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ABSTRACT

APPLICATION OF THE GREEN'S FUNCTION MONTE CARLO METHOD

TO HAMILTONIAN LATTICE FIELD THEORIES

by

David William Heys

The Green's function Monte Carlo (GFMC) method is adapted for

application to Hamiltonian lattice gauge theories, and is applied to the

SU(2) and U(l) models. The method is a Monte Carlo method for finding

the ground state of a quantum mechanical system with many degrees of

freedom, by iteration of an integral equation of which the ground state

is an eigenstate. An interesting aspect of the method is the use of an

importance sampling technique that makes use of variational wave

functions to reduce fluctuations and accelerate convergence of GFMC

estimates of various quantities. The calculations have been restricted,

by the availability of computer time, to estimates of simple quantities,

the ground state energy per plaquette and the mean plaquette field, on a

small lattice (3 x 3 x 3). There is no difficulty, subject to the

availability of computer time, in computing other quantities or in using

larger lattices. The results are interpreted in terms of the phase

structure of the two groups; the SU(2) model exists in a single quark

confining phase for all values of the coupling constant whereas the U(1)

model in 3+1 dimensions undergoes a phase transition from a confining



phase at strong coupling (924“) to a non-confining phase at weak

coupling (92*0).

The method is not restricted to gauge theories and is also applied

to the Hamiltonian XY model in 1+1 dimensions. The results obtained on

this model are interpreted with regard to the Kosterlitz-Thouless phase

transition.
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CHAPTER 1

Introduction

The candidate theory of strong interaction physics is quantum

chromodynamics (QCD), a gauge theory based on the non-abelian group

SU(3). Due to the remarkable property of asymptotic freedom [1]

possessed by non-abelian gauge theories, short distance phenomena in QCD

can be adequately understood in terms of perturbation theory. However,

a number of important strong-coupling phenomena, such as the meson and

baryon masses and quark confinement, can not be treated in this way

since the perturbation series is not convergent for strong coupling.

Lattice gauge theories were invented to study such non-perturbative

aspects of gauge theories.

In a lattice theory the space-time continuum is replaced by a

lattice of discrete points at which the various matter fields of the

theory are defined. The inverse lattice spacing provides a natural

ultraviolet cut off, so that renormalization effects are finite and

numerical calculations can be performed with no divergent results. 0f

1



course, in order to make contact with the real world, the cut off must

eventually be removed, i.e., the lattice spacing must be taken to zero

so that the continuum theory is recovered.

There are two complementary formulations of lattice gauge theories.

In Wilson's approach [2] the Feynman path-integral of the theory, which

in the continuum is a functional integral, is replaced by a lattice

approximation involving only ordinary multiple integrals. In this

formulation both space and time coordinates are treated as discrete. 0n

the other hand, in the Hamiltonian formulation of Kogut and Susskind [3]

time remains continuous and one deals with a lattice version of the

Hamiltonian of the theory. The two formulations can be shown to be

equivalent by means of the transfer matrix [4].

Both versions of the theory have been the subject of intense study

in recent years using a variety of techniques: perturbation expansions

[5], the renormalization group [6], mean field theory [7], the

variational principle [8-10], and Monte Carlo methods [11]. An

excellent review of the current status of lattice gauge theories may be

found in Ref.[12]. More elementary reviews covering lattice gauge

theory basics are Refs.[13,l4]. The Monte Carlo calculations, which so

far have only been applied to the Euclidean path integral formulation,

have provided by far the most exciting results to date. Such

calculations have given us evidence of confinement in SU(2) and SU(3)

gauge theories [ls-17], chiral symmetry breaking in QCD [18,19],

numerical evidence for quark deconfinement at finite temperature along

with rough estimates of the deconfinement temperature [20], and some



crude but promising estimates of glueball, meson and baryon masses

[18,21,22].

It is natural, then, to try to develop a Monte Carlo method for

Hamiltonian lattice gauge theories in the hope that the above

calculations can be checked in a completely independent way. This work

is a first step toward that goal.

The particular Monte Carlo method used here is the Green's function

Monte Carlo (GFMC) method. This is a numerical technique for studying

properties of the ground state of quantum systems with many degrees of

freedom. It was originally developed for application to quantum

many-body problems [23-25]. In this work the method is adapted for

application to lattice gauge theories.

Perhaps the most interesting aspect of the GFMC method is an

importance sampling technique. This technique makes use of an

approximation of the ground state wave function, usually derived from a

variational calculation, to bias the Monte Carlo procedure; this reduces

the fluctuations associated with stochastic sampling and also

accelerates the convergence of Monte Carlo estimates of various

quantities. In principle the final results are independent of the

particular importance function used, though in practice it should

closely approximate the ground state. By observing how a particular

variational wave function behaves as an importance function it is

possible to determine how well it resembles the ground state. In this

way one can learn something about the structure of the ground state wave



function. In contrast the path-integral Monte Carlo method provides

only numerical results, and does not easily yield any information

regarding the structure of the ground state. The possibility of

obtaining analytic information from the Monte Carlo calculation provides

one of the strongest motivations for this work.



CHAPTER 2

The Green's function Monte Carlo method

2.1 Introduction

Consider the Hamiltonian

H = Ho - A 31 (2.1)

where Ho and M1 are positive definite operators and A is a positive

coupling parameter. Furthermore assume that no has a zero eigenvalue.

(This can always be arranged by simply adding a suitable constant to the

Hamiltonian.) The restriction to positive definite operators is not an

essential feature of the GFMC method and, in fact, some of the most

fruitful applications of the method have been to systems involving

non-positive definite operators [24]. In all the applications to be

discussed here the operators H0 and H1 are positive definite and so we

need not consider the more complicated general case. The interested



reader should consult Ref.[25] for more information pertaining to the

use of non-positive definite operators.

The first step of the GFMC method is to write the eigenvalue

equation

H|w> = E|w> (2.2)

as an integral equation. To this end rewrite Eq.(2.2) as

(HO-E)|w> = AH1|¢> (2.3)

and now consider E to be the known quantity and A to be the desired

eigenvalue. This is the reverse of the usual situation in which the

coupling parameter A is known and the energy E is the unknown

eigenvalue. Clearly the eigensolutions are the same regardless of which

variable is used as the eigenvalue, as are all observables of the

system. Now introduce a set of basis states {|x>} where the label x

represents all the parameters needed to uniquely specify a state. Two

different basis sets immediately suggest themselves: the eigenstates of

H and the eigenstates of H

0' 1'

Consider the case in which |x> is an eigenstate of H , i.e.,
l

Hllx> = Hl(x)|x> (2.4)

Introducing the Green's function operator G as the inverse of (HO-E),

i.e.,

(Ho-E)G = l , (2.5)



we may rewrite the eigenvalue equation Eq.(2.3) as

¢(X) A I dX' G(x,x') Hl(X') W(X') (2.6)

where

<x|w>w(x>

and

G(x,x') = <xIGIx’> .

Clearly, in order for the Green's function to exist the operator (HO-E)

must be non-singular, i.e. must have no zero eigenvalues. This is

obviously true for E<O, since the smallest eigenvalue of H is zero. It

0

should be remembered that, in general, x represents a large number of

parameters, some of which may be discrete, so that the integral in

Eq.(2.6) must be thought of as a sum over all values of the discrete

parameters and an integral over the domains of all the continuous

parameters. We will continue to use this simple notation.

A different integral equation may be obtained by using as the basis

set {|x>} the set of eigenstates of H0, i.e.,

Ho|x> = H0(x)|x> . (2.7)

In this case, Eq.(2.3) may be written, with obvious notation, as

[HO-E]w(x) = A I dx' Hl(x,x')w(x') . (2.8)

Defining a new function x(x) as





x(x) = [Ho(x)-E]w(x) . (2.9)

Eq.(2.8) becomes

x(x) = A I dx' Hl(x,x') l x(x') . (2.10)

[Ho(x')-E]

It is seen that the integral equations Eq.(2.6) and Eq.(2.10) are both

of the same form:

F(x) = A I dx' K(x,x') V(x') F(x') . (2.11)

The form of the functions F(x) and V(x) and the kernel K(x,x') depends

on whether |x> is an eigenstate of no or of H1.

(r)
It is easy to show that the sequence of functions {F (x)} defined

iteratively by

F(r+1)(x) = A(r) I dx' K(x,x') V(x') F(r)(x') , (2.12)

where A(r) is an arbitrary parameter which may change from one iteration

to the next, converges to the ground-state eigenfunction of Eq.(2.ll).

Suppose that Fn(x) is an eigensolution of Eq.(2.ll) with corresponding

eigenvalue An, (recall that A is now the eigenvalue), i.e.,

Fn(x) An I dx' K(x,x') V(x') Fn(x') . (2.13)

Since {Fn(x)} is assumed to be a complete set, we may write

(0)
F (x) = E cn Fn(x) (2.14)

so that



(l) _ (0)
F (x) - E AA cn Fn(x) (2.15)

n

and

(r) - (i)
F (x) - E "A CD Fn(x) . (2.16)

A r

n

where the product runs over i from 0 to (r-l). If the eigenvalues are

ordered such that 0< AO< A1< ... then as r*~ the sum on the right hand

side of Eq.(2.16) will be dominated by the n=0 term, so that up to a

normalization constant

lim F(r)

1".“

(x) = Fo(x) . (2.17)

where F0(x) is the ground-state eigenfunction of the Hamiltonian. In

practice, the integrals involved in the iteration of Eq.(2.ll) are

multidimensional and can not be performed exactly. The GFMC algorithm

provides a means to carry out the iteration stochastically so that after

many Monte Carlo iterations one obtains an ensemble of basis

configurations sampled randomly from the probability density F0(x). (We

assume that the eigenfunctions Fn(x) satisfy the normalization condition

IFn(x)dx = l.)

A discussion of how to calculate interesting quantities such as the

eigenvalue A0 and ground-state expectation values will be deferred until

the next section where the concept of importance sampling will be

introduced. Here we content ourselves with a detailed description of

the basic Monte Carlo procedure. Two algorithms will be described one
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of which utilizes an ensemble of unweighted configurations and another

which utilizes an ensemble of weighted configurations. Each one has its

advantages over the other: the first algorithm is more straightforward

to implement whereas the second algorithm, though being more complicated

than the first, is for that very reason of wider applicability.

In what follows it will be assumed that K(x,x‘) and Fo(x) are both

positive functions. It should also be realized that the function V(x)

is automatically positive because the operators H and H are positive
0 1

definite and because we restrict our attention to E<0.

2.2 Algorithm 1: Unweighted ensemble

Write the kernel appearing in Eq.(2.ll) in the form

K(x,x') = k(x,x') Z(x') (2.18)

where the function k(x,x‘) is normalized such that

I k(x,x')dx = l (2.19)

for all x'. This is always possible in principle by letting

2(x') = I K(x,x‘)dx (2.20)

but in practice this decomposition may not be the most convenient

because the integral in Eq.(2.20) may not be tractable.
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(r

Suppose that E ) = {x0; o=1,2,...,N(r)} is an ensemble of points

in parameter space, representing a set of basis states, sampled randomly

(r) )
from the probability density function F (x) / IF<r (x)dx, i.e., the

expected number of points of the ensemble lying in the range of

parameter space between x and x+dx is N(r)F(r)(x) / IF(r)(x)dx. For

(r)
each point x0 of E a number v0, called the braching number, is chosen

randomly in such a way that the expected value of v0 is given by

(v > = A(r)

a

2(xo) V(xo) . (2.21)

This can be done in any number of ways, the simplest of which is to set

v0 = integral part [ <va> + £ ] (2.22)

where z is a uniform random deviate in the interval (0,1). If r is the

largest integer for which r < <va> then the probability that va=r is

clearly given by

p(va=r) = r + l - <va> (2.23)

and the probability that va=r+l is

p(va=r+l) = <va> - r . (2.24)

The expected value of Va is therefore

r(r+1-<va>) + (r+1)(<vo>-r) = <va>

as required. Note that the possibility vo=0 is allowed.
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Now, randomly select v0 new points from the conditional probability

density k(x,xa). The details of the sampling procedure depend on the

functional form of k(x,x') and no general method can be given.

The new points chosen in this way constitute the (r+l)st ensemble

E<r+l). The expected number of points p(x)dx of B<r+1) lying in the

region of parameter space between x and x+dx is clearly

p(x)dx E dx k(x,xa) v0

(r)
E dx k(x,xa)k 2(xa) V(xo)

- (r)
- dx A g K(x,xo) V(xa) (2.25)

which in the mean may be written as

p(x)dx = dx x‘r)1 dx' K(x,x') V(x') N(r)F(r)(x') (2.25)

IF(r)(x)dx

 

Using Eq.(2.13) it is seen that the right hand side of Eq.(2.26) is

proportional to F<r+1)(x), specifically

N(r) F(r+1)(x)

 

p(x)dx = (r) dx . (2.27)

IF (x)dx

The ensemble E<r+1> may, therefore, be considered to be randomly sampled

from the probability density function F<r+1)(x)/IF(r+l)(x)dx.
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2.3 Algorithm 2: Weighted ensemble

As in algorithm 1, introduce a function k(x,x’) normalized as in

Eq.(2.19) but this time write the kernel K(x,x') in the slightly more

general form

K(x,x') = k(x,x') Z(x,x') . (2.28)

Note that the function 2(x,x’) may depend on x as well as on x' so that

this algorithm is somewhat more generally applicable than algorithm 1.

(r).
,wa , a=1,2,...,N} is an ensemble ofSuppose that E(r) = {(xér)

weighted points in parameter space and define the function F(r)(x) by

(r)

O

(r)(r)
F )wo(x) = < g 6(x-x > , (2.29)

where the angle brackets denote the expected value. For each point

x(r), a new point xér+l)ia s chosen randomly from the conditional

(“Uni")
O

probability density function k(x ) and this new point is given

weight

w(r+1)= A(r) w(r) (r+1)

a a '

(r) (r)
2(xo x0 ) V(xa ) . (2.30)

The weighted points generated in this way constitute the (r+l)st

ensemble E<r+l). Notice that the number of points in the ensemble is

constant.

Clearly

< z 5(x-x(r+1))w(r+l) > = < z k(x,x(r))w(r)k(r)2(x,x(r))V(x(r)) >
o a a a o a a a
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i‘r) I dx' k(x,x')2(x,x')V(x') < g 6(x‘-xér))wér) >

(r) (r)
k I dx' K(x,x') V(x') F (x')

= r"+1)<x) (2.31)

We see from Eq.(2.31) that the algorithm described above does indeed

generate a sequence of functions {F(r)(x)} related by Eq.(2.12) and so

provides a means of iterating Eq.(2.ll). However, it should be pointed

out that this algorithm does not work in practice. The reason for this

is that after only a few Monte Carlo iterations the weights of a very

small number of points become much larger than those of all the other

points together and the ensemble is effectively reduced to a

statistically insignificant size; in the worst possible case the

ensemble is dominated by a single point.

Fortunately, there is a simple solution to this problem __ a

technique known as splitting or branching. As the name suggests, this

involves splitting a point x0 with ”large” weight wa into v0 new points

identical to x0 but each having a smaller weight wa/va. The precise way

in which this is done will be described shortly. Clearly the definition

of F(r)(x) in Eq.(2.29) remains unchanged by this modification of the

ensemble. Of course, in carrying out this branching procedure, the

ensemble size increases and continues to do so as the Monte Carlo

iteration proceeds. If this growth went unchecked, the ensemble would

quickly reach an unmanageable size, and so it is necessary to truncate

the ensemble in some way. This may be done by eliminating a sufficient

number of points with "small” weights from the ensemble in such a way as
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to preserve Eq.(2.29). To achieve this, the truncation must be done

stochastically, so that, for example, if p is the probability that a

particular point x0 be elimated from the ensemble, i.e. be given zero

weight, then with probability (l-p) that point will survive the

truncation but with increased weight w', the numbers p and w' being

chosen in such a way that

(l-p)w' = wo . (2.32)

In principle, the branching number v0 appearing in the splitting

procedure, and the probability of elimination p, are arbitrary.

However, in practice it is important that all the weights be of

comparable magnitude, within a factor of about four of each other. It

is also useful to not simply prevent the ensemble size from becoming too

large, but to keep it approximately constant. If this is done then

reliable estimates of program execution time can be made which would not

be possible if the ensemble size fluctuated wildly. With these two

points in mind, the following implementation of the ‘branching and

truncation procedure is particularly useful.

For a given point x0, the branching number Va is randomly chosen in

such a way that the expected value is

<vo> = N wa / g w , (2.33)
0

where N is the desired ensemble size. As shown in the discussion

following Eq.(2.21) this may be most simply done by setting

no = integral part [<va> + £1 , (2.34)
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where i is a uniform random deviate in the interval (0,1). Note that,

as in algorithm 1, the possibility v0 = 0 is allowed. If <va> 2 l the

point is split into v0 identical points each with weight wo/va. This has

the effect of splitting points with large weight, i.e. greater than

Zwo/N, into a number of points with weights less than ZZwa/N. If

<va> <1 then if va-o the point is eliminated from the ensemble, but if

va=l the point survives and its weight is increased to two/N. It is

easy to see that this branching and truncation procedure maintains the

ensemble size at approximately N, and also forces all weights to be

approximately equal.

In practice the factor Z(x,x') is usually approximately equal to 1,

so that in calculating wér+l) from wit) by Eq.(2.30) the factor

k(r)V(x(r)) plays a dominant role. The following practical Monte Carlo
O

algorithm then proves useful.

(r)
(1) Multiply the weights by the corresponding factor k(r)V(xa ).

(2) Carry out the branching and truncation procedure.

gr)} using the conditional(3) Generate the points {x§r+1)} from {x

(r+l)'x(r)

O O

probability density k(x ).

(r+1)'x(r)

O O

(4) Multiply the weights by the corresponding factor 2(x ).

The reason for this rather strange order of events is that the

factor k(r)V(xér)) causes the greatest change to the weights, so by

first multiplying the weights by this factor and then performing the

branching and truncation of the ensemble immediately afterwards, but

(r+l)}
before generating the new points {x0 one ensures that the weights



17

of the points in the final ensemble will be approximately equal. This

would not be the case if the steps outlined above were carried out in

the perhaps more obvious order (2),(3),(l),(4), where steps (1) and (4)

would be combined into a single step.

2.4 Importance sampling

So far two algorithms have been described for carrying out the

iteration indicated by Eq.(2.12) and it has been shown that

F(r)(x) 4 F0(x), the lowest lying eigenfunction of Eq.(2.1l), as rze. To

be of any practical value there must be some way to compute quantities

such as the eigenvalue l0 and ground-state expectation values.

The precise details of such calculations depend on which algorithm

one is using to implement the GFMC method. Since the situation is

somewhat more complicated for algorithm 2 than for algorithm 1, we will

focus our attention on that case. Corresponding results for algorithm 1

are easily derived. The eigenvalue )0 may be estimated in a very

F(r)
straightforward way. For large r, (x)=aF0(x) where a is some

proportionality constant, so that, using Eq.(2.13), Eq.(2.12) becomes

(r+1) (r)
(x) = A") F

Ao

F (x) . (2.35)

If this equation is integrated over all parameter space then one obtains

the simple result
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(r)

A =xm <Wtot> , (2.36)

(r+l)>

tot

where

(r) = z w(r)

wtot a a
r (2.37)

and we have used the defining equation Eq.(2.29) for F(r) (x). Since the

expected values are not known, Eq.(2.36) suggests the following Monte

Carlo estimator for l :

0

' (r)

iéeSt) = )(r) Wtot (2.38)

W(r+l) .

tot

This estimate, known as the growth estimate because it is computed from

the growth of the total weight of the ensemble from one iteration to the

next, suffers from three sources of error:

(1) Convergence error due to the fact that Eq.(2.36) is valid only in

the limit rec.

(2) Random sampling error due to the stochastic nature of the GFMC

method.

(3) Systematic error due to replacing the ratio of expected values in

Eq.(2.36) by the ratio of the values themselves in Eq.(2.38).

In principle the convergence error is not a significant problem

éest) settles down to

fluctuate about some constant value this error can be eliminated. In

since by simply waiting until the quantity l

practice, however, one may have to carry out many thousands of
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(est)
iterations before he converges.

Similarly, the random sampling error may, in principle, be reduced

by increasing the ensemble size, but in practice it may be that in order

to reduce the fluctuations to an acceptable level, an unmanageably large

ensemble is required. This turns out to be the case in all calculations

of practical interest.

The third source of error, the systematic error, can not be

estimated but can at least be bounded by making use of the theorem

2 a.

min(a./b.) s ——1 s max(a./b.) . (2.39)
J J z b J J -

1

Specifically

min(w(’)/w(“1)) 5 fig:- < max(w(’)/w(“1)) (2 40)
tot tot <W(r+l)> ' tot tot °

tot

so that if the random error can be reduced then the systematic error

will also be reduced.

All of these sources of error may be greatly reduced by means of a

technique called importance sampling. In this technique, a function,

called the importance function, is used to bias the diffusion of points

in parameter space in favor of regions where the importance function is

largest. If the importance function is suitably chosen, this biasing

causes points to cluster in regions where the eigenfunction F0(x) is

large, and so the ensembles generated by the Monte Carlo procedure
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provide much better representations of F0(x) than if no importance

sampling is used.

To see how to implement this technique first multiply Eq.(2.ll) by

a function, the importance function, FI(x). Then the new function P(x)

defined by

P(x) = FI(x)F(x) (2.41)

satisfies the equation

F1(x) K(x,x')
P(x) = k I dX' V(x') P(x') , (2.42)
 

PI(x)

which is of the same form as Eq.(2.ll) but with F(x) replaced by P(x)

and K(x,x') replaced by

FI(x) K(x,x')

KI(x,x') = . (2.43)

FI(x)

 

This means that the two algorithms presented earlier may still be used

to iterate Eq.(2.42). Furthermore, the eigenfunctions of Eq.(2.42) are

clearly simply

Pn(x) = FI(x)Fm(x) (2.44)

with corresponding eigenvalues lo and iteration of Eq.(2.42) converges

to Po(x). Suppose we let

FI(x) = V(x)Fo(x) . (2.45)

Of course this is not possible in practice since the eigenfunction is
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not known. Iteration of Eq.(2.4l) generates a sequence of functions

{P(r)(x)} defined by

 

P<r+l)(x) = k(r) I dx' KI(x,x') V(x') P(r)(x) . (2.46)

Now

F0(x)v(X)K(xlx')

I dx KI(x,x') = I dx

F0(x') V(x')

.. __1_
" A V(x') I (2.47)

0

where we have used the fact that

K(x,x') = K(x',x) (2.48)

and Eq.(2.13). Integrating Eq.(2.46) over the variables x and using the

result Eq.(2.47) one obtains

1 P<r+1)(x)dx = x‘r) 1 P(r)(x)dx , (2.49)

A
0

so that

(r)
<w >

A = i“) -—-595- (2.50)
0 <w(r+l)>

tot

for all r, i.e., there is no convergence error. The Monte Carlo

estimator Eq.(2.38) still suffers from random sampling error and

systematic error but because the distribution of points in parameter

space is biased, the random error and hence, because of Eq.(2.40), the

systematic error may both be expected to be greatly reduced.
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In practice the importance function is chosen to be

FI(x) = FT(x)V(x) (2.51)

where FT(x) is a function optimized by the variational principle, which

should resemble as closely as possible the eigenfunction F0(x). With

this choice of importance function it is reasonable to expect the

(est)

)‘0
estimator to converge much faster than when no importance

sampling is used, and also that the statistical fluctuations of ASESt)

will be much smaller. This is in fact the case.

A better estimator, known as the variational estimator for reasons

which will soon become apparent, which does not suffer from any kind of

error when the optimum choice of importance function FI(x)=V(x)F0(x) is

used may be derived from the eigenvalue equation Eq.(2.3) for the

ground-state |w> of the Hamiltonian,

(Ho-E)|¢O> = ionllwo> . (2.52)

Suppose for the moment |x> is an eigenstate of H0. With this choice of

basis one has

FI(x) WT(x)[HO(x)-E] (2.53)

and

P0(x) = WT(x)[HO(x)-E]wo(x) . (2.54)

where wT(x) is a variational wave function which should approximate

w0(x). From Eq.(2.52) it is clear that
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-1 = I G“ dx' WT(x)Hl(x,x')wo(x')

 

 

 

lo (2.55)

I dx WT(X)[HO(X)'E]WO(X)

which, using Eq.(2.54) leads to the Monte Carlo estimator

(est) -1 - 1 I dx WT(x)Hl(x,xo)

Wtot WT(XO)[HO(xo)-E]

The corresponding estimator when |x> is an eigenstate of H1 is

W

k(ESt) = -—l- 2 ° I dx w (x)[H (x,x )-E5(x-x )1 . (2.57)
0 w(r) a H (x )W (x ) T 0 a 0

tot l o T o

If ¢T(x) = w0(x), corresponding to the choice FI(x) = V(x)F0(x)

discussed earlier, then

(h395t>)'1 = x’1 (2.58)
0

with no error of any kind. It is found that the variational estimator

has much smaller fluctuations than the growth estimator and so this is

the one that will be used in the applications to be described later.

The technique of importance sampling also provides a very simple

means of estimating ground-state expectation values. Again for the

moment suppose that |x> is an eigenstate of H and write
0

¢T(x) = 40(3) + en(x) (2.59)

where all functions are normalized and e is small if wT(x) is a good

variational wave function. Then, it is easy to show that for any

operator A
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<¢ lhlw > <w |A|w > <w |A|w >

__0___£’_=2_2_0_-_2_2_ (2.60)

<w0|w0> <¢TIW0> <wr'¢r>

to order 62. The quantity on the left is the desired expectation value,

and the second term on the right is the expectation value of A in the

variational state IwT>. The first term on the right, known as the mixed

expectation value, may be estimated from a Monte Carlo calculation as

<6 |A|¢ > A(x ) 1

_T___9_,_§__2_--/§-————. (2.61)

<lewo> [Ho‘xa)’E] [80(xa)-EJ

The corresponding result when |x> is an eigenstate of H1 is

  

<w |A|w > A(x ) l

—3——°— z r a /§ . (2.62)

< wT|w0> ° 31(xo) 51(xa)

The symbol a in these last two equations indicates that the estimate has

a systematic error associated, as usual, with replacing the ratio of two

expected values with the ratio of the valued themselves. But, again the

systematic error is bounded by the statistical fluctuations of the

estimate so that if the fluctuations are small so is the systematic

error. In any case, in quoting results, allowance may be made of the

systematic error by simply increasing the error bars of the various

quantities by a factor of V2.

We see, then, that the quantities appearing on the right hand side

of Eq.(2.60) may be calculated and so one may in this way obtain

estimates of various expectation values. Of course, such estimates are

only reliable if the variational expectation value and the mixed
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expectation value are not very different, i.e. if e in Eq.(2.59) is

small, since otherwise the 0(e2) terms will make a significant (perhaps

dominant) contribution. It would be much better if there were some way

to compute expectation values which did not rely on the accuracy of the

variational wave function wT(x). Such a method does exist [25] but is

very demanding on computer resources if any precision is to be achieved

and will not be considered further.



CHAPTER 3

The SU(2) lattice gauge theory in 3+1 dimensions

3.1 Definition of the model

The Hamiltonian of a lattice gauge theory with a unitary gauge

group is

- 2 2i - ”r
H - 2 23(4) + E [ d grr(up +,UP) ] , (3.1)

l,a d

where d is the dimension of the particular group representation being

used, the plaquette variables Up are defined in terms of the group

elements U(l) residing on the links of the lattice as

_ 'r T
up - U(11)U(12)U ((3)0 (44) , (3.2)

where 11,12,13, 4, are the links defining plaquette p, and the electric

field operators Ea(1) are defined by the commutation relations

26
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[Ea(l),U(l')] = - TaU(l)6(1,1') , (3.3)

where Ta is a generator of the representation.

In this chapter we shall concentrate on the SU(2) lattice gauge

theory, in particular we shall consider the fundamental representation

for which d=2 and Tr(U;) = Tr(UP). The Hamiltonian may then be written

as

2

H = (ZaEa(1) + A E ¢(p) , (3.4)

where the gauge invariant plaquette variable ¢(p) is defined by

¢(p) = l - gTr(Up) . (3.5)

The parameter k is related to the conventional coupling constant 9 by

l = 8/94 . (3.6)

The group element U(1) may be parametrized in a number of ways. For

example, in terms of the three component gauge field Aa(1) (a = 1,2,3),

U(!) = exp[ tiaaAa(l) ] , (3.7)

where 0a is a Pauli matrix. Another useful parametrization is

u<z> = a0(!) + i3o3(z) , (3.8)

where 3 is a 3-vector and

a + a = l . (3.9)

The (real) numbers a“ (u = 0,1,2,3) all lie in the domain (-l,l) and may
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be thought of as the components of a Euclidean 4-vector. Then Eqs.(3.8)

and (3.9) indicate that there is a one-to-one correspondence between the

elements of SU(2) and the points in the space 53, the three dimensional

surface of a four dimensional sphere. In fact the connection lies much

deeper; the geometry of the SU(2) group manifold is identical with that

of S3, i.e., the two spaces are isomorphic. We will not prove this

assertion here but point out an important implication: the invariant

group integration measure is simply the volume element in the space 53.

.This may be seen most easily by introducing a third parametrization of

the group element U(1) in terms of three angular variables

w(1),0(1),¢(1) with domains (0,n). (0,n), (0,2n) respectively. These

variables are just the spherical coordinates in four dimensions. In

terms of these variables,

4-)

U(1) = cosw(1) + iaon(£)sinw(1) , (3.10)

where 3 is a unit 3-vector with polar angles (9,¢), i.e.,

3 = (sinecosd, sinOsind, cose) . (3.11)

Using standard techniques [26] the invariant measure of the group may be

found to be

d0 = sinzw sine 61,) do do , (3.12)

2n2

which is the volume element in S3 with the total volume normalized to

unity. This means that if f(g) is some function defined on the group

and fp(w,0.¢) is the corresponding function on the parameter space 53,

then
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I d9 f(g) = I fp(w,e,¢) sinzy sine d) d6 do . (3.13)

2n2

This result is important for the numerical calculations to be described

shortly where one needs to know how to carry out group integrations in

the parameter space.

3.2 Variational calculation

The simplest gauge invariant wave function is of the form

vTIA] = g u(¢(p)) . (3.14)

where u is an arbitrary function of the plaquette variable ¢(p). This

wave function is disordered in the sense that there are no explicit

correlations between the variables ¢(p) on different plaquettes. For

small values of x the Hamiltonian is dominated by the electric energy

term 2 32(1). This is a sum of single link operators and so for small A

the link variables 0(1) will be completely uncorrelated. Then, the

plaquette variables will also be uncorrelated and so for small A one

should expect the wave function given in Eq.(3.l4) to be a good

representation of the exact vacuum state.

In the present calculations we do not attempt to optimize the

functional form of u(¢(p)) but simply use

u(¢(p)) = exp [ -2d¢(p) ] , (3.15)

where B is a variational parameter chosen to minimize the energy
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I do (Tm a me
£0 = 2 . (3.16)

I an thnj

 

This is a sum of two terms: the magnetic energy given by

x I an wiIAJE ¢(p)

= 2
I do wT[A]

 AB
mag

(3.17)

and the electric energy, which, using the hermitian character of Ea(1),

may be written as

I do WT2[A] z {w;1[A] 23(1) wTIA]}2
Eel "’ 1,3 0 (3e18)

I do w§[A]

1 defined above could be evaluated

analytically as functions of the variational parameter 5, it would be a

If the quantities Emag and Be

straightforward matter to minimize the energy £0 with respect to 6 for

any given value of the coupling parameter I. Unfortunately, analytic

expressions can only be derived in the two limits 6+0 and 6+0. For

small 6 one may use the so called Euclidean strong coupling expansions

[27], similar to high temperature expansions used in statistical

mechanics, to evaluate the integrals. The results of such a calculation

are:

E /n = 1 - p + 263/3 + 0(65) .
mag P

(3.19)

2 4 6

Eel/Np = 36 - 26 + 0(6 ) :

where up is the number of plaquettes in the lattice. For large 3 the

wave function is sharply peaked in the region of configuration space
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where all the group elements U(1) are close to the identity, i.e.,

Aa(l) * 0. Then, with negligible error in the limit, the range of

integration of the field variables Aa(1) may be extended to (-¢,°), and

the integrals in Eqs.(3.l7) and (3.18) become straightforward gaussian

integrals which can be easily evaluated. Then, one finds that for 5*a,

E /N =
'2

magp _4_]fi-+O(B)l

(3.20)

_ _ -1

Bel/Np - 36 % + 0(fl )

Of course, one really needs_to compute these quantities for intermediate

values of B. To do this a Monte Carlo method is used. The limiting

expressions given in Eqs.(3.19) and (3.20) then provide useful checks on

the accuracy of the Monte Carlo results. In this particular

calculation, Creutz's heat bath algorithm, described in detail in

Ref.[15], is used to generate an ensemble of field configurations {A(r);

r=l,2,...,N} from the probability density w§[A]/Ido¢:[a]. Then, any

expectation value of the form

I an (imam
<0> = 2 (3.21)

I do wT[A]

 

may be computed as the expected value of the ensemble average of 0[A],

i.e.,

<O> =

(r)
/ OEA ] \

where the angle brackets on the right hand side denote the expected
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value which may be estimated as the average over many different

ensembles. Using this method, Emag and Eel are computed for many

different values of 6 and the resulting data are fitted, by means of a

least squares analysis, to the specific functional forms

(fit)

E = exp [ f (a) ] .
mag m

(3.23)

(fit) _

where fm(3) and fe(6) are polynomials in 6 of sufficient degree to give

good fits to the data. The xZ-test, with a significance level of 5%,

is used to judge the goodness of fit.

The particular functional forms in Eq.(3.23) are chosen, largely by

trial and error, to give good fits with as few adjustable parameters as

possible. For 0 S 6 S 1.2, which is the region of interest, with 65

data points, fm(a) must be of degree 5 and fe(6) must be of degree 6 in

order to pass the xz-test.

Figure 1 shows graphs of Emag/Np and Eel/Np as functions of B. The

points are Monte Carlo results and the solid lines are the fitted

functions defined in Eq.(3.23). Only a sample of the Monte Carlo

results are plotted. The dashed lines are the large- and small-B limits

given by Eqs.(3.19) and (3.20). The fits are clearly very good as is

the agreement between the Monte Carlo results and the two limiting

curves 0
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Figure 1: Variational estimates of (a) the magnetic energy, and (b) the

electric energy versus the variational parameter 6 for the SU(2) theory.
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In Figure 2 the variational estimate of the ground-state energy per

plaquette as a function of A is compared to the large-A and small-A

limits computed in perturbation theory:

Eo/N z x - 13 + 11 )4 + 0()6) as x»o ,

P 12 14976

EO/NP z c(n)(2A)l/2 + 0(1) as Ado,

for an n x n x n lattice; the constant c(n) is weakly dependent on n,

e.g.,

c(3) = 1.181 , c(w) = 1.194 . (3.25)

The constant term in the large-A limit derives from the four-field

coupling of the fields in the small field approximation of the theory

and at the present time has not been calculated.

The agreement between the variational results and the small-A limit

comes as no great surprise since, as mentioned earlier, the variational

wave function is expected to be a good approximation of the exact ground

state wave function for small A. Also the apparent disagreement between

the variational results and the large-A limit is not meaningful since a

constant term is yet to be added to the perturbation theory result. The

agreement may then improve or worsen and one does not know, a priori,

which it will be.

For this reason, perhaps a more interesting quantity to look at is

Emag/Np = <¢(p)>. For the exact ground state this is related to the

energy 30 by
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5.0
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Figure 2: Variational estimate of the ground state energy per plaquette

versus A for the SU(2) theory.
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R;

< <I>(p) > = 1'— -—O (3.26)
N A

P

so that the small- and large-A limits are:

3 5
< o(p) > = l - A + 11 A + O(A ) as A+0 ,

6 3744

(3.27)

< ¢(p) > = c(n)(2A)-l/2 + 0(A-l) as A+e.

These are plotted in Figure 3 along with the variational results. Again

one sees excellent agreement between the variational results and the

small-A perturbation theory result. However there is a slight

discrepancy between the variational results and the large-A limit, the

difference increasing somewhat as A increases. This is an indication of

the inadequacy of this uncorrelated variational wave function as a model

of the vacuum state of the theory. Other quantities, such as the string

tension and the excitation energy of the theory, provide much more

sensitive tests of the accuracy of the variational wave function than

the mean plaquette field <¢(p)> calculated here. Calculations of these

quantities have been carried out [9,10] and clearly show the failure of

the variational wave function to model the vacuum state of the theory at

large—A. Those calculations, although of some interest, do not concern

us here since we are mainly interested in the variational calculation as

a means of providing an importance function for use in the GFMC

calculations to be described in the next section.
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Figure 3: Variational estimate of the mean plaquette field versus A for

the SU(2) theory.
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3.3 GFMC calculation

The Hamiltonian defined in Eq.(3.4) can not be used as it stands in

a GFMC calculation because it is not of the form H0 - AH1 with H0

positive definite operators. However, a slightly modified Hamiltonian

and H1

2
HGFMC = Z Ea(1) - AM (3.28)

1,a

where

M = E [ l + %Tr(Up) ] (3.29)

is of the required form and the GFMC method, described in detail in

chapter 2, may be used to compute various ground-state properties.

Notice that HGFMC differs from H only by a trivial constant term so that

the eigenstates of the two Hamiltonians are identical.

As shown in chapter 2, the ground-state energy of HGFMC is negative

and so it is useful to write the eigenvalue equation as

_ _ 2
HGFMCH’) — Q |¢> . (3.30)

The connection between 02 and 80, the ground-state energy of H, is

_ _ 2
EO - ZNPA Q . (3.31)

The non-normalizable basis {|[A]>} is used, where a state in this

basis is determined uniquely by the set of gauge fields Aa(1) (or,

alternatively, the angle variables 0(1), 9(1), ¢(1)) on all the links of

the lattice. In this basis, the operator M defined in Eq.(3.29) is

diagonal and the equation to be iterated by the GFMC algorithm is
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(cf. Eq.(2.6))

w[A] = A I do' G[A,A'] M[A'] w[A'] , (3.32)

where

. _ 2 2 -1 .
G[A,A ] - <[A]| [ Z Ea(1) + Q ] |[A ]> . (3.33)

1,a

The only aspect of the GFMC algorithm not covered in chapter 2 was

the very crucial problem of how to sample field configurations from the

(unnormalized) probability density G[A,A']. This matter is discussed at

length in the paper reproduced in appendix A. Basically the idea is to

write the Green's function as

G[A,A'] = I; dt exp(-tQZ) <[A]| exp[—tZE:(1)] |[A']> (3.34)

and to use the function exp(-th) to sample t, then, conditional on this

choice, to use <[A]|exp[-tZE:(1)]I[A']> to sample field configurations

[A]. The state |[A]> may be written as a direct product of single link

states |A(1)> so that the matrix element appearing on the right hand

side of Eq.(3.34) may be written as a product of single link matrix

elements. Now since Q2 is typically large, the variable t will be

small. In this limit it is possible to obtain an explicit expression

for the matrix element. The result is

<A(1)I exp[-tE:(1)] |A'(1)> z er[-(6s)2/t] , (3.35)

(wt)3/2

where (as)2 is the metric in the parameter space 53

(as)2 = (6¢)2 + sin24(59)2 + sinzwsin29(6¢)2 (3.36)



64 = W' - w ; 60 = 6' - 0 ; 5o = o' - o . (3.37)

The problem of sampling G[A,A'] then reduces to that of sampling the

gaussian function exp(-652/t) for which several methods are available.

Of course, there is a complication involved in the sampling of this

gaussian due to the fact that the parameter space is curved. The

precise details of the sampling procedure may be found in appendix A.

Before going on to discuss the results of the GFMC calculation, one

further point should be noted. In order to obtain statistically

significant results, it is essential to use some form of importance

sampling in the manner described in Sec. 2.4. The details of how to

carry out the sampling procedure in this case may again be found in

appendix A.

All the calculations presented here were carried out on a 3 x 3 x 3

spatial lattice. An ensemble of approximately 100 configurations was

used; the ensemble size changes slightly with each iteration. The

results given are averages over 600 Monte Carlo iterations. The first

few hundred iterations, during which convergence takes place, are

discarded. To calculate the quantities presented here required

approximately 3.5 hours of computation time for each value of Q2

considered (recall that 02 rather than A is the input parameter to the

GFMC' algorithm) on a CDC Cyber 750 computer at Michigan State

University.
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Figure 4 shows the ground-state energy per plaquette EO/Np as a

function of the coupling parameter A. The dashed curve is the

variational bound obtained in the previous section and the crosses are

GFMC results obtained using importance sampling based on the variational

wave function wT[A]. The GFMC points agree very well with the

variational bound at small A; this is to be expected since the

variational wave function is an accurate representation of the exact

vacuum state for small A . As A increases the GFMC points begin to lie

lower than the variational bound, the difference increasing with

increasing A. Again this is as expected; the variational wave function

is known to become less accurate as a model of the ground state as A

increases and so the exact vacuum [energy should be lower than the

variational bound.

As in the previous section, a more interesting quantity to look at

is the mean plaquette field <¢(p)>. This is shown in Figure 5. Again

the dashed curve is the variational estimate and the crosses are GFMC

estimates; these GFMC results were computed from the mixed expectation

value, Eq.(2.62). The solid curves are the large- and small-A limits

given by Eq.(3.27).

The GFMC points tend to lie below the variational curve for small-A

and are inconsistent with the small-A perturbation theory curve.

Ordinarily this would be taken as evidence that the variational wave

function wT[A], used for importance sampling, is not a good

lrepresentation of the vacuum state. However, in this case, wT[A] is

believed to accurately describe the exact ground state for small A and
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Figure 4: GFMC estimate of the ground state energy per plaquette versus

A for the SU(2) theory.
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to become increasingly worse as A increases. The results on the energy

per plaquette shown in Figure 4, where the GFMC points are in close

agreement with the variational bound but begin to deviate as A

increases, are consistent with this view. The poor accuracy of the GFMC

results for small A in Figure 5 may be due to the failure of the small

time step approximation used to calculate the matrix elements of

exp(-t£E:(1)). The time t is sampled from the probability density

exp(-th) and so is of order l/Qz, which increases as A decreases. The

approximation will, therefore, be least valid for small A. This

explanation could be checked by subdividing every time step into

intervals smaller than some fixed at, and then observing how the results

change as 6t decreases. On the other hand, since the wave function is

disordered for small A, one might expect that errors in the sampling

procedure would be unimportant. Another possible explanation of this-

discrepancy is that the calculation may not have been carried out for

enough iterations to deduce a meaningful estimate of the uncertainty

indicated by the error bars. Succesive GFMC ensembles are highly

correlated and fluctuations of measured quantities extend over many

iterations, so it is possible that the 600 iterations used to compute

the GFMC results are dominated by one very long flucuation which causes

the estimates to be too small. If this is correct it is not clear why

the same problem does not occur for the larger values of A. Clearly

further investigation is needed to clarify the situation.



CHAPTER 4

The U(l) lattice gauge theory in 3+1 dimensions

4.1 Definition of the model

In this chapter calculations on the U(l) lattice gauge theory will

be described which parallel those on the SU(2) model discussed in the

previous chapter. By studying this somewhat simpler model it may be

possible to resolve some of the questions raised by the GFMC

calculations on the SU(2) model. Also, Monte Carlo calculations in the

Euclidean path-integral formulation of the theory have clearly

demonstrated that the vacuum state of the U(l) model undergoes a second

order phase transition in four dimensions from a charge confining phase

at strong coupling (92%“, A40) to a non-confining phase at weak coupling

(9290, Ase) [28], and it will be interesting to see if evidence of this

transition shows up in the Hamiltonian formulation of the theory.
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The elements of the group U(l) may be parametrized as

U = exp(iA) (4.1)

where the gauge field A lies in the domain (0,2n). With this

parametrization the plaquette variable Up may be written as

UP = exp[iB(P)] (4.2)

where B(p) is the lattice curl of A at plaquette p:

B(P) = A(11) + A(12) - A(13) - A(14) . (4.3)

The links 11, 12, 13, 14, define the plaquette p.

An explicit expression for the electric field operator 2(1) may be

obtained from the commutation relation (cf. Eq.(3.3))

[B(1).u<1'>] = - U(1) 6(1.1') . (4.4)

and is found to be

 

_ a (4.5)

3") “ i an<1>

The Hamiltonian Eq.(3.l) may then be written as

32

H = - Z 2 + A E ¢(p) , (4.6)

1 BA (1)

where the gauge invariant plaquette field ¢(p) is defined by

¢(p) = l - cos B(p) , , ' (4.7)
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and the constant A is related to the conventional coupling constant g by

4

A = 2/g (4.8)

The group manifold is one dimensional and the invariant measure is

easily shown to be

do e g% . (4.9)

so that group integrations may be carried out in the parameter space by

simply integrating over the gauge fields A(1).

4.2 Variational calculation

As in the previous chapter, we will use the disordered wave

function

4 [A] = E u(¢(p)) . (4.10)

with the specific choice

u(9(p)) exp[ -&B¢(p) ] . (4.11)

The factor of t in the exponent is chosen purely for aesthetic reasons.

The calculation proceeds in precisely the same way as the SU(2)

variational calculation, the only difference being in the choice of

gauge group.
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Figure 6 shows graphs of E /N and E /N as functions of the

magp elp

variational parameter 6. The points are a sample of the Monte Carlo

variational estimates and the solid lines are the functions Eéggt)(fi)

and Eéilt)(6). The functional forms given in Eq.(3.23) again give good

fits to the data with the least number of parameters: in the region

0 S 5 S 1.8 with 92 data points, fm(fi) is a polynomial of degree 7 and

fe(a) is one of degree 8. More parameters are needed in this case than

in the SU(2) calculation because a larger range of B is covered and more

data points are used. The dashed lines in Figure 6 are small- and

large-B limits derived from Euclidean strong coupling expansions and the

Gaussian approximation respectively. The functions describing these

curves are, for small 8,

3 5

E /N = l - 3/2 + B /16 + 0(6 ) a
mag p

(4.12)

_ 2 _ 4 6

Eel/Np - fl /2 B /16 + 0(5 ) ,

and for large B,

3 -2
Emag/Np %3 + 0(6 ) r

(4.13)

_ _ -1

Figure 7 shows the variational estimate of the ground state energy

per plaquette as a function of the coupling parameter A and compares

these results to the large- and small-A limits derived from perturbation

theory:
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Figure 6: Variational estimates of (a) the magnetic energy, and (b) the

electric energy versus the variational parameter a for the U(l) theory.
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Figure 7: Variational estimate of the ground state energy per plaquette

versus A for the U(l) theory.
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IIE /NP A - A2/8 + 3A‘/10240 + O(A6) as A40 ,

(4.14)

/2
d(n)(2A)l - d2(n)/4 + O(A—1/2) as Aaw,M \ z I

!

for an n x n x n lattice. As in the SU(2) large-A limit, the constant

d(n) depends weakly on the lattice size, e.g.,

d(3) = 0.787 , d(“) = 0.796 .

At small A the variational estimates are in excellent agreement with

perturbation theory as expected, but at large A the Variational

estimates lie significantly higher than the perturbation theory result.

This clearly indicates the inadequacy of the simple uncorrelated wave

function Eq.(4.10) as a model of the vacuum state of the theory at large

A.

The same conclusion also follows from a consideration of the

variational estimate of the mean plaquette field <¢(p)> as a function of

A. This is shown in Figure 8 along with the large- and small-A limits

determined using Eq.(3.26):

<4(p)> a 1 - A/4 + 3A3/2560 + 0(A5) as A90 ,

(4.15)

<4(p)> z d(n)/(2A)l/2 + 0(A’3/2) as lee.

4.3 GFMC calculation

The discussion of section 3.3 leading to Eq.(3.32) is applicable

almost without change to the U(1) model, so that the equation to be
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Figure 8: Variational estimate of the mean plaquette field versus A for

the U(1) theory.
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iterated by the GFMC method is

 

 

MA] = I do G[A,A'] MA‘] 4411‘] (4.16)

where

M[A] = E [ l + cos B(p) ] (4.17)

and '

32 2 -1
G[A,A'] = <14]! {-2 2 + 0 1 IIA']> . (4.18)

3A (1)

2 32
= I dt exp(-tQ ) <[A]| exp[t Z 2 ] |[A']> . (4.19)

an (1)

The state |[A]> may be written as a direct product of single link states

|A(1)> so that the matrix element appearing in the integrand of

Eq.(4.19) may be written as

82

n <A<1>l exp[t 2

1 8A (1)

 

] |A'(1)> . (4.20)

In appendix A it is shown that in the small-t limit this single link

matrix element may be written as

exp[-(44)2/4t1 .

(4401/2

32

3A2(1)

 <A(1)I exp[t J IA'(1)> z (4.21)

The problem of sampling field configurations from the Green's

function G[A,A'] then reduces, as in the SU(2) case, to sampling a

gaussian distribution. The precise details of the calculation,
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including the use of importance sampling based on the variational wave

function Eq.(4.11), may be found in appendix A.

As in the SU(2) case these calculations have been carried out on a

3 x 3 x 3 spatial lattice, with an ensemble size of approximately 100

configurations which changes slightly with each iteration. The results

given are averages over 600 Monte Carlo iterations and required

approximately 200 seconds of computation time for each value of Q2

considered.

Figure 9 shows the ground-state energy per plaquette Eo/NP as a

function of A. The crosses are GFMC results and the dashed curve is the

variational bound obtained in the previous section. The solid curve is

the large-A perturbation theory result Eq.(4.14). At small A the GFMC

results agree with the variational bound but for larger values of A the

GFMC points lie significantly lower, clearly indicating that the

uncorrelated wave function Eq.(4.11) is no longer a good model of the

ground state at large A. In fact for large A the exact ground-state

wave function can be derived. In that limit the energy is dominated by

the magnetic energy and so the terms 1 - cos B(p) will be small, i.e.,

B(p) 4 0 as A* a. With this approximation, the Hamiltonian Eq.(4.6) is

quadratic so that the ground-state wave function is a gaussian in the

gauge fields A(1):

w[A] = eXP {-94 Z Ak(§) Mkk.(§.§') Ak.(§') 1 (4.22)

where
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Figure 9: GFMC estimate of the ground state energy per plaquette versus

A for the U(1) theory.
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a g (“(2) . (4.23a)

4-9 .5 4+4

”kk'(x'x') = l. 5 mkk.(q) 9391 211 9°(x-x') J . (4.23b)

3 q n
n

2» 4*»

f (q)5kk. - fk(q)fk,(q)

 

4

.(q) = , (4.23c)

mkk f(3)

fk(§) = 1 - exp( 21; qk ) , (4.23d)

n

e 4 2

f(q) = z |fk(q)l . (4.23e)

k

for an n x n x n lattice. The sum in Eq.(4.22) is over all I, 1', k,

k'. In these equations a link 1 is defined by two indices § and k; the

link lies between the lattice sites at g and g + 3k where 3k is a unit

vector. At large A then, the ground-state wave function explicitly

couples links which are widely spaced; this type of coupling is absent

in the simple disordered wave function Eq.(4.11).

There appears to be an abrupt crossover point at A z 1.2 in Figure

9 where the GFMC results begin to deviate markedly from the variational

bound. This may be taken as evidence, albeit inconclusive, of a phase

transition at that point. For A < 1.2 the ground state of the theory

resembles the disordered variational wave function as indicated by the

close agreement between the variational results and the (in principle)

exact GFMC results, but for A > 1.2 the disordered wave function is no

longer accurate and the ground state is more closely represented by the

gaussian wave function Eq.(4.22) with its explicit couplings between

widely separated links.
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It is interesting to compare this result to the corresponding

result for the SU(2) model shown in Figure 4. In that case the

deviation of the exact GFMC results from the variational curve simply

increased very gradually as A increased. This is consistent with the

fact that there is no phase transition in the ground state of the SU(2)

theory.

The GFMC results at large A in Figure 9 appear to lie significantly

lower than the large-A perturbation theory curve. It may be that by

using a poor importance function one obtains inaccurate estimates of the

energy with an ensemble as small as 100 configurations; the GFMC method

relies heavily on the law of large numbers of probability theory and so

it is conceivable that small ensembles result in inaccurate GFMC

results. To study this systematically would require repeating the

calculations for different ensemble sizes and observing how the results

vary as the ensemble size increases. Such an undertaking would clearly

be very demanding on computer time. Furthermore, it may be that if the

importance function is too inaccurate the ensemble size necessary to

obtain good results is unmanageably large. With these points in mind,

the problem of ensemble size dependence of the GFMC results has been

left for future investigation.

Figure 10 shows the mean plaquette field <¢(p)> as a function of A.

Again the crosses are GFMC results based on the mixed expectation value

Eq.(2.62), the dashed curve is the variational estimate, and the solid

curve is the large-A perturbation theory result Eq.(4.15). Notice again

the abrupt deviation of the GFMC points from the variational curve at
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Figure 10: GFMC estimate of the mean plaquette field versus A for the

U(1) theory.
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A z 1.2 indicative of the phase transition in this model at that point.

Recall that the GFMC results for this quantity are not exact and can

only be trusted if they do not differ very much from the variational

estimates. Thus, the lack of good agreement between] the GFMC results

and the large-A perturbation theory curve is not surprising.

As in the corresponding SU(2) results shown in Figure 5, the GFMC

points at small A are noticeably low; they are inconsistent with the

known small A behaviour given by Eq.(4.15). The comments made at the

end of chapter 3 concerning this discrepancy are also valid here.

However, for the point at A a 0.75 the calculation was repeated breaking

each time step t into ten smaller substeps with no noticeable change in

the result. Of course, this is by no means intended to be a complete

study of the problem, but it does tend to cast some doubt on the

explanation of the discrepancy as a failure of the small-t

approximation. As stated at the end of chapter 3, further investigation

is clearly necessary to resolve the problem.



CHAPTER 5

n-space formulation of the U(1) lattice gauge theory

5.1 The n-space equations

The calculations on the U(1) lattice gauge theory described in the

previous chapter used a basis set in which the plaquette fields ¢(p) are

diagonal. Using such a basis the problem of how to use the gaussian

wave function given in Eq.(4.22) as an importance function presents so

far insurmountable difficulties and one is restricted to using the

simple disordered wave function Eq.(4.11) which gives poor results at

large A. A different formulation of the problem is possible which

allows one to use a basis in which the electric field energy is diagonal

and also to use as importance functions both disordered and gaussian

wave functions.

60
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Write the wave function w[A] in the manifestly gauge invariant form

41A] = : exp[ i g n(p)B(p) 1 ¢[n] . (5.1)

where n(p) are integer-valued plaquette variables. It is necessary to

restrict n(p) in this way to ensure that the wave function w[A] is

periodic in the gauge fields A(1). Equation (5.1) resembles a Fourier

series expansion in the magnetic field variables B(p). This is not

quite the case, though, because not all of the fields B(p) are

independent. In fact the sum of the B(p)'s over any closed surface in

the lattice must vanish in accordance with Gauss' Law.

Inserting Eq.(5.l) into the eigenvalue equation, the corresponding

eigenvalue equation for the function ¢[n] may be shown to be

S[n]¢[n] + A{Z K[n.n'] ¢[n'] = E¢[n] (5.2)
n!

where the operator S[n], which comes from the electric field energy, is

S[n] = Z n(p)n(p')A(p,p') . (5.3)

PP'

A(PIP') = Z 33(P) 33(P') . (5.4)

1 BA(1) 8A(1)

The operator K[n,n'], which comes from the magnetic field energy, is

K[n.n'] = E. {6[n.n'] - %6[n.n'+5pp.] - 15[n.n'-5Pp.]} . (5.5)

The function 6[n,n'] = 1 if n(p) = n'(p) for all p and is zero

otherwise, 6[n,n'+5pp,] = 1 if n(p) = n'(p) for all p # p' and
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n(p') = n'(p')+l, and similarly for 8[n,n'-6pp.].

If instead of the Hamiltonian defined in Eq.(4.6) one uses HGFMC

defined by

HGFMC = H - ZNPA (5.6)

then a slightly different equation for ¢[n] than Eq.(5.2) is obtained:

S[n]¢[n] + x z G[n,n'] ¢[n'] = -024In1 (5.))

{n'}

where

G[n,n'] = K[n,n'] - 2Np6[n,n'] (5.8)

and Q2 is related to E0 the ground-state energy of H by

Q2 = 2N A - E (5 9)P 0 . .

Equation (5.7) is of precisely the same form as Eq.(2.8) so the GFMC

method can be used as described in chapter 2 to compute various

quantities.

As in the previous two chapters we shall restrict our attention to

the ground-state energy per plaquette Eo/NP and the mean plaquette field

<¢(p)>.
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5.2 Variational Calculations

5.2.1 Disordered wave function

The simplest variational wave function to try is

¢[n] = g u(n(p)) . (5.10)

The energy

E0 = Eel + A Emag , (5.11)

where

5.1 = z ¢'In1 S[n] ¢[nJ / z |¢In1|2 . (5.12)

{n} {n}

r = 2 (I’m K[n.n'] an) / z |¢[n]l2 . (5.13)

mag {nn'} {n}

must be minimized with respect to the choice of the single plaquette

function u(n(p)). Using Eq.(5.10), the energy E is found to be
0

4 E n2IU(n)|2 + A g n'(n)[u(n)-tu(n+l)-sU(n-1)]

g Iu<n>l2

 EO/Np = . (5.14)

The correct functional form of u(n) may be determined by comparing this

expression for the energy to the corresponding result for the quantum

pendulum.

The quantum pendulum is defined by the Hamiltonian

qu = - 82/302 + qu(l - c056) (5.15)
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where 9 is an angular variable which lies in the domain (0,2n). The

wave function wqp(9) may be written as a Fourier series

wqp(9) = E v(n) exp(inO) , (5.16)

and then the energy is easily shown to be

E n2|v(n)|2 + A9P E v*(n)[v(n)-tv(n+l)-tv(n-l)]
 

- . (5.17)

qp E |v(n)|2

Comparing this expression to Eq.(5.l4) it is clear that

u(n) = v(n) (5.18)

and

E A N = 4 E A 4 .10( )/ p qp( / ) (5 9)

It is easy to show that the variational estimates of the energy per

plaquette for small- and large-A are

EO/N = A - A2/8 + 7A‘/204a + O(A6) as A+0 ,
p

(5.20)

2
E /Np = (2201/2 - 1/4 + 0(A-l/ ) as A9“.
0

For comparison, the corresponding limits obtained from perturbation

theory are (see Eq.(4.14))

Eo/N = A - A2/8 + 3A4/10240 + 0(A6) as A+o ,
p

(5.21)

EO/Np = d(n)(2A)l/2 - d2(n)/4 +0(A'1/2) as A+o.

Notice that the expressions in Eqs.(5.20) and (5.21) have the same

small-A limit but that the perturbation theory result for large A is
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considerably lower than the variational result. This is as expected

since the magnetic field variables B(p) are disordered in the wave

function in Eq.(5.l) with ¢[n] = ¢l[n], so that this wave function

should be a good approximation of the exact ground state for small A.

The optimized function u(n)=v(n) is rather too cumbersome to use

for importance sampling in a GFMC calculation. Instead we shall use a

simpler choice

2
u(n) = exp( -an ) . (5.22)

It is a straightforward matter to minimize the energy Eo/NP given by

Eq.(5.14) with respect to a for any given A. The results are almost

indistinguishable from those obtained using the optimal choice over the

range of A considered.

5.2.2 Gaussian wave function

In the gaussian approximation, valid at large A, the ground state

wave function may be shown to be

¢2[n] = eXPI-tapg.n(p) M(p,p') n(p')] (5.23)

where

a = (2/A)l/2 . (5.24)

. 4 4 4 4 4 4 4 4

If the plaquette p, hav1ng corners at the sites x, x+ei, x+ei+ej, x+ej,

is denoted by the two indices § and k where 31, 33' 3k constitute a
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right handed set of unit vectors, then the matrix M(p,p') in Eq.(5.23)

is

4 4 4 , 4 4 4

”n'(3'x') = .1— 7- mkk-“D epr a q-(x-x') ] . (5.25)

n3 q n

where

24 *4 4

f (q)5kk. - fk(q>fk.(q)

.9

f(q)

 mud-q.) = (5.26)

and fk(q), f(q) are given in Eqs.(4.23d) and (4.23e). Now, if instead

of having a fixed by Eq.(5.24), we allow it to be a free parameter then

the wave function Eq.(5.23) may be used in a variational calculation,

the parameter a being chosen to minimize the energy E0.

As in the earlier chapters it is necessary to use a Monte Carlo

method to compute the quantities Ee and Ema . In this case the

1 9

Metropolis Monte Carlo algorithm [29] is used to generate configurations

from which Ee and Ema are computed.

1 9

5.2.3 Variational results

Figure 11 shows the ground-state energy per plaquette as a function

of the coupling parameter A. The crosses (+) are the results of the

variational calculation using the wave function ¢1[n] given in

Eqs.(5.10) and (5.22). The circles (°) are computed using the wave

function ¢2[n], Eq.(5.23). The solid and dashed lines are small- and

large-A perturbation theory results given by Eq.(5.21). At large A the
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Figure 11: Variational estimates of the ground state energy per

plaquette versus 7\ for the n-space formulation of the U(l) theory.
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wave function ¢2[n] is clearly the better one; this is to be expected

since ¢2[n] has built into it the explicit couplings between different

plaquettes appropriate to the large A limit, which are absent in ¢l[n].

Notice, too, that for small A the two variational estimates are almost

identical. It is at first sight surprising that the wave function

¢2[n], which is constructed to be a good approximation of the ground

state for large A, should also be quite accurate at small A. Upon

further consideration, however, it is seen that if the variational

parameter a is chosen to be very large then the function ¢2[n] is

sharply peaked in the region n(p)=0 for all p. In terms of the magnetic

field variabled B(P), the state is completely disordered, and so we see

that ¢2[n] should also be accurate at small A. It is interesting to see

how the variational parameter a in the wave function ¢2[n] depends on A.

In Figure 12 the quantity a/ah, where ch = (2/A)l/2, is plotted as a

function of A. The variational parameter exhibits very striking

behaviour at A = 1.1, indicating the presence of a phase transition.

Because ¢2[n] is a good representation of the ground state at both large

and small A, then the fact that a phase transition is present strongly

suggests that the exact ground state of the theory also must exhibit a

phase transition.

The presence of a phase transition in the state described by ¢2[n]

is also evident from the variational estimate of the mean plaquette

field <¢(p)> = Emag/Np' This is shown in Figure 13. Again the crosses

(+) are variational estimates using ¢1[n], the circles (0) are obtained

using ¢2[n], and the solid and dashed lines are small— and large-A

perturbation expansions.
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Figure 12: a/ah versus A for the variational wave function ezln].
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Figure 13: Variational estimates of the mean plaquette field versus A

for the n-space formulation of the U(1) theory.
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5.3 GFMC calculations

The GFMC method with importance sampling may be applied precisely

as described in chapter 2 to the present example. It proves most

convenient to use algorithm 1 presented in Section 2.2. Due to the

particular form of the function G[n,n'], which has only a small number

of non-zero terms, it is possible to compute directly the normalization

integral denoted by Z(x) in chapter 2 and defined in Eq.(2.20).

Furthermore, again because of the special form of G[n,n'], the

configurations n sampled from the kernel conditional on n' will differ

from n' by at most one unit at a single plaquette, i.e., n(p)=n'(p) for

all p, or n(p)=n'(p) for all p#p0 and n(p0)=n'(po)1l. Since all the

matrix elements are known, it is a simple matter to sample the kernel as

a discrete probability distribution.

All the results described below were obtained on a 3 x 3 x 3

lattice and used an ensemble of approximately 100 configurations. The

results are averages over 1000 GFMC iterations and required

approximately 100 seconds of computation time for each value of 02 used.

Figure 14 shows the ground state energy per plaquette Eo/NP as a

function of A. The crosses (+) are GFMC estimates using the disordered

wave function ¢1 for importance sampling, and the circles (0) are the

results obtained using ¢2. The solid and dashed curves are the

variational bounds, obtained in the previous section, using ¢1 and 02

respectively. The GFMC results obtained using ¢2 for importance '

sampling interpolate smoothly between the known small- and large-A
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Figure 14: GFMC estimates of the ground state energy per plaquette

versus A for the n-space formulation of the U(1) theory.
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limits. The results obtained using ¢l, however, fail to be accurate for

A > 1.3 and continue to lie close to the corresponding variational

estimate; these GFMC estimates are not consistent with the variational

bound obtained from the trial function ¢2. It appears that the

disordered state is metastable with respect to the GFMC iteration, at

least for the ensemble size used here, and cannot converge to the actual

ground state. This may be interpreted as evidence for a phase

transition in the ground state of the theory. The trial wave function

o1 is qualitatively different from the true ground state wave function

for A > 1.3 where the ground state is described well by the function ¢2

with its explicit long range couplings between different plaquettes. So

when this function is used for importance sampling it fails to direct

the diffusion into regions of configuration space where the exact ground

state wave function is greatest. Apparently, though, there is still a

low energy state resembling the disordered phase which is metastable

with respect to the GFMC iteration. This metastability is due to the

fact that ¢1 biases the ensemble of configurations in favor of those

lying in the region of configuration space dominated by this low energy

state. The cross over from the disordered phase described by $1 to the

harmonic phase described by ¢2. the two phases being qualitatively

different, is a signal for the phase transition.

This conclusion is further supported by the calculation of the mean

plaquette field <¢(p)>. Figure 15 shows this quantity as a function of

A for the GFMC calculation using ¢2 for importance sampling. The

crosses are GFMC estimates based on the mixed expectation value

Eq.(2.62) and the circles are variational estimates based on the trial
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Figure 15: GFMC estimate of the mean plaquette field versus A computed

using the trial wave function ¢2[n] for importance sampling.
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function oz. The solid curves are small- and large-A perturbation

expansions. The variational estimate at small A differs slightly from

the correct small-A limit. The GFMC method provides a correction to the

variational results which is consistent with the perturbation theory

result. Notice that in the region of the phase transition, A z 1.2, the

GFMC estimates differ considerably from the variational estimates

indicating that in this narrow region the function ¢2 is not a very

accurate representation of the exact ground state wave function;

presumably the nature of the phase transition is different in the exact

ground state and the harmonic state ¢2.

Figure 16 shows the mean plaquette field computed using ¢l for

importance sampling. The failure of this disordered wave function to

accurately model the ground state of the theory and also the

metastability discussed earlier are evident at large A.

It is interesting to compare the results of the present chapter to

those of the previous one where the calculations were performed in the

space of states in which the magnetic energy is diagonal. The agreement

between the two sets of results is striking. The fact that these two

very different formulations of the same problem give very similar

results gives us considerable confidence in the GFMC method.

Further discussion of the results of this chapter may be found in

appendix B where the calculations described here are compared to similar

calculations on the U(1) model in 2+1 dimensions.

 



76

 

1.0

0.4 
   

Figure 16: GFMC estimate of the mean plaquette field versus A computed

using the trial wave function (:1an for importance sampling.

 



CHAPTER 6

The Hamiltonian XX model

Because of the unconventional nature of the n-space formulation

used in the previous chapter it would be useful to apply the same

technique to study a different model. The Hamiltonian XY model admits

such a treatment. The reprinted paper in this chapter describes

calculations on the XY model which parallel those of the previous

chapter. Again it will be found that the n-space formulation of the

problem leads to a very simple implementation of the GFMC algorithm.
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Application of the Grem’s-fimction Monte Carlo method to the Hamiltonian 1? model

David W. HeysandDanielR. Stump

WdflpicsaadAMy, lithium University, ”MIMIC!”

(Received lZSqtuahulm)

AnapplicationoftheGreen's-ftmction MonteChrlomethodtotheHsmiltai'nnXYmodelis

dmaihed. hnpanncesamplingisimplanmtedwhhtwouislwsvefmcdau—aiecurupcndiaa

msdisudaedmusndonewhkhmcupaatathecmrdadcmdaivedfrcmthespbnnap-

proaimsticnofthemodel. Optimaltrialfunctionsarewtsinedfrmthevsristicnslprindple. The

MuteCarbrmulusnhtapretedwithnpldwtheMu-Mphncuwfion.

I. INTRODUCTION

The (item’s-function Monte Carlo (GFMC) method is

a numerical technique for studying properties (i the

grotmdstateofsquantumsystanwith manydegreesof

freedom.

quantum many-body pnibltxns.“2 We dmcribcd an appli-

ation of this method to the chut-Susskind Hamiltonian

formulation of the compact U(1) lattice gauge theorytn 2

and3spetisldimensionsinspreviouspaper.’ lnthispa-

peweshalldescrihesimilsrcslculstionsfortheHsmil

tonian formulation of the XY model.

TheXYmodel,alsocalledtheclsasicslplsnsrspin

model, dacrihes classical twodimensional spins located

cm a two-dimensional cubic lattice with s nesrest~neighbor

interaction mergy proportional tog-.5". The aim ofclss-

sicsl statistical mechanics is to compute the prutim

function

Z- 2 exp —B£§('i)'§(‘s’+£)

"Li

(1.!)

Animportsntfmturedthismodelisthexcsterlitz-

Thculessphssetransition,‘ whichscparatcsaphasein

whichthesumoverststesisdominatedbyspin-wsvefluc-

tusticmcfsnorderedststesothatthespindirectionssre

highlyccnelated,andsdisorderedphsseinwhichthe

correlationhetwemspindirectionsissmall. Thisphsse

transitionisdrivmhysninterestingmechanism: mrticer

hthespinfiddwhichsncoupledinpsinatlcwtan-

mummhindtoprnducesdisadaedstateatsclitio

calvalueoffl. Topological configurations thstproduce

ha-mgedisorderofthefieldsmsyalsoherdevsntto

thetransitionfromsnorderedtosdisordaedvaeuum

stateinlatticepuge theories.’ TheXYmodelisimpor-

tsnttothelstticepugetheotistssthesimplcstessmple

ofthismechsnism. lnthisworkwesreinterestedinthis

modelssatatinggrotmdfortheGFMCmethod.

TheMetmpolisMontem'loslgct-ithmhsshemap-

pliedtothe computationofthepartitim function (I.ll.‘

TheHsmiltonianformulationd‘theXYmodelctmsists

dammmflsmiltonianthatdescribessuie-

dimmsionslchsind’intaactingspim.’Theseccnddi-

mmsionistime. Thectmnectionhetwemthisformulation

ndthatd'Equdl'nthatthepsnitionfunctionisslat-

It was originally developed for application to -

ticespproaimstiond’theFeynmsnpsthinteualofthe

quantumsystem. Fortheaskeofcompletmmswederive

thiscmnectionintheAppmdixofthispaper.

ltisthequsntumHamiltonisntowhichweapplythe

GFMCmahod.

Animpatantandevmamtislmspectd’theGF-‘MC

methodistheuseofimpcrtsncesampling. Animpor-

tance function, which should resanble the ground-state

dgmfmcumismedtohisstheMonteCarlossmplingin

favor of regions of configuration space where the wave

function is greatest. The variational principle provides a

wsytoconstructusd’ulimportsnceftmctions. lntheXY-

model cslculaticns,ssintheU(l)-puge~theory calcula-

tionspresmtedinourpreviwspsper,weusetwoimpcr-

nucefunctions. Theftrst describessdism'deredstste; im-

portsncessmplingwiththisftmctionisgoodatweskcou-

plinghutheccmesincressinglywoneasthecouplingin-

erases. The second is derived from the spin-wave ap-

puimationofthemmdstatesndyieldsgoodimpor-

tsncessmplingathcthstrongandwmkcouplings. The

variationalcalculstionthstoptimizesthetrislftmcticnis

done analytically for the disordered state, but numerically

ft! the spin-wave state, by the Metropolis Matte Carlo

method. Thevariationslrmultssreinterestingintheir

ownrightsstheygivesomeindicaticnofthenatureofthe

mmdstatesssfunctiond'theconplingcmstsntThm

theGFMCcslculsticnseatmdtheacauacyofthevaris-

tionalmlculations.

Theoutlineofthispapaisasfollows. Wedefinethe

HamiltonianXYmcdelandeaplsinourapplimtiond'the

GFMCmethcdinSecJ]. We dacrihethevsriational

calculation that yidd trial functions for the GFMC im-

portsncesamplinginSean. WediscnsstheGFMCre-

cultsinSecJandmskesanemmarizingtansrhin

Sec.V.

II. DEFINITIONOPTHBUODEL

mmdmnwis’

H--‘ 2 ——12[l+ul(0,—0,+.)], (2.!)

[Cl ac" l-l

withthepaiodichcundarycmidition Gnu-0,. HereO,

banan‘levarishlethatdeftnesthedirectionoftheith
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22 APPUCAHONOFflIEGREEN'S-PUNCTIONHONTECARID...

spin; thus its range is (-w,rr), and wave functions are

paiodic in 0, with period 21:. H is defined such that the

ground-state clergy is negative; we let -Q2 dmote this

energy. In the calculations to be discussed, we formulate

the eigenvalue problem in the space of variables cmjugate

to 9,; specifically, we write the ground-state a'genfunction

as

N

fielszdfiilexp :2 more...) . (22)

1’
III

 

wherepeiiodicityina, requiresthatthevsriablen, bean

integer. Then the ii-space a'genfunction d(ii) obeys the

equation

-Q’¢(m=sm¢(a)—izx(a.a'ma'), (2.3)

it.

where

N

S(3)= 2 (Hi—"(+4? (2.4)

[all

and

N l

K(ii,ii')= 2 warn-,- ii,ii'+e,)

l-l

+-§-5('fi,it'-é})] , (2.5)

whereé‘, istheN-ccmponentvectorwithjthcompcncnt

5”.

To put the a'genvalue equation into a useful form, we

define

umslausmmm ; (2.6)

this function satisfies the equation

1(a)=a.2x(a.a')[c’+5(a')1-‘X(a'). (2.7)

to

TheGFMCmethodappliestosnequationofthisform.

The method consists of simulation of a diffusion process

with branching. The branching probability is proportional

to [Q’+S(ii')]" and the diffusion is govaned by

K(ii,ii'). We refer to Klfiji') as the (item’s function,

slthcughinthisproblanit'uaorinu'oducedastheinvaae

dan operator.

TheGFMCmethcdismostpowerfulwhencombined

n'th an importance-sampling tmhnique.’ In very large

system this technique is necessary for obtaining accurate

rmults. We implement importance sampling by introduc-

ing a trial wave function dfl'n’), which should be an ap-

proximation ofthe actual eigenfunction. That we define

thcfunction Hilby

Nil-Orfilflh’) . (2.8)

This obeys the equation

flilskz flx(3,i')[Q’+S(fi')]"F(h") .

1" ‘14?)

(2.9)

79
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whichistheequationtowhichweapplytheGFMCdif-

fusion process. Now the diffusion is govancd by the

listed Grem's function dfiiillflifri ')Nrfii ').

The GFMC method is based on iteration of Eq. (2.9).

To iterate the equation we must take Q2 to be the given

quantity, and regard A as the eigenvalue to be determined.

Then iteration yields a sequence of functions Wis),

Fmta), . . . ,F"(ii) dd'rned by

47(3)

——x(a,a')[Q’+S(a')]-'

”(3')

Ftr+ll(a)=A(rlz

is

xl’Wii') . (2.10)

where the constant A‘" may vary from one iteration to the

next. It can be shown that F‘"('r'i) approaches the

ground-state eigenfunction with enemy -Q as r—no, in-

dependent ofthe initial function F°’(ii); and that the nor-

malizationcbcystherelaticn

_ Ftr+ll(-fi) Am

hm ———-— ,

.... rmta) 1

whereAistheccuplingccnstantforwhichtheground-

stateenergyis -Q . Constant normalization ofthefunc-

6?? 1""(3) (after convergence to the limit) requires

1' IA.

The GFMC algorithm for solving Eq. (2.9) is a simula-

tionofadiffusicnprocesswithbrsnching. Attherthstep

oftheprocesswehaveanensemble floffteldccnfigurao

ticns

7,-[3'5 a-l,2,3, . . . ,N,];

let 13(3) denote the probability distribution of 7,. The

nest msemble I’Ngisobtained from 0’,intwosteps:

(i)Esch i;branchsintok,newpoints,wherek,is

snintegerpickedbyarandomprocesssuchthattheex-

pectedvslueofkfis

(2.11)

-, mamas»
13'19’+5(n.)l" —' .

§ ‘143'.’

Thepcssibility k,-0isallcwed. Hmii",which maybe

thoughtofssaguessofthevalueofkcsnvsryfromone

ita'ationtothenext.

(iilThenmchofthek, pcintsismovedfrom ii',toa

newconfigurationh’ehosenfromtheprobability distribu-

tion

(2.12)

mammal/man
. (2.13)

gunman/man

I‘

 

Notethat theform d'K(3.i') bplia that 'n’ differs

fromh”,byatmostcneunit.

1'hemsanble5’,+.istheresnltd’pmccssingsllofthe

guns of f, in this way. The probability distribution

7-H”
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, N. . r)
r...(ii)=A.‘,’—z ‘7 ” K(h’.h"l[Q’+S(ii’)]"

”NH 3' dflii')

XP,(ii') . (2.14)

That is, the evolution of P,(ii) is the same as Eq. (2.10)

with

air—1'— =1"). (2.15)

H»)

Thedore. P,(ii) approaches the eigenfunction 17(3) as

r—scc. Also.sinceP,(ii)andP,+.(ii)havethessmenor-

malization, specifically 23?,(i)=l for all r, aftea suf-

ficient number of stepsin the diffusionweshall have

tr) N’

M _NIn}. .

'+l

(2.16)

This provide an etimate of the eigenvalue A after each

ite'ation. Note that A3" controls the sin of the ensenble;

in practice we readjust the value of A1," every few itea-

tions so as to keep the ensemble size approximately con-

stant. Thus the simulation yields an etimate of A and a

sequence of ensenble of ii-space configurations with

probability distribution F(ii ).

Use of the trial function ‘7 is called importance sam-

pling. 'I‘hediffusioninthespaceofiiconfigurations

is controlled by the biased Green‘s function

47(3)K('ri,ii ')ldrlii '). The factor ”(3)/ma ') biase

the diffusion in favor of move ii '-oii in directions that

increase drfii). Ifdr is an approximation ofthe ground—

stste eigenfunction, then this bias acceleate the conver-

gencetcthe ground statcsndreducefluctuationsofthe

etimate of the eigenvalue A.

The importance-sampling technique also provide a way

toetimateexpectation valueofopeatorsinthegrormd

state, provided a; is a good approximation of the e'ger-

functiond. Ifd; diffesfromdbyansmmmtofcrdee,

 

thentoordee’wehave

(11.4] )g (‘l4|5r)_“r|4 l‘r) (217)

(H‘) (N‘r) (¢r|¢r) ' '

Theleft-handsideisthedesiredeapecmionvalueofan

opeatorA. Theseccndtermontheright-handsideis

simply the expectation value in the trial state. The first

term on the right-hand side, which iscslled themixed ex-

pectationvsluecanbeetimatedss

(“A m) ‘ watchman-‘)....

(uh) acumen-')....

whee ( ). denotes the average of the erclcsed quantity

ove the ensenble geneated by the GFMC diffusion.

Since Eq. (2.17) is only valid to order 8, this estimate is

not trustworthy if (A )1 and (A ) are very diffeent.

The trial function e; is ordinarily obtained from a vari-

ational calculation. Thus the GFMC method can be

, (2.18)

80

navmwnzvsawnnmnswm a

thoughtd'eanextetsiond‘thevariationslprinciple,

thatimprovestheaccuraeyofnumeicsletimate. The

GFMC detemination of the e'genvalue A is in principle

exact,evetifdrisnotagocdapproximationofd;but

thatisonlyforslargeecughenenbleandinpractice

thecalculstionsarenotfesibleifdrdiffesfromdtco

much. Expectation value computed from the mixed ea-

pccmicc valuearevalidtoordeMr-dlznoiq. (2.17)

give the orde-(dr-dlcorrectiontotheordinaryvariso

tionaletimate. Inaddition,tthFMCapproachcsnins

dicatewhetheavariationalwavefunctionisanaccurate

rqn'eertationdthegroundststebytetingwhetheit

wa'kswellasanimportance-samplingftmction. ltcsnbe

prove, for example, that fluctuations in the measurement

ofAbyEq.(2.16)approachzeoasthetr-ialfunctionap-

proachetheexacteigenfunction.

Inthenextsectionwedescribethetwotrialfunctionsto

beusedforimportanccsamplingintheGFMCcalcula-

tions, and variational calculations which (ptimiae the

choiccoftheefunctions.

III. VARIATIONAI. CALCULATIONS

Weshallconsidetwotrislwsveftmcticnstoapproxi-

matethegrmmdstateoftheXYmodel. Theftrstisde-

finedasafunctioninthespaceofeconfigurationsas

_, )v

'|(0)-nfl(9;-0‘+|);

l-l

themegy(¢)|H|¢i)istobeminimizedwithrespectto

thechoiceofthefunctionuhu). Itcanbeshownthatthe

minimumeiegyisobtsinedifutvlisthegmtmd-state

eigenfunction of the Hamiltonian of a quantum pendu-

lum,

(3.1)

a!

h I—z—a‘”2 +Ml—cosm) s

whee -aga)gw. Theruultingvsristionslboundonthe

eiegyperspinis

2

—%5 “21+“! 9

(3.2)

(3.3)

wheeeoisthesmsllesteigenvalueofh. Weshallpreent

ourresultsintemsofanotheenegyEmrathethan

-—Q’,definedby

Eo'm-Qz:

aotethatEoistheground-stateeiegyof

N a: N

-‘2'§‘7+1‘2‘[l—cos(9,-0H.)].

'I'hcvartahmal'. m.oonhselmfi. IS

(3.4)

(3.5)

50
—390 .N (3.6)

Thesmall-andlarge-Alimitsofeosre
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2:

256

eozAm—%+O(A'm) as A—m .

FcrccmpariscntheelimitsfcrEo/Nareessilyshcwntc

be

2

coal-17+ +O(A‘) as A-oO ,

(3.7)

A2 SA‘ .

N~A-— 0(A ) A-OO ,50/ +—768 + II (3.8)

so/Nzimdm—-,-d1(N)+0(A-"’) as A»... .

whee

V: w - . 11’

d(Nl- N [l—ccsN] sin” ’(3.9)

forachainostpinswithpeicdicbctmdsryccnditicns;

thevalue cfd(N) is approximately 0.90 fcrNgreatethsn

10. Thus so and 50/1)! have the same small-A limit, but

so is greste than Eo/N for large A.

The trial function (I, describe a discrdeed state of the

spins. Specifically, the correlation betweei spins separat

«I by a distance I: is, for this wave function,

e . k

(¢)l°°‘(9i+r-91)l¢i)-=[I_'dwu2(m)ccaw

(3.10)

which decrease exponentially with k. We expect in to be

a good approximation of the eigenfunction for small A,

where the ground state is disordered in this way. But it

can already be seen by comparing the limiting forms (3.7)

and (3.8) that (1, become less accurate as A increase.

Thesecondtrisl wave function isdeignedtobesccu-

rateinthelsrgeA limit;itturmcuttobesccurateat

smallAaswell. Itisdeftnedintheccnjugatespacecfii

configurations as

‘2fillsflp (3.")

  

-i02"1AM?
u'

wheea is the variational paramete,snd

m

2
A (3.12)

Themativaticnfcrthisfcnnisthatwitha-litdupli-

catethegrcundstated'thesfin—wsvespprcaimaticncf

themodel, whichiskncwntobetbee’geistateinthe

hrge-A limit. The spin-wave szpproximsticn consists of

replacing l—ccs(A9)by -(A9) tn the Hamiltonian, and

extendingtherangeofo, frcm(—tr,rr)to(—co, an). The

reulting model is solvable since its Hamiltonian '3 qua-

dratic; itsgrcund stateisd, with as], but wheethe

variable a, take a continuum of value. We emphasize

thatthetrialfuncticndzisnctanaiveharmcnicspproxio

maticn,becausethen,arereuictedtointegevalue;this

isnecessyytoprcsevethepeicdicitydthewavefmc-

tiarinOspace.

Weevaluatetheexpectaticnvalue(h|1!|h) numei-

cally.usingtheMetrcpclisMcnteCsrioslgorithmtcgei~

eate O ”I dMW li,,il;,ii,...,l.] 'lth

Aw 3- in? —w—r) w’,-f
N P,

  

AWCAflONOPITIEGREEN'S-WNCTIONWCARID...
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My th'stnhuticn 4,1. and etimating the expats-

ticnvaluebytheaveagecfthecpeatcrovertheecon-

figurations. Thisisdcnefcr many value of the variation-

alparametea. 'I'heresultingdatacntheenegyasa

functicncfoistheifittoapclyncmisldsufl'tcieitly

hrgedegreetogiveagccdftt. Andftnallyweminimize

thepolynomislwithrepecttca.

Figurelissgraphofthevalueofathatminimizethe

elegy,assftmcticncftheccuplingccnstant A. Thee-

rmbarsarecslculatedinastnigbd’crwardwayfrcmthe

standardercrsinthepclyncmislccefftcimtsfcundby

thelest-square fitmenticnedintheprevicuspsrsgrsph.

1hecalculaticnisfcrachsind50spins,withpeiodic

bctmdsryconditicn.

Asantidpated.aspproachel.thespin~wavevalue,at

largeA. AsAdecreseJrincresseandscdzbeccme

moreshsrply peakedatii=0, which implieamcredisor

dedstateinaspace. Theeisafairlydramaticvana

ticnofafcrAnearl. Asimilsrvariaticnalcalculatico

fortheU(l)lattice gauge theoryinthreedimensicns. dis-

cusaedinkef.3,hasadisccntinuityinthevaluecfaasa

function of A.indicatingsphase transitioninthat model.

FigureZshcwsthevsriaticnalbctmdsonEo/Nasa

functioncfA.fcrbcthtrislfuncticns¢.andd;,alcng

with the large» and small-A limits give: in Eq. (3.8).

Clearly the trial function ‘2 deived from the spin-wave

approximation is more accurate than the disordeed func-

ticndr,fcrA>l; itseiegyspprcachethecorrectlsrge-A

limit, as it must by construction. The spin-wave function

isalsoagccdapproximaticnatsmallA,wheeitsenegy

is tally slightly large than that of the discrdeed state.

Bothfuncticns approach theccrrectsmsll-A limit.

Thetwottialfunctionshanddzareanslogsofthetri-

al functions that we used in U(l)-lattice~gauge-thecry cal-

culaticns.3 The analog of 1’) is a product of single»

plaquettefunctions,sndthesnslcgcfd;deivefromthe

free~fteld lurmcnic approximation of the U(1) gauge

theory.

InthenextsecticnwedecribethereultschFMC

elculaticnsthatttaetheetwotrialfuncticns for impor-

tancesampling.

0"!

1.10 l a

0" l ‘.

i "o .......

0.1. e a v 1 fl  
PIG. l. VariatienlparameteavscouplingemetantA.
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FlG.2.Variationaletimatedthegronnd-ststeenegype

spinvscouplingccnstantA.'I'hesolidanddssbedcurveare

peturbation expansions forsmallandlarge A. respectively. The

a'uaes(+)andcircles(0)arevariationalestimateswithtrisl

wave functions in and”. repectively. Errorban aremuch

amallethanthesizecfthepcints.

IV. MONTE CARLO RESULTS

Figure 3 is a graph oon/N. the grctmd-state elegy

pe spin of the Hamiltonian (3.5), as a function of the cou-

pling parameter A, from Greei‘s-function Monte Carlo

calculations with importance functions in and ‘2. The

curvesarethe variationalboundscbtsinedinSec.III,snd

the points are the GFMC results. The GFMC calculs~

tions used an etsenble of approximately lm configura-

tions; this essenble size change with each iteration. The

results in Fig. 3 are aveage over 8m iterations. Each

GFMC point required approximately 90 sec of computa-

ticntimeonaCDCQbeflOccmputeatMichigsn

State Univesity.

 m V v V i ‘7 v V a v

A

 

FIG. 3. Mmteercetimated’thegrcund-stateeiegype

qiavsccuplingccnstsntA. Thesolidandthshedcurvesre

variationsletimatewithuialwavefunctionsd,andd;.repec-

lively. Thecrcsset+lsnddrcletolarethteeroresults

with importsncefnnctionsd.andd;.repectively.
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nAvmerzvsAwnnAmenswm n

ThereultsshownarefmachainofSOspinswith

.peicdicbcundaryccnditicn AsAvariefrchtcucthe

elegy intepolate between the small-A asymptotic

behavior described well by the discrdeed wave function

w. and thehsrmcnic spin-wave behavior described by”.

Thecr'cssovefrcmoneformtothectheoccursforA~l.

Thetwo MonteCarloetimateareslmcst equal,and

are ccnsistert with the variational bounds. However,

theeisatendercyfcrtheGFMCetimateobtsinedwith

thediscrdeedfuncticndfioliehigheinenegythan

thstobtainedwith dzinthe region Azl. Furthemore,

thefcrme etimate have greate uncetainty,asindicated

bytheercrbars,thsnthelatte,forwhichtheerorbsrs

aremuchsmallethanthesizeofthepcintplcttcd. Thee

ercr bars come only from the fluctuation associated with

stochastic sampling. Thee two terdetcie are not tmex-

pected;theyreflectthefactthat¢.isnctagcodapproxi-

mationcfthegroundstateforAzl,wheethespinssre

mcreccrrelatedthanintl.

Itisinteetingtoccmparetheereultstotheanalo-

gous calculations for the UH) lattice gaugetheory in 3

and2spatisl dimensions. Inthethree-dimensicnsl model,

the Monte Carlo reults obtained using the discrdeed

wave function for importance sampling are definitely dif-

feent than thosecbtsined with the harmonic wave func-

tion.intheregionoflargeA;infactthefcrmereultssre

inconsisteit with the variational bound provided by the

harmonic wave function. We inte'pretthisssevidenceof

thephssetrsnsitioncfthethree-dimeisicnsl U(l)gauge

theory: thediscrdeed stateismetsstablewith repectto

ther-‘MC diffusionproces. Inccntrast,theMonte Car-

loreultsarethesamefcrthetwoimpcrtsnceftmcticnsin

thetwo-dimeisicnslmcdel;thisisccnsistettwiththefact

thsttheeisaophasetransiticninthetwo-dimmsicnsl

model.

OurXYmodelresultsshowevidenceoftheKcste-litz-

Thcules phasetransition,inthatthediscrdeedfuncticn

dcenotprovide effective importance sampling for Azl.

Thediscrdeedstateisnctmetsstableasitisinthe

three~dimetsional U(1) gauge theory,buttheeiegyeti-

mateobtainedwiththediscrdeedimportancefuncticnis

slightly large, and has large fluctuations, than that ob-

tained with the spin-wave function in this region. The

diffeence between the 11' model and the U(1) gauge

model is explained by the fact that the Koatelitz-

‘l'houlesphsaetransiticnissninftnitecrdetransiticn,

whilethegaugesmcdeltransitionissaeccnd-ordertransi-

‘I‘heKcstelitz-‘I'houlwrenormslizationogrcupcslcula-

ticnpredictsthstthephssetransiticndtheXYmodel

cccursatA-l.02;thispcintisdiscussedbtieflyinthe

Appeidix. That valueis pefectly consistent with thein-

tepretsticn ofour results given above. ForAsl.02the

groundsflteisdiscrdeedaofiactsasaneffectiveimpcr-

tancefuncticn;butfcrA>l.02thespindirectionsare

moreocn'elstedthanindlsothisfuncticngiveweske

hnpcrtanceasmpling.

FigureflanndflblshcchnteCsrloetimateofthe

cmrdaticnfuncticncfneighbclingspins

r-(I-”(aj-a‘+|)) . (‘on
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F164. The expectation value of l-ccs(0,-0,—+,) vs cou-

pling constant A. The curve are peturbsticn expansions. The

triangle (A) are simple expectation value in the variational

wavefunctions,andtheeosse(+)areMcnteCarloetimate

dthe mixed expectation value, F4. (2.17). The trial functions

ared;fcr(a)and¢.for(b).

Notethat”isrelatedtotheeiegy£oby

_l_dE__9_

NTA '

'I'heMcnteCarIOpointsinF'tgs.4(a)and4(b)arecbtained

from the mixed expectation value, i.e., liq. (2.17), for the

importance functions d, and in. repectively. The curves

m the graphs are from small- and large-A perturbation

theory. Here thee are marked diffeence betwee) the

Monte Carlo reults. In particular, the GFMC etimate

cfrobtsinedwiththedisordeedimportancefuncticn

have large uncetainty and differ significantly from the

mdinary expectation value in m, in the region Ag].

Again, this is precisely what we expect from calculations

7': (4.2)

with an importance function that does not approximate .

the ground-state eigett'unction. It is interesting to note

that the GFMC and variational etimate of 7 obtained

with the spin-wave function 4); are almost equal for all A,

suggetingthatdzisquiteagocdrepreentsticnofthe

dysfunction
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V. SUMMARY

Inthispapewedecribereultsofanapplicaticncfthe

Green's-function Monte Cario method to the Hamiltonian

XY model. Thee calculations are parallel to calculations

decribedinanerliepapefortheccmpactUllllattice

gauge theory in 2 and 3 spatial dimensions.

Intheemcdelsanimportsntissueistheexisteiceand

natureofaphssetransitionseparatingadisordeedphase

and a phase in which the model is accurately described by

its harmonic approximation. We find that the GFMC re

sults give a good indication ofsuch a phee transition. In

particular, we can judge whethe a wave function reen-

ble the ground-state eigenfunction by its pe'formance in

rducing fluctuations when used in the importance-

sampling procedure. In our calculations the disordeed

trial function peforms poorly for value of the coupling

cmstsnt for which the harmonic wave function approxi-

mate the ground state For the threedimetsicnal com-

pact U(1) gauge theory the inadequacy of the disordeed

trial function is obvious: it yields elegy estimate that

are greater than the variational bound provided by the

harmonic wave function, at least for the ensenble size

that weusein the GFMC diffusion. FortheXI’mcdel

thisinadequacyismoresubtlebutcanbeseeninthelarge

fluctuations of elegy etimate.

The GFMC method cffes a second way to jrdge

whethe a trial function represents a good approximation

of the ground state, based on the mixed expectation value,

i.e., Eq. (2.17). If of approximate d then the mixed ex-

pectation valueofan cpeatcrA isnearly equal totheex-

pectation value of A in ‘7; if thee two quantitie are

quite diffeert, the) or cannot be a good approximation

ofd. Thus, for example, the increasing diffeeice between

thetwoestimateofi’eAincressebe-ycnd l inFig.

40>), is soothe indication that the disordeed wave funCo

tion doe not reemble the eigenfunction for Ag 1.

The Monte Carlo results imply by thee conside'aticns

thatthegroundstateoftheXYmcdel changefroma

discrdeedstatetoastatebettedecribed byshsrmonic

wave function for Aal. This valuets in agremient with

the Kcste'litz-Thoules renormalization-group mislysis,

which predicts a phase transition at A- 1.02.

APPENDIX

TheocnnectionbetwemtheHsmiltcnisntZJHndthe

partition function (1.1) of the classical XY model deive

from the Feynman path integral of the quantum problen.

The path integral for the Hamiltonian H is, with

basin-cum.

z: IdOfltk“, (Al)

whee 40m) denotes integration over paths'in the space of

0cmfiguraticns,andA istheimaginary-timeacticn

A= fair: +A[l-al(9,+.-0;)].

  

(A2)
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Wencwconsideadiscreteapproximaticncfthetime

coordinateletrtakethevalue

t,=aj, j=0,l,2,3. . .. (A3)

withintevalctobespeeifiedlate. Ifoissrnallccm-

paredtothetime ove which 9,(t)varietheiwe msyre-

placetheintegraloverbyasumovej,andthetime

deivativebyadiffeence;i.e.,

Idt-vaz ,

1

(A4)

d0, I . .

dt -0 a[9(1,j + I)-9(t,j)] ,

whee 0(i.j)=0,(t,). Again for small a, we may assume

that 0(i,j + l )—0(i,j) is small and approximate

[0(7.j+1)-01i.j))’=211-cct191i.j+1)—ou,j)n .

(A5)

With thee substitutions the action become

A - E 3'?) 1-ccs[9(i,j+1)—ou,j)n

+cA)l-ccs[9(i+l,j)—9(i,j)]l . (A6)

Atthispointweletheintevalcbe(l/2A)m;thet

DAVIDW.I-IBYSANDDANIELR.S’IUMP
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A = 2 {2-m[0(i.j+ l)-0(r‘.j)]

U

A

2

  

—ce[0(t'+l,j)-0(i,j)]] . (A7)

Thelattice“pathintegral”ove9(iJ)ispreciselythepar~

tition function (1.1) for classical statistical mechanics of

theXYmcdel,wheethedir-ectionofthespinat(i,j)is

defined by the angle 0(i.j), and the invese tenpeature is

in

(A8)

2

This deivaticn of the connection betweei the one-

dimensicnsl quantum problem and the two-dimensional

classical statistical mechanics problen is the invese of the

usual deivaticn,’ which starts frun the partition function

anddeivetheHamiltcnianHasthetransfematrixin

the limit that one ofthe dimensions become continuous.

The Kcstelitz~Thculess phase transition occurs at in-

vese tenpeature £22.24”, according to a

renormalization-group calculation.‘ Theefore, by Eq.

(A8) the critical vslueofA is 1.02. This value is pe'fectly

ccnsistert with the results (1' the GFMC calculations

decribed in Sec. IV.

3..
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CHAPTER 7

Summary and conclusions

The Green's function Monte Carlo (GFMC) method has been adapted for

application to Hamiltonian lattice gauge theories, and has been applied

to the SU(2) and 0(1) theories. The results obtained so far are

restricted, by the availability of computer time, to estimates of simple

quantities, specifically the ground state energy per plaquette Bo/Np and

the mean plaquette field <¢(p)>. on a 3 x 3 x 3 lattice. This lattice

is small compared to those used in path-integral Monte Carlo

calculations, but the average quantities calculated here are rather

insensitive to lattice size. This is indicated by perturbation theory

calculations: for small A the results are independent of lattice size,

and for large A the results are only weakly size dependent.

The GFMC calculations use a variational wave function as an

importance function to bias the Monte Carlo sampling procedure in favor

of regions of configuration space in which the wave function is large.

Thus, if the variational wave function is a good approximation of the
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exact ground state wave function, the fluctuations of GFMC estimates are

greatly reduced and the rate of convergence of the estimates to their

asymptotic values is increased. By comparing the GFMC results to the

variational results one can obtain some indication as to how accurately

the variational wave function models the exact vacuum state. Some care

is necessary, however, when interpreting the results in this way. If

there is considerable disagreement between the variational and GFMC

results then it is clear that the variational wave function is not a

good representation of the ground state.. The converse is not true. If

the GFMC results lie close to the variational results one cannot

conclude that the variational wave function is a good representation of

the ground state. Calculation of other quantities might reveal a

considerable disagreement.

A good example of this kind of behaviour is provided by the SU(2)

results obtained using a disordered variational wave function discussed

in chapter 3. There it was found that the GFMC estimates were close to

the variational results even at large A where the variational wave

function is known to~ be inaccurate from variational estimates of the

string tension [9] and mass gap [10] of the theory. To conclude from

the quite close agreement between the GFMC and variational results on

the energy per plaquette and the mean plaquette field that the

variational wave function is a good approximation of the exact ground

state wave function would clearly be quite wrong.
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The results on the U(l) model in the n-space formulation using a

disordered trial wave function showed similar behaviour. In that case,

though, the approximate agreement between the variational and GFMC

results was due to metastability of the disordered state with respect to

the GFMC iteration. Presumably, because of this metastability, any

quantity computed by the GFMC method using the disordered importance

function would give results close to the variational results. If the

large A limit were not known, it would be very difficult to discover

such metastability. Perhaps by increasing the ensemble size to a

sufficient level the metastability could be removed, but in view of the

computational effort required this is probably not a good way to

proceed. A better approach would be to use a different importance

function to check the results, but this, of course, is not possible when

one only has a single variational wave function available as is the case

for the SU(2) theory.

In conclusion, the GFMC method is a potentially powerful tool for

use in lattice gauge theories but it appears to be necessary tohave

available at least two variational wave functions, or at least to know

the limiting behaviour of the theory for large and small A, in order to

interpret the results correctly. Future work should therefore be

devoted to the development of more accurate variational wave functions

for non-abelian theories, by incorporating into the wave function

explicit couplings between different plaquettes. The resulting

variational wave functions, although interesting in their own right,

would be very useful as importance functions in the GFMC method.
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Abstract

An application of the Green's function Monte Carlo method to

the Hamiltonian formulation of the SU(2) and U(1) lattice gauge

theories is described. The Green's function is that of a diffusion

process in the gauge group space. A small-step approximation of

the diffusion distribution is used in actual calculations. Also, a

variance reduction technique is implemented, importance sampling

with a disordered trial wave function optimized by the variational

principle. The results of computations are reported for a 3)(3)<3

spatial lattice. The quantities computed are the ground-state

energy and the expectation value of the magnetic energy, as a

function of the gauge coupling constant. The results are compared

to variational estimates and to weak-coupling perturbation theory.
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I. Introduction

The Green’s function Monte Carlo (GFMC) method is a numerical

method for computation of properties of the ground state of a

quantum system with many degrees of freedom. The method was

originally developed for application to many-body problems in

nonrelativistic quantum mechanicsl‘z. It is also applicable to the

Hamiltonian formulation of lattice gauge theories defined by Kogut

and Susskind 3.

The Hamiltonian formulation is an approach to lattice gauge

theories that is complementary to the Wilson path-integral

formulation 4. The properties of the two models are expected to be

qualitatively similar. Each approach has advantages. The

Hamiltonian approach is a more conventional quantum mechanics

construction, in which the theory is defined in terms of field

operators and a Hamiltonian operator; the basic problem is to

obtain the energy eigenstates. The usual approximation methods of

quantum mechanics, such as perturbation theory"5 and the variational

principle 6’7, can be used to study the eigenstates. This operator

formulation provides a different kind of insight into the nature of

the gauge theory than the path-integral, because it deals directly

with the quantum states of the fields.

Monte Carlo methods are suited to numerical studies of systems

with many degrees of freedom. Some very important results on

lattice gauge theories have been obtained from Monte Carlo

calculations on the path-integral formulation of the theories 8’9.

Therefore it is natural also to develop Monte Carlo methods for

application to the Hamiltonian formulation of the theory. The GFMC

method, which has already been applied successfully to quantum

many-body problems, is an obvious method to try.

The first problem to solve regarding a quantum system with

many degrees of freedom is to compute properties of the ground

state. That is the subject of this paper, for the SU(2) and U(1)

lattice gauge theories in three spatial dimensions. Specifically,

‘we show results of GFMC computations of the ground-state energy, as
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a function of the gauge coupling constant, and of the expectation

value of a plaquette variable related to the magnetic field. These

quantities are analogous to the mean plaquette action computed in

the earliest Monte Carlo studies of path-integral lattice gauge

theories 9; they are interesting in that they provide an indication

of the transition between the strong and weak coupling limits of

the theory. ‘

Our numerical results are limited to a small lattice, a

3 x3 x3 spatial lattice. This is small by the standards set by

Monte Carlo calculations on the path-integral, but not small

compared to other GFMC applications. The SU(2) gauge theory has

243 independent quantum variables for a 3::3:<3 lattice. There is

no fundamental problem in using a larger lattice; the only

limitation is the availability of computer time. The quantities

described in this paper are not very sensitive to lattice size,

because they are averages over the entire lattice. Thus the

results are already interesting for a small lattice.

We hope to use the GFMC method to study other properties of

lattice gauge theories, such as the string tension or the energies

of elementary excitations. We have carried out some numerical

calculations of these quantities by the variational principle17’lo,

but it remains for the future to extend the Monte Carlo method to

those calculations.

The problem presented by the Hamiltonian formulation of a

lattice gauge theory is quite different than that of the path

integral formulation. In the path integral, the probability

distribution of the fields is given; it is emBS where S is the

lattice action and B is related to the coupling constant. Then the

aim of the Monte Carlo calculation is to generate a set of field

configurations with this known distribution, e. g. by the

Metropolis method or Creutz's heat-bath algorithm 9. In the quantum

problem, in contrast, the ground-state distribution of the fields

is not known. What is known is only that the wave function is the

lowest eigenfunction of the Hamiltonian. The aim of the GFMC

method is to generate a set of field configurations with a
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probability distribution related to the ground-state eigenfunction.

But the GFMC algorithm does not derive from an g_priori

distribution; rather, it derives from the eigenvalue equation,

written as an integral equation.

The integral form of the eigenvalue equation resembles a

steady-state diffusion problem. The origins of the GFMC method are

found in techniques of Monte Carlo solution of such diffusion

problems. The idea is to simulate diffusion of an ensemble of

points in the configuration space. The diffusion process is

defined such that the evolution of the probability distribution of

the points is identical to iteration of the eigenvalue equation.

Since iteration of the equation converges to the lowest

eigensolution, the GFMC ensemble of points converges to a set with

probability distribution equal to the ground-state eigenfunction.

Perhaps the most interesting aspect of the GFMC method is the

use of an importance sampling technique, in which a trial wave

function is used to guide the diffusion to the significant region

of configuration space. Importance sampling reduces the variance

in the Monte Carlo estimates. But the technique is potentially

more valuable than a mere computational trick. The trial function

must approximate the ground-state eigenfunction to provide strong

importance sampling. One may gain some insight into the structure

of the eigenfunction by studying importance sampling with trial

functions of different forms.

In the calculations described in this paper the wave function

is a function of the gauge field, and the GFMC ensemble is an

ensemble of gauge-field configurations. In the language of quantum

mechanics, we are using a basis for the Hilbert space in which the

gauge-field operators are diagonal. It is possible to use instead

a basis in which the electric-field operators are diagonal. In

fact we did use such a basis in an earlier application of the GFMC

method 11 to the compact U(1) gauge theory 12 and to the XY model 13.

For that basis we constructed trial functions for importance

sampling that approximate the eigenfunction in both the strong and

weak coupling limits. For the gauge-field basis, however, we have



92

not succeeded in constructing a useful weak-coupling trial

function. All the results reported here use a disordered trial

wave function for importance sampling.

The disordered wave function is an accurate representation of

the ground state in the strong-coupling limit. It is a product of

independent functions of the plaquette variables; thus it is gauge

invariant, and has minimal correlation between the gauge fields.

Comparison of the variational estimates 7 based on this trial

function and the GFMC results should show how well this simple wave

function represents the vacuum state.

The remainder of the paper consists of Section II, on the

details of our application of the GFMC method to the 80(2) and U(1)

lattice gauge theories, including the implementation of importance

sampling with the disordered trial wave function; Section III, on

the results of computations for a 3:(3:t3 spatial lattice; and

Section IV, a brief summary. We have also included an appendix on

a technical point: the ”growth estimate" fails to give an accurate

measurement of the eigenvalue in our calculations.
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II. The Green's function Monte Carlo method

A. Application to lattice gauge theories

In this section we describe an application of the Green's

function Monte Carlo (GFMC) method to lattice gauge theories. The

details are described for the SU(2) gauge theory; the analogous

application to the U(1) gauge theory is an obvious modification.

The field variables of the SU(2) lattice gauge theory are

elements of the group SU(2); an element U(i) is associated with

each link 2 of the lattice. The group element U(E) may be

specified in terms of a 3-component gauge field Aa(£) (where

a=1,2,3) or in terms of three angular variables (w(£),8(£),¢(£));

these are defined by '

U(1) 8 exp (é-aaAaUU

= cos M2.) + 1 aa na(£) sin M2) , (2.1)

where Ga denotes the Pauli matrix and na(£) is the 3-dimensional

unit vector with polar angles (6(2),¢(£)). The relation between

the two representations is

A80.) - 2 M2.) na(2,) . (2.2)

Also, there is a 3-component electric field Operator 88(1)

associated with each link, defined by the commutation relation

1

”am . 0(2)] - "fan um . (2.3)

The operator 38(2) is a differential operator acting on functions

of the gauge fields Aa(£), or equivalently on functions of the

angles (wcz).e(x>,¢<2>); in terms of A.(‘)'

a 1 a
Ea - ”(Ma-a — K7 (f(A)-1) AaAbTAb

i 3

- TeabcAb—a-A ’ (2.48)
c
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where

A =- (AaAa)1/2 , f(A) =-§‘— cot-g— . (2.413)

The Hamiltonian of the SU(2) gauge theory is:3

1 2 2 4 .
HKS'Tg 2E8 +-§ZZ¢(P), (205)

1 p

the gauge-invariant plaquette variable ¢(p) is

1 + +
¢(P) ‘ 1--§-Tr U(11)U(£2)U (£3)U (in) (2-6)

where (21,22,23,£H) are the links that define the plaquette p. We

use periodic boundary conditions in the definition of the plaquette

field 0(p), to minimize finite size effects in the numerical

results.

In our GFMC calculations we use a Hamiltonian H that differs

from that in Eq. (2.5) by an overall scale factor, and an additive

constant; H is

H = K - Ari, (2.7a)

where

K - is: (2) , (2.7b)

9.

1 ' + +
M - Z ( 1 +7 TrU(£1)U(;2)U (13W (2.») . (2.7c)

p

The relation between the coupling constants A and g is

A - 8/g“ . (2.7d)

The Hamiltonians are related by

..l. 2 ..HKS 2 g (H Zle) (2.8)

where Np is the number of plaquettes; obviously they have the same

eigenstates. We write the Hamiltonian in this form because our

application of the GFMC method requires that the magnetic energy be
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negative.

The starting point of the GFMC method is an integral equation

for the ground-state eigenfunction of H. Let YlAa] denote the

eigenfunction, a function of all the link variables; it obeys the

eigenvalue equation

. - 2 f

where the ground-state energy is denoted by -Q2 14. Or, Eq. (2.9)

is equivalent to the integral equation

HAa]-Ajdn G[A8,Aa]M[Aa]‘P[Aa]; (2.10)

the functions that appear in the integral, which are functions of

the full field configuration, are defined by

'1 , I

([A8] | (x+Q2) |[Aa]> -c[Aa,Aa] , (2.11s)

< [A8] | M | [Aa’] > = MIAa] :1 5( 118(2), Aa’(2)) . (2.11b)

The integration measure for SU(2), which is expressed most simply

in terms of the angular variables, is

d9 - Hdw(£),

E

d000,)" 7—1;,— sinzupu) sin am am) dam aw); (2.12)

the domain of W and 6 is (0,1) and that of o is (0,2n). The

normalization of the delta function in Eq. (2.11b) is

111.1(2) a (Aa(9.),Aa'(£)) - 1 . (2.13)

The function G[Aa,A;1 is the Green's function of the operator

I<+Q2 , defined by

(K + Q2) 0 [A8, Aa'] = n G[AaUL), 11812)). (2.14)

z
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Equation (2.10) is an eigenvalue problem, in which Q2 is the

given quantity, with A and VlAa] the eigenvalue and eigenfunction

to be found.

The GFMC approach to the solution of Eq. (2.10) is based on

iteration of the equation by simulation of diffusion. It can be

shown that iteration of Eq._(2.10) converges to the ground-state

eigensolution. However, it is not possible to deal directly with

YlAa] because its domain is multidimensional; for the smallest

lattice gauge theory, a 3x3x3 spatial lattice, there are 243 link

variables. Instead, the aim of the GFMC method is to obtain a

probabilistic representation of the wave function; specifically, to

generate an ensemble of field configurations

ENS= { A(°)(2)- -1 2 3 N} (215)
a ’0 999°“09 9 0

such that the probability distribution of the configurations in ENS

is proportional to YIAa] 15. The GFMC algorithm generates ENS by a

process based on iteration of Eq. (2.10). The process is a

simulation of diffusion with branching, in which:

(i) the branching fraction f of the configuration

A§°)(2) is proportional to M[A;°)], and

(ii) the diffusion creates f new configurations from

A§°>(£), with probability distribution G[Aa,A§°)].

Each step in the evolution of the probability distribution of the

ensemble is identical to one iteration of Eq. (2.10). The

probability distribution converges to the ground-state

eigenfunction.

The GFMC process described so far is incomplete, because

applications of the GFMC method to systems with many degrees of

freedom always require the use of an importance sampling trick, a

technique also called directed diffusion. One implementation of

importance sampling for lattice gauge theories is described in the

next section. But before proceeding to that subject, it is useful

to discuss the nature of the Green's function G[Aa,A;].
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The crucial problem that must be solved in order to apply the

GFMC method to a quantum system is to find a way to sample the

Green's function as a probability distribution. The first step in

this lattice gauge theory application is to separate the Green's

function G[Aa’Aaf] into a product of factors, each of which acts on

the fields of a single link. This is accomplished by the formula

-1 '

([Aa]|(K + Q2) |[Aa]>

.. - 2 ..

- [0 dt e N <[Aa] le tKl [Aa'l> - <2-16>

The left-hand side is the energy-dependent Green’s function

G[Aa,A;1; the integrand on the right-hand side is the related

time-dependent Green's function. Since K is a sum of single-link

operators, the time-dependent Green’s function factorizes, as

-tK ’ -tk I

<[A ]| e ”A ]> - 11 (A (2)! e 9. IA (1» (2.17)
a a z a a

where

. 2 .
k2 Ea(£J , (2.18)

each factor depends only on the field variables of a single link.

This representation leads to a method of sampling the distribution

G[Aa,A;1: first select a diffusion time interval t by a random

process with probability’distribution

- 2

Q2e ‘Q dt ; (2.19)

then for each link select Aa(2) with probability distribution

. I - 'tk ,

g( t, 118(2), A8 (2)) (118(2) | e z | A8 (9.) > . (2.20)

Thus the problem reduces to sampling g(t;Aa,Ahf), the diffusion

Green's function for the fields of a single link. Furthermore, an

important simplifying approximation can be used. In a large

system, the ground-state energy Q2 is large, proportional to the

number of plaquettes. Then the diffusion time interval t chosen in

accord with the distribution (2.19) must be small. Thus it is only
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necessary to sample the diffusion Green's function (2.20) for a

small time interval. In the small-t limit, this distribution

describes ordinary free diffusion.

As a first step toward understanding the Green's function

g(t;Aa,Aaf) it is useful to study the analogous function for a U(1)

gauge theory. The group element of the U(1) gauge theory can be

expressed in terms of an angle 9, which lies in the domain (0,2n),

U a e16 ; (2.21)

the corresponding electric-field energy is just

k - -32/an. (2.22)

The single-link diffusion function for the U(1) gauge theory is

< e | J” | e'> a 2 (4110-1/2 exp(-(6-6'+2nv)2/4t); (2.23)
vs—m

this is the Green's function of free diffusion on a circle. In the

limit of a small diffusion time interval t, the Green’s function is

approximately

< e | e-tk | e'> s (4flt)-1/2exp(-(6-6')2/4t) , (2.24)

with the understanding that when 8 diffuses outside its domain

(0,2u), it is moved back inside by a shift of iZn. That is,

diffusion on a circle may be approximated by free linear diffusion

made periodic. To sample the distribution in Eq. (2.23) for a

small time interval, let

6 8 8' + a (mod 2n) , (2.253)

where s is a random variable with probability distribution

(4st)-1/2 exp(-£2/4t) . (2.25b)
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The simplification in Eq. (2.25), based on the small-step

approximation, extends to the SU(2) gauge theory. However, the

analysis is complicated by the nontrivial geometry of the group

SU(2).

To understand the nature of the Green's function g(t;Aa,Aa’)

requires an insight into the geometric structure of the group

SU(2), as defined by Eqs. (2.1), (2.3), and (2.12). First, an

arbitrary group element U can be expressed as

0.x +1342, (2.26s)
1.

where

x2 + £2 . 1. (2.26b)“ .

Thus there is a one-to-one correspondance between SU(2) group

elements and points of the 3-dimensional surface of a sphere in

four dimensions; we refer to this space as 83. The angular

variables (w,6,¢) in Eq. (2.1) are simply 4-dimensional polar

coordinates of a point of S3. Second, the SU(2) integration

measure dm is the volume element of S3. Third, the operator k is

proportional to the angular part of the d’Alembertian in four

dimensions,

- — ... 2 ...
4k maw(81n Waw) (2027)

3111124: (silne 336(51ne 5%)4Hs—irszH-g-E‘Z )°

Therefore the Green's function g(t;Aa,A;) is the distribution for

free diffusion in S3. In the limit of a small time interval t the

diffusion distance must be small, and then the curvature of the

space has a negligible effect. That is, the small-t limit of the

diffusion Green's function g(t;Aa,Aar) is equal to that of free

diffusion in the tangent space at A43
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The small-t limit of the Green's function g(t;Aa,Ahr) is most

easily written for Aa and A8' near zero, 1. e. for the corresponding

group elements U and 0' near the unit element. Then the Green's

function is approximately equal to that of a U(l)z<U(l)v<U(1) gauge

theory, 1. e.

(ma/2 exp(-(Aa-Aa')2/4t) ; (2.28)l
l
!

g(t; A8. Aa’)

this is only valid near the unit element. The generalization to a

small diffusion step at an arbitrary point in the group is obvious.

Let (w',6’,¢') and (w,6,¢) be the angular variables corresponding

to the gauge fields Aa' and Aa; also let the small changes in these

angles be denoted by

64) =- ¢’-w, 66 -= e’-e, 6c) = ¢’-¢. (2.29)

The distance between the two group elements is given by the line

element of 83,

(ds)2 = ((5);)2 + sinzw' ( (59»? + sinze' (5W) . (2.30)

Then the generalization of Eq. (2.28) is16

g(t; Aa’ Aa’) :‘-.' (n)-3/2 exp( - (ds)2/ t ) . (2.31)

It is also useful to define a 3-vector 5; by

a; . 8' 6w + sin ¢'( 3' as + sin e' 3' 15¢ ); (2.32)

A

here 9'. 6’, and 3’ are the unit vectors in the w', 6', o’

directions at Agk The 3-vector 6; may be described as the

diffusion move in the tangent space at A4} since w’, 8', ¢' are an

orthonormal basis for the tangent space. Note that the line

element (65)2 is equal to the length of 63’, i. e. the distance

moved in the tangent space.

In detail, sampling the distribution g(t;Aa,Aaf) in the small-t

limit is a 3-step procedure:

(1) Construct the tangent space at the original point,
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which corresponds to Ag}

(ii) move in the tangent space according to the distribution

of free diffusion, for time interval t;

(iii) project back into 53, to the point that corresponds

to A .

a

The algebraic realization of this geometric picture is contained in

the formulas in the preceding paragraph: The tangent space is

defined by the basis vectors (w',6',¢'). Diffusion in this space

is a move

5‘; - 5x1 w'+ 6x2 e'+ 5x3 q)’ (2.33)

with probability distribution (2.31), i.e. free diffusion. The

corresponding move in the SU(2) space is obtained from the relation

between the changes in the angles and the components of the move in

the tangent space,

6x1 = 514'), 6x2 8 sin w' 66 , 6X3 3 sin (1' sin 8' 64) . (2.34)

Projection back into $3 is nontrivial if the diffusion occurs near

a point at which the coordinate system (w,9,¢) is singular, e.g.

near w'-n or 6'8".

There is an analogy between the SU(2) and U(1) procedures

discussed above. Step (ii) in the SU(2) case is ordinary free

diffusion in the 3-dimensional Euclidean tangent space, analogous

to the linear diffusion of Eq. (2.24) in the U(1) case. Step (iii)

in the SU(2) case restores the point to the sphere, analogous to

the use of Eq. (2.25) to put 6 back in the interval (0,2n) in the

U(1) case.

This discussion of the Green’s function G[Aa,A;1 is the basis

of our present application of the GFMC method to lattice gauge

theories. But we also use importance sampling, which leads to a

more complicated sampling problem than that discussed so far. That

is the subject of the next section.
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B. Importance sampling

The importance sampling trick, also referred to as biased or

directed diffusion, is used to reduce the variance of the Monte

Carlo estimates. This technique is a necessary part of Green's

function Monte Carlo (GFMC) calculations on systems with many

degrees of freedom 2.

The trick is to introduce an importance function u[Aa(£)],

which approximates the ground-state eigenfunction as closely as

possible, and to rewrite the integral equation (2.10) as an

equation for the function17

FIAa] - MIAa] uIAa] HA8] . (2.35)

The equation for FIAa] is

FlAa] = A fan GDIAa, Aa] MlAa] FlAa] , (2.36)

where

ulAa] uIAa]

MlAa] ulAa]

 GDIAa, Aa'] -= G[Aa, Aa'] . (2.37)

This has the same form as the original Eq. (2.10), and therefore

the GFMC algorithm stated briefly in Sec. IIA applies also to this

equation. Here, however, the diffusion is governed by the function

GD[Aa,Aa'],'which differs from the Green's function by a biasing

factor, the ratio of the. function MIAa] ulAa] before and after the

diffusive move. This factor biases the GFMC diffusion step in

favor of moves that increase the importance function ulAa]. If

“[Aa] approximates the ground-state eigenfunction, then the biasing

reduces the variance of Monte Carlo estimates.

Of course introduction of the biasing factor implies that the

ensemble of configurations that emerges from the GFMC iteration of

Eq. (2.36) has probability distribution FlAa].

It is important to realize that the distribution of the

configurations in the GFMC ensemble is not YZIAa]. This is a

weakness of the method, because the interesting quantities in
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quantum mechanics are expectation values in the distribution

WzlAa]. However, the method does provide ways to compute certain

ground-state properties. In particular, there is a formula from

which the eigenvalue A can be computed, in a way which is exact in

the sense that the only error is statistical. Also, there is a way

to estimate the ground-state expectation value of an operator, in

which the trial function is used as an approximation of the

ground-state eigenfunction; this approach is not exact, but has

some systematic error in addition to the statistical error.

The coupling constant A corresponding to the input

ground-state energy -Q2 is the unknown eigenvalue in this problem,

the basic quantity to be computed. It obeys the formula

FlAa] -1
A . [d9 —-;]- (u [Aa] (K+Q2)u [Aa]) / [an FlAa] . (2.38a)

MlA

Since FlAa] is the probability distribution of the configurations

in the GFMC ensemble, the GFMC estimate of the coupling A is

A s < (u-1[Aa] (1(+Q2)u [A8]) / M[Aa] >ens , (2.38b)

where < >ens denotes the ensemble average. In principle this

estimate does not depend on whether the importance function uIAa]

is a good approximation of the eigenfunction, since Eq. (2.38a) is

valid for any “[AaJ . The only error is statistical. However, the

variance of the Monte Carlo estimate depends on the choice of

ulAa]. The variance is small if ulAa] approximates the

eigenfunction; in fact, if uIAa] is equal to the eigenfunction then

the right-hand side of Eq. (2.38b) is equal to A for any ensemble of

configurations, and so there is no variance. In practice the trial

function must approximate the ground-state eigenfunction to obtain

an accurate value of A.

If the eigenvalue A could be computed with sufficient accuracy

as a function of the ground-state energy -Q2, then certain

expectation values could be deduced. For example, the ground-state

expectation value of the plaquette field 0(p) defined in Eq. (2.6)
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is related to the derivative of 02 with respect to A. The form of

the Hamiltonian H implies

B uni-2.93- ‘(‘l’l¢(p)l‘¥> 2 N dx , (2.39)

P

where ND is the number of plaquettes.

The GFMC method with importance sampling also yields a simple

approximate estimate of the expectation value of an operator, based

on the assumption that the trial function is an approximation of

the ground state eigenfunction. Suppose the eigenfunction is

VIAa] = uIAa] + slAa] (2.40)

where e is small; then to order 62 the ground-state expectation

value of a function ClAa] of the field variables is approximated by

 

<91CI?) g 2 <u|CIY> _ <uIClu>

<w|w> <u12> <uTh> ° (2'418)

The first term on the right-hand side, called the mixed expectation

value, is computed from ensemble averages, by

(uLCI‘P) : (CIAaI/M1A
a])ens

“J” < 1 /M[Aa] >ens

 

(2.4lb)

This Monte Carlo estimate can have some systematic error for a

finite ensemble, because it involves the ratio of two ensemble

averages 18. The other term is the expectation value in the trial

state. Since Eq. (2.41s) is only valid to order £2, this estimate

of the expectation value of CIAa] is not trustworthy if it differs

significantly’ from the expectation value in the trial state.

The importance function ulAa] is normally defined to have a

simple form, and optimized by the variational principle. Therefore

a conservative interpretation of GFMC results is to regard them as

corrections to the variational estimates of the quantities of

interest. The estimate of an expectation value based on the mixed

expectation value is by definition only a computation of the lowest
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order correction to the variational estimate. The computation of

the eigenvalue based on Eq.(2.38) is in principle exact; but since

the statistical significance of the computed value is limited

unless the trial function is an approximation of the eigenfunction,

as a practical matter the computation of A also gives the

correction to the variational estimate.

In Section III we describe the results of GFMC calculations on

the SU(2) and 0(1) lattice gauge theories. The importance function

used in those calculations is a disordered trial wave function that

we described in a previous paper7. For the SU(2) gauge theory it

is

ulAa] = exp ( 2 aMIAa] ) (2.42)

where MlAa] is the magnetic energy defined in Eq. (2.7c), and a is

an adjustable parameter. In Ref. 7 we described a variational

estimate of the ground-state of the SU(2) gauge theory based on

this trial wave function. These variational calculations are

numerical; Creutz's heat-bath Monte Carlo method 9 is used to

compute the expectation value of the energy in the state ulAa]. In

the GFMC results described in Sec. III, the value of the parameter

a is that determined by the variational principle.

The remainder of this section is a discussion of details of

the application of the GFMC algorithm to the integral equation

(2.36). It is necessary to define a diffusion process with

probability distribution GDIAa,Aa']. By Eq. (2.16), GDlAa’Aa'] can

be sampled by first picking a time-interval t with distribution

- 2

Qze tQ dt,

and then moving AJKR) to Aa(£) according to the distribution

MlAa] ulAa] ’
Wm £g[t;Aa(£),Aa(2)) . (2.43)

But there is a complication associated with the distribution

(2.43): unlike the free time-dependent Green’s function, this
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distribution is not normalized to unity because of the biasing

factor. To take into account the normalization, it is necessary to

assign a weight to each configuration in the ensemble. The

weighting can be done in various ways. The most ObVlOUS way would

be to use the free Green's function for diffusion, and to reweight

the new configuration by the biasing factor; then the importance

sampling would derive from the increase of the weight of a point

that moves toward larger MIAa] ulAa]. However, we use a different

weighting method that includes importance sampling as a part of the

configuration move itself. Our approach relies on the fact that

the time interval of the diffusive step is small, of order l/Qz,

:i.e. of order l/Np where Np is the number of plaquettes.

Since the diffusion time interval t is small, the

configuration move Agii) + Aa(£) is small. Let (¢'(2),6'(£),¢'(2))

and (w(z),e(2),¢(2)) be the angular variables corresponding to the

gauge field A;(£) and Aa(2); and let 6w(£), 68(1), 5¢(2) denote the

small changes of these fields, as in Eq. (2.29). Then the ratio of

the trial function (2.42) before and after the move is

approximately

ulAa] BMIAa']

ETA—871 E :1 exp ( 2 a( 5W(E)W (2.44)

3111A '] aMlAa']

+ee(2)—m +5¢(2)W )).

Or, in terms of the 3-vector 63(2) that represents the diffusion

step in the tangent space at Aa’(£),

ulAa] + ’

m s :Iexp(2a58(£)'f (1) ) , (2.45)

where

f . BMIAa'

(2) ' w '557f33' (2.46)

. BMIAa’] 3).“) aMlAa’]
1

.

+ m) ( 9 WW“ sine’m 32"“ J'

This approximation of the ratio ulAallulAgl is a product of
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factors, each of which acts on the fields of a single link. Thus

it can be combined with the Green's function to define a

distribution for the change of the fields on each link.

For a small diffusive move the Green’s function is

approximated by Eq. (2.31). When this is combined with the factor

uIAal/uIAa'], the complete distribution (2.43) can be written

without approximation as

MIAa] u[Aa]

Mug] “[Aa’] £g(t;Aa(£)’Aa’(£)) (2.47) 

.. R[Aa,Aa'] 11 (nt)'3/2exp( -( 623(2) - at f’(2))2/t),

9.

where

MIAa] uIAa]

MIAa] “[Aa]

 

R[Aa, Aa'] - (2.48)

x nexp( -2a 53(2)-¥'(1)+a2 t 134(2) ) .

l .

Each single-link factor on the right-hand side of Eq. (2.47) is the

distribution function for a process in which the link variables

first make a deterministic forced move

atf'u) ,

and then a diffusive move

6E<2>

for which the probability distribution is the Green's function of

free diffusion in the tangent space. The other factor R[A8,Aa']

reweights the new configuration. Since RlAa, Aa'] is approximately

equal to 1, the importance sampling in this approach is mainly due

to the deterministic move, which forces the point in the direction

of increased ulAa] MlAa].

The results described in Sec. III are for calculations which

use the simple small-step approximation, Eq. (2.31). It is possible

to improve the approximation by subdividing the diffusion time into
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smaller intervals and letting the diffusion proceed separately for

each of these intervals. However, we believe that the naive

small-step approximation is sufficiently accurate.

In detail, the GFMC algorithm for iteration of Eq. (2.36) is

as follows. The aim is to obtain a weighted ensemble of field

configurations

ENS = { A§°)(£),w(°); o - 1, 2, 3, . . . , N}. (2.49)

The iteration of the ensemble consists of three steps:

(i) Branching Each configuration A;°)(£) in the current ensemble

(0) (0)
branches into f new configurations, where f is an

integer chosen by a random process with expected value

<f(o)> =_c_ll_M[A(o)] w(o)

a

where N (2.503)

q =§L z M1A§°’1w‘°);
e: 081

here N is the number of configurations in the current

ensemble, and Ne is a fixed number equal to the desired mean

ensemble size. Each of these new configurations is assigned

weight w' where

w(0)/f(0) if <f(0)>>1’

w, 3 ' (2050b)

q if <f(°)><l .

The branching process creates an ensemble with total weight

and expected distribution equal to the total weight and

distribution of the current ensemble. It keeps the weights

of the configurations approximately equal by splitting if

<f(°)>:>l , and prevents the ensemble from becoming too large

by eliminating points if <f(°)>1(1.

(ii) Biased diffusion Then each field Aa(°)(£) moves to a new

field Aa(£), by the combined deterministic forced move plus

 

diffusive move discussed in the previous paragraph.
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(iii) Reweighting, The weight assigned to this configuration in the

new ensemble is

A

0 .

75'2- RIAa,A;o)] W . . . (2.50c)

This process ultimately converges to a weighted ensemble with

probability distribution FlAé].

The value of the parameter A0 in Eq. (2.50c) controls the size

of the ensemble. For a sufficiently large ensemble, the total

weight grows during this iteration if A0 is larger than the

eigenvalue, and decays if A0 is less than the eigenvalue. In

practice A0 is maintained at a value such that the total weight,

and therefore also the ensemble size, remains approximately

constant. This property provides an estimate of the eigenvalue,

which we refer to as the growth estimate. However, for a finite

ensemble there is some systematic error in the growth estimate. In

our lattice gauge calculations we find that the growth estimate

does not yield an accurate measurement of A. This point is

discussed further in the Appendix.
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III. Numerical results

In this section we describe Green's function Monte Carlo

(GFMC) computations of the ground-state energy and mean magnetic

energy per plaquette of Hamiltonian gauge theories for a 3:t3:<3

lattice. The SU(2) gauge theory is defined in Sec. II. For

comparison we consider also a U(1) xU(1) xU(l) gauge theory. The

U(1)3 gauge fields are angle variables BaU.) (with ad, 2, 3); the

associated group element is

3

11(2) = n exp(iea(2)) . (3.1)

a=l

The U(1)3 Hamiltonian is

HAb= -§ aZ/aeazu) + 7’}; (1-cos Ba(p)) (3.2)

a,2 - a,p

where Ba(p) is the lattice curl at plaquette p of the gauge field

6 (l). The Hamiltonian H
a Ab 1 2

free-field limit is the same as that of “KS/2g where H'KS is the

SU(2) Kogut-Susskind Hamiltonian, Eq. (2.5).

is defined such that its harmonic, i.e.

Figure 1 shows the ground-state energy per plaquette as a

function of the coupling constant for (a) the SU(2) gauge theory

and (b) the U(1)3 gauge theory. The quantities plotted are E/Np

vs. A, where E is the eigenvalue of H for the U(1) gauge theory,
Ab

and E is the eigenvalue of “KS/2.82 for the SU(2) gauge theory. In

terms of -Qz, the eigenvalue of H introduced in Eq. (2.9), E is

E=2AN-2.p Q

Actually Q2 is the input, and the corresponding A is the computed

eigenvalue.

The dashed curves in Fig. l are variational bounds obtained

using the disordered trial function uIAa]. The 7variational

calculations were described in a previous paper' . We refer to the

*wave function uIAa] as disordered because the expectation value of

the Wilson-loop operator obeys an area law in this state; we have

calculated the corresponding string tension7. Also, this function

(does not explicitly couple the magnetic fields on different
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plaquettes, although there is some implicit coupling because

neighboring plaquettes share a common link. This disordered wave

function should be a good approximation of the ground-state

eigenfunction for small A, so the variational bounds should be

accurate estimates for small A.

The solid curve is the large-A limit of the energy, 1. e. the

weak-coupling limit in terms of the original gauge coupling

constant g, for the U(1)3 gauge theory. This limit is derived from

the harmonic approximation of the theory. Asymptotically as )-.¢.,

3,5 é c(n) J21" - -;— c2(n) + 0(1/JT) (3.3)

P

for an n2<n><n lattice; the constant c(n) depends weakly on n,

e.g.,

c(3)=1.18l , c(~)=1.194. (3.4)

In the limit A + 0, the SU(2) gauge fields decouple into three

independent U(1) fields, so the SU(2) gauge theory has the same

harmonic limit as the U(1)3 gauge theory. Therefore Eq. (3.3) also

gives the correct leading order contribution to the energy of the

SU(2) model. However, the term constant in A in Eq. (3.3) derives

from four-field couplings in the weak-coupling expansion of the

U(1)3 model; it would presumably be different for the SU(2) model.

The free-field limit-of E lies below the variational bounds;

the Monte Carlo results should converge to these lower free-field

values for large A.

The crosses in Fig. 1 are Monte Carlo results obtained using

ulAa] as an importance function to guide the iteration, as

described in Sec. 118. The GFMC calculation uses an ensemble of

approximately 100 configurations; the ensemble size changes

slightly with each iteration. The results are averages over 600

Monte Carlo iterations. The first few hundred iterations, during

which convergence takes place, are discarded. In order to reduce

the convergence time, the initial ensemble used in the GFMC

algorithm is chosen from the distribution uzlAa]. Each point
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required approximately 3.5 hours of computation time for the SU(2)

model and 35 minutes for the U(1) model, on a CDC Cyber 750

computer at Michigan State University.

The results for the two models show quite different behaviour.

The U(1) GFMC points are near the variational estimates for small A

but lie considerably below the variational bound for A2>5,

indicating that the variational wave function is not an accurate

representation of the ground state for A>'5. In the large-A range

the values of E are consistent with the free-field limit. The

numerical values are consistent with the results of a previous

calculationlz. The energy of the U(1) gauge theory changes

abruptly from that of the disordered state to the free-field value.

On the other hand, the SU(2) GFMC points do not show any abrupt

deviation from the variational bound. This difference is easily

explained; the U(1) model undergoes a phase transition from a

charge confining disordered phase to a non-confining free-field

phase AE4.5, whereas the SU(2) model does not.

Figure 2 shows the expectation value of the plaquette field

0(p), defined for the two models by

1 -é-Truul)U(22)u+(23)u+(1,) for SU(2),

v(p) = (3.5)

1 - cos(_6(21)4-6(22)-9(23)-9(2“)) for U(1).

Again the dashed curves are the variational estimates, and the

solid curves are the large-A limits given by

<0(p)> - f c(n) H 2 A (3.6)

where f'l for the SU(2) model and f-4/3 for the U(1) model. The

crosses are GFMC estimates computed from the mixed expectation

value, Eq. (2.41).

Again we see very different behaviour for the two models. In

the U(1) model, the mean plaquette field d(p) decreases abruptly in

the region of the transition at As4.5, from values near the

variational estimate down to values near the weak-coupling limit.
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In the SU(2) model, the field ¢(p) changes gradually over the range

of A considered, and does not differ very much from the variational

estimate.

The GFMC points in Fig. 2 tend to lie below the variational

curve for small A. This tendency is more pronounced in the SU(2)

model than in the U(1) model. Ordinarily this would be taken as

evidence that the trial function ulAa] does not adequately describe

the vacuum state. In this case, however, we expect that ulAa] does

accurately describe the ground-state for small A and becomes

increasingly worse as A increases. This is born out by the results

on the energy shown in Fig. 1, where the GFMC points lie very close

to the variational curve for small A and begin to deviate as A

increases. The discrepancy may be a result of the failure of the

small-time-step approximation used in calculating the matrix

elements of e-tki. The time step t is of order l/Qz, which

increases as A decreases; thus the approximation is expected to be

least valid for small A. This explanation of the discrepancy could

be checked by subdividing every time step into intervals smaller

than 6t, and then observing how the results change as 6t decreases.

On the other hand since the wave function is disordered for small A

we might expect that errors in the sampling procedure would be

unimportant. The error bars in the graph are the ordinary standard

deviation for 600 iterations, but we are not certain that enough

iterations have been done to deduce a meaningful estimate of the

uncertainty. Since the GFMC algorithm is iterative, ensembles in

the sequence are not independent unless separated by a sufficient

number of iterations. This convergence problem is more serious for

the SU(2) model because there the diffusion takes place in a larger

space, and so requires more iterations for convergence. Further

investigation is clearly necessary to clarify the situation.
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IV. Summary and conclusions

In this paper we describe an application of the Green's

function Monte Carlo (GFMC) method to the SU(2) and U(1) lattice

gauge theories. The numerical results obtained so far are limited,

by the availability of computer time, to estimates of simple

quantites, specifically the ground-state energy per plaquette E/Np

and the mean plaquette field v(p), for a 3><31<3 spatial lattice.

These GFMC calculations use a disordered trial function ulAa]

as an importance function to bias the Monte Carlo sampling

procedure in favour of regions of configuration space in which

uIAa] is large. By comparing the GFMC results to the variational

results based on the trial function ulAa], we can obtain some

indication as to how well ulAa] describes the vacuum state.

For the U(1) model our results show a clear indication of the

phase transition at A554.5 separating the charge confining phase,

described well by the disordered trial function, and the

non-confining free-field phase. For A)>5 there is a definite

difference between the variational estimates and the GFMC results.

The present results are in good agreement with the results of our

previous Monte Carlo study of the U(1) lattice gauge theory 12.

There we formulated the problem in a completely different way. We

wrote the wave function in the form

VIA] ' 2 exp (1 {n(p)B(p) ) x[n(P)] . (4.1)

{n(p)} P

where the variables n(p) take only integer values, and applied the

GFMC method to an eigenvalue equation for x[n(p)]; also we

implemented importance sampling for two kinds of trial functions -

a disordered wave function which accurately describes the ground

state for small A, and a correlated wave function derived from the

harmonic limit which is accurate for large A. That these two

different studies of the U(1) gauge theory lead to similar results

gives us considerable confidence in the GFMC method.
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In one regard our earlier results on the U(1) model differ

from those obtained here. In the calculations applied to the

n(p)-space wave function x[n(p)] we found metastability behavior in

the GFMC iteration for the U(1) gauge theory in three spatial

dimensions. When a disordered n(p)-space trial function is used

for importance sampling in the large-A region, the computed

eigenvalue does not converge to the free-field value, but remains

near the variational value. In contrast, no metastability of the

GFMC iteration is seen in the Aa-space calculations. We attribute

the difference to the fact that n(p) is a discrete variable,

whereas Aa(2) is continuous valued.

For the SU(2) gauge theory our results are consistent with the

nonexistence of a phase transition in that model. The trial wave

function ulAa] accurately describes the vacuum state for small A.

And even for large values of A the variational estimates are

approximately equal to the GFMC results, for the energy and mean

plaquette field. The implication is that the ground state does not

suddenly change as it does in the U(1) gauge theory.

When the variational and GFMC results show considerable

disagreement, as in the U(1) results, then it is clear that the

variational wave function is not a good representation of the

vacuum state. The converse is not true. The fact that these SU(2)

GFMC results are close to the variational estimates does not imply

that the variational wave function is a good representation of the

SU(2) vacuum state, for if we compare the results for a different

quantity, e.g. the string tension, we may find considerable

disagreement. In fact we know from our earlier variational

calculation of the string tension7'that uIAa] does not describe the

vacuum state for large A with sufficient accuracy to reproduce the

known asymptotic behaviour of the string tension derived from

asymptotic freedom.

In view of the comments of the preceding paragraph, it would

be very interesting to calculate Monte Carlo estimates of the

expectation values of other quantities. Such calculations present

no particular difficulty if one is willing to use estimates based
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on the mixed expectation value, Eq. (2.41). But these estimates

are mainly useful for revealing inadequacies in the trial function,

and are not accurate when such inadequacies exist. It would be

much more satisfying to compute expectation values exactly, 1. e.

subject only to statistical errors, rather than from the mixed

expectation value, which introduces an unknown systematic error.

Such a procedure does existl?2, though it is expected to be very

demanding on computer resources if any great precision is to be

achieved.

It is interesting to compare the Green’s-function Monte Carlo

method to the projector Monte Carlo method introduced by

Blankenbecler and Sugar19 and recently applied to the compact U(1)

lattice gauge theory in three spatial dimensions by Chin, Koonin,

and Negele 20. In that method ehTH is used as a projection operator

onto the lowest energy state of the system, where H-K-I-V is the

Hamiltonian and T is large. The object of the projector Monte

Carlo method is to obtain an ensemble of configurations with

distribution WIAa]. T is divided into a large number N of small

time intervals t 8 T/N, and the ensemble is generated by repeated

action of the operator e-tH. Since t is small we can write

"tH _, -tK "tV

e ee = , (4.2)

correct to order t; in the basis in which Aa is diagonal, the

distribution is

-tV [Aa'] .
<[Aa] Ie-tHI [Aa’]> ([A8] le"K| [Aa’]> e (4.3)

The technical details of a calculation with this projector method

are essentially the same as those of the GFMC method. In

particular, the function that governs diffusion of the

configurations is < [A8] I e-tKI [Aa’]> for both methods.

Therefore, it is completely straightforward to modify our GFMC

program to carry out the projector Monte Carlo calculation. This

would be a useful exercise as a check on the present results.



117

Appendix

Iteration of Eq. (2.36) yields a sequence of functions

{F(r)[Aa] } defined by

F(r+1)[Aa] - A(Or) IdQ’GDIAa,Aa’]M[Aa’] F(r>[Aa’] (11.1)

where Agf)is an arbitrary parameter which may change from one

iteration to the next. In the limit r + 9, F‘r)[Aa] becomes

proportional to FIAa], the eigensolution of Eq. (2.36); thus Eq.

(A.l) can be rewritten as

( 1) A(or) ( )r+ r

Integration of this equation implies that

A(r)

«(”15 - 79- mm) (11.3)

where W(r) is the total weight of the ensemble at step r of the

iteration, and < > denotes the expected value. Equation (A.3)

provides a simple way to estimate the eigenvalue from the growth or

decay of the total weight during the iteration. We refer to this

as the growth estimate. In practice we adjust Agf)to»maintain a

constant total weight, i.e. W<r+1L-W(r). In that case we may put

1 7-: A“) . (A-‘O
0

There is a systematic error in Eq.(Am4) caused by making the

approximation

(u(r)> w(r)

<W<r+1)> w(r+1)

I
l
l

 (A.5)

It can be shown that if this were the only source of error then A

would be bounded by the inequalities

min( A(or)) < A < max( A(Or) ) . (A.6)
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Figure 3 shows the ground state energy per plaquette as a

function of A for the SU(2) gauge theory. Results for the U(1)

gauge theory are similar. The crosses are GFMC results obtained

from the growth estimate Eq.(Am4). The curves have the same

meaning as in Fig. l. The Monte Carlo results are clearly in

error: they are systematically too high. This cannot be attributed

to the systematic error in Eq.(AWS) since the inequalities (As6)

do not hold. Rather we believe that the discrepancy is due to the

failure of the trial function u[Aa] to describe the eigenfunction.

This is suggested by the fact that the discrepancy increases as A

increases, 1. e. as the disordered trial state becomes a less valid

approximation.
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Figure captions

Figure 1. Ground-state energy per plaquette E/Np vs. coupling

constant A for (a) the SU(2) gauge theory, and (b) the U(1)3 gauge

theory. The solid curves are the large-A perturbation expansion

for the U(1)3 model, the dashed curves are the variational bounds,

and the crosses are the Monte Carlo estimates.

Figure 2. Mean plaquette field ¢(p) vs. coupling constant A for (a)

the SU(2) gauge theory, and (b) the U(1)3 gauge theory. The solid

curves are the large-A perturbation expansions, the dashed curves

are the variational estimates, and the crosses are the Monte Carlo

estimates based on the mixed expectation value.

Figure 3. Ground-state energy per plaquette E/Np for the SU(2)

gauge theory, computed from the growth estimate. The curves have

the same meaning as in Fig. 1a.
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APPENDIX B

Application of the Green's function Monte Carlo method

to the compact Abelian lattice gauge theory
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We have applied the Green's-ftmction Monte Carlo (GFMC) method to the Hamiltonian femuo

lationofthecompact U(lllatncegaagetheoryinthreeandtwoispaceldimensionsmsmafllattice.

3x3x3and 5x5. TheGFMCmethod isaMonteCarlomethodoffindingthegroundstateda

quantum-mechanical system with many degrees of freedom. by iteration of an integral operator of

which the ground state is an eigenstate. An intereting aspect of this method is an impotence-

sampling technique that make use of a trial wave function to accelerate convergence of the Monte

Carlo estimates. We used two importance functions in thee calculations. which were deigned to be

accurate in the small- and large-coupling limits. Thee importance functions were optimized by the

variational principle; the results of the variational calcalatiom are interesting in their own right.

Our Monte Carlo results exhibit evidence of the phase transition of the three-dimensional compact

U(l)lattieegsugetheory. andindicatethenonexistenceofsphasetransiuoninthetwo-dimetsional

theory.

I. INTRODUCTION

Lattice gauge theories are used to study quark confine-

ment and other nonperturbative aspects of gauge theories,

especially those relevant to quantum chromodynamics.

There are two formulations of lattice gauge theories—the

path-integral formulation' in which all four dimensions

are discrete and the Hamiltonian formulation in which

time terrains a continuum. These theories have been in-

vestigated by a number of technique, e..g. perturbation

expansions,3 menofield theory, the variational principle,‘

and Monte Carlo methods. The purpose of this paper is

to describe an application of the Green’s-function Monte

Carlo (GFMC) method to the Hamiltonian formulation of

the simplet lattice gauge theory, the compact U(1) gauge

The U(1) lattice gauge theory is primarily interesting as

a contrast to non-Abdian gauge theories. All lattice

gauge theories exhibit the phenomenon of charge confine

meat in the strong-coupling limit. In non-Abelian gauge

theories this phenomenon persists to weak coupling, but in

the (3 +1)-dimensional U(1) gauge theory there is a phase

transition to a nonconfining state at a finite coupling.

Thee statenents have been amply demonstrated in inve-

tigations of the path-integral formulation of these lattice

theories, that use the Metropolis Monte Carlo algorithm

to compute the path integral.“ One goal of our GFMC

calculations is to try to verify thee statements in the

Hamiltonian formulation; the U(1) lattice-gauge-theory

calculationstobedecribedareafirststepinthisdiree-

tion.

In U(1) lattice gauge theorie the transition to a noncon-

fininggrumdstateoccursinthreespacedimeuiormbut

not in two dimensions. This difference can be understood

in terms of the behavior of long-range topological config-

urations in thee models. In two space dimensions there

exist vortice that maintain confinment at arbitrarily

weak coupling; this was first decribed by Polyaltovm an

early instanton calculation.7 Other authors argued that1n

three space dimensions monopole undergo an ionization

transition at a nonzero value of the coupling constant,

below which the ground state is nonconfining.‘ Thee

spatial configurations can be decribed also as time slices

of spacetime configurations in the path integral of the

theory.’ The reults of path-integral Monte Carlo calcula-

tions have shown that the U(1) gauge theory does have a

phasetransitioninthreespacedimerrsimbutnotintwo

dimensions.'0 Oar Green‘s-function Monte Carlo calcula-

tions also demonstrate this fact.

The GFMC method is a Monte Carlo method that re

velspmpertieoftheground stateofasystem with many

degree of freedom. 11 was developed to solve quantum

many-body problems. and has been applied to a number of

example of thee." '2 We have applied this method to

several lattice field theorie, including the U(1) lattice

gauge theory. and the XY- and ngauge models. In our

experience it is not difficult to put a lattice field theory

into a form to which the GFMC method can be applied;

infact thiscan 11suallybedoneinmorethanonewsy,and

atehastheproblmofdecidingwhichonetotry.

The simplest quantity to calculate in the GFMC

method is the ground-state energy as a function of con.

pling constant. This quantity is analogous to the average

action per plaquette calculated in Monte Carlo studies of

the path-integral lattice field theories. In principle the

GFMC method can be extended to elcalation of other

quantities, e.g.. the expectation value of a Wilson loop

operator; but in practice we have not yet carried out any

such calculations on the U(1) gauge theory.

Perhaps the most interesting aspect of 2the GFMC

method1s an importance-sampling technique. This tech-

nique, which isanesential partofthemethod, makeuse

3067 ©1983 The Ameian finial Sadety
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of an approximation of the ground-state wave function.

called the importance function. to bias the Monte Carlo

diffusion process; this reduce the scale of fluctuations as-

aociated with stochastic sampling. and so accelerate the

convergence of Monte Carlo etimate to an accurate

value of the computed quantity. In principle the results

do not depend on the importance function but in practice

it should be similar to the ground-state eigaifunction.

Normally the importance function is obtained from a

variational calculation. One can judge whether a wave

function doe reanble the eigatfunction by determining

whether it performs adequately as an importance function

in reducing statistical fluctuations. Thus this approach

can be combined with the variational principle in a poten-

tially powerful way: two variational wave functionswith

about thesameatergyertpectationvalaecanbedis-

tinguislied on the basis of their performance as impor-

tance functions.

The realts of our calculations on the UH) lattice gauge

theoryshowarathaclearsignalofthephasetransitionof

this theory in three (space) dimensions. The same signal is

not seen in calculations on the two- (space) dimaisional

theory, as expected since this theory is not supposed to

have a phase transition separating confining and noncon-

fining ground state. Also. the transition in the three.

dimatsional theory is not a first-order transition. Our cal-

culations have been restricted to small lattice; the realts

to be described are for 3x3x3 and 5x5 lattices

(ranernber that the fourth dimension is a continuum). We

believe that the quantitie that we have calculated are

meningfal on such small lattice, and that the only affect

ofalargerlatticewouldbetomalteasharpertramition

between strong- and welt-coupling behaviors. Of course

this would not be true of all quantitie.

The paper isorgsnizedasfollows. SectionIIisssketch

of the GFMC method. with importance sampling. in gar.

as] tams. Section 111A define the U(1) lattice gauge

theory and our approach to the application of the GFMC

method to this model; Sec. [113 describes the variatitmal

wave functions that we use for importance sampling.

Thee variational calculations are interesting in their own

right. Section IV discusses the Monte ero results. Sec-

tion V lists some ctmclusicns.

II. THE NUMERICAL METHOD

A. TheOraar'sofaactiaa McateCarlomahad

The Green’s-function Monte Carlo (GFMC) method

wasdevelopedasanumaicalmethodforfindingthe

groundstateofaHamiltcnianwithmanydegreesoffree-

dam." LetHbeoftheform

H-Hg-mz . (2.1)

whaeH, andearepcsitiveopa'atorsandAisacou-

plingparameter. Let —K’denotetheloweta’genvalue

of H. assumed tobenegative. Theeigenvalue equation

”flu—Kw (2.2)

canbewrittenasanintegralequation.»
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calm. +x’r'u,¢ . (2.3)

ThestartingpointfortheGFMCmethodistoregarqu.

(2.3) as an equation for d) and A with K2 given. Next. in.

trnduceacompleteset ofbasis state I17) forwhich H, is

diagonal.i.e..

(rim. madman?» ..

The multidimatsional quantity 1? that labels one of thee

state is a configuration of the quantum variable of the

model, e.g., a field configuration in a lattice field theory.

In what follows we use a notation appropriate for a prob-

lan in which if has discrete value. but the method ap-

plie equally to continuous-valued variable. If «,7 )

-(fl' I 1’) that

(2.4)

#17)3126(K2;IT.E')V(17')¢(17'), (2.5)

in

whee

GlK’;F.fi')=(fi'|(H.+K’)" In") . (2.6)

The GFMC method applie to integral equations of the

form of Eq. (2.5)." In applications to quantum many-

hody problems. V is a potential and G a Green's function.

In our applications of the GFMC method to lattice field

theories we begin also with an equation of the form of Eq.

(2.5). but not always one in which G is introduced as an

inverse operator. In particular. for the U(l) lattice-gauge-

theory calculations to be decribed. G is simply one of the

operators in the Hamiltonian.

The GFMC method is a Monte Carlo algorithm for

solving Eq. (2.5) by iteration. Let I”:U1",;o

nl,2.3.....N'l be an ensanble of configurations with

probability distribution $.01"). One iteration of the equa-

tion yields a new atsanble f=[fi,;a=l.2.3.

....Nl wha'e the configurations ii, are obtained from

thefi',byaprocesthatccnsistsoftwosteps,branching

and diffusion:

(i) Each fi',branche into n, newpoints. where n, is

an integer picked by a random process such that the ex-

pected value of n, is town). The possibility 11,-0 is

allowed. Haeristhoaghtofasanapproximationofthe

e'garvalue A. _

(ii)Tharechofthen, pointsismovedfrom f1",toa

new configuration [I chosen from the probability distribu-

liar P(ir‘.ii",) defined by

P(17.17'.)-G(17.fi“.)/2 6117.17» .
at

In the lattice field theorie to which we have applied this

method the denominator of Eq. (2.7) is a constant. in-

dqiaidart of it", This will be assumed below. Note that

the processes (i) and (ii) require that V(ir‘) and 607.11")

bepcsitive;itmaybenecesarytoaddaconstanttothe

Hamiltonian to meet this requiranent. The probability

distributionpflr'r'mfpcintsinthenewatsanblefl‘is

(2.7)

”(ms-'1; 2P(fi°.i1",)lol’(fi“.) ; (2.1)
'
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m.inta'msda'r¢,(fi‘), \

¢/(1T)=%Z'PUT.E'MOVUT'Hum"). (2.9)

Itcanbeshown that theseqaatceofaisanblegarerat-

ed by iterating the proces just decribed converge to an

atsanble for which the probability distribution is #17),

the solution of Eq. (2.5). The parameter A0 determine

how the atsanble size change on further ita'stion: after

the proces has converged. so that (1, xcf=¢ in Eq. (2.9).

we shall have at sva'age

 

-1

_=_. Ear-")1 , (2.10)

where it should be rananbered that the factor

2-G(".i1")isindependattofi1’ '.Thisprovideaway

to determine the eigaivalae A. which in the problan dc»

finedbyEq. (21) 1s thevslueofcouplingccnstant for

which the ground-state aiagy is -K’.

In practice. one rcadjasts the value of 10 way It itera-

tions so as to keep the arsemble size approximately con-

stant. The adjusted value of lo ccnvage to A time

2 17 G (17.1? '1.

The method decribed here yields a numerical deter-

mination of the eigenvalue 1, and a sequatcc of ensanble

of configurations with probability distribution WT) (after

cmvergaree). It is also possible to invert ways to extend

the method to calculations of other quantitie. e.g.. expec-

tation valuecfoperators.but inprscticetheerequirea

hrge increase in computation time.

I. Importance sampling

Forproblemswith manydegreescffreedom itissdvsn-

tageotn, and asaprsctical mattereven necesary.tomodi-

fytheGFMCmethodbyusecfanimportancesampling

technique."” A wave function dig-(17). which should

reanble the ground-state eigenfunction #1?) as closely as

passibleisintrodacedbyrewritingtheintegralequation,

Eq. (2.5). in tams (is new function:

 

nmqrtpwm 12.11)

as

c. '1"u) in. are. no. cop

run-A}; out. )V(u mp 1.12.12)

‘7“?)

Nowcnerega:dsF(i1')andAastheunknowneiga1func-

tion and eigenvalue.

The iterative diffusion process decribed in Sec. 11A is

used again to gataate atsanble with probability distribu-

tion PUT). The diffusion process is changed in two ways

by the preence of the importance ftmction ¢r(17).Ftrst.

the probability distribution that gova'ns diffusion d’ the

particle1s now

fir”?1607. "WWTUTWI'J

2¢r(17)0(17.17')lvr(17')l"

i‘

(2.13)
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‘I'heeffectofthischsngeisthatthediffasionprocessis

hissedin favordmovefi'at'r'forwhichii‘isinthere-

gion of configuration space where firm.) is large. If

firm.) is at lest qualitatively similar to the eigatfunction

d(ir‘). this biasing reduce the fluctuations due to stochas-

tic sampling. and so speeds up the ccnvergaice to accurate

numaical etimate.

The second change in the diffusion proces is a normali-

nation dfectintheaelectionofn,.thenumberofnew

points gata'ated from thepoint 17;. Theexpected value

d'n, should now be

(ad-111417112 vrifilG(rT.17'.)lvr(17L)l"-

p

(2.14)

Forfirlii’hal. i.e..withoutimportancessmpling. thenor

malizingsumisindependentof".inthelatticefield

theoriewehaveccnsida'ed. sothisfactorwouldnotbe

needed. But for a nontrivial $7117). the ccrnpatation of

thenqrsmalizingsummaybethetrickiestpartofthepro-

gram.

Again it can be shown that the iteration conva'ge to

atsanble with probability distribution Hfi). the solution

11' Eq. (2.12). Also. after ccnvagatce the expected change

in atsanble size for tire iteration is givat by

size

N' A °

Importancessmplingrducethefiuctaationdensanble

size. so that Eq. (2.15) convage more rapidly toan accu-

rateestimateoflt. Theoptimal choiceofh-(ir’)canhe

daived.sndturnsouttobesimflyrelatedtotheexact

a'gaifunction d(fr’); this choice would actually reduce

fluctuationstozero.

Theimpcrtance-sampling techniqueprovideawsyto

etimate ground-state expectation value that require lit-

tle additional amputation. Suppose the a'gaifunction

fir?) difi’a's from the trial function pm?) by a small

amountcfa'derenhartoordere’wehave

(w I!) “(out It.) _ (ma I»)

1111) mm (mm '

(2.15)

(2.16)

Haetheleft-hsndsideisthedeiredepectationvalueof

anopaatorA;thefirsttamontherightistwicetheaver-

age ofA in the aisanble gatasted by the GFMC itera-

tion of Eq. (2.12). and the other tam is simply evaluated

for $7. The estimate (2.16). called the mixed expectation

value. Ins statistical error from the fact that it involve

stochastic sampling. plus systanatic error from the fact

thstitisvslidtocrdae’only. Itistrustwcrthyailyif

(fiIA Ii) and “VIA Hr) slenot toodifferart.

In summary. the importancessmpling method outlined

above is obviously most useful when an accurate approxi-

mation of #17) is known. e.g.. from a variational calcula-

tion. Then the GFMC approach calculate the corrections

tothatspproximation exactly(uptostatisticalarorsdue

to sampling fluctuations). But evai if iflfl') is not partic-
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ularly accurate it may still perform the function of impor-

tance sampling in reduction of fluctuations. provided the

diffusion by Eq. (2.13) is biased in a qualitatively correct

way.

III. THE LATTICE GAUGE THEORY

A. Compact U(1) lattice page theory

The Hamiltonian of the U(1) lattice page theory is"

H=§g22£1(11—%2[1+eeempn. (3.1)

1 3’ r

where EU) is the electric field on lattice link land B(p) is

the magnetic field on lattice plaquette p. If p is the pla-

quette associated with site 'x' and directions ij then

B(p)=.4(r+fij1-Atr,j1—A1£+f.n+a(in,

(3.2)

where A(i’.i) is the gauge field on the link lassociated

with site it and direction 1. The fandamartal commuta-

tion relation is

[£111.11 (1')]: -15(I.I'). (3.3)

The variable A (l) or B(p) are retricted to lie in the range

(-rr,rr).

In our application of the GFMC method to the U(1)

lattice gauge theory we arrived at the basic integral Eq.

(2.5) by a somewhat different path than that decribed in

Sec. 11A. By a special choice of basis state we avoided

the use of an inverse operator. i.e.. a Green’s function. in

constructing our form of Eq. (2.5). Still. since the ulti-

mate equation doe have that form the GFMC method sp-

plie.

We shall consider a basis in which the electric field en.

ergv is diagonal. Specifically. let the ground-state eigeno

function be written in the gauge-invariant form

1,: 2 exp [i 2 n (pimp) lélfl (1’)] .

'(w'l

(3.4)

where n(p) are integer-mined plaquette variable. Let

—ngz/2 deote the vacuum eergy. The the eigevalue

equation

Hilv= -%g’deI

become. in terms of the n (p)-spsce wave function.

(3.5)

- is’Qiéln (p)l= it’slnwléln (11)]

-—I3 2 G[n(p).n'(p)]é[n'(p)].

' la‘tpll

(3.6)

Here the diagonal operator S[n(p)]. which come from

the electric field energy. is

in» (p)]= 2 n (p)n(p')A(p.p') . (3.7a)

'0'.
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(3.7b)
, = 38(2) any)

M”) $11.11)) an!) ‘

The nondiagonal operator G[n.n']. which come from the

magnetic field eagy. is

G[n(p).n'(p)]= 2 [5[n (p).n'(p)]

'0

+ %5{n (p).n'(p)+5,o]

+%6[n(p),n'(p)—5"O]I . (3.8)

G[n,n'] will play the role of the Grear's function in the

GFMC itaation. i.e.. of the function that controls dif.

fusion of the points in the space of n(p)-configurations;

but note that G[n,n'] is not the inverse ofeither operator

in theoriginal Hamiltonian.

To put the equation in the form of Eq. (2.5). define a

new wave function

X[n(p)]=-}32[Q:+S[n1p)](¢[n(p)].

The the equation obeyed by X[n(p)] is

X[n(p)]=)( 2 G[n(p).n'(p)]V[n'(p)]r[n'(p)],

(3.9)

mm

(3.10)

where

122/3‘ (3.111

and

V[n(p)]=(Q:+S[n(p1]l" . (3.121

We have applied the GFMC method to Eq. (3.10). The

diffusion step in the GFMC iteration involve moving a

point in n(p)-space from n'(p) to n(p) by the function

G[n,n']; the definition of G[n,n'], Eq. (3.8). implie that

n (p) and n'(p) differ at most by one tutit on one plaquette.

We have obtained Monte Carlo realts only for the

smallet lattice in three dimesions. of size 3X3x3. (It

should be ranernhered that “time” is a fourth continuous

dimesion in the Hamiltonian formulation.) Although

this is a small lattice size compared to those used in stad-

ie of the path-integral formulation of lattice gauge

theories by the Metropolis Monte Carlo algorithm. it is

not small compared to other applications of the GFMC

method; it has 81 independent quantum variable in the

original Hamiltonian. With the many variable it is

essetial to use importance sampling in the GFMC pro-

gram. The importance-sampling functions that we used

we: obtained from variational calculations. decribed

next.

I. Variatieal calculations

The first variational wave function is

th- [111181111]: (3.13»
I
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theeergy(tilchylistobeminimizedwithre to

the choice of the single-plaquette function u(B).‘ The

minimum occurs if 11 (B) is the ground-state eigefunction

of the operator

82

ll = —4— +Ml—cosB) .

882

(3.14)

where -rr 5 B 5 17. This is the Hamiltonian of a quantum

pendulum. The reultlng variational etimate of the vacu-

um energy per lattice plaquette is

-ngQI/Nfie - 412121.40). (3.15)

where e0 is the smallet eigenvalue of h. The eagy -91

is not really the natural eergy to use in decrihing our re-

salts; instead we shall use £0. defined by the relation

—%ng:=-%8212M'p‘50) , (3.16)

Note that £0 is the smallet eigenvalue of

2£2111+12Il —cosB(p)] . (3.17)

l r

where i=2/g‘. The first variational etimate of £0 is

50/11" ==eo . (3.18)

11 can easily be shown that the small- and large-A limits

of co are

e ~A-E + 11:- +O(l.°) as A—oO

°" 8 2048 ’
13.19)

eozm-%+O(A‘m)e A—.ee .

For comparison thee limits of Eo/N, are. for an

ananatticc.

 

so/N 41-311 3” +O(A°)asA—o0

— 8 10240 ’ (330)

Eo/N sz-Actni—%e2(n1+Oti-"11ar A-ee .

whaec(n) isa dimensionles number. e.g..

c(3)=0.787. c(5)=0.795. c(eo)=0.796. (3.21)

Note that co and £0 /N, have the same small-A limit. but

that £0 /N, is smaller than co in the largeA limit.

In the trial wave function it, the magnetic fields on dif-

ferent plaquette are uncorrelated; d1. decribe a disor-

dered state in B(pkspsee. In particular, the expectation

value of a Wilson loop operator in the state it. decrease

exponetially with the 100p area.

(in: 1] cm" u,)-exp [— 2 y] . (3.22)

l'EL I '51.

where

y-—lnf_"ds 311(B)|2e". (3.231

Since the vacuum state of the three-dimensional U(1) lat-

tice gauge theory is. for welt coupling. an ordered state in

which the expectation value of the Wilson loop operator
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decrease exponetially with the loop paimaer. the state

it, should not he a good approximation of the eigestate i

for weak coupling. i.e.. for large i=2/g‘. This may a1-

resdybeseeinthedifferecebetweal50/N,andeoin

the largel limit.

The second variational wave function is writte as a

probability amplitude in n (p)-space. e

dz=exp —-,'-a2 n(p)M(p.p')n(p') . (3.24)
N.

Here a is the variational parameter and M(p.p') is the

matrix that reproducethegroundstateoinnanon-

compact harmonic approximation of the U(1) lattice

page theory. This approximation consists of two parts:

replacement of l-cosB by 112/2, and extension of the

range of B from (77.17) to (-—ee.ee). The reulting

model is solvable since its Hamiltonian is quadratic; the

ground-state wave flmction is Eq. (3.24) with a-=1. bat

wha'e the plaquette variable n(p) take a continuum of

value. It should be emphasized that d, is not the wave

function of a noncompact harmonic approximation in our

elculations. because the variable n(p) are retricted to

intqer value; the function in A (1)-space. defined by Eq.

(3.4). is paiodic in A”). The matrix M(p.p') is. for an

l X 11 XI! hill“.

(fabu-fifU/f .

 

Hie-13-?)
fl

 

2

H(p.p')= :7 gexp

[gal-exp(brinln). 1.0:}; )1/2; (3.25)

herep.p' are the plaquette (it) and ('x",lt') with normal

directions k,k'.andthesurnsovav, rtmfrom 1 ton.

The harmonic wave function decribed in the previous

paragraph is equivalet to the variational wave function

considered by Horn and wamteih,‘ although it is writte

in a somewhat diffaent form. Our calculations use the

reciprocal space of field configurations n(p) conjugate to

the plaquette variable B(p). Horn and Weinstein work in

the space of configurations of the lattice variable A”).

and maintain gauge invariance by a projection technique

involving functional integration. In spite of the formal

differeces,webelievethatthetwoapproschesre

equivalet.

We wae unable to calculate analytically the expectation

value of H in the state ‘1 (Ref. 18); instead we evaluated

(d; IH 1‘2) using the Metropolis Monte Carlo algorithm

to geerate a set of configurations with probability distri-

bution ‘2’. The result is shown in Fig. l. graphs of the

value of the variational parameter a that minimize

(d; :H 562) vs coupling parameter 122/g‘. Figure 11a)

is for a three-dimesional lattice of size 3x 3 x 3; value of

a for lattice site SXSX 5 differ very little from those for

3X3x3. Figure 11b) is for a two-dimesional lattice of

size 5x5. At weak coupling. i.e.. large A. a approaches 1.

the value that correponds to the harmonic approxima.

tion. At strong coupling the wave function is sharply

peaked at small n (p). correponding to a disordered state

in the space of magnetic field configurations. The rapid

variation ofa for A near 1 in the three-dimensional case is

preumablyareflectionofthephasetransitimoftheUU)
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FIG. 1. Variational parameter :1 vs coupling constant A for [,1/

(a) three dimensions and (b) two dimesions. Error bars include °'5 ’ ’1’ /

systematic error. F ,'/'

o 4 J L L J J J 4

lattice page theory. The characta of the transition seen 0 °5 '° 1 ’5 2 C 2 5

in the variational calculation is consistent with a second-

eo-
order transition": within the accuracy of our Monte Car-

lo determination of (‘2 I” M2) there is only one

minimum for any A. the position of which varie continu-

ously as shown in Fig. 1. For a first-order transition, in

contrast, one might expect to have two local minima at

different value of a such that the position of the absolute

minimum change discontinuously from one to the other

at some transition point A...

Figure 2 shows variational etimate of £0/N, for dif-

faet value of A for both of the trial wave functions in

and ‘2. along with the large- and small-A limits of E0 IN,

give for three-dimensions in Eq. (3.20). Again Fig. 2(a)

is for a 3X3>< 3 lattice and Fig. 2(b) is for a 5 x5 lattice.

Note that in the weak-coupling region. i.e.. A) l. the

second variational etimate is the better one; this is as an-

ticipated since the construction of d, incorporate the

correlations between magnetic fields on different pla-

quette appropriate to the wek-coupling limit (with

021). Note too that the two variational etimate are al-

most the same in the strong-coupling region.

The variational calculations show an intereting differ-

ece betwcal the two- and three-dimesional theorie: the

transition between small~ and large-A behavior is much

sharper in the threedimalsional theory. This agrees with

the conjecture that there is no phase transition to a non-

confining phase in the two-dimesional theory. On the

otha hand, the variational etimate based on the harmon-

ic wave function e; is better at large A. eve in the two-

dimesional theory; evidetly the vacuum state is not as

simple as one with no correlations between the B fields on

diffaalt plaquette. This is ccnsistet with the specula-

tion that it is the infiuece of long-range topological de-

fects, two-dimesional vortice. that maintains disorder in

the two-dimensional theory at large A (Ref. 7); the vortice

live on top of an esetially harmonic wave function.

IV. MONTE CARID RESULTS

InthissecticnweshalldecribethereultsofGFMC

elcalations for the compact U(1) lattice page theory.

The basic equation that defines our GFMC algorithm is

Eq. (3.10). A brief recapitulation of the method is as fol-

lows: Each complete Monte Carlo itaation of Eq. (3.10)

replaces an esanble s'cin;tp1;a-1.2.....N'l ch’

.ccnfigarationscftheinteger-valaedplaquatevariahle

SD

E
N
E
R
G
Y

N o

 

 o A l l A A I J A

0 L0 20 30 40 50

FIG. 2. (a) Variational etimate of the vacuum eergy per

plaquette vs coupling constant A for the three-dimensional

theory. Thesolidanddashedcarvesarefrom perturbationex-

pansions at small and large A. repectively. The crease 1+ )

and circle (0) are variational etimate with trial wave func-

tions a, and ‘1. respectively. (b) Variational etimate cf the

vacaumea'gypaplsquetteforthetwo-dimesionaltheory.

Thectu'veandpcintshavethesamemeaningasinh).

n(p) by a new emanble f-1n,(p);a=1.2.....Nl.

This replacanet is a two-step proces involving branch-

ing. which is governed by V[n',(p)]. and diffusion. which

is govaned by G[n(p).n',(p)]. The change in atsanble

size N'-oN provide a measuranalt of the eigenvalue A.

Importance sampling is provided by the trial wave func-

tions in and ‘2 defined in Sec.lll B.

Figure 3 shows Monte Carlo etimate of the eagy per

plaquette Eo/N,. i.e.. the quantity defined in Eqs. (3.16)

and (3.17). for three and two (space) dimesions; the lat-

ticesizeare3x3x3 and 5x5. The twosctsofpointson

this graph are the reults obtained with the two impor-

tance functions. The curve are the ordinary variational

etimate. of which individual points wae shown in Fig.

2. Thee curve are not perturbation theory curve; how-

ever. the trial wave function a. is known to he an accurate

approximation of the eigefanction at small A. and d; is

accurate at large A. By the variational principle thee

curve are rigorously upper bounds on the may £0.

We shall describe the realts as estimate of Eo/It’, vs

A.hutitshoa1dherccallcdthat£oistheinputquantity
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FIG. 3. (a) Monte Carlo etimate of the vacuum eagy per

plaquette vs coupling constant A for the three-dimesional

theory. The solid and dashed curve are variations) etimate

with trial function it and 1,. respectively. The crease ( + )and

circle (Glare Monte Carlo realts with importance functions d.

and ‘2. respectively. (b) Monte Carlo estimate of the vacuum

eergyperplaqaetteforthetwo-dimensionsltheory. Thecarve

sndpcintshavethessmemeningssinla).

sndAtheunknowneigevsluethatisoutputbythe

GFMC calculation.

Thee calculations used “hie of approximately 1m

,ctmfigurations; this size fluctuate with ech itaation.

We also checked some realts with larger esanble. Typ-

ielly 1W iterations were used to obtain the etimate of

Eo/N, shown. Each computation took roughly 1.5 min

at s CDC Cyber 750 computer. To be sure of conva-

gece we checked that the final estimate is indepaidalt of

the starting alsanble; e.g.. that an initial atsanble with all

value cfn(p) equal to see give thessme final vslueas

one with randomly geaated value of n (p).

The Monte Carlo results obtained with importance

ftmctionezliecnacontinuouscurvethatinterpolatebe-

twee the known small-A and large-A depedence. Thee

reultscsnhethoaght ofssacalculationofthecorrection

to the variational eagy. The correction is very small ex-

cept whe A~l because the variational etimate with trial

ftmctiondzaecuratelydecribethegrotmdststeinboth

thesmall-sndlargeAlimits. TheMonteCsrlocorrecticn
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forA~1isjusteoughtopushtheeagyhelowthevsli-

ational bound provided by the other trial function in.

In contrast. the Monte Carlo realts with importance

function in show an intereting failure: for A2 1.3 the

estimate are not consistet with the variational bound

due to ‘2. We interpret this as.the stronget evidece in

our calculations of the existece of a phase transition in

the three-dimesionsl U(1) page theory. This conclusion

is based on the following argumet: The trial wave func-

tion (1.. which has no correlation between the magnetic

field value on different plaquette. is qualitatively dif-

ferent than the ground-state tigefunetion if A 2. 1.3.

which insted has the long-range correlations associated

with the matrix M(p,p') that define the harmonic wave

function a, in Eq. (3.24). Therefore the importance func-

tion (1. fails to direct the diffusion proces to the region of

the space of configurations where the most significant

ground-state configurations are located. Furthermore. the

disordaedphsseofthesystan should still existasalow-

eergy state concentrated in the same region of configura-

tion space as the uncorrelated importance function 11..

Apparently this uncorrelated state is metastable with

repect to the GFMC iteration; for a finite-esanble size

and ita'ation time it cannot converge to the actual ground

state a. Similar metastable state are exhibited as hys.

ta'esis 100ps in Monte Carlo stadie of the path-integral

formulation of lattice gauge theorie. So. for A 2. 1.3 there

are two qualitatively differet low-alergy state: the actu-

al ground state decribed well by the harmonic wave func-

tion ‘2. and the uncorrelated state which is metastable

with repcct to GFMC ita'stion with the uncorrelated im-

portance function sh.

The reults of the GFMC elculations on the two-

dirnalsional theory are quite differ-alt. Thee are shown

in Fig. 3(b). The Monte Carlo realts obtained with the

two different importance functions agree with one anotha'

over the attire range of A. and are consistent with both

variational bounds. There is no sign of a metastable state.

We take this as the bet evidence of the nonexistece of a

phase transition in the two-dimesional U(1) lattice page

theory. In particular. it seems that either of the trial wave

functions 1:, and ‘2 resemble the a'galfunction closely

eough to he used successfully as an importance function

for any A.

The crossover from small-A to lsrge~A behavior in the

three~dimesional theory occurs continuously as a func-

tionofA. Thusthephasetransitionappersnottohea

first-order transition. We have also invetigated a model

with a fast-order phase transition. the Zz-gauge theory in

three (space) dimesions. by the GFMC method. Thae.

in contrast to the U(1) theory. the slope ofthe curve ofe~

agy vs A change discontinuously at A- l. the self-duality

point.eve ins latticeassmall as 3x3x3. Thaeslsowe

find metastable state by using as an importance function

awavefunctionwiththeadaordisordasuitedtothe

aha phase. _

Another quantity that we have computed is the expects.

tion value ofthe B field; more precisely the quantity

IV-(dl 1-cosB(p)l¢) . (4.1)
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Notethat Wisnotindcpendentoftheesegypepla-

quette £0/N,. tine:

a 50

W" 3A IN, ] '

Howeve, we calculate Wdirectly from Eq. (4.1). not by

using Eq. (4.2). The computed value of Ware shown as a

function of coupling constant A in Fig. 4. for the three-

dimensional theory. Thee the curve show the perturba-

tion expansions of the expectation value of l-cothp) for

hrge and small A. The points are variational and Monte

Carlo etimate; the Monte Carlo points are computed

from the mixed expectation value, i.e., Eq. (2.16). for the

two importance functions.

Figure 4(a) is for the harmonic trial function d2. Note

that the ordinary expectation value in the variational state

‘2 agree with the large-A perturbation curve. but differs

from the small-A curve. as expected. The GFMC method

compute the correction to the variational etimate; at

(4.2)

S
L
O
P
E

 

 

   
FIG. 4. (a) The expectation value of l-coaB for the three-

dimensional theory. calculated from the trial function ‘3. The

curve are perturbation expansions. The triangle (Al are for

the simple expectation value in 6;; the crosse (x) are Monte

Carlo calculations of the mixed expectation value. Eq. (2.l6). (bl

The expectation value of l-cosB calculated from the trial func-

tion“. Thecurveandpointshavethesamemeaningasinta).
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arnall A, say, A510, the corrected value are consistent

with small-A peturbation theory.

Figure 44b) is for the uncorrelated trial function in.

I-Iee the expectation value in 1:. agree with the small-A

perturbation expansion. but deviate from the large-A ex-

pansion. In this case the correction computed by the

GFMC method is not large enough to bring the reult into

agreenent with the perturbation expansion at large A. As

before we interpret this failure as a consequence of the

metastability of the uncorrelated state with repect to the

GFMC iteation, and claim it as evidence of the phase

transition.

Wehavenotincludederorbarsonthepointsonthee

graphs. Thee reults involve aveage me 1000 itea-

tions for ensenble of approximately 1m configurations.

In all graphs except Figs. 4(a) and 4(b) the standard devia-

tion is small compared to the size of the point plotted on

the graph. To check whether the standard deviation is a

reasonable measure of the eror, we verified that averaging

ove half as many measurements increased the standard

deviation by about ‘5. In Figs. 4m and 4(b) the standard

deviations were somewhat large. but still comparable to

the size of the point plotted on the graph.

V. SUMMARY

We have applied the Green‘s-function Monte Carlo

(GMFC) method to the compact Ut ll lattice gauge theory

in three and two dimensions on small lattice, 3X3x3

and 5x5. The GFMC importance-sampling technique

was implemented with two trial wave functions: the un-

correlated trial function sh. which reemble the strong-

coupling eigenfunction; and the harmonic wave function

‘2. which derive from the weak-coupling eigenfunction

but is also quite accurate at strong coupling as well.

In the three-dimensional theory the vacuum energy per

plaquette varie continuously with A, but undergoe a

rathe sharpmefrom small-A dependence to largeA

dcpenderce. around A~ 1.3. In the small-A region, whee

there is little correlation between 8 fields on diffeent pla-

quette. the two importance functions yield approximately

equal value of the etegy. But in the large-A region.

whee thee are long-range correlations between plaquette

as decribed by the trial fumtion ‘2. the uncorrelated im-

portance function it. yields value inconsistent with the

variational bound placed by 5;. We interpret this as me

testability of the disordered state. and as evidence of the

phase transition of the UH) lattice gauge theory.

In the two-dimensional theory. in contrast. the vacuum

energy pe plaquette varie slowly with A. and the two im-

portance functions yield equal enegie for all value of A.

Weinterpretthisasanindication thattheeisnophase

transition in the two-dimensional theory.

We have used the tem “metastable” to decribe the

false ground state found by the Monte Carlo calculation

when using an importance function appropriate to the

disordered phase in a region of coupling constant whee

the true ground state has correlations decribed by the

harmonic wave function. This choice of words may be

misleading in that the false state may we converge to

thetruestateiftheensenblesizeistoosrnall;thefalse
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state is the: actually stable. This property is also seen in

quantum many-body problems with phase transitions,

such as solid to liquid helium. We have not attenpted to

study the convegence of the metastable state by increas-

ing the ensenble size. It is possible that the minimum

size necesary to allow the convegence to occur is so large

that the calculations are not feasible. All that can be said

theoretically is that the iteation is stable only for the true

ground state if the ensemble is large enough. Of course

this is only an issue in systems with a phase transition. for

which thee are two qualitatively diffeent low-enegy

state.

Our calculations wee retricted to mall lattice. Cal.

culations for large lattice are certainly feasible; the only

limitation is compute time. GFMC calculations have

been done with several hundred quantum variable; for

comparison. a 3x3x3 lattice gauge theory has Bl link

variable. We believe that the reults of calculations on

large lattice would be vey similar to those decribed

above. In particular the vacuum energy pe plaquette does

not depend very much on the lattice size. We have seen

two indications of this. First. the perturbation expansions
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areindependentoflatticesizeformall A.andonlyvey

weakly dependait for large A. as indicated by (3.21).

Second. we carried out the ordinary variational calcula-

tions for lattice of different size, and found only a vey

mall lattice-size dependence.

Thee U(1) lattice-gauge-theory calculations wee done

in a special way. by formulating the problem in the space

of configurations of the plaquette variable I: (p) defined in

Eq. (3.4). That formulation leds to an equation that is

especially simple to iteate by the GFMC method. It is

our impresion that thee doe not exist a similar special

formulation of the SU(2) lattice gauge theory. Theefore

we intend to apply the GFMC method to that theory by

anspproachmorealongthelinedecribed in Sec. IIA.
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In the preceding reprinted article graphs of the quantity

<1-cos B(p)> versus A were not given for the two dimensional theory.

For the sake of completeness, these are shown in Figures Bl and 32.

Figure Bl is for the harmonic trial function oz and Figure 32 is

for the uncorrelated trial function wl. The circles (0) are variational

estimates and the crosses (+) are GFMC results. The solid curves are

perturbation expansions. Notice that although the variational estimates

using the two wave functions are quite different at large A, the two

sets of GFMC results are reasonably consistent with each other. This is

in contrast to the three dimensional theory where the wave function ll

acted very poorly as an importance function for large A. This

difference is due to the fact that there is a phase transition in the

three dimensional theory whereas in two dimensions there is no phase

transition.
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Figure 81: GFMC estimate of the expectation value of l-cosB(p) for the

two dimensional U(1) theory using the harmonic wave function ¢2 for

importance sampling.
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Figure 32: GFMC estimate of the expectation value of l-cosB(P) for the

two dimensional U(1) theory using the uncorrelated wave function *1 for

importance sampling.
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