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ABSTRACT

APPLICATION OF THE GREEN'S FUNCTION MONTE CARLO METHOD
TO HAMILTONIAN LATTICE FIELD THEORIES

by

David William Heys

The Green's function Monte Carlo (GFMC) method is adapted for
application to Hamiltonian lattice gauge theories, and is applied to the
SU(2) and U(l) models. The method is a Monte Carlo method for finding
the ground state of a quantum mechanical'system with many degrees of
freedom, by iteration of an integral equation of which the ground state
is an eigenstate. An interesting aspect of the method is the use of an
importance sampling technique that makes use of variational wave
functions to reduce fluctuations and accelerate convergence of GFMC
estimates of various quantities. The calculagions have been restricted,
by the availability of computer time, to estimates of simple quantities,
the ground state energy per plaquette and the mean plaquette field, on a
small lattice (3 x 3 x 3). There is no difficulty, subject to the
availability of computer time, in computing other quantities or in using
larger lattices. The results are interpreted in terms of the phase
structure of the two groups; the SU(2) model exists in a single quark
confining phase for all values of the coupling constant whereas the U(1l)

model in 3+1 dimensions undergoes a phase transition from a cohfining



phase at strong coupling (gz*w) to a non-confining phase at weak

coupling (92*0).

The method is not restricted to gauge theories and is also applied
to the Hamiltonian XY model in 1+l dimensions. The results obtained on
this model are interpreted with regard to the Kosterlitz-Thouless phase

transition.
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CHAPTER 1

Introduction

The candidate theory of strong interaction physics is quantum
chromodynamics (QCD), a gauge theory based on the non-abelian group
SU(3). Due to the remarkable property of asymptotic freedom [1]
possessed by non-abelian gauge theories, short distance phenomena in QCD
can be adequately understood in terms of perturbation theory. However,
a number of important strong-coupling phenomena, such as the meson and
baryon masses and quark confinement, can not be treated in this way
since the perturbation series is not convergent for strong coupling.
Lattice gauge theories were invented to study such non-perturbative

aspects of gauge theories.

In a lattice theory the space-time continuum is replaced by a
lattice of discrete points at which the various matter fields of the
theory are defined. The inverse lattice spacing provides a natural
ultraviolet cut off, so that renormalization effects are finite and
numerical calculations can be performed with no divergent results. Of

1



course, in order to make contact with the real world, the cut off must
eventually be removed, i.e., the lattice spacing must be taken to zero

so that the continuum theory is recovered.

There are two complementary formulations of lattice gauge theories.
In Wilson's approach [2] the Feynman path-integral of the theory, which
in the continuum is a functional integral, is replaced by a lattice
approximation involving only ordinary multiple integrals. In this
formulation both space and time coordinates are treated as discrete. On
the other hand, in the Hamiltonian formulation of Kogut and Susskind [3]
time remains continuous and one deals with a lattice version of the
Hamiltonian of the theory. The two formulations can be shown to be

equivalent by means of the transfer matrix [4].

Both versions of the theory have been the subject of intense study
in recent years using a variety of techniques: perturbation expansions
[5], the renormalization group [6], mean field theory [7], the
variational principle [8-10], and Monte Carlo methods [11]. An
excellent review of the current status of lattice gauge theories may be
found in Ref.[12]. More elementary reviews covering lattice gauge
theory basics are Refs.[13,14]. The Monte Carlo calculations, which so
far have only been applied to the Euclidean path integral formulation,
have provided by far the most exciting results to date. Such
calculations have given us evidence of confinement in SU(2) and SU(3)
gauge theories [15-17], chiral symmetry breaking in QCD [18,19],
numerical evidence for quark deconfinement at finite temperature along

with rough estimates of the deconfinement temperature [20], and some



crude but promising estimates of glueball, meson and baryon masses

[18,21,22].

It is natural, then, to try to develop a Monte Carlo method for
Hamiltonian lattice gauée theories in the hope that the above
calculations can be checked in a completely independent way. This work

is a first step toward that goal.

The particular Monte Carlo method used here is the Green's function
Monte Carlo (GFMC) method. This is a numerical technique for studying
properties of the ground state of quantum systems with many degrees of
freedom. It was originally developed for application to gquantum
many-body problems [23-25]. 1In this work the method is adapted for

application to lattice gauge theories.

Perhaps the most interesting aspect of the GFMC method is an
importance sampling technique. This technique makes use of an
approximation of the ground state wave function, usually derived from a
variational calculation, to bias the Monte Carlo procedure; this reduces
the fluctuations associated with stochastic sampling and also
accelerates the convergence of Monte Carlo estimates of various
quantities. In principle the final results are independent of the
particular importance function used, though in practice it should
closely approximate the ground state. By observing how a particular
variational wave function behaves as an importance function it is
possible to determine how well it resembles the ground state. In this

way one can learn something about the structure of the ground state wave



function. In contrast the path-integral Monte Carlo method provides
only numerical results, and does not easily yield any information
regarding the structure of the ground state. The possibility of
obtaining analytic information from the Monte Carlo calculation provides

one of the strongest motivations for this work.



CHAPTER 2

The Green's function Monte Carlo method

2.1 Introduction
Consider the Hamiltonian

H= Ho - A Hl (2.1)

where HO and él are positive definite operators and A is a positive
coupling parameter. Furthermofe assume that Ho has a zero eigenvalue.
(This can always be arranged by simply adding a suitable constant to the
Hamiltonian.) The restriction to positive definite operators is not an
essential feature of the GFMC method and, in fact, some of the most
fruitful applications of the method have been to systems involving
non-positive definite operators [24]. 1In all the applications to be
discussed here the operators HO and Hl are positive definite and so we

need not consider the more complicated general case. The interested



reader should consult Ref.[25] for more information pertaining to the

use of non-positive definite operators.

The first step of the GFMC method is to write the eigenvalue

equation

H|y> = E|y> (2.2)
as an integral equation. To this end rewrite Eq.(2.2) as

(HO-E)|w> = xall¢> (2.3)

and now consider E to be the known quantity and A to be the desired
eigenvalue. This is the reverse of the usual situation in which the
coupling parameter A is known and the energy E is the unknown
eigenvalue. Clearly the eigensolutions are the same regardless of which
variable is used as the eigenvalue, as are all observables of the
system. Now introduce a set of basis states {|x>} where the label x
represents all the parameters needed to uniquely specify a state. Two
different basis sets immediately suggest themselves: the eigenstates of

HO' and the eigenstates of Hl.
Consider the case in which |x> is an eigenstate of Hl, i.e.,

H1|x> = Hl(x)|x> (2.4)

Introducing the Green's function operator G as the inverse of (HO-E).

i.e.,

(HO-E)G =1, (2.5)



we may rewrite the eigenvalue equation Egq.(2.3) as

v(x) A J dx' G(x,x') Hl(x') w(x') (2.6)
where

<x|y>

v(x)
and
G(x,x') = <x|G|x'> .

Clearly, in order for the Green's function to exist the operator (HO-E)
must be non—s;ngular, i.e. must have no zero eigenvalues. This is
obviously true for E<0O, since the smallest eigenvalue of Ho is zero. 1t
should be remembered that, in general, X represents a large number of
parameters, some of which may be discrete, so that the integral in
Eq.(2.6) must be thought of as a sum over all values of the discrete
parameters and an integral over the domains of all the continuous

parameters. We will continue to use this simple notation.
A different integral equation may be obtained by using as the basis
set {|x>} the set of eigenstates of Hy, i.e.,
H0|x> = Ho(x)|x> . (2.7
In this case, Eg.(2.3) may be written, with obvious notation, as
[Ho-Elw(x) =\ J dx' Hl(x,x')w(x') . (2.8)

Defining a new function x(x) as






x(x) = [Ho(x)-E]w(x) , (2.9)
Eg.(2.8) becomes

x(x) = A [ dx' Hl(x,x') 1 x(x') . (2.10)
IHo(x')-EI
It is seen that the integral equations Eg.(2.6) and Eq.(2.10) are both

of the same form:
F(x) = A J dx' K(x,x') V(x') F(x') . (2.11)

The form of the functions F(x) and V(x) and the kernel K(x,x') depends

on whether |x> is an eigenstate of H, or of H,.

(r)

It is easy to show that the sequence of functions {F '~ ’(x)} defined

iteratively by

F(r+l) (r)

) = 2 1 oax' kx,x') vix') P x" (2.12)

where k(r) is an arbitrary parameter which may change from one iteration
to the next, converges to the ground-state eigenfunction of Eqg.(2.1ll).
Suppose that Fn(x) is an eigensolution of Eq.(2.11) with corresponding

eigenvalue kn' (recall that A is now the eigenvalue), i.e.,

Fn(x) kn J dx' K(x,x') V(x') Fn(x') . (2.13)

Since {Fn(x)} is assumed to be a complete set, we may write
F(0)

(x) = E y Fn(x) (2.14)

so that



(1) - (0)
F (x) = E kk n Fn(x) (2.15)
n
and
(r) - (1)
F (x) = E 1D cn Fn(x) . (2.16)
)‘r
n

where the product runs over i from O to (r-1). If the eigenvalues are
ordered such that 0< ko< x1< ... then as r+= the sum on the right hand
side of Eq.(2.16) will be dominated by the n=0 term, so that up to a

normalization constant

1im F'T)

I~

(x) = Fo(x) . (2.17)

where Fo(x) is the ground-state eigenfunction of the Hamiltonian. In
practice, the integrals involved in the iteration of Eq.(2.11) are
multidimensional and can not be performed exactly. The GFMC algorithm
provides a means to carry out the iteration stochastically so that after
many Monte Carlo iterations one obtains an ensemble of Dbasis
configurations sampled randomly from the probability density Fo(x). (We
assume that the eigenfunctions Fn(x) satisfy the normalization condition

fF (x)dx = 1.)

A discussion of how to calculate interesting quantities such as the
eigenvalue XO and ground-state expectation values will be deferred until
the next section where the concept of importance sampling will be
introduced. Here we content ourselves with a detailed description of

the basic Monte Carlo procedure. Two algorithms will be described one
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of which utilizes an ensemble of unweighted configurations and another
which utilizes an ensemble of weighted configurations. Each one has its
advantages over the other: the first algorithm is more straightforward
to implement whereas the second algorithm, though being more complicated

than the first, is for that very reason of wider applicability.

In what follows it will be assumed that K(x,x') and Fo(x) are both
positive functions. It should also be realized that the function V(x)

is automatically positive because the operators HO and H, are positive

1
definite and because we restrict our attention to E<O.

2.2 Algorithm 1l: Unweighted ensemble
Write the kernel appearing in Eg.(2.11l) in the form
K(x,x') = k(x,x') Z(x') (2.18)
where the function k(x,x') is normalized such that
J k(x,x')dx = 1 (2.19)
for all x'. This is always possible in principle by letting
Z(x') = § K(x,x')dx (2.20)

but in practice this decomposition may not be the most convenient

because the integral in Eq.(2.20) may not be tractable.
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(r

Suppose that E ) o {xo; o=l,2,...,N(r)} is an ensemble of points

in parameter space, representing a set of basis states, sampled randomly

(r)

from the probability density function F(r)(x) / IF (x)dx, i.e., the

expected number of points of the ensemble 1lying in the range of

parameter space between x and x+dx is N(r)F(r)(x) / IF(r)(x)dx. For

(r)

each point xa of E a number v, called the braching number, is chosen

randomly in such a way that the expected value of v, is given by
<> =2 2(x ) v(x) (2.21)
o o ° ‘ *
This can be done in any number of ways, the simplest of which is to set
Vo = integral part [ <wv >+ t ] (2.22)

where ¢ is a uniform random deviate in the interval (0,1). If r is the
largest integer for which r < <v0> then the probability that vo=r is

clearly given by

p(vo=r) =r+l-<v> (2.23)
and the probability that vo=r+1 is

p(v0=r+1) =< >-r . (2.24)
The expected value of v, is therefore

r(r+1-<vo>) + (r+1)(<vo>-r) = <vo>

as required. Note that the possibility v0=0 is allowed.
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Now, randomly select v, new points from the conditional probability
density k(x,xo). The details of the sampling procedure depend on the

functional form of k(x,x') and no general method can be given.

The new points chosen in this way constitute the (r+l)st ensemble

E(r*l). The expected number of points p(x)dx of E(r+l) lying in the

region of parameter space between x and x+dx is clearly

p(x)dx § dx k(x,xo) v,

(r)
§ dx k(x,xa)k Z(xa) V(xa) .

_ (r)
=dx A % K(x,xo) V(xo) (2.25)
which in the mean may be written as

p(x)dx = dx AFs ax' k(x,x') vix') NERT) (x0) (2.26)
T (x)ax

Using Eg.(2.13) it is seen that the right hand side of Eq.(2.26) is

proportional to F(r+l)(x), specifically

(r) P(r+1>
(r)

N (x)

(x)dx

p(x)dx = dx . (2.27)

IF

(r+l)

The ensemble E may, therefore, be considered to be randomly sampled

from the probability density function FT*1)(x)/rrF*1) (x)ax.
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2.3 Algorithm 2: Weighted ensemble

As in algorithm 1, introduce a function k(x,x') normalized as in
Eq.(2.19) but this time write the kernel K(x,x') in the slightly more

general form
K(x,x') = k(x,x"') Z(x,x') . (2.28)

Note that the function Z(x,x') may depend on x as well as on x' so that
this algorithm is somewhat more generally applicable than algorithm 1.
Suppose that gF) - {(xgr),wﬁr); 0=1,2,...,N} is an ensemble of

weighted points in parameter space and define the function F(r)(x) by

(r)
o

F(r)

(%) = < T b(xx )wir) >, (2.29)

where the angle brackets denote the expected value. For each point

xér), a new point x§r+1)is chosen randomly from the conditional
probability density function k(x."'%),x{T)) and this new point is given
weight
(r+1)_ ,(r) _(r) (r+1) _(r) (r)
L = A Wl oz(x X)) V(T . (2.30)

The weighted points generated in this way constitute the (r+l)st
(r+l)

ensemble E . Notice that the number of points in the ensemble is
constant.
Clearly
_ (r+l)  (r+l) _ _ (r), (r),(r) (r) (r)
< % 6(x xa )wo > =< § k(x,xa )wo A Z(x,xa )V(xo ) >
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AT axt kx,x')2(x,x"IV(x') < z 5(x'-x§’))w§r) >

(r)

A axt Kex,x') vix') FOxt)

r+l)

= D) (x) (2.31)

We see from Eq.(2.31) that the algorithm described above does indeed

(f) (%)} related by Eq.(2.12) and so

generate a sequence of functions {F
provides a means of iterating Eg.(2.11). However, it shguld be pointed
out that this algorithm does not work in practice. The reason for this
is that after only a few Monte Carlo iterations the weights of a very
small number of points become much larger than those of all the other
points together and the ensemble is effectively reduced to a

statistically insignificant size; in the worst possible case the

ensemble is dominated by a single point.

Fortunately, there is a simple solution to this problem __ a
technique known as splitting or branching. As the name suggests, this
involves splitting a point X, with "large" weight L into v, new points
identical to X, but each having a smaller weight wo/vo. The precise way
in which this is done will be described shortly. Clearly the definition

of F(r)

(x) in EqQ.(2.29) remains unchanged by this modification of the
ensemble. Of course, in carrying out this branching procedure, the
ensemble size increases and continues to do so as the Monte Carlo
iteration proceeds. If this growth went unchecked, the ensemble would
quickly reach an unmanageable size, and so it is necessary to truncate

the ensemble in some way. This may be done by eliminating a sufficient

number of points with "small” weights from the ensemble in such a way as
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to preserve Eq.(2.29). To achieve this, the truncation must be done
stochastically, so that, for example, if p is the probability that a
particular point X be elimated from the ensemble, i.e. be given zero
weight, then with probability (l-p) that point will survive the
truncation but with increased weight w', the numbers p and w' being

chosen in such a way that
(1-p)w' = w,o- (2.32)

In principle, the branching number Yy appearing in the splitting
procedure, and the probability of elimination p, are arbitrary.
However, in practice it is important that all the weights be of
comparable magnitude, within a factor of about four of each other. It
is also useful to not simply prevent the ensemble size from becoming too
large, but to keep it approximately constant. If this is done then
reliable estimates of program execution time can be made which would not
be possible if the ensemble size fluctuated wildly. With these two
points in mind, the following implementation of the 'branching and

truncation procedure is particularly useful.

For a given point X the branching number v, is randomly chosen in

such a way that the expected value is

<vo> =N L / § w_ ., (2.33)

o

where N is the desired ensemble size. As shown in the discussion

following Eq.(2.21) this may be most simply done by setting

bo = integral part [<va> + ] , (2.34)
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where ¢ is a uniform random deviate in the interval (0,1). Note that,
as in algorithm 1, the possibility v, = 0 is allowed. If <vo> 2 1 the
point is split into v, identical points each with weight wo/vo. This has
the effect of splitting points with large weight, i.e. greater than
zwo/N, into a number of points with weights 1less than ZZwa/N. If
<vo> <1 then if va-o the point is eliminated from the ensemble, but if

o=1 the point survives and its weight is increased to Zwo/N. It is
easy to see that this branching and truncation procedure maintains the
ensemble size at approximately N, and also forces all weights to be

approximately equal.

In practice the factor Z(x,x') is usually approximately equal to 1,
(r)

o by Eg.(2.30) the factor

SO that in calculating w§r+1) from w

k(r)V(xgr)) plays a dominant role. The following practical Monte Carlo

algorithm then proves useful.

(1) Multiply the weights by the corresponding factor k(r)V(xgr)).

(2) Carry out the branching and truncation procedure.

zr)} using the conditional

(3) Generate the points {x§r+1)} from {x

(r+l)

o lxﬁr))o

probability density k(x

(4) Multiply the weights by the corresponding factor Z(x§r+l),x§r)).

The reason for this rather strange order of events is that the
factor k(r)V(xgr)) causes the greatest change to the weights, so by
first multiplying the weights by this factor and then performing the
branching and truncation of the ensemble immediately afterwards, but

(r*l)}

before generating the new points {xo one ensures that the weights
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of the points in the final ensemble will be approximately equal. This
would not be the case if the steps outlined above were carried out in
the perhaps more obvious order (2),(3),(1),(4), where steps (1) and (4)

would be combined into a single step.

2.4 Importance sampling

So far two algorithms have been described for carrying out the
iteration indicated by Eq.(2.12) and it has been shown that
F(r)(x) - Fo(x), the lowest lying eigenfunction of Eq.(2.11), as r+=., To
be of any practical value there must be some way to compute quantities

such as the eigenvalue ko and ground-state expectation values.

The precise details of such calculations depend on which algorithm
one is using to implement the GFMC method. Since the situation is
somewhat more complicated for algorithm 2 than for algorithm 1, we will
focus our attention on that case. Corresponding results for algorithm 1

are easily derived. The eigenvalue ko may be estimated in a very

F(r)

straightforward way. For large r, (x)=aF0(x) where a is some

proportionality constant, so that, using Eq.(2.13), Eq.(2.12) becomes

(r+l) (r)

F x) = A p(D gy (2.35)

%

If this equation is integrated over all parameter space then one obtains

the simple result
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(r)
Ao = A M > (2.36)

(r+l1)
tot

where

NEINC)

tot ] ' (2.37)

and we have used the defining equation Eg.(2.29) for F(r)

(x). Since the
expected values are not known, Eg.(2.36) suggests the following Monte

Carlo estimator for A.:

0
(1)
xéeSt> =0 Weor (2.38)
D .
tot

This estimate, known as the growth estimate because it is computed from
the growth of the total weight of the ensemble from one iteration to the

next, suffers from three sources of error:

(1) Convergence error due to the fact that Eq.(2.36) is valid only in
the limit roe,

(2) Random sampling error due to the stochastic nature of the GFMC
method.

(3) Systematic error due to replacing the ratio of expected values in

Eq.(2.36) by the ratio of the values themselves in Eqg.(2.38).

In principle the convergence error is not a significant problem

kéeSt) settles down to

since by simply waiting until the quantity
fluctuate about some constant value this error can be eliminated. 1In

practice, however, one may have to carry out many thousands of
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iterations before kéeSt) converges.

Similarly, the random sampling error may, in principle, be reduced
by increasing the ensemble size, but in practice it may be that in order
to reduce the fluctuations to an acceptable level, an unmanageably large
ensemble is required. This turns out to be the case in all calculations

of practical interest.

The third source of error, the systematic error, can not be

estimated but can at least be bounded by making use of the theorem

Z a.
min(a./b.) £ — < max(a./b.) . (2.39)
i3 I b i3 -
3
Specifically
(r)
<w'ts
. (r),.. (r+l) tot (r) ,,(r+l)
min(We ¢ Mige ) S PRETIN S max(W o /W) (2.40)
tot

so that if the random error can be reduced then the systematic error

wili also be reduced.

All of these sources of error may be greatly reduced by means of a
technique called importance sampling. In this technique, a function,
called the importance function, is used to bias the diffusion of points
in parameter space in favor of regions where the importance function is
largest. If the importance function is suitably chosen, this biasing
causes points to cluster in regions where the eigenfunction Fo(x) is

large, and so the ensembles generated by the Monte Carlo procedure
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provide much better representations of Fo(x) than if no importance

sampling is used.

To see how to implement this technique first multiply EqQ.(2.11) by
a function, the importance function, FI(x). Then the new function P(x)

defined by
P(x) = F (x)F(x) (2.41)
satisfies the equation

FI(x) K(x,x")

P(x) = A J dx' v(x') P(x') , (2.42)

PI(x)

which is of the same form as Eg.(2.11) but with F(x) replaced by P(x)
and K(x,x') replaced by
FI(x) K(x,x')

KI(x,x') = . (2.43)
FI(x)

This means that the two algorithms presented earlier may still be used

to iterate Eq.(2.42). Furthermore, the eigenfunctions of Eq.(2.42) are

clearly simply
Pn(x) = FI(x)Fm(x) (2.44)

with corresponding eigenvalues A, and iteration of Eq.(2.42) converges

0
to Po(x). Suppose'we let

FI(x) = V(x)FO(x) . (2.45)

Of course this is not possible in practice since the eigenfunction is
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not known. Iteration of Eg.(2.41) generates a sequence of functions

(‘T (x)} defined by

PTG =@ et kox) v PP (2.46)
Now
Fo(x)V(x)K(x,x')
J dx KI(x,x') = [ dx
Fo(x') V(x')
1
= sV’ (2.47)
0
where we have used the fact that
K(x,x') = K(x',Xx) (2.48)

and Eq.(2.13). Integrating Eg.(2.46) over the variables x and using the

result Eq.(2.47) one obtains

F PP D yax = A 5 pT) (xyax (2.49)
Py
0
sO that
(r)
<W >
Ay = A(F) __tot (2.50)
@),
tot

for all r, i.e., there is no convergence error. The Monte Carlo
estimator Eq.(2.38) still suffers from random sampling error and
systematic error but because the distribution of points in parameter
space is biased, the random error and hence, because of Eq.(2.40), the

systematic error may both be expected to be greatly reduced.
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In practice the importance function is chosen to be
FI(x) = FT(x)V(x) (2.51)

where FT(x) is a function optimized by the variational principle, which
should resemble as closely as possible the eigenfunction Fo(x). With
this choice of importance function it is reasonable to expect the

estimator kée5t>

to converge much faster than when no importance
sampling is used, and also that the statistical fluctuations of A{®S%)

will be much smaller. This is in fact the case.

A better estimator, known as the variational estimator for reasons
which will soon become apparent, which does not suffer from any kind of
error when the optimum choice of importance function FI(x)=V(x)Fo(x) is
used may be derived from the eigenvalue equation Eq.(2.3) for the

ground-state |y> of the Hamiltonian,

(ao-z>|¢o> = Aonl|wo> . (2.52)
Suppose for the moment |x> is an eigenstate of Ho. With this choice of
basis one has

FI(x) = WT(x)[Ho(x)—E] (2.53)
and

Po(x) = Y (x) [Hy(x)-E]yy(x) , (2.54)

where wT(x) is a variational wave function which should approximate

w0<x). From Eg.(2.52) it is clear that
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-1 _ Jax dx' Y (%)H, (%,x")y,(x")

XO (2.55)
J ax WT(x)[Ho(x)—E]WO(x)
which, using Eg.(2.54) leads to the Monte Carlo estimator
(est).-1 _ 1 J ax dg(x)H) (x,X,)
(ko ) == % w, (2.56)
wtot wT(xo)[HO(xo)-E]
The corresponding estimator when |x> is an eigenstate of Hl is
w
aest) . 1~ 4 J ax v,.(x)[H.(x,x )-Es(x-x )] . (2.57)
0 w(r) 0y (% (%) T 0 o o
tot 10" "T "0

If wT(x) = wo(x), corresponding to the choice FI(x) = V(x)FO(x)

discussed earlier, then

(xéESt))'l =gt (2.58)

with no error of any kind. It is found that the variational estimator
has much smaller fluctuations than the growth estimator and so this is

the one that will be used in the applications to be described later.

The technique of importance sampling also provides a very simple
means of estimating ground-state expectation values. Again for the

moment suppose that |x> is an eigenstate of HO and write
wT(x) = w0<x) + en(x) (2.59)

where all functions are normalized and ¢ is small if wT(x) is a good
variational wave function. Then, it is easy to show that for any

operator A
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<¢0|A|.po> ., <wT|A|w0> <wT|A|wT>

(2.60)
<Vol¥o> Vplvg>  <iplvp>

to order ez. The quantity on the left is the desired expectation value,

and the second term on the right is the expectation value of A in the

variational state |wT>. The first term on the right, known as the mixed

expectation value, may be estimated from a Monte Carlo calculation as

<VplRlvy> . A(x ) /// 1

Vi |¥o> [H,(x )-E] [H,(x )-E]

The corresponding result when |x> is an eigenstate of H, is

<Vp|Alvy> e A(x ) / 1

z
<vplvgp> 7 B(x)  H(x)

(2.62)
The symbol = in these last two equations indicates that the estimate has
a systematic error associated, as usual, with replacing the ratio of two
expected values with the ratio of the valued themselves. But, again the
systematic error is bounded by the statistical fluctuations of the
estimate so that if the fluctuations are small so is the systematic
error. In any case, in quoting results, allowance may be made of the

systematic error by simply increasing the error bars of the various

guantities by a factor of v2.

We see, then, that the quantities appearing on the right hand side
of Eq.(2.60) may be calculated and so one may in this way obtain
estimates of various expectation values. Of course, such estimates are

only reliable if the variational expectation value and the mixed



25

expectation value are not very different, i.e. if e in Eq.(2.59) is
small, since otherwise the O(ez) terms will make a significant (perhaps
dominant) contribution. It would be much better if there were some way
to compute expectation values which did not rely on the accuracy of the
variational wave function y,(x). Such a method does exist [25] but is
very demanding on computer resources if any precision is to be achieved

and will not be considered further.



CHAPTER 3

The SU(2) lattice gauge theory in 3+1 dimensions

3.1 Definition of the model

The Hamiltonian of a lattice gauge theory with a unitary gauge
group is
H = zzzu)+-’5§[d—ﬂr(u suh 1, (3.1)
a d P P
£,a
where d is the dimension of the particular group representation being

used, the plagquette variables UP are defined in terms of the group

elements U({) residing on the links of the lattice as

- t T
Up = U(ll)U(lz)U (13)U (14) ' (3.2)

where ll,l2,43,14, are the links defining plaquette p, and the electric

field operators Ea(l) are defined by the commutation relations

26
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[Ea(l),U(l')] = - TaU(l)é(l,l') ' (3.3)

where Ta is a generator of the representation.

In this chapter we shall concentrate on the SU(2) lattice gauge

theory, in particular we shall consider the fundamental representation

for which d=2 and Tr(U;) = Tr(Up). The Hamiltonian may then be written

as

2
H= ZE (L) + A &(p) , (3.4)
4,a a E

where the gauge invariant plaquette variable ¢(p) is defined by
®(p) =1 - %Tr(up) . (3.5)
The parameter A is related to the conventional coupling constant g by

A= 8/g4 . (3.6)

The group element U(«{) may be parametrized in a number of ways. For

example, in terms of the three component gauge field Aa(l) (a=1,2,3),

U(4) = expl $io A (£) ], (3.7)
where oy is a Pauli matrix. Another useful parametrization is

U = ag(4) + i5-a(L) , (3.8)
where a is a 3-vector and

a.+a =1. (3.9)

The (real) numbers a“ (u =0,1,2,3) all lie in the domain (-1,1) and may
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be thought of as the components of a Euclidean 4-vector. Then Egs.(3.8)
and (3.9) indicate that there is a one-to-one correspondence between the
elements of SU(2) and the points in the space 53, the three dimensional
surface of a four dimensional sphere. In fact the connection lies much
deeper; the geometry of the SU(2) group manifold is identical with that
of 53, i.e., the two spaces are isomorphic. We will not prove this
assertion here but point out an important implication: the invariant
group integration measure is simply the volume element in the space 53.
This may be seen most easily by introducing a third parametrization of
the group element U(4) in terms of three angular variables
v(L),6(L),6(L) with domains (O,n), (O,w), (0,27) respectively. These
variables are just the spherical coordinates in four dimensions. 1In

terms of these variables,
- =
U(L) = cosy(«L) + io-n(L)siny(L) , (3.10)
where 3 is a unit 3-vector with polar angles (6,¢), i.e.,
3 = (sinfcos¢, sinfsin¢g, cosé) . (3.11)

Using standard techniques [26] the invariant measure of the group may be

found to be

A0 = sin®y sind dy dé de¢ (3.12)

212

which is the volume element in 53 with the total volume normalized to
unity. This means that if f£(g) is some function defined on the group
and fp(w,8,¢) is the corresponding function on the parameter space 53,

then
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S A0 £(9) = 1 £,(4,6,9) sin® v sind dy dé d¢ . (3.13)

2u2

This result is important for the numerical calculations to be described
shortly where one needs to know how to carry out group integrations in

the parameter space.

3.2 Variational calculation
The simplest gauge invariant wave function is of the form

where u is an arbitrary function of the plaquette variable ¢(p). This
wave function is disordered in the sense that there are no explicit
correlations between the variables ¢(p) on different plaquettes. For
small values of A the Hamiltonian is dominated by the electric energy
term I Ei(l). This is a sum of single link operators and so for small A
the link variables U(«£) will be completely uncorrelated. Then, the
plaquette variables will also be uncorrelated and so for small A one
should expect the wave function given in Eq.(3.14) to be a good

representation of the exact vacuum state.

In the present calculations we do not attempt to optimize the
functional form of u(é(p)) but simply use

u(¥(p)) =exp [ -28¢(p) ], (3.15)

where f# is a variational parameter chosen to minimize the energy
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40 vy[A] B v, [A)

E (3.16)
0 5 6@ y2[A]
This is a sum of two terms: the magnetic energy given by
2
A J a2 yz[A] § &)
kEma = 5 (3.17)
9 I ae yzla)

and the electric energy, which, using the hermitian character of Ea(l),
may be written as

5 a0 v 2(a] T {y ') E () vy [a]}?

E £,a . (3.18)

el

5 aa y2[a]

If the quantities Ejag 3 E) defined above could be evaluated
analytically as functions of the variational parameter 8, it would be a

straightforward matter to minimize the energy Eo with respect to g for
any given value of the coupling parameter A. Unfortunately, analytic

expressions can only be derived in the two limits -0 and f+=. For
small f one may use the so called Euclidean strong coupling expansions
[27], similar to high temperature expansions used in statistical
mechanics, to evaluate the integrals. The results of such a calculation
are:

E_ /N =1-§+28/3+00,

mag- p (3.19)

2 4 6
Eel/Np = 37 - 28 + 0(8) ,

where Np is the number of plaquettes in the lattice. For large g the

wave function is sharply peaked in the region of configuration space
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where all the group elements U(«L) are close to the identity, i.e.,
Aa(l) + 0. Then, with negligible error in the 1limit, the range of
integration of the field variables Aa(l) may be extended to (-=,=), and
the integrals in Egs.(3.17) and (3.18) become straightforward gaussian

integrals which can be easily evaluated. Then, one finds that for f9=,

_ -2
Emag/Np = 4_:l. + 0(8°7) ,

A=)

(3.20)

_ N -1
Eel/Np = 38 % + 0(8 ™)

Of course, one really needs to compute these quantities for intermediate
values of f. To do this a Monte Carlo method is wused. The limiting
expressions given in Egs.(3.19) and (3.20) then provide useful checks on
the accuracy of the Monte Carlo results. In this particular
calculation, Creutz's heat bath algorithm, described in detail in
Ref.[15], is used to generate an ensemble of field configurations {A(r);
r=1,2,...,N} from the probability density wg[A]/Idei[A]. Then, any
expectation value of the form

;a8 v2[alo[a]

<0> = 5 (3.21)
J da yg[A)

may be computed as the expected value of the ensemble average of O0[a],

i.e.,

<0> =

/ % olal®)) \
(gomr

(3.22)
N /

where the angle brackets on the right hand side denote the expected
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value which may be estimated as the average over many different
ensembles. Using this method, Emag and Eel are computed for many
different values of § and the resulting data are fitted, by means of a

least squares analysis, to the specific functional forms

(£it)
E =exp [ £ (B) ]

mag m ' (3.23)
(fit) _
Egy = £.(B) ,

where fm(B) and fe(ﬁ) are polynomials in g of sufficient degree to give
good fits to the data. The xz-test, with a significance level of 5%,

is used to judge the goodness of fit.

The particular functional forms in Eq.(3.23) are chosen, largely by
trial and error, to give good fits with as few adjustable parameters as
possible. For 0 £ § £ 1.2, which is the region of interest, with 65
data points, fm(B) must be of degree 5 and fe(B) must be of degree 6 in

order to pass the xz-test.

Figure 1 shows graphs of Emag/Np and Eel/Np as functions of f. The
points are Monte Carlo results and the solid 1lines are the fitted
functions defined in Eq.(3.23). Only a sample of the Monte Carlo
results are plotted. The dashed lines are the large- and small-f limits
given by Egs.(3.19) and (3.20). The fits are clearly very good as is
the agreement between the Monte Carlo results and the two 1limiting

curves.
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Figure 1: Variational estimates of (a) the magnetic energy, and (b) the
electric energy versus the variational parameter § for the SU(2) theory.
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In Figure 2 the variational estimate of the ground-state energy per
plagquette as a function of A is compared to the large-A and small-\

limits computed in perturbation theory:

E/N =r-2+_11 v 00®  as o,
P 12 14976

(3.24)
E /N = cmn? + o) as A,

for an n x n x n lattice; the constant c(n) is weakly dependent on n,

eog"
c(3) = 1.181 , c(=) = 1.194 . (3.25)

The constant term in the 1large-A 1limit derives from the four-field
coupling of the fields in the small field approximation of the theory

and at the present time has not been calculated.

The agreement between the variational results and the small-A limit
comes as no great surprise since, as mentioned earlier, the variational
wave function is expected to be a good approximation of the exact ground
state wave function for small A. Also the apparent disagreement between
the variational results and the large-A limit is not meaningful since a
constant term is yet to be added to the perturbation theory result. The
agreement may then improve or worsen and one does not know, a priori,

which it will be.

For this reason, perhaps a more interesting quantity to look at is
Emag/Np = <$(p)>. PFor the exact ground state this is related to the

energy Bo by
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6.0
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Figure 2: Variational estimate of the ground state energy per plaquette
versus A for the SU(2) theory.
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&

=1 _0

P

so that the small- and large-A limits are:

<@ >=1-1+ 11 2> +00%  as w0,
6 3744
(3.27)
< ¥() > = c(n(20) Y2 + o™ as A+,

These are plotted in Figure 3 along with the variational results. Again
one sees excellent agreement between the variational results and the
small-A perturbation theory result. However there is a slight
discrepancy between the variational results and the large-A limit, the
difference increasing somewhat as A increases. This is an indication of
the inadequacy of this uncorrelated variational wave function as a model
of the vacuum state of the theory. Other quantities, such as the string
tension and the excitation energy of the theory, provide much more
sensitive tests of the accuracy of the variational wave function than
the mean plaquette field <¢(p)> calculated here. Calculations of these
quantities have been carried out [9,10] and clearly show the failure of
the variational wave function to model the vacuum state of the theory at
large-A. Those calculations, although of some interest, do not concern
us here since we are mainly interested in the variational calculation as
a means of providing an importance function for use in the GFMC

calculations to be described in the next section.
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Figure 3: Variational estimate of the mean plaquette field versus A for
the SU(2) theory.
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3.3 GFMC calculation

The Hamiltonian defined in Eq.(3.4) can not be used as it stands in
a GFMC calculation because it is not of the form HO - kﬂl with Ho and Hl

positive definite operators. However, a slightly modified Hamiltonian

2
HGFMC = Iz Ea(l) - WM (3.28)
£,a

where
M= E [1+ grr(up) ] (3.29)

is of the required form and the GFMC method, described in detail in
chapter 2, may be used to compute various ground-state properties.

Notice that H differs from H only by a trivial constant term so that

GFMC
the eigenstates of the two Hamiltonians are identical.

As shown in chapter 2, the ground-state energy of H

GFMC is negative

and so it is useful to write the eigenvalue equation as

2
Hopuc V> = - 1> . (3.30)

The connection between Q2 and EO' the ground-state energy of H, is

- _ A2
EO ZNPK Q- . (3.31)

The non-normalizable basis {|[A]>} is used, where a state in this
basis is determined uniquely by the set of gauge fields Aa(l) (or,
alternatively, the angle variables y(4£), 6(«£), ¢(£)) on all the links of
the lattice. In this basis, the operator M defined in Eq.(3.29) is

diagonal and the equation to be iterated by the GFMC algorithm is
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(cf. Eq.(2.6))

v[A] = A dQ' G[a,a'] M[a'] y[a'] , (3.32)
where
— 2 2 -1 ,
Gla,a')} =<[a]| [ £ E () +Q ] [[a']> . (3.33)
‘('a

The only aspect of the GFMC algorithm not covered in chapter 2 was
the very crucial problem of how to sample field configurations from the
(unnormalized) probability density G[A,A']. This matter is discussed at
length in the paper reproduced in appendix A. Basically the idea is to

write the Green's function as
GIa,a'] = 17 at exp(-to?) <[al| exp[-tZE2(0)] |[A']> (3.34)

and to use the function exp(-th) to sample t, then, conditional on this
choice, to use <[A]|exp[—tZE§(l)]|[A']> to sample field configurations
[a]. The state |[A]> may be written as a direct product of single 1link
states |A(1)> so that the matrix element appearing on the right hand
side of Eq.(3.34) may be written as a product of single 1link matrix
elements. Now since Q2 is typically large, the variable t will be
small. In this limit it is possible to obtain an explicit expression

for the matrix element. The result is

<a(0)| expl-tEZ(0)] |A' (0> = exp[-(85)%/t] , (3.35)
(1rt)3/2

vwhere (65)2 is the metric in the parameter space S3

(85)2 = (89)% + sin®y(86)2 + sinZysin6(s¢)2 (3.36)
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Sy =y' -y ; 806=6"'"-6; 6¢6=2¢' -9¢. (3.37)

The problem of sampling G[A,A'] then reduces to that of sampling the
gaussian function exp(-&sz/t) for which several methods are available.
Of course, there is a complication involved in the sampling of this
gaussian due to the fact that the parameter space is curved. The

precise details of the sampling procedure may be found in appendix A.

Before going on to discuss the results of the GFMC calculation, one
further point should be noted. In order to obtain statistically
significant results, it is essential to use some form of importance
sampling in the manner described in Sec. 2.4. The details of how to
carry out the sampling procedure in this case may again be found in

appendix A.

All the calculations presented here were carried out on a 3 x 3 x 3
spatial lattice. An ensemble of approximately 100 configurations was
used; the ensemble size changes slightly with each iteration. The
results given are averages over 600 Monte Carlo iterations. The first
few hundred iterations, during which convergence takes place, are
discarded. To calculate the gquantities presented here required
approximately 3.5 hours of computation time for each value of Q2
considered (recall that 02 rather than A is the input parameter to the
GFMC' algorithm) on a CDC Cyber 750 computer at Michigan State

University.
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Figure 4 shows the ground-state energy per plaquette EO/Np as a
function of the coupling parameter A. The dashed curve is the
variational bound obtained in the previous section and the crosses are
GFMC results obtained using importance sampling based on the variational
wave function WT[A]. The GFMC points agree very well with the
variational bound at small A; this is to be expected since the
variational wave function is an accurate representation of the exact
vacuum state for small A . As A increases the GFMC points begin to 1lie
lower than the variational bound, the difference increasing with
increasing A. Again this is as expected; the variational wave function
is known to become less accurate as a model of the ground state as A
increases and so the exact vacuum _energy should be 1lower than the

variational bound.

As in the previous section, a more interesting quantity to look at
is the mean plaquette field <¢(p)>. This is shown in Figure 5. Again
the dashed curve is the variational estimate and the crosses are GFMC
estimates; these GFMC results were computed from the mixed expectation
value, Eq.(2.62). The solid curves are the large- and small-A 1limits

given by Eq.(3.27).

The GFMC points tend to lie below the variational curve for small-A
and are inconsistent with the small-A perturbation theory curve.
Ordinarily this would be taken as evidence that the variational wave
function wT[A], used for importance sampling, is not a good
'representation of the vacuum state. However, in this case, WT[A] is

believed to accurately describe the exact ground state for small A and
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Figure 4: GFMC estimate of the ground state energy per plaquette
A for the SU(2) theory.

versus
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Figure 5: GFMC estimate of the mean plaquette field versus A for the

SU(2) theory.



44

to become increasingly worse as A increases. The results on the energy
per plaquette shown in Figure 4, where the GFMC points are in close
agreement with the variational bound but begin to deviate as A
increases, are consistent with this view. The poor accuracy of the GFMC
results for small A in Figure 5 may be due to the failure of the small
time step approximation used to calculate the matrix elements of
exp(-tz‘.Ei(l)). The time t is sampled from the probability density
exp(-th) and so is of order 1/92, which increases as A decreases. The
approximation will, therefore, be 1least wvalid for small A. This
explanation could be checked by subdividing every time step into
intervals smaller than some fixed 6t, and then observing how the results
change as &t decreases. On the other hand, since the wave function is
disordered for small A, one might expect that errors in the sampling
procedure would be unimportant. Another possible explanation of this
discrepancy is that the calculation may not have been carried out for
enough iterations to deduce a meaningful estimate of the uncertainty
indicated by the error bars. Succesive GFMC ensembles are highly
correlated and fluctuations of measured quantities extend over many
iterations, so it is possible that the 600 iterations used to compute
the GFMC results are dominated by one very long flucuation which causes
the estimates to be too small. If this is correct it is not clear why
the same problem does not occur for the larger values of A. Clearly

further investigation is needed to clarify the situation.



CHAPTER 4

The U(l) lattice gauge theory in 3+1 dimensions

4.1 Definition of the model

In this chapter calculations on the U(l) lattice gauge theory will
be described which parallel those on the SU(2) model discussed in the
brevious chapter. By studying this somewhat simpler model it may be
possible to resolve some of the questions raised by the GFMC
calculations on the SU(2) model. Also, Monte Carlo calculations in the
Euclidean path-integral formulation of the theory have clearly
demonstrated that the vacuum state of the U(l) model undergoes a second
order phase transition in four dimensions from a charge confining phase
at strong coupling (gz*n, A+0) to a non-confining phase at weak coupling
(g%+0, A+=) [28], and it will be interesting to see if evidence of this

transition shows up in the Hamiltonian formulation of the theory.
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The elements of the group U(l) may be parametrized as
U = exp(id) (4.1)

where the gauge field A 1lies in the domain (0,27). With this

parametrization the plaquette variable Up may be written as
Up = exp[iB(p)] (4.2)

where B(p) is the lattice curl of A at plaquette p:
B(p) = A(4)) + A(4Ly) - A(Ly) - A(L,) . (4.3)

The links 11, 12, 13, 4,, define the plaquette p.

4'

An explicit expression for the electric field operator E(4) may be
obtained from the commutation relation (cf. Eq.(3.3))

[ECo),u(£")] = - UL 8(L,2") , (4.4)

and is found to be

= —0 (4.5)
E(L) i X
The Hamiltonian Eg.(3.1) may then be written as
a2
H=-1I > + A E ®(p) , (4.6)
4 AT (L)

where the gauge invariant plaquette field ¢(p) is defined by

&(p) =1 - cos B(p) , . T (4.7)
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and the constant A is related to the conventional coupling constant g by
4
A=2/g (4.8)

The group manifold is one dimensional and the invariant measure is

easily shown to be
daa , (4.9)

so that group integrations may be carried out in the parameter space by

simply integrating over the gauge fields A(J4).

4.2 Variational calculation

As in the previous chapter, we will use the disordered wave

function

v [a] = Jue) (4.10)
with the specific choice

u(d(p)) = exp[ -48d(p) 1 . (4.11)

The factor of %+ in the exponent is chosen purely for aesthetic reasons.
The calculation proceeds in precisely the same way as the SU(2)
variational calculation, the only difference being in the choice of

gauge group.
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Figure 6 shows graphs of Emag/np and Eel/Np as functions of the
variational parameter f. The points are a sample of the Monte Carlo

variational estimates and the solid lines are the functions Eégzt)(ﬁ)

(fit)

and Eel

(B). The functional forms given in Eq.(3.23) again give good
fits to the data with the least number of parameters: in the region
0Sp<1.8 with 92 data points, fm(ﬁ) is a polynomial of degree 7 and
fe(ﬁ) is one of degree 8. More parameters are needed in this case than
in the SU(2) calculation because a larger range of § is covered and more
data points are used. The dashed lines in Figure 6 are small- and
large-f limits derived from Euclidean strong coupling expansions and the

Gaussian approximation respectively. The functions describing these

curves are, for small g,

L 3 5
Epag/Np = 1 - 8/2 + 67/16 + 0(87) ,

(4.12)
_ a2, _ o8 6
Eel/Np = g%/2 /16 + O(B8) ,
and for large 8,
E_/N_ =1 +08%,
mag p 38
(4.13)

-1
Eel/Np =8 -1/3 +0(8 ") .

Figure 7 shows the variational estimate of the ground state energy
per plaquette as a function of the coupling parameter A and compares
these results to the large- and small-\A limits derived from perturbation

theory:
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Figure 6: Variational estimates of (a) the magnetic energy, and (b) the
electric energy versus the variational parameter § for the U(l) theory.
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Figure 7: Variational estimate of the ground state energy per plaquette
versus A for the U(1l) theory.
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E/N_ = - 2%/8 + 32%/10240 + 0(25) as A0 ,
p (4.14)

/2

am) 202 - a%ny/e + o273 as A,

n

EO/NP

for an n x n x n lattice. As in the SU(2) large-A limit, the constant

d(n) depends weakly on the lattice size, e.qg.,
d(3) = 0.787 , d(=) = 0.796 .

At small A the variational estimates are in excellent agreement with
perturbation theory as expected, but at large A the variational
estimates 1lie significantly higher than the perturbation theory result.
This clearly indicates the inadequacy of the simple uncorrelated wave
function Eg.(4.10) as a model of the vacuum state of the theory at large

k’

The same conclusion also follows from a consideration of the
variational estimate of the mean plaquette field <¥(p)> as a function of
A This is shown in Figure 8 along with the large- and small-A limits
determined using Eq.(3.26):

<d(p)> = 1 - M4 + 13/2560 + 0(A%)  as a0 ,
(4.15)

<d(p)> = d(n)/ 202 + 0(x73/2) as A,

4.3 GFMC calculation

The discussion of section 3.3 leading to Eq.(3.32) is applicable

almost without change to the U(1l) model, so that the equation to be
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Figure 8: Variational estimate of the mean plaguette field versus A for
the U(l) theory.
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iterated by the GFMC method is

v[a] = s a2 G[A,A'] M[A'] y[a'] (4.16)
where
M[a] = B [ 1+ cos B(p) ] (4.17)
and -
22 2 ,-1
Glaa'] =<[a]] [-(Z—F—+0" 1" [[a']>, (4.18)
3A” (L)
2 22
=/ dt exp(-tQ") <[a]| exp[t Z ——1] |[a']> . (4.19)
3R“ (L)

The state |[A]> may be written as a direct product of single link states
|A(£)> so that the matrix element appearing in the integrand of
Eg.(4.19) may be written as

32

I <a()| explt —
£ A" (L)

1 |arcos> . (8.20)

In appendix A it is shown that in the small-t 1limit this single 1link

matrix element may be written as

exp['(SA)2/4t] .
(ant)/2

a2

<a(4)| exp[t >
0A" (L)

] |a' >

(4.21)

The problem of sampling field configurations from the Green's
function G[A,A'] then reduces, as in the SU(2) case, to sampling a

gaussian distribution. The precise details of the calculation,
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including the use of importance sampling based on the variational wave

function Eq.(4.11), may be found in appendix A.

As in the SU(2) case these calculations have been carried out on a
3 x 3 x3 spatial lattice, with an ensemble size of approximately 100
configurations which changes slightly with each iteration. The results
given are averages over 600 Monte Carlo iterations and required
approximately 200 seconds of computation time for each value of Q2

considered.

Figure 9 shows the ground-state energy per plaquette EO/Np as a
function of A. The crosses are GFMC results and the dashed curve is the
variational bound obtained in the previous section. The solid curve is
the large-A perturbation theory result Egq.(4.14). At small A the GFMC
results agree with the variational bound but for larger values of A the
GFMC points 1lie significantly lower, clearly indicating that the
uncorrelated wave function Eq.(4.11) is no longer a good model of the
ground state at large A. In fact for large A the exact ground-state
wave function can be derived. In that limit the energy is dominated by
the magnetic energy and so the terms 1 - cos B(p) will be small, i.e.,
B(p) » 0 as A* =, With this approximation, the Hamiltonian Eg.(4.6) is
quadratic so that the ground-state wave function is a gaussian in the

gauge fields A(JL):
va) = exp [-3a Z A GO M, (X,X") A, (X" ] (4.22)

where
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Figure 9: GFMC estimate of the ground state energy per plaguette versus
A for the U(1l) theory.
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e = w2)Y?, (4.23a)

Moy (%) = ;3 g m (D) expl Zﬁi q-(x-x') 1, (4.23b)
n

2.2 > * o
s @8, - (D (@

(q) = ' (4.23c)
R £@
fk(3> =1-exp(2migq ), (6.23d)
n
£(@ =z |5, @)%, (4.23e)
k

for an nxn xn lattice. The sum in Eg.(4.22) is over all §, ;', Kk,
k'. In these equations a link (£ is defined by two indices ; and k; the
link 1lies between the lattice sites at % and X + &, where ¢, is a unit
vector. At large A then, the ground-state wave function explicitly
couples 1links which are widely spaced; this type of coupling is absent

in the simple disordered wave function Eq.(4.1ll).

There appears to be an abrupt crossover point at A = 1.2 in Figure
9 where the GFMC results begin to deviate markedly from the variational
bound. This may be taken as evidence, albeit inconclusive, of a phase
transition at that poinf. For A < 1.2 the ground state of the theory
resembles the disordered variational wave function as indicated by the
close agreement between the variational results and the (in principle)
exact GFMC results, but for A > 1.2 the disordered wave function is no
longer accurate and the ground state is more closely represented by the
gaussian wave function Eq.(4.22) »with its explicit couplings between

widely separated links.
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It is interesting to compare this result to the corresponding
result for the SU(2) model shown in Figure 4. In that case the
deviation of the exact GFMC results from the variational curve simply
increased very gradually as A increased. This is consistent with the
fact that there is no phase transition in the ground state of the SU(2)

theory.

The GFMC results at large A in Figure 9 appear to lie significantly
lower than the 1large-A perturbation theory curve. It may be that by
using a poor importance function one obtains inaccurate estimates of the
energy with an ensemble as small as 100 configurations; the GFMC method
relies heavily on the law of large numbers of probability theory and so
it is conceivable that small ensembles result in inaccurate GFMC
results. To study this systematically would require repeating the
calculations for different ensemble sizes and observing how the results
vary as the ensemble size increases. Such an undertaking would clearly
be very demanding on combuter time. Furthermore, it may be that if the
importance function is too inaccurate the ensemble size necessary to
obtain good results is unmanageably large. With these points in mind,
the problem of ensemble size dependence of the GFMC results has been

left for future investigation.

Figure 10 shows the mean plaquette field <®(p)> as a function of A.
Again the crosses are GFMC results based on the mixed expectation value
Eg.(2.62), the dashed curve is the variational estimate, and the solid
curve is the large-\ perturbation theory result Eg.(4.15). Notice again

the abrupt deviation of the GFMC points from the variational curve at
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Figure 10: GFMC estimate of the mean plaquette field versus A for the
U(1) theory.
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A = 1.2 indicative of the phase transition in this model at that point.
Recall that the GFMC results for this quantity are not exact and can
only be trusted if they do not differ very much from the variational
estimates. Thus, the lack of good agreement between the GFMC results

and the large-\ perturbation theory curve is not surprising.

As in the corresponding SU(2) results shown in Figure 5, the GFMC
points at small X\ are noticeably low; they are inconsistent with the
known small A behaviour given by Eq.(4.15). The comments made at the
end of chapter 3 concerning this discrepancy are also valid here.
However, for the point at A = 0.75 the calculation was repeated breaking
each time step t into ten smaller substeps with no noticeable change in
the result. Of course, this is by no means intended to be a complete
study of the problem, but it does tend to cast some doubt on the
explanation of the discrepancy as a failure of the small-t
approximation. As stated at the end of chapter 3, further investigation

is clearly necessary to resolve the problem.



CHAPTER 5

n-space formulation of the U(l) lattice gauge theory

5.1 The n-space equations

The calculations on the U(l) lattice gauge theory described in the
previous chapter used a basis set in which the plaquette fields ¢(p) are
diagonal. Using such a basis the problem of how to use the gaussian
wave function given in Eq.(4.22) as an importance function presents so
far insurmountable difficulties and one is restricted to using the
simple disordered wave function Eg.(4.11) which gives poor results at
large A. A different formulation of the problem is possible which
allows one to use a basis in which the electric field energy is diagonal
and also to use as importance functions both disordered and gaussian

wave functions.

60



61
Write the wave function y[A] in the manifestly gauge invariant form

v[A] = Z exp[ i E n(P)B(P) ] ¢[n] , (5.1)
{n}
where n(p) are integer-valued plaquette variables. It is necessary to
restrict n(p) in this way to ensure that the wave function [A] is
periodic in the gauge fields A(«£). Equation (5.1) resembles a Fourier
series expansion in the magnetic field variables B(p). This is not
quite the case, though, because not all of the fields B(p) are
independent. 1In fact the sum of the B(p)'s over any closed surface in

the lattice must vanish in accordance with Gauss' Law.
Inserting Eg.(5.1) into the eigenvalue equation, the corresponding
eigenvalue equation for the function ¢[n] may be shown to be

S[nl¢[n] + R{Z K[n,n'] ¢[n'] = E¢[n] (5.2)
nl

where the operator S[n], which comes from the electric field energy, is

s[n] = Z n(p)n(p')A(p,P") , (5.3)
PP’
A(p,p') = L 3B(p) 3B(Pp') . (5.4)

4 BA(L) BA(L)
The operator K[n,n'], which comes from the magnetic field energy, is
K[n,n'] = B {s[n,n'] - %Sln.n'+6pp.] - tS[n.n'-Spp.]} . (5.5)

The function &[n,n'] =1 if n(p) =n'(p) for all p and is zero

otherwise, 6[n,n'+6pp.] =1 if n(p) =n'(p) for all p¢¥ p' and
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n(p') = n'(p')+l, and similarly for 6[n,n'-5pp,].

If instead of the Hamiltonian defined in Eq.(4.6) one uses HGFMC

defined by

HGFMC =H - ZNPX (5.6)

then-a slightly different equation for ¢[n] than Eg.(5.2) is obtained:

S[nl¢[n] + x{z: ?[n.n'] ¢[n'] = -0%¢[n] (5.7)
n'
where
G[n,n'] = K(n,n'] - 2Np6[n,n'] (5.8)

and Q2 is related to Eo the ground-state energy of H by

o? = 2§\ - Eg (5.9)

Equation (5.7) is of precisely the same form as Eq.(2.8) so the GFMC
method can be used as described in chapter 2 to compute various

quantities.

As in the previous two chapters we shall restrict our attention to
the ground-state energy per plaquette EO/Np and the mean plaquette field

<¢(p)>.
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5.2 Variational Calculations

5.2.1 Disordered wave function

The simplest variational wave function to try is

¢[n] = E u(n(p)) . (5.10)
The energy

EO = Eel + A Emag ' (5.11)
where

E, = Z ¢ [n] sln) oln) / Z [e[n]|?, (5.12)

{n} {n}
E__ = Z¢(nlKinn'lelnl/z |eéln]]?, (5.13)
Tag  {nn'} {n}

must be minimized with respect to the choice of the single plaquette

function u(n(p)). Using Eq.(5.10), the energy E, is found to be

0

¢ g n?lum|? + A g u () [um-u(n+D-tu(n-1)]
£ lum|?

EO/Np = . (5.14)

The correct functional form of u(n) may be determined by comparing this
expression for the energy to the corresponding result for the gquantum

pendulum.

The quantum pendulum is defined by the Hamiltonian

B = - 32/26% + Agp(l - cosé) (5.15)
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where 6 is an angular variable which lies in the domain (0,27). The

wave function wqp(e) may be written as a Fourier series

qu(e) = g v(n) exp(ind) , (5.16)

and then the energy is easily shown to be

g nllvan |+ 2 E v @) [vin)-gv(nel)-pvin-1) ]

= . (5.17)
P® E lv(n) |2
Comparing this expression to Eq.(5.14) it is clear that
u(n) = v(n) (5.18)
and
AN/N_ = A4 .
Eo( )/ P 4 Eqp( /4) (5.19)

It is easy to show that the variational estimates of the energy per

plaguette for small- and large-A are

Eg/N_ =\ - 2278 + /2048 + 002%) as 20 ,
P (5.20)

2

E ) as A\,

s o 1/2 -1/
O/Np (2)) 1/4 + O(A

For comparison, the corresponding 1limits obtained from perturbation

theory are (see Eq.(4.14))

Eg/N_ =\ - 2278 + 32%/10240 + 0(25) as 40 ,
P (5.21)

E/N_ = dn) 202 - a®(ny/e s0(a7Y/2

0'p

) as \2e,

Notice that the expressions in Egs.(5.20) and (5.21) have the same

small-A limit but that the perturbation theory result for 1large A is
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considerably 1lower than the variational result. This is as expected
since the magnetic field variables B(p) are disordered in the wave
function in Eq.(5.1) with ¢[n] = ¢l[n], so that this wave function

should be a good approximation of the exact ground state for small A.

The optimized function u(n)=v(n) is rather too cumbersome to use
for importance sampling in a GFMC calculation. Instead we shall use a

simpler choice
u(n) = exp( -anZ ) . (5.22)

It is a straightforward matter to minimize the energy EO/Np given by
Eq.(5.14) with respect to a for any given A. The results are almost
indistinguishable from those obtained using the optimal choice over the

range of A considered.

5.2.2 Gaussian wave function

In the gaussian approximation, valid at large A, the ground state

wave function may be shown to be

¢,[n] = exp[-tapg.n(p) M(p,p') n(p")] (5.23)

where

1/2

a = (2/X) (5.24)

. - & o <+ <+ < - =
If the plaquette p, having corners at the sites x, x+e,, x+ei+ej, x+e

jl
i . - - - -
is denoted by the two indices x and k where e ej, e constitute a




66

right handed set of unit vectors, then the matrix M(p,p') in Eq.(5.23)

is

9 -+ . S
Moo (X,x) = ;3 f m () expl zﬁg q-(x-x') ], (5.25)
n q

where

£2( Q5. . - £ (DL (D)
mkk'(a) - kk k k'

pry (5.26)
£(q)
and £,(3), £(3) are given in Egs.(4.23d) and (4.23e). Now, if instead
of having a fixed by Eg.(5.24), we allow it to be a free parameter then
the wave function Eq.(5.23) may be used in a variational calculation,
the parameter a being chosen to minimize the energy Eo.

As in the earlier chapters it is necessary to use a Monte Carlo
method to compute the quantities Eel and Emag’ In this case the

Metropolis Monte Carlo algorithm [29] is used to generate configurations

from which Eel and Ema are computed.

g

5.2.3 Variational results

Figure 11 shows the ground-state energy per plaquette as a function
of the coupling parameter A. The crosses (+) are the results of the
variational calculation using the wave function ¢1[n] given in
Egs.(5.10) and (5.22). The circles (®) are computed using the wave
function ¢2[n], Eq.(5.23). The solid and dashed lines are small- and

large-\ perturbation theory results given by Eq.(5.21). At large A the



67

2.0 — T T T T T ' T ' H

Figure 11: Variational estimates of the ground state energy per
plaguette versus A for the n-space formulation of the U(l) theory.
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wave function ¢2[n] is clearly the better one; this is to be expected
since ¢2[n] has built into it the explicit couplings between different
plaguettes appropriate to the large A limit, which are absent in ¢1[n].
Notice, too, that for small A the two variational estimates are almost
identical. It is at first sight surprising that the wave function
¢2[n], which is constructed to be a good approximation of the ground
state for large A, should also be quite accurate at small A. Upon
furthér consideration, however, it is seen that if the wvariational
parameter a is chosen to be very large then the function ¢2[n] is
sharply peaked in the region n(p)=0 for all p. In terms of the magnetic
field variabled B(p), the state is completely disordered, and so we see
that ¢2[n] should also be accurate at small A. It is interesting to see
how the variational parameter a in the wave function ¢2[n] depends on A.
In Figure 12 the quantity a/ah, where ¢, = (2/1)1/2, is plotted as a
function of A. The variational parameter exhibits very striking
behaviour at A = 1.1, indicating the presence of a phase transition.
Because ¢2[n] is a good representation of the ground state at both large
and small A, then the fact that a phase transition is present strongly
suggests that the exact ground state of the theory also must exhibit a

phase transition.

The presence of a phase transition in the state described by ¢2[n]
is also evident from the variational estimate of the mean plaquette
field <¥(p)> = E N _.

eld (p)> = mag/ p
(+) are variational estimates using ¢l[n], the circles (®) are obtained

This is shown in Figure 13. Again the crosses

using ¢2[n], and the solid and dashed lines are small- and large-A

perturbation expansions.
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Figure 12: a/ah versus A for the variational wave function ¢2[n].
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Figure 13: Variational estimates of the mean plaquette field versus A
for the n-space formulation of the U(l) theory.
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5.3 GFMC calculations

The GFMC method with importance sampling may be applied precisely
as described in chapter 2 to the present example. It proves most
convenient to use algorithm 1 presented in Section 2.2. Due to the
particular form of the function G[n,n'], which has only a small number
of non-zero terms, it is possible to compute directly the normalization
integral denoted by 2(x) in chapter 2 and defined in EqQ.(2.20).
Furthermore, again because of the special form of G[n,n'], the
configurations n sampled from the kernel conditional on n' will differ
from n' by at most one unit at a single plaguette, i.e., n(p)=n'(p) for
all p, or n(p)=n'(p) for all p#p0 and n(po)xn'(po)tl. Since all the
matrix elements are known, it is a simple matter to sample the kernel as

a discrete probability distribution.

All the results described below were obtained ona 3 x 3 x 3
lattice and used an ensemble of approximately 100 configurations. The
results are averages over 1000 GFMC iterations and required

approximately 100 seconds of computation time for each value of Q2 used.

Figure 14 shows the ground state energy per plaquette EO/Np as a
function of A. The crosses (+) are GFMC estimates using the disordered
wave function 2% for importance sampling, and the circles (®) are the
results obtained using ¢2. The solid and dashed curves are the
variational bounds, obtained in the previous section, using ¢1 and 02
respectively. The GFMC results obtained using ¢, for importance

sampling interpolate smoothly between the known small- and large-A
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Figure 14: GFMC estimates of the ground state energy per plaquette
versus A for the n-space formulation of the U(l) theory.
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limits. The results obtained using 61 however, fail to be accurate for
A > 1.3 and continue to 1lie close to the corresponding variational
estimate; these GFMC estimates are not consistent with the variational
bound obtained from the trial function ¢2. It appears that the
disordered state is metastable with respect to the GFMC iteration, at
least for the ensemble size used here, and cannot converge to the actual
ground state. This may be interpreted as evidence for a phase
transition in the ground state of the theory. The trial wave function
2 is qualitatively different from the true ground state wave function
for A > 1.3 where the ground state is described well by the function ¢2
with its explicit long range couplings between different plaquettes. So
when this function 4is used for importance sampling it fails to direct
the diffusion into regions of configuration space where the exact ground
state wave function is greatest. Apparently, though, there is still a
low energy state resembling the disordered phase which is metastable
with respect to the GFMC iteration. This metastability is due to the
fact that 2 biases the ensemble of configurations in favor of those
lying in the region of configuration space dominated by this low energy
state. The cross over from the disordered phase described by ¢1 to the
harmonic phase described by ¢2, the two phases being qualitatively

different, is a signal for the phase transition.

This conclusion is further supported by the calculation of the mean
plaquette field <®(p)>. Figure 15 shows this quantity as a function of
A for the GFMC calculation using ¢2 for importance sampling. The
crosses are GFMC estimates based on the mixed expectation value

Eq.(2.62) and the circles are variational estimates based on the trial
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Figure 15: GFMC estimate of the mean plaquette field versus A computed
using the trial wave function ¢2[n] for importance sampling.
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function ¢2. The solid curves are small- and 1large-A perturbation
expansions. The variational estimate at small A differs slightly from
the correct small-A limit. The GFMC method provides a correction to the
variational results which is consistent with the perturbation theory
result. Notice that in the region of the phase transition, A x 1.2, the
GFMC estimates differ considerably from the variational estimates
indicating that in this narrow region the function ¢2 is not a very
accurate representation of the exact ground state wave function;
presumably the nature of the phase transition is different in the exact

ground state and the harmonic state ¢2.

Figure 16 shows the mean plaquette field computed using ¢1 for
importance sampling. The failure of this disordered wave function to
accurately model the ground state of the theory and also the

metastability discussed earlier are evident at large A.

It is interesting to compare the results of the present chapter to
those of the previous one where the calculations were performed in the
space of states in which the magnetic energy is diagonal. The agreement
between the two sets of results is striking. The fact that these two
very different formulations of the same problem give very similar

results gives us considerable confidence in the GFMC method.

Further discussion of the results of this chapter may be found in
appendix B where the calculations described here are compared to similar

calculations on the U(l) model in 2+1 dimensions.
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Figure 16: GFMC estimate of the mean plaquette field versus A computed
using the trial wave function 01[n] for importance sampling.




CHAPTER 6

The Hamiltonian XY model

Because of the unconventional nature of the n-space formulation
used in the previous chapter it would be useful to apply the same
technique to study a different model. The Hamiltonian XY model admits
such a treatment. The reprinted paper in this chapter describes
calculations on the XY model which parallel those of the previous
chapter. Again it will be found that the n-space formulation of the

problem leads to a very simple implementation of the GFMC algorithm.
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An application of the Green's-function Monte Cario method to the Hamiltonian XY model is
described. Importance sampling is implemented with two trial wave functions—one corresponding
o0 a disordered state and one which incorporates the correlations derived from the spin-wave ap-
proximation of the model. Optimal trial functions are obtained from the variational principle. The
Monte Carlo results are interpreted with regard to the Kostertitz- Thouless phase transition.

L INTRODUCTION
The Green's-function Monte Carlo (GFMC) method is
a numerical technique for studying properties of the
ground state of a quantum system with many degrees of

freedom. It was originally developed for application to

quantum many-body problems."? We described an appli-
cation of this method to the Kogut-Susskind Hamiltonian
formulation of the compact U(1) lattice gauge theory in 2
and 3 spatial dimensions in a previous paper.’ In this pa-
per we shall describe similar calculations for the Hamil-
tonian formulation of the XY model.

The XY model, also called the classical planar spin
model, describes classical two-dimensional spins located
on a two-dimensional cubic lattice wi_t.h a nearest-neighbor
interaction energy proportional t0 S-S’. The aim of clas-
sical statistical mechanics is to compute the partition
function

Z= 3 ap|-B3SSE+E)|.
hntes T.k

1.1

An important feature of this model is the Kosterlitz-
Thouless phase transition,' which separates a phase in
which the sum over states is dominated by spin-wave fluc-
tuations of an ordered state, 80 that the spin directions are
highly correlated, and a disordered phase in which the
correlation between spin directions is small. This phase
transition is driven by an interesting mechanism: vortices
in the spin field, which are coupled in pairs at low tem-
peratures, unbind to produce a disordered state at a criti-
cal value of 8. Topological configurations that produce
long-range disorder of the fields may also be relevant to
the transition from an ordered to a disordered vacuum
state in lattice gauge theories.’ The XY model is impor-
tant to the lattice gauge theorist as the simplest example
of this mechanism. In this work we are interested in this
mode! as a testing ground for the GFMC method.

The Metropolis Monte Carlo algorithm has been ap-
plied to the computation of the partition function (1.1).¢

The Hamiltonian formulation of the XY model consists
of a guantum Hamiltonian that describes a one-
dimensional chain of interacting spins.” The second di-
mension is time. The connection between this formulation
and that of Eq. (1.1) is that the partition function is a Iat-

r+}

tice approximation of the Feynman path integral of the
quantum system. For the sake of completeness we derive
this connection in the Appendix of this paper.

It is the quantum Hamiltonian to which we apply the
GFMC method.

An important, and even essential, aspect of the GFMC
method is the use of importance sampling. An impor-
tance function, which should resemble the ground-state
eigenfunction, is used to bias the Monte Carlo sampling in
favor of regions of configuration space where the wave
function is greatest. The variational principle provides a
way to construct useful importance functions. In the XY-
mode! calculations, as in the U(1)-gauge-theory calcula-
tions presented in our previous paper, we use two impor-
tance functions. The first describes a disordered state; im-
portance sampling with this function is good at weak cou-
pling, but becomes increasingly worse as the coupling in-
creases. The second is derived from the spin-wave ap-
proximation of the ground state, and yields good impor-
tance sampling at both strong and weak couplings. The
wvariational calculation that optimizes the trial function is
done analytically for the disordered state, but numerically
for the spin-wave state, by the Metropolis Monte Carlo
method. The variational results are interesting in their
own right as they give some indication of the nature of the
ground state as a function of the coupling constant. Then
the GFMC calculations extend the accuracy of the varia-

The outline of this paper is as follows. We define the
Hamiltonian XY mode! and explain our application of the
GFMC metbod in Sec. II. We describe the variational
calculations that yield trial functions for the GFMC im-
portance sampling in Sec. IIl. We discuss the GFMC re-
sults in Sec. IV, and make some summarizing remarks in
Sec. V.

Il. DEFINITION OF THE MODEL

The Hamiltonian of the XY model is”
N N
Ha-3 L 03 (14cn6-0,,0], @b
i=) 89, Py

with the periodic boundary condition 6y ,,=6,. Here 6,
is an angle variable that defines the direction of the ith
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spin; thus its range is (—#,7), and wave functions are
periodic in 6; with period 27. H is defined such that the
ground-state energy is negative; we let —Q? denote this
energy. In the calculations to be discussed, we formulate
the eigenvalue problem in the space of variables conjugate
to 6;; specifically, we write the ground-state eigenfunction
as

N
W)= éElexp|i 3 n,(6,—6,,1) |, Q2)
T

=]

where periodicity in 6; requires that the variable n; be an
integer. Then the T-space eigenfunction ¢(T) obeys the
equation

—QW(E)=S(AEMH-ALI K(G,T'WE), @3
i’:
where
N
S(n)= 2 (n;—n;“)z Q2.4
(=]
and
N
K(G,0)=3 [§&,8')+ $8(8,8'+&)
im
+38(8,1'-§)], Q.5

where &, is the N-component vector with jth component
su‘i‘o put the eigenvalue equation into a useful form, we
define
X(@)=[Q?+S(T)(T) ;
this function satisfies the equation
X(@)=A3 K(5,85)(Q*+S(E"))"XE").
z

2.6

@mn

The GFMC method applies to an equation of this form.
The method consists of simulation of a diffusion process
with branching. The branching probability is proportional
to [0?+S(5')]"! and the diffusion is governed by
K(8,5’). We refer to K(5,T’) as the Green's function,
although in this problem it is mo¢ introduced as the inverse
of an operator.

The GFMC method is most powerful when combined
with an importance-sampling technique.® In very large
systems this technique is necessary for obtaining accurate
results. We implement importance sampling by introduc-
ing a trial wave function ¢r(T), which should be an ap-
proximation of the actual eigenfunction. Then we define
the function F(T) by

F(B)m=¢(BIX(T) .
This cbeys the equation

F(®)=13 ;‘l(:ﬁi)x(i.a')[c’+sm')]-'na') ,

7 #r(@’

2.8

2.9
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which is the equation to which we apply the GFMC dif-
fusion process. Now the diffusion is governed by the
biased Green’s function ¢ (B)K (5,5 ')/é1(T ).

The GFMC method is based on iteration of Eq. (2.9).
To iterate the equation we must take Q2 to be the given
quantity, and regard A as the eigenvalue to be determined.
Then iteration yields a sequence of functions F'°'(&),
FY(1),...,F"(T) defined by

i)
Fr#l)(i)a,.mz —‘T(LK(ﬁ,B ')(Q2+S(E ;n-—l
% #r(@)
xXF(®"), 2.10)

where the constant A'” may vary from one iteration to the
pext. It can be shown that F'(%) the
ground-state eigenfunction with energy —Q“ as r— oo, in-
dependent of the initial function F'°(f); and that the nor-
malization obeys the relation
. F(r'#li(-i) xm
r—e FE) | A

where A is the ing constant for which the ground-
state energy is —Q°. Constant normalization of the func-
ﬁfl)l F"(T) (after convergence to the limit) requires
A=A,

The GFMC algorithm for solving Eq. 2.9) is a simula-
tion of a diffusion process with branching. At the rth step
of the process we have an ensemble &, of field configura-
tions

§, =T, 0=123...,N,};

let P,(T) denote the probability distribution of ¥,. The
next ensemble &, . is obtained from &, in two steps:

(i) Each T , branches into k, new points, where k, is
an integer picked by a random process such that the ex-
pected value of &, is

@.1n

lé”lc’+s(i'.)l"2——"‘““"'3” @.12)

T orld,)

The possibility k, =0 is allowed. Here A\, which may be
thought of as a guess of the value of A, can vary from one
iteration to the pext.

(i) Then each of the k, points is moved from @i, to a
new configuration T chosen from the probability distribu-
tion

T (B, 8,)/6,(8))
3 B (5,8,)/6r(8,)
)

Q.13

Note that the form of K(8,8°) implies that & differs
from B , by at most one unit.

The ensemble &, is the result of processing all of the
elements of &, it this way. The probability distribution
d"r-&li’
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~ . N (@)
P(B)="——3 $r( K(8,8)[Q*+S(E")"!
N'+l = ‘r(i')

XP,(T’). Q.14)

That is, the evolution of P,(%) is the same as Eq. (2.10)
with
%”LSAM.
r+l
Therefore, P,(Ti) approaches the eigenfunction F(T) as
r— . Also, since P,(Ti) and P, , ,(T) have the same nor-
malization, specifically 3 _ P,(7i)=1 for all 7, after a suf-
ficient number of steps in the diffusion we shall have

(r) N’
—=A.
Ao Nr+l
This provides an estimate of the eigenvalue A after each
iteration. Note that A}’ controls the size of the ensemble;
in practice we readjust the value of AJ every few itera-
tions 30 as to keep the ensemble size approximately con-
stant. Thus the simulation yields an estimate of A and a
sequence of ensembles of fi-spsce configurations with
probability distribution F(1).

Use of the trial function ¢ is called importance sam-
pling. The diffusion in the space of & configurations
is controlled by the biased Green's function
&r(B)K(T,8')/é7(T ). The factor ¢;(T)/ér(Ti’) biases
the diffusion in favor of moves Ti '—T in directions that
increase ¢1(5). If é7 is an approximation of the ground-
state eigenfunction, then this bias accelerates the conver-
gence to the ground state, and reduces fluctuations of the
estimates of the eigenvalue A.

The importance-sampling technique also provides a way
to estimate expectation values of operators in the ground
state, provided ¢ is 8 good approximation of the eigen-
function ¢. If ¢y differs from ¢ by an amount of order ¢,
then to order € we have

(#l4]¢) _, (#141¢r) (474 147)
(¢1¢) (416r) (¢r|¢r)
The left-hand side is the desired expectation value of an
operator A. The second term on the right-hand side is
simply the expectation value in the trial state. The first
term on the right-hand side, which is called the mixed ex-
pectation value, can be estimated as

(614 |47) - A +SE)]) e
(é16r) (Q+S(E)]) e

where ( ) denotes the average of the enclosed quantity
over the ensembles generated by the GFMC diffusion.
Since Eq. (2.17) is only valid to order ¢, this estimate is
not trustworthy if (4 )7 and (4 ) are very different.

The trial function ¢ is ordinarily obtained from a vari-
ational calculation. Thus the GFMC method can be

@.1%

@.16)

. @1

’ 2.18)
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thought of as an extension of the variational principle,
that improves the accuracy of numerical estimates. The
GFMC determination of the eigenvalue A is in principle
exact, even if ¢ is not a good approximation of ¢; but
that is only for a large enough ensemble, and in practice
the calculations are not feasible if ¢, differs from ¢ too
much. Expectation values computed from the mixed ex-
pectation value are valid to order (¢7—¢), 0 Eq. (2.17)
gives the order-(¢; —¢) correction to the ordinary varia-
tional estimate. In addition, the GFMC approach can in-
dicate whether a variational wave function is an accurate
representation of the ground state by testing whether it
works well as an importance-sampling function. It can be
proven, for example, that fluctuations in the messurement
of A by Eq. (2.16) approsch zero as the trial function ap-
proaches the exact eigenfunction.

In the next section we describe the two trial functions to
be msed for importance sampling in the GFMC calcula-
choice of these functions.

M. VARIATIONAL CALCULATIONS

We shall consider two trial wave functions to approxi-
mate the ground state of the XY model. The first is de-
fined as a function in the space of 6 configurations as

- N
‘1(0)- n u(O,—O,.,.) H

f=1

3.1

the energy (¥, | H | ¥, ) is to be minimized with respect to
the choice of the function ¥ (). It can be shown that the
minimum evergy is obtained if u(w) is the ground-state
eigenfunction of the Hamiltonian of a quantum pendu-
lum,

B 22 A1 —com) s 32)

awz
where —¥ <o <. The resulting variational bound on the
energy per spin is
2
—%s-u-no ’

where ¢, is the smallest eigenvalue of A. We shall present
our results in terms of another energy E,, rather than
—Q?, defined by

Eo=20N -0Q?;
note that E is the ground-state energy of

N a! N
-‘zl W+1'2,[|—0M9;-9‘,|)] .

The variational estimate of E, based on ¢, is

(3.3)

34

(3.5

Eo
- =€y .

N (3.6)

The small- and large-A limits of e; are
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A2 T .
Co=A— "+ +0(Y) 8 A0,

e =A'"2—34+0(A"'?) ssd—o .

For comparison these limits for E,/N are easily shown to
be

a7

E /N~A-£+-S—A‘-+0(A‘) as A—0
OFT=RT 4 T 768 ' (3.8)

Eo/N=A?d(N) = +d3iN1+0(A""?) sA—w ,
where

V2

-1
dN)=== ll—mi— l sin— 39

N N
for a chain of N spins with periodic boundary conditions;
the value of d (N) is approximately 0.90 for N greater than
10. Thus e, and Eo/N have the same small-A limit, but
g is greater than E, /N for large A.

The tria! function ¥, describes a disordered state of the
spins. Specifically, the correlation between spins separat-
«d by a distance k is, for this wave function,

(¥ loon(B, 8 | )= | [ douwroo |
(3.10)

which decreases exponentially with k. We expect ¢, to be
a good approximation of the eigenfunction for small A,
where the ground state is disordered in this way. But it
can already be seen by comparing the limiting forms (3.7)
and (3.8) that ¥, becomes less accurate as A increases.

The second trial wave function is designed to be accu-
rate in the large-A limit; it turns out to be accurate at
small A as well. It is defined in the conjugate space of §
configurations as

é,(T)=exp

—-ta3nb |, G.an
yvi v

where a is the variational parameter, and
2

A

The motivation for this form is that with a=1 it dupli-
cates the ground state of the spin-wave approximation of
the model, which is known to be the cigenstate in the
large-A limit. The spin-wave imation consists of
replacing 1—cos(A8) by §(A0)° in the Hamiltonian, and
extending the range of 6, from (—,#) t0 (— o0, ). The
resulting model is solvable since its Hamiltonian is qua-
dratic; its ground state is ¢, with a=1, but where the
varisbles n; take a continuum of values. We emphasize
that the trial function ¢, is not a naive harmonic approxi-
mation, because the n; are restricted to integer values; this
is necessary to preserve the periodicity of the wave func-
tion in 6 space.

We evaluate the expectation value (¢, | H | §;) numeri-
cally, using the Metropolis Monte Carlo algorithm to gen-
erate a set of configurations |, 8,8, ..., H,) with

L] 21 .
A= % S ap Tq(j—j‘)]m%. 6.12)

o=
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probability distribution é,%, and estimating the expects-
tion value by the average of the operator over these con-
figurations. This is done for many values of the variation-
al parameter a. The resulting data on the energy as a
function of a is then fit to a polynomial of sufficiently
large degree to give a good fit. And finally we minimize
the polynomial with respect to a.

Figure 1 is a grapb of the value of a that minimizes the
energy, as a function of the coupling constant A. The er-
ror bars are calculated in a straightforward way from the
standard errors in the polynomial coefficients found by
the least-squares fit mentioned in the previous paragraph.
The calculation is for a chain of S0 spins, with periodic
boundary condition.

As anticipated, a spproaches 1, the spin-wave value, at
large A. As A decreases, a increases and 3o ¢; becomes
more sharply peaked at T =0, which implies a more disor-
dered state in 6 space. There is a fairly dramatic varia-
tion of a for A pear 1. A similar variational calculation
for the U(1) lattice gauge theory in three dimensions, dis-
cussed in Ref. 3, has a discontinuity in the valueof a as a
function of A, indicating a phase transition in that model.

Figure 2 shows the variational bounds on Ey/N as a
function of A, for both trial functions ¥, and ¢,, along
with the large- and small-A limits given in Eq. (3.8).
QClearly the trial function ¢, derived from the spin-wave
approximation is more accurate than the disordered func-
tion ¢, for A > 1; its energy approaches the correct large-A
limit, as it must by construction. The spin-wave function
is also a good approximation at small A, where its energy
is only slightly larger than that of the disordered state.
Both functions approach the correct small-A limit.

The two trial functions ¢, and ¢, are analogs of the tri-
al functions that we used in U(1)-lattice-gauge-theory cal-
culations.’ The analog of ¥, is a product of single-
plaquette functions, and the analog of ¢; derives from the
free-field harmonic approximation of the U(1) gauge
theory.

In the next section we describe the results of GFMC
calculations that use these two trial functions for impor-
tance sampling.

\L ] ' .
.
.
‘e
.,
ey,

......

.80 .00 1.0

A
FIG. 1. Variational parameter a vs coupling constant A.
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.80

100 180

A
FIG. 2. Variational estimates of the ground-state energy per
spin vs coupling constant A. The solid and dashed curves are
perturbation expansions for small and large A, respectively. The
crosses ( + ) and circles (O) are variational estimates with trial
wave functions ¥, and ¢,, respectively. Error bars are much
smaller than the size of the points.

IV. MONTE CARLO RESULTS

Figure 3 is a grapb of E,/N, the ground-state energy
per spin of the Hamiltonian (3.5), as a function of the cou-
pling parameter A, from Green's-function Monte Carlo
calculations with importance functions ¢, and é,. The
curves are the variational bounds obtained in Sec. III, and
the points are the GFMC results. The GFMC calcula-
tions used an ensemble of approximately 100 configura-
tions; this ensemble size changes with each iteration. The
results in Fig. 3 are averages over 800 iterations. Each
GFMC point required approximately 90 sec of computa-
tion time on 8 CDC Cyber 750 computer at Michigan
State University.

"'
1.5
/***’
E .80
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.80
.80 .00 180 180 3480 280
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FIG. 3. Monte Carlo estimates of the ground-state energy per
spin vs coupling constant A. The solid and dashed curves are
variational estimates with trial wave functions ¥, and ¢,, respec-
tively. The crosses ( + ) and circles (O ) are Monte Carlo results
with importance functions ¥, and ¢é,, respectively.
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The results shown are for a chain of 50 spins with
periodic boundary condition. As A varies from 0 to o the
energy interpolates between the small-A  asymptotic
behavior described well by the disordered wave function
¥, and the harmonic spin-wave behavior described by ¢,.
The crossover from one form to the other occurs for A~1.

The two Monte Carlo estimates are almost equal, and
are consistent with the variational bounds. However,
there is a tendency for the GFMC estimate obtained with
the disordered function ¢; to lie higher in energy than
that obtained with ¢, in the region A> 1. Furthermore,
the former estimates have greater uncertainty, as indicated
by the error bars, than the latter, for which the error bars
are much smaller than the size of the point plotted. These
error bars come only from the fluctuation associated with
stochastic sampling. These two tendencies are not unex-
pected; they reflect the fact that ¢, is not a good approxi-
mation of the ground state for A > 1, where the spins are
more correlated than in ¢,;.

It is interesting to compare these results to the analo-
gous calculations for the U(1) lattice gauge theory in 3
and 2 spatial dimensions. In the three-dimensional model,
the Monte Carlo results obtained using the disordered
wave function for importance sampling are definitely dif-
ferent than those obtained with the harmonic wave func-
tion, in the region of large A; in fact the former results are
inconsistent with the variational bound provided by the
harmonic wave function. We interpret this as evidence of
the phase transition of the three-dimensional U(1) gauge
theory: the disordered state is metastable with respect to
the GFMC diffusion process. In contrast, the Moate Car-
lo results are the same for the two importance functions in
the two-dimensional model; this is consistent with the fact
that there is po phase transition in the two-dimensional
model.

Our XY model results show evidence of the Kosterlitz-
Thouless phase transition, in that the disordered function
does not provide effective importance sampling for A > 1.
The disordered state is not metastable, as it is in the
three-dimensional U(1) gauge theory, but the energy esti-
mate obtained with the disordered importance function is
slightly larger, and has larger fluctuations, than that ob-
tained with the spin-wave function in this region. The
difference between the XY model and the U(l) gauge
mode] is explained by the fact that the Kosterlitz-
Thouless phase transition is an infinite-order transition,
whnkthepu;&moddmmuamd«dam

mxawhn-ﬂwlesmamnhummabul&
tion predicts that the phase transition of the XY model
occurs at A=1.02; this point is discussed briefly in the
Appendix. That value is perfectly consistent with the in-
terpretation of our results given above. For A <1.02 the
ground state is disordered 30 ¢, acts as an effective impor-
tance function; but for A> 1.02 the spin directions are
more correlated than in ¢, 8o this function gives weaker
importance sampling.

Figures 4(a) and 4(b) show Monte Carlo estimates of the
correlation function of neighboring spins

¥ = (1—cos(6;—6,.,)) . @.1
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FIG. 4. The expectation value of 1—cos(6,—6;,,,) vs cou-
pling constant A. The curves are perturbation expansions. The
triangles (A) are simple expectation values in the variational
wave functions, and the crosses ( + ) are Monte Cario estimates
of the mixed expectation value, Eq. (2.17). The tria! functions
are ¢, for (a) and ¢, for ®).

Note that 7~ is related to the energy E, by

1 dEo

¥ = N - “42)
The Monte Carlo points in Figs. 4(a) and 4(b) are obtained
from the mixed expectation value, i.e., Eq. (2.17), for the
importance functions ¢, and ¥, respectively. The curves
on these graphs are from small- and large-A perturbation
theory. Here there are marked differences between the
Monte Carlo results. In particular, the GFMC estimates
of ¥ obtained with the disordered importance function
have large uncertainty and differ n;mﬁantly from the
ordinary expectation value in ¢,, in the region A>1.
Again, thn:spncuelyvhtweupectfromulcuhnons

with an importance function that does not approximate .

the ground-state eigenfunction. It is interesting to note
that the GFMC and variational estimates of 7~ obtained
with the spin-wave function ¢, are almost equal for all A,
suggesting that ¢, is quite s good representation of the
eigenfunction.
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V. SUMMARY

In this paper we describe results of an application of the
Green's-function Monte Carlo method to the Hamiltonian
XY model. These calculations are parallel to calculations
described in an carlier paper for the compact U(1) lattice
gauge theory in 2 and 3 spatial dimensions.

In these models an important issue is the existence and
nature of a phase transition separating a disordered phase
and a8 phase in which the model is accurately described by
its harmonic approximation. We find that the GFMC re-
sults give a good indication of such a phase transition. In
particular, we can judge whether a wave function resem-
bles the ground-state eigenfunction by its performance in
reducing fluctuations when used in the importance-
sampling procedure. In our calculations the disordered
trial function performs poorly for values of the coupling
constant for which the harmonic wave function approxi-
mates the ground state. For the three-dimensional com-
pact U(]) gauge theory the inadequacy of the disordered
trial function is obvious: it yields energy estimates that
are greater than the variational bound provided by the
harmonic wave function, at least for the ensemble size
that we use in the GFMC diffusion. For the XY model
this inadequacy is more subtle, but can be seen in the large
fluctuations of energy estimates.

The GFMC method offers a second way to judge
whether a trial function represents a good approximation
of the ground state, based on the mixed expectation value,
ie., Eq. (2.17). If ¢; approximates ¢ then the mixed ex-
pectation value of an operator 4 is nearly equal to the ex-
pectation value of 4 in ¢r; if these two quantities are
quite different, then ¢; cannot be a good approximation
of ¢. Thus, for example, the increasing difference between
the two estimates of 7~ as A increases beyond 1 in Fig.
4(b), is another indication that the disordered wave func-
tion does not resemble the eigenfunction for A > 1.

The Monte Carlo results imply by these considerations
that the ground state of the XY model changes from a
disordered state to a state better described by a harmonic
wave function for A=1. This value is in agreement with
the Kosterlitz-Thouless renormalization-group analysis,
which predicts s phase transition at A =1.02.

APPENDIX

The connection between the Hamiltonian (2.1) and the
partition function (1.1) of the classical XY model derives
from the Feynman path integral of the quantum problem.
The path integral for the Hamiltonian H is, with
imaginary time,

Z= [done-*, AD

where d6,(t) denotes integration over paths in the space of
8 configurations, and 4 is the imaginary-time action

A-waI

+k[l-ux(9,+|—0‘)]

(A2)
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We now consider a discrete approximation of the time
coordinate; let 1 take the values

y=aj, j=0,1,2,3,... A3)

with interval g to be specified later. If g is small com-
pared to the time over which 6,(¢) varies then we may re-
place the integral over 7 by a sum over j, and the time
derivative by a difference; i.c.,

fdr-»a§ .

dé,
dt

where 6(i,j)=6,(1)). Again for small g, we may assume
that &(i,j + 1)—6i,j) is small and approximate

[80i,j +1)— 80, )P2{ 1 —conl 80, j + 1) —B,))]] .

(A4
...—[o( ij + =8,

(AS)
‘With these substitutions the action becomes
A=3 ’zl?' 1—cos{8i,j +1)— &, )]}
&
+aA[1—cos[&i +1,/)—6i,j)]] (A6)

At this point we let the interval g be (1/21)'2; then
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¥

1

A= 3 (2—cos{8i,j +1)—64i,j))
&

A
2

—cos{0(i +1,)—0 )]} .  (AD

The lattice “path integral” over @i, /) is precisely the par-
tition function (1.1) for classical statistical mechanics of
the XY model, where the direction of the spin at (i,j) is
defined by the angle 6(i,j), and the inverse temperature is
n

(7.%)]

2

This derivation of the connection between the ome-
dimensional quantum problem and the two-dimensional
classical mnsucd mechanics problem is the inverse of the
wsual derivation,” which starts from the partition function
and derives the Hamiltonian H as the transfer matrix in
the limit that one of the dimensions becomes continuous.

The Kosterlitz-Thouless phase transition occurs at in-
verse temperature fS==2.24/w, according to a
renormalization-group calculation.* Therefore, by Eq.
(AB) the critical value of A is 1.02. This value is perfectly
consistent with the results of the GFMC calculations
described in Sec. IV.
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CHAPTER 7
Summary and conclusions

The Green's function Monte Carlo (GFMC) method has been adapted for
application to Hamiltonian lattice gauge theories, and has been applied
to the SU(2) and U(l) theories. The results obtained so far are
restricted, by the availability of computer time, to estimates of simple
quantities, specifically the ground state energy per plaquette EO/NP and
the mean plaquette field <$(p)>, on a 3 x 3 x 3 lattice. This lattice
is small compared to those used in path—integral Monte Carlo
calculations, but the average quantities calculated here are rather
insensitive to latt;ce size. This is indicated by perturbation theory
calculations: for small A the results are independent of lattice size,

and for large A the results are only weakly size dependent.

The GFMC calculations use a variational wave function as an
importance function to bias the Monte Carlo sampling procedure in favor
of regions of configuration space in which the wave function is large.
Thus, if the variational wave function is a good approximation of the

85
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exact ground state wave function, the fluctuations of GFMC estimates are
greatly reduced and the rate of convergence of the estimates to their
asymptotic values is increased. By comparing the GFMC results to the
variational results one can obtain some indication as to how accurately
the variational wave function models the exact vacuum state. Some care
is necessary, however, when interpreting the results in this way. If
there is considerable disagreement between the variational and GFMC
results then it is clear that the variational wave function is not a
good representation of the ground state.. The converse is not true. If
the GFMC results lie close to the variational results one cannot
conclude that the variational wave function is a good representation of
the ground state. Calculation of other quantities hight reveal a

considerable disagreement.

A good example of this kind of behaviour is provided by the SU(2)
results obtained using a disordered variational wave function discussed
in chapter 3. There it was found that the GFMC estimates were close to
the variational results even at large A where the variational wave
function is known to' be inaccurate from variational estimates of the
string ten#ion [9] and mass gap [10] of the theory. To conclude from
the quite close agreement between the GFMC and variational results on
the energy per plaquette and the mean plaquette field that the
variational wave function is a good approximation of the exact ground

state wave function would clearly be quite wrong.
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The results on the U(l) model in the n-space formulation using a
disordered trial wave function showed similar behaviour. 1In that case,
though, the approximate agreement between the variational and GFMC
results was due to metastability of the disordered state with respect to
the GFMC iteration. Presumably, because of this metastability, any
quantity computed by the GFMC method using the disordered importance
function would give results close to the variational results. If the
large A 1limit were not known, it would be very difficult to discover
such metastability. Perhaps by increasing the ensemble size to a
sufficient level the metastability could be removed, but in view of the
computational effort required this is probably not a good way to
proceed. A better approach would be to use a different importance
function to check the results, but this, of course, is not possible when
one only has a single variational wave function available as is the case

for the SU(2) theory.

In conclusion, the GFMC method is a potentially powerful tool for
use in lattice gauge theories but it appears to be necessary tohave
available at 1least two variational wave functions, or at least to know
the limiting behaviour of the theory for large and small A, in order to
interpret the results correctly. Future work should therefore be
devoted to the development of more accurate variational wave functions
for non-abelian theories, by incorporating into the wave function
explicit couplings between different plaquettes. The resulting
variational wave functions, although interesting in their own right,

would be very useful as importance functions in the GFMC method.
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An application of the Green’s function Monte Carlo method to
the Hamiltonian formulation of the SU(2) and U(l) lattice gauge
theories is described. The Green’s function is that of a diffusion
process in the gauge group space. A small-step approximation of
the diffusion distribution is used in actual calculations. Also, a
variance reduction technique is implemented, importance sampling
with a disordered trial wave function optimized by the variational
principle. The results of computations are reported for a 3 x3 x3
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energy and the expectatioﬁ value of the magnetic energy, as a
function of the gauge coupling constant. The results are compared
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I. Introduction

The Green’s function Monte Carlo (GFMC) method is a numerical
method for computation of properties of the ground state of a
quantum system with many degrees of freedom. The method was
originally developed for application to many-body problems in
nonrelativistic quantum mechanics 1’2. It is also applicable to the
Hamiltonian formulation of lattice gauge theories defined by Kogut
and Susskind3.

The Hamiltonian formulation is an approach to lattice gauge
theories that is complementary to the Wilson path-integral
formulationa. The properties of the two models are expected to be
qualitatively similar. Each approach has advantages. The
Hamiltonian approach is a more conventional quantum mechanics
construction, in which the theory is defined in terms of field
operators and a Hamiltonian operator; the basic problem is to
obtain the energy eigenstates. The usual approximation methods of
quantum mechanics, such as perturbation theory 5 and the variational
principle:6’7, can be used to study the eigenstates. This operator
formulation provides a different kind of insight into the nature of
the gauge theory than the path-integral, because it deals directly
with the quantum states of the fields.

Monte Carlo methods are suited to numerical studies of systems
with many degrees of freedom. Some very important results on
lattice gauge theories have been obtained from Monte Carlo
calculations on the path~integral formulation of the theoriesa’g.
Therefore it is natural also to develop Monte Carlo methods for
application to the Hamiltonian formulation of the theory. The GFMC
method, which has already been applied successfully to quantum

many-body problems, is an obvious method to try.

The first problem to solve regarding a quantum system with
many degrees of freedom is to compute properties of the ground
state. That is the subject of this paper, for the SU(2) and U(1)
lattice gauge theories in three spatial dimensions. Specifically,
we show results of GFMC computations of the ground-state energy, as
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a function of the gauge coupling constant, and of the expectation
value of a plaquette variable related to the magnetic field. These
quantities are analogous to the mean plaquette action computed in
the earliest Monte Carlo studies of path-integral lattice gauge
theories 9; they are interesting in that they provide an indication
of the transition between the strong and weak coupling limits of
the theory.

Our numerical re;ults are limited to a small lattice, a
3 x3 x3 spatial lattice. This is small by the standards set by
Monte Carlo calculations on the path-integral, but not small
compared to other GFMC applications. The SU(2) gauge theory has
243 independent quantum variables for a 3 x3 x3 lattice. There is
no fundamental problem in using a larger lattice; the only
limitation is the availability of computer time. The quantities
described in this paper are not very sensitive to lattice size,
because they are averages over the entire lattice. Thus the

results are already interesting for a small lattice.

We hope to use the GFMC method to study other properties of
lattice gauge theories, such as the string tension or the energies
of elementary excitations. We have carried out some numerical
calculations of these quantities by the variational princip1e7’10,
but it remains for the future to extend the Monte Carlo method to

those calculations.

The problem presented by the Hamiltonian formulation of a
lattice gauge theory is quite different than that of the path
integral formulation. In the path integral, the probability
distribution of the fields is given; it 1is e—Bs where S is the
lattice action and B is related to the coupling constant. Then the
aim of the Monte Carlo calculation is to generate a set of field
configurations with this known distribution, e. g. by the
Metropolis method or Creutz’s heat-bath algorithm 9. In the quantum
problem, in contrast, the ground-state distribution of the fields
is not known. What is known is only that the wave function i{s the
lowest efigenfunction of the Hamiltonian. The aim of the GFMC
method i{s to generate a set of field configurations with a
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probability distribution related to the ground-state eigenfunction.
But the GFMC algorithm does not derive from an a priori
distribution; rather, it derives from the eigenvalue equation,

written as an integral equation.

The integral form of the eigenvalue equation resembles a
steady-state diffusion problem. The origins of the GFMC method are
found in techniques of Monte Carlo solution of such diffusion
problems. The idea is to simulate diffusion of an ensemble of
points in the configuration space. The diffusion process is
defined such that the evolution of the probability distribution of
the points is identical to iteration of the eigenvalue equation.
Since iteration of the equation converges to the lowest
eigensolution, the GFMC ensemble of points converges to a set with

probability distribution equal to the ground-state eigenfunction.

Perhaps the most interesting aspect of the GFMC method is the
use of an importance sampling technique, in which a trial wave
function is used to guide the diffusion to the significant reglon
of configuration space. Importance sampling reduces the variance
in the Monte Carlo estimates. But the technique is potentially
more valuable than a mere computational trick. The trial function
must approximate the ground-state eigenfunction to provide strong
importance sampling. Omne may gain some insight into the structure
of the eigenfunction by studying importance sampling with trial
functions of different f&rms.

In the calculations described in this paper the wave function
is a function of the gauge field, and the GFMC ensemble is an
ensemble of gauge-field configurations. In the language of quantum
mechanics, we are using a basis for the Hilbert space in which the
gauge-field operators are diagonal. It is possible to use instead
a basis in which the electric-field operators are diagonal. In
fact we did use such a basis in an earlier application of the GFMC
method 11 to the compact U(l) gauge theory 12 and to the XY model 13.
For that basis we constructed trial functions for importance
sampling that approximate the eigenfunction in both the strong and

weak coupling limits. For the gauge-field basis, however, we have
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not succeeded in constructing a useful weak-coupling trial
function. All the results reported here use a disordered trial

wave function for importance sampling.

The disordered wave function is an accurate representation of
the ground state in the strong=-coupling limit. It is a product of
independent functions of the plaquette variables; thus it is gauge
invariant, and has minimal correlation between the gauge fields.
Comparison of the variational estimates7 based on this trial
function and the GFMC results should show how well this simple wave

function represents the vacuum state.

The remainder of the paper consists of Section II, on the
details of our application of the GFMC method to the SU(2) and U(1)
lattice gauge theories, including the implementation of importance
sampling with the disordered trial wave function; Section III, on
the results of computations for a 3 x3 x3 gpatial lattice; and
Section IV, a brief summary. We have also included an appendix on
a technical point: the "growth estimate" fails to give an accurate

measurement of the eigenvalue in our calculations.
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II. The Green’s function Monte Carlo method
A. Application to lattice gauge theories

In this section we describe an application of the Green’s
function Monte Carlo (GFMC) method to lattice gauge theories. The
details are described for the SU(2) gauge theory; the analogous
application to the U(l) gauge theory is an obvious modification.

The field variables of the SU(2) lattice gauge theory are
elements of the group SU(2); an element U(R) is associated with
each link 2 of the lattice. The group element U(L) may be
specified in terms of a 3-component gauge field Ah(z) (where
a=1,2,3) or in terms of three angular varfables (y(2),0(2),¢(2));
these are defined by '

U(L) = exp (%oa Aa(l))

= cos P(L) + 1 o, na(l) sin ¢(2), (2.1)

where %, denotes the Pauli matrix and na(z) is the 3-dimensional
unit vector with polar angles (8(2),4¢(L)). The relation between

the two representations is
Aa(z) = 2 y(R) na(l) . (2.2)

Also, there is a 3-component electric field operator Ea(l)

associated with each link, defined by the commutation relation
1
[E,(£),0(2)] = =50, UL). (2.3)

The operator Ea(l) is a differential operator acting on functions
of the gauge fields Ah(z), or equivalently on functions of the
angles (y(2),6(2),¢(2)); in terms of Aa(z),

] i 9
Ba m 1fMWgg - az (W -1) 4,45
a

i ]
~ 2 Cabe A'b_a_A ’ (2.4a)
c
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where

A= (aa ), ) A cord . (2.4b)

The Hamiltonian of the SU(2) gauge theory is 3

& p

the gauge-invariant plaquette variable &(p) is

Hy --;—gzgzg + =51 o) 5 (2.5)

o(p) = 1 - —Tr U(L}) U(22) 0¥ (23) 0¥ (2y) (2.6)

where (2;,%,,23,2%,) are the links that define the plaquette p. We
use periodic boundary conditions in the definition of the plaquette
field ¥(p), to minimize finite size effects in the numerical

results.

In our GFMC calculations we use a Hamiltonian H that differs
from that in Eq. (2.5) by an overall scale factor, and an additive

constant; H is

He=K-2M, (2.7a)
where
K=7 Ei(z) , (2.7b)
L
M= ] (14 Truce) U(e) U723 UY)) (2.7¢)
P

The relation between the coupling constants A and g is

A= 8/gh . (2.7d)
The Hamiltonians are related by

HKS--;—gZ(H-zxnp) (2.8)

where Np is the number of plaquettes; obviously they have the same
eigenstates. We write the Hamiltonian in this form because our

application of the GFMC method requires that the magnetic energy be



95

negative.

The starting point of the GFMC method is an integral equation
for the ground-state eigenfunction of H. Let ?[Aa] denote the
eigenfunction, a function of all the link variables; it obeys the

eigenvalue equation
= =02
RHY [Aa] Q T[Aal ’ (2.9)

where the ground-state energy is denoted by —Q2 l4. Or, Eq. (2.9)

is equivalent to the integral equation
Y[A ] =2 [da Gla,A ) M[AS] ¥[A']; (2.10)

the functions that appear in the integral, which are functions of
the full field configuration, are defined by

-l r3 ’
<IA1I(KR+Q%) "[[AS]1> =G[A,A'], (2.11a)
<la) M | [aS]> =MA] ;1 8(A,(2),A0(0)] . (2.11b)

The integration measure for SU(2), which is expressed most simply

in terms of the angular variables, is

da = Ndw(e),
L

dw() = -i%;z sin2y(2) sin 6(L) dy(L) do(r) d¢(R); (2.12)

the domain of § and 6 is (0O,%) and that of ¢ is (0,271). The
normalization of the delta function in Eq. (2.11b) is

J duw(L) & (Aa(ﬂ.),Aa'(E.)) =1, (2.13)

The function G[Aa,A;] is the Green’s function of the operator
K+Q2, defined by

(k+Q2)6la, A] =T 8(A(2),A (D). (2.14)
L
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Equation (2.10) is an eigenvalue problem, in which Q2 is the
given quantity, with A and W[Aa] the eigenvalue and eigenfunction
to be found.

The GFMC approach to the solution of Eq. (2.10) is bhased on
iteration of the equation by simulation of diffusion. It can be
shown that iteration of Eq. (2.10) converges to the ground-state
eigensolution. However, it is not possible to deal directly with
Y[Aa] because its domain is multidimensional; for the smallest
lattice gauge theory, a 3x3x3 spatial lattice, there are 243 link
variables. Instead, the aim of the GFMC method is to obtain a
probabilistic representation of the wave function; specifically, to

generate an ensemble of field configurations
(o) )
ENS = { Aa (2) 3 0=1,2,3,...,N1}, (2.15)

such that the probability distribution of the configurations in ENS
is proportional to ?[Aa] 15. The GFMC algorithm generates ENS by a
process based on iteration of Eq. (2.10). The process is a

simulation of diffusion with branching, in which:

(1) the branching fraction f of the configuration
Ai°>(2) is proportional to M[Aio)], and

(11) the diffusion creates f new configurations from
A£°)(l), with probability distribution G[Aa,Aio)].

Each step in the evolution of the probability distribution of the
ensemble is identical to one iteration of Eq. (2.10). The
probability distribution converges to the ground-state

eigenfunction.

The GFMC process described so far is incomplete, because
applications of the GFMC method to systems with many degrees of
freedom always require the use of an importance sampling trick, a
technique also called directed diffusion. One implementation of
fimportance sampling for lattice gauge theories is described in the
next section. But before proceeding to that subject, it is useful

to discuss the nature of the Green’s function G[Aa,A;].
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The crucial problem that must be solved in order to apply the
GFMC method to a quantum system is to find a way to sample the
Green’s function as a probability distribution. The first step in
this lattice gauge theory application is to separate the Green’s
function G[Aa,A;] into a product of factors, each of which acts on
the fields of a single link. This is accomplished by the formula

-1 ,
<[Aa]|(K +Q2) |[Aa]>

o, -tQ2 -
= [gdr e ¥ca e A > (2.16)

The left-hand side is the energy-dependent Green’s function
G[Aa,AJ]; the integrand on the right-hand side is the related
time-dependent Green’s function. Since K is a sum of single-link

operators, the time-dependent Green’s function factorizes, as
<A1l A =n<a)le ke ar (e (2.17)
a a 2 a a
where

= E2 .
k, =E2(2); (2.18)

each factor depends only on the field variables of a single link.
This representation leads to a method of sampling the distribution
G[Aa,A;]: first select a diffusion time interval t by a random
process with probability distribution

-t 02
Q2et Uy ; (2.19)
then for each link select Ah(z) with probability distribution
. 4 - -tk Y
g(ts4,(2),A () =<A () |e " "2lAs(R)>. (2.20)

Thus the problem reduces to sampling g(t;Aa,A;), the diffusion
Green’s function for the fields of a single link. Furthermore, an
important simplifying approximation can be used. In a large
system, the ground-state energy Q2 is large, proportional to the
number of plaquettes. Then the diffusion time interval t chosen in
accord with the distribution (2.19) must be small. Thus it is only
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necessary to sample the diffusion Green’s function (2.20) for a
small time interval. In the small-t limit, this distribution

describes ordinary free diffusion.

As a first step toward understanding the Green’s function
g(t;Aa,A;) it is useful to study the analogous function for a U(1l)
gauge theory. The group element of the U(l) gauge theory can be
expressed in terms of an angle 6, which lies in the domain (0,27),

as

u=elf; (2.21)

the corresponding electric-field energy is just
k = -32/3602. (2.22)

The single-link diffusion function for the U(l) gauge theory is

<ole ko> = )) (4ne)" 12 exp(=(8-6"+2mv)2/4t) ; (2.23)

v'-@
this is the Green’s function of free diffusion on a circle. In the
limit of a small diffusion time interval t, the Green’s function is
approximately

<ole ¥ 0> = (bre)™2 exp(-(0-0")2/6¢) , (2.24)

with the hnderstanding that when 6 diffuses outside its domain
(0,2n), it is moved back inside by a shift of *2n. That is,
diffusion on a circle may be approximated by free linear diffusion
made periodic. To sample the distribution in Eq. (2.23) for a

small time interval, let
6 =06’ + ¢ (mod 27) , (2.25a)

where € 1s a random variable with probability distribution

-1/2

(4mt) exp(-€2/4t) . (2.25b)



99

The simplification in Eq. (2.25), based on the small-step
approximation, extends to the SU(2) gauge theory. However, the

analysis is complicated by the nontrivial geémetry of the group
Su(2).

To understand the nature of the Green’s function g(t;Aa,A;)
requires an insight into the geometric structure of the group
SU(2), as defined by Eqs. (2.1), (2.3), and (2.12). First, an

arbitrary group element U can be expressed as

U-x“+1;-;, (2.26a)

where

x2 +%x2=1, (2.26b)
N

Thus there {s a one-to-one correspondance between SU(2) group
elements and points of the 3-dimensional surface of a sphere in
four dimensions; we refer to this space as 83. The angular
variables (¢,6,¢) in Eq. (2.1) are simply 4-dimensional polar
coordinates of a point of 83. Second, the SU(2) integration
measure dw is the volume element of 83. Third, the operator k is
proportional to the angular part of the d’Alembertian in four

dimensions,

1 3 9 4
By (Pyr) -tk

4
- -l 3 2y 2
4k <%V 3y (sin2y aw) (2.27)
1 ( 1 2 (sine-g—)'i'—'z—l ——232 )
sin“y ‘sin 6 236 96 sin46 9¢ /°

Therefore the Green’s function g(t;Aa,A;) is the distribution for
free diffusion in 33. In the 1limit of a small time interval t the
diffusion distance must be small, and then the curvature of the
space has a negligible effect. That is, the small-t limit of the
diffusion Green’s function g(t;Aa,A;) is equal to that of free
diffusion in the tangent space at A;.
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The small-t limit of the Green’s function g(t;Aa,A;) is most
easily written for Aa and A; near zero, i. e. for the corresponding
group elements U and U’ near the unit element. Then the Green’s
function is approximately equal to that of a U(l) xU(1l)xU(l) gauge
theory, 1. e.

-

(nt)-3/2

m

g(t; A ,A0) exp(-(Aa-Aa')zllot) ; (2.28)

this is only valid near the unit element. The generalization to a
small diffusion step at an arbitrary point in the group is obvious.
Let (y°,06°,¢") and (y,0,4¢) be the angular variables corresponding
to the gauge fields A; and Aa; also let the small changes in these
angles be denoted by

Sy = ¢'°¢’ §6 = 6'-9, ¢ = ¢'-¢' (2.29)

The distance between the two group elements is given by the line

element of 53,

(8s)2 = (8¢)2 + sinZy’ ( (88)2 + sin28’ (6¢)2) . (2.30)

Then the generalization of Eq. (2.28) {s 16

g(t; A, A% = (1) exp( - (85)2/¢ ) . (2.31)
It is also useful to define a 3-vector &3 by
85 = ¢ 6y + siny’ ( 6768 + sin 6’ ¢’ 66 ); (2.32)

here ;', 3', and ;' are the unit vectors in the ¢’, 6‘, ¢’
directions at A;. The 3-vector 88 may be describfd as thf
diffusion move in the tangent space at A;, since ¢’, 6‘, ¢’ are an
orthonormal basis for the tangent space. Note that the line
element (8s)2 1is equal to the length of 88 » 1. e. the distance

moved in the tangent space.

In detail, sampling the distribution g(t;Aa,A;) in the small-t

limit is a 3-step procedure:

(1) Construct the tangent space at the original point,
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which corresponds to A ’;
a

(11) move in the tangent space according to the distribution

of free diffusion, for time interval t;

(111) project back into 83, to the point that corresponds
to A .,
a

The algebraic realization of this geometric picture is contained in
the formulas in the preceding paragraph: The tangent space is
defined by the basis vectors (y°,0°,¢°). Diffusion in this space

is a move
§s = 6x; Y+ 6xp 68° + 8x3 ¢ (2.33)

with probability distribution (2.31), 1. e. free diffusion. The
corresponding move in the SU(2) space is obtained from the relation
between the changes in the angles and the components of the move in

the tangent space,
8x) = 8y, 6xp = siny’ 66, 6x3 = siny ' sin b’ 6¢. (2.34)

Projection back into S3 is nontrivial if the diffusion occurs near
a point at which the coordinate system (y,0,¢) is singular, e.g.

near Yy '=n or 6'=m,

There is an analogy between the SU(2) and U(l) procedures
discussed above. Step (11) in the SU(2) case is ordinary free
diffusion in the 3-dimensfonal Euclidean tangent space, analogous
to the linear diffusion of Eq. (2.24) in the U(l) case. Step (i1i)
in the SU(2) case restores the point to the sphere, analogous to
the use of Eq. (2.25) to put 6 back in the interval (0,2w) in the
U(1l) case.

This discussion of the Green’s function G[Aa,A;] is the basis
of our present application of the GFMC method to lattice gauge
theories. But we also use importance sampling, which leads to a
more complicated sampling problem than that discussed so far. That

is the subject of the next section.
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B. Importance sampling

The importance sampling trick, also referred to as biased or
directed diffusion, is used to reduce the variance of the Monte
Carlo estimates. This technique is a necessary part of Green’s
function Monte Carlo (GFMC) calculations on systems with many

degrees of freedomz.

The trick is to introduce an importance function u[Aa(l)],
which approximates the ground-state eigenfunction as closely as
possiBle, and to rewrite the integral equation (2.10) as an

equation for the functionl7
The equation for F[Aa] is
F[Aa] = [dR GD[Aa, Aa] M[Aa] F[Aa] R (2.36)

where
M[A ] ulA]

Gpla, Al = M_[-‘_‘i'_] WZ] Gla, A’]. (2.37)
This has the same form as the original Eq. (2.10), and therefore
the GFMC algorithm stated briefly in Sec. II A applies also to this
equation. Here, however, the diffusion is governed by the function
GD[Aa,A;], which differs from the Green’s function by a biasing
factor, the ratio of the function M[Aa]“[Aa] before and after the
diffusive move. This factor biases the GFMC diffusion step in
favor of moves that increase the importance function “[Aa]' 1f
u[Aa] approximates the ground-state eigenfunction, then the biasing

reduces the variance of Monte Carlo estimates.

Of course introduction of the biasing factor implies that the
ensemble of configurations that emerges from the GFMC iteration of
Eq. (2.36) has probability distribution F[Aa].

It is important to realize that the distribution of the
configurations in the GFMC ensemble is not ?zlAa]. This is a

weakness of the method, because the interesting quantities in



103

quantum mechanics are expectation values in the distribution
W2[Aa]. However, the method does provide ways to compute certain
ground-state properties. In particular, there is a formula from
which the eigenvalue A can be computed, in a way which is exact in
the sense that the only error is statistical. Also, there is a way
to estimate the ground-state expectation value of an operator, in
which the trial function i1s used as an approximation of the
ground-state eigenfunction; this approach i1s not exact, but has

some systematic error in addition to the statistical error.

The coupling constant A corresponding to the input
ground—-state energy -Qz is the unknown eigenvalue in this problem,
the basic quantity to be computed. It obeys the formula

FlA]
A = [da M—[;:—] (v'A) (R+Q2)ula]) / [da FlA]. (2.38)

Since F[Aa] is the probability distribution of the configurations
in the GFMC ensemble, the GFMC estimate of the coupling A is

A< (u—l[Aa] (K+Q2)u [Aa] )/ M[A ] >ens, (2.38b)

where < Yens denotes the ensemble average. In principle this
estimate does not depend on whether the importance function u[Aa]
is a good approximation of the eigenfunction, since Eq. (2.38a) is
valid for any u[Aa]. The only error is statistical. However, the
variance of the Monte Carlo estimate depends on the choice of
u[Aa]. The varifance is small if “[Aa] approximates the
eigenfunction; in fact, if u[Aa] is equal to the eigenfunction then
the right-hand side of Eq. (2.38b) is equal to X for any ensemble of
éonfigurations, and so there is no variance. In practice the trial
function must approximate the ground-state eigenfunction to obtain

an accurate value of .

If the eigenvalue XA could be computed with sufficient accuracy
as a function of the ground-state energy -Q2, then certain
expectation values could be deduced. For example, the ground-state

expectation value of the plaquette field #(p) defined in Eq. (2.6)
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is related to the derivative of Q2 with respect to A. The form of
the Hamiltonian H implies

2
<y lo@p) > =2~ 1%’%%? , : (2.39)
P

where Np is the number of plaquettes.

The GFMC method with importance sampling also yields a simple
approximate estimate of the expectation value of an operator, based
on the assumption that the trial function is an approximation of

the ground state eigenfunction. Suppose the eigenfunction is
YA] =ula ] +elA] (2.40)

where € is small; then to order €2 the ground-state expectation

value of a function C[Aa] of the field variables is approximated by

ylcly

<ulcly> _ <Clu>
<Y|y>

<ul¥> <ulud> °

= 2 (2.413)

The first term on the right-hand side, called the mixed expectation
value, is computed from ensemble averages, by

lclv <C[Aa] /M[Aa]>ens
I <1 /M[Aa] dens

(2.41p)

This Monte Carlo estimate can have some systematic error for a
finite ensemble, because it involves the ratio of two ensemble
averages 18. The other term is the expectation value in the trial
state. Since Eq. (2.41a) is only valid to order €2, this estimate
of the expectation value of C[Aa] is not trustworthy if it differs
significantly from the expectation value in the trial state.

The importance function u[Aa] is normally defined to have a
simple form, and optimized by the variational principle. Therefore
a conservative interpretation of GFMC results is to regard them as
corrections to the variational estimates of the quantities of
interest. The estimate of an expectation value based on the mixed

expectation value is by definition only a computation of the lowest
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order correction to the variational estimate. The computation of
the eigenvalue based on Eq. (2.38) is in principle exact; but since
the statistical significance of the computed value is limited
unless the trial function is an approximation of the eigenfunction,
as a practical matter the computation of A also gives the

correction to the variational estimate.

In Section III we describe the results of GFMC calculations on
the SU(2) and U(l) lattice gauge theories. The importance function
used in those calculationsiis a disordered trial wave function that
we described in a previous paper7. For the SU(2) gauge theory it
is

u[Aa] = exp ( 2 aM[Aa] ) (2.42)

where M[Aa] is the magnetic energy defined in Eq. (2.7¢c), and a is
an adjustable parameter. In Ref. 7 we described a variational
estimate of the ground-state of the SU(2) gauge theory based on
this trial wave function. These variational calculations are
numerical; Creutz’s heat-bath Monte Carlo method9 is used to
compute the expectation value of the energy in the state u[Aa]. In
the GFMC results described in Sec. III, the value of the parameter
a is that determined by the variational principle.

The remainder of this section is a discussion of details of
the application of the GFMC algorithm to the integral equation
(2.36). It is necessary'to define a diffusion process with
probability distribution GD[Aa,A;]. By Eq. (2.16), GD[Aa,A;] can
be sampled by first picking a time-interval t with distribution

-t02
Q2 @ at ,
and then moving AJ(E) to Aa(l) according to the distribution

M[Aa] u[Aa] ,
MTA’] TR ;x g(ts A (1), A] ®)) . (2.43)

But there is a complication associated with the distribution
(2.43): unlike the free time~dependent Green’s function, this
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distribution is not normalized to unity because of the biasing
factor. To take into account the normalization, it is necessary to
asslign a weight to each configuration in the ensemble. The
weighting can be done in various ways. The most obvious way would
be to use the free Green’s function for diffusion, and to reweight
the new configuration by the biasing factor; then the importance
sampling would derive from the increase of the weight of a point
that moves toward larger M[Aa]u[Aa]' However, we use a different
weighting method that includes importance sampling as a part of the
configuration move itself. Our approach relies on the fact that
the time interval of the diffusive step is small, of order 1/Q2,

i. e. of order I/Np where Np is the number of plaquettes.

Since the diffusion time interval t is small, the
configuration move A;(z) + A_(2) is small. Let (v°(2),6°(2),¢°(R))
and (y(2),6(2),4(2)) be the angular variables corresponding to the
gauge field A;(z) and Aa(z); and let Sy(2), 8§6(L), 64(2) denote the
small changes of these fields, as in Eq. (2.29). Then the ratio of
the trial function (2.42) before and after the move is

approximately
u[Aa] 3M[A;]
;-[-K:j = ;I exp (2af GW(R,)W (2.44)
aM[A ] aM[A ‘]

a

+ GG(Z)W + 6¢(2)—53%1—)' ))e

Or, in terms of the 3-vector 65(2) that represents the diffusion
step in the tangent space at AJ{!),

u[Aal 54 ’
STA7] = Nexp (2a8s(2)-£°(2)), (2.45)
a L
where
~ M[A’]
Cloy e a
@) =y TN (2.46)

" aM[A ‘] -, M[A ‘]
1 , a ¢ () a
Yy (YO 5ey Y s e e )

This approximation of the ratio u[Aa]/u[A;] is a product of
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factors, each of which acts on the fields of a single link. Thus
it can be combined with the Green’s function to define a

distribution for the change of the fields on each link.

For a small diffusive move the Green’s function is
approximated by Eq. (2.31). When this is combined with the factor
u[Aa]/u[Aa'], the complete distribution (2.43) can be written

without approximation as

M[Aa] u[Aa]

MTA7] WTA] ;Ig(t;Aa(z),Aa'(z)) (2.47)

= R[A_,A] T (nt)'3/2exp( -(8s(2) -at F1(2))2/t),
2

where
M[Aa] u[Aa]
M[Aa ] “[Aa]

R[Aa, Al = (2.48)

x Nexp( -2a68(2)+F (2)+a2t£°2(2)).
L

Each single-link factor on the right-hand side of Eq. (2.47) is the
distribution function for a process in which the link variables

first make a deterministic forced move
at F(2) .
and then a diffusive move
83(2)

for which the probability distribution is the Green’s function of
free diffusion in the tangent space. The other factor R[Aa,Aa']
reweights the new configuration. Since R[Aa’ Aa'] is approximately
equal to 1, the importance sampling in this approach is mainly due
to the deterministic move, which forces the point in the direction
of increased u[Aa]M[Aa].

The results described in Sec. III are for calculations which
use the simple small-step approximation, Eq. (2.31). It is possible
to improve the approximation by subdividing the diffusion time into
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smaller intervals and letting the diffusion proceed separately for
each of these intervals. However, we believe that the naive

small-step approximation is sufficiently accurate.

In detail, the GFMC algorithm for iteration of Eq. (2.36) is
as follows. The aim is to obtain a weighted ensemble of field

configurations
ENS = { Aio)(z),w(o) s o=1,2,3,...,N1. (2.49)
The iteration of the ensemble consists of three steps:

(1) Branching Each configuration A§°)(z) in the current ensemble
(o) (o)

branches into f new configurations, where f is an

integer chosen by a random process with expected value

<f(0)> "_]-"M[A(O)] w(o)’
q a

where N (2.50a)
g =g I a1
e o=l

here N is the number of configurations in the current
ensemble, and Ne is a fixed number equal to the desired mean
ensemble size. Each of these new configurations is assigned

weight w’ where

W70 g (955,
w' = ° (2050b)
q 1f <9<,

The branching process creates an ensemble with total weight
and expected distribution equal to the total weight and
distribution of the current ensemble. It keeps the weights
of the configurations approximately equal by splitting if
<f(°)>> 1, and prevents the ensemble from becoming too large
by eliminating points 1if <f(°)> 1.

(11) Biased diffusion Then each field A;cﬁ(l) moves to a new
field Aa(l), by the combined deterministic forced move plus

diffusive move discussed in the previous paragraph.
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(111) Reweighting The weight assigned to this configuration in the
new ensemble is

A
—Q% R[Aa,Ai")] w. _ (2.50c)

This process ultimately converges to a weighted ensemble with
probability distribution F[Aé].

The value of the parameter Ao in Eq. (2.50c) controls the size
of the ensemble. For a sufficiently large ensemble, the total
weight grows during this iteration if Ao is larger than the
eigenvalue, and decays 1if AO is less than the eigenvalue. 1In
practice AO is maintained at a value such that the total weight,
and therefore also the ensemble size, remains approximately
constant. This property provides an estimate of the eigenvalue,
which we refer to as the growth estimate. However, for a finite
ensemble there is some systematic error in the growth estimate. In
our lattice gauge calculations we find that the growth estimate
does not yield an accurate measurement of A. This point is

discussed further in the Appendix.
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IX1I. Numerical results

In this section we describe Green’s function Monte Carlo
(GFMC) computations of the ground-state energy and mean magnetic
energy per plaquette of Hamiltonian gauge theories for a3x3x3
lattice. The SU(2) gauge theory is defined in Sec. II. For
comparison we consider also a U(1l) xU(1l) xU(1l) gauge theory. The
U(1)3 gauge fields are angle variables Sa(l) (with a=1, 2, 3); the
associated group element 1is

3
UC2) = T exp(i6_(2)). (3.1)
a=l

The U(1)3 Hamiltonian is

A
Hy= -1 32/282(2) + - ] (1-cosB_(p)) (3.2)
a, i - a,p
where Ba(p) is the lattice curl at plaquette p of the gauge field
ea(z). The Hamiltonian H,
1 2
free-field 1imit is the same as that of H.KS/-Z-g where HKS is the

SU(2) Kogut-Susskind Hamiltonian, Eq. (2.5).

b is defined such that its harmonic, i.e.

Figure 1 shows the ground-state energy per plaquette as a
function of the coupling constant for (a) the SU(2) gauge theory
and (b) the U(1)3 gauge theory. The quantities plotted are E/Np
vs. A, where E is the eigenvalue of HAb for the U(l) gauge theory,
and E is the eigenvalue of HKsﬁ%gz for the SU(2) gauge theory. In
terms of -Q2, the eigenvalue of H introduced in Eq. (2.9), E is

E=2AN =-0Q2,
b Q

Actually Q2 is the input, and the corresponding A is the computed

eigenvalue.

The dashed curves in Fig. 1 are variational bounds obtained
using the disordered trial function u[Aa]. The variational
calculations were described in a previous paper7. We refer to the
wave function u[Aa] as disordered because the expectation value of
the Wilson-loop operator obeys an area law in this state; we have
calculated the corresponding string tension7. Also, this function

does not explicitly couple the magnetic fields on different



111

plaquettes, although there is some implicit coupling because
neighboring plaquettes share a common link. This disordered wave
function should be a good approximation of the ground-state
eigenfunction for small A, so the variational bounds should be

accurate estimates for small ).

The solid curve is the large-A limit of the energy, 1. e. the
weak=-coupling limit in terms of the original gauge coupling
constant g, for the U(1)3 gauge theory. This limit is derived from
the harmonic approximation of the theory. Asymptotically as A+,

T = (@ /X = 3 c2(n) + 0(1// %) (3.3)
P
for an nxn xn lattice; the constant c(n) depends weakly on n,
€eBey
c(3)=1.181 , c(»)=1.194, (3.4)

In the 1limit A + =, the SU(2) gauge fields decouple into three
independent U(l) fields, so the SU(2) gauge theory has the same
harmonic 1limit as the U(1)3 gauge theory. Therefore Eq. (3.3) also
gives the correct leading order contribution to the energy of the
SU(2) model. However, the term constant in A in Eq. (3.3) derives
from four-field couplings in the weak-coupling expansion of the
U(1)3 model; it would presumably be different for the SU(2) model.

The free-field 1limit .of E lies below the variational bounds;
the Monte Carlo results should converge to these lower free-field

values for large A.

The crosses in Fig. 1 are Monte Carlo results obtained using
u[Aa] as an importance function to guide the iteration, as
described in Sec., IIB. The GFMC calculation uses an ensemble of
approximately 100 configurations; the ensemble size changes
slightly with each iteration. The results are averages over 600
Monte Carlo iterations. The first few hundred iterations, during
which convergence takes place, are discarded. In order to reduce
the convergence time, the initial ensemble used in the GFMC
algorithm is chosen from the distribution u2[Aa]. Each point
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required approximately 3.5 hours of computation time for the SU(2)
model and 35 minutes for the U(l) model, on a CDC Cyber 750
computer at Michigan State University.

The results for the two models show quite different behaviour.
The U(l) GFMC points are near the variational estimates for small A
but lie considerably below the variational bound for A>5,
indicating that the variational wave function is not an accurate
representation of the ground state for A> 5. In the large-) range
the values of E are consistent with the free-field limit. The
numerical values are consistent with the results of a previous
calculation 12. The energy of the 1U(l) gauge theory changes
abruptly from that of the disordered state to the free-field value.
On the other hand, the SU(2) GFMC points do not show any abrupt
deviation from the variational bound. This difference is easily
explained; the U(l) model undergoes a phase transition from a
charge confining disordered phase to a non-confining free-field
phase A2 4.5, whereas the SU(2) model does not.

Figure 2 shows the expectation value of the plaquette field
¢(p), defined for the two models by

1 = - Tr0(2)) U(22) UF(23) UF(2y) for sUC2),
o(p) = (3.5)
1 - cos ( 8(2))+6(22) -8(23) =8(2,) ) for U(1).

Again the dashed curves are the variational estimates, and the

solid curves are the large-) limits given by
<¢(p)> = fc(n) /Y22 (3.6)

where £ =1 for the SU(2) model and f =4/3 for the U(l) model. The
crosses are GFMC estimates computed from the mixed expectation
value, Eq. (2.41).

Again we see very different behaviour for the two models. In
the U(l) model, the mean plaquette field ¢(p) decreases abruptly in
the region of the transition at Az 4.5, from values near the

variational estimate down to values near the weak-coupling limit.
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In the SU(2) model, the field &(p) changes gradually over the range
of X considered, and does not differ very much from the variational

estimate.

The GFMC points in Fig. 2 tend to lie below the variational
curve for small A. This tendency is more pronounced in the SU(2)
model than in the U(1) model. Ordinarily this would be taken as
evidence that the trial function u[Aa] does not adequately describe
the vacuum state. In this case, however, we expect that u[Aa] does
accurately describe the ground-state for small A and becomes
Increasingly worse as A increases. This is born out by the results
on the energy shown in Fig. 1, where the GFMC points lie very close
to the variational curve for small A and begin to deviate as A
increases. The discrepancy may be a result of the failure of the
small-time-step approximation used in calculating the matrix
elements of e-tkl. The time step t is of order 1/Q2, which
increases as A decreases; thus the approximation is expected to be
least valid for small A. This explanation of the discrepancy could
be checked by subdividing every time step into intervals smaller
than 6t, and then observing how the results change as 6t decreases.
On the other hand since the wave function is disordered for small A
we might expect that errors in the sampling procedure would be
unimportant. The error bars in the graph are the ordinary standard
deviation for 600 iterations, but we are not certain that enough
iterations have been done to deduce a meaningful estimate of the
uncertainty. Since the GFMC algorithm is iterative, ensembles in
the sequence are not independent unless separated by a sufficient
number of fiterations. This convergence problem is more serious for
the SU(2) model because there the diffusion takes place in a larger
space, and so requires more iterations for convergence. Further

investigation is clearly necessary to clarify the situation.
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IV. Summary and conclusions

In this paper we describe an application of the Green’s
function Monte Carlo (GFMC) method to the SU(2) and U(l) lattice
gauge theories. The numerical results obtained so far are limited,
by the availability of computer time, to estimates of simple
quantites, specifically the ground-state energy per plaquette E/Np
and the mean plaquette field ¢(p), for a 3 x3 x3 spatial lattice.

These GFMC calculations use a disordered trial function u[Aa]
as an importance function to bias the Monte Carlo sampling
procedure in favour of regions of configuration space in which
u[Aa] is large. By comparing the GFMC results to the variational
results based on the trial function u[Aa], we can obtain some

indication as to how well u[Aa] describes the vacuum state.

For the U(l) model our results show a clear indication of the
phase transition at A= 4.5 separating the charge confining phase,
described well by the disordered trial function, and the
non-confining free-field phase. For A>5 there is a definite
difference between the variational estimates and the GFMC results.
The present results are in good agreement with the results of our
previous Monte Carlo study of the U(l) lattice gauge theory l2.
There we formulated the problem in a completely different way. We

wrote the wave function in the form

Y(A] = ) exp (1 In(p) B(p) ) xIn(p)], (4.1)
{n(p)} P

where the variables n(p) take only integer values, and applied the
GFMC method to an eigenvalue equation for x[n(p)]; also we
implemented importance sampling for two kinds of trial functions -
a disordered wave function which accurately describes the ground
state for small A, and a correlated wave function derived from the
harmonic limit which is accurate for large A. That these two
different studies of the U(l) gauge theory lead to similar results

gives us considerable confidence in the GFMC method.
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In one regard our earlier results on the U(l) model differ
from those obtained here. In the calculations applied to the
n(p)-space wave function x[n(p)] we found metastability behavior in
the GFMC iteration for the U(l) gauge theory in three spatial
dimensions. When a disordered n(p)-space trial function is used
for importance sampling in the large-) region, the computed
eigenvalue does not converge to the free-field value, but remains
near the variational value. In contrast, no metastability of the
GFMC iteration is seen in the Ah-space calculations. We attribute
the difference to the fact that n(p) is a discrete variable,

whereas Aa(z) is continuous valued.

For the SU(2) gauge theory our results are consistent with the
nonexistence of a phase transition in that model. The trial wave
function u[Aa] accurately describes the vacuum state for small A.
And even for large values of A the variational estimates are
approximately equal to the GFMC results, for the energy and mean
plaquette field. The implication is that the ground state does not
suddenly change as it does in the U(l) gauge theory.

When the variational and GFMC results show considerable
disagreement, as in the U(l) results, then it is clear that the
variational wave function is not a good representation of the
vacuum state. The converse is not true. The fact that these SU(2)
GFMC results are close to the variational estimates does not imply
that the variational wave function is a good representation of the
SU(2) vacuum state, for if we compare the results for a different
quantity, e.g. the string tension, we may find considerable
disagreement. In fact we know from our earlier variational
calculation of the string tension 7 that u[Aa] does not describe the
vacuum state for large A with sufficient accuracy to reproduce the
known asymptotic behaviour of the string tension derived from

asymptotic freedom.

In view of the comments of the preceding paragraph, it would
be very interesting to calculate Monte Carlo estimates of the
expectation values of other quantities. Such calculations present

no particular difficulty if one is willing to use estimates based
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on the mixed expectation value, Eq. (2.41). But these estimates
are mainly useful for revealing inadequacies in the trial function,
and are not accurate when such inadequacies exist. It would be
much more satisfying to compute expectation values exactly, i. e.
subject only to statistical errors, rather than from the mixed
expectation value, which introduces an unknown systematic error.
Such a procedure does existl?z, though it is expected to be very
demanding on computer resources if any great precision is to be

achieved.

It is interesting to compare the Green’s-function Monte Carlo
method to the projector Monte Carlo method introduced by
Blankenbecler and Sugar19 and recently applied to the compact U(1l)
lattice gauge theory in three spatial dimensions by Chin, Koonin,
and Negelezo. In that method e.TH is used as a projection operator
onto the lowest energy state of the system, where H=K+V is the
Hamiltonian and T is large. The object of the projector Monte
Carlo method is to obtain an ensemble of configurations with
distribution ?[Aa]. T is divided into a large number N of small
time intervals t = T/N, and the ensemble is generated by repeated

action of the operator e-tH. Since t is small we can write

e-tH = e-cK e-:v , (4.2)

correct to order t; Iin the basis in which Aa is diagonal, the
distribution is

<[A8] 'e-tH I [Aa;]> "tv[Aa'] .

<] | e K| (71> e (4.3)

The technical details of a calculation with this projector method
are essentially the same as those of the GFMC method. 1In
particular, the function that governs diffusion of the
configurations 1is <[Aa]| e-tK'IIA;]> for both methods.
Therefore, it is completely straightforward to modify our GFMC
program to carry out the projector Monte Carlo calculation. This

would be a useful exercise as a check on the present results.
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Appendix

Iteration of Eq. (2.36) yields a sequence of functions
{F(’)[Aa] } defined by

F(r"’l)[Aa] = A(or) de' GD[Aa)Aa']M[AB'] F(r)[Aa'] (A.l)

where Agf)is an arbitrary parameter which may change from one
iteration to the next. In the limit r + =, F(r)[Aa] becomes
proportional to F[Aa]’ the eigensolution of Eq. (2.36); thus Eq.

(A.1) can be rewritten as

(r+1) K (r)
r+ r
F [Aa] =5 F [Aa] . (A.2)

Integration of this equation implies that

N2
@)y o 0 g0, (a.3)
where W(r) is the total weight of the ensemble at step r of the

iteration, and < > denotes the expected value. Equation (A.3)
provides a simple way to estimate the eigenvalue from the growth or
decay of the total weight during the iteration. We refer to this
(r)
0

as the growth estimate. In practice we adjust A to maintain a

constant total weight, i.e. w(r+1)_w(r). In that case we may put
x =), (A.4)

There 1s a systematic error in Eq. (A.4) caused by making the
approximation

@®y
(e T L)

(A.5)

It can be shown that if this were the only source of error then A

would be bounded by the inequalities

min( A(or) ) € A < max ( A(or) ). (A.6)
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Figure 3 shows the ground state energy per plaquette as a
function of A for the SU(2) gauge theory. Results for the U(1l)
gauge theory are similar. The crosses are GFMC results obtained
from the growth estimate Eq. (A.4). The curves have the same
meaning as in Fig. 1. The Monte Carlo results are clearly in
error: they are systematically too high. This cannot be attributed
to the systematic error in Eq. (A.5) since the inequalities (A.6)
do not hold. Rather we believe that the discrepancy is due to the
failure of the trial function “[Aa] to describe the eigenfunction.
This is suggested by the fact that the discrepancy increases as A
increases, i. e. as the disordered trial state becomes a less valid

approximation.
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Figure captions

Figure l. Ground-state energy per plaquette E/Np vs. coupling
constant A for (a) the SU(2) gauge theory, and (b) the U(1)3 gauge
theory. The solid curves are the large-) perturbation expansion
for the U(1)3 model, the dashed curves are the variational bounds,

and the crosses are the Monte Carlo estimates.

Figure 2. Mean plaquette field ¢(p) vs. coupling constant A for (a)
the SU(2) gauge theory, and (b) the U(1)3 gauge theory. The solid
curves are the large-A perturbation expansions, the dashed curves

are the variational estimates, and the crosses are the Monte Carlo

estimates based on the mixed expectation value.

Figure 3. Ground-state energy per plaquette E/Np for the SU(2)
gauge theory, computed from the growth estimate. The curves have

the same meaning as in Fig. la.
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FIGURE la
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FIGURE 1b
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FIGURE 2a

1.0
o.m - /
o.m -

0.7 -

Dlp)

0.5

0.4 -

0.3

0.2




126

FIGURE 2b
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Application of the Green's function Monte Carlo method
to the compact Abelian lattice gauge theory



PLEASE NOTE:

Copyrighted materials in this document
have not been filmed at the request of
the author. They are available for
consultation, however, in the author's
university library.

These consist of pages:

Appendix B, pages 128-136

Universi
Microfilms
International

300 N. ZEEB RD.. ANN ARBOR, M1 48106 (313) 761-4700



PHYSICAL REVIEW D

VOLUME 28, NUMBER 8

128

15 OCTOBER 1983
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We have applied the Green's-function Monte Carlo (GFMC) method to the Hamiltonian formu-
lation of the compact U(1) lattice gauge theory in three and two (space) dimensions on small lattices,
3x3x3 and $xS. The GFMC method is a Monte Carlo method of finding the ground state of a
quantum-mechanical system with many degrees of freedom, by iterstion of an integral operator of
which the ground siste is an eigensiate. An interesting aspect of this method is an importance-
sampling technique that makes use of a trial wave function to accelerate convergence of the Monte
Carlo estimates. We used two importance functions in these calculations, which were designed t0 be
accurste in the small- and large-coupling limits. These importance functions were optimized by the
variational principle; the results of the variational calculstions are interesting in their own right.
Our Monte Carlo results exhibit evidence of the phase transition of the three-dimensiona) compact
U(]) lattice gauge theory, and indicate the nonexistence of a phase transition in the two-dimensional

theory.

1. INTRODUCTION

Lattice gauge theories are used to study quark confine-
ment and other nonperturbative aspects of gauge theories,
especially those relevant to quantum chromodynamics.
There are two formulations of lattice gauge theories—the
path-integral formulation' in which all four dimensions
are discrete and the Hamiltonian formulation? in which
time remains a continuum. These theories have been in-
vestigated by a number of techniques, e.g., perturbatlon
expansions,’ mean-field theory, the variational principle,*
and Monte Carlo methods.’ The purpose of this paper is
to describe an application of the Green's-function Monte
Carlo (GFMC) method to the Hamiltonian formulation of
the simplest lattice gauge theory, the compact U(1) gauge
theory

The U(1) lattice gauge theory is primarily interesting as
8 contrast to non-Abelian gauge theories. All lattice
gauge theories exhibit the phenomenon of charge confine-
ment in the strong-coupling limit. In non-Abelian gauge
theories this phenomenon persists to weak coupling, but in
the (3 + 1)-dimensional U(1) gauge theory there is a phase
transition to a nonconfining state at a finite coupling.
These statements have been amply demonstrated in inves-
tigations of the parh-integral formulation of these lattice
theories, that use the Metropolis Monte Carlo algorithm
to compute the path integral.® One goal of our GFMC
calculations is to try to verify these statements in the
Hamiltonian formulation; the U(1) lattice-gauge-theory
calculations to be described are a first step in this direc-
tion.

In U(1) lattice gauge theories the transition to a noncon-
fining ground state occurs in three space dimensions, but
not in two dimensions. This difference can be understood
in terms of the behavior of long-range topological config-
urations in these models. In two space dimensions there

exist vortices that maintain confinement at nrblmnly
weak coupling; this was first described by Polyakov in an
early instanton calculation.” Other authors argued that in
three space dimensions monopoles undergo an ionization
transition at a nonzero value of the coupling eonsum

below which the ground state is nonconfining.® These
spatial configurations can be described also as time slices
of sp.ceume configurations in the path integral of the
theory.” The results of path-integral Monte Cario calculs-

tions have shown that the U(1) gauge theory does have a
phase transition in three space dimensions, but not in two
dimensions.'® Our Green's-function Monte Cario calcula-

tions also demounstrate this fact.

The GFMC method is a Monte Carlo method that re-
veals properties of the ground state of a system with many
degrees of freedom. It was developed to solve quantum
many-body problems, and has been applied to a number of
examples of these.!"'> We have applied this method to
several lattice field theories, including the U(l) lattice
gauge theory, and the XY- and Z,-gauge models. In our
experience it is not difficult to put a lattice field theory
into a form to which the GFMC method can be applied;
in fact this can usually be done in more than one way, and
one has the problem of deciding which one to try.

The simplest quantity to calculate in the GFMC
method is the ground-state energy as a function of cou-
pling constant. This quantity is analogous to the average
action per plaquette calculated in Monte Carlo studies of
the path-integral lattice field theories. In principle the
GFMC method can be extended to calculation of other
quantities, e.g., the expectation value of a Wilson loop
operator; but in practice we have not yet carried out any
such calculations on the U(1) gauge theory.

Perhaps the most interesting aspect of the GFMC
method is an importance-sampling technigue.'? This tech-
nique, which is an essential part of the method, makes use
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of an approximation of the ground-state wave function,
called the importance function, to bias the Monte Carlo
diffusion process; this reduces the scale of fluctuations as-
sociated with stochastic sampling, and so accelerates the
convergence of Monte Carlo estimates 10 an accurate
value of the computed quantity. In principle the results
do not depend on the importance function but in practice
it should be similar to the ground-state eigenfunction.
Normally the importance function is obtained from a
variational calculation. One can judge whether a wave
function does resemble the eigenfunction by determining
whether it performs adequately as an importance function
in reducing statistical fluctuations. Thus this approach
can be combined with the variational principle in a poten-
tially powerful way: two variational wave functions with
about the same energy expectation value can be dis-
tinguislied on the basis of their performance as impor-
tance functions.

The results of our calculations on the U(1) lattice gauge
theory show a rather clear signal of the phase transition of
this theory in three (space) dimensions. The same signal is
not seen in calculations on the two- (space) dimensional
theory, as expected since this theory is not supposed to
have a phase transition separating confining and noncon-
fining ground states. Also, the transition in the three-
dimensional theory is not a first-order transition. Owr cal-
culations have been restricted to small lattices; the results
to be described are for 3XxX3X3 and S5XxS$ lattices
(remember that the fourth dimension is a continuum). We
believe that the quantities that we have calculated are
meaningful on such small lattices, and that the only effect
of a larger lattice would be to make a sharper transition
between strong- and weak-coupling behaviors. Of course
this would not be true of all quantities.

The paper is organized as follows. Section II is a sketch
of the GFMC method, with importance sampling, in gen-
eral terms. Section III A defines the U(1) lattice gauge
theory and our approach to the application of the GFMC
method to this model; Sec. III B describes the variational
wave functions that we use for importance sampling.
These variational calculations are interesting in their own
right. Section IV discusses the Monte Carlo results. Sec-
tion V lists some conclusions.

Il. THE NUMERICAL METHOD

A. The Green's-fuaction Monte Carlo method

The Green's-function Monte Carlo (GFMC) method
was developed as a numerical method for finding the
ground state of a Hamiltonian with many degrees of free-
dom." Let H be of the form

H=H,—-A\H,, Q.

where H, and H, are positive operators and A is a cou-

pling parameter. Let —X? denote the lowest eigenvalue

of H, assumed to be negative. The eigenvalue equation
Hy=—-K% Q2

can be written as an integral equation, as
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$=AH,+K)"'Hy¥ . @3

The starting point for the GFMC method is to regard Eq.
(2.3) as an equation for ¥ and A with K? given. Next, in-
troduce a complete set of basis states | z') for which H, is
diagonal, i.c.,

(B |H | E" )=V BZ,i1") .

The multidimensional quantity /7 that labels one of these
states is a configuration of the quantum variables of the
model, e.g., a field configuration in a lattice field theory.
In what follows we use a notation appropriate for a prob-
lem in which 7 has discrete values, but the method ap-
plies equally to continuous-valued variables. If o)
= (/7 |¥) then

2.4)

W@=A 3 GKLE, T W(E WE"), 2.5
F'
where
GKLE,m )y =(F | (H,+K) | E") . 2.6)

The GFMC method applies to integral equations of the
form of Eq. (2.5." In applications to quantum many-
body problems, V is a potential and G a Green's function.
In our applications of the GFMC method to lattice field
theories we begin also with an equation of the form of Eq.
2.5), but not always one in which G is introduced as an
inverse operator. In particular, for the U(1) lattice-gauge-
theory calculations to be described, G is simply one of the

-operators in the Hamiltonian.

The GFMC method is a Monte Carlo algorithm for
solving Eq. (2.5) by iteration. Let &'=[i7,0
=123,...,N’] be an ensemble of configurations with
probability distribution ¥;(Z"’). One iteration of the equa-
tion yields a mew ensemdble &F=[g,0=123,
.+.sN] where the configurations i, are obtained from
the i, by a process that consists of two steps, branching
and diffusion:

(i) Each ', branches into n, new points, where n, is
an integer picked by a random process such that the ex-
pected value of n, is AoV (i7,). The possibility n, =0 is
allowed. Here A is thought of as an approximation of the
eigenvalue A.

(ii) Then each of the n, points is moved from 7', to a
new configuration & chosen from the probability distribu-
tion P(7, 5 ,) defined by

P(E,3o)=G(g,it,)/ 3 G(F,[E,) .

]

In the lattice field theories to which we have applied this
method the denominator of Eq. (2.7) is a coastant, in-
dependent of 7,. This will be assumed below. Note that
the processes (i) and (ii) require that ¥ (&) and G (&, i7’)
be positive; it may be necessary to add s constant to the
Hamiltonian to meet this requirement. The probability
distribution ¥,(/Z) of points in the new ensemble & is

2.7

V=1 S PEEIAME,) 2.8)
[ 4
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or,intemsofdx,(ﬂ‘) <

t,(p)z 2?([4' B V(g i@, 2.9

ltmbeshm that the sequence of ensembles generat-
ed by iterating the process just described converges to an
ensemble for which the probability distribution is ¥ i),
the solution of Eq. (2.5). The parameter A, determines
how the ensemble size changes on further iteration: after
the process has converged, so that ¥, =¥, =¥ in Eq. 2.9),
we ghall have on average
-1

N XA _ o,

where it should be temembered that the factor
2 G(ji,ii"’) is independent of &’. This provides a way
to detcnmne the cigenvalue A, whlcb in the problem de-
fined by Eq. Ql)nsthevalueofewphngm:for
which the ground-state energy is —K2.

In practice, one readjusts the value of A, every n itera-
tions 30 as to keep the ensemble size approximately con-
stant. The adjusted value of Ay converges to A times
3 ;G

The method described here yields a numerical deter-
mination of the eigenvalue A, and a sequence of ensembles
of configurations with probability distribution ¥ (after
convergence). It is also possible to invent ways to extend
the method to calculations of other quantities, e.g., expec-
tation values of operators, but in practice these require a
large increase in computation time.

B. Importance sampling

For problems with many degrees of freedom it is advan-
tageous, and as a practical matter even necessary, to modi-
fy the GFMC method by use of an importance sampling
technique.'’>® A wave function ¢r(Z), which should
resemble the ground-state eigenfunction ¥ 7') as closely as
possible, is introduced by rewriting the integral equation,
Eq. (2.5), in terms of a new function:

.10

FUE) = ¢ DA E) @1
™
. o) o
Flg )slz G(u EW(EWF(g'). 2.12)
7 vrlE’)

Now one regards F(ii') and A as the unknown eigenfunc-
tion and eigenvalue.

The iterative diffusion process described in Sec. 1 A is
used again to generate ensembles with probability distribu-
tion F(i&). The diffusion process is changed in two ways
by the presence of the importance function ¥1(Z). First,
the probability distribution that governs diffusion of the
particles is now .

$r(@G(EE Nerlig ")~

S @G E e E N
"

2.13)
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The effect of this change is that the diffusion process is
biased in favor of moves i’ ‘— i for which & is in the re-
gion of configuration space where $r() is large. If
¥r(iZ) is at least qualitatively similar to the eigenfunction
W(j7), this biasing reduces the fluctuations due to stochas-
tic sampling, and so speeds up the convergence to accurate
sumerical estimates.

The second change in the diffusion process is a normali-
zation effect in the selection of n,, the number of new
points generated from the point i ,. The expected value
of n, should now be

() =AV(F ) T EIG(F, B Mbr T o))"
»
Q.14)

For ¥r(7)=1, 1e..vltbouumponmceamphn; the nor-
malizing sum is independent of 7', in the lattice field
theories we have considered, sothsfuctotwouldnotbe
peeded. But for a nontrivial ¥y (i7), the computation of
thenta'u;maliﬁngmmyhethetﬁckistpcndthepro-

Again it can be shown that the iteration converges to
ensembles with probability distribution F(i7'), the solution
of Eq. 2.12). Also, after convergence the expected change
in ensemble size for one iteration is given by

N %

NTAC
Importance sampling reduces the fluctuation of ensemble
size, s0 that Eq. (2.15) converges more rapidly to an accu-
rate estimate of A. The optimal choice of ¥,(/) can be
derived, and turns out to be simply related to the exact
eigenfunction $(1); this choice would actually reduce
fluctuations to zero.

The importance-sampling technique provides a way to
estimate ground-state expectation values that requires lit-
tle additional computation. Suppose the eigenfunction
¥(i7) differs from the trial function ¥(i) by a small

.15)

amount of order ¢; then to order € we have
($la]9) _,($[419r) (¥r]4|¥r)
(o]9) (¢¥|9¥7) (¥ri¥r)

2.16)

Here the left-hand side is the desired expectation value of
an operator 4; the first term on the right is twice the aver-
age of 4 in the ensembles generated by the GFMC itera-
tion of Eq. (2.12), and the other term is simply evaluated
for ¥7. The estimate (2.16), called the mixed expectation
value, has statistical error from the fact that it involves
stochastic sampling, plus systematic error from the fact
that it is valid to order € only. It is trustworthy only if
(¥|A4 |¥) and (¥7 |4 | ¥7) are not too different.

In summary, the importance-sampling method outlined
above is obviously most useful when an accurate approxi-
mation of ¥{j7) is known, ¢.g., from a variational calcula-
tion. Then the GFMC approach calculates the corrections
to that approximation exactly (up to statistical errors due
to sampling fluctuations). But even if $7(j7) is not partic-
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ularly accurate it may still perform the function of impor-
tance sampling in reduction of fluctuations, provided the
diffusion by Eq. (2.13) is biased in a qualitatively correct
way.

II1. THE LATTICE GAUGE THEORY

A. Compact U(]) lsttice gauge theory
The Hamiltonian of the U(1) lattice gauge theory is'®

H=1g?SEN- 3 [1+couB(p)], 3.1
[ 8 r

where E (/) is the electric field on lattice link / and B(p) is

the magnetic field on lattice plaquette p. If p is the pla-

quette associated with site X and directions ij then

B(p)=A(X+1,j)—A(,j)l— A+ +A(X,D) ,

3.2
where 4(X,i) is the gauge field on the link / associsted
with site X and direction i. The fundamental commuta-
tion relation is

[EWD,AU)])=—ibLI) . (3.3)

The variables 4 (/) or B(p) are restricted to lie in the range
(—m,7).

In our application of the GFMC method to the U(l)
Iattice gauge theory we arrived at the basic integral Eq.
(2.5) by a somewhat different path than that described in
Sec. I1A. By a special choice of basis states we avoided
the use of an inverse operator, i.c., a Green's function, in
constructing our form of Eq. (2.5). Still, since the ulti-
mate equation does have that form the GFMC method ap-
plies.

We shall consider a basis in which the electric field en-
ergy is diagonal. Specifically, let the ground-state eigen-
function be written in the gauge-invariant form

¥= 3 exp IiZn(p)B(p)]é[n(p)],
’

(ap

3.4

where n(p) are integer-valued plaquette variables. Let
—g20?%/2 denote the vacuum energy. Then the eigenvalue
equation

Hi=—1g%Q% 3.5
becomes, in terms of the n (p)-space wave function,
—18°0°8(n(p))=18’S[n(p))é[n (p))

-L S Glintprnpelnp).
4 [LXY 2}
3.6

Here the diagonal operator S[n(p)], which comes from
the electric field energy, is

Sinp))= T n(pin(pIApp" , 3.7
o’
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oo« 3B(p) 3B(p") |
alp.p?) ga.un A 3.7

The nondiagona! operator G [n,n’}, which comes from the
magnetic field energy, is
Gln(phn'(p))= 3 (8[n(p)n’(p)]
Po
+ 7'6{n(p).n’(p)+5,o]

+38[np)n'(p)=5,, 1] . (3.8)

G[n,n’]) will play the role of the Green's function in the
GFMC iteration, i.e., of the function that controls dif-
fusion of the points in the space of n(p)-configurations;
‘but note that G[n,n’] is not the inverse of either operator
in the original Hamiltonian.

To put the equation in the form of Eq. (2.5), define a
new wave function

x[n(p))=1g2Q+S[np))o[n(p)].
Then the equation obeyed by X[n (p)] is
X[rn(p))=2 T Glnip)hn'(p)}¥n(p))X[n'(p)],

3.9

]
3.10)
where
A=2/g" (311
and
Vin(p))=(Q*+S[n(pi-". (3.12)

We have applied the GFMC method to Eq. (3.10). The
diffusion step in the GFMC iteration involves moving a
point in n(p)-space from n’(p) 10 n(p) by the function
G|[n,n’}); the definition of G[n,n’], Eq. (3.8), implies that
n(p) and n’(p) differ at most by one unit on one plaquette.

We have obtained Monte Carlo results only for the
smallest lattice in three dimensions, of size 3x3x3. (It
should be remembered that “time” is a fourth continuous
dimension in the Hamilionian formulation.) Although
this is a small lattice size compared to those used in stud-
ies of the path-integral formulation of lattice gauge
theories by the Metropolis Monte Carlo algorithm, it is
not small compared to other applications of the GFMC
method; it has 81 independent quantum variables in the
original Hamiltonian. With these many variables it is
essential to use importance sampling in the GFMC pro-
gram. The importance-sampling functions that we used
were obtained from variational calculations, described
next.

B. Varistiona! calculations

The first variational wave function is

$i=JluviBp); (3.13)
»
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the energy (¥, | H | ¥,) is to be minimized with respect to
the choice of the single-plaquette function u(B).!” The
minimum occurs if u (B) is the ground-state eigenfunction
of the operator

a}

h=—4_—+A1—cosB), (3.14)
9B’

where —m < B <. This is the Hamiltonian of a quantum
pendulum. The resulting variational estimate of the vacu-
um energy per lattice plaquette is

—38°Q%/N,=—1g%2)—¢(), (3.15)

where ¢, is the smallest eigenvalue of h. The energy —Q°
is not really the natural energy to use in describing our re-
sults; instead we shall use E,, defined by the relation

—$8°Q°=— 182N, - Eg) . (3.16)

Note that E; is the smallest eigenvalue of

S EXN+23 [1-cosB(p)], 3.17)
I ’

where A=2/g*. The first variational estimate of E, is

Eo/.N’ =€ - (3.18)

It can easily be shown that the small- and large-A limits
of ey are
A2 e
~A—
o=t * 2048
eo=V2A—1+0A" ") as A e .

+0(2%) as A—0,
(3.19)

For comparison these limits of Eo/N, are, for an
n X n Xn lattice,

A2 3

Eo/N,~V2he(n)—+cim+0A~'?) gs Ao ,

+0(A% as A—0,

(3.20)

where c(n) is a dimensionless number, e.g.,
€(3)=0.787, ¢(5)=0.795, c(o0)=0.796. (3.21

Note that ¢; and E, /N, have the same small-A limit, but
that E, /N, is smaller than e, in the large-A Limit.

In the trial wave function ¥, the magnetic fields on dif-
ferent plaquettes are uncorrelated; ¥, describes a disor-
dered state in B(p)-space. In particular, the expectation
value of a Wilson loop operator in the state ¥, decreases
exponentially with the loop area,

(iq; ) | Kand lﬁ,)-exp [— l 3.22)
IpEL ' PEL
where
' ' 2 i
y=—In f_'dB ‘u(B)|% 3.23)

Since the vacuum state of the three-dimensional U(1) lat-
tice gauge theory is, for weak coupling, an ordered state in

which the expectation value of the Wilson loop operator
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decreases exponentially with the loop perimeter, the state
%, should not be a good approximation of the eigenstate ¥
for weak coupling, i.c., for large A=2/g*. This may al-
ready be seen in the difference between Eq/N, and ¢ in
the large-A limit.
The second variational wave function is written as a
probability amplitude in n (p)-space, as
é,=cxp |—+a 3 n(p)M(p,p'n(p’) (3.24)
~
Here a is the variational parameter and M (p,p’) is the
matrix that reproduces the ground state of H in a non-
compact harmonic approximation of the U(l) lattice
gauge theory. This approxmnuon consists of two parts:
replacement of 1—cosB by B?/2, and extension of the
range of B from (—=,7) 10 (—e,x). The resulting
model is solvable since its Hamiltonian is quadratic; the
ground-state wave function is Eq. (3.24) with a=1, but
where the plaquette variables n(p) take a coatinuum of
values. It should be emphasized that ¢, is not the wave
function of a noncompact harmonic approximation in our
calculations, because the variables n(p) are restricted to
integer values; the function in 4 (/)-space, defined by Eq.
(3.4), is periodic in A (/). The matrix M(p,p’) is, for an
n X n Xn lattice,

—v(X-

Mp,p’ )—Lzup 2

X’ ](f b —Sifi) /S

fa=1—eapl2mivy/n), f=(f2fs)7?; (3.25)

bere p,p’ are the plaquettes (T,k) and (X ',k °) with normal
directions k,k’, and the sums over v, run from 1 to .

The harmonic wave function described in the previous
paragraph is equivalent to the variational wave function
considered by Horn and Weinstein,* although it is written
in 8 somewhat different form. Our calculations use the
reciprocal space of field configurations n (p) conjugate to
the plaquette variable B(p). Horn and Weinstein work in
the space of configurations of the lattice variable 4(/),
and maintain gauge invariance by a projection technique
involving functional integration. In spite of the formal
differences, we believe that the two approaches are
equivalent.

We were unable to calculate analytically the expectation
value of H in the state ¢; (Ref. 18); instead we evaluated
(¢, H | ;) using the Metropolis Monte Carlo algorithm
to genenle a set of conﬁ;unnons with probability distri-
bution ¢,2. The result is shown in Fig. 1, graphs of the
value of the varistional parameter a that minimize
(é,!H | é;) vs coupling parameter A=2/g*. Figure la)
is for a three-dimensional lattice of size 3 % 3 x 3; values of
a for lattice size 5 5 x S differ very little from those for
3x3x3. Figure 1(b) is for a two-dimensional lattice of
size 5X 5. At weak coupling, i.c., large A, a approaches 1,
the value that corresponds 10 the harmonic approxima-
tion. At strong coupling the wave function is sharply
peaked at small n (p). corresponding to a disordered state
in the space of magnetic field configurations. The rapid
variation of a for A near 1 in the three-dimensional case is
presumably s reflection of the phase transition of the Ul)
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Iattice gauge theory. The character of the transition seen
in the variational calculation is consistent with a second-
order transition'®: within the accuracy of our Monte Car-
Jo determination of (4,|H |¢;) there is only ome
minimum for any A, the position of which varies continu-
ously as shown in Fig. 1. For a first-order transition, in
contrast, one might expect t0 have two local minima at
different values of a such that the position of the absolute
minimum changes discontinuously from one to the other
at some transition point A,.

Figure 2 shows variational estimates of E,/N, for dif-
ferent values of A for both of the trial wave functions ¥,
and é,, along with the large- and small-A limits of Eo/N,
given for three-dimensions in Eq. (3.20). Again Fig. 2(a)
is for a 33 3 lattice and Fig. 2(b) is for a 5 XS lattice.

Note that in the weak-coupling region, i.e, A> 1, the
second variational estimate is the better one; this is as an-
ticipated since the construction of é, incorporates the
correlations between magnetic fields on different pla-
quettes appropriate to the weak-coupling limit (with
a=1). Note too that the two variational estimates are al-
most the same in the strong-coupling region.

The variational calculations show an interesting differ-
ence between the two- and three-dimensional theories: the
transition between small- and large-A behavior is much
sharper in the three-dimensional theory. This agrees with
the conjecture that there is no phase transition to a8 non-
confining phase in the two-dimensional theory. On the
other hand, the variational estimate based on the harmon-
ic wave function ¢, is better at large A, even in the two-
dimensional theory; evidently the vacuum state is not as
simple as one with no correlations between the B fields on
different plaquettes. This is consistent with the specula-
tion that it is the influence of long-range topological de-
fects, two-dimensional vortices, that maintains disorder in
the two-dimensional theory at large A (Ref. 7); the vortices
live on top of an essentially harmonic wave function.

IV. MONTE CARLO RESULTS

In this section we shall describe the results of GFMC
calculations for the compact U(l) lattice gauge theory.
The basic equation that defines our GFMC algorithm is
Eq. (3.10). A brief recapitulation of the method is as fol-
lows: Each complete Monte Carlo iteration of Eq. (3.10)
replaces an ensemble &' = {n,(plo=12,... ,N'] of N’
. configurations of the integer-valued plaquette varisbles

DAVID W. HEYS AND DANIEL R. STUMP

133

1]

201

(o) -

ENERGY
b
T
\
A\

(X1 4

40
(»)

SO

ENERGY

(X 3

o 6 20 N 30 <c sc

0

FIG. 2. (a) Variational estimates of the vacuum energy per
plaquette vs coupling constant A for the three-dimensional
theory. The solid and dashed curves are from perturbation ex-
pansions at smal! and large A, respectively. The crosses ( + )
and circles (©) are variational estimates with trial wave func-
tions ¥, and ¢, respectively. () Varistiona! estimates of the
vacuum emergy per plaquette for the two-dimensional theory.
The curves and points have the same meaning as in (a).

a(p) by a mew ensemble &=(n,(plo=12...,N}.
This replacement is a two-step process involving branch-
ing, which is governed by V[n,(p)], and diffusion, which
is governed by G[n(p),n,(p)]. The change in ensemble
size N'—N provides a measurement of the eigenvalue A.
Importance sampling is provided by the trial wave func-
tions ¥, and ¢, defined in Sec.I11 B.

Figure 3 shows Monte Carlo estimates of the energy per
plaquette Ey/N,, i.e., the quantity defined in Eqs. (3.16)
and (3.17), for three and two (space) dimensions; the lat-
tice sizes are 3X3x 3 and 5X 5. The two sets of points on
this graph are the results obtained with the two impor-
tance functions. The curves are the ordinary variational
estimates, of which individual points were shown in Fig.
2. These curves are not perturbation theory curves; how-
ever, the trial wave function ¢, is known to be an accurate
approximation of the eigenfunction at small A, and ¢, is
accurate at large A. By the variational principle these
curves are rigorously upper bounds on the energy E,.

We shall describe the results as estimates of Ey/N, vs
A, but it should be recalled that E, is the input quantity
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FIG. 3. (a) Monte Carlo estimates of the vacuum energy per
plaquette vs coupling constant A for the three-dimensional
theory. The solid and dashed curves are varistional estimates
with trial function ¢, and é;, respectively. The crosses ( + ) and
circles (©) are Monte Carlo results with importance functions ¥,
and ¢,, respectively. (b) Monte Carlo estimates of the vacuum
energy per plaquette for the two-dimensional theory. The curves
and points have the same meaning as in (a).

and A the unknown eigenvalue that is output by the
GFMC calculation.

These calculations used ensembles of spproximately 100
‘configurations; this size fluctuates with each iteration.
We also checked some results with larger ensembles. Typ-
ically 1000 iterations were used to obtain the estimate of
Eo/N, shown. Each computation took roughly 1.5 min
on 8 CDC Cyber 750 computer. To be sure of conver-
gence we checked that the final estimate is independent of
the starting ensemble; e.g., that an initial ensemble with all
values of n(p) equal 10 zero gives the same final value as
one with randomly generated values of n (p).

The Monte Carlo results obtained with importance
function ¢, lic on s continuous curve that interpolates be-
tween the known small-A and large-A dependences. These
results can be thought of as a calculation of the correction
to the variational energy. The correction is very small ex-
cept when A ~ 1 because the variational estimate with trial
function ¢, accurately describes the ground state in both
the small- and large-A limits. The Monte Carlo correction
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for A ~1 is just enough to push the energy below the vari-
ational bound provided by the other trial function ¥,.

In contrast, the Monte Carlo results with importance
function ¥, show an interesting failure: for A > 1.3 these
estimates are not consistent with the variational bound
due to ¢,. We interpret this as the strongest evidence in
our calculations of the existence of a phase transition in
the three-dimensional U(1) gauge theory. This conclusion
is based on the following argument: The tria! wave func-
tion ¢,, which has no correlation between the magnetic
field values on different plaquettes, is qualitatively dif-
ferent than the ground-state eigenfunction if A>13,
which instead has the long-range correlations associated
with the matrix M (p,p’) that defines the harmonic wave
function ¢, in Eq. (3.24). Therefore the importance func-
tion ¢, fails to direct the diffusion process to the region of
the space of configurations where the most significant
ground-state configurations are located. Furthermore, the
disordered phase of the system should still exist as a low-
energy state concentrated in the same region of configura-
tion space as the uncorrelated importance function ¢,.
Apparently this uncorrelated state is metastable with
respect to the GFMC iteration; for a finite-ensemble size
and iteration time it cannot converge to the actua! ground
state ¢. Similar metastable states are exhibited as hys-
teresis Joops in Monte Carlo studies of the patb-integral
formulation of lattice gauge theories. So, for A > 1.3 there
are two qualitatively different low-energy states: " the actu-
al ground state described well by the harmonic wave func-
tion ¢,, and the uncorrelated state which is metastable
with respect to GFMC iteration with the uncorrelated im-
portance function ¢,.

The results of the GFMC calculations on the two-
dimensional theory are quite different. These are shown
in Fig. 3b). The Monte Carlo results obtained with the
two different importance functions agree with one another
over the entire range of A, and are consistent with both
variational bounds. There is no sign of a metastable state.
We take this as the best evidence of the nonexistence of a
phase transition in the two-dimensional U(1) lattice gauge
theory. In particular, it seems that either of the trial wave
functions ¥, and ¢, resembles the eigenfunction closely
enough to be used successfully as an importance function
for any A.

The crossover from small-A to large-A behavior in the
three-dimensional theory occurs continuously as a func-
tion of A. Thus the phase transition appears not to be a
first-order transition. We have also investigated a model
with a first-order phase transition, the Z,-gauge theory in
three (space) dimensions, by the GFMC method. There,
in contrast to the U(]) theory, the slope of the curve of en-
ergy vs A changes discontinuously at A = 1, the self-duality
point, even in s lattice as small as 33X 3. There also we
find metastable states by using as an importance function
8 wave function with the order or disorder suited to the
other phase.

Another quantity that we have computed i is the expecta-
tion value of the B field; more precisely the quantity

We=($|l—cosB(p)|¥). @1
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Note that W is not independent of the energy per pla-
quette Ey/N,, since
3 |Eo

W= 3% [ N, . 4.2)
However, we calculate W directly from Eq. (4.1), not by
using Eq. (4.2). The computed values of W are shown as a
function of coupling constant A in Fig. 4, for the three-
dimensional theory. There the curves show the perturba-
tion expansions of the expectation value of 1 —cosB (p) for
large and small A. The points are varistional and Monte
Carlo estimates; the Monte Carlo points are computed
from the mixed expectation value, i.e., Eq. (2.16), for the
two importance functions.

Figure 4(a) is for the harmonic trial function é,. Note
that the ordinary expectation value in the variational state
é, agrees with the large-A perturbation curve, but differs
from the small-A curve, as expected. The GFMC method
computes the correction to the variational estimate; at

SLOPE

FIG. 4. (a) The expectation value of 1—cosB for the three-
dimensional theory, calculated from the trial function é;. The
curves are perturbation expansions. The triangles (A ) are for
the simple expectation value in ¢;; the crosses (x) are Monte
Carlo calculations of the mixed expectation value, Eq. (2.16). (b)
The expectation value of 1 —cosB calculated from the trial func-
tion ¢,. The curves and points have the same meaning as in ().
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small A, say, A <10, the corrected values are comsistent
with small-A perturbation theory.

Figure 4(b) is for the uncorrelated trial function ¢,.
Here the expectation value in ¥, agrees with the small-A
perturbation expansion, but devistes from the large-A ex-
pansion. In this case the correction computed by the
GFMC method is not large enough to bring the result into
agreement with the perturbation expansion at large A. As
before we interpret this failure as a consequence of the
metastability of the uncorrelated state with respect to the
GFMC iteration, and claim it as evidence of the phase
transition.

We have not included error bars on the points on these
graphs. These results involve averages over 1000 itera-
tions for ensembles of approximately 100 configurations.
In all graphs except Figs. 4(a) and 4(b) the standard devia-
tion is small compared to the size of the point plotted on
the graph. To check whether the standard deviation is a
reasonable measure of the error, we verified that averaging
over half as many measurements increased the standard
deviation by about V2. In Figs. 4(a) and 4(b) the standard
deviations were somewhat larger, but still comparable to
the size of the point plotted on the graph.

V. SUMMARY

We have applied the Green's-function Monte Carlo
(GMFC) method to the compact U(1) lattice gauge theory
in three and two dimensions on small lattices, 3xX3x3
and 5xS. The GFMC importance-sampling technique
was implemented with two trial wave functions: the un-
correlated trial function ¥,, which resembles the strong-
coupling eigenfunction; and the harmonic wave function
#;, which derives from the weak-coupling eigenfunction
but is also quite accurate at strong coupling as well.

In the three-dimensional theory the vacuum energy per
plaquette varies continuously with A, but undergoes a
rather sharp crossover from small-A dependence to large-A
dependence, around A~ 1.3. In the small-A region, where
there is little correlation between B fields on different pla-
quettes, the two importance functions yield approximately
equal values of the energy. But in the large-A region,
where there are long-range correlations between plaquettes
as described by the trial function é,, the uncorrelated im-
portance function ¥, yields values inconsistent with the
variational bound placed by é,. We interpret this as me-
tastability of the disordered state, and as evidence of the
phase transition of the U(1) lattice gauge theory.

In the two-dimensional theory, in contrast, the vacuum
energy per plaquette varies slowly with A, and the two im-
portance functions yield equal energies for all values of A.
We interpret this as an indication that there is no phase
transition in the two-dimensional theory.

We have used the term “metastable™ to describe the
false ground state found by the Monte Carlo calculation
when using an importance function appropriate to the
disordered phase in a region of coupling constant where
the true ground state has correlations described by the
harmonic wave function. This choice of words may be
misleading in that the false state may never converge to
the true state if the ensemble size is 100 small; the false
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state is then actually stable. This property is also seen in
quantum many-body problems with phase transitions,
such as solid to liquid helium. We have not attempted to
study the convergence of the metastable state by increas-
ing the ensemble size. It is possible that the minimum
size necessary to allow the convergence to occur is so large
that the calculations are not feasible. All that can be said
theoretically is that the iteration is stable only for the true
ground state if the ensemble is large enough. Of course
this is only an issue in systems with a phase transition, for
which there are two qualitatively different low-energy
states.

Our calculations were restricted to small lattices. Cal-
culations for larger lattices are certainly feasible; the only
limitation is computer time. GFMC calculations have
been done with several hundred quantum vanables; for
comparison, a 3X 3% 3 lattice gauge theory has 81 link
variables. We believe that the results of calculations on
larger lattices would be very similar to those described
above. In particular the vacuum energy per plaquette does
not depend very much on the lattice size. We have seen
two indications of this. First, the perturbation expansions
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are independent of lattice size for small A, and only very
weakly dependent for large A, as indicated by (3.21).
Second, we carried out the ordinary variational calcula-
tions for lattices of different sizes, and found only a very
small lattice-size dependence.

These U(1) lattice-gauge-theory calculations were done
in a special way, by formulating the problem in the space
of configurations of the plaguette variable n (p) defined in
Eq. (3.4). That formulation leads to an equation that is
especially simple to iterate by the GFMC method. It is
our impression that there does not exist a similar special
formulation of the SU(2) lattice gauge theory. Therefore
we intend to apply the GFMC method to that theory by
an approach more along the lines described in Sec. 11 A.
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In the preceding reprinted article graphs of the quantity
<l-cos B(p)> versus A were not given for the two dimensional theory.

For the sake of completeness, these are shown in Figures Bl and B2.

Figure Bl is for the harmonic trial function ¢2 and Figure B2 is
for the uncorrelated trial function wl. The circles (®) are variational
estimates and the crosses (+) are GFMC results. The solid curves are
perturbation expansions. Notice that although the variational estimates
using the two wave functions are quite different at large A, the two
sets of GFMC results are reasonably consistent with each other. This is
in contrast to the three dimensional theory where the wave function wl
acted very poorly as an importance function for 1large A. This
difference is due to the fact that there is a phase transition in the
three dimensional theory whereas in two dimensions there is no phase

transition.
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Figure Bl: GFMC estimate of the expectation value of 1l-cosB(p) for the
two dimensional U(l) theory using the harmonic wave function ¢2 for
importance sampling.
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Figure B2: GFMC estimate of the expectation value of 1-cosB(p) for the
two dimensional U(l) theory using the uncorrelated wave function "'1 for
importance sampling.
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