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ABSTRACT

SCANNING PROBE STUDIES ON THE SURFACE OF BI2SE3

By

Megan E. Romanowich

Topological insulators are an exciting material that are insulating in the bulk, but have

a metallic surface state where spin and momentum are locked perpendicular to each other

by strong spin orbit coupling. The simplest topological insulator, Bi2Se3, has a band gap of

0.3 eV and a single Dirac cone, a state where energy and momentum are linearly related, in

the gap. This special state is protected against scattering and small perturbations by time

reversal symmetry. Before any of the exotic effects predicted to be present in this material

can be fully realized, it is important to know what other electronic effects coexist with the

topological state on the surface of the material. To that end, I employed scanning tunneling

microscopy on the surface of Bi2Se3 far from defect states. I probed the interplay of bulk

electrons with the Dirac cone that adds additional states. I also show that the Dirac cone can

coexist with a two-dimensional electron gas, although the amplitude is potentially reduced.



In memory of my father, Dr. Robert H. Knapp MD, who was responsible for fostering my
love of science and for my mother who helped me achieve my educational goals along the

way.
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PREFACE

Having just left Dr. Mackey’s material science research lab in summer of 2008, I was very

excited to learn a new technique in the Tessmer group: scanning tunneling microscopy. Over

the next year, I rebuilt a scanning tunneling microscope, learning what makes scanning

tunneling microscopy work. At the same time, a hot new area of research was just coming to

prominence on the condensed matter scene. The earliest experiments on three-dimensional

topological insulators were published in 2008 and 2009, just after I began my research in the

Tessmer group. Due to a fascinating surface state, topological insulators are a natural pairing

with scanning tunneling microscopy and other surface probe techniques. Shortly after joining

the group, I proposed the experiments on the topological insulator Bi2Se3 which made up

the experiments described in this work.

Over the next few chapters I will explain some scanning probe techniques and unusual

features in the local density of states in Bi2Se3. To ground the reader in the literature, I have

taken a historical approach in the introduction. As topological insulators are a rather specific

topic, I am motivating key aspects of their physics by first explaining the earliest experiments

in two dimensions. This early work shaped some of the terminology in topological insulating

literature today. Conversely, scanning probe microscopy has so many applications that to

do it justice, I very briefly elaborate on its scope before focusing on my Bi2Se3 studies.
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Chapter 1

Introduction

This thesis is organized as follows: After I briefly introduce the major topics covered in

my thesis experiment, topological insulators, I will begin to discuss my apparatus and the

scanning tunneling microscopy technique in Chapter 2. Chapter 3 will cover a historically

motivated background of the physics of topological insulators and the topological insulator I

studied, Bi2Se3. Chapter 4 covers both my thesis experiment, spectroscopy on the surface of

Bi2Se3, and the analysis. Then I go on to discuss other observations on scanning tunneling

microscopy studies on Bi2Se3 samples in Chapter 5 before I completely change topics to

discuss other scanning probe techniques I performed in Chapter 6. Finally, I will conclude

with a summary of my experimental observations and analysis and discuss future directions

in Chapter 7.

1.1 Topological Insulators

Undoped semiconductor materials are normally insulators. Figure 1.1 (a) shows the standard

electronic structure, consisting of a filled valence band and an empty conduction band. The
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bands are separated in energy by a band gap as shown in Figure 1.1 (a). The reason

a semiconductor cannot support a current is because of the filled valence band. Every

electronic state in the band has a twin state with the opposite sign in momentum-space

(k-space). In other words, for every electron that could transport current to the right, there

is a twin that carries current to the left. Since all of the states are filled (i.e. occupied), there

is no way to build a quantum state that will carry an overall current in any one direction.

The quantum Hall effect was discovered in 1980. When a large magnetic field is applied

perpendicular to the two-dimensional conducting plane, a quantized current is established

on the edges, with the interior becoming an insulator [1]. This current is robust against

backscattering; in other words, a charge cannot rebound from a defect in a way that would

change its direction. A topological invariant, called a Chern number, distinguishes the

quantum Hall insulator from a simple insulator and helps to explain the robust nature of the

edge states in the integer quantum Hall effect [2]. It would be years before another boundary

state that is protected by a topological invariant would be predicted and discovered.

A topological insulator is a material that is insulating in the bulk but conducting on the

surface; it has edge or surface states that are conducting (gapless) that lie inside the bulk

gap as depicted in Figure 1.1 (b). Moreover, the surface state, that arises due to strong

spin-orbit coupling, traverses this gap is composed of a single (more generally it just needs

to be an odd number) pair of eigenstates on each (conduction and valence) band edge which

are symmetric under time reversal. These states are known as Kramers pairs or Kramers

doublets [3, 4]. However, if there are even numbers of Kramers pairs on each band, elastic

backscattering destroys any conducting edge state and it is the topological equivalent of a

simple insulator [4]. As long as time reversal symmetry holds, the topological surface state
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where electron spin is locked perpendicular to its momentum is robust against scattering.

The interplay of momentum and spin is amazing and simple: charge moving to the right

must have opposite spin as charge moving to the left.

Much of the research in the last five years has focused on 3D topological insulators.

Here, the surface state has an odd number of massless Dirac cones around high symmetry

points [5] that are protected by a topological invariant. A Dirac cone is a state that can

be described by Dirac’s equation where energy is linearly related to momentum. Figure

1.1 (b) shows the topological insulator’s Dirac cone where states of opposite sides of the

cone (opposite momentum) have opposite spin due to the spin-orbit interactions. Spin orbit

interactions are crucial in creating a topological insulator as it gives rise to band inversion

that forms the cone [6]. Due to the magneto-electric effect, surface states of topological

insulators are described by Maxwell’s equations with the addition of a topological term [7].

This gives rise to fascinating properties. For example, theory predicts that bringing an

electric charge in close proximity above the surface produces an image magnetic monopole

inside the material [8]. Moreover, the interface between a superconductor and a topological

insulator can support a particle analogous to a Majorana fermion, a particle which is its own

antiparticle. The state created in the topological insulator is actually a particle that is its

own hole that could be useful in quantum energy storage [9]. The prospect of these effects is

thrilling, but before serious experimental progress can be made in creating and discovering

these exotic effects, all the fundamental aspects of the material including bulk effects need

to be characterized to avoid experimental complications later.

For example, Bi2Se3 is a narrow band gap semiconductor that has been studied for

years. Previous interest in these narrow gap semiconductors came from their thermoelectric
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(a) (b)

Figure 1.1: For interpretation of the references to color in this and all other figures, the reader
is referred to the electronic version of this dissertation. Arrows in these diagrams represent
spin. (a) Band diagram of an insulator showing the filled valence states are separated from
empty conduction band states by a band gap. The bands are spin degenerate. (b) In a
topological insulator, a surface state connecting the conduction and valence band consists of
a band where holes traveling left (negative in k-space) are connected to electrons traveling
right, and vice versa exists within the gap. In (b) the horizontal scale represents momentum,
but there is no physical meaning to the horizontal scale in (a).
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(a)

(b)

Figure 1.2: (a) Three quintuple layers of Bi2Se3. Inside each layer the atoms form covalent
bonds and each layer is held to its neighbor by Van der Waals forces. This image is from
of Dr. Mal-soon Lee. (b) My Bi2Se3 local density of states measurement. The dotted lines
show the Dirac cone. Specific features of the Dirac cone will be discussed in Chapter 4.
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properties [10, 11, 12]. It was not until recently that Zhang et al. predicted Bi2Se3, Bi2Te3

and Sb2Te3 to be strong topological insulators while their sister material, Sb2Se3, was

predicted to be a trivial insulator [6]. The topological surface state arises from strong spin

orbit coupling that induces a p-orbital from Bi and Se to invert giving the surface state a

finite skin depth [6]. Bi2Se3 has a single, nondegenerate Dirac cone at the Γ point (where

�k = �0 in k-space), making it a very simple topological insulator [6, 13].

Bi2Se3 forms a quintuple layer of three Se nets sandwiching two Bi layers as shown in

Figure 1.2 (a). The quintuple layers are held together weakly with Van der Waals forces;

therefore, these materials are very attractive for STM because they cleave easily with scotch

tape and the surface stays relatively clean. Prior work in our group showed that a Bi

impurity five lattice sites down from the surface can show up in topography scans [14]. My

research took a different approach to study point spectroscopy far from defects to see what

unexpected interactions appear in the electronic structure seen in Figure 1.2 (b). I find that

bulk states propagate to the surface and that the Dirac cone coexists with a two-dimensional

electron gas. Neither of these effects have previously been described by scanning tunneling

spectroscopy measurements.

1.2 Scanning Probe Methods

In 1982, Binnig and Rohrer [15, 16] revolutionized surface science bringing surface probes

to the angstrom scale by inventing the scanning tunneling microscope (STM). A conducting

tip is attached to a piezoelectric material that can expand and contract in all three spatial

dimensions. This not only helps to bring the tip to within a nanometer of the surface,

but also facilitates raster scans for topographical images. Without the ceramic piezoelectric
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materials, the microscope would not have had the ability to scan precisely at the atomic scale.

Once in tunneling range, controller electronics keep the tip from running into the surface by

maintaining either a constant current or constant height using a feedback mechanism. The

tunneling current, usually around 1 nA, is amplified and processed by a computer. By taking

a series of these measurements an image of the electronic state of the surface is generated.

Tunneling between two metals separated by an insulating barrier had been understood

for years before the advent of STM [17, 18, 19]. However, the popularity of the scanning

tunneling microscopy technique fueled further interest in the area experimentally and the-

oretically [20, 21, 22]. Early research not only focused on studying different materials but

also on creating different STM designs including the louse [23], single tube scanner[24], the

beetle[25], and, a decade later, the walker [26]. Many different materials were scanned in-

cluding metals [27], semiconductors [15], and biological materials [28]. Since its inception,

it has been used to study many different areas of condensed matter physics. Topics of in-

terest include superconductivity[29], charge density waves[30], atomic manipulation[31], and

surface lattice structures[32].

Other techniques using the same mechanical principles as STM have splintered off to

form many different sorts of measurements. Moreover the principles behind the scanning

probe techniques had been the subject of research for years prior to the advent of precisely

controlled piezoelectric devices. For instance, Kelvin probe measurements were well under-

stood [33], and performing them in tandem with STM was a natural extension. As another

example, scanning capacitance methods can measure single dopant molecules under a surface

[34, 35, 36, 37], often used in conjunction with STM. Needless to say, over the past 30 years,

scanning probe techniques have become a scientific staple.
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Chapter 2

Apparatus and Technique

In this chapter, I will explain my apparatus and the scanning tunneling microscopy (STM)

technique. I will begin by detailing the design parameters of the sample processing chamber

that I made to achieve better sample surface quality for my thesis experiment. Then I will

explain the physics of STM before explaining the details of my experimental setup.

2.1 Sample Processing Chamber

Early in the experimental process as I started to attempt measurements on Bi2Se3, I deter-

mined that exposing the sample to air for any length of time was detrimental to the surface

quality. It is likely this contamination results from water or hydrocarbons in the air attaching

themselves to the surface. I solved this problem by designing a nitrogen gas sample-cleaving

chamber. To be successful, the chamber needed to maintain a nitrogen environment at all

times. The sample must be loaded directly from the chamber onto the STM using a load-

ing fork so it could be immediately placed under vacuum. These constraints dictated the

geometry of the chamber. In order to ensure cleaving was easy to do and see, we used a tall
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plexiglass tube. Tools needed to be easily loaded into the chamber. To that end, I included

standard size ports on the back to which additional apparatus could be attached without

breaking the nitrogen environment. The chamber included a removable lid and within the

lid there were capped loading ports that could similarly be repurposed.

Figure 2.1 shows the chamber design. In addition to its excellent optical properties,

plexiglass is easy to glue and is more durable than other materials with similar optical

properties. All access port supports were likewise of plexiglass to prevent any leaks that

might occur from trying to glue two unlike materials together. The entire central chamber

tube is 14 inches tall and 10 inches in diameter to provide adequate work space. The

arm access tubes in the front of the chamber are 4 inches in diameter to accommodate

large hands. The lid and its inserts are sealed with vacuum grease to allow easy access

for removing apparatus (for example: tape dispensers). Extremely large materials could

be transferred through the main lid if required. The other small access port has two holes

that allow nitrogen gas to continuously circulate through the chamber. Finally, the entire

chamber tube is mounted on an aluminum support that provides adequate strength to hold

up the transfer fork without compromising the integrity of the chamber.

After it was built by the machine shop, the chamber was attached to the cryogenic STM

system shown in Figure 2.2. To minimize the cleaving chamber’s air exposure, a sample

loading chamber was added to one of the ports in the back of the nitrogen cleaving chamber.

Nitrogen was then continuously circulated through both chambers and vented into the main

laboratory to ensure all air remains purged from the system at all times. The only time the

main chamber gets exposed to laboratory environment is when the gloves are changed or

large items need to be removed or added. The quality of the sample surfaces and subsequent
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(a)

(b)

Figure 2.1: My processing chamber. (a) The back of the chamber showing the exit to the
microscope and two ports. The top port goes to a pressure relief valve that prevents the
chamber from exploding the top off and exposing the contents to air. The lower port connects
to a loading chamber so that the main chamber is always under nitrogen. (b) The top shows
two access ports: one is for loading materials too big to come in through the loading chamber.
The other supports the tubes that allow nitrogen to come in and out in a continuous flow
through the chamber. The two protrusions are the glove ports. All of these tubes and lids
are made of plexiglass to allow maximum light within the chamber. The support structure
on the right is made of aluminum and provides the strength to support the loading fork.
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data improved greatly with the addition of the cleaving chamber!

2.2 Scanning Tunneling Microscopy and Spectroscopy

Scanning tunneling microscopy operates on the principle of quantum tunneling through two

conducting materials separated by a vacuum or air barrier. If the tip-sample separation is

∼ 5 Å and a voltage is applied to the sample relative to the tip, a picoamp or nanoamp

scale tunneling current develops that is sensed with the help of a preamplifier. Without an

applied voltage, electrons would freely tunnel from one side to the other and no net current

would develop. In its most common operation mode, the tip can raster over a surface with

the help of a feedback loop that keeps the tunneling current constant. By monitoring how

far the tip is extended or contracted to maintain the current at each position in the scan

range a computer builds up a topograph of the surface.

The simplest quantum-mechanical model of STM is a trapezoidal one-dimensional bar-

rier of width d separating the sample and tip. A visual representation of this model can

be seen in Figure 2.3 where the surface of the sample is taken to be at z = 0. The elec-

tronic wavefunction, ψ(z), is governed by the one-dimensional time-independent Schrödinger

equation:

− �2
2m

∂
2
ψ(z)

∂z2
+ Uψ(z) = Eψ(z) (2.1)

where m is the electron mass, � is Plank’s constant divided by 2π, U is the average barrier

height and E is the electron energy. U −E is an effective barrier to overcome for tunneling.

While outside the barrier, the solutions of the Schrödinger equation are sinusoidal. However,

inside the barrier the wavefunction decays exponentially. The tunneling current is then
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Figure 2.2: My experimental setup. The blue dewar in the lower left of the image is my
cryogenic system discussed in Section 2.3.3. The sample processing chamber is in the center
of the image with yellow gloves. The fork for transferring the sample is inside the steel tube
to the right on the image (and has the pink marker on its end). The sample loading chamber
is not visible as it is behind the nitrogen chamber itself.
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(a)

(b)

Figure 2.3: (a) Schematic of the tip and the sample. The sample is in the x-y plane and the
tip is hovering above the sample in the z-direction. (b) A model of tunneling barrier showing
the wavefunction decays exponentially in the gap [38].
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proportional to the transmission probability through the classically forbidden gap; as ψ

decays exponentially, so does the transmission probability which turns out to be:

I ∝
�

n

|ψ(0)|2e−2κd;κ =

�
2m(U − E)

� . (2.2)

This result highlights the importance of the width of the gap on the magnitude of the

tunneling current. The constant, κ = 0.51
√
U − E Å−1 . Assuming the effective barrier (or

work function) for platinum is 5 eV [39, 40], retracting the tip 1 Å reduces the tunneling

current by an order of magnitude. The success of STM at producing informative topographs

is largely due to this exponential dependence on distance.

2.2.1 Physics

The coplanar tunneling barrier model of STM is particularly good at highlighting the im-

portance the tunneling gap has on the current; however, it leaves out a lot of information

about the surface and tip. In reality, the pointed shape of the tip affects the tunneling and

while a realistic picture is perhaps too complex for this thesis, other models exist that relate

the tunneling current to intrinsic material properties with few assumptions. In most cases,

tip sample coupling is weak, and first-order perturbation theory can capture more of the

picture. In other words, the proximity of the tip induces only a small change in the sample

electronic wavefunctions, and vice versa. In this approach first put forward by Bardeen in

1961 on metal-insulator-metal systems[19], the tunneling current, I, is related to a tunneling
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matrix element, M , between the tip and sample wavefunctions:

I =
4πe

�

� +∞

−∞
[f(EF − eV + �)− f(EF + �)]ρtip(EF − eV + �)ρ

sample
(EF + �) | M |2 d�.

(2.3)

Here, V is the bias voltage (the applied potential difference between the tip and sample),

EF is the Fermi energy, f(E) is the Fermi distribution function, ρ(E) is the density of

states, and � is the energy of the electrons. Equation 2.3 can be simplified when the thermal

contribution, kBT , in the Fermi distribution function is smaller than any significant features

in the density of states. Then the Fermi function can be approximated by a step function

and the tunneling current can be approximated as:

I =
4πe

�

�
eV

0
ρtip(EF − eV + �)ρ

sample
(EF + �) | M |2 d� (2.4)

So we see that the tunneling current is related to the density of electronic states of the tip

and the sample. Provided the tunneling matrix does not change much at low energies around

the Fermi level [17, 18], it can be assumed constant. Tersoff’s and Hamann’s [40] further

simplification of Equation 2.4 by assuming that the tip’s density of states is constant over

the energy range of interest, which is reasonable for low voltages applied to metals [39, 40].

If the conduction electrons at the apex of the tip have a spherically symmetric wavefunction

(an s-orbital on the tip) then Equation 2.4 becomes

I ≈ 4πe

� ρtip | M |2
�

eV

0
ρ
sample

(EF − eV + �)d�. (2.5)
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Therefore, a more accurate perspective on STM measurements is that all the electronic states

from the Fermi level up to eV in the sample contribute to the tunneling current:

I ∝
�

eV

0
ρ
sample

(EF + �)d�. (2.6)

In other words, each position on the topograph is composed of all the electronic density of

states that exist between the material’s Fermi level and the applied bias energy, eV . When a

surface feature, like an atom, has more accessible states than its surrounding environment, it

will appear brighter. Varying the bias voltage is a good way to distinguish between features

that are actually topography and those that are due to additional electronic states in that

region. Suppose there is a localized defect atom with defect states at a particular energy.

Once you scan below a voltage where the defect states are not active, the enhancement will

disappear. Atomic protrusions, step edges, and other physical features remain.

Semiconductors samples are a bit more complicated. Tunneling out of the valence band

is not necessarily the same as tunneling out of the conduction band. This can lead to voltage

dependent images if the tunneling electrons are part of the conduction band or valence band.

In GaAs [21, 20, 41] at positive voltages only the gallium atoms show up as enhancements in

the scan because conduction band electrons are more localized on gallium. Negative voltages

reveal the arsenic atoms. You only get the full picture of topography if you look at both

positive and negative voltages. However, Equation 2.6 still holds provided the bias is much

less than the work function [42].

In addition to surface topography, STM can be applied to probe the electronic spectrum

of the sample. Scanning tunneling spectroscopy measurements at low temperatures essen-

tially show the local density of states as a function of energy. We can see this by taking
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the derivative of the proportionality in Equation 2.6 with respect to voltage produces an

expression for dI/dV , also known as the tunneling conductance:

dI

dV
∝ ρ

sample
(EF + eV ) (2.7)

dI/dV can be found by measuring I vs. V at a single sample location (i.e. while the tip

is stationary) and numerically differentiating the result to find the slope at all voltages.

However, to improve the signal to noise ratio, the local density of states can be measured

directly using a lock-in technique and applying an oscillation to the voltage as the voltage is

ramped over the energy range of interest. A comparison of different dI/dV curves at various

spots on the same material is necessary to look at local changes in the density of states.

Because the magnitude of the resulting curve depends directly on the tunneling gap, dI/dV

is usually plotted with arbitrary units.

If the bias energy, eV , does become a significant portion of the tunneling barrier, then the

simple picture in Equation 2.7 no longer holds. At these large voltages, the tunneling matrix

elements becomes exponentially dependent on voltage and cannot be considered constant

[39]. Fortunately, there is a painless and simple solution to normalize the dI/dV spectrum

by I/V to get d ln I/d lnV and remove the exponential dependence on voltage (some authors

refer to this quantity as the logarithmic density of states). In this work, the relevant voltages

are low and this normalization is not required.

2.2.2 Calibration

After a piezoelectric tube cracked, I rebuilt the microscope and it was necessary for me to

calibrate it to determine the piezoelectric tubes’ sensitivity. To that end, I used two standard
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samples. Graphite’s well-established atomic spacing provided an excellent way to calibrate

the scanning tube in the x-y dimensions. The z-direction calibration was performed on a

sample composed of a grid of conducting platinum pits of known depth. Figure 2.3 (a) shows

the x, y and z directions with respect to the sample.

2.2.2.1 Graphite

Highly oriented pyrolytic graphite is a layered material of carbon atoms arranged in a hexag-

onal honeycomb pattern. Layers of graphite are bonded via weak Van der Waals forces,

allowing a fresh layer to be easily cleaved by scotch tape. As seen in Figure 2.4 (a), only

every other atom in the hexagonal lattice is visible in an STM image. Thus the carbon

atoms appear to be in a triangular pattern. Step edges are a good way of determining if

you have a very blunt tip that only has a few atoms protruding. A smeared step edge image

means the tip is less than ideal. Spectroscopy on graphite can indicate if there is anything

electronically active on the tip and demonstrate that it is a good metallic conductor. My

routine was to use the graphite spectrum like those in Figure 2.4 to determine the quality

of the tip before taking measurements on Bi2Se3. The I-V curve for graphite is not quite

linear and the density of states is a characteristic u-shape typical of the material as shown

in Figure 2.4 (c).

2.2.2.2 Pt Pits

The platinum pit calibration sample consists of a grid of evenly-spaced square pits of 180 nm

depth. Each pit is 5 µm x 5 µm and separated from the next pit by 5 µm in each direction.

My microscope’s maximum scan range is just over 5 µm, so it is rare to be able to image

both edges of the pit at one time. Nevertheless, a corner is sufficient for calibrating the
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(a) (b)

(c) (d)

Figure 2.4: (a) Graphite atoms at a 1.0 nA tunneling current and 0.1 V bias. The scale bar
is 500 pm. (b) This is an image of step edge of graphite. The spectra shown in (c) and (d)
were taken on the smooth part of the image. Because the scale of this image is so much
larger than (a), individual atoms are not resolved. The scale bar is 200 nm. (c) Shows linear
I-V curve on graphite. (d) Density of states measurement on graphite.
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Figure 2.5: Pt pits sample where the scale bar is 1 µm. The pit is 5 µm × 5 µm and 180 nm
deep. There is at least a double tip, possibly a triple tip in this case giving rise to multiple
apparent edges as indicated by the arrows.

vertical (z) extension of my scanning tube. A calibration image is shown in Figure 2.5. The

tip used to create this topography image is at least a double tip, and possibly has more tips

around the side. The edge of the pit comes in pairs, indicating a double tip. We can see

this in the image. For example, the upper-left part of the pit shows two edges as indicated

by the arrows in Figure 2.5. This indicates that the left part of the tip has a double apex.

Even with the multi-tip, the pit is confirmed to be 180 nm deep comparing the center of the

pit to the edge.

2.3 Experimental Constraints and Setup

2.3.1 Besocke Type STM

The STM I rebuilt was of the Besocke type design(also known as the beetle), which consists

of three carrier piezoelectric tubes that support the sample and one central scanning tube
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(a) (b)

Figure 2.6: (a) Besoke design microscope where three piezoelectric tubes support a sample
and a central tube scans the tip. (b) My microscope outside of its protective case.

seen in Figure 2.6. The three carrier piezoelectric tubes are responsible for fine positioning

the sample and bringing it into tunneling range. During approach a sawtooth waveform is

applied to these carrier tubes which slowly extend in the direction of twisting necessary to

bring the sample into tunneling range and then quickly snap back to a neutral position.

Friction keeps the sample in place during the slow movement and the fast return leaves the

tubes supporting a slightly lower part of the sample ramps in what is called a stick-slip type

approach [25]. After each cycle of the sawtooth, the scanning tube retracts during this fine

approach and extends to determine if it is within tunneling range. The control program

halts the approach as soon as tunneling current is detected.

The main advantage of the design is that all identical tubes are attached to a rigid base-

plate, giving excellent mechanical stability [25]. Scanning range is determined to a large

extent by the tube’s geometry. A tube with thicker walls is more robust against vibrations,
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but has a smaller range than a longer, thinner tube. To counter thermal drift during mea-

surements, all four tubes are identical. The Besocke design has a stable construction that

helps produce quality STM images.

2.3.2 Noise Isolation

Moreover, because the tunneling current is exponentially dependent on distance, vibrations

on the scale of angstroms can have a large effect. When imaging something on such a small

scale like atoms, even small vibrations can impair the ability to get a sensible image. There

are two main sources of vibrations: sound (acoustic) and building vibrations (mechanical).

To ensure minimal interaction with sound vibrations, the room is covered in polyurethane

acoustic foam. More constant sources of mechanical vibration are from the building, which

tends to shake at low frequencies (10-20 Hz). To isolate the system from the building

vibrations, the microscope is mounted on four pressurized air springs and four optical table

legs to decouple it from the floor. Lead bricks weigh the entire platform to decrease its lowest

normal-mode frequency to about 1 Hz. Because this is far from the building frequencies, we

see very little noise in the system due to building vibrations.

2.3.3 Cryogenic System

My STM is attached to the end of a stainless steel probe so that it can be lowered into a low

temperature environment. The cryogenic system I used for my experiments is a standard

Oxford Instruments refrigerator capable of operating at liquid 4He and 3He temperatures.

My primary thesis data was acquired at liquid 4He temperatures. The dewar itself consists

of an inner sample tube sealed off from the probe entry port by a gate valve, as seen in Figure
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2.7. Surrounding the tube is an inner vacuum chamber that can serve to insulate the sample

tube from a surrounding main cryogen bath. As I always used the main bath to cool the

sample tube directly, the inner vacuum chamber always had a small amount of exchange gas

to ensure adequate thermal contact between the sample tube and the main bath. A transfer

tube entry port on the top of the dewar allows easy access to the main bath through which

to transfer the cryogen. To ensure efficient cooling, the main bath is thermally insulated by

a outer vacuum chamber that also has mylar batting to help reflect heat from the outside.

In typical operation, the sample space is purged of all air to reach pressures of around

2 × 10−6 torr. The vacuum not only ensures the cleanliness of the surface of the sample,

but also preserves the purity of the sample space within the dewar from contaminants. A

4He exchange gas in the sample tube within the dewar helps the microscope equilibrate to

the temperatures quickly.

Cooling the microscope is a process that takes several hours. It is important not to

thermally shock the fragile ceramic piezoelectric tubes. To monitor the microscope’s tem-

perature, an Allen-Bradely resistor acts as method of gauging the temperature. The carbon-

composite resistor has a resistance that changes significantly with temperature and has

therefore been calibrated to act as a low temperature thermometer. Once the microscope

is firmly seated in the bottom of the dewar, it is left to equilibrate overnight to avoid any

thermal drift.

2.3.4 Tips

The quality of the tip on the STM is probably the biggest variable in the entire experiment.

An important experimental consideration is the material and electronic structure of the tip;
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Figure 2.7: Diagram of the cryostat. The microscope mounts on the probe entry port and is
isolated from the sample tube by a gate valve until it is under vacuum. The microscope can
then be lowered slowly into the bottom of the dewar. The system is cooled by a main bath
of nitrogen or helium. The transfer tube entry port is the site where liquid is transferred
into the system. Gas from liquid boil off is released through the helium exhaust port [43].
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when performing spectroscopy the resulting spectrum is a convolution of the density of states

of the tip with the sample. I chose to use a metallic PtIr tip which has a flat density of

states near the Fermi level and is chemically inert to avoid those problems. This choice is not

critical: gold or tungsten tips would have been adequate. While performing measurements,

I took great care to keep the tip free of any other material to ensure the integrity of the

measurements. I used manually cut tips most often because they are convenient to re-cut

and renew the apex. A more detailed discussion of tip preparation is in Section 6.4.

2.3.4.1 In situ Tip Cleaning Techniques

Even when I took great care to ensure the integrity of the apex of the tip, sometimes the

tip became unstable. This can happen spontaneously during a scan or there may be a

precipitating event, such as a crash. It is therefore extremely important for STM to have a

variety of tools to rid the tip of the offensive particle or flake of foreign material on the apex.

The first tool I generally employed was shaking the tip. While the tip is far enough above

the sample that there will be no chance of interaction between them, the tip is moved as

quickly as possible over a large area in a raster pattern in hope that the offensive particle

will be shaken loose. This technique is least damaging to the tip and the sample and has a

good success rate for loose particles. For slightly more stubborn particles on the tip, I found

a flat, clean spot on the sample and slowly dragged the tip over the surface with a high set

tunneling current to reduce the tip sample separation. Both of these in situ approaches are

safe to use during STM and capacitance measurements.

The most firmly attached particles might require field emission or evaporation to pull

them off the tip. Some of the most clingy particles attach themselves to the tip during

spectroscopy as I continuously ramp the voltage over a fixed point on the sample. The
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smaller the voltage, the less aggressive the approach. For the most persistent particles, I

would typically position the sample just out of tunneling range to widen the gap so that

there is no possibility that the tip will smash the sample. With the tip grounded, I would

then apply 150 V to the sample for five seconds before coming back into tunneling range at

a new location on the sample. The only complication with this technique is that the fields

involved can be strong enough to loosen a flake off a layered sample thus interacting with

the tip and making the situation worse. This technique is so successful at removing particles

from the tip that it also has a tendency to blunt the apex. However, a blunt tip is often

better for spectroscopy, even if it is worse for resolving small length scales. When there is a

lot of resources and time invested in a particular data run, including cooling the microscope,

trying several methods to recover a tip in situ is justified.

If all else fails, the procedure to change the tip first involves slowly warming up the

microscope. Then the entire microscope can be moved to the bench top to unsolder the

mounted tip. It is possible that the existing tip can simply be recut with wire cutters,

soldered back on, and retested for suitability. However, if the radius of curvature of the tip

is important (and it was not for the thesis experiment described in Chapter 4) then it may be

necessary to attach a tip that has been characterized by Scanning Electron Microscopy (SEM)

to a new chip with conducting low-temperature epoxy. Before re-cooling the microscope,

every tip must be tested at room temperature on a freshly cleaved sample in nitrogen to

ensure its stability. If the tip has additional features in the density of states or cannot readily

be used to produce high-quality images, then it is discarded and replaced before ever being

used at low temperatures. Under ideal circumstances, warming the microscope, replacing

the tip and re-cooling takes three days.
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Chapter 3

An Introduction to Topological

Insulators

In this chapter, I will set up the physics necessary to understand the conclusions in the next

two chapters. I have taken a historical approach to the topic and will therefore include some

discussion of materials like graphene that are not what I probed. However, these topics will

help to explain key ideas related to topological insulators. I will then explain topological

insulator physics and give an overview of the literature of a prototypical topological insulator,

Bi2Se3, to help you understand how my main result fits in with the overall picture.

3.1 Background

Over the last 80 years, band theory of solids has been a fruitful area of study in Condensed

Matter Physics. One of the ways to model the static electronic structure of a crystal is

using the tight binding model. This model captures the quantum mechanics of the lattice by

treating electrons as tightly bound to the atoms in the lattice, analogous to atomic orbitals
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Figure 3.1: Figure from Zhang et al. [44] shows the unit cell in a crystal lattice of Bi2Se3.
Primitive vectors �t1, �t2, and �t3 show equivalent translation vectors of the lattice. There
are 3 inequivalent sites in the lattice, Bi, Se1 and Se2 that stack in inequivalent layers
C(Se1)-A(Se1)-B(Bi)-C(Se2)-A(Bi)-B(Se1)-C(Se1). Viewed from above, this looks like a
hex lattice with inequivalent layers marking out triangular lattices. In the bottom right,
the three-dimensional unit cell is mapped out with its two-dimensional projection showing
high symmetry points in k-space, Γ, M and K that are time reversal invariant momentum
points for this crystal structure. Used under Creative Commons Attribution 3.0 Unported
(CC-BY) license and all credit for creation of this figure goes to [44].
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in isolated atoms. It is useful for situations when there is some overlap between atomic

orbitals in a lattice, but the states are not extended enough that treating the atomic orbitals

is irrelevant. As such, interactions with other electrons is limited; often only nearest neighbor

hopping is considered [45].

The atomic positions in the crystal are mapped out in what is called a unit cell–the

fewest number of atoms arrangements needed to make one repeating unit of the crystal.

This structure can be transformed to find the reciprocal lattice called the Brillouin zone.

Instead of atoms being mapped into real space, the structure is converted to momentum (k)

space [45]. Momentum space highlights the importance of certain high symmetry directions

in the crystal and these points are assigned letters. An example of a crystal and its reciprocal

lattice is given in Figure 3.1. Its unit cell and primitive vectors of translation are drawn on

the lattice in black. On the left part of the figure is a rhombohedral lattice supercell and

its momentum space with 2D projections of both the lattice and the Brillouin zone [44].

Because of its layered structure, one unit cell must cover multiple layers to fully reproduce

a crystal.

In the simplest case, ignoring spin for now, the tight-binding Hamiltonian consists of a

hopping term to capture how electrons move between nearest-neighbors:

H = −t

�

n,n�
[Ψ

†
nΨn� + h.c.], (3.1)

where Ψ and Ψ† are the annihilation and creation operators respectively. The indices n

and n
� refer to nearest-neighbors only, and the sum is therefore between nearest-neighbor

pairs. The coefficient t dictates the strength of nearest neighbor hopping arising from lattice
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potential effects. If it is 0 then no hopping will occur [45]. The strength of this hopping

term may vary depending on which atomic orbitals are involved. d and f orbitals have

strongly bound electrons that would make hopping less probable. Because they are usually

the orbitals participating in the conduction and valence bands respectively, s and p orbitals

would have a higher probability to hop to the nearest neighbor [46]. Electron wavefunctions

are mapped out in to what are called Bloch wavefunctions to capture the lattice periodicity.

Bloch waves have a plane wave component that captures the electrons’ movement through

free space and a component that captures the periodic potential from the lattice, u
n�k

(�r).

The wave functions appear as:

ψ
n�k

(r) = expı
�k̇�r

u
n�k

(�r) (3.2)

where subscript n stands for the n-th electron state, �r are real-space vectors, and �n(�k) =

�n(�k + �K). Here, �n(�k) is the eigenenergy of the Hamiltonian defined by ψ
n�k

H = �n(�k)H.

Bloch’s theorem dictates that ψ
n�k

(�R) = ψ
n�k

(�r)eı
�k̇�R and is one full translation in k space

through a 2D band. Unless spin orbit coupling is explicitly added into Equation 3.1, any

band calculated will be doubly degenerate [45].

3.1.1 Graphene Model

While my thesis experiment only encompasses the material Bi2Se3, I have taken a historical

approach to motivate the physics of topological insulators necessitating an explanation of a

graphene model and the quantum spin Hall effect. First there will be a brief explanation of

the quantum Hall effect and its topologically protected electronic surface state.

Electrons in the quantum Hall effect form edge states due to the large magnetic field that
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are then impervious to backscattering. In the presence of a magnetic field, Hall conductance

becomes quantized in unit conductance of σxy = νe
2
/h [47, 2] where ν is an integer. The

quantum Hall conductance is fundamentally different from conduction through a normal

metal and therefore represents a state of matter that is topologically different than other

conduction states. To distinguish materials exhibiting the quantum Hall effect from normal

insulators, Thouless, Kohmoto, Nightingale, and den Nijs developed a topological invariant,

ν, called a Chern number or Chern invariant. This number is a way of distinguishing

band structures that can be deformed into one another from those that cannot. It is a

quantity that is robust against perturbations. From a theoretical perspective, perturbations

are smooth deformations of the Hamiltonian. From an experimental perspective, materials

of dissimilar Chern numbers have some conserved quantity that can be measured to high

precision. A material that exhibits the quantum Hall effect, for example has a quantized

Hall conductance that remains quantized even when defects are introduced into the system.

However, the world is full of materials that do not exhibit quantized conductance and never

can be made to do so. Another example of a Chern number is given in the following pages.

More recently, there arose interest in the quantum spin Hall effect, in part due to the

scientific interest in spintronics applications. Unlike the quantum Hall effect, the quantum

spin Hall effect does not require a magnetic field and is time reversal symmetry invariant

due to spin-orbit interactions [4, 48, 49]. The quantum spin Hall effect has spin split edge

states that counter-propagate on the edges. While the total current through this state is

zero, the spin current has unit spin conductance σ
s
xy = e/2π [50].

Because graphene is a 2D sheet of carbon atoms arranged in a hexagonal lattice, the dis-

cussion will focus on the 2D tight binding model of the quantum spin Hall effect in graphene.
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These material bands require relativistic effects to calculate key band structure features.

Spin-orbit coupling can result in time reversal invariant (T -invariant) spin-dependent forces

in a lattice. One such tight binding Hamiltonian which includes spin and spin-orbit cou-

plingwas introduced by Kane and Mele [48] for graphene.

Graphene is a two-dimensional material that has a hexagonal Brillouin zone where there

are two inequivalent, K and K
� points that form two triangular sublattices. When Kane and

Mele [48] solved the tight binding model with spin-orbit interactions for a strip of graphene,

an edge state emerges from the bands. Edge states with opposite spins travel in opposite

directions, a sort of “spin filtered” state. The bands in k-space shown in Figure 3.2 (a) show

the edge state in the bulk insulating gap of graphene that traverses the gap. These states

persist so long as the spin-orbit term in the calculations dominates. Two states at kx = π/a

form a Kramers doublet that is protected from any time reversal symmetric perturbations

and are thus protected from elastic backscattering [4]. The linear relationship of the states

that traverse the gap is relativistic.

For a band insulator, the surface states connect edges of like spins and no state traverses

the gap. However, for the topological insulator in Figure 3.2 the spins switch partners across

the gap while preserving spin. Therefore, the edge states are spin split. In fact, the state

supported is predicted to be the quantum spin Hall state that carries a quantum of spin

conductance. For this spin split, or “helical,” state to be a topologically distinct from an

insulator, a single pair of spin-split edge states crosses the gap [50]. In a sense, the resulting

edge state is half a metal in that only half the spins of a normal metal can travel in a

direction. It is far more robust than a metal because electron’s states are extended and not

impacted in the presence of disorder by Anderson localization. Moreover, it turns out that
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of K and K0 are both at k ! 0. It is interesting to note that
for zigzag edges the edge states persist for !so ! 0, where
they become perfectly flat [16]. This leads to an enhanced
density of states at the Fermi energy associated with zigzag
edges. This has been recently seen in scanning tunneling
spectroscopy of graphite surfaces [17].

We have also considered a nearest neighbor Rashba
term, of the form iẑ " #s!" $ d%cyi!cj". This violates the
conservation of sz, so that the Laughlin argument no longer
applies. Nonetheless, we find that the gapless edge states
remain, provided #R <!so, so that the bulk band gap
remains intact. The crossing of the edge states at the
Brillouin zone boundary kx ! $=a in Fig. 1 (or at k ! 0
for the armchair edge) is protected by time reversal sym-
metry. The two states at kx ! $=a form a Kramers doublet
whose degeneracy cannot be lifted by any time reversal
symmetric perturbation. Moreover, the degenerate states at
kx ! $=a& q are a Kramers doublet. This means that
elastic backscattering from a random potential is forbid-
den. More generally, scattering from a region of disorder
can be characterized by a 2$ 2 unitary S matrix which
relates the incoming and outgoing states: "out ! S"in,
where " is a two component spinor consisting of the left
and right moving edge states %L", %R#. Under time reversal
"in;out ! sy"'

out;in. Time reversal symmetry therefore im-
poses the constraint S ! sySTsy, which rules out any off
diagonal elements.

Electron interactions can lead to backscattering. For
instance, the term u y

L"@x 
y
L" R#@x R#, does not violate

time reversal, and will be present in an interacting
Hamiltonian. For weak interactions this term is irrelevant
under the renormalization group, since its scaling dimen-
sion is ! ! 4. It thus will not lead to an energy gap or to
localization. Nonetheless, it allows inelastic backscatter-
ing. To leading order in u it gives a finite conductivity of
the edge states, which diverges at low temperature as
u(2T3(2! [18]. Since elastic backscattering is prevented
by time reversal there are no relevant backscattering pro-
cesses for weak interactions. This stability against inter-

actions and disorder distinguishes the spin filtered edge
states from ordinary one-dimensional wires, which are
localized by weak disorder.

A parallel magnetic field Hk breaks time reversal and
leads to an avoided crossing of the edge states. Hk also
reduces the symmetry, allowing terms in the Hamiltonian
which provide a continuously gapped path connecting the
states generated by &z'zsz and &z. Thus in addition to
gapping the edge states Hk eliminates the topological
distinction between the QSH phase and a simple insulator.

The spin filtered edge states have important consequen-
ces for both the transport of charge and spin. In the limit of
low temperature we may ignore the inelastic backscatter-
ing processes, and describe the ballistic transport in the
edge states within a Landauer-Büttiker [19] framework.
For a two terminal geometry [Fig. 2(a)], we predict a
ballistic two terminal charge conductance G ! 2e2=h.
For the spin filtered edge states the edge current density
is related to the spin density, since both depend on nR" (
nL#. Thus the charge current is accompanied by spin accu-
mulation at the edges. The interplay between charge and
spin can be probed in a multiterminal device. Define the
multiterminal spin conductance by Isi !

P
jGs

ijVj. Time
reversal symmetry requires Gs

ji ! (Gs
ij, and from

Fig. 2(b) it is clear thatGs
ij ! &e=4$ for adjacent contacts

i and j. In the four terminal geometry of Fig. 2(b) a spin
current Is ! eV=4$ flows into the right contact. This
geometry can also be used to measure a spin current. A
spin current incident from the left (injected, for instance,

V/2

V

-V/2

0

0 0

(b)

(a)

I

Is

FIG. 2. Schematic diagrams showing (a) two terminal and
(b) four terminal measurement geometries. In (a) a charge
current I ! #2e2=h% V flows into the right lead. In (b) a spin
current Is ! #e=4$% V flows into the right lead. The diagrams to
the right indicate the population of the edge states.
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FIG. 1. (a) One-dimensional energy bands for a strip of gra-
phene (shown in inset) modeled by (7) with t2=t ! 0:03. The
bands crossing the gap are spin filtered edge states.
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Figure 3.2: A calculation from Kane and Mele [48]. A single pair of edge states tra-
verse the bulk insulating gap due to spin orbit coupling in a band structure calcu-
lation from a tight-binding model on a strip (in the inset) of graphene. Reprinted
figure with permission from Kane, C.L. and Mele, E.J., Physical Review Letters, 95,
226801(2005). Copyright (2005) by the American Physical Society. Abstract can be viewed
at: http://prl.aps.org/abstract/PRL/v95/i22/e226801.

an insulator can be one of two distinct things, a band insulator or a topological insulator

[4, 51]. (This relates to a classification called the “Z2 index”).

The nature of the electrons on the surface of graphene is part of the states appeal. As

the states cross in Figure 3.2 they form an “x” where energy and momentum of the band

are linearly related as is the case for massless particles in free space. For this reason, the

electrons are often called “relativistic.” At the center of the cross is a point called the “Dirac

point” where both spins coexist with the same energy and absolute value of momentum.

This point is protected by both inversion and time reversal symmetry [51].

Time reversal symmetry necessitates the existence of high symmetry points where �k =

−�k. This typically happens at �k = �0 and on the band edge [5] and are called “Kramers

degenerate points.” Figure 3.2 has a high symmetry point when ka = π. Away from these

points, spin-orbit coupling causes the bands to split. Consequently, the topological state has

an odd number of band crossings, while a simple insulator has an even number. The number
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We study three-dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two
dimensions, where a single Z2 topological invariant governs the effect, in three dimensions there are 4
invariants distinguishing 16 phases with two general classes: weak (WTI) and strong (STI) topological
insulators. The WTI are like layered 2D QSH states, but are destroyed by disorder. The STI are robust and
lead to novel ‘‘topological metal’’ surface states. We introduce a tight binding model which realizes the
WTI and STI phases, and we discuss its relevance to real materials, including bismuth.

DOI: 10.1103/PhysRevLett.98.106803 PACS numbers: 73.43.!f, 72.25.Hg, 73.20.!r, 85.75.!d

The advent of spintronics has motivated the study of the
effects of spin orbit interactions (SOI) on the electronic
structure of solids. SOI leads to the spin Hall effect [1,2],
which has been observed in GaAs [3,4]. We proposed [5]
that in graphene the SOI leads to the quantum spin Hall
(QSH) effect. The QSH phase has a bulk excitation gap and
gapless spin-filtered edge states. It is distinguished from a
band insulator by a Z2 topological invariant [6], analogous
to the TKNN invariant of the integer quantum Hall effect
[7]. Because of the weak SOI in carbon, the SOI induced
energy gap in graphene is likely to be small [8]. However,
Murakami has recently suggested that bismuth bilayers
may provide an alternative venue for the QSH effect [9],
providing a new direction for the experimental observation
of this phase.

In this Letter we consider the generalization of the QSH
effect to three dimensions. Recent work has shown that
time reversal invariant energy bands in 3D are character-
ized by four Z2 invariants, leading to 16 classes of ‘‘topo-
logical insulators’’[10,11]. Here, we will explain the
physical meaning of these invariants and characterize the
phases they distinguish. One of the invariants distinguishes
what we will refer to as weak (WTI) and strong (STI)
topological insulators. With disorder, the WTI is equivalent
to a band insulator, while the STI remains robust. We show
WTIs and STIs have surface states with an even and odd
number of Dirac points, respectively. The latter case leads
to a new ‘‘topological metal’’ surface phase, which we
characterize. We introduce a tight binding model on a
distorted diamond lattice, which realizes both the WTI
and STI phases, allowing the surface states to be studied
explicitly.

In Ref. [12] we established the connection between the
Z2 invariant for the bulk QSH phase and the spin-filtered
edge states. We begin by reviewing that argument in a way
which makes the generalization to three dimensions trans-
parent. The 2D invariant can be understood using a
Laughlin type construction [13] on a cylinder threaded
by magnetic flux ! " 0 or ! (in units of @=e). The
invariant characterizes the change in the time reversal
polarization (TRP), which signals the presence of a

Kramers degeneracy at the ends, when ! is changed
from 0 to !. If the cylinder consists of a single unit cell
in the circumferential (x) direction, then the magnetic flux
threading the cylinder plays the role of the crystal momen-
tum kx in band theory. The spectrum of the discrete end
states of the cylinder as a function of flux then reflects the
edge state spectrum as a function of momentum. The
change in the TRP as a function of flux determines the
way the Kramers degenerate end states at the edge time
reversal invariant momenta (TRIM) kx " "1 " 0 and
kx " "2 " ! are connected to each other. In the QSH
phase the Kramers pairs ‘‘switch partners’’ [Fig. 1(a)],
reflecting the change in the TRP, while in the conventional
insulator [Fig. 1(b)] they do not. It follows that in the QSH
phase edge states traverse the bulk energy gap, crossing the
Fermi energy EF an odd number of times between "a and
"b. In the insulating phase, the edge states are not topo-
logically protected and cross EF an even number of times if
at all.

The change in the TRP between "1 and "2 is related to
the bulk band structure, defined for a 2D system with
periodic boundary conditions in both directions. The 2D
Brillouin zone has four TRIM, #i, which are related to !#i
by a reciprocal lattice vector. For an edge perpendicular to
G the 1D edge TRIM "a"1;2 are projections of pairs #i"a1,
#i"a2, which satisfy #a1 ! #a2 " G=2, onto the line per-
pendicular to G.
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Figure 3.3: A schematic band structure showing Kramers pairs traversing the gap from Fu
et al. [52]. (a) A schematic of a topological insulator that has an odd number of Fermi level
crossings. (b) A schematic of a simple insulator that has an even number of crossings. There
are still degenerate points at Λa and Λ

b
but they are not topologically protected against

deformation. Reprinted figure with permission from Fu, Liang and Kane, C.L., Physical
Review B, 76, 045302 (2007). Copyright (2007) by the American Physical Society. Abstract
can be viewed at: http://prb.aps.org/abstract/PRB/v76/i4/e045302.

of band crossings is the Chern number [53, 5]. Figure 3.3 illustrates the difference between

simple insulators which have an even number of doubly degenerate pairs in the gap in (b)

and a topological surface state with a single crossing in (a). Because these crossings cannot

be deformed into one another, they are topologically distinct [52].

In summary, the tight binding model with spin-orbit coupling predicts many of the hall-

marks of 2D topological insulators. (It predicts a Z2 classification for topological insulators).

There is a spin split edge [51] that is protected by time reversal symmetry that is robust

against perturbation [48, 4, 49, 5, 52, 54, 7, 8]. Inside the insulating gap are relativistic edge

states. The resulting quantum spin Hall effect has quantized spin currents on the surface

where the currents of opposite spins move in opposite directions [4, 51].
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3.1.2 HgTe/CdTe Wells

Subsequent experiments on graphene showed that its spin-orbit coupling was too weak to

support a quantum spin Hall state [51]. Instead, the focus shifted to heavy elements known

to have high spin-orbit coupling. Bernevig et al. [55] successfully predicted the existence

on the quantum spin Hall state in HgCdTe quantum well structures that would be the

first realization of the quantum spin Hall phase. They first predicted that placing HgTe,

which has an inverted band structure with the p level above the s level, between a “normal”

semiconductor band structured material, CdTe, would result in the quantum spin Hall state

[55, 51]. Spin-orbit coupling in the Hg atoms make the band inversion happen. The state

would only exist as long as the well width was above a critical well width of 6.3 nm. Below

this critical width the normal band structure associated with the CdTe would persist through

the well. However, above the width, the bands invert resulting in a quantum phase transition

from a trivial insulator to a topologically protected quantum spin Hall insulator [51].

Konig et al. [56] performed transport experiments that first realized the quantum spin

Hall state experimentally by measuring the conductance due to the edge states. Figure 3.4

shows the resistance measurement of their results. Below the critical width in sample I the

resistance shows insulating behavior with the resistance on the order of 107Ω. However at two

well widths above the critical dimension, the quantum spin Hall state with a conductanceG =

2e2/h associated with the top and bottom edges is realized. This was the first measurement

of the quantum spin Hall state.
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Figure 3.4: Figure adapted from Konig et al. [56]. Resistance measurement of CdTe/HgTe
quantum wells that support the quantum spin Hall state. Sample I shows that the wells are
insulating below the critical width. Sample II shows disorder due to temperature effects.
Samples III and IV show that the conductance is precisely equal to 2e2/h for two different
well widths above the critical dimension. From M. Koenig, S. Wiedmann, C. Bruene, A.
Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, S.-C. Zhang, Science, 318, 766-770 (2007).
Reprinted with permission from AAAS.
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3.1.3 Three Dimensional Topological Insulators

While 2D topological insulators can be distinguished by a single Chern number, three di-

mensions adds three more integer Chern numbers, one for each of the xy, yz, and xz planes

[5]. While this leads to several different possibilities, they can really be divided into three

categories: simple insulator, weak topological insulator, and strong topological insulator.

Strong topological insulators have a Chern number ν0 = 1 and corresponds to an odd num-

ber of Kramers pairs on the surface. A trivial and weak topological insulators have a Chern

number ν0 = 0 [5, 57].

Edge states no longer have the same meaning once you extend a discussion to three

dimensions. Although there are three other Chern numbers that only arise in three dimen-

sions, only ν0 is independent of the reciprocal lattice primitive vector, and therefore does not

depend on the reciprocal lattice direction. If ν0 = 0 the material can be a trivial insulator

or a weak topological insulator. A trivial insulator has either 0 or 4 number of Dirac points

enclosed by the Fermi surface. The states in a trivial insulator are extremely localized and

not topologically protected.

One way to extend a two-dimensional material into three dimensions is to create a stack

of the two-dimensional material. This does create a state that has topological protection in

one dimension. However, because it is not topologically protected in the direction the stack

was built, this state is “weak” such that disorder will destroy it [52, 57]. A two-dimensional

Fermi surface modeling the stack would enclose two Dirac cones, one from each 1D edge

state. However, there is another way to extend to three dimensions. If the Fermi surface

encloses a single Dirac cone there will be an odd number of band crossings in any direction

in k-space [52]. Thus it is topologically protected because a single band crossing cannot be

37



transformed into any other state without first closing the gap. Such a state can arise due to

spin-orbit coupling and is called a strong topological insulator [57]. The strong topological

insulator has an odd Chern number and ν0 = 1. Like a quantum spin Hall state, a strong

topological insulator is robust against defect scattering due to its topological protection.

It forms a two-dimensional layer on the surface of a strong spin-orbit coupling material.

Amazingly, momentum and spin are always perpendicular to each other in this topologically

protected state [57].

In summary, a three-dimensional strong topological insulator is characterized by a two-

dimensional metallic state on the surface of the material. A key idea is that due to spin-

orbit coupling, momentum is locked perpendicular to the spin [52, 51, 58, 59]. To form

a topologically protected state that is robust against small perturbations, time reversal

symmetry must be preserved [52, 59]. The strong topological state supports an odd number

of Dirac cones, which means that there can only be an odd number of crossings of the Fermi

level [51, 60].

3.1.4 Early Studies on Bi1−xSbx

Bi1−xSbx was one of the first well studied three-dimensional topological insulators. Bismuth

had long been known to be a good candidate for supporting a quantum spin hall phase [50].

The spin-orbit coupling in bismuth is very strong, which helps it support a spin current [61].

Antimony is likewise an element with strong spin orbit coupling roughly about one third of

bismuth and serves to tune the spin-orbit coupling strength so that the alloy will be a strong

topological insulator by perturbing the bands just enough that they invert [52, 59].
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3.1.4.1 ARPES

Hsieh et al. experimentally realized the three-dimensional Dirac cone in Bi0.9Sb0.1. In

their work they resolved the five band crossings that distinguished the predicted topological

insulating regime where the conduction and valence bands had inverted [60]. The topological

insulating phase in a bismuth alloy is significant because when there is less antimony in the

crystal, the bands do not invert and the alloy remains a weak topological insulator with an

even number of band crossings [59, 52].

3.1.4.2 Quasiparticle Interference Patterns

STM measurements showing snowflake-like scattering patterns really sparked excitement in

topological insulators. Modulations in the density of states appear when electrons elastically

scatter from the impurities, mixing eigenstates of different momentum, k. These eigenstates

mix along quasiparticle contours of constant energy in momentum space [62]. When different

momentum states, k1 and k2, interfere after scattering, modulations in the local density of

states arise with wavelength λ = 2π/ | q | where q = k1 − k2. This can be measured with a

scanning tunneling microscope; differential tunneling conductance scans in real space expose

these modulations called Friedel oscillations. Taking the Fourier transform of the differential

conductance image yields the momentum-space information on the wavefunctions. This

technique is called Fourier-Transform STS (FT-STS) [62]. In other words, when quasiparticle

interactions with the bulk states are sufficiently strong, bulk states can scatter off surface

impurities in a way that can be imaged directly by the STM.

Bi1−xSbx forms a disordered crystal alloy with plenty of opportunities for the topological

surface state to scatter off of Sb impurities. The conductance map of Figure 3.5 (a) appears
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(a)

(b)

Figure 3.5: (a) Adapted from [58]. Bi0.92Sb0.08 dI/dV map with the Fourier transform of
the image inset. The snowflake pattern shows the six-fold symmetric scattering in k-space.
Some scattering directions are forbidden. (b) Adapted from Figure 4 in reference [58].
The scattering patterns are only duplicated when spin-dependent scattering is accounted
for in calculations. Reprinted by permission from Macmillan Publishers Ltd: NATURE
(P.Roushan, J.Seo, C.V. Parker, Y.S. Hor, D.Hsieh, D.Qian, A.Richardella, M.Z. Hasan,
R.J. Cava, and A.Yazdani. “Topological surface states protected from backscattering by
chiral spin texture,” Nature, 460, 11061109, (2009)), copyright (2009)
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to be quite messy and disordered, but the Fourier transform of the image into momentum

space reveals elegant complex snowflake patterns. These intricate scattering patterns can-

not be simulated without performing a calculation that use a matrix connecting like spins,

suppresses rotations of spins and forbids scattering into opposite spin states in what they

refer to as spin-dependent scattering probability (SSP). Figure 3.5 (b) shows that a similar

calculation of the joint density of states (JDOS) that does not include spin in any way fails

to capture theses intricate patterns. The strong topological insulating nature of the material

is therefore quite robust against disorder because the spin selective rules hold over distances

larger than the disorder [58].

3.2 Bi2Se3 Background

3.2.1 Structure

Bismuth Selenide, Bi2Se3, is a strong topological insulator with a rhombohedral lattice

structure. A layered material, Bi2Se3 has covalent bonds inside and each quintuple layer

(QL) is held together by Van der Waals forces. Each quintuple layer is approximately 1 nm

high [63]. As seen in Figure 1.2, a quintuple layer consists of Se-Bi-Se-Bi-Se bonds. This

layered structure makes them ideal for surface experiments, as a new surface can be cleaved

with scotch tape to reveal a clean black mirror-like surface, with a single Dirac cone on

the surface [6]. This was shown schematically in Chapter 1, Figure 1.1. Figure 3.6 shows

the calculated band structure of Bi2Se3 including the single Dirac cone that makes it a

model topological insulator calculated by Dr. Mal-soon Lee. The computational technique

is density functional theory introduced in Section 4.3.
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Figure 3.6: Density functional theory calculation of the Bi2Se3 bulk [gray] and 6 quintuple
layer calculation of the Dirac cone in blue. The single Dirac cone on the surface is circled in
red. Figure courtesy of Dr. Mal-soon Lee.
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Bi2Se3 and Bi2Te3 had long been studied for their thermoelectric properties [14, 10, 64].

Because of its interest as a thermoelectric material, many effects that would later be examined

for their interactions with the surface state were already known before topological insulators

had even been predicted. In 2004, Dr. Sergei Urazhdin was the first to characterize clover-

like and triangular defects from Se vacancies and Bi substitutions [14, 10]. Angle-resolved

photoemission spectroscopy (ARPES) studies identified the time dependence of the surface

state forming on Bi2Te3 and attributed it to band bending at the surface [64].

In 2009, Zhang et al. [6] did the first theory calculations predicting that Bi2Se3, Bi2Te3

and Sb2Te3 were strong topological insulators. When spin orbit coupling is added to band

calculations, the pz bonds from the conduction and valence band hybridize, inverting the

bands and creating a Dirac cone. Since then, there has been keen experimental interest on

investigating the topological insulator surface state on these materials.

Bi2Se3 has been studied by countless groups trying to realize aspects of the topological

insulating state and how it interacts with other physical effects. The helical spin texture

in Bi2Se3 was realized using circular dichroism ARPES measurements which identified that

opposing momentum states also have opposite spin structure [65]. That spin structure per-

sists even at room temperature [66], an important characteristic for spintronic applications.

Consistent with its topological protection, the weak electron-phonon coupling experiments

show the surface state persists unperturbed [67, 68]. Because there is potential to mix with

the bulk, measurements of the Landau levels show that they are suppressed on the left,

valence side arm of the Dirac cone and follow uneven spacing consistent with Dirac electrons

on the other arm [69, 70, 71, 72] potentially from mixing with the bulk. Transport studies

have attempted to reduce the bulk contribution and realize the dissipationless spin current
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Figure 3.7: Triangular defects on Bi2Se3 where the bright triangles are attributed to bis-
muth on a selenium site substitutions. The scan range is 65 nm×65 nm. Topograph
from Urazhdin et al. [10]. Reprinted figure with permission from S.Urazhdin, D.Bilc,
S.Mahanti, S.Tessmer, T.Kyratsi, and M.Kanatzidis. Physical Review B, 69(8):085313,
2004. Copyright (2004) by the American Physical Society. Abstract can be viewed at:
http://prb.aps.org/abstract/PRB/v69/i8/e085313

for years by various means [73, 74, 75, 76]. Recently, a research group revealed they had real-

ized metallic, ambipolar gapless conduction without any bulk contribution [77]. The charge

carriers of the surface state have been examined by optical conductivity measurements [78]

and transport measurements [73, 77, 75, 74, 76] have been found to agree. Some groups have

focussed their studies on thin films (i.e. [63, 79]) and others on bulk crystals (i.e. [14, 80, 81])

and show weak anti-localization effects. Even ignoring the studies involving dopants, the last

four years have been extremely fruitful for research on the Bi2Se3 surface states.

3.2.2 Dopants and Defects

Many experiments use doped crystals to look at electronic interactions with the defect states.

Non-magnetic elements like Cd [73] and Ca [80, 81, 82, 83, 75] are added to make the sample

more p-type to shift the Fermi level toward the Dirac point. This characteristic is desirable

in any transport-like measurement and for spintronic applications to realize a completely
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spin split state. The dopants can help to realize a dissipationless spin current because local

disorder does not destroy the topologic state. Amazingly, copper dopants intercalated into

the Van der Waals gap have been shown to create a superconducting state [84, 65].

In order to test how robust the surface state is to magnetic perturbations, magnetic

dopants like Mn [80], Cd [73], Cs, Gd, Rb [85], and Co [86] all show the surface state to

persist when the magnetic order is weak. However, enough Fe doping can open up a gap

and destroy the Dirac cone [51]. Bi2Se3 nanoribbons doped with iron exhibit a minimum in

resistance associated with Kondo effect [87] but often otherwise leave the topological state

undisturbed [88, 81, 89] unless there is magnetic order to open the gap [88].

STM measurements showed how these defect states influence the topography. Dr. Sergei

Urazhdin pioneered STM studies on Bi2Se3. He attributed triangular defects seen in Figure

3.7 to bismuth substituted on a selenium lattice site (BiSe). These triangular defects appear

as clovers in differential conductance maps. The shape of the electronic enhancement is

attributed to p bonds lining up from the lowest Se layer in the top quintuple layer terminating

on the surface with three bright spots and are not of topographic origin [14]. Triangular

defect states that do not change the local density of states (LDOS) in their vicinity are

attributed to interstitial bismuth between the top two layers locally creating a strain on the

lattice [10]. Because the triangular defect states are voltage dependent, they are known to be

part of the electronic structure of the material and not topography. These conclusions have

been accepted as the most likely explanation of triangles that are just part of the surface

and mark the locations of subsurface dopants. STS studies of dopants show they create a

resonance within the bulk gap that can obscure the Dirac cone close to the defect [10, 90].

These resonances depend on the location with respect to the defect state’s center [10, 90, 89];
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the impurity strength diverges as the Fermi level approaches the Dirac point and a pure spin

split state is realized [90]. These resonance states can occur at a variety of different voltages

relative to the Dirac point depending on how a dopant goes in and its electronic contribution

to the crystal.

A resonance state in the spectroscopy measurements relates to the voltage. The triangular

defects may appear bright or dark. Se vacancies appear as bright triangles at positive voltages

relative to the Dirac point when the state is empty [82, 91] and dark triangles at negative

relative voltages [92]. It acts like a double donor [93]. Native Bi2Se3 tends to be n-type

due to selenium vacancies. Bi vacancies are far less common. Density functional theory

calculations on common dopants show that Bi vacancies act like a triple acceptor [93]. These

same calculations show thatbismuth on a selenium site acts as an amphoteric dopant that is

an acceptor for n-type materials, which is consistent with bright triangular defects described

in reference [14]. Other dopants like Ca [82] and Cu [84, 94] also show bright triangles at

positive relative voltages and are likewise viewed as substitutional dopants.

Unlike Bi1−xSbx and Bi2Te3, Bi2Se3 quasiparticle interference patterns are partially

suppressed on the surface and often do not reveal quite as rich patterns. Conductance maps

of defects on the surface reveal clover patterns [14], but very few wave patterns. Some groups

have speculated that quasiparticle scattering is suppressed by mixing with the bulk state in

the helical Dirac fermion regime [95, 96]. These interference patterns can only arise from

scattering off defects within the layers that overlap with the topological state [97, 86]. As

such, adsorbates on the surface are not responsible for scattering the topological insulat-

ing state and topographic features like flakes or warped surfaces can impact quasiparticle

scattering [97]. Conductance maps on the surface of related material, Bi2Te3, support this
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conclusion by showing standing waves that result from scattering off step edges that show

strongly damped oscillations from a step [98]. Once scattered, topological insulating states

can decay into bulk states via low energy electron-electron interactions and defect scattering

[96] .

3.2.3 Surface Potential Fluctuations

On the surface, deep defect states influence the topological insulating state by creating

an energy landscape, i.e. potential fluctuations, that influence the surface [80]. While the

disorder may locally shift the Dirac point relative to the applied voltage, the topologic surface

state persists under the influence of this bulk disorder [80]. Moreover, magetic impurities

break time-reversal symmetry and ought to allow backscattering. However, Beidenkopf et

al. showed that quasiparticle interference patterns are not altered by the magnetic impurity,

Mn [80]. They also showed that quasiparticle interference patterns are suppressed when

the average disorder length is approximately that of the topological insulator’s interference

pattern wavelength [80]. The topological insulating state screens the bulk disorder over

approximately 26 nm in Bi2Te3 doped with Mn. The minimum of the local density of

states, e.g. the Dirac point, shifts in space locally on the surface due to the underlying

defect pattern. The Dirac cone and bulk bands are otherwise unchanged by the bulk doping.

However, there is an offset of the Dirac cone in tunneling spectroscopy from zero energy.

The vertical offset of the Dirac cone has been observed in thin films [79] and bulk crystals

[80, 71, 95, 10], but its origin was either ignored [80, 95, 14, 10] or explicitly stated as of an

unknown origin [71].

Because the bulk provides other decay paths, it is important to know when the surface
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To gain deeper insight into the origin of the unexpected
interference pattern, the cross-sectional FFT patterns
traced along !" !M direction are shown in Fig. 4(j). For the
whole range of sample bias voltages, we observe the
largest intensity at q ¼ 0, which might originate from

several extrinsic factors, such as a background noise whose
modulation length would be much longer than the charac-
teristic wavelength of the surface lattice periodicity and the
electron interference.
On the topological insulator surface, the spins are locked

with momenta, giving rise to helical Dirac fermions with
lifted spin degeneracy. Owing to the strictly antiparallel
spins at "k and k, surface electrons are protected from
backscattering, and no standing wave pattern arising from
the interference with the backscattered wave can be ob-
served for a single Dirac cone. On the other hand, there
might be other scattering channels within the surface state
cone with a finite parallel spin component, which could
contribute to the scattering with small q values of less than
0:2 #A"1 (the maximal radius of the cone is 0:1 #A"1).
Although a detailed structure of surface state scattering is
not resolved in the present data, the dominant contribution
around q ¼ 0 apparently originates from the extrinsic
effect because a finite intensity at q ¼ 0 persists and
even enhances below "500 mV, where the surface states
are merged into the bulk valence band.
Let us now consider broad humps centered at q ¼

#0:3 #A"1, which are especially pronounced in the sample
bias range from"450 to"300 mV as indicated by vertical
bars in Fig. 4(j). The intensities in this cross-sectional FFT
profile are spread over a wide interval "0:5< q<
0:5 #A"1. Note that the FFT pattern is anisotropic, i.e., the
intensity vanishes in the !" !K direction, see Figs. 4(c)–4(f).
The observed magnitude of the scattering vector, jqj$
0:3 #A"1, is too large to be explained by a scattering within
the Dirac cone, especially near the DP. Besides, the profile

FIG. 3 (color online). (a)–(i) Differential conductance images
of Bi2Se3 surface at 4.5 K for several sample bias voltages from
"600 to "150 mV in the area of 50 nm% 50 nm.
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FIG. 4 (color online). (a)–(i) Fast Fourier transformation of the dI=dV images in Figs. 3(a)–3(i) for respective bias voltages.
( j) Cross-sectional profiles of the FFT images for (a)–(i) along !" !M . (k) Theoretical surface state dispersion (solid lines) and kk
projected bulk band structure (shaded area). An arrow shows possible surface to bulk scattering channels.
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Figure 3.8: Quasiparticle scattering data from Kim et al. [95]. The six-fold symmetry
gets smeared by the bulk valence band when the voltage is less than -500 meV and by the
bulk conduction band when it is greater than -250 meV. Scattering is enhanced in the Γ-M
direction and suppressed in the Γ-K. At some voltages, they 6-fold symmetry is less clear.
(a) and (b) show the smearing of the topological state due to the valence band and (g)-
(i) show the smearing due to the conduction band. Reprinted figure with permission from
S.Kim, M.Ye, K.Kuroda, Y.Yamada, E.Krasovskii, E.Chulkov, K.Miyamoto, M.Nakatake,
T.Okuda, Y.Ueda, K.Shimada, H.Namatame, M.Taniguchi, and A.Kimura. Physical Review
Letters, 107:056803, (2011). Copyright (2011) by the American Physical Society. Abstract
can be viewed at: http://prl.aps.org/abstract/PRL/v107/i5/e056803.
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state interacts with the bulk. Quasiparticle interference patterns from Kim et al. suggest

that bulk mixing may obscure the quasiparticle interference. Figure 3.8 shows that the 6-fold

symmetric pattern in k-space gets smeared out; this effect was attributed to overlap with

bulk states [95]. (To be clear, this picture for bulk mixing is very different from my analysis

presented in Chapter 4). The scattering patterns are enhanced along the Γ-M direction and

repressed along Γ-K in k-space in both ARPES patterns and QPI patterns. The Reference

[95] study also identified other quasiparticle interference pattern measurements on Bi2Se3,

showing that the central maximum in the Fourier transform is enhanced by the surface state

mixing with the bulk, particularly in the valence band below the Dirac point [95].

Photocurrent measurements show that bulk and surface current mixing also occurs in

measurements that use a spin-polarized laser to measure the spin dependent photocurrents.

The photon drag effect allows spin-polarized excitations to relax through bulk valence chan-

nels instead of just inducing a spin-dependent current when the incident photon interacts

with the opposite spin/momentum channel through the surface helical Dirac cone [99]. Band

structure calculations show an overlap with the Dirac cone and some bulk states [100]. It

is speculated that this not only interferes with quasiparticle scattering, but that it also

suppresses Landau level formation in Bi2Se3 [101].

3.2.4 Band Bending

Subsurface charges or the application of electric fields can cause shifts in the surface electronic

structure; this effect is called band bending. In both Bi2Te3 [64] and Bi2Se3 [102], band

bending effects due to contamination or layer decoupling can make the surface state shift

with time. Some measurements show that the Dirac cone forms and shifts over a period of
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a few hours. This localized band bending is credited with shifts in the Dirac point energy

between ARPES and STM measurement of up to 120 meV [69].

Band bending is responsible for quantum well formations in the top layer of the ma-

terial. When the surface is exposed to different chemicals, be it incidental environmental

contamination or intentional (i.e. [77]), band bending on the surface forms a two-dimensional

electron gas (2DEG) over the period of a few minutes to hours depending on concentration

[103, 102] and temperature [102, 101]. ARPES and transport measurements have identified

a variety of contaminants that can cause the 2DEG formation.

Other contamination effects, including water [104], show a split band to appear out of

the conduction band, perhaps by chemically altering the surface. High levels of carbon

monoxide can confine both the conduction and valence bands due to extreme band bending

[103]. ARPES measurements show the Dirac cone shifts upon exposure to molecules of N2

and air [101]. Brahlek et. al. showed that in transport measurements O2 and water exposure

decreases the number of two-dimensional carriers where N2 and vacuum can nearly restore

the original transport characteristics given a week. Other studies on 2DEG formation show

that in extreme cases of band bending where the bending exceeds the width of the valence

band, both the valence and conduction bands can become confined simultaneously [103].

Band bending on the surface is no small matter.

Figure 3.9 shows Bianchi et al.’s ARPES measurements of a two-dimensional electron

gas coexisting with the topological surface state on Bi2Se3. In Figure 3.9 there is the energy

vs. momentum ARPES data of the linear topological insulating Dirac cone and a parabolic

band coming down from the region of the conduction band. The sharpness of the rim is an

indication of a two-dimensional state, and the three-dimensional bulk state above it appears
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diffuse. To determine the source of the 2DEG, the authors confirmed this band bending was

due to extrinsic defects and not a crystal reorganization using LEED. Because of the time

dependence of band bending, quantum well forms over time and this data was collected after

the crystal was three hours in a vacuum during which time the Dirac point shifting to lower

energies. While the 2DEG can coexist with the topological state, the Dirac cone must become

wider in k-space to accommodate the 2DEG and has more scattering channels into which it

can decay [102]. Elsewhere in their work, Bianchi it al. show the inner circular 2DEG state

is clearly distinguishable from the hexagon topological insulating state [102]. The hexagonal

shape not only becomes more pronounced with atmospheric exposure [101] but it is related to

the six-fold symmetry of the Bi2Se3 system and is one of the characteristics that is different

from the closely related topological insulating material, Bi2Te3, whose Fermi surface has

a hexagram shape [105, 13]. The topological state deviates from its hexagonal state and

evolves with energy through the Dirac point, where it is a bright focused spot [102] before

it joins the valence band at -0.5 eV.

The mechanism of the 2DEG formation is something that is debated. Some groups

advocate that a chemical modification of the surface shifts the bands [106]. Indeed, it is

standard practice in transport to treat the surface with molecules to prevent Se vacancy

formation [107, 77, 100]. Others advocate that the molecules intercalate into the Van der

Waals gap and the expansion alone drives 2DEG formation [101]. STM measurements which

are sensitive to defects on the surface or intercalated defects have never reported indications

of a 2DEG formation. Theory calculations reject the chemical modification explanation and

instead advocate that the chemicals intercalate between the layers with causes the Van der

Waals gap to expand [108]. They show that as the 2DEG forms in the top quintuple layer, the
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topological surface state is displaced to the second quintuple layer in stoichiometric Bi2Se3.

Because of the sensitivity of tunneling on distance in STM measurements, the implications

of these calculations are that as a 2DEG forms, the Dirac cone would not be as prominent

in the density of states.

Clearly, Bi2Se3 has a lot of rich physics. Band bending can confine the conduction

band and sometimes even the valence band. Therefore, the topological surface state may

coexist with a 2DEG. Quasiparticle scattering experiments show the spin split nature of

the surface as scattering is suppressed in the Γ-K direction. Bulk mixing obscures the

interference patterns and contributes to the muted nature of pattern development. Despite

these potential non-topological effects, to the simplicity of the Dirac cone, Bi2Se3 is a model

topological insulator.
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Figure 3.9: ARPES measurements on Bi2Se3 showing effects of the top quintuple layer
separating from the crystal [102] E vs. k of the Dirac cone is shown with the 2DEG evident
as the bright rim surrounding the diffuse conduction band edge. The Dirac cone is the outer
x shaped feature with the Dirac point at the center of the x. Reprinted by permission from
Macmillan Publishers Ltd: NATURE COMMUNICATIONS (M.Bianchi, D.Guan, S.Bao,
J.Mi, B.B. Iversen, P.D.C. King, and P.Hofmann. “Coexistence of the Topological State
and a Two-Dimensional Electron Gas on the Surface of Bi2Se3”. Nature Communications,
1:128, 2010.), copyright (2010)
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Chapter 4

Measurements of States on the

Surface of Bi2Se3

The topological surface state has exciting characteristics described in Chapter 3 that may

be exploited for device applications. It is therefore important to know what other states on

the surface are competing with the topological state as they may limit applications. In the

next sections, I will show that there is a bulk contribution to the electronic structure on the

surface of Bi2Se3 in the spectroscopy. There is also an indication that a two-dimensional

electron gas contributes a feature in the density of states.

4.1 Sample Overview and Procedure

The crystals I studied were grown in the Kanatzidis group by Duck-Young Chung and

Jung-Hwan Song by slowly cooling an elemental mixture from 850◦C, which is a common

preparation technique for bulk crystals. Samples of Bi2Se3 with 2%, 4% and 8% excess

bismuth were prepared and the purity was established by powder x-ray diffraction. The 2%
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samples showed no impurity phases, while the 4% doped sample had some Bi8Se9 and the

8% doped sample had BiSe impurity phases. Although they could not guarantee that all

the additional bismuth was taken up by the crystal, unit cell analysis on the crystals showed

that the lattice expanded a bit as more excess bismuth was added, indicating that more was

taken in by the lattice.

To take measurements, a crystal of 1 mm or less in thickness and a few mm wide of

Bi2Se3 was taken from the ingot. In general, parts of the ingot that were in the curved

bottom of the growth tube did not cleave well and were avoided. A sample disk was cleaned

with acetone and isopropyl alcohol to remove any dirt and oil. Once cut with a razor to

size, a tiny dot of silver paint was placed in the center of a sample disk to dry for half an

hour. Once dry, the mounted sample was inspected to ensure it still lay flat on the sample

disk. Any edges of the sample that had been engulfed in silver paint were trimmed to

ease the cleavage process. The sample was cleaved with scotch tape to expose a mirror-like

surface for initial testing. It is easiest to remove any huge steps at this time. After bench

top testing, the molybdenum disulfide powder was applied to the sample ramps to aid the

walking process before the entire sample was loaded in a two stage process into the sample

processing chamber discussed in Section 2.1. The microscope was evacuated of all impurities

by pumping it to a hundred mtorr. The crystal was cleaved in the chamber, being careful to

ensure a mirror-like surface without any part of the flake sticking up much higher than the

surrounding area to prevent tip crashes. Finally, the sample was loaded into the microscope

in its N2 gas environment, isolated from the chamber and the microscope was pumped out

overnight to a pressure of 3× 10−6 torr.

One of the characteristic features of Bi2Se3 doped with excess bismuth is bright triangular
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Figure 4.1: Characteristic triangles from bismuth substitutions on selenium sites in Bi2Se3
doped with 4% excess Bi. Image is at 4.2K with -0.8 V bias and 0.50 nA set current. The
scale bar is 3 nm.

enhancements discussed in Section 3.2.2. Figure 4.1 shows triangles I measured on the

surface of Bi2Se3 with 4% excess bismuth. This finding confirms that the samples exhibit

the qualities that are expected, and that the sample processing chamber does result in a

sufficiently clean surface.

4.2 Spectroscopy Measurements on Bi2Se3

I applied STM at 4.2K to perform spectroscopy on Bi2Se3 doped with 4% excess Bi. All

spectroscopy measurements were consistently made on sample locations far from defects to

ensure the spectrum was of the pure Bi2Se3 state. In a material with a band gap, the slope

of I-V curves goes to zero in the gap. Figure 4.2 (a) shows the I-V curve. We see that the

slope described in Section 2.2.1, dI/dV , is never zero at any bias voltage. By focusing on

the low voltage region (+/-0.15 V) in Figure 4.2 (b), it is even more clear that the slope is
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(a)

(b)

Figure 4.2: (a) The calculated I-V curve on Bi2Se3 doped with 4% excess Bi at 4.2K. (b)
The same I-V curve expanded in the region of the Dirac cone. The slope does not go to
zero at zero voltage, indicating there are states in the gap. Due to an analog to digital issue
in the electronics, the current was calculated from the dI/dV curve in Figure 4.3 (a). The
dI/dV curve was measured directly from using the lock-in amplifier as described in Section
2.2.1 and therefore did not experience the same analog to digital issue.
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(a)

(b)

Figure 4.3: (a) Density of states on Bi2Se3 doped with 4% excess Bi at 4.2K where the
linear region of the Dirac cone is between +/-0.15 V. The Fermi level is in the center of the
gap. There are additional states that lift up the bottom of the Dirac cone. The curve is an
average of 150 curves taken successively to reduce the signal to noise ratio. (b) The density
of states only in the region of the Dirac cone showing parameters α and β, described in the
text.
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nonzero. The nonzero slope indicates that there are states in the gap. If the basic picture of

Bi2Se3 is completely described by only a single Dirac cone that resides inside an insulating

band gap, there should be a point where there are truly no states. At the point the slope

of the I-V curve, dI/dV would have to be zero. By examining only the I-V curve, it is clear

that other physics is in play.

Stoichiometric Bi2Se3 is n-type, meaning the current is predominantly carried by elec-

trons. The Fermi level tends to be pinned to the conduction band edge due to Se vacancies

in the crystal [109]. We suspected that the excess Bi would tend to shift the Fermi energy,

EF . In Figure 4.3, we see from the horizontal axis that the excess Bi almost perfectly com-

pensates and the Fermi level is at zero volts. While this is not essential to the analysis, it

is still a nice feature of the data that several research groups have strived to achieve. The

clear V-shaped Dirac cone is in the region of +/-0.15 V. With respect to the vertical axis,

we see that the Dirac point is lifted up from zero. This is just another visual depiction of

how dI/dV never goes to zero; there is always an offset of the Dirac cone.

To determine that the offset of the Dirac cone, or “background”, was intrinsic to the

system and not an artifact, I compared spectroscopy in different spots on the sample and

different doping levels of Bi. In Bi2Se3 spectroscopy, I compared the ratio of the height of

the offset, α, to the height of the Dirac cone at -0.1 V, β, as drawn in Figure 4.3(b). Because

the scale on density of states measurements is arbitrary, it is necessary to compare the ratio

of feature heights when comparing different spectroscopy curves. In this case, the choice of

β is arbitrary; it could have been chosen to be anywhere in the Dirac cone so long as the

comparison is at the same cone heights between spots on the sample. For the data shown in

Figure 4.3, β/α = 2.87. I repeated the same measurement at different locations within the
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Figure 4.4: Density of States where each of the curves is an average of 50 measurements.
Data set A was taken before Data set B without manually moving the tip. Data set A has
been offset by one tick mark to ease visual comparison. A blue bracket has been drawn to
highlight the enhancement. We speculate the tip drifted during the measurement, causing
the feature at +0.2 V to change.

sample at 4.2K and the ratio β/α is consistent within 15%, which is the error expected due

to scatter in the data. Given the consistency between these measurements, I concluded the

offset is an intrinsic feature of Bi2Se3.

While the Dirac cone and the background states do not depend on the measurement

location within the sample, the spectroscopy features above +0.2 V is location dependent.

Figure 4.4 shows the density of states on Bi2Se3 far from defects. Above +0.2 V the curves

show progressively enhanced density of states. Each of the curves plotted is an average of

fifty curves. There were another 50 curves between Data Set A and Data Set B that show an

intermediate step between the enhancement and depression at +0.2 V that has been removed

for clarity. The apparent dip at +0.2 V arises where the Dirac cone is no longer lifted up by

the shoulder states. Calculations in the following discussion showed only that the shoulder
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extended past the Dirac point, but how far beyond the Fermi level the Dirac cone extended

was unable to be determined.

I believe that any differences in each of the three successive curves arise from thermal

drift during the measurement. In other words, the spot on the sample the measurement

began is not the same point the measurement ends. Similar enhancements and depressions

have been observed at other locations on this sample. However, this data set is unique in

that I see an evolution between them.

4.3 Analysis of the Bi2Se3 Spectrum

Density functional theory (DFT) is a computational technique to find the electronic struc-

ture of periodic quantum mechanical systems. It is a way of approximately solving the

Hamiltonian using only the density of electrons in space. To analyze my data, Dr. Mal-soon

Lee working with Professor S.D. Mahanti performed DFT calculations. The calculations

were performed using the projector augmented wave (PAW) methods as implemented in

the commercially available VASP package. The Perdew-Burke-Ernzerhof (PBE) generalized

gradient corrected exchange-correlation functional were used in the calculation. To fully

solve the band structure, spin orbit interactions were included. Theoretical details of the

calculation can be found in Reference [110].

Figure 3.6 shows the bulk calculation in gray and a 6 quintuple layer (QL) slab calculation

in blue with the Fermi energy at the Dirac point. While a single Dirac cone transverses the

gap, the bulk has a shoulder state in the Γ-M direction similar to calculations by Xia et

al.[100], Yazyev et al.[111], and Kim et al.[95]. The same state appears in the calculations

performed by Dr. Mal-soon Lee shown in Figure 4.5 (a) and Figure 4.7 marked by the red
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(a)

(b)

Figure 4.5: (a) Valence band calculation with increasing numbers of QL. The shoulder state
in the Γ-M direction increases in energy and eventually crosses the Dirac point. (b) Graph
of the change in energy with QL. Eventually the height of the shoulder will reach a bulk
value as the number of QL increases. Figure courtesy of Dr. Mal-soon Lee
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arrows.

Prior to this work, nobody had studied systematically how increasing the number of

quintuple layers in a slab calculation increases the shoulder’s energy. Slab calculations of

Bi2Se3 seen in Figure 4.5 (a) from 6-18 QL show how the energy of the shoulder increases

with the number of QL which indicates that they probably originate in the bulk. However,

the Dirac cone states do not change as the number of quintuple layers increases which

demonstrates that the topological surface state is well established by 6 QL. To match the

energy scales, the Dirac points of each slab were aligned with the Fermi level at zero voltage.

The Dirac cone itself is due to the presence of the surface and is not present in any bulk

calculations.

We see from Figure 4.5 (a) that the shoulder in the Γ−M direction of k-space is getting

higher in energy as the number of QL increases. Figure 4.5 (b) shows the trend of the change

in energy, ∆E, which is the difference between the top of the Dirac cone and the maximal

shoulder energy. ∆E becomes more negative with increasing QL. This is consistent with the

energy of the Dirac cone becoming comparable with the height of the shoulder. By an 18 QL

slab, the energy height of the shoulder exceeds the Fermi level and ∆E becomes negative.

Extrapolating from the graph, the energy will eventually level out at some sort of constant

“bulk” value if the number of quintuple layers is increased further. Extra states at the Fermi

level would indeed add to and lift the Dirac cone. Hence, these shoulder states are then

excellent candidates for explaining the background in STS measurements as an interplay of

surface and bulk states.

Figure 4.5 (a) shows that shoulder states exist at the right energy to mix with the

topologic surface state in the region of the Dirac cone. To fully explain my measurements,
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these electronic states need to reside in the top layer of the material. Because of the tunneling

current’s exponential dependence on the tunneling gap distance, described in Section 2.2,

STS measurements are most sensitive to the topmost atom, Se1, and to a lesser extent the

Bi1 atom immediately below it. In other words, these shoulder states need to have spectral

weight on the surface for STM to measure them. Only if the shoulder state resides on the

surface can it explain why dI/dV never goes to zero at the Dirac point in Figure 4.3.

Figure 4.6, also calculated by Dr. Mal-soon Lee, contrasts the partial density of states

(PDOS) from the Dirac cone (Region I) with the shoulder states (Region II). These calcu-

lations are for a 6QL slab because anything thicker would be computationally prohibitive.

As expected, the contributions to the partial density of states from the Dirac cone resides

primarily in the Se1 and Bi1 on the topmost quintuple layer within the gap. In the middle

QL, there are no contributions from Region I in the gap but Region II dominates. There is a

big contribution to the density of states in the middle QL Se1 from the shoulder states and

a lesser contribution from the middle QL Bi1. The fact that the shoulder states dominate

in the middle, bulk-like, region of the slab agrees with the bulk calculations found in Xia et

al.[100] and Kim et al.[95]. To determine if the shoulder states are present on the surface,

one needs to look for a peak in the top layer Se1 at approximately -0.3 V, the energy of

the shoulder state for a 6QL slab. In Figure 4.5 (a), there is indeed a big peak in Se1 on

the topmost layer and it is even evident in the Top QL Bi1. While the shoulder states may

originate in the bulk-like part of the slab, they are still present in the top quintuple layer

that is probed in STM measurements.

To highlight these results pictorially, Dr. Lee calculated the partial charge density contri-

bution from just the shoulder states for a 6 QL slab and from the bulk calculations in Figure
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4.7. The shoulder states in from bulk calculations are selenium-like, meaning that they have

a higher spectral weight near Se atoms, depicted with red halos throughout the quintuple

layers. While most of the charge from shoulder states in the slab calculation is centered

around the Se atoms in the middle of the slab, we see that there is some finite charge density

near the top of the top quintuple layer which would be accessible to tunneling. (Figure 4.6

is better at showing the relative intensities of the Dirac cone and the shoulder states on the

surface).

In summary, the calculations show how there are bulk states that reside on the surface

that have the potential to contribute to STM measurements. STM is not sensitive to the

momentum of the electrons, so any states available at the Fermi level will contribute to

tunneling. Hence, the shoulder states sum with the Dirac cone states, giving rise to the

offset, α in Figure 4.5 (a), seen in my density of states measurement. In other words, we

believe there is an interplay between the bulk and topological surface state in Bi2Se3 that

STM probes.

4.4 Analysis of Two Dimensional Electron Gas on the

Surface

Figure 4.4 shows how over the course of a long measurement, there is a feature above +0.2

V that begins as an enhancement and then becomes a depression in the density of states. In

Section 4.2, I speculated that the tip may have drifted during the course of the measurement

so that the area of the sample the tip was probing at the beginning was not the same as the

one it was probing at the end. Due to reasons about to be expanded upon, the tip may have
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Figure 4.6: Partial density of states (PDOS) calculations performed by Dr. Mal-soon Lee on
a 6 QL slab. The inset shows the parts of k-space that contribute to Region I and Region
II. The contribution to PDOS from the Dirac cone is depicted in red. It resides primarily in
the top layers within the bulk band gap. The contribution from the shoulder states (blue)
have the largest contribution in the middle QL, however it has a finite contribution in the
top QL Se and Bi atoms. In this case, the peak is just to the left of zero energy (the Fermi
level) for this rather thin slab.
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Figure 4.7: Comparison of bulk and slab calculations. This contrasts the partial charge
density from bulk band structure calculations (gray in the band structure) on the left side
of the image with those from the slab calculations (blue in the band structure calculations).
The Se are yellow, the Bi atoms are blue-gray and the the intensity of the red halos depicts
how strong the charge density is at that region. No halo means there is no significant charge
density. The bulk calculations show the partial charge density is mostly distributed on the
Se atoms in all layers equally. The partial charge density on the slab calculation on the right
is primarily located on Se atoms as well, but has the highest density in the middle layers
(the bulk-like area of the slab). However, there is some charge density on Se atoms in the
outermost quintuple layers shown by the green arrows. Figure courtesy of Dr. Mal-soon Lee
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drifted from an area of the sample where the top QL was less connected to where it was more

connected. The readily cleavable surface on Bi2Se3 leaves the possibility for the top layer to

be less bound in some areas. The Van der Waals gap between the top two layers may widen

during the cleaving process or later when a strong field is applied to the crystal. Impurities

may also contribute to layer separation. Clearly, if one QL were completely separated from

the crystal, the extended electron wavefunction may resemble a two-dimensional electron

system.

Few groups have studied the formation of a 2DEG on the surface of topological insulators.

The explanations from ARPES studies focussed on the effects of impurities. Some studies

have shown that separating the top layer from the subsurface layer increases causes the

conduction band edge to move into the gap and localizes the 2DEG in the top layer [102,

103, 112]. Common impurities that are believed to cause layer separation are oxygen[106],

CO [103], water [104], and other adsorbates [112, 102, 81], many of which are common

vacuum contaminants. Theoretical calculations support the possibility that the layer is

more loosely bound in some areas by predicting a two-dimensional electron gas sets up on

the top quintuple layer.

To explore these ideas more carefully, Dr. Lee performed similar DFT calculations to

those in Section 4.3. Figure 4.8 shows her results that support the idea that a 2DEG may

have set up on the surface of the material. We see that an increase in the physical separation

gap between the top two quintuple layers of thirty to fifty percent causes the lowest band of

the conduction band to extend into the gap. The shape of this band is parabolic like a 2DEG.

For the data shown in Figure 4.4, as the STM measurement progresses I believe the tip is

drifting from a more separated region to a less separated region removing the enhancement
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in the density of states by the end of the measurement. The enhancement to the LDOS

cannot be from other sources like Se vacancies because not only was there no evidence in

the topography, but also the enhancement appears at a higher energy than Se vacancies [91].

Moreover, there is no other electronic evidence of an impurity of the surface of any kind even

though we were probing with a blunt tip. As further spectroscopic evidence, the Dirac cone

is not as sharp of a V shape between +/-0.1V in Data Set A as Data Set B.

Menshcikova et al. [108] calculated the partial charge density of the Dirac cone with an

increasing layer separation. Their partial charge density calculations showed that the 2DEG

pushes the Dirac cone into the second quintuple layer, which would reduce the Dirac cone’s

contribution to my STM measurement. Interestingly, the background states are not effected

by 2DEG formation.

In summary, there is some evidence that a 2DEG may have locally formed on the surface

due to layer separation. Dr. Lee’s calculations show that when the Van der Waals gap

between the topmost quintuple layers expands, a 2DEG comes down from the conduction

band and resides at +0.2 eV above the Fermi level. This voltage is same energy that the

enhancement appears in my measurement in Figure 4.4 leading to the possibility that there

is a 2DEG in the top quintuple layer of some of my Bi2Se3 sample.

4.5 Bi2Se3

As a comparison, I looked at an undoped crystal of Bi2Se3 previously used by Dr. Sergei

Urahzdin. Figure 4.9 (a) and (b) show the current-voltage and density of states curves. In

this case, the curves are averages of only five curves, and the higher noise level reflects it.

The Dirac cone is not very pronounced, but the background that lifts up the center of the
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Figure 4.8: Band structure calculations of a 6 QL slab of Bi2Se3 for which the top QL is
separated from the others. The percentages refer to how much additional separation is given
to the top QL. We see as the top layer detaches, the bottom of the conduction band drops
into the gap and forms a two-dimensional electron gas on the surface. Figure courtesy of Dr.
Mal-soon Lee.

gap is still clearly there. The whole curve is shifted to more negative voltages than the 4%

doping in Section 4.2 making it more n-type than that sample. This shift is consistent with

the previous conclusion that Bi tends to restore the Fermi level to the center of the gap. Its

n-type nature is probably from Se vacancies [14]. The enhancement described at +0.2 V in

Section 4.4 associated with the 2DEG has also shifted with all the bands. Consistent with

previous conclusions, a 2DEG formation obscures the Dirac cone. Undoped Bi2Se3 shows

many of the same spectral hallmarks of the pristine Bi2Se3 I probed in Sections 4.3 and 4.4.

Excess bismuth doping only serves to shift the band structure all at once and not relative

to each other as was described in reference [101]. Doping only fills in the selenium vacancies

and shifts the bands, but does not alter the topological state. Moreover, these measurements

on the undoped sample take place at 77K instead of 4.2K in Section 4.2 demonstrating that

temperature effects do not impact any of the previous conclusions. Figure 4.9 (c) shows an
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(a) (b)

(c)

Figure 4.9: STM data at 77K. Both the (a) I-V curve and the (b) density of states are an
average of 5 curves. (c) Atoms on the surface of Bi2Se3 at -0.20 V and 0.1 nA. Scale bar is
1.6 nm.

atomic resolution image of the surface where there is evidence of the dark smudginess I have

come to associate with all of these samples, which will be expanded upon in Chapter 5. In

short, neither temperature effects or doping alter characteristic features of Bi2Se3 samples.

There is an interplay of bulk states with the topological surface state between samples which

is not altered by doping and a 2DEG can potentially set up on the surface of the material.
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Chapter 5

Other Measurements of Bi2Se3

This chapter gives an overview of different samples I examined, but does not directly impact

the analysis of my primary results in Chapter 4. This chapter should be seen as supplemental

information as it is focussed on empirical observations. It covers additional information about

my primary sample of Bi2Se3 doped with 4% excess bismuth, as well as samples with 2%

and 8%. Details about the sample quality can be found in Section 4.1.

5.1 Bi2.02Se2.98

All my earliest studies on topological insulators were on Bi2.02Se2.98. Most of the mea-

surements took place before the processing chamber was installed so there was more surface

contamination. The final cleave took place in the laboratory environment before the sample

was placed in the microscope, pumped down to a pressure of 3×10−6 torr overnight and

cooled to a temperature of 77K. The biggest challenge for these samples was finding a spot

that was clear enough to get any kind of meaningful image. Many scans had debris that

often attached to the tip, necessitating tip recovery techniques fairly often. Nevertheless, I
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was able to scan many topographic features that appeared in every doping level of Bi2Se3

studied.

For instance, Figure 5.1 (a) shows the top selenium layer of Bi2.02Se2.98. There is no

electronic impurity signature in this scan range. The dark spots in Figure 5.1 (b) seem

to have a slight triangular shape and originate from a selenium vacancy [92, 91]. Dark

triangular features are often imaged in Bi2Se3 and can appear right alongside bright triangles

originating from interlayer Bi substitutions [10].

Impurities should have an electronic signature on a sample. If they are truly part of

the sample and not some debris on the surface, the apparent topography of impurities will

change with the voltage. Figure 5.2 shows both surface contamination and electronic defect

states. These images were taken in succession with only the bias voltage changing between

them. Rows of atoms are also visible across the images. The upper right hand corner of all

the images has a bright blob that is independent of voltage. In many of the scans, there

is streakiness that extends down the image from that corner. This smearing is common in

scanning probe measurements when there is something unstable that is not securely attached

to the sample or tip. This observation leads to the conclusion that it originates with the

surface contamination and not interlayer Bi, which creates triangular topographic features

that are independent of voltage [10]. The tip and the sample are interacting that causes

artifacts in the topography image. Elsewhere in the image in the scans at -0.50 V in Figure

5.2 (a) and (c) there are bright blobs in the upper left corner and close to the middle of the

image. Unlike the surface debris, these two enhancements disappear at -0.55 V in Figure

5.2 (b) and at -0.4 V in Figure 5.2 (d). The reason the defect states do not appear as

triangular is unknown but could be an artifact of the tip, but the defects are behaving like
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(a) (b)

Figure 5.1: Data taken at 77K without the chamber. (a) Atoms on the surface of
Bi2.02Se2.98 at a set current of 0.11 nA and -0.5 V. Scale bar is 3 Å. (b) Dark pits seen all
over the Bi2.02Se2.98 potentially caused by surface contamination. Scale bar is 17 Å.

Bi substitutions from reference [14].

5.2 Bi2.04Se2.96

Here I give additional measurements on what turned out to be my primary sample, Bi2Se3

doped with 4% excess Bi. Even with a processing chamber, there tended to be a little bit of

debris on the surface of Bi2.04Se2.96. Many times images were so streaky that there are no

meaningful features on the surface. Defect states can be hard to discern when the surface

is shifting. The tip was compromised and dragging the tip to refurbish it was not very

helpful. Field emission tended to work best, but was only reliable at high voltages. After

a few recoveries at 150 V, the tip became extremely blunt. Topography images were then

featureless but the spectroscopy was excellent. Consequently, some of the best spectroscopy

curves, like that in Figure 4.3 had a completely featureless topography image taken in tan-

dem. Nevertheless, many topography features were evident on the surface of Bi2.04Se2.96.
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(a) (b)

(c) (d)

Figure 5.2: Defects on the surface of Bi2.02Se2.98 at 0.5 nA set tunneling current and 77K.
Scale bars are 7 Å. Each image is taken in sequence at a bias voltage of (a) -0.5 V (b) -0.55
V (c) -0.50 V and (d) -0.4 V. The bright spot in the upper right corner of every image is
surface contamination. Impurities in the crystal are visible in the upper left in (a) and (c).
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(a) (b)

(c)

Figure 5.3: Defects on the surface of Bi2.04Se2.96 at 0.5 nA set tunneling current and liquid
helium temperature. Each image is taken in sequence at a bias voltage of (a) -0.80 V, 36 pA
(b) -0.49 V, 73 pA and (c) -0.29 V, 52 pA. Dark impurity spots become more diffuse with
changing voltage. Bright specs of surface contamination also visible in every image. Scale
bars are 3.3nm.

Because it seemed to routinely cleave with fewer step edges than other doping levels, this

sample was the most extensively studied material.

Dark blobs appear all over the sample. They definitely have some some electronic origin

because they are sensitive to voltage. As Figure 5.3 shows, the dark blotches become darker,

less diffuse and better resolved as the voltage changes. There is also debris in the upper

right corner of this sequence. Some of the bright spots are electronic features because they

are active at the same bias as the triangular defects in Figure 5.4 (a). Because the bright

irregular blobs are much larger than the triangular defects, the large features, while voltage
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(a) (b)

Figure 5.4: Data taken at 4.2K. Scale bars are 3.3 nm.(a) Bright triangular defects on the
surface of Bi2.04Se2.96 at a set current of 60 pA and bias voltage of -0.80 V. (b) Clusters of
triangular defects arranging in strings at 60 pA and -0.79 V.

independent, are likely from some surface debris and not the interlayer Bi described in

reference [10].

The characteristic bright voltage dependent triangular defects [14] appear in scans of

Bi2.04Se2.96. Figure 5.4 (a) shows relatively isolated defects. Each triangle is about 7nm

across, similar to Urazhdin et al.. Sometimes the defects cluster in a way that makes them

appear as lines in the images instead of just isolated triangles. These lines in Figure 5.4 (b)

are parallel because triangles all point the same direction due to their perturbation on the

lattice electronic structure[10].

The same features of triangular defects and pits persist at liquid nitrogen temperatures.

Figure 5.5 (a) shows several triangular defects all over the image. While there are clusters

of defects, they do not seem to arrange themselves into strings of defects in the same way as

Figure 5.4 (b). Unfortunately, the lack of concentrated regions of defects limited my ability
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(a) (b)

Figure 5.5: Data taken at 77K. (a) Bright triangular defects on the surface of Bi2.04Se2.96
at a set current of 24 pA and bias voltage of -0.48 V. Scale bar is 17 nm. (b) Pits on the
surface at 118 pA and -0.38 V. The scale bar is 67 nm.

to image these defects with Kelvin probe. The dark spots also persist at 77K. They are

quite large, often tens of nanometers across. While these are electronically different from

the surrounding area, they do not locally change the capacitance signal. If they do represent

any difference in the electric field from the sample, they are electronically screened over a

distance of approximately 20-30nm. This length scale is comparable to the screening length

calculated for Bi2Te3 of 26 nm in reference [80].

5.3 Bi2.08Se2.92

I spent the least amount of time on the eight percent doped sample. Most of the time I

spent studying these samples also took place before the cleaving chamber was installed. Of

all the samples I worked with, this one was the most difficult to get a good cleave where

large areas of the sample were step edge free. This sample would flake up quite a bit more
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(a) (b) (c)

Figure 5.6: Data at 77K, scale bar is 3.3 Å and set current 1.02 nA. (a) -0.6 V (b) -0.3 V and
(c)-0.6 V. There is both surface contamination, atomic resolution and a voltage-dependent
defect in the upper right corner.

than the others. Perhaps due to the high doping level, that Bi2.08Se2.92 leaves a lot more

surface residue from the last cleave than any of the other crystals. It is fairly common to see

a few tiny grains on the mirror like surface after cleaving any crystal with scotch tape. I have

always interpreted these bits as coming from the fracture that occurs around the step edges

as the scotch tape is peeled away. In 8% doping, the fine dust is more wide spread (so are

the step edges) and is adhered to the surface well enough that it cannot be dislodged with

N2 gas. A data run on the sample after the chamber was installed was short in part because

of all the particles that still remained on the sample that contaminated the tip. As you can

see from Figure 5.6, there is quite a bit of surface contamination leading to a streaky image.

Nevertheless, there is still a visible electronic lattice in each of these images. In the upper

right corner of Figure 5.6 (a) and (c), there is not only a tiny piece of surface contamination,

but a larger bright spot that disappears in (b). While 8% excess bismuth does show features

characteristic of Bi2Se3, it is not the best sample to probe the Bi2Se3 state.

In summary, all of the samples of doped Bi2Se3 show similar features. Dark spots, most

likely from Se vacancies, appear on all of the samples, but so do voltage-dependent bright
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spots from bismuth on a selenium site substitutions. These electronic structure signatures

are distinguishable from the debris that covers the surface.
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Chapter 6

Other Scanning Probe Methods

6.1 Capacitance and Kelvin Probe Circuit

For scanning capacitance measurements, the apex of the tip is essentially a nanometer-size

capacitor plate and the nanometer scale piece of the sample below represents the other

capacitor plate. Just like a large capacitor, if charge enters the sample, image charge of the

opposite sign appears on the tip. Another way to say this is that electric field emanating

from the sample induces image charge on the tip.

Largely the same circuit is used in both Kelvin probe and capacitance measurements. It

consists of a tip and two high electron mobility transistors (HEMT) on a gallium arsenide

chip. Gold pads sputtered on the GaAs allow the circuit connections to be made with a

wire bonder. Low temperature conducting epoxy adheres the HEMTs and tip to the chips.

I assemble all the chips in the lab.

The two HEMTs in Figure 6.1 serve very different purposes. The bias HEMT serves to

tune the measurement HEMT to its most sensitive region for the measurement. In addition,
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Figure 6.1: HEMT circuit diagram: The standard capacitor (line drawn in blue) is only
included for capacitance measurements. Oscillations are applied either to the bias voltage
for capacitance measurements or by oscillating the tip above the sample in Kelvin probe.
The lock-in amplifier detects the change in capacitance on the tip due to these oscillations.
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the bias HEMT has a large impedance on its source-drain channel that ensures all the charge

that oscillates on the tip goes to the gate of the measurement HEMT. Any charge oscillating

on the tip then changes the effective resistance of the source-drain channel to be measured

by the lock-in amplifier. The charge sensitivity of the circuit is .16e/
√
Hz at 77 K [113].

The measurements the circuit is able to make are limited by other sources of capacitance

and noise in the system. Warming of the system is minimized by keeping the power dissipated

by the circuit low, in the microwatt range. As seen in Figure 6.2, this requirement puts the

device in the linear region of the source-drain characteristics.

Part of measuring anything with this HEMT circuit is a background capacitance. The

largest source of capacitance is the capacitive coupling between the gate and source-drain

channel for the measurement HEMT. This capacitance, Cin, is around 0.3pF and impacts

the voltage signal that reaches the lock-in amplifier. There is also a self-capacitance from

the circuit’s size, which is minimized by keeping the tip-HEMT distance as small as possible.

6.1.1 High Electron Mobility Transistor

A high electron mobility transistor (HEMT) is a field effect transistor mediated by a two-

dimensional electron gas. The surface of the transistor has gold pads that provide ohmic

contact to the sub-surface material for integration into a circuit. A layer of electron-rich

AlxGa1−xAs donates some of its electrons to the undoped GaAs layer below, creating a

highly mobile two-dimensional electron layer. The conducting properties of the electron

layer are mediated by voltage applied to the gate. Therefore, any voltage applied to the gate

changes the effective resistance of the source-drain channel.
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Figure 6.2: The plot shows the drain current vs. the drain-source voltage of a HEMT
at different gate voltages. Varying the gate voltage changes the effective resistance of the
source-drain channel. The HEMT is operated in the linear region circled in red to minimize
power output [43].

Figure 6.3: A photograph of the Fujutsi model FHX35X HEMT. The size of the device is

∼ 500 µm across [43].
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6.2 Capacitance Measurement

The capacitance measurement uses the HEMT circuit to detect charges entering the sam-

ple, which induces charge on the tip. The capacitance measured depends on the geometric

capacitance, Cgeo, which is due to physical features of the tip and sample and on the com-

pressibility or thermodynamic density of states of the sample, dn
dµ

, relating to the electronic

states through the equation:

A

Cmeas
=

A

Cgeo
+

1

e2dn
dµ

(6.1)

The tip-sample distance is fixed about 1nm above the sample. The electric field from the

sample lands on the tip as it is scanned over the surface. The capacitance measurement can

be used to detect defects within the surface provided they are charge sinks [34] .

6.2.1 Physics

The HEMT circuit measures charge oscillating on the tip, q, in response to charge entering

the sample due to a voltage oscillation, VAC applied to the sample. The charge oscillations

are sensed by the tip as an image charge oscillating in phase with the voltage oscillation,

VAC – finally causing an oscillating voltage on the gate of the measurement HEMT. Not all

of the electric field lines emanating from the sample land on the apex of the tip; many land

on other areas of the macroscopic tip wire. These contribute to a background capacitance

which is constant (independent of the tip’s apex position). To subtract away this background

signal, a signal oscillating at the same frequency but 180◦ out of phase as the VAC is applied

to a standard capacitor, depicted as CS in Figure 6.1.
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The gate and source-drain channel of the measurement HEMT have an effective capac-

itance Cin which is approximately 0.3 pF which limits the sensitivity of the circuit. The

self-capacitance can be minimized by making the tip-circuit distance as small as possible, so

that its contribution is approximately 0.1 pF.

The total capacitance, including the background signal is usually C
tip−sample

= 20

fF (2 ×10−15 F. Voltage on the gate in Figure 6.1 is related to the voltage at the lock-in

amplifier, V
lock−in

, by a gain factor, G. Therefore, V
lock−in

/G is related to VAC and the

capacitive impedance by the voltage divider equation:

V
lock−in

G
= VAC

Z2
Z2 + Z1

(6.2)

where Z1 = (iωC
tip−sample

)−1 and Z2 = (iωCin)
−1. G depends on electronics external

to this HEMT circuit and is approximately unity. The frequency of oscillation is ω. Equation

6.2 can be further simplified by realizing that Cin � C
tip−sample

and will only become

increasingly greater if you account for the circuit’s self-capacitance which only adds to Cin.

Therefore, V
lock−in

=
C
tip−sample

Cin
VAC with respect to the tip’s charge, and the signal

is q = V
lock−in

Cin = C
tip−sample

VAC . To maximize the signal on the lock-in amplifier,

C
tip−sample

should be as large as possible. Maintaining the smallest gap between the tip

and sample achieves this end because capacitance varies inversely with the distance between

the electrodes. The transistor was chosen to minimize Cin. Increasing VAC increases the

signal, but any increase of VAC will reduce the energy resolution of the measurement. The

typical frequency of the sample voltage excitation is 20 kHz. The typical amplitude of

oscillation is 0.1 V peak to peak. With regard to the noise level, at 0.3 K the circuit achieves

an amazingly low charge noise of 0.01e/
√
Hz, where e is the electron charge
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(a) (b)

Figure 6.4: (a) Topography image of the corner of a pit. (b) Capacitance image in the same
region as (a). Both are imaged at 77K, the scale bars are 330nm long and were taken with
an etched tip.

6.2.2 Demonstration

In addition to charging signals, the capacitance measurement is sensitive to changes in to-

pography. The Pt pits sample serves as a good proof-of-principle sample. In Figure 6.4, the

edge of a pit is clearly visible in the upper left corner of the scan range. This same edge

appears in the capacitance. In this case, the contrast is due to a geometric capacitance.

6.3 Kelvin Probe Measurement

The Kelvin probe method employs an oscillating tip connected to the charge sensing circuit.

It measures electric field patterns emanating from the sample and is sensitive to any field

that is not screened away. Local measurements can measure the work function of the metal

[114] and can also be applied to image surfaces [37].
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6.3.1 Physics

In Kelvin probe measurements, the voltage oscillations the lock-in amplifier detects originate

from physical oscillations of the tip. As the tip extends, more electric field lines from the

sample terminate on the tip than when it retracts. The resulting signal on the HEMT circuit

is proportional to the change in capacitance (or charge) with distance. However, there is no

electric field between the tip and the sample at a particular tip voltage, called the nulling

voltage or contact potential (V
null

). If Vtip = V
null

, the voltage on the lock-in is not

sensitive to distance. The charge the lock in senses in not only sensitive to the oscillation

amplitude of the scanning tube, ∆z, but also its height above the sample, z0. Moreover, the

signal charge on the lock-in consists of the actual charge signal, ∆q, in addition to an offset

signal, q0, that arises from stray AC electric field landing on the HEMT gate.

q0 +∆q =
A�0

z0 +∆z
(Vtip + V

sample
− V

null
)

=
A�0
z0

1

z0 + ∆z
z0

(Vtip + V
sample

− V
null

)

≈
A�0
z0

(1− ∆z

z0
)(Vtip + V

sample
− V

null
) (6.3)

where A is the area of the measurement, Vtip and V
sample

are the voltage of the tip and

sample respectively and �0 is the permittivity of free space. Only the oscillating part of this

equation will be sensed by the lock-in amplifier, so Equation 6.3 simplifies to:

q
lock−in

=
A�0
z
2
0

∆z(V
null

− Vtip − V
sample

). (6.4)
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Figure 6.5: Nulling voltage measurement on Bi2Se3. The arrow shows the voltage where
all the curves intersect (0.9 V). Because there is a -0.43 V applied to the tip relative to the
sample, the nulling voltage here is 0.9− (−0.43) = 1.23 V.

(For simplicity, Equation 6.4 assumes q0 = 0.) By this relation, the signal is insensitive

to the tip distance whenever V
sample

= V
null

− Vtip. In practice, the tip is at a voltage

set by the source of the bias HEMT to keep the measurement HEMT in its sensitive region

and only the voltage applied to the sample can be varied. To find the nulling voltage the

Kelvin probe signal versus voltage is measured at a mean tip distance above the sample,

z0. This measurement is then repeated at two or more other different z0 above the sample.

All these are plotted on the same graph. Because only the nulling voltage is insensitive to

distance, the voltage at which the curves intersect is V
null

. The nulling voltage in Figure

6.5 is actually 1.2 V when one accounts for the offset from a voltage applied to the tip as

well as the sample.
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(a) (b)

Figure 6.6: Bi2Se3 topography (a) and Kelvin probe (b). In this case, the Kelvin probe
image is nearly featureless because the signal is dominated by the high plateau in the lower
left. The topography image shows two step edges, where each step is 1 nm high. The Kelvin
probe scan must be within half a nanometer of the sample – even one nanometer beyond
does not contribute. The scale bar is 170 nm on both images. The amplitude of oscillation
is 1 nm.

6.3.2 Demonstration

The tip is held at a constant height above the sample for scanning Kelvin probe images

and the oscillation is applied on top of it. Due to the limitations of an RC charging time

constant from my cables, the largest frequency I can perform measurements at is 1 kHz,

which limits the sensitivity of the HEMT. The only way to increase the signal is to increase

the amplitude of the oscillation. However, it is extremely important to limit the amplitude

of the oscillation so that the tip does not repeatedly tap the sample anywhere in the area of

the scan. All Kelvin probe measurements were performed at 77K.

The relevance of the distance to the sample in Kelvin probe mode of operation is most

clearly illustrated in Figure 6.6. In this case, the tip is only measuring changes due to a

geometric capacitance. The topography image in Figure 6.6 (a) shows a double step on the
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layered material, Bi2Se3, where each step is one nanometer tall. While the tip is closest to

the sample, a mere 0.5 nm away, the step shows up in Kelvin probe scans. There is not even

a hint of a step just one and a half nanometers below the tip. Hence we see that Kelvin

probe imaging has limitations for surfaces that have height variation of more than a few

nanometers.

The distance to the sample is not the only relevant dimension in Kelvin probe measure-

ments. Unlike STM, where the atom protruding farther than the rest does the imaging,

the radius of curvature of the tip limits Kelvin probe resolution. In the topography image

in Figure 6.7, a trench crosses the Bi2Se3 sample that is 1nm deep and 4nm wide and is

denoted by an arrow. Other dark blotches in the image are likely due to defects. A few hours

later, a Kelvin probe image of the same location shows the electric field emanating from the

edges of the trench as a bright line. However, the trench’s field is 13nm across, three times

as large! This discrepancy is actually a good indication that the tip used was large compared

to the size of the trench and demonstrates that the tip’s radius matters more for capacitance

type measurements [115]. To be sure, Figure 6.7 does illustrate that Kelvin probe imaging

is useful to map out the patterns of electric field; such as the higher field emanating from

the edges of the trench.

6.4 Tips

For capacitance and Kelvin probe measurements, the shape of the tip determines the resolu-

tion of an experiment. A blunt tip will not be able to resolve fine features, so it is important

to have a tip whose radius of curvature is smaller than any feature of interest on a sample.

The ideal tip is one that is cylindrically symmetric with as small of a radius of curvature as
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(a) (b)

Figure 6.7: Bi2Se3 topography (a) and Kelvin probe (b), Here we see a scan showing a trench
indicated by an arrow. The trench is three times as wide in Kelvin probe as topography. Th
Kelvin probe scan had a 1 nm amplitude of oscillation on the tip at the nulling voltage and
was 1 nm above the sample. The scale bars are both 33 nm. The tip may have drifted over
the four hours between the topography scan and the Kelvin probe scan

possible. In my experiments, it was desirable to resolve electronic variations on the sample

of approximately 10nm, so I paid a great deal of attention to the tips. I examined a couple

hundred tips with the Scanning Electron Microscope (SEM not to be confused with the STM

I did in my thesis measurements) to determine their suitability for the capacitance or Kelvin

probe experiment. For previous discussion about tips see Chapter 2.3.4.

6.4.0.1 Etched

Prior members of the group had repeated success with etched tips. Etched tips are made

of Pt(.8)Ir(.2) wire that is electrochemically etched to a fine point and then rinsed with

detergent to get rid of residual chemicals. We purchased etched tips from Agilent. After

reviewing thirteen etched tips with a scanning electron microscope, I determined that it was

unlikely that I would find one that had a 20 nm radius of curvature. Most tip’s radius of
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(a) (b)

Figure 6.8: SEM image of an etched tip made by Agilent with a tip radius of curvature of
100 nm. Both (a) and (b) are the same tip with different scales.

curvature was well over 100 nm as seen in Figure 6.8. Many tips visually had white debris

even around the apex, however, surprisingly, they consistently produced stable tunneling

images.

6.4.0.2 Cut

Cut tips produced the most variation of all the types of tips I examined. While all were cut

from the same Pt(.8)Ir(.2) wire, some were extremely blunt and others had a large aspect

ratio. Many tips could be determined unsuitable by visual inspection. Over one hundred cut

tips were examined with SEM and about 40% had a radius of curvature of 25 nm or more.

An additional 20% were used for STM measurements, where resolution and tip shape are

less directly related. In STM, for example, a step edge will be better resolved with a sharp

tip, whereas a blunt tip might smear the edge out. Figure 6.9 shows tips with a 20 nm or

less radius of curvature.
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(a) (b)

Figure 6.9: Cut tips with a radius of curvature of 10 nm and 25 nm.

6.4.0.3 Ultrasharp

With tip size being extremely important for capacitance or Kelvin probe measurements, I

wanted a way to make tips with a radius of curvature 20 nm or less reliably. It needed to be

something that was inexpensive compared to tips already on the market. Furthermore, the

tips needed to be able to be fabricated with apparatus already existing within our laboratory

or for common use in the Keck Microfabrication facility (which excluded fabricating our own

nanotube tips). Because undergraduates were going to ultimately develop, optimize and

execute the ultrasharp tip fabrication, no multi-step technique requiring harsh chemicals

was appropriate.

Ultrasharp tips were therefore fabricated from ultrasharp silicon nitride AFM tips at-

tached to a PtIr wire with conducting epoxy, a technique developed by Mark Regalla and

perfected by both Andrew Belcher and Eric Goodwin. To make the tips conducting, a 2nm

layer of gold was evaporated onto the apex of the tip. Each tip was examined with SEM

to determine the radius of curvature and ensure that the apex of the repurposed AFM tip

was higher than the epoxy. We did not want to tunnel though epoxy because it would
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(a) (b)

Figure 6.10: (a) The micropositioner used to assemble the ultrasharp tips. It finely positions
a Pt(.8)Ir(.2) wire with respect to a AFM cantilever. (b) A view through the microscope
used to see tip placement on the epoxy. The triangular cantilever is touching the conducting
epoxy.

cause instabilities and have a larger radius of curvature than the AFM tip. Many tips ended

up not having cylindrical symmetry, which made placing them on the HEMT circuit more

challenging. Of the tips that were not engulfed by epoxy, many had a radius of curvature

of 20-25 nm and there were some that was just over 10nm. Ultimately, the ultrasharp tip

fabrication cost did not justify continuing to make them.
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(a) (b)

Figure 6.11: Ultrasharp tip with radius of curvature of 10 nm. (a) All components of the
tip are visible: the cantilever, conducting epoxy, and Pt(.8)Ir(.2) wire. This tip has nice
cylindrical symmetry. (b) The apex of the tip is the highest point.
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Chapter 7

Conclusions

7.1 Summary

Even with the Bi2Se3 topological simplicity, there are other effects that coexist in the surface

layers that may have an impact on future experiments. My measurements show bulk-like

wavefunctions overlap with the topologically protected Dirac cone on the surface. The in-

terplay between the shoulder states and the Dirac cone states presents potential competing

channels for scattering to take place. As the top quintuple layer separates from the crystal,

a two-dimensional electron gas can form on the surface and likewise overlap with the Dirac

cone. Menshcikova et al. showed that a 2DEG can push the topological state into the second

highest quintuple layer, which might reduce the amplitude of the Dirac cone that overlaps

with the surface, perhaps complicating applications [108].
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Figure 7.1: Schematic of the proposed experiment. An STM tip will probe vortices in an
superconducting antidot patterned on a topological insulator to search for Majorana modes
[51]. Figure from Dr. Stuart Tessmer.
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7.2 Future Directions

The first experiment planned by my successor, Matthias Muenks, will probe small supercon-

ductor islands on a large Bi2Se3 crystal to explore the superconducting/topological insulator

interface. When a superconductor is interfaced with a topological insulator many exotic ef-

fects are predicted, the most exciting of which is the Majorana fermion [9]. The Majorana

fermion in this context is a particle that is its own hole. Because inversion symmetry is bro-

ken at the surface of a topological insulator, putting a topological insulator in close proximity

to a superconductor induces unconventional p-wave order [9, 116].

The proximity effect occurs when a normal metal is interfaced with a superconductor

[117]. Cooper pairs leak into the normal metal leaving a reduction of Cooper pairs in the

superconductor. This effect should also be present when interfacing with topological insula-

tor, but at present nobody has successfully obtained local density of states measurements to

confirm it. Now that I have characterized the surface of Bi2Se3, the next focus in the group

will be to explore these effects. The plan for the first measurements is to evaporate a super-

conducting material like Nb, Pb or PbBi until it forms random superconducting islands on

the surface of the Bi2Se3 crystals to study the superconducting local proximity effect in this

hybrid system. Once these experiments are successful, future experiments are planned which

require the superconductor to be patterned on the topological insulator, like that in Figure

7.1. By probing the holes in these patterns, Matthias Muenks hopes to find the predicted

Majorana Fermion [9, 118, 119].
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