A CONTEMPORARY RESORT HOTLL OF RANPORCED CONCRETE

Thesis fer the Degree of I. §s MICHOAN STATE COLLEKZ

7. R. Jeinemax

1949
A COMTEMPOKARY ELSOAT HOTEL OF

RIINFORCD COMCRETE

A Thesis Submitted to The Faculty of
mighigan state college
of
Agriculture and Applied Science by
T.R. HETNEJAN
Candidate for the Degree
of
Bachelor of Science

May 1949
$\therefore \therefore \therefore \because \because$
$\therefore i$
\qquad
\because

$$
\cdots, \quad-\quad \because \quad \because \quad \because \quad \cdots \quad: \ddots
$$

$\therefore!\because$

INTRODUCTION

The purpose of a senior thesis is for the student to actually design a structure, or study and analyse a situation. In this way he can apply to an actual condition the theory and ongineering know-how he is assumed to have absorbed in the four year ongineering curriculum of this institution.

Designing reinforced concrete resort hotel would be a full time job for several engineere, and would certainly take sereral months at least. In designing this structure, I shall only compute the size of the coserete portions and the necessary steel and placins of aame. There will be an architects conception of the completed structure. The specifications will be only ideas of what I would insist upon should the building ever be constructed.

The plumbing, bating, ventilating, arrangement of rooms, electrical wiring and design, interior decoration, Iendscaping of the building and grounds, and other detail iteras Will have to be planned later.

Needless to say I have spent many hoursplanning these extra item necessary to the ultimate function and architectural appeal of the structure. Time, however, does ret permit their inclusion in this paper at the present time.

$$
\therefore \because, \quad \therefore i^{i} \quad \therefore \quad \dot{i} \quad \therefore \because \quad \because
$$

いi: '
$\cdots \dot{\prime}$

$$
\because \quad 1, \therefore \cdots \vdots 1,
$$

The theoretical location of this resort hotel is on the northwest tip of Charity Island. This island is in the State of kichigan in Saginaw Bay, actually a part of Lake Huron. The approximate position of the island iss
$44^{\circ} 02^{\prime}$ North Latitude
$83^{\circ} 26^{\prime}$ West Longitude

There are actually two pieces of land above the level of the lake. However, the maller area (known as Little Charity) is only about one eighth of a square mile. It is directly south of the main island. The larger piece of land is approximately one mile lons and one half mile wide, total area of just one half square mile.

The clesest torne are Au Gres, Mchigen, nime miles due wost; and Casevillo, Mchigan, nime miles southeast. At prosent the property is unimhabitod. Dossiomal fishing and sitoseoing parties are the only visitors.

At one time the U.S. Goverment maintained a Litohouse for navigational purposes in the Laginaw Bay arua. This has been discontinued years ago, but the litohouse and the keoper's home are still standing on the northern tip of the island.

The present owney is ar. hobert Gillingham of Gaseville, Mchigan. Fhether the property would be sold, or what the price would be I don't know. This is a theoretical problem designod for an atual location.
1.5
-••~

AGGidGATES: Practically an unlimited auply of matural material for concrete work is found on and around the island. The materials vould have to be quarried and graded naturally. There are outcroppings of olid limestone layers of rock. This natural stone can be used instead of bricks and blocke for flnished wails and firoplaces.

ARish: To my knowledfe, no survey of the island has boon made. I would eatimate the area to be from one-half to tiavoquartors of a square mile. a rough desoription of tise goneral shape would be that of an extremoly uneven five pointed otar.

Finvations mhe higiost point is le:s than thirty pout above the lovel of the lake. The elovations are determined by tine Formations of gently rising Band dunee. On the wouthweat side of the ialand is very small lake of sligntly inisner olevation than the surrounding body of watar. This fite nicely into tine plans for aciditional improvenents for tias property. The depth of water gurrounding the property varieg from six to fifteon fout. Thero are muny large rocks to bo avoided, and a large ruof onechslf mile northeast.

SOIL CONDIMI AS is previously $\operatorname{stated,~tho~island~is~an~outcropping~}$ of limestona covered with sand dunes, upon which thore is an abundance of regetations moatly oak and pine treus.

WATiAR EUPM, P Tho water from the surrounding lako could be bafely used for drinking and other purposse.

THE STRUCTURE 15 THE ABANDONED LGHTHOUSE TOWER AND KEEPERS HOME. THIS 15 THE APPROXIMATE POSITION OF THE PROPOSED BuILDING.

Building a resort on an ioland previously uniniabitod and ossily accessable from population centers would insure a maxirnum of privacy and soclusion. It would also call for an excossive amount of extra developaent and engineuring projocts.

In the case of cilidiliY Iimuisi, transportation would prove to be rathor uncomfortable unlosi the island had an airutripe a nine mile ride over open weiter could prove to be quite discourazing to po.sible cliarts. \because ith the proper tyjo of boat, tise trip by wator couls be fast, dry, and comfortable. Guosts from letroit and tnat vicinity could bo Pown to the island in less timen one hour.

The island is ideit for a sumser resort. In the cianr wuters of that area are some of the bisioset and scrajiosist fish in tine Great iakes. Swimring is wondarful, and thare are wido, sandy boaches ail around the ialand. The northwost tip bas amall harbor tiant with sowe improvement could handle several large Juohte Bridle paths would prove to bs scenic and onjoyablo.

Tho hotel would have complote fuoilities for g.mss suin as shuffloboard, billiards, and others. Linncing, lounging, wunbetining argas, and bars are also included in the plans. The entire resort would prove to be an attraction for airmsn and yachtamen pasiing nearby.

In this particular olimato, cil resorta tand to bo one suasonal. In our case, the season would be from way until october. The only we for the resort during the vinter months would be as a r st haven for those who dssise seclueion. Ice fishing is becoming more popular every yoar, and this could prove to bo a major factor in an all-beason resort.

TOWBR: The I tower bas eovernl parpeese othor than architectural design. In the upper portion will be mater tank as a part -f the rater systom of the hetel. The square portion ale will house an elevator shaft. The lamer and marrower portion of the towar will contain the stainwas and small rost room on each Reor. At the tep of the calum will be clased in obsorvation tower, a beacen, and radie and telovision antonnac. iny axeoas epase will be uned an sterace.

CONCRTME: Air ontrained concrete shall be used for all pertion an 1t has excellont venthoring propertio. A comont difpersing agent suoh as Pessolith shall also be used thruout. Ascregntos fren the island will be found suitable for all maxes. All bathreoms and berders of othor areas bhall be of Terrase. Various architectural dosigno can bo used as the forme ars cometructed previons to pouring conerote.

OUMPR BALLss Fatursi stone found on the 1sland will preve suitable for the firet 100r, Areplaces, and other parts of walls where the design ealle for a masonry mall. However, for the outer wall of the secend Noor ne provision has been made for the Iond of a masonry wall botreon celume thorefore, I bave planzed on aboet alvimus inoulated wall of a light weight
for this part of the etrueture.

ALRANGEN:NT OF KOOLS AND FLOOKS: Tho main floor will contain an open recreational area, aclosed lounging and game roon with three sides of glass. The dining area shall also have throe glase malls and will overlook the open water. The center portion will contain the lobby, tairmay, manager's office, and kitchene If the water table of the island permits, a utility room vill be the only emblance to basoment area. The second floor shall contain four suites, two at each end of the building. In addition, there will be many roome, bathrooms, and two dormitories. The manager's ouite is deck "5. The remainder of the third floor is to be an open dance Iloor and sunbathing deck. Movies can be projected on the square portion of the I tower and viewed by guests fron the sundolk area. A bar for drinking takes up deck the Deck fin 2 could be bridal suite if the ceiling from the bar is completely soundproofed. Whe elevator ends at the bar deck.

GiNLKAL DWSIGN: This thesis covers only the very basic plans of the total 1dea. In computing size of membere I have allowed for an additional floor to be aded later. The colums are overesse, but in the flat slab and cap type of etructure bas a particularly good resistanco to wind and other twisting Porces. The overall sise is $30^{\circ} \times 250^{\prime}$, and the tower is 60' tall. There will be suspended cellings to allow for plumbing and electrical conduit. fooms and ceiling shall be soundproofed. A chimey can be run thru tho center of "D" columens to accomodate
a Sireplace and the fumes from the oil heating unit. Heating will be of the radiant 1 oor panel type.

ADDITTONAL PKOJECTS

AIR STKIP: An airmtrip of 4000° could be easily constructed across the island. It is really a necceseity. It would have to be suitable for aireraft euch as the standard small airlinere as the $D C-3$. Prevailing winds would be the factor in its plans.

SWIMEING POOL; For daye when lake swiwning may be uncomfootable, a pool should be available. It would be located $s 0$ al to be sheltered fros wiads, but etill be in the sun most of the day.

GALE: AND PLAYGROUND FACILITIES: Fennis courte, shuffleboard, brida paths, beach areas, etc. would be constructed or doveloped. As this is primarily a resort, these facilities must be fully developed after careful plaming.

UTILITIES ${ }^{3}$ an adequate and safe water appiny is the number ane item. A sewnge disposel systom is also important. On an island, a uetiod of cormunication is neceesary. bilectrical powor must be provided, and muat be oxcoptionally reliable.

Bater could be obtained from the labe, and with vary little treatment be safe for all uses. The best deal for sowage might be to study the water ourrents near the island, and then pipe the material out frore the island far onougn so It would be carried out to the apen lake and net bo ewopt beck to the beachee. A large septic tank would be anotiner solution.

YACHT BALIN AiND EOAT DOCK\& a protected landing muet be provided for the eraft that visit the island. The lake that it on the island could be doepored and a channel out to the opon vater. The material ramoved in this procese vould be used at agerregate

$$
(: s \text { - quals })
$$

> f'e :s 2500 psi, concrete with 28 day strength of $2500_{i j}$ shall be the standard throughout this problem.
> Is $: 220,000 \mathrm{psi}$, maximum stress for stoul
> $n: 1 \frac{E E}{E 0}$ ic 12 , desion factor
fc s: 1125 psi : $2.457^{\circ} \mathrm{C}$ Compressive Loud -25f'c : : 625 psi , maximum compressive load for columns
$T: 8.026 \mathrm{~L} \sqrt[3]{-\frac{2500}{2 T_{c}}}$, in this case s: .066L

V :2.03f'c : : 75 pai , maximum shoaring strosi
d $35 \sqrt{\frac{4}{K b}}$ effective deyth of elab

As is $\frac{\text { fedea }}{}$, area of stool to bo placed in conerete

M ss $k \mathrm{~s}^{2}$, moment calculations for continuous slabs

J $1: 7 / 8$, design factor

- is -ryd . computation for urit shouring stress
$u: 8 \frac{y}{\sum 0 j d}$. bond stress

Othor formuins used wore found in Joint Comittou specifications

Poof of MINAGER＇S SUITE ON 5TH FLOOR

ERFECTINEDEPTH $=4.5^{\prime \prime}$ COVEP $=6^{\prime \prime}$
COADING $\angle L=30$ 思辰

$$
D . \angle \frac{=70}{100}
$$

Moments Lin．FT
SHOPT SDAN

$$
-M=.074 \omega S^{2}=-29,600 .^{\prime}
$$

Conrinuaus EDGE

$$
+M=.056 \text { w } 5^{2}=+22,400
$$

MIDSPAN

$$
-M=.037 \omega S^{2}=-14,800
$$

Discantinuaus EDeE
LONG SPAN
CONT：$-M=.058 \omega 5^{2}=-36,300.52$
Discont．$-7=.02905^{2}=-18,100$ ． 26
MIDSPAN $+M=.044 \omega S^{2}=27,500.40$

S／ZE
$25^{\prime} \times 20^{\prime}$
THICNNESS
$6^{\prime \prime}$
$S T \in E L$

者中os 3^{\sim}

$\frac{5 / z \epsilon}{\delta^{\prime \prime} \times 12^{\prime \prime}}$
$\frac{J_{T \in E L}}{3-\frac{7}{8} \phi}$
$2^{\prime \prime}$ croc
$1-\frac{7}{8} \phi$
$z-3 / 4 \phi$

- Mpiscontinuous

ST/PPUPS
1/4申@4"FOR Z'
1/4 ϕ 6"FOR z^{\prime}

Decr $\# 2$ 5 IN F<OOP WノナH B'ANTLEVEP OVEPNANG

$D \in C A$
Poof of suite on THIPD FLOOP

COADING - UNITORM 30\#/F2

AWYY FEANFOPCED SCYB पAX STPESS FOR LOUGWHT USED TO METETMINE
 SPACING OF STEELBAPS.
LOCATION OF STEEL SOR TMES SHORT DIMENSION SHALL BE THE SAME.
LEVGTH OF FODS SHHK EXTEND T LCO: ONE FOOT BEYON STRIP KIVITS. BARS FOP $-M$ SHALL EXTEND GOMPLETLH OVER CoLuMNS \neq DPOPS.

5126
$35^{\prime} \times 30^{\prime}$
THICRNESS $6 "$

Dpop $8^{\prime} \times 8^{\prime} \times 3^{\prime}$

GAP
$5^{\prime} \times 5^{\prime}$
STEEL
Coc.Srien
$-M_{1}^{2} \phi$
3"spacing
$+M \frac{3}{8} \phi$
6"SPAING
Bend Up 10
ALT. BAAS
M1DSTPIA
$-M_{8} \phi$
8 STASLNG
$+M$
SAME AS
$+M$ Cac. Trpup

SAMXLECOMDUTATION
DECN $\Rightarrow A$

MIN. THICRNESS $=.026 \angle \sqrt[3]{\frac{2500}{f^{\prime} c}}=.026 L=7.2^{2}$

$$
\text { DPOPS }=\frac{5}{3}=8^{\prime} \times 8^{\prime} \times 3^{\prime \prime}
$$

$$
\text { CADS }=0.2 \angle=4.6^{\circ} \text { USE } 5^{\prime}
$$

$$
M_{0}=.09\left(L-\frac{2 c}{3}\right)^{2} \frac{w}{L}=89000=\frac{\cos \angle^{2}}{8}
$$

$H=\frac{M}{b d^{2}}$ FPOMTABLE $=196$

$$
\pi=\frac{40,000}{12 \cdot 6^{2}}=111
$$

Cocumn STPID

$$
\begin{aligned}
& -M=.54 / \%=48,000^{\prime} \neq \\
& +M=.19 / \%=16,900^{\prime} \#
\end{aligned}
$$

M1DDLE ST円ण

$$
\begin{aligned}
& -M=.08 / /=1,130^{\circ}=16900^{\circ} \Rightarrow \\
& +M=.19 / 2 \\
& d=\sqrt{\frac{M}{6 M}}=\sqrt{\frac{40,000 \cdot 12}{12 \cdot 2 \cdot \cdot 06}}=4.5^{\prime \prime}+15^{\prime} \text { COUER }=6^{\prime \prime}
\end{aligned}
$$

SAMPLE COMPUTATION
$D \in C A \neq 4$

$$
M_{s}=\frac{M}{f_{s} \mathrm{Jd}}=\frac{48,000 \cdot 8 \cdot 12}{2 ;, 000 \cdot 7 \cdot 6}=5.51 \mathrm{~N}^{2}
$$

USEING $\frac{V}{L} \phi, 28 N E E D E D$ FOR 7 STBID SPACING - I"APADT
$\left(+M_{C O L}\right)$

$$
\begin{aligned}
& A_{s}=\frac{16,900.8}{20,000 \cdot 7 \cdot 6}=1.93 \mathrm{NN}^{2} \text { USE 3/8 } \phi, 6 \text { "APAFT } \\
& \text { RENDUP 10ACTOPNAE } \\
& \text { 5AP5:- } \\
& -M_{M r}= \\
& A_{s}=\frac{7100.8}{20,000 \cdot 7 \cdot 6}=.8 \mathrm{~N}^{2} \begin{array}{l}
\text { USE 委 } \phi \\
\text { spACE } 8^{\prime \prime}
\end{array} \\
& \text { SDACE 8"A AnBT }
\end{aligned}
$$

+MMID SAME AS +MC0 5 TBID
USE SAME SHZES \& SPACING OF STEEL FOX SMOXT SMAN.
ALC STEEL TO HAVE AT CEAST "COUER.

$$
\begin{aligned}
& \text { SHEAR }=.05 f_{C}^{\prime}=75 H^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 9^{\prime \prime} \times 1 Z^{\prime \prime}=1080^{\prime \prime} 75^{\prime \prime *} \times 100^{\prime \prime}=810^{m} 747^{*} / / \\
& \text { Zabr - ENFT }
\end{aligned}
$$

Baud Lat $Y=\frac{V}{z_{0} J d}$

DECA \# 5
END POPTION aN
3RD FOOR

$\frac{51 z \epsilon}{30^{\prime} \times 30^{\prime}}$
THICANESS
$6 \frac{1}{2}$
$\frac{\text { Dpops }}{8^{\prime} \times 8^{\prime} \times 3^{\prime \prime}}$
CADS
$\frac{5^{\prime} \times 5^{\prime}}{\neq}$
$5^{\prime} \times 8^{\prime}$

STEEL
-M FOR
CANTLEVER overphang $3 / 4$ 中@ $4^{\prime \prime}$
$+M$
$38 \phi @ 4 "$

- 1 FOP

Cantinuous $5 \angle A B$ 3/8 中6 ${ }^{\prime \prime}$

Decms H6 \#tw 3BD FLOOP - PROPOSED OPEN DANCE APEA, GAME APEA, \ddagger SUN DECA

LOMDING L.LIZONH2

$$
\Rightarrow c, 106
$$

$$
2 \geq 6
$$

$$
M_{0}=\frac{w L^{2}}{8}=25,400^{\prime}
$$

-Mpiscontinvous

$$
\begin{aligned}
& =.55 \% \\
+M & =.25 \%
\end{aligned}
$$

$$
-M_{\text {cantinuaus }}=21 / M_{0}
$$

In THESE PANELS AS IN ALL OTHEKS THE BEINFORCEMENT SHALL PUN FOUR WAYS - IE., HOBIZONTALY \& VERTICALCY ACCORDING TO THE DBAWING.
THE COCUMN STRIP 15 FFOM THE EDGE TO THE 年 POINT. THE MID STPIT IS THE MIDNLC H4LF AS PEP PCO SPECS.
THE SLAB SHALC BE TED INTEGRALLY TO THE

T-TONER, WHICH SERVES IS A UNIT SUPFOPTING COLUMN.A $3^{\prime \prime}$ DPOP SHALL

$$
\begin{aligned}
& S / Z \in S \\
& M A x=30^{\prime} \\
& 30^{\prime} \times 30^{\prime} \\
& 30 \times 25^{\prime}
\end{aligned}
$$

$\frac{\text { THICRNESS }}{9^{\prime \prime}}$
DRODS
$8^{\prime}+8 x J^{\prime \prime}$
$\frac{\text { CADS }}{7^{\prime} \times 7^{\prime}}$

- MFOR contruves $F C A T \operatorname{San} A B$
桨 $4 \leftrightarrow 4^{\prime \prime}$

DECHS $8,9, * 10$ ZNDFCOOR－PRUATE RoOMS，SUTES，\＃FDOPMS
INCUDING BIINPOOMS

LOADING
 $6^{\prime \prime} \operatorname{sCAB} \quad$ D．$\angle=75$

$$
M_{\operatorname{SPAN}}^{\operatorname{SiAx}_{\operatorname{SPAN}}}=13,000^{\prime} \neq
$$

$$
A_{s}=\frac{M \cdot / z}{f_{s} J d}
$$

$$
=\frac{F 13+128}{20^{\circ+2} \cdot 7 \cdot 5}
$$

$$
A_{s}=1.2 F
$$

BOND OK
SHEAT GK

STKE
MAX SPANBO
Pontces， $30^{\prime} \times 30^{\prime}$,
$50^{\prime} \times 25$.
$\frac{\text { THICTVESS }}{6^{\prime \prime}}$
$\frac{\text { DPOP }}{\text { B＇AXJ＂}}$

STEEL
－Malticever 3／4中0 $6^{\prime \prime}-7$
－MDISContimens 1／2 $\boldsymbol{\phi}$＠J゙ーナ
$+1$
$3 / 8 \phi @ 4=B$
－Mcontruous $38 \phi 5^{3}$

$$
\begin{aligned}
& \text { MAIN FOOP } \\
& \text { Ppoposed UsE:FOR } \\
& \text { HITCHEN, DINIVG COBO, } \\
& \text { TECFEATIONAL HREAS }
\end{aligned}
$$

LOADING K．L． 150

$$
9 " \operatorname{scAB} D \cdot \frac{106}{256 \# /_{7}^{2}}
$$

$5>z E$

STEEK SHALC EFE PLACED

$$
1 / 2 " \text { Fron Bron-4war }
$$

SLAB PESTS ON COMPQCIED SAND AT LEAST J^{\prime} DEED
BoTOM G＂OFSCAB SHALC BE ZONOLITE CONCRETE． Top 3^{N} sAACL CONTAIN BADIANT HEATING PIDES， $\nsubseteq B \in O F$ A GOOD WEAPING CONCRETE．
AT NO POINT SHALL THE SLAB BRE ATTATCAED TO COLUNTNS，FOOTUNGS OT TOWER．AN ASPAALT TOINT SHALL CONNELT SLAB AT THESE POINTS．
f＂JORT
Col． \square
FOOTING

STEEL －n
者中＠4＂
－ 7
多め＠4＂
wise Resh
TO BE DIPECT＜K ON SAND BASE．

No.	STZE	WeTA/L of CoLurrns Suppapting DECTS*- STEEL		Cover
2	$8^{\prime \prime} \times 8^{\prime \prime}$	*/	$8-\frac{3}{4} \phi @ 3 "$	/"
4	$12^{\prime \prime} \times 12^{\prime \prime}$	\#4	4-1中@6"	$2^{\prime \prime}$
4	$15^{\prime \prime} \times 15^{\prime \prime}$	* 6,7	8-14@4*	$Z^{\prime \prime}$
4	$18^{*} \times 18^{\prime \prime}$	$\# 2,5$	8-14@6"	$3 "$
6	$24^{\prime \prime} \times 24^{\prime \prime}$	\#3, 5, 6		$31 / 2$
10	$36^{\prime \prime} \times 36^{\prime}$	$\# 8,9,10$	12-14*	$6^{\prime \prime}$

6" COVER FOR STEEL
SOIL BEARING PRESSURE CSTMMタTED AT 6000直 2

STop r wall Steen cover "Bull Steen cover

1	$15^{\prime \prime}$	$3 / 4 \phi @ 4^{\prime \prime}$	$3^{\prime \prime}$	12	$3 / 4 \phi Q 4^{\prime \prime}$	$3^{\prime \prime}$
2	$12^{\prime \prime}$	$3 / 4 \phi @ 6^{\prime \prime}$	$2^{\prime \prime}$	12	$3 / 4 \phi \otimes 4^{\prime \prime}$	$2^{\prime \prime}$
3	$10^{\prime \prime}$	$3 / 4 \phi @ 8^{\prime \prime}$	$2^{\prime \prime}$	10	$3 / 4 \phi \otimes 4^{\prime \prime}$	$2^{\prime \prime}$
4	$8^{\prime \prime}$	$1 / 2 \phi @ 3^{\prime \prime}$	$11_{2}^{\prime \prime}$	8	$3 / 4 \phi 3^{\prime \prime}$	$1 / 2$
576	$6^{\prime \prime}$	$3 / 8 \phi @ 3^{\prime \prime}$	$1^{\prime \prime}$	8	$3 / 4 \phi @ 3^{\prime \prime}$	1

DEPTH. 4
STEEL
1办@8 (4 war)

METHOD of ANATCNING
METAL FLASHING

BIBLIOGKLHEY

whilding Code Fequiremonts for Feinforeed Concretel ACI 318-47
"Heinforced Conerete Deaign liandbook of the americun Eoncreto Institute*
"Eimplified Design of Concrete Floor Systems" Portland Cement association
"Reinforced Concrete Lesign"; by suthorland and joese Second edition
"Hocomended Practice and Etandard Epeciflcations for Conerete and heinforced concrete"; a report of the joint cormittue
Numerous pamphlate and several othor theses.

RO $31^{\text {ta }}$ ROOM USE ONLY

