ANALYSIS OF DESICN AND OPERATION OF A SWIMMING POOL

Thesis for the Degree of B. S. R. C. Hodgkinsor C. R. V. Shelley
1927

SUPREME
Bhement
IWBACKOFECK

THESIS

ANALYSIS OF DESIGN AND OPERATION
 OF A
 SWIMMING POOL

BY
R. C. HODGKINSON
C. R. V. SHELLEY

1927

THESIS
A
-
mis thesis is divided into troo parts, as follows:

Part, I. Analysis of Design.

1. Enalysis of loads-
a. Live
b. Dead
2. Analysis of stresses-
a. Steel
b. Concrete.
3. Anslysis of sizes of
a. Slabs
b. Falls

Part II. Analysis of Operation.

1. Study of currents
2. Determination of chemical compounds in water of pools.
3. Study of organic life in pools
4. Suggested improvements in the Michigan State College swimming pool.

Acknowledgement is made of data given on swimming pool filtration by the following firms:

The Everson Filter Co., Chicago, Ill
"he Norwood Engineering Co., Florence, Nass
The Sanitation Corporation, New York City
The Roborts filter :ifg. Co., Darby, Pa.
American rater Softener Co., Fhiladelphis
International silter Co., Chicago, Ill 101 ast

Robinson \& Campau, Architects, Grand Rapids, Michigan, furnished plans for a swimming pool which is being built at the East Grand Rapids High School(May, 1927).

The following text books were used for reference:

Hool. Volumes I and II. Reinforced Concrete Construction.

Turneaure and Russell. Public Water Supplies. Third Edition.

Levine. Bacteria Fermenting Lactose and Their Significance in Water Analysis.

Prescott and Winslow. Elements of Water Bacteriology.

American Public Health Association.
Standard Methods for the Examination of Water and
Sewage.
Engineering News Record.
American City Magazine
Water Worke Magazine
American Journal Public Health Magazine
American Physical Educational Review Magazine.

The Truscon Steel Company, of Youngstown, Ohio, furnished bar plans.

PGR" I-A:ALYSIS OB D:OICN OF A GUIMITGG POOL.

Although it ras intenced to analyzo the desich of the inichiçan State College swiming pool, this could not, be done due to the fact, that the plans o ould not be obtained. This pool is of the hoon and girder co:struction, set on columns insticad of the usual method of setting the pool on the ground mith proper rootincs.

The swiming pool thi:t was choscn for analysis is the fast Crand Rapids Hich School awimming pool, designed by mruccon Steel Co., of Detroit, kich., under the architect, Robinson and Campau, Brand Rapids, Mich. This pool is constructed of slabs and malls, the bottion slab acting as a footing. where are no beans or girders.

The dosign of this pool was analyzed as
follow:

1. Analysis of loads.
a. Live
b. Dead.

The loading used in tilis pool desien and
analysis is as follows-
The live loads are 150 pounds per square foot. on the slab at, the edee of the pool where the bethers malk. To take cere of the live load for the pooi itself, 50 per cent. ras added to the dead load. this
also took care of impact. When bithors cnter the pool thoreis no added load due to the fact that the water overflors into a drain thru the scurl gutter. The 50 per cent, added to the ded load wos comsidered sufficient for impact due to the foct that when a diver caters the ratcr the added pressure is distributed over a large area.

The dead loads co:sist of the warer at. 62, paunds per cubic foot, and the concrete at 150 pourds por cubic icot. 2. Anelysis of s+resses-
a. Stcel
b. Concrete.

According to the mucson 3 teel Compant's desion, the steol in this pool is stressed to 10,000 nounds per squarc inch of cross sectional arca; and the concrete is stressed in conpression to 750 pounds por square inch. Whe concrete is allowed to tale tension of less than 200 pounds per seuare inch, or less than 10\% of the ultimato comressive strength.

These stresses are hicher than aro usually
used due to improved nethods of construction and methods of mixing concrete.
3. A alysis of
a. Slabs
b. "alls.

These nall and slab depths vere desidnod

for maximum points only. The reacon for this is to sevo money and time in building forms.

The folloring formulas were used to
deteraine dopth of concrete and size of bors:

$$
\begin{aligned}
& \mathrm{d}=\sqrt{\mathrm{Kb}} \\
& \mathrm{~d}=\mathrm{dep}+\mathrm{h} \text { to steel } \\
& \mathrm{L}=\text { naximum monent } \\
& \mathrm{K}=\text { constant t,atcen from tibles } \\
& \mathrm{b}=\mathrm{broadth} \text { or bern }=10 \text { inches }
\end{aligned}
$$

$$
D=c+d
$$

$$
D=4,0 t a l \text { depth of concrete }
$$

$$
c=\text { concrete covering for } s+e \theta l
$$

$$
v=\frac{V}{j b d} \text { liast bo less than } 10 \text { pounde per. sq. in. }
$$

$$
\nabla=\text { unit shear }
$$

$$
V=\text { total shear in section }
$$

$$
j=\frac{7}{5}
$$

$$
u=\frac{V}{\Gamma o j d}
$$

$$
u=\text { unit bond stress }
$$

$$
z=\text { sumation }
$$

$$
0=\text { circuraference of bars }
$$

$$
a_{s}=p d b
$$

$$
a_{s}=\text { arca of steel cross-section }
$$

$$
p=.003
$$

$a_{s}=\overline{f_{g^{j}} d}$
$\mathbf{f}_{\mathbf{s}}=$ unit, tensilo \mathbf{s}^{+}ress of steel $=13,000$ pounds
$P=\frac{1}{2} \mathrm{ml}^{2}$
$\mathrm{P}=$ total messure
w = weitht, per foot
$1=$ total lencth of beam

For the malls we consider that, the concentrated load P acts at, a point one third the height from the bottom. Using the value for p the two resultants mere found (see figure 1). The maximum monent. is found at P and equals P_{1} times a.

The resultant, F_{1} was found to be 510 pounds and $a=4.66$ feet.

Feraring to fiçure l, the moment was found to be $510 \times 4.66=2400$ foot pounds.
lefecrring to ficure 2, the moment $=$ $666 \times 5.34=3550$ foot pounts

Referring to figure 3, the moment is $166 \times 2.66=450 \mathrm{foo}^{+}$pounds.

Froal figure 4, the moment $=120 \times 2.03$
$=300$ foot pounds.
Referring to section 5, moments are e unl
$4.0-400-1150-4600$ foot pounder
These moments are increased by onomelf to
allow for iapact.

Design of slab in bottom of the pool--
This also is the footing for the pool. This is designed as a simple benm supported at the ends. Width of beam is taken as 12 inches. $\quad R_{1}$ is found by computing liye + dead weitht on one slab. Live + dead weight equals $=R_{1}=(1 \times 10)+(150 \times 13)+(1 \times 13)=1975 \#$ $R_{2}=765 \#$

This resolves into a concentrated load of 2740 pounds at 15 feet. The moment $=6 \times 1975$
$d=\frac{V-1975 \times 6}{V-125}=9.5$ inches
$D=12$ inches
Ta get the amount of steel for the floor slab--
$a_{s}=.008 \times 10 \times 12=.96$ square inches Five one-half inch round bars. This is OK The above steel is for the top of the slab. The same amount is used for the bottom of the slab. This was found to be greater than the amount actually needed.

Design of floor slab around sides of the pool--
Span $=13^{\prime}$
Moment $=1 / 12 \mathrm{w}^{2}=4300$ foot pounds

$D=9$ inches, using three inch cover.

To find the depth of wall slab from the
Iargest bending moment-

$$
d=\frac{V-3550 \times 12 \times 1.5}{\sqrt{125 \times 12}}=6.5 \text { Called } 7 \mathrm{M}
$$

two and one-half added on each side to cover steel.

Therefore, $D=121^{\prime}$
To find the area of the steel-deep part-
$a_{s}=\frac{3550 \times 12 \times 1.5}{18000 \times 7 / 8 \times 7}=.58 \mathrm{sq} \cdot \mathrm{in}$.
Two 5/8 inch round bars used. This gives . 60 square inches. Bars spaced six inches on centers.

To find steel area for the shallow part of the pool---

$$
\mathbf{a}_{\mathbf{s}}=\frac{1550 \times 12 \times 1.5}{18,000 \times 7 / 88 \times 7}=.30
$$

One $5 / 8$ inch round bar used-spaced at twelve inches center to center. Steel area for one $5 / 8$ inch round bar $=.30$ inch.

Examination for bond-
$u=\frac{2000}{12 / 6 \times 2 \times 1.96 \times 7 / 8 \times 7}=42$ pounds
u at shallow end of pool $=\frac{2000}{2 \times 1.96 \times 7 / 8 \times 7}=84 \not \#$

Therefore, bond is OK
$\mathbf{a}_{\mathbf{s}}=.00 \% \times 6 \times 12=.5 \%$ squere inches
mhree $5 / \mathrm{B}$ inch Uars used. Eracing is 4 inches on centers.

The same area of stcel is used all the may
around the pool, even tho the span changes.
To care for thrust $a t \mathrm{~F}_{2}$ a 9 inch slab
is used with the same steel erea and spacing as for the slab designod above.
mest, for compression-to care for F_{1} and P_{2}
Unit. stress $=\frac{1332}{12 \times 9}=12.35$ for concrete
mis is $0 K$, 8 a compression of $750!/$ sq. in is
allowed.

A private pool at, Beverley Hills, California.

Heater and filter for the above pool.

Very often a srimming pool is considered merely as a tank to store water for the use of swimmers. This is the wrone viewnoint, as a pool should be dosigned for the special purpose of providing bathers with a supnly of clear, pure, sparkling mater, free from dirty film or deposit on the sides and bottom.

There are trio methods of maintainine the water supply of pools: the "fill and draw" and the recirculatind and refiltering nethods. Fith the fill and dran method the pool is filled directly from the water supply and is empticd into the sewer when it is too Airty for further use for bathers. In tifs case the pollution of the pool is progressive as the bacteria, dirt, lint, etc. from the bodies of the bathers accumulates in the pool. This method is unsaritary and uneconomical and in some localities is impossible to use. Also, the pool is out of use much of the time whilc the operations of draining, cleaning, and refilling are goivg on.

Fith the use of the rccirculating and refiltering method as usually installed, the water is filtered, heated, and disinfected. The water is drawn from the pool by a pump, forced thru filters, storilized, and returned to the pool. mhe generally accepted circulation time
for thejcontents of the pool is from ten to eighteen hours, ten hours being preferable.

As generally understood, filtration of water means the removal of suspended matter visible to the eye. To be efficient, a filter must also remove color and odor, as well as pathogenic bacteria, from the water. B.Gage and Bidwell have worked out the law of purification by consecutive dilution as appæied to recirculation and flowing thru pools, as follows:
"It is proposed that the rate of water interchange in a recirculation for flowing-through pool be expressed as the ratio of the volume of lcean water entering the pool in 24 hours to the total pool volume. This ratio is called the turnover rate or T, as $T=1$ when all the water is circulated in 24 hours; $T=2$ when the water is circulated twice in 24 hours, etc. It is demonstrated by computation and experiment that 7 turnovers are required to remove 99.9 \% of the dirt in the water.
lst. turnover removes $63, \%$ dirt

3rd. " " 95\%
4 th u \quad ~ 98 莣
\%th " " 99.3才
6 th " - 99.7%
To accomplish a purification of 99.99% ten
turnovers would be necessary
If the pool is used regularly by bathers
further increments of dirt will be introduced into
the water daily, and the removal of each successive daily increment will proceed according to the law. Assuming a daily increment of dirt equal to that in the pool at the start and a filter efficiency of 100% with a daily turnover of $T=1$, equilibrium will be reached at the end of the ninth day when the accumulated dirt in the pool will be equivalent to about, 58% of the amount present when recirculation and daily bathing started; with $T=2$, this is about 16\% in 4 days; with $T=3$, it is 5% in 3 days; and when $T=4,2 \%$ will be obtained in 2 days.

It is evident, therefore, that if clean water is to be maintained, the recirculation or flowing through systems must be designed to provida a turnover tatio of at least two and that where heavy bathing loads are anticipated, the turnover ratio should be three or four".

As filtration is usually practiced, ti consists of passing the water thru layers of sand or crushed quartz or gravel. This may be done either by gravity or pressure, called "slow sand" and "rapid sand" filters. Slow sand filters require a large area and are usually impractical for swimming pool work. Pressure filters operate 40 or 50 times as fast as the gravity, occupy a relatively small space, can be easily cleaned by back-washing, and provide uniformly filtered water at all times, with but small waste of water (some is wasted in backwashing).

A large outdoor pool at Newark, New Jersey.

Pool, sterilizer, and filters-Ohio University, Athens.

The efficiency of the pool itself
depends upon whether or not all of the water circulated thru the filters. With some designs, there are "dead areas" which are missed by the currents. This was found to be true of the Michigan State College swimiaing pool. An experiment was made upon a small model, made in exact proportion to the big pool, with inley and outlet in the same relative places, and of relative size. It was found, by use of black ink as a dye, that there are dead areas in each corner alongheres. should be enough inlets and outlets in the proper places to cause currents to circulate all of the water. A design of a pool which it is beleived will do this, is a paft of this thesis.

The chemical composition of the water of pools differs slightly from the chemical composition of the water supply from which it is taken, due to chemicals added for sterilization and clearing of water.

There are three practical methods of sterilizing water (boiling is too expensive as a rule) : 1. chlorine, either as the gas or as hypochlorites; 2. ozone; and 3. ultra-violet light. Chlorine is generally used, and it is this which makes the greatest change in the chemical composition of the pool water. In outside pools CuSO_{4} is used to destroy the diatoms and algae which cause green scum on the sides of pools, and this of course enters into the composition of the water

Kearsley Park pool, Flint, Michigan.

Kearsley Park pool, Flint, Michigan

In cases where the filters are entirely inadequate, and where large amounts of organic matter enter the pool, nitrogen is found as albuminoid ammonia, free ammonia, nitrites, or nitrates, depending upon the state of decomposition of the organic matter. In all natural sources of water there are sertain chemical compounds, such as $\mathrm{SiO}_{2}, \mathrm{FeO}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$ $\mathrm{Ca}(\mathrm{OH})_{2}: \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{NaCl}, \mathrm{HCO}_{3} \cdot$ Chlorine in pool, or other, water, must be in the molecular, Cl_{2}, form to be effective in destroying bacteria. The amount of excess chlorine must be $0.1 \mathrm{p} . \mathrm{p}$. m or not over 0.5 p.p.m. (parts per million), The reason is that at least 0.1 p.p;m. is necessary to be effective as a sterilizing agent, and if it gets over 0.5 p.p.m. there are offensi*e chlorine odors, as well as smarting of the eyes. Wherever sulphate of adumina is used (as a coagulant) during purification of swimming pool waters the water should be slightly alkaline at all times

A test on the water of the Michigan State College pool gave the following results:

Total solids- 240	500
Organic matter 95	less
Mineral matter 145	0 OK f
Free $\mathrm{NH}_{3} \quad 0.02$.05
Albuminoid $\mathrm{NH}_{3} 0.01$	0.15
Chlorine	4

soon after the pool had been in use for several hours, and the water had not been thru the filter. This accounts for the bigh organic matter as well as the nitrogen compounds.

At the college pool chloride of lime is used as the disinfectant. This is mixed with the water as it goes thru the filter in a special mixing device. The chloride of lime is of a 0.5 to 1.0 per cent strength. The cost of the treatment is quite low, ranging from ten to thirty cents per million gallons. In cases where the pool is grossly polluted it is necessary to apply the chlorine directly to the pool. This is best done by making a sack of some porous cloth, as cheescloth, filling it with chloride of lime, tying it on the end of a pole, and dragging it thru the water of the pool. In this way, the dead areas in the corners can be thoroughly disinfected.

It has been siad that the pool water should be on a "drinking water" standard. Few pools measure up to this standard, and certainly the M.S.C. pool does not (1927). Tests of the pool water showed that gas was produced in lactose broth fermentation tubes, showing the presence of B.Coli, which is an intestinal organism. It is not neressary to go further with the A.P.H.A. or Treasury Dep't tests to show that this water in not up to the standard mentioned above.

Pool and filters, K. of C. Club House, Columbus, Ohio

A horizontal pressure filter.

A sample of weter taken at random from a swimang pool is sure to contain much minute life. The character of this life varies sonewhat with indoor and outdoor pools, as well as rith climatic conditions. However, there is sure to be certain organisms from the bodies of the bethers, due to the Pact that bathers do not take a cleansi g shower before cntering pool, and that ordinary decency is not always procticed while in the pool. Sometimes pools are lusod by those having s'in disease, sore or inflamed eyes, cold, nasal or ear discharges, or communicable deseasesm-all of which cause pollution of the water.

There is anothen cless of organic life in pools-wthe minute flovering plants, or Algx In outdooz pools which are not properly trented with copper sulphate, there is found growths of such plants es vallisneria (ell gress), pontecieria, alisma, lemna, eto. As these do not cause objectionable tasts nd odors, and do not, have pethogenio renctions, they are of importance only in a mechanical way; that is, they must be removed if they cet too thick in the pool.

Thore is another eroup of the algae which nosses bad odors and tastes, and arcof importance in pools-the Eblorophycea Thesc are grass green in color, and when allowed to grow they form a thic's scum, comonly called "frog spit" or "rond scuan", on waters. "embers of this group are the schizophyceae, Synura,
and Syenrypta
There are only a few species of diatoms which are known to give rise to serious trouble in swimming pools. When these are present the infected water has an odor resembling fish or geraniums. This condition is often produced by Asterionella. None of these were found in the M.S.C. swimming pool, the water having no odor either cold or heated

For safety of bathers the bacteriological examination of pool water is of paramount importance. This thesis will not give the technical deatils envolved in the various prodedures for determining the bacteridldgical content of pools. They are outlined in the "Standard Methods of Water Ananysis" issued by the American Public Health Association.

For the benefit of any who may wish to use this thesis later, some standards for the water of swimming pools will be given.
A. Bacteria count on agar-2 days- $20^{\circ} \mathrm{C}$. Not more than lo\% of samples covering any considerable period shall contain more than 1000 bacteria per c.c. No single sample shall contain more than 5000 per c.c.
B. Bacteria count on Agar or Litmus Lactose Agar-24 hours $-37^{\circ} \mathrm{C}$. Not more than 10% of samples covering any considerable period shall contain more than 100 bacteria per c.c., and no single sample shall contain more than 200 per c.c.
not more than three out of any ten consecutive samples collected on different dates to show a positive test in $10 \mathrm{c} . \mathrm{c}$. of the water at times when the pool is in use.

The above is adapted from the American Journal of Public Health.

Bacteriological examinations of the water of the college pool showed positive in the presumptive tests for Bact. Coli, there being gasproducing organisms in a majority of the l c.c. samples. Typical colon bacilli were isolated. Careful isolation of bacteria in pool waters shows the following groups: fluorescent bacteria, the chromogenic bacteria (violet, yellow, and red forms), organisms of the colon-aerogenes group, organisms of the proteus group, non-gas-forming, nonchromogenic, non-spore forming rods which do not produce proteus colonies and may or may not liquefy gelatin and acidify milk, spore formers of the B. subtilis type, and white, yellow, and pink cocci. The swimming pool at the college gymnasium should be improved in two respects-more efficient filtration and sterilization of the water, and some arrangement of inlets and outlets which will permit all the water to go thru the filters, eliminating the "Dead areas".

The former may be handled by installation of another pressure filter plus improvement of the operation of the existing one.

The M.S.C. swimming pool is 90 feet long by 30 feet wide. The depth at the shallow end in $3 \frac{1}{2}$ feet; at the deepest part, 10 feet; and 8 feet at the deep end. The inlet is in the denter of the shallow end, about 18 inches from the top of the pool. The outlet is at the deepest part of the pool. There is only one inlet and one outlet. This pool should be improved by installing at least three more outlets, evenly spaced in the deepest part of the tank, making 4 in all. Five more inlets, making six in all, should be installed so as to cause the currents of water to flow thru the entire pool toward the outlets. To do this, inlets should be placed at about the seven foot level in the deep end of the pool. Care must be used in dealing with the hydraulics of this situation. The two inlets at the seven foot level of the deep end should be placed about 18 inches from the sides of the pool and the third inlet at this endshould be about three feet below water level. The three inlets at the shallow end should be placed similarily to those at the deep end.

Method of feeding a chemical to water.

Rosedale Park Swimming Pool-Covington, Ky.

Filters for above pool.

SWIM

