R-LIQUID EQUMBRIA FROM VAPO -V-T RELATIONS. GENERAUZED P ThaisforfluoogMolMS. MlCH‘GAN STATE UNNERSWY John Nakon Hester $9 59 “W. LIBRARY ‘ Michigan State University VAPOR-LIQUID mu ERG! W P-VJI' MORE JOMMHBSM ATEISIS Submitted to the College of Wing Michigan Statelhiversity at Agricmlture and Applied Science in partial mitinmt or the requirements for the dome of morscmvcz V Depart-ant of Chemical Engineering 1959 AM The author wishes to express his sincere apprecietion to Dr. Carl 1!. Cooper for his valuable assistance and helpful guidance throughout the course of this work. 11 VAPCR-IIWID man not ‘ Mm .P-V-T mucus Joan mos mm mm SubuttedtotheCouegeongineerine Michigan Stete University of Agriculture and AppliedScienceinpartielfulfillnentot therequirenents torthedegreeot morsem Department at Chemical Engineering 1959 iv Jonsmsosm Am Mimestigationisastudyotthesatistactorinessot current eethods for calculating the pressm-volxme-teqperature relations or mama-u, with particular min on the use or these lethods to predict binary vapor-lipid equilibria. Pitzer.‘ s generalized correlation, which expresses thereo- dynalficpropertiesintermotredncedtmrature, refined pressure and an "acentric f ", accurately-predicts the vapor pressuredpurecolpounds. Itdoesnotpa'edicttheazeotropic telperature, pressure andcomosition for any of the systole studied, vim, ettwl‘alcohol - water, etlul alcohol - benzene and ethyl acetate - noml hustle. Various combinations of the critical properties and acentric factors were attelpfted for the mcmndsbuttheresults obtainedwerenotanilprovenent onthoseacquiredwithasinplenolaraverageottheproperties on! the pure coupounds. auteur, Pitzer's correlation, with this simple Dollar average cabination of the critical properties, predicted volunetric properties or netlwl alcohol - nornl butane fixtures with greater acctn‘acy than'Angat's law or critical compressibility charts developed by ‘hxwell and by Hansen and Watson. the past success of the Benedict-Webb-Rubin equation or state in predicting mdrocarbm vapor-liquid equilibria wanted a stw or the relation between the critical properties or pure coupounds and the pseudocritical properties obtained with these equations. For the ethane - nornl heptane system, the critical coupressibility JOHHIEIBONEESTER of the 0.8 Iole fraction ethane mixture is 0.21]. while it is 0.228 for the 0:5 mixture. In direct contrast, the critical coupressibility of pure ethane and pure norml heptane are 0.285 and 0.260 respectively. In addition, the effective pseudocriticel pressure for the 0.5 mole fraction ethane mixture mounted by this method is 25.2 etno- spheres while the critical pressure of ethane is h8.2 atlospheres and that for normal heptane is 27.0 atmospheres. Theseanomlous findings castdoubtontheadequacyofthe usualassimptionthatasinglephasenixturebehaveslikeasingle compound with properties which are intermediate between the properties of the pure components of the mixture. This study indicates that reliable calculation of vapor-liquid equilibria from the P-V-‘I' relations of mixtures will not be successful until an enact equation of state relationship is established between pure compoundsand mixtures. APPROVED: / Q’M MorPr essor / TAR-301W Acknowledgnent.......... Abstract............. Listof'i‘ables.......... ListofPigures ......... Introductim........... Theory.............. History............. deectives............ ListofCalculations....... Procedure ............ ResultsofCalculations ..... DiscussionofResults ...... Conclusions ........... Reco-endatiais ......... lonenclaimre.......... Bibliography........... SalpleCalculations Worm Accuracy and Couplexity of Equations of State. . PitaerCorrelationvs. VaporPressures . . . . . mwmwfiehtimhiptofllmm VaporPressureMne ............ Azeotropes and'i‘heirRelationship to (er/31).], AlongSaturationmne ........... Ibesured Boiling Points vs. Predicted Boiling Points Measured Pressiires vs. Predicted Presetires Liquid Values Predictions for Methanol - Normal 0 O O 0 Emma O O O O O O O O O O O O O O Pitser Correlations for Liquid Volune Predictions . Pseudocritical properties of Ethane - Dorsal WWeeeeeeeeeeee O 52 53 57 vii III LISIOPFIGIRES Pseudocritical mm. of Ethane - Norml HeptaneSysteI............... Pseudocritical Pressures of Ethane - Normal Pseudocritical Densities of Ethane - Norml ”WWW............... Volumetric Properties of mtmrl Alcohol - Kernel ButaneMixturesat200’Pandll0psia.... 'Volmnetric Properties of lbthyl Alcohol - Nor-a1 Butanemxtures at 2h0'1'andh0psia . . . . Volumetric Properties of mum Alcohol - Norm]. Butanemxturesat280'Pandh0psia. . . . Volumtric Properties of Methyl Alcohol - IIorml Butane Mixtures at 2m'Pend125 p615 . . . 62 53 67 69 viii momma DEMO! A prile requisite for the successful design of use transfer processes such as distillation, absorption and extraction, is accuratepbase'equilibriuldata. 'rheexperilentaldeterainationofreliablevapor-liquid equilibriarequinsacoaplexlaboratorytechniqtie. Several experimtalnthodshvebeupropoeedlmtthereiscmsider- abledoubtabouttheaccuracyofthedatathathasbeenobtained witheach. Difficulties «centered in the arperiaental deteraination of such data nuke calculatim techniques for vapor-liquid equilibria iaportant. In addition, such calculations illustrate the general behavior of vapor-liquid aixtures. Predictionsofvapor-liquidequilibriaarebasedupon rigorousthermfinaaicrelationships. Therearetwobasicaethods. forcalculatingvapor-liquidequilibria. (neoftheselethods, m1,mewmmm,mmtymm activity coefficients;whilethesecmdlethodenploys anequatim ofstatethatisapplicabletothenixtureandtoitspm'ecoaponents. lbthodIisinusetodarbyaoetpersonsinterestedinvapor- liquidequilibria. However,ithaseeveraldisadvantagesofwhich theprincipaloneisitsdependenceonaxperinntalactivity .coefficientsfortheaixture;theseareseldolavailable. Indirectcontrast,)bthodndoesnotnquireamaxperi- aentaldataonpropertiesoftheaixture. However, itdoes de-ndanaccurateequationofstateandapreciseaethodfor cowining the arbitrary constants of the equation of state when appliedtoaixturea. mselusiveelseentinlbthodnhasbeenadeteraination oftheexactmationshipbetweenpropertiesofaaixtureand propertieeotitep‘n-eceepenente. Theestablishlentofthis clemathasbeentheddnantlotivatimforthisstudy. A- W Equations that involve only pressure, voluae, tenperature and arbitrary constants are called ”equations of state". These equations attelpttopredictthebehaviorofmrecoapmmds over a practical range of conditions. Dodge (8) has pointed out that overlOOeqmtionsofstatehavebeenproposed, althoughonly afewhave cone intoco-onuse. neequtimoretetethnteredirectlgreletedtotnie work are listed below: Ideal Gas Law (1) P - m/v van der Haals' Equation (2a) P-m/(v-t) -a/Y2 seducedror-ormderwecu'sqmtion (2b) P,- - err/(3v, - 1) - 3mg seettie-nridge-en Equation (3) P-Rl’d+ (soar-i0 -Rc/'r2.)<12+ (4.9m + Aoa - Race/1‘2)d3 + monk/r2 Benedict, went and Rubin Bquatial (h) Fem-o- (nom- -A° -c°/'12)d2+(bm -a)d2+ dad6 + cd3/'1‘2 Bl + 3d2)e" n12] Colpressibility Charts (5) z - f(Pr, err) Pitui- correlation (6) Z ' “Pr: Tn.) ) Riedel Correlation (7) z - “Pr, {Pp-Cc) Iadersen, Greenkorn and nougen correlation (8) Z ' fa’r: Tr: 2:) nose relationships vary in coapleaity, ranging froa no arbitraryconstantsintheidealgaslawtoeigbtarbitrary constants in the Benedict, went and Rubin equation. AWoftbcmlmtyandtheaccmcythtmbe achinedinpredictingsouproputiesofnmcoqpandsugven inTa'blel. Ihistableillustratestheapplicationofthelisted egationeotetetetoelargemneeroroo-poudsthoughthe couperieoanrnotbeaccurateforawsinglecoqound. Inthelowpressureregimeachoftherelatialshipsrepresent thepropertiesofpmeoupoundsaccm-atelr‘butthereare-Jor inaccuraciesinlquatims(l)and(2)forthehighpressureregion. mlynquations (It), (6), (7)and(8) give resealable resultswhen mliedtothepredictionotliq‘nddeneitiu. Inthecriticalregimeachdtheequatimsaxcepttheideal gaslawgivesafanflqofisdthea‘leurvesinthepressure- voluaeplanewhichhaveahorizontalinflectionpointatthe critical teqeratureandpressure. Theeritical pressure, temeratureandvolme-ybedeterainedbyutilizingthefact tuttheilotherlpalsingthroughthecriticalpointhaltero slopeatthatpointwhichisalaoapointofiuhction. his m1 33333333? #333 is??? g'g' mmmmmmmm z gégazssazu 3.5 53323352“: 334%.: SEA—Again E igélziggizszz aaaaaaa *Also‘l'abular' satisfies the following nthentical require-ants: (£13!)1P - o (9) 321’ -o . . - lo (76 )r () nae prediction of vapor pressures with these relatimships isbaseduponthetherasflmaicrequireeantstbatatequilibriua: PL-Pv (u) rt-Iv ‘12) v I v var . o (13) v1 'i'heactualcalculatimofvaporpressurewithanequationof stateinvolvesfindingthevaporvolusandliquidvoluasatwhich thefugacityofthevaporandtheliquidphasesareequal. The pressm-eofbothphaeesmstbeequalandisthecaleulatedvapor pressure. I theidealgaslumthefirstequatialofstate. Itm bederivedfroeakinetic viewpointwiththefouowing assulptions: (a)thevoluaeoftheaoleculesofthegasisnegligiblewhen cmredto'thetotalvoluasoftheasand(b)thereareno attractiveforcesbetwaentheaoleculesofthegaa. Actualgasu donctconfmtothebehaviorpredictedbytheidealgaslu but-erelyapproachthesecmditionsatlowpresaures. In1873vanderwaals(33)proposedthefirstpractical equatimocrstatetoimroveupontheidealgaslaw. Beconsidered that(a)aportionofthsspaceoccupiedbyagasistakenup bytheaoleculesthe-elvessothatthe"freespace"thrwghwhioh theaolewlescanmoveisnotequaltothstotalvolunsandh) thereisaforceofattractionbetweenthemoleculesofthegas. Despite these refine-ants, van der Waals' equation is only an approxintion and exhibits large deviations from acttnl behavior as the pressure increases. Equation (2a) is another form of van der wans' equatial ofstateerpressedinter-ofreducedproperties. Thiswas probablythefirstexpressionofthetheoryofcorresponding states and m be considered as a forerunner of Equations (5) through (8). The Beattie-Bridgemn equatim at state (2) is one of the nostnotableimprovenentsonvanderWaals' equation. Itisan maple of a more eagle: equation of state, with five arbitrary constants. Ithasprovedtobeveryaccurateintherangeof conditions for which the calstants were determined, but it gives eresultsatpressuresoftheorderof250ataospheres (10). w The Benedict, new and Rubin eqmtion (h) is probably the lost accurate equation of state in use today. This equation was developed as a modification of the Beattie-Bl'idge-n equation orstatetoilprovethepredictionofthepropertiesoffluids at high densities. It has successfully predicted P-VJP (pressure- volune-tenperature) properties within 0.3% of the actual values forlwdrocarbonsandothercoawwndsuptodensities twicethe critical density. lo Equations (5) through (8) are graphical representations of thecompresaibility factor, Z,intemofredncedprovperties. Mesa-pressibilityfactormodifiestheidsalgaslawtoaccount forthedeviatimotthemopertieeofarealpsfroathoseof snidealgas. Thisfactorisnotaccnstanthltisafunctimaf (a) thsgas itself, (b) thepreesureand (c) thetamperature. Thebehaviorofanyachialpscanberepresentedbymeans ofagraphotcompressibilityfactorvs.pressm-e, withtelper- atureasaparameter. Ithasbeenfoundthatthegraphsfor eachgasshosedthesansgsneraltrendsthoughtheyweredifferent insegznitude. rhesesisdlaritiesledtotheeppucstionorthis relationshiptotheflleoryofcorrespondingstatesasproposed byvandufluh(33)- 'ncethsoryorcorrespaadingststesassatsthstthsr-v-r relationsofallgasesarethssaaswheneachvariableiserpressed inter-erreduoedpropsrties. seducsdpresan-e,redneed temperatm‘e,redncedvolunandrednceddensitymybedefined asfollows: g-flg Tr'T/Tc vr"'V/Vc dr'd/dc wherethesubscript, c, referstothecritical state. 'nlistheoryledtotherelationshiperpressedinnquationG) whichseveralinvestigators(ll,20,2l)haveueedtodevelop generalized compressibility charts. Mechartsgiveagood decadencm‘acywitherrorspri-rilydnetotheapproxi-te nature of the theory of corresponding states. Inrecentyears, severalmethodsbavebeenpresentedfor improving the accuracy of the generalized compressibility charts by the introduction of a third parameter. Equations (6), (7) and(8)aresomeofthemoreprominentmethods. Pitser (25) introdmed as his third parameter the acentric rector,d, whichisaneasm'eofthedeviationofthe "inter- molecularpotential”frathatofa"siaplefluid”. Theacentric factor was defined. as a) e-logPr-l.000 (11¢) wherePristhereducedvaporpressm'easastn'edatareduced temperature of 0.7. The compressibility factor was then expressed as a power series in the acentric factor zaz°+dZ'+u) 22"+ ...... (15) where 2°, 2' and z" are different graphical functions of reduced pressmandreducedtemperature. Itwasdeterminedthatthe first two terms in Equatim (15) were sufficient in almost every region. Pitser and his coworkers (26) attempted to evaluate the quadratictemZ"forthesmllregioninwhichitappearedto be significant. However, the resulting values were not used because they showed irregular behavior. This correlation without theZ" term, basalsobeenappliedwithfair success tothe prediction of the properties of both saturated liquids and saturated gases. Riedel (28) introduced a teniperature derivative of the vapor pressin'e at the critical point, Kc, as a third parameter for the satiation of generalized vapor pressure and liquid density data, where '13 ece._°.(2£ . (16) Pc are Pitser (26)pointsoutthetcccisre1atedtohisacentricfector bythe following equation: ace - 5.808+ L93 a) (17) Iadersen,GreenkornandBouaen(18) heveselectedastheir choice for a third parameter, the critical coupressibility factor, definedas Zc'Pcvclmc (18) Theresnltsofthisvorkverepresentedinfourmofcoupmme bytheirvaluesofzc. niecorreletimincludestheliqnid regimend it cenalsobe relatedtoPitzer's cornJmtim. Pitzer (26)gi‘vesthefonowin3equet.ionasthere1ationbetueen anndhisaeentric factor: . zc - 0.288 - 0.863 a) (19) 3. Was Thesolutimtotbperpleximgprobleldpredictimsthe propertiesofeixtureshesbeenelusivetoscientistsandeosineers vhohavepm'suedthiscourse. mmwtoerpreuther-v-r behaviorofalixture,1menitscoqpositimishtovn,isinterme oftheknounbelnviorotthepurecomonents. 'Bmsifthereis unequetionofeteteforeechcomonentinthelixtm'e,the amtnytodescribethebeheviorotthelixturembe bymsdsaecodainaumofthearbitrarycmstanuofthe equation for the pure W. 13 fiesnccessachievedviththeapplicationofrednced propertiestopm‘ecoqpoundssmestedtheiruseforlixtures. Bovever,itvasdeterunedthettheh'uecriticalpointvasof littlevalueincorreletingtheplvsicalpropertiesotlixtm'es. whenitisusedforcalculatingredncedproperties,thecomprees- ibilitycIn-vesdeviateconeiderablyfrouthoseforpm'eeoewomds, especiallyinthecriticalregim. Mtherinvestiatimshoved thatafictitiousvalneoi'criticaltapu'atm'eandpres'sure couldbeemloyedsotbtthecwibilitycurvesforthe unrecorreapmdviththoseforpurecm. nepoilrt for these fictitious values was called the pseudocritical point andthevaluesvereternedpseudocriticalpropertieebynyu3). mispseudocriticalpointforaaixtm-eisanalogoueto the critical point of em coupoundvhoee r-v-r relations in thesuperhatedregionareidenticalviththoseforthemhn'e. Ithashanvernorealenstenceandthereforecannotbemeasured experimentally. muforeixhn'esofnarrowbomngranaeis itapproriutelyequaltothetruecriticalpoint. Eherehevebeenamnberdmethodspropoeedforcodaining thecmstantsai’anequatimotstateandforpredictingthe Daeudocriticalpropertiesofamixtme. Smeofthemore thethodsarelistedbelow: host's!” ' (20) Va ' YaVa + IbV‘b + “" van der Waals' Combination (a) b. elab. 4- thb + -..-- (b) (8.01/2 . 15(5)” 2 + 1(eb)1/2 + ---- w <:-:-> “H 01)”— $6.213): 1b {tr-)1) Lorentz Combination 3 Km ' E3(Kg)l/3 + “(Ital/é] / 8 Kay's Rule ’ (3) Tc- ‘ raTc‘ + IbTCb + m.-- (b) Pc' ‘ I‘Pca + prcb + ---- - Be'ettie-Bridgeman Combinations KI'YaKa'FYbe‘D- ---- . wherexsg’lnb,Ao/2 30101.61/2 Benedict, Webb and Rubin Cabinatims ' m K 8 801/2: Bo: c”1/2, 31/3, bl/B’ Prausnitz and Gun Combinations (8) Pen' “Tc. z 112 vc' 1 c1 (1’) Ten - ,0 + (’2 + rvcnx )1/2 five. (c) p“ f, IiYJWcTc)” (21) (22) (23) (2h) (25) (26) 1h 15 (d) X " E 1123(Vc1fi)” (9) $51., " (Tcich)l/2 " £013 (5) vcid ’ 0-5(Vc1 + ch) " Avci'j Angat's (l) lav of additive volumes, which states the volume occupiedbyanixtureofgases isequaltothesmlofthevolumes occupied separately by each conponent at the same conditions of tenperature and pressure, has been applied to both ideal and real nixtures of gases. It is accurate for ideal gas mixtures and also gives good results for m Iixtures of real gases and liquids. Van der Haels' codinatim (33) for the constant a is based upon the fact the attractive forces between the Iolecules is equal to the geosetric mean of the forces~that each molecule possesses when attracted by a like Dolecule. The cabination for the constant 13 assunes that the volume occupied by the eolecules is equivalent to their arithmetic mean. Equatims (21c). and (21d) are extensions of van der Waals' coebinations to the prediction of pseudocritical temperatures and pressures. m's rule (13) is an application of the theory of corresponding states to mixtures of gases by the use of pseudo- critical constants to evaluate the reduced properties. The Lorentz combination (1?) takes into account the packing effectbetveenlargeandsnllmoleculesvherethesnlllolecules myoccupythespacebetveenthelargemolecules. Beattie-Bridge-n (2) and Benedict-Webb-Rubin (5) extended thehypothesis ofvanderwaalstothecalculationofconstants 16 for mixtures for their «nations. The codinations of Prausnitz and Gunn (27) represent the first attelpt to account for the probability of differences beMen thebelnviorofmixturesandofthepurecompmnds composingthe mixtures. This method incorporates Pitzer's correlation and introduces two graphical corrections to the characteristic critical temperature and elmracteristic critical volume , Mom and Av°l2° c~ mmde Therearetvonethodsthtmbeemployedforthecalculation of vapor-liquid equilibria. MethodI-Thefirstmethodinvolvestheuseofexperimentelvapor pressures with the basic We relatims. A general relation- ship for the prediction of vapor-liquid equilibria by this method ny be written as follovs: I . Pop’tP; {f e w ' (27) This relationship is actually Raoult's luv 1 - Pox/r (28) with additional factors to correct the various deviations from idealitya This method has several disadvantages, the principal one being. the dependence on experimental activity coefficients for the mixture which are M unavailable. lethodII-i‘hesecondmethodeuodiesonlytheuseofanequation Ofstateforthepurecompoundsandthemixture. Thismethodisbased upon the thermodynamic requirements that at equilibrium 17 T1. =- Tv (12) N ~ (8.) 1L1 =21 (29) The actual calculation of vapor-liquid equilibria by this method requires the use of the equation of state to predict the P-V-‘I' properties of the mixture and then evaluating the following thermodynamic equations: A. V j A BIG KP - KP/VNN x,T - RT 1n RT/V + XRTlnx+(l-X)Rr1n(l-X) (30) E1 .. (1.x)(a‘A’L /a x) m + XL (31) $71 = (1-y)d.o $600.0 ommw.o awwm.o Hrmddd.o PNOH.O WQMP.O m w.MH: ommw.o 03HH.O Ndmm.o Ndwm.o waw.o Hrwmdm.o mm0@.o Hmom.o OH m.Hm: mamm.o mamo.o .omwm.o ommm.o mmmm.o Aromaw.o oaa:.o omho.o om m.:m: wHNN.o mamo.o mmmd.o :PQH.O HORN.O Htmmwk.o mwdw.o mamm.o Om m.mmm mmwo.o NMH0.0 mdwo.o HMN0.0 Han.o Hrmddm.o ONNQ.O ddfim.o o: :.w:m Adamavenoogav a a u a Aamvasmahsnumv a a u . amen- amend. Acfimmfisv- cams- anon- ass a 9 Sim are Away aehsaesum somm> $8 mad a 3 83 in? u on Q. Team... on. snowmen .H sameneam ammmp .e> noavsaonnoo Heaven N mania Odmm.m 0.350 3NO.N comma—u mama.“ muNmOmd «M85 W890 mwd H.mwm 826 SR6 3%.." 82m.” and} @3386 2.86 .886 2.4. lumen can; 8%6 884 88.." Rama «data .836 8696 86 .39. 3:6 2.36 88.6 836 «3.6 Hummus. £36 586 {hem «6.3. 4396 meado 6.696 .326 9&6 Tammie $36 .586 8.8 m6? 34.6 {.86 386 .836 836 a65w6 336 m8m6 62.6 imam Agaofiooflv Ages-«sane sauce- sauces. “and?” £3- common- dance. dance an ca 83 aka $3 ash—Sasha aons> $3 9&6 u @154 Code. .. on is. are .. as 3.5 .m A3933 .o. a 1+3 33% 3a.“ 886 6E...” @366 112.36 886 SR6 86 dmmm F36 $34 8%.." 6.634 336. 5.836 386 $86 36 imam «684 «$96 88.." 884 .88..” «-mmam6 886 586 84 .39». mace...” 286 6866 836 $84 «1336 386 #26 RA dmmm 8R6 R396 9396 336 3&6 H6366 8.36 «686 mi. .13. Educ 3&6 $36 $916 «emuo 7386 $36 886 693 1mm: $26 «.316 886 556 domino TmmR6 8R6 #86 3.3 .33 Agaafloufiv Agooafloaxmv semen- um won? in money- chance- mason- names am he 346 2.6. R3 38.0 a 9 8d 8938a song a: .18 a on as. «63 a as H0300: Hg .m 325388 N a REA mama 854 833 3.3 «-836 $8.6 «8.6.6 H 3% 934 $86 8306 8866 354 «-6686 $86 88.6 m dwwm $26 836 8R2. 8m86 8:6 H.386 836 2.2.6 m mic: .836 damage oommmd 035.0 .356 Hummmmd wpmmd 38.0 9.. 5mm: . 836 386 8636 8846 8:6 . 7886 RS6 8&6 om n63 Aafifiofiav Agguonflv gm 63 .. um 634. afiaxum noun 6.. cum m3 .. am 63 - an 63 am an. 53 was 8.3 8.3qu 88> :54 98 .. am 0.. 6.5m a on. 33.3: 4. Agflpflov m Eng 1‘5 886 886 2.86 88...” 6896 @6686 .386 mmR6 36 .38 336 6686 63.6 8%...” €36 @6686 $86 69.6 $6 imam 8R4 836 86.3 336 6E4 66646 $666 886 86 669.. gm...” 34nd odmmd 8.3.0 354 mumomhé mmmod 5.9.0 mm...” 12.». 8.56 866 SR6 886. 886 H6866 91:6 8666 36 A63 336 3646 8696 836 896 H.886 9.66 886 8.3 66.3 8mm6 286 8666 836 886 1.686 65.6 6.86 3.5 665 3338033 . A3536 am 63 - um 634. £31m 633- can 63 - um 63 .. an 63 um ua 546 2.6. 886 a Q. as «3386 85> :54 66m .. on Q. «6% .. on. 33.3 .33 . m Agfiunoov 6 5:5. oat" 0.38.0 Cam..." Chow...” N80...” mammOHd budge 3mm.o 8:” 6.5mm 886 886 3666 3666 R86 6.86.66 8.86 886 666 6.8... 386 886 386 2.86 8686 6.886 886 886 86 6.8m 836 386 6866 886 886 66686 :86 2.2.6 36 6.8m 886 8666 2.86 3R6 6686 6.886 6866 .386 866 66.3 886 6866 886 66.36 8686 6.68.86 2.66 6.86 6.3.6 6.8: 886 86.66 3666 6866 2.86 6.886 836 8686 86m 6.8.. 5.338.838 quoafloefl am 63 .. um 634. “Anni.” 633- ohm m3 .. an 63 .. um m3 um an. 546 2.6. 6896.? 83 3.8.3.6 .89.» :54 >8» u on 3.. 6.8m u on. good finsvfla om 835988 6 HES. 157 384 356 3.34 834 nomad «.886 886 886 > 3.84 836 89.4 8%..” «3.4 «65«6 386 «“86 B” 884 836 68.3 2.84 8.1.4 «$.36 836 886 HR 884 $36 934 8RA 82.4 «.m8«6 836 886 H 8mm...” mummd 08:2... 03m...” mmié «utmmd 3.3.0 mmmmé H Agapoaofiav 53682.95 um «3 .. «« m3? «38$ «83- cum «3 - «m «8 - «m «3 an «a 639933 Hogan 833.: .3. 936 .. «3389.8 254 a .. 5.8m Q. 96% .. 83636-3 38.38% 33 «8.81 «Rpm .. .838 A 3.3 gnu-ohm 3%.; .3263 an» opimgngoaaadom fling. dud «300% mg ««fi4 8486 8«44 6864 82.4 «1.486 836 4686 > 4884 886 884 834 2.84 «-8446 8266 :86 fl 8484 85.6 884 6.844 884 «.4846 8466 886 E 4E4 £86 844 884 83.4 «4486 R466 .886 H 884 $86 884 6844 884 «-846 8466 886 H SSSfiooflv Aggfigv am «3 - um «and. £31m m3 8.. of m3 - am 84 .. um m3 «m «a 83932 «can: 8305 «48. $36 u 843898 3.2 4 u 0.83.5 mu. m4nm .. «Sagan—.3 383334 23 _ 4282 43.5 - .433 .« $85983 m g 49 884 886 8««4 854 8.34 «68:6 8866 886 > 884 836 9:.«4 2.84 884 «4:36 886 886 B «:84 «8:6 384 6484 8484 «4.846 886 886 a 884 886 8««4 854 8494 «68:6 886 886 H 884 $36 384 6484 884 «1.486 886 886 H Quofiuuooflv Adana-205v um m3 .. am 83. 386$” 848.. cum «3 - um m3 - um m3 am us 8485.“: 3.88m 83g 362 83.0 n 8380980 «34. H a «.5308 Q. 1mm.” a engaging. 030.3003 333< 4.39m - 3.5m 4882 . m 865988 m g 886 - m86 .. :86 .. 6446 8466 86 > 8395.! .o 846 + 846 - 486 + 846 6 .86 8.4 444 83.553 .p 8:46 + 846 - 866 + 846 866 8;. 4 849952 .a 3384 4434 - 833 48.84 .m 8«6 .. :«46 - «86 - 686 866 2.6 > 849.4333 .0 8«6 + 866 - mmm6 .. 44:4 846 86 444 83.4352 .n «w«.o + 866 u mmmd .. 8.4.4 846 no.8 4 34%«3 :6 494844 44.34 .. 43¢: .« mmm6 .. 846 :4«6 .. 3:6 866 8;. > 34:45.2 .0 «86 + M446 «R6 - 8:6 :86 86 _ 444 844.4853 5. 6466 - m446 :86 .. 8:6 :86 86 . 4 839—32 2. 438444 43:44 - 8838 .4 ¢ 4 a 8 o m M+Q+BI< 84.4 8383334 n? my. 344333438 .4434. can 8404332 :83. 51 :m.o~ mm.w» om.~m >.go«egasuu< 32E. 8.3. mméb >H 339.534 mm.m~ mm.m> mm.m~ HHH mafiagasun< mm.o~ om.m> oa.aw HH aoapnasuu< mm.m~. +3.3. 8:8 H 339563 uopoauonm 8.8 3.2. :méw cubism: . «@8983 3.? - 3334 d3...» 8.8a .. 3a: 3.8 .. 888m m uaouomaoo wm.mm - «gamma pm.mp - Honunpm hm.m~ - Handgun <_pnuncmaoo QC 358 94.38 A3302 33m .. agony 383.5 - “3qu A 38an - «8803 man—”om Eden anon—HE .m> mag Eon 2% mg 52 80.0 :54 «.404 > 8305.3 80.0 08.0 320 a 8305.3 484.0 48.0 £04 HHH 8395.2 «8.0 244 80.0 H 83.562 mood mmmd 50.0 H 9039534 033080 084 804 0004 0.9.8: A35 033% “338.4 4.3% .. iv 393E - .4305 384.3 .. 3383 gamma.” among .0» gas mum—fig mg 53 ha.>m mm.aaa mm.owa 913.... 09mm admma 3.....de ~9me 103280300 :3 Bang 048 pint £8542, ma.rm m>.mma ma.dwa «0.me Houwnm :.~m a.mma «tad H.me consqgnz 8.38 4850 8308.“ 40: 004 4 88 08 3d 0.8030 3443233080 .0 . 3d 4035...: .0 $00 «893 .0 $8 33832, .a mun—eta": 089.3 2.403 a flagpfla hon udoavofiuoum ogflo> dams has 51} 8.? 04.0m omen 09R 3.0.4. 34 8.4 40:34 inmma 8:84 3.84 4&9” 3 com 3:84 3.34 8.84 3.8.... 4.8.4 3 3m 2.2.4 84: 8.404 .. 4.004 0.. 08 4035»: 838k .40: 090 .m Sumo 910m 3.3. 4.0.3 :mdm mm." 8m 31mm." $.34 .8284 3&9. 4.3..” 3 8m 04.404 3.404 00.84 00404 4.404 3 30 8.004 845 8.84 40.84 0.2.4 3 80 4493 4843.483. Illa 83E 092.3. §4§uooh .4. 8.438? «42. 04 mt $43 40853. 842 040: “0.0 .m Augpnoov 4. 354.4. 55 00.00 00.004 8:54 00.004 40.00 00.n04 mm.mm4 00.404 00.00 40.004 m®.mw4 m».4>4 00.00 40.n04 00.004 m0.4~4 48.34.4800» 048. 04 man 8.540» 00.00 00.404 00.004 om.de 00.00 40 .404 m4.hm 00.004 hoav4m 40.00 0.004 4.004 0.004 40.00 4.004 m.w>4 4.8.... $254088 0. g mNH com 0: com 0: ozw 0.: 8m Hog! 840.05 0&8- oo..n .m 0&4 00m 0: com 0: 04m . 3 84. 30mm .4. «943% 4.033.. 44048094.." 0.602 £30 .4. M88 Pitzer Cprrelations for Liggid Volume Predictions Critics; temperatures, critical pressures and acentric factors. (26) Specific gravities and vapor pressures. (20) Benzene Volumes, n3j1b no1e Teupereture , ’1? Actual Pitzer 110 1.1.63 2.327 125 1.076 2.289 150 1.503 1.9.6 175 1.530 2.230 Home]. Butane o 1.507 1.901 10 1.519 1.920 20 1.531 1.862 30 1.5% 1.891 60 1.826 2.269 70 1.8h0 2.061 80 1.863 2.23h 90 1.87h 2.215 57 mhmm.0 awmwmd amt—M mind: agavanloo 34.463 .43 43> 8&6 mmmmmd oméh £38: 02 33 85.0 00HNN.0 0m .mm madd— guvwauadhm 008.0 P830 HN.mN 8.3.3 .ndnsmnnnoauvufiouflom 00mmm.0 00.8 0018+. 344034.405 03M 4404.2 3H! “.0 .N 80.0.0 4.42.4.0 8.5 44.30 339m 4.8.8: 0000.0 083.0 8.3 $.08 8830 Na. M13040... :4 .00 54 8.4 a. as . 0008.408 0.43 .4 443 00.00.48 41.402 3 . 00¢an 38 33000 80am. 48.82.0083 «0 0049104480 400404800300 mg 58 mmomm.o mm»mm.0 oooam.o 038.0 oom0:.o moifioa fl 30 No.0m 8.0. wa.wm sd 09.0 34 am >m.m:m mm.mmm :0.me ho.m:m mm.mo: u. an. Agflpflov m g maouaduanioo .uddua Add qa> oasm.».hflx annulupaququhm nanbmwnnmsnvOAGQaum Hupaoaanomuu 3.50 83an ”do: 040 DISCIBSION OF RESULTS 59 DISCUSSION OF RESULTS The animate ob.) ective of predicting vapor-liquid equilibria from an equation of state was not achieved. The principal difficulties seem to arise from a failure to determine the exact relationship between the properties of a mixture and the properties of the pure compounds in the mixture. This relationship requires an accurate equation of state and a precise method for cosbining the arbitrary constants of the equation of state when it is applied to mixtures. The fact that these calculations proved unsuccessful does not minimize the importance of predicting vapor-liquid equilibria by Method 11 with an equation of state, nor does it repudiate the generally accepted belief that an equation of state that applies accm'atels'topure compounds canbeappliedtomixmres ofthese compounds provided they do not react chemically. Method II is potentially the most advantageous way of accurately predicting vapor-liquid equilibria because it does not require experimental activity coefficients for the mixture. ThesearedifficulttodeterMneandareseldomavailableinthe literature. Table 9 depicts the many variations in pseudocritical properties for the ethane-norm; heptane system obtained with the listed methods of predicting the properties of mixtures. A significant factor that is revealed by these calculations is that the critical coupressibilities of the two mixtures are generally outside the range of those for the pure compounds. This contradicts the basic assumptions of these methods, that a single phase mixture behaves like a single compound with properties intermediate between thepropertiesofthemrecompoundsinthemixture. Values for the pseudocritical temperatures, pressures and densitiesarealsoshowngraphicallyinrigures I, IIandIIIto further illustrate these differences. A plot of experimental critical properties from the work of Kay (33) is included in each figure for comparison. Figure I shows that present methods of calculating pseudo- critical temperatures yield values which are of the same mgnitude. The experimental actual critical temperature is higher than the pseudocritical temperature at all compositions. Figure II illustrates that each method for calculating pseudo- critical pressures give values that show mrked differences from one another and are all considerably lower than the experimental actual critical pressures. Figure III shows that the pseudocritical densities follow the same general pattern as the experimental actual critical densities. The vapor pressures of pure compounds calculated with the Pitzer correlation were generally in good agreement with accepted experimental values. The maximum deviation was 5.h7$ while the average deviation was less tlmn 1.01». i The prediction of liquid volumes of pure compounds by the Pitzer correlation is presented in Table 8. In each case the predicted volumes were higher than the actual volumes . The volumes Temperature, 'K 550 500 150 1:00 350 300 ETHANI - HORIKL HIPIAEI Figure I 0 0.1 0.2 0.3 0.h 0.5 0.6 0.7 0.6 0.9 1.0 Home Fraction N - Heptane lxperimemtaI.-———o————- Benedict—lebb-Rubim -————--—-—-———— van der“waal-———--————- Frau-mits-Oumn x Kay's Rule 100 90 60 70 60 So ho Volume, ftj/lb mole 30 20 10 63 3mm - 1(an BPTAIII Figure II ‘— V——# 0 0.1 0.2 0.3 0.1; 0.5 0.6 0.7 0.8 0.9 1.0 Ilele Fraction N - Heptane Experimental : 9 Benedict-Webb-aubin van der Waal ———-~ —-— Prausnits-Ounn —————- x Kay's Rule nun-my, 1b mole/ft3 0.5 0.1. 0.3 0.2 0.1 ITHANE — NORMAL HEPTANE Figure III 4r \ \ .,\ i. .,‘\\‘\‘ \ ‘=::==== O 0.1 0.2 0.3 0.h 0.5 0.6 0.7 0.0 0.9 1.0 Isle Fraction N - Heptame kperimemtal 4 Benedict-Webb-Ruhim —-* van der Weal --—- -- —-—— Prsuenitz-Omm Key's Rule 65 of benzene were from 29.0 to 59.0$ larger, for normal butane from 6.0 to 225" larger and for norul pentane from 12.0 to 2h.3$ larger. The application of the Pitzer correlation to azeotropes produced some significant deviations from the experimental pressure at the azeotropic point. The best result was obtained when using Assumption v, consisting of van der Weals' combinations for the pseudocritical properties, and combining the acentric factor as the reciprocal of its cube. The deviations ranged from 0.35% to 12. 5%. with the average deviation from experimental values approximately 6.7%. There were also large deviations encountered when calculating (313/8 1):. along the saturation line. This value should be zero at the azeotrope composition but the results obtained varied from -o.699 to -o.333. A comparison of measured boiling points with boiling points predicted from the calculations discussed above, as shown in Table 5, revealed um: the predicted values were in rm agree- ment for the water-ethyl alcohol system only. The predicted values for the norml hexane -ethyl acetate system were higher than the experimental boiling point for all assumptions. For the benzene -etlwl alcohol system the predicted boiling points werehigherthantheexperimentalvalue exceptinthecaseof Assumption V. A similar comparison, in Table 6, of measured pressures with _ predicted pressures showed that the calculated pressures were always lower for the normal herane-ettnrl acetate system. 66 The benzene - ethyl alcohol and water - ethyl alcohol system showed both positive and negative deviations for the five assumptions. The results or the calculation of liquid volumes for the metm'lalcohol -nomlbutanemixturesarepreeentedinTab1e7 and. also in Figures IVI- VII. The Pitzer correlation see!- to follow the experimental volumes closer than any of the other three methods employed. Amgat's law exhibited definite deviations at the higher pressures chosen for this calculation and it always gave lower values than the experimental volumes . Both the pseudocritical and the Well methods predicted volumeswhichweregenerallymuchhigherthantheexperimental values. Considerable difficulty was encountered in accurately reading the compressibility charts associated with these two methods, hence some error was probably introduced at this point. 67 11mm. ALCOHOL - NORMAL BUT”! Figure xv 172 171 170 169 168 167 166 165 161; Volume, 29/1» eds 163 162 161 160 159 0 0.1 0.2 0.3 0.1; 0.5 0.6 0.7 0.8 0.9 1.0 Mole Fraction II - Butane Experimental—F— Pitser -- Maxwell— -' ‘— Pseudoeritiea‘l. —-—+u-—— Angst's Law IITHIL ALCGOL — IOWA]. BUM Figure V ho Psis 2&0 °r 18h I 183 182 18]: 180 179 Volume, ft3/1b m. 178 177 176 0 0.1 0.2 0.3 0.1; 0.5 0.6 0.7 0.8 0.9 1.0 IslelreetieaN-Butene mmm“ : fimt‘OP ..___m11_______ Peeudeeritieal —-—m-——- Amsgat's Ln 195 19h 191 190 69 METHYL ALCOHOL - NORMAL BUTANI Figure VI 110 Psie 250 °r 0 0a]. Oe2 0e3 Ooh 0e; Isle Praetien N - hperimental + Pitser Pseudocritisal—M— Amagat' s Law 0.6 0.7 0.8 0.9 1.0 Butane ~—--Ilaxee11——----—- 7O METHYL ALCOHOL - NORMAL mm Figure VII 125 Psia 60 280 °r It] 59 y. .3 55 .I Q "l. H g" 57 E 56 SS 0 0.1 0.2 0.3 0.1; 0.5 0.6 0.7 0.8 0.9 1.0 llele Freetiee N - Butane prerimental e pit";- . . Maxwell— _ .. __ Pseudoeritieal—w— Angst's Law COMLUSIONS 72 COM-0810” The fellowing conclusions have been made as a result of this investigation: 1. 2. 3. h. 6. Present methods of relating the properties of pure L 1&3} compounds to the properties of their mixtures are 3 inadequate. The Benedict-Hebbanuhin.combinations, van der Haals'. l~ combinations, Kay's rule and the Preusnits-Gunn correlation predict pseudocritical teaperatures of the same magnitude. These four methods predict pseudocritical.pressures that show'marhed.differences from one another. The pseudocritical densities Obtained with these four methods follow the same general pattern as the experimental. actual critical densities. Pitzer's correlation.predicts vapor pressures of'pure coupounds within engineering‘accuracy‘but there are significant deviations when it is applied to the determination.of‘the vapor pressures of azeotropic mixtures. Pitser's correlation is sore accurate than.Amagat's law) the pseudocritical method.and the Maxwell method.when employed.to calculate the liquid.volumes of mixtures. W083 73 W016 It is suggested that the use of a high speed digital computer be considered for future work on the application of an equation of state to the prediction of vaporeliquid equilibria. This machine will enable engineers and scientists to extend.their studies to innumerable mixtures and it‘will yield.a degree of’accuracy seldom achieved.with.manual calculations. It might also prove to be beneficial to investigate the correlation of Lydersen, Greenkorn and Bougen (8) to determine its accuracy in describing the volumetric properties of mixtures. 7h 50:30 a, b, c A.» 8., c. a, b, c,¢c,3 52: *3: Mb 32’ 33: 35 02, C3, 8 w‘maH-ez'ef'rf'ae 76 Heldmltz work function Mela]. Kalaholts work function Constants in Beattie-Bridgenn equatim or state Constants in Benedict-Webb ~Rubin equation of state Constants in hurtin-Hou equation of state Constants in van der Haals' equation of state Halal density, moles/unit volume Critical density Reduced density Free energy Partial modal free energ N63611:! Equilibrium ratio, y/x number of moles Pressure Critical Pressure Reduced Pressure Vapor pressure of pure component at temperature of system Universal gas constant Parameters in pseudocritical temerature equation of Pramnits-Gunn correlation Absolute temperature Critical temperature Reduced temperature Prausnitz-Gunn correction to cmracteristic critical temperature Volume, unit volume/mole Critical volume Reduced volume Halal volume of liquid phase at temperature and pressure of system Mole fraction in the liquid phase Mole fraction in the vapor phase Compressibility factor Critical. compressibility factor Graphical functions of reduced pressure and reduced temperature in Pitzer correlation Greekgymbols 2 121112ch (Prausnitz-Gunn Correlation) Riedel parameter 5 1211I2(VcTc )1.2 (Prausnits-Gunn Correlation) Liquid phase activity coefficient to correct for deviations from ideal solution behavior 78 Gas phase activity coefficient to correct for deviations from Amagat's law Pugscity coefficient of pure component in liquid phase at vapor pressure which con-espouds to the temperature of the system may coefficient of pure component in liquid phaseatthetemperatureandpressureofthe system Total pressure Acentric factor 3...... Critical state Components i and .1 Liquid Phase Propertyforamixtureanditsignifies that the quantity is formix‘laxresasawhols At vapor pressure of pure comment At total pressure of system Reduced, dimensionless property Vapor phase F's-‘1 79 mom 1. 2. 5e 7e 8. 9. 10. 13. mm inept, n. 11., Ann. Chin. mm, 2, 19, 38!. (1880). Besttie, J. 4., and BridgeIIn, o. c., Proc. AI. Acsd. Arts Sci., fig, 229 (1928). Hattie, J. A., an, o. J., and aim, c. L., An. Chen. soc., g, 92'. (1939). Benedict, 11., mm, c. 3., and Rubin, L. c., J. Chen. mm, 9. 3311—316 (191mm 13. “(In-758 (1912). Benedict, u., He», 0. 3., and Rubin, L. c., friend, 1., cm. ms. Pro... 1.1, 1.19-1.22, nae-us!» 571-578. 609-620 (1951)- Berthelot, P. 3., coup. rend., 126, 1703, 1857 (1898). Cullen, n. J., and Kobe, x. A., 1.1.0113. J., _1_, use (1955). Dodge, 3. 1., "Chemical Wing Wes,” W- Hill Book Cm, Inc., new York, 19%. Galitzinc, flied. Ann. msik, E, 770 (1890). Hirschfelder, J. 0., Curtiss, C. 1., Bird, 3. 3., ”W Mdmsumauquide,” Johnmeyandm, Inc., New York, 1955. Hansen, 0. A., and Watson, K..M., "Chemical Process Principles chem," john wiiey and Sons, Inc., New York, 19.6. Jordan, '1‘. E.,'-."Vapor Pressuru of Organic Coupounds," Inter- scienoe Publishers, Inc., New York, l95h. m, H. 3., Ind. mg. Chem, gg, lOlh (1936). 1h. 15. l6. 17. 18. 23. 211-. 25s 26. 27. 28. 29. Kay, w. 3., Ind. mg. Chem, 3, 1.59 (1938). Keenan, J. 11., and Reyes, F. 6., “Thermnenic Properties of Steal," John wiley and Sons, Inc., Kev York, 1951;. Kendall, B. J., and Sage, B. 3., ”The Volumetric Behavior of Carbon Dioxide ," An. Petroleum Inst. Research Project 37. Lorentz, n. 1., Ann. Ptvsik, 13, 127, 660 (1881). Iydersen, A. L., Greenkorn, R. A., and Hougen, O. A., Generalized Thenodynanic Properties of Pure Fluids, ,7 Univ. Visconsin, hag. hpt. Sta. Rept. h, 1955. r Mei-tin, J. J., and Hon, Yu-Chun, A.I.Ch.E. J., 1, 11.2 (1955). Maxwell, J. 3., "Into. Book on marocarbons," D. Van lostrand cm. 1951- nelson, L. c., and Obert, 3. 2., Trans. Am. Soc. neeh. 3:13., 15, 1057 (1951;). Optell, J. 3., Schlinger, w. c., and Sage, 3. 11., Ind. Eng. Chem, 56, 1286 (1951.). Perry, J. 3., "Chemical Engineers Handbook," 3rd ed., McGraw- Hill Book Compamr, New York, 1950. Petty, L. 3., and smith, J. 14., Ind. Eng. Chem, 31, 1258 (19%). Pitzer, x. 3., J. Am. Chen. Soc., 11, 31.27, (1955). Pitzer, K. 3., Lippuenn, D. 2., Curl, R. r., Huggins, c. .14., and Peterson, 0.3., J. Am. Chem. Soc., 31, 31.33 (1955). Prausnitz, J. 11., and Gunn, R. 1)., A.I.Ch.E. J., g, 1.30 (1958). Riedel, 1., Chen. Ing. chh., g, 679 (1951.) and 31, 209 (1955). Schiller, P. c., and GanJar, 1.. ll., Chem. Eng. Prog. Synosiun lo. 1, 67 (1953). 30. Snith,-K. A., and Hatsm, K. M., Chen. Mg. Prog., 132, 89h (19159). saith, L. 3., 3eettie, J. A.,end m, w. J., J. An. chen. Soc., 59, 1587 (1937). Stotler, H. H., and Benedict, M., Chen. Eng. Prog. Symposiu- 1'0- _5_. 25 (1953)- Van der ween, J. 3., Dissertation, Leiden 1873. Van Leer, J., z. meik. Chem, 13, 723 (1910). SAMPLE CALCULATIONS 33 SAMPLE W10” 1. Limiid Volume Predications for )iethanol - floral Butane mixtures A. Pitzer Correlation .00. _ X1“), . 130., . (0.7s)(o.201) + (0-25)(0.567) - 9.22.23 Pc- ' X1P¢1 + 1.1ch " (0-75)(37-h7) + (0°25X78-57) :- h1.77 at. are. - rice, + We, - (0.75)(h25.2) + (0.25)(513.1) - Mme ’K P, - P/Pc. - 2.722 g- 87.77 . 9:929}; 13. . r/ra - 366.1. 9 M72 . £25 zc - 2° +0) 2' . 0.9605 - (0.293)(0.0239) .- 9:25;: v . Zen/P . (0.9535)(10.73)(660)/h0 . 168.81 n34» sole B. Pseudocritical llethod 'ihetaperahmesandpdessmsareidmticaltothose used for thelPitzer correlation since Kay's rule is used in both calculations for conbining the pseudocritical constants . Zc - 0.966 (Page 103 - Chenical Process Principles Charts) v - ZcRT/P - (0.966)(10.73)(660)/ho . 111.03 ft3[lb nole C. mmll method 3,, - P(Y1)1/2/Pc1 . (2.722)(0.5)/78.67 - 0.017; Pr: - P(r,)1/2/Pc, = (2.722)/ad2).r e o (as) 108 (8) 10.032579 (Db) 103 (V) 5.077866 (cc) 108 (2) 2.169175 (dd) (ad-(W) 8.958713 («3) (ed-(an) - 8 + 0.136596 (tr) - 1.5 log (dd) ' M32070 (33) 103 1-5 0.176091 (hh) log 3.0 0.1077121 (ii) 1.5 103 3.0 0.238561 (.13) (11)+(ss) 0.111.652 (kk) (ee)+(ff)+(d.1) 9.933313 - 10 (11) 0 7’9 13' 15" (m) 0/3 215' w 25" (an) log sin 0/3 9.621701 - 1o (00) 103 2.0 0.301030 (PP) - 0.5 108 (ad) 4.1177357 (qq) (pp)+(nn)+(00)+(11) 2.793187 (11') antilog («10) 621.136 '3 (as) ‘1' 71.9116 'C Pressure P =- m + (3031 - no - co/Ie)d2 +0531: - e)d3 --ced5 + cd3/‘1'2 Bl +Xd2)e' 36.2.] (8) RN. 2026.8 0)) BoRT 96111-2 (c) -A° -22968.9 (d) ‘ -c,,/'r2 49007.11 (e) (b)+(c)+(d) -32362.1 (1) (8)82 -2990.8 (8) WT . 39728.7 (8) . -a _ -59907.7 _ <1) (e)+(h) ’ 20179.0 (.1) ' (1)83 -5669 (k) .206 109.6 (1) cd3 001.0 x 106 (In) (1)/'I'2 2078.2 (11) 1 +6 (1.2 1.51176 (0) x 02 0.51176 (3) (0)/2.3026 0.22225 (0) entiioe (p) ' 1.66821 (1‘) 1/(0) 0.599115 (a) (r)(n)(n) 1883.3 (1:) ’ (8)+(k)+(.1 )+(a)+(f) 1.62.0 you (n) P ‘ 2.1.1. Ata “xii ifi\(fl\)1\)‘(\\fi)flf)( hi ((1)111)?