the Illuminating Engineerirg Society.

The Intecrating Photometric Sphere, by E. B. Rosa and A. H. Taylor. Transactions of Illuminating Engineering Society, Vol. XI, 1916, p. 453.

Sphere Photometer, by R. Ulbricht, 1920.

Lehrbuch der Photometrie, by Uppenborn-lionasch, 1912.

Advanced Calculus, by Moods.

Theory of Equations, by Dickson.

Handbook for Electrical Engineers, by Pender.
$+2$

