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ABSTRACT 
 

THE TREATMENT OF COMPOSITION IN SECONDARY AND EARLY COLLEGIATE 
MATHEMATICS CURRICULA 

 
By 

 
Aladar Karoly Horvath 

 
 
 

Composition has been described as essential for understanding functions (Carlson, Oehrtman, 

& Engelke, 2010; Cooney, Beckmann, & Lloyd, 2010). Studies of students’ understanding of 

function composition have shown that students use multiplication and other operations in place of 

composition (Carlson et al., 2010; Horvath, 2010).  

While there have been studies of students’ knowledge of composition, the teaching of and 

curricular development of composition has not received as much attention. This dissertation 

attempted to fill this void by examining the treatment of composition in secondary and early 

collegiate mathematics curricula. By examining the definitions, explanations, and uses of 

composition, I was able to describe the kinds of explicit and implicit opportunities that textbooks 

provide to students with respect to the concept of composition.  

This analysis of textbooks of high school algebra 1 and 2, geometry, and precalculus and 

collegiate precalculus and calculus textbooks utilized multiple frameworks. Mathematically, 

composition can be viewed as an operation on objects (e.g., functions or relations) or as a recursive 

sequence of processes where the output of the n
th

 process is the input of the n+1
th

 process. A 

framework of procedural, conceptual, and conventional knowledge was used to describe the ways 

that textbooks define, explain, and perform composition. The representation (e.g., algebraic, 

graphical, tabular) and type of function, relation, or transformation (e.g., polynomial, reflection) is 

also included in the coding scheme of this study.  



 

The results indicated that composition appeared throughout the secondary and early 

collegiate curriculum and utilized functions as both objects and processes. Composition content was 

predominately presented using the algebraic representation and the use of compositive structure in 

transcendental functions was largely implicit. This examination provided background information 

for existing studies of student knowledge of composition and provides a framework for future 

studies of the teaching and learning of composition. 
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CHAPTER 1: INTRODUCTION 

1.1 Statement of the Problem 

Since the release of the report A Nation at Risk (1983), there has been an increasing 

emphasis on preparing students for calculus. Research has reported that many students, even 

those that receive high grades in calculus, have difficulty learning calculus topics and are only 

successful on routine problems with which they are familiar (Selden, Selden, & Mason, 1994; 

Tall, 1993). Research on topics that are prerequisite to calculus (i.e., functions and composition) 

has indicated that students’ foundational knowledge of mathematics is weak, which contributes 

to the difficulty of learning calculus and advanced mathematics (Carlson, Oehtman, & Engelke, 

2010; Ferrini-Mundy & Graham, 1991; Monk, 1994; Oehrtman, Carlson, & Thompson, 2008; 

Vinner & Dreyfus, 1989). 

While the learning of the concept of function has been studied extensively, very few 

studies have focused on the learning of composition. Engelke, Oehrtman, and Carlson (2005) 

noted that “student understanding of function composition has not been a primary focus” of 

research studies (p. 1). The current literature on composition has documented that the learning of 

composition is complex. Research on the learning of topics built upon composition (i.e., chain 

rule) has reported that students’ difficulties are related to a weak foundation of composition 

(Clark et al., 1997; Horvath, 2008).  

The vast amount of research on the learning and teaching of functions without addressing 

composition would be like studying the learning and teaching of numbers without addressing 

arithmetic operations. It is composition that enables functions to be one of the fundamental 

concept of mathematics. Kawaski (2005) described composition as the characteristic operation of 

functions and through it nontrivial functions are created and studied. Freudenthal (1983) stated 
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that “the strength of the function concept is rooted in the new operations - composing and 

inverting functions - which create new possibilities” (p. 523). Understanding the compositive 

structure of functions is as essential to comprehending functions and advanced mathematics as 

understanding the additive and multiplicative structure of numbers is essential to comprehending 

numbers and arithmetic. 

Many calculus topics build on and use the operation of composition. For example, the 

chain rule, graph sketching, optimization, related rates, integration by u- or trig-substitution, and 

integration by parts all require students to identify different compositive parts of a function, 

equation, or expression. Given the importance of composition to the calculus curriculum, and the 

difficulties students have with calculus in general and composition in particular, this study 

analyzed the curriculum to identify the treatment and development of composition in the written 

curriculum from its introduction to its use in first year calculus. Studying the curriculum was 

chosen because curriculum influences learning and a curriculum study could provide context to 

the aspects of composition with which students have had difficulty and make recommendations 

for positive changes. 

1.2 Study Overview 

This study examined the explicit and implicit treatment of composition in secondary and 

early collegiate mathematics curricula. This analysis of textbooks of high school Algebra 1 and 

2, Geometry, and Precalculus and collegiate Precalculus and Calculus textbooks utilizes multiple 

frameworks. Mathematically, composition can be viewed as an operation on functions as objects 

or as a sequence of processes where the output of one process is the input of the next process. All 

mathematical concepts that can be composed, such as functions (including transformations) and 

relations, were included in this study. The treatment of the concept of compositon was 
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categorized by a framework of procedural, conceptual, and conventional knowledge. Conceptual 

knowledge includes the definitions and properties of composition and the connecting of 

composition to other concepts, procedural knowledge includes the doing or performance of 

composition, and conventional knowledge includes the language and notation of composition. 

This framework was used to describe the ways that textbooks define, explain, and perform 

composition. The representation (e.g., algebraic, graphical, tabular) and type of function, or 

relation was also included in the coding scheme of this study. These aspects were included to 

gain a more complete picture of the treatment of composition in written curricula.  

1.3 Scope and Significance 

This study contributes to the field of mathematics education by articulating the explicit 

and implicit curricular treatment of composition for the benefit of curriculum developers, 

secondary teachers, and collegiate instructors and by comparing the difference between the high 

school and college curricular treatment of composition. While this study does not provide 

information regarding what students actually learn about composition, it does identify the 

experiences that curricular materials offer to students. By examining the ways that composition 

is defined, explained, and used, I described the kinds of explicit and implicit opportunities that 

textbooks provide to students. 

This curriculum analysis was motivated by the results of students’ performance on 

composition tasks and contributes to the existing work on student knowledge of composition by 

studying a component (the written curriculum) that influences student knowledge. Current 

literature has reported on studies of the outcomes of student learning, while this study will 

address one of the inputs (i.e., curriculum) that support student learning. This study will provide 

context for the results of these past studies and direction for future studies of the teaching and 
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learning of the composition concept. Additionally, the framework proposed for this study and its 

future refinement will be a useful tool for future studies of composition. 

The following chapters further discuss the details of this study.  In chapter 2, the 

theoretical and analytical frameworks are discussed. The concept of composition is 

conceptualized and relevant function and composition literature is reviewed. In chapter 3, the 

specific methods of the study are presented, including the rationale for selecting textbooks and 

identifying the curricular material as composition content. Chapters 4, 5, and 6 present the 

findings of this study. In chapter 4, I discuss the formal definitions of composition and the 

meanings other terms that relate to the composition content. In chapter 5, I discuss the 

compositive structure of functions. In chapter 6, I discuss the representations, types of functions, 

and implicit language used in the composition content. In chapter 7, I discuss these findings and 

their implications. 
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CHAPTER 2: THEORETICAL FRAMEWORK AND REVIEW OF THE LITERATURE 

This chapter reviews relevant literature on curriculum, the teaching and learning of 

functions, and the teaching and learning of the composition of functions. I also explain the 

theoretical framework of how composition is defined. Lastly, I discuss the analytical framework 

used to study the treatment of composition in textbooks. 

2.1 Studies of Written Curriculum 

The prevalence of books in schools has provided motivation for studying textbook 

materials. Most classrooms have students, teacher(s), and textbook(s). Researchers of curriculum 

have analyzed the mathematical content of textbooks to study the relation of the written 

curriculum to students and teachers, to make comparisons between mathematics curricula of 

different countries (Schmidt, McKnight, Valverde, Houang, & Wiley, 1997), and to compare 

NSF-funded mathematics curricula to curricula developed by private publishers (Huntley, 

Rasmussen, Villarubi, Sangong, Fey, 2000).  

Many have studied curriculum in relation to students and teachers. Curriculum has been 

used to explain differences in students’ performance on tests (Fuson, Stigler, & Bartsch, 1988; 

Li, 2000). Others have viewed textbooks as a source for teacher learning (Males, 2012; Newton 

& Newton, 2006; Remillard, 2005). The relationship between the written curriculum and enacted 

curriculum has also been a focus of curricular research (Newton, 2008). 

In order to examine the written curriculum, researchers have focused on the 

characteristics and mathematical content of textbooks. Charalambous, Delaney, Hsu, and Mesa 

(2010) classified studies of textbook characteristics as horizontal analyses while studies of the 

mathematical content of textbooks were classified as vertical analyses. They noted that 

horizontal analyses “provided preliminary insights into the treatment of the content in 
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textbooks…, they [did not describe] how concepts were treated within each textbook to structure 

learning opportunities for students” (p. 120). On the other hand, vertical analyses “overlooked 

how the treatment of the topic being examined relates to other topics contained in the textbook” 

(Charalambous et al., 2010, p. 120). A study of curriculum that incorporates both the vertical and 

horizontal analyses provides both a detailed perspective within a topic and the relation of that 

topic to other content across the curriculum. Since the combination of both of these analyses 

affords the most complete picture, this study utilizes this type of framework. 

Studies of the mathematics content of curriculum materials have also varied in their 

sampling within textbooks. Some studies have sampled content within specific lessons. For 

example, Mesa (2010) sampled all examples within lessons on initial value problems. Other 

studies have sampled specific content throughout the entire book. Lithner (2004) sampled all 

examples and exercises throughout a calculus text. Individually, studies of curricular content 

within specific lessons and studies of curricular content across topics have provided valuable 

insights into the content of textbooks. Another study that incorporates sampling aspects both 

within lessons and throughout entire books (as employed in this study) could provide a more 

complete picture. Of the written curriculum  

In summary, the written curriculum influences student learning directly or indirectly 

through the teacher. Prior research of written curriculum has used horizontal and vertical 

analyses as a framework to study to the content and structure of textbooks. Sampling within 

lessons on a specific topic (e.g., initial value problems) or across topics but within a specific 

feature (e.g., exercises) provides different perspectives of the organization of content within 

curriculum. The more of these aspects that a study includes, the more comprehensive picture the 

data will provide. 
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2.2 What is Composition? 

The operation of composition was defined in Royden’s (1988) graduate Real Analysis 

text by the following statement. “If f : X  Y and g: Y Z, we define a new function h: X  Z 

by setting h(x) = g(f(x)). The function h is called the composition of g with f and denoted by g ◦ f 

” (p. 10). While this definition refers to the composition of functions, composition is also valid 

for other mathematical concepts such as relations. For example, the composition of a translation 

and a reflection is a glide reflection.  

Many high school and undergraduate textbooks have also explicitly defined composition 

as (g ◦ f )(x) = g( f (x)). The equal sign between (g ◦ f )(x) and g( f (x)) in these definitions 

signifies that (g ◦ f )(x) and g( f (x)) are mathematically equivalent. (g ◦ f )(x) can be viewed as the 

composite function which has a domain, range and the rule g( f (x)). The circle (◦) notation 

between two functions which is similar to other binary operations such as addition (+), 

subtraction (-), multiplication (× or ·), and division (÷). The circle operation composes two 

functions, f and g, and results in a new function, g ◦ f. In this case, functions are the objects being 

acted upon. On the other hand, the composition rule, g( f (x)), denotes a sequence of functions 

where f corresponds x to f (x) and g corresponds f (x) to g(f (x)). Thus, the output of f,  f (x), is the 

input of g and it is the domain elements x and f (x) that are being acted upon. Based on this 

mathematical difference, I will refer to g( f (x)) as a sequence view of composition and (g ◦ f )(x) 

as an operation view of composition.  

The major difference between the sequence and operation view of composition is the way 

that functions are considered. In the sequence view of composition, functions are processes. A 

process view of function is “when the total action can take place entirely in the mind of the 

subject, or just imagined as taking place, without necessarily running through all of the specific 
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steps” (Breidenbach, Dubinsky, Hawks, & Nichols, 1992, p. 249). For example, an individual 

with a process view of function could identify that y = x
2
 results in a real number and that the 

number is a non-negative number without performing any calculation. Additionally, the function 

f (x) = x
2
 can be viewed as the process of corresponding any number to its square. Considering 

functions as a correspondence is a process view of function. 

In contrast, functions are objects in the operation view of composition and pairs of 

functions are acted upon by the composition operator.  An object view of function exists when a 

function is treated as its own entity and not as a process of correspondence (e.g., as a noun 

instead of a verb). Others who have written about replacing processes with objects include Asiala 

et al. (1996) using the term encapsulation, Sfard (2008) using the term reification, and Martin 

(1991) using the term nominalization. The common feature among these theories is that 

processes are treated as entities which become the objects of other actions and procedures. An 

example of an object view of function is the composition of the function g(x) = 2x + 4 with  

f (x) = x
2
, where f (x) replaces the x’s in the g(x) function. This results in g( f (x)) = 2( f (x)) + 4 

or g( f (x)) = 2(x2) + 4. In this situation, f (x) is treated as an object itself and not as a 

correspondence between its domain and range. Functions are objects in the operation view of 

composition and functions are processes in the sequence view of composition. Using functions as 

objects and processes will be further discussed in the sequence view of composition and 

operation view of composition sections, respectively.  

While the operation view and sequence view of composition are described using the 

terms object and process, they describe functions and not composition. This is different than 

much of the literature where the terms action, process, object, and schema are used to describe 
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the main mathematical concept in a study. Composition as an action, process, object, or schema 

could all exist within either the operation view or the sequence view. The operation and sequence 

views describe two ways that composition can operate on functions when functions are being 

used in two different ways. 

Figures 2.1 and 2.2 illustrate the difference between these two views of composition. 

Figure 2.1 showing the sequence view demonstrates that the focus is on points in the sets.  

 

Figure 2.1: Sequence view of composition 

On the other hand, the operation view shown in Figure 2.2 focuses on the functions f and g.  

 

Figure 2.2: Operation view of composition 

To clarify the discussion that follows, the terms associated with composition must be 

discussed. Unlike arithmetic operations, composition does not have specialized names to refer to 

the objects being composed. Addition has summands, multiplication has factors, subtraction has 

minuend and subtrahend, and division has dividend and divisor. Even though the components of 

a composition do not have specialized terms, there are colloquial ways to refer to them. The most 
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common are the first and second functions or the inside and outside functions. In the rest of this 

paper, I refer to the g in (g ◦ f) as the second or outside function and the f as the first or inside 

function. By definition, g ◦ f  is read as “g composed with f ” or the second or outside function is 

composed with the first or inside function. 

The rest of this section will further discuss the sequence and operation views of 

composition and review relevant literature to each. The first section discusses the sequence view 

of composition and reviews research on student and teacher knowledge of functions and the 

composition of functions and the influence of representations. The second section discusses the 

operation view of composition and reviews the literature on student and teacher knowledge of 

composition related to the operation view.  

2.2.1 Composition as a sequence. As stated above, the sequence view of composition 

describes composition as a sequence of recursive relations (including functions) where the output 

of the n
th

 term is the input of the (n+1)
th

 term (or relation). In this view of composition, 

functions are characterized as processes. Harel and Kaput (1991) referred to this process of 

“acting on individual elements of [the] domain” and called it a point-wise operation (p. 84).  

For decades, educational researchers have extensively studied student knowledge of 

function and have reported that learners of mathematics systematically solve problems or answer 

questions involving function in standard and nonstandard ways (Carlson, 1998; Even, 1990, 

1998; Ferrini-Mundy & Graham, 1991; Leinhardt, Zaslavsky, & Stein, 1990; Monk, 1994; 

Oehrtman et al., 2008; Vinner & Dreyfus, 1989). A review of the function literature is included 

as a basis for discussing a recursive sequence of functions. This review defines key terms in the 

literature and discusses some of the research findings, including the role of representations 

(algebraic, graphical, tabular) on student knowledge.  
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2.2.1.1 Function. Much of the research on the learning of function has used the formal 

Dirichlet-Bourbaki function definition. This definition defines a function as “a correspondence 

between two nonempty sets that assigns to every element in the first set (the domain) exactly one 

element in the second set (the codomain)” (Vinner and Dreyfus, 1989, p. 357). Using this 

definition, researchers determined whether students’ responses to tasks corresponded with this 

definition. If an individual used the definition (or anything consistent with the definition) in his 

or her response, it was assumed that the individual had “successfully learned” this concept. 

However, if the response contained any deviations from the definition, the individual or group 

may have been described as having a misconception or a limited understanding of function. 

These terms include situations where a student may have provided the correct answer, but did not 

demonstrate knowledge regarding why the answer was reasonable with respect to the definition. 

Leinhardt, Zaslavsky, and Stein (1990) defined misconceptions “as incorrect features of 

student knowledge that are repeatable and explicit” (p. 30).  The term “limited understanding” 

has been used in the literature to describe an individual or group who has not demonstrated 

“complete understanding”. Limited understanding has also been used to describe students that 

perform procedures but who do not “possess an understanding of why [a] procedure works” 

(Oehrtman et al., 2008). For example, a student might use the vertical line test to determine if a 

graph is a function, but is unable to explain why it makes sense to use the vertical line test.  

A major portion of the research literature on student knowledge of functions involved the 

classification of relations as functions or non-functions (Leinhart et al., 1990). These studies 

have indicated that students do not base their decisions solely on the Dirichlet-Bourbaki 

definition even though these same students accept this definition (Leinhart et al., 1990; Meel, 

1999; Vinner & Dreyfus, 1989). The majority of these studies were designed to first ascertain 
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students’ definitions of function and then compare their definitions to their responses on tasks 

that had them classify relations as functions or non-functions. Researchers used open ended 

questions (i.e., What is a function?) and multiple-choice tasks to determine students’ definitions. 

Students’ responses for defining function have been categorized as a (a) correspondence, (b) 

dependence relation, (c) rule (with regularity), (d) operation/computational process, (e) formula, 

(f) representation, (g) set of ordered pairs, and (h) one-to-one (Carlson, 1998; Hitt, 1998; Meel, 

1999; Vinner & Dreyfus, 1989). Table 1 includes examples of students’ responses for some of 

these categories. 

Table 2.1 
Examples of the categorization of students’ responses for defining function. 

Category Student Response 
correspondence “A function is a correspondence between two sets that assigns 

to every element in the first set exactly one element in the 
second set” (Meel, 1999, p. 3) 

  

dependence relation "One factor depending on the other one" (Vinner & Dreyfus, 
1989, p. 360). 

  

rule (with regularity) "The result of a certain rule applied to a varying number" 
(Vinner & Dreyfus, 1989, p. 360). 

  

operation/computational 
process 

“Every function can be expressed by a certain computational 
formula” (Meel, 1999, p. 5). 

  

Formula “A function is a formula, algebraic expression, or equation 
which expresses a certain relation between factors” (Meel, 
1999). 

  

Representation “y = f (x)” or “A graph that can be described mathematically” 
(Vinner & Dreyfus, 1989, p. 360). 

 

Students’ definitions were compared to their responses on tasks that had them classify 

relations as functions or non-functions. Even though the majority of the tasks presented in the 

literature were expressed verbally and graphically, each of these studies noted that algebraic 

formulas played a role in a students’ decision between function and non-function. Meel (1999) 

reported that over 20% defined a function as a formula and Vinner & Dreyfus (1989) reported 
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similarly for about 10%. Additionally Hitt (1998) pointed out that one-third of his subjects 

abandoned the vertical line test when there existed “an algebraic expression with the curve 

(ellipse, circle, etc.)” (p. 133). Hitt claimed further that this may be due to a curriculum heavy 

with algebraic symbolism and noted that “teachers have a marked tendency to construct 

continuous functions defined by a single algebraic expression” (p. 128). 

When students were asked to classify functions that deviate from “nice” types of 

functions (i.e., functions with discontinuities, split domains, and exceptional points), they 

classified them as non-functions more frequently than “nice” functions (Even, 1993). Even 

(1990) conjectured that the arbitrary nature of functions like these was rejected because students 

“expected functions to always be representable by formulas, graphs of functions to be ‘nice’ and  

‘reasonable’, or functions to somehow be ‘known’ ” (p. 529). Even related students’ expectations 

regarding the niceness and reasonableness of functions to the prevalence of “nice” functions in 

the high school curriculum.  

The constant function is another type of function that students frequently classified as a 

non-function. Vinner and Dreyfus (1989) documented that approximately 55% of their 

participants incorrectly classified the constant function as a non-function. Carlson (1998) found 

that 57% of her college algebra participants performed likewise. Both the Vinner and Dreyfus 

and Carlson studies presented this task verbally. Carlson reasoned that these students may “not 

be able to translate verbal function language to algebraic function notation” (p. 122). Later in her 

report, Carlson provided evidence to support this claim with interview data where college 

algebra participants were unable to explain what the statement “express s as a function of t” 

would look like algebraically. If students’ inability to translate verbal function language into 
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algorithmic function notation was a key factor in their classifying functions and non-functions, 

would students have been more successful if the constant function was represented algebraically? 

In summary, each of these studies noted that algebraic formulas affected students’ 

classifications of functions. However, the way(s) in which algebraic formulas affected students’ 

responses is not clear because so few of the tasks were algebraic tasks.  Additionally, the role of 

the mathematics curriculum is not empirically described in these studies.  Even though the 

curriculum was proposed as a plausible explanation for students’ responses, it must be noted that 

these claims were found in studies involving students and not analyses of the curriculum 

(intended or enacted). By studying student knowledge, these studies focused on a presumed 

outcome of the curriculum. Since curriculum is among the sources for learning, 

epistemologically, it was appropriate to assume that features of the curriculum played a role in 

these outcomes. However, none of these studies closely examined curriculum materials that 

directly related to and/or supported the claims made about the curriculum.  

2.2.1.2 Composition. Unlike function, composition has not been the focus of many 

research studies. Engelke et al. (2005) noted that “while many authors have noted that 

composition…problems are challenging for students and these problems are likely tied to a weak 

function conception, student understanding of function composition has not been a primary 

focus” (p. 1). This section reviews the literature (the majority of which is conference proceedings 

or unpublished dissertations) on composition directly related to the sequence view of 

composition. This literature can be grouped in two categories: student and teacher knowledge on 

input/output or domain/range and student success rates in different representations.  

Research has shown that students have viewed composition as a recursive input and 

output sequence of functions and that teachers have identified domain and range as prerequisite 
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knowledge to learning composition. For example, a calculus student in Vidakovic’s (1996) study 

evaluated the composition of 









0 if         2

1 if  1
)(

x

xx
xg   with f (x) = x – 2 at the point x = 2 by first 

determining f (2) to be 0 and then evaluating g at 0 to obtain the result of 2.
1
 Similarly, Carlson 

(1998) asked students to compute f (x + a) given f (x) = 3x2 + 2x – 4.  Students discussed this 

composition by “describing x + a as the input of the function, or…that they were evaluating the 

function f at [the new value of] x + a, and that the solution after the evaluation was the output to 

the function” (p. 129). Or in other words, the output of x + a was the input of f (x).  

The sequence view of composition appears in the concept of inverse function when an 

inverse is conceptualized as undoing what the function has done or as reversing a process (Even, 

1992; Tall & Razali, 1993). An inverse function is a function f 
-1

 such that the composition of f -1 

and f results in the identity function. Pointwise, this means that the value of the input of the 

second function is equal to the output of the first function at the end of the composition process. 

Even (1992) provided students with formulas for f and f 
-1

 and asked them to evaluate  

(f  -1 ◦ f )(512.5). Half of the students that answered this question performed calculations to 

evaluate f (512.5) and then evaluated f  -1 at the value of f (512.5). Another 20% made statements 

related to the properties of inverse functions, but still performed the calculation of f  -1(f (512.5)). 

This demonstrates how students can use the sequence view of composition when applying the 

                                                 
 
1
 I have adjusted the notation of all problems from cited literature so that all of the composite 

functions are denoted as g ◦ f. The mathematics has not been changed, only the naming and 
notation of functions. 
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notion of composition to other concepts instead of using the properties of those other concepts, in 

this case inverse functions. 

As with all concepts, students do not always perform composition correctly and may or 

may not be consistent in their incorrect methods and procedures. A common occurrence is for 

students to interpret composition as multiplication while using formulas, graphs, and tables 

(Engelke et al., 2005; Meel, 1999).  Engelke et al. (2005) provided the following excerpt from a 

precalculus student attempting to determine f (g(3)) with f and g given by a table. 

I was trying to look for a formula to see what f (x) was but it's not working so I'm 

doing it wrong. That's not the right way to go about it… g(3) is 0. f of g of 3. Now 

I’m tempted to say it’s f of g times g(3), but I know that’s totally wrong, but if I 

did do that, -2 times 0 would be 0. And I know that g(3) would be 0, so no matter 

what, my answer is 0, even if I do it wrong. I don’t know what, yeah, I’m just 

gonna say 0 because… (p. 3) 

At first, this student attempted to determine a formula from the table values. When unsuccessful 

in finding a formula, he or she reinterpreted the composition statement of f (g(3)) as the 

multiplication statement of f (3) · g(3).  

Students have different success rates on composition problems in different 

representations.  When asked to evaluate g(f (2)), Carlson et al. (2010) reported that 94% of 

students were successful given two algebraic functions, 50% with graphical functions and 47% 

with tabular functions. Hassani (1998) reported students’ success rates as 84%, 10%, and less 

than 50% for algebraic, graphical, and tabular, respectively. When the task was rephrased to 

evaluate (g ◦ f )(2) the success rates of students in Hassani’s study changed to 35%, 25% and 

33%, respectively. In an interview with a student in a developmental algebra course, DeMarois 
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& Tall (1996) reported that the student was able to complete a composition task using the table 

with considerable guidance from the interviewer. The student was then unable to even begin a 

graphical composition task. The student was then given an algebraic composition task, at which 

he was successful with minimal guidance. 

Based on this research, algebraic composition tasks appear to be easier for students than 

other representations. One explanation, such as the one mentioned in the function section, has 

claimed that this is due to a curriculum that is heavily algebraic and that students have had more 

exposure and experience with dealing with the algebraic representation. An alternative 

explanation may be that the algebraic representation provides opportunities in composition tasks 

that are not available in other representations. An example of one such opportunity is the ability 

to describe the global behavior of a composite function without performing a pointwise operation 

or sequence of functions. For instance, a table provides only pointwise information about a 

function which means that determining a composition of two tabular functions requires the 

sequencing of functions. Graphing the composition of two graphical functions requires the 

similar actions. The resulting composite graph, of course, does provide information about the 

global behavior of the composite function, but the process of composition itself requires a 

sequencing of functions. The composition of two algebraic functions, however, can be performed 

pointwise across the domain or by “plugging in” the entire formula of the first (or inside) 

function into the appropriate variable of the second (or outside) function. Because of this 

capability within the algebraic representations, (g ◦ f )(2) can be determined either by evaluating 

g (f (2)) or by first determining the formula for (g ◦ f )(x), calling this composite h(x), and then 

evaluating h(2). This second method is the operation view of composition that will be described 

in the next section. 



18 
 

In summary, the sequence view of composition is a pointwise operation where the first (or 

inside) function is evaluated at a point and the second (or outside) function is then evaluated at 

the output value of the first (or inside) function. This section has noted that the concepts of 

function, domain, and range are directly related to this view and representation is related to 

students’ success rates on composition tasks.  

2.2.2 Composition as an operation. The operation view of composition entails 

composition as a binary operation on two sets of mathematical entities (e.g., relation, function). 

These entities are treated as objects and not as processes of correspondence. The result of this 

operation is also an object of the same type. The main feature of this method is that g is 

composed with f without considering any input/output values while performing composition. For 

example, given
21

)(
x

x
xg


 , for –1≤ x ≤ 1 and f (x) = sin x for all real x, the operation view of 

composition would evaluate g( f (x)) at x = 
4


 by first determining (mostly like via substitution) 

that g( f (x)) = tan x and then evaluating 







4
tan


 to equal 1 (Ayers et al., 1988).

2
 Only after 

composition has resulted in a new function is the function evaluated. A glide reflection is a 

geometric example. A glide reflection is the resulting transformation of the composition of a 

translation and a reflection. The focus is on the combination of transformations and not what 

physically happens to a figure. Another example is the composition of two graphs where either 

the inside or outside function is the graph of the identity function. The composition will yield a 

graph that is the same as the other graph in the composition. With respect to inverse function, the 

composition of f and f 
-1

 results in the identity function. One final example could be the 
                                                 
 
2
 The incorrect domain of g is in the original Ayers et al. article. 
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composition of two parallel reflection transformations on a geometric shape.  The result is a 

translation transformation with magnitude double the distance between the two lines of 

reflection.  In all of these examples, the result of composition is an object that is understood or 

described without considering individual points or values.  

Students implement the operation view of composition by plugging in or substituting the 

inside (or first) function for a variable in the outside (or second) function (Ayers, et al., 1988; 

Carlson, 1998; Horvath, 2010; Uygur & Ozdas, 2007) or by (mis)interpreting composition as a 

multiplication operation (Horvath, 2010; Meel, 1999). Using the example from Ayers et al. 

(1988) above, the formula F(G(x)) = tan x would be determined by first substituting sin x into all 

the x’s of 
21

)(
x

x
xF


  resulting in 

 2sin1

sin
)(

x

x
xF


 . Students have determined the 

composite function prior to evaluating it at a point or its derivative (Horvath, 2010; Uygur & 

Ozdas, 2007). Carlson (1998) also showed students’ tendencies for such substitution when 

students interpreted f (x + a) as f (x) + a and explained that they were plugging the expression for 

f (x) in for x in f (x + a). While this is the incorrect substitution, it does demonstrate students’ 

knowledge of function composition as a substitution operation. 

As in the sequence view of composition, students have interpreted composition as 

multiplication (Horvath, 2010; Meel, 1999). In the operation view of composition, this can be 

represented symbolically as (f ◦ g)(x) = f (x) · g(x). The difference between the sequence view 

and the operation view is that students not only multiply numbers, but are also multiplying 

objects such as functions in the latter. Interpreting composition as multiplication may at first 

appear to be superficial, but after identifying commonalities between the notation and language 

used for these operations one may wonder why more students do not have this problem.  The 

most basic example is the open circle ‘◦’ for composition and the closed circle, or dot, ‘·’ for 
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multiplication. The word ‘of’ is another example. ‘f of g’ means ‘f composed with g’ and ‘
2

1
 of 

4

1
’ means multiply 

2

1
 and 

4

1
. The parentheses are a commonality with the notation f (g(x)) 

representing composition and 5(3x) representing multiply 5 times the quantity 3x. Even the word 

composite is used with respect to both multiplication and composition. For instance, a composite 

number is an integer with more than two factors (i.e., multiplication) while a composite function 

is a function of a function (i.e., composition). 

In Horvath’s (2010) study, not all students who interpreted composition as multiplication 

were consistent with their interpretation when evaluating the derivative of a composite function. 

For example, some students who interpreted (f ◦ g)(x) as f (x) · g(x) did not use the appropriate 

product rule to find the derivative despite being able to use the product rule on other tasks. 

Instead they multiplied the derivatives, f ʹ(x) and gʹ(x), together or performed chain times-ing 

which is represented as f ʹ(x) · g(x) · gʹ(x). These inconsistencies may indicate that these students 

did not know their techniques of derivation. Another explanation may be that students who use 

multiplication in place of composition know that the operation of composition is different from 

multiplication, but are uncertain as to the differences. When working on a composition task, they 

are left to rely on contextual clues found in the notation to decide what to do which leads them to 

treat composition as a strange form of multiplication. 

Students have also interpreted composition as addition (Horvath, 2010). A search of the 

Common Core State Standards for Mathematics (CCSSM) (2010) on the words compose, 

decompose, composite, composition, and decomposition has provided some insight to such an 

interpretation. The search yielded 31 statements.  Twenty-three of these indicated an additive 

structure (e.g., the number 11 is composed of a ten and a one, determine the area of a shape by 
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decomposing into triangles), 3 indicated a multiplicative structure (e.g., a number being 

composite or prime), and 2 indicated a compositive structure (e.g., verify an inverse function by 

composition). The idea of interpreting composition as addition is more noteworthy when 

considering that approximately 74% of the CCSS-M statements with the root “compos” indicated 

an additive structure of mathematics. 

The purpose of the discussion on language and notation is not to advocate the creation of 

new words or notations; rather to draw attention to issues that may be correlated to the difficulty 

of learning composition. The fact that students solve composition tasks using other operations 

that use the same language or notation as composition suggests that teachers and learners of 

mathematics need to be aware of these similarities and how these similarities have different 

meaning in each context. Not only are these similarities a potential obstacle, they are a potential 

strength as well. One example of a potential strength is illustrated in the following transcript. In 

it the calculus student was defining the inverse function of f. 

Student: Aaaa...any function such that, any function g of x such that f of g is equal 

to x. 

Interviewer: What do you think would be g of f in that case? 

… 

Student: Yeah, it's x. 

Interviewer: Why? Do you think that would work for any two functions f and g? 

Student: Yes, it should because the inverses multiplied together in any order 

should be equal [to] one and like any normal numeric, algebraic...so yeah, 

any two functions that are inverses of each other, f of g of x and g of f of x 

is equal to x. (Vidakovic, 1996, p. 307). 
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In this episode, the student used information about multiplicative inverses to make claims 

about compositive inverses (or inverse functions). Analogies like these are essential for 

the learning of mathematics. The use of similar words and notations supports the creation 

of such connections across mathematical concepts. 

In summary, the operation view of composition treats both the inside and outside 

functions as objects and the result of the composition is also an object. Students have interpreted 

composition as a substitution or “plugging in” operation, addition, multiplication, and as an 

unorthodox quasi-multiplication operation that has some similarities to multiplication. All of 

these operations use the word “compose” and the parenthetic notation but the meanings are 

different for each operation.  

This section has discussed composition as a sequence of processes and as an operation on 

objects. It is not the case that one view is more important or useful than another; rather “there are 

times we have to deal with functions pointwise…and there are times when we deal with 

functions as entities or objects” (Even, 1990, p. 533-4). There are also times when we have to 

consider both. For example, given g(x) = 4 x  and f (x) = x
2
 on the set of real numbers, the 

operation view of composition would result in (g ◦ f )(x) =
4 2x . It is common for students to 

then simplify this type of composite function with the exponent rule (a
b
)
c
 = a

bc
, resulting in  

(g ◦ f )(x) = x  without considering the differences in the domains (Lucas, 2006). All real 

numbers are the domain of 
4 2x , while only non-negative real numbers are the domain of x .  

Thus, after performing an operation on objects, one must consider which values are valid inputs 

on the result. Only by viewing functions pointwise and as object can the correct simplification of           

(g ◦ f )(x) = x  be attained.  
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Other main points in this section were that composition was interpreted as other 

operations that use vocabulary and notation similar to composition and that representation 

influences students’ understanding of both views of composition. It was noted that tables and 

graphs are more suitable to the sequence view than the operation view while algebraic formulas 

permit both. These issues raise the questions: How do curricular materials treat composition? 

How is it addressed explicitly and implicitly? The next section will describe the general 

theoretical perspective that may be used to study these and other issues. The specific details will 

be discussed later in the data analysis coding schemes in the methods section. 

2.3. Analytical Framework 

For almost a century educational researchers have discussed and debated two kinds of 

knowledge which have been commonly referred to as procedural and conceptual (Baroody, Feil, 

& Johnson, 2007; Hiebert, 1986; Star, 2005). Other labels for these two types of knowledge have 

included skill and understanding (Thorndike, 1922); efficiency and understanding (Brownell, 

1938); instrumental and relational understanding (Skemp, 1976); and procedural fluency and 

conceptual understanding (Kilpatrick, Swafford, & Findell, 2001). While there appears to be 

agreement to distinguish between these two types of knowledge, defining each in a general sense 

has been difficult (Hiebert & Lefevre, 1986), due in part to the interwoven nature of procedural 

and conceptual knowledge. Furthermore, the theory regarding procedural and conceptual 

knowledge and the ways that educational researchers have operationalized these terms have not 

been aligned (Baroody et al. 2007; Star, 2007).  

In a seminal work regarding procedural and conceptual knowledge Hiebert and Lefevre 

(1986) made a significant effort to define both terms. Procedural knowledge was characterized as 

consisting of two components: “One part is composed of the formal language, or symbol 
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representation system, of mathematics [and] the other part consists of the algorithms, or rules, for 

completing mathematical tasks” (p. 6). Formal language includes knowledge of the form or style 

in communicating mathematics and “a key feature of procedures is that they are executed in a 

predetermined linear sequence” (p. 6). These procedures include symbol manipulation, problem 

solving strategies and anything involving sequential relations or actions (Baroody et al., 2007; 

Schneider & Stern, 2005).  

Conceptual knowledge was characterized by Hiebert and Lefevre (1986)  

“as knowledge that is rich in relationships.  It can be thought of as a connected 

web of knowledge, a network in which the linking relationships are as prominent 

as the discrete pieces of information. … In fact, a unit of conceptual knowledge 

cannot be an isolated piece of information; by definition it is a part of a 

conceptual knowledge only if the holder recognized its relationship to other 

pieces of information.” (p. 3-4) 

To put this web or network characterization in terms of discrete graph theory, conceptual 

knowledge is a graph where both the vertices and the edges are essential and of equal 

importance. Despite their equal importance, however, an isolated vertex (a vertex that is not an 

endpoint of an edge) is not considered part of the graph.  

The graph theory metaphor causes one to ask: What are edges and vertices? It would 

seem natural to associate vertices with concepts and edges with connections. However, edges 

and vertices are not mutually disjoint sets. It is possible for an item to be a vertex in some 

situations and an edge in others. For example, the algebraic equation y = mx + b can be a 

conceptual edge that connects the concepts of y-intercept and slope. This same equation can also 

be a conceptual vertex where the y-intercept concept is the edge connecting the b in the equation 
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to a line intersecting the y-axis on a graph or the y-value on a table that is associated with x = 0. 

Defining vertices and edges becomes more difficult with the fact that finding the y-intercept can 

be classified as a procedure and would fall under procedural knowledge. While this emphasizes 

how interwoven procedural and conceptual knowledge is, it makes defining conceptual 

knowledge (i.e., vertices and edges) in a general case to be a difficult endeavor.  

Conceptual edges can be interpreted as being superficial or deep. Hiebert and Lefevre 

(1986) called this the primary and reflective levels. At the primary level “the relationship 

connecting the information is constructed at the same level of abstractness…than that at which 

the information itself is represented” (p. 4). An example from differentiation is recognizing that 

the derivatives of sin(x
2
) and tan(2x

3
) must involve the derivative of the argument. A 

relationship between two functions is formed, but nothing further. Even the more general notion 

that all trigonometric functions have this property in common is at a level of equal abstractness. 

In contrast, at the reflective level “similar core features in pieces of information that are 

superficially different” are recognized (p. 5). Continuing with an example from differential 

calculus, a recognition that  dttf
dx

d
)(  involves the same principle (i.e., chain rule) as sin(x

2
) 

would be a connection between two superficially different objects.  

The exclusion of isolated vertices from conceptual knowledge further complicates 

matters of defining such knowledge. For example, the formal definition of a function may be 

known by a student, but if it is not connected to something else (e.g., the vertical line test) it is 

not conceptual knowledge, according to Hiebert and Lefevre, nor is it a sequential relation (or 

step-by-step procedure). It might be argued that this can be classified as a procedure with the 

step: “When asked for the definition respond with the formal definition statement.” However, 

x
2
 

2 
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this sort of classification is problematic in two ways. First, it is forcing situations to fit into 

existing theory instead of creating or modifying theory to fit with existing situations. Second, this 

makes the procedural knowledge category a “dumping ground” for anything that researchers 

decide doesn’t “fit” in the ambiguous notion of conceptual. This dumping into procedural 

knowledge causes procedural knowledge to be regarded as “anything that is not conceptual” and 

not recognized in its own right.  

Characterizing conceptual and procedural knowledge as interwoven, complementary 

components permits an item, such as an isolated definition, to not fall under either knowledge 

category. This means that either (a) there are other kinds of knowledge outside of conceptual and 

procedural, (b) items such as this example are not considered to be knowledge, or (c) the 

definitions of conceptual and procedural need to be adjusted to include such situations. Despite 

the ambiguity of the terms procedural knowledge and conceptual knowledge, there is consensus 

that procedural knowledge alone does not imply conceptual knowledge and conceptual 

knowledge alone does not imply procedural knowledge; rather the two are interwoven (Hiebert 

& Lefevre, 1986; Kilpatrick et al., 2001).  

The characterization of conceptual knowledge above relies on a person or student 

explicitly identifying connections (edges) between bits of information (vertices). A curricular 

analysis based on such a characterization would identify statements of explicit connections as 

conceptual knowledge elements, step-by-step procedures as procedural knowledge elements, and 

leave everything else either uncategorized or as implicit connections which would be dependent 

on a researcher’s explicit connections (or conceptual knowledge) resulting in different outcomes 

for different researchers. In order to be rigorous and reliable, this study allows isolated bits of 
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information in its definition of conceptual knowledge and includes explicit connections, 

definitions, and properties.  For composition this includes the following elements: 

1. Meaning/Definition of composition:  

a. Operation view of composition: The result of a composition of the same class as 

the inside and outside object (e.g., transformation, function, relation)  

b. Sequence view of composition: The output of one relation is the input of the next 

relation (but not the actual computation) 

2. Properties of composition such as associativity and (non)commutativity 

3. Domain and range of ( f ◦ g ) 

4. Non-uniqueness of decomposition  

These items need not be explicitly connected to other items to be classified as conceptual 

knowledge. In this study, they may exist in isolation. 

Procedural knowledge has also been slightly adjusted for this study. Procedures and 

algorithms (such as substitution) and their demonstrated use will be called procedural 

knowledge, while the vocabulary, formal language, and mathematical symbols will be called 

conventional knowledge. The separation of these two aspects of the classic definition of 

procedural knowledge was made due to reports in the literature that students interpret the 

operation of composition as multiplication and that composition and multiplication share similar 

vocabulary and notation. Having two categories will help identify what opportunities students 

are given by curricula to learn the similarities and differences between these two operations. 

These three categories were also suggested by Van Dormolen (1986) for analyzing 

mathematical texts. He named his categories theoretical for mathematical structure such as 

theorems, definitions, axioms, and properties, algorithmical for ‘how to do’ rules, and 
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communicative for conventions. These categories have been used to study the treatment of 

“angle” in textbooks from different countries (Haggarty & Pepin, 2002) and the treatment of the 

measurement concepts of length, area, and volume in US textbooks (Smith et al., 2008).  

Three categories were used to analyze the texts in addition to the conceptual, procedural, 

and conventional categories. They are called representation, function type, and location. The 

representation category captured the type of representation (e.g., algebraic, graphical, tabular, 

mapping) used to represent the inside function, the outside function, and the result of the 

composition. Many studies (discussed earlier) of students’ knowledge of composition have noted 

the role of representation. The function type category will capture the type of function used in 

the different parts of the composition (e.g., polynomial, trigonometric, exponential, piece-wise, 

etc.). The role of function type was originally noted by Webster (1978) but his study only 

accounted for four different inside-outside function combinations. This study has been expanded 

to include sixty-four such combinations. Lastly, the location category will identify each unit of 

data as being in the exposition, examples, or exercises of the text. This will be used at the end of 

the analysis to determine where the conceptual, procedural, and conventional categories are 

typically located in the textbook.  

In summary, this section has discussed how the components of conceptual, procedural, 

and conventional knowledge have been characterized in the mathematics education literature and 

how this study has slightly adjusted those characterizations. Adjustments have specifically 

included allowing isolated bits of information to be characterized as conceptual knowledge and 

dividing procedural knowledge into the two elements of procedural and conventional. The 

specific coding scheme of each knowledge component will be discussed in detail in the data 

analysis of the next section.  
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CHAPTER 3: METHOD 

3.1 Specific Research Questions 

As previously discussed, composition is (1) an important topic in mathematics, (2) 

students have difficulties in understanding and using composition, and (3) researchers have 

presented anecdotal evidence that these difficulties may be related to features of the curriculum. 

This raises the question, “How does the notion of function composition get developed in school 

mathematics?” This question could be investigated by studying (a) the written curriculum, (b) the 

teaching of function composition, and/or (c) the students who are learning about function 

composition. While the written curriculum does not determine what teachers teach or what 

students learn, the written curriculum does influence both (Remillard, Herbel-Eisenmann, & 

Lloyd, 2009; Stein, Remillard, & Smith, 2007). In order to better understand the potential 

influence of the written curriculum on the opportunities students have to learn, this study 

analyzed the development of the concept of function composition in written curriculum over the 

span from Algebra to Calculus. 

High school curricula were analyzed to study ways in which students are introduced to 

composition in high school. The analyzed texts included the curricular series of Algebra 1 and 2, 

Geometry, and Precalculus. Because the notion of composition is developed further in calculus, 

which many students study in college, collegiate Precalculus and Calculus texts were also 

analyzed. The duplication of the precalculus text at both the high school and college level helped 

to identify differences in the preparation for calculus at these two levels. 

The following questions are the focus of this curricular analysis of textbook treatment of 

composition across high school and collegiate texts. 
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(1) When is composition formally introduced and how is it originally defined and explained 

to students?  

(2) What vocabulary terms and notations are used with composition and how are they 

defined, explained, and used?  

(3) Which representations and types of functions are used in the composition content of 

mathematics textbooks?  

(4) Which topics are explicitly connected to composition and in what ways?  

(5) Is the high school treatment of composition different than the treatment in college 

precalculus? If so, how?  

The purpose of this study was to examine one component (the written curriculum) that is 

involved in the teaching and learning of composition. The focus of this study was to examine the 

treatment of composition across the curriculum and not to analyze differences between 

individual texts. Due to this, only differences between courses will be discussed, not differences 

between texts within a single course. 

The rest of the section will discuss the rationale for selecting specific curricular series, 

the criteria for textbook material to be included in the study, and the coding scheme used in the 

data analysis.   

3.2 Selection of Curricular Series 

In order to study the treatment of composition across the curriculum, entire curricular 

series were analyzed. At the secondary level, a series consists of textbooks for the courses of 

Algebra 1, Geometry, Algebra 2, and Precalculus that are produced and marketed by a single 

publisher. Similarly, at the collegiate level, a series is defined as precalculus and calculus texts 
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marketed by a single publisher with common authors. Two secondary series and two collegiate 

series were analyzed in this study. This resulted in a total of 12 individual textbooks.  

In both the secondary and collegiate levels, one of the selected series was widely adopted 

by schools, while the other series approached the teaching and learning of composition 

differently than the more popular series. Analyzing a series with a large user base provided 

information about the mathematical curriculum that affects many students, while choosing a 

second series with different features provided a broader view of the treatment of composition 

across curricula.  

The two secondary mathematics curriculum series selected to be analyzed were 

Glencoe/McGraw-Hill Mathematics (2010) and the CME Project (2009) published by Pearson. 

Glencoe/McGraw-Hill Mathematics was chosen due to Dossey, Halvorsen, and McCrone’s 

(2008) report that this series had a large share of the secondary mathematics textbook market.  In 

this series, the mathematical content is arranged according to the traditional sequence of courses: 

Algebra 1 (2010), Geometry (2010), Algebra 2 (2010), and Precalculus (2011), and follows the 

format of exposition-examples-exercises within each lesson. The CME Project content was also 

arranged according to the mathematical content of Algebra 1, Geometry, Algebra 2, and 

Precalculus.  Instead of the demonstrative (“how to”) examples that Glencoe/McGraw-Hill 

provided, the CME Project materials mix problems with exposition and examples such as the 

format of exposition-problems-exposition-example-problems-exercises. With respect to 

composition, the Glencoe/McGraw-Hill Mathematics series focuses on substituting one 

expression into another, while the CME Project introduces composition as the linking of function 

machines and formally defines composition as an operation on functions. 



32 
 

At the collegiate level, a widely used precalculus and calculus series was chosen by 

surveying approximately 100 Department of Mathematics’ websites and identifying the texts 

used for calculus and precalculus courses. The institutions chosen for the survey were those 

classified as very research intensive in the Carnegie Classification. This survey was conducted in 

June 2010.  

The process for identifying the textbook that was adopted at each institution involved 

multiple steps. First, the calculus sequence recognized by the institution to fulfill the calculus 

requirement for engineering and science (including mathematics) majors was determined. 

Choosing this sequence allowed the survey to compare texts with similar target audiences. After 

identifying this sequence at each institution, the text used for the sequence was determined. I 

identified the textbooks adopted for use during the Spring 2010, Summer 2010, and Fall 2010 

academic terms by perusing the mathematics department website, course syllabi, or the student 

bookstore. In rare cases the text for the engineering and science calculus sequence was in 

transition with a new text being phased in over multiple semesters. For example, Calculus I 

would be using a new book, while Calculus II would use the older book. In these situations the 

new text being phased in was recorded as the textbook adopted by that institution.  

Almost 30% of the institutions surveyed used Calculus: Early Transcendentals by 

Stewart and an additional 20% used Stewart’s Calculus (non early transcendentals). See 

Appendix A for the complete survey results. The most recent edition (the hybrid edition) of 

Stewart’s Calculus: Early Transcendentals (2012) published by Cengage was the edition chosen 

to be analyzed for this study. The second calculus text selected is Calculus, 5th edition (2009) by 

Hughes-Hallett, Gleason, McCallum, et al which was published by Wiley. The approach in the 

Hughes-Hallett text differs from the Stewart Calculus text in that the latter utilized more rigorous 
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proof to explain mathematical concepts while the former provides a mixure of justifications and 

proofs (Askey, 1997). The Hughes-Hallett text incorporated more multiple representations (e.g., 

graphs, tables) throughout the text than the Stewart book. Additionally, the Hughes-Hallett, et al 

(2009) text was the most widely adopted text after the Stewart texts (approximately 6% of the 

institutions). 

The process of determining a widely used collegiate precalculus text was not as 

straightforward as the process for the calculus texts selected.  Not all institutions offered 

precalculus courses. Some institutions offered multiple courses below calculus, but none with the 

course title of “Precalculus”. Occasionally multiple courses at a single institution were described 

as a preparation for calculus. Some course syllabi named the course as precalculus when the 

institutional title and course description did not. The first situation of institutions without a 

precalculus course was resolved by separating the survey into subsets: institutions with both 

calculus and precalculus courses and others with only calculus courses. Because course 

descriptions on syllabi varied by instructor, the institution’s course description was used to 

identify the course that was intended to prepare students for the calculus sequence for 

engineering and science majors. Precalculus courses for other calculus sequences (e.g., Calculus 

for biology majors) were not included. Once the course number was identified, the associated 

text was identified using the same approach as that used for the selection of the calculus text. 

The results of the precalculus survey identified Precalculus: Mathematics for Calculus, 

by Stewart, Redlin, and Watson as the most widely used precalculus text. The most recent 

edition available, the 5th edition (2007), was chosen for this study. The most popular calculus 

and precalculus texts were from the same publisher (Cengage) and have a common lead author 

(Stewart). To follow this same pattern, the second precalculus text chosen was Functions 
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Modeling Change: A Preparation for Calculus, 4th edition (2011) by Connally, Hughes-Hallett, 

Gleason, et al. Both the second calculus and precalculus texts were published by Wiley and 

authored by Hughes-Hallett and Gleason.  

3.3 Data Collection and Analysis 

The next step was to identify the content in each book that was related to composition. 

Studies of curriculum content have analyzed different parts of textbooks. For example some 

studies of curricular content have analyzed entire units or lessons that the researchers identified 

as reasonable places for finding specific content (e.g., Cai, Lo, & Watanabe, 2002; Yan, Reys, & 

Wu, 2010) while other studies have analyzed all the problems and examples in a text (e.g., Ding 

& Li, 2010; Mesa, 2010). Few studies, however, have analyzed the entire content of a textbook 

for all the instances of a particular concept (e.g., Ashcraft & Christy, 1996). In order to answer 

the question regarding the treatment of composition across the secondary and early collegiate 

curriculum, all content in each textbook was analyzed.  

The content in each textbook was analyzed in three different phases. These multiple 

phases supported the deliberate process of identifying the composition content efficiently while 

minimizing the possibility of excluding core content throughout each textbook. In this study, 

content considered core to composition included (1) the compositive combination of functions 

such as the sequencing of functions where the output of the first function is the input of the 

second function and the composite operation on functions, (2) the decomposition of a function 

into multiple parts which, when composed, result in the original function (3) the circle or nested 

parenthetic notation of composition, (4) the language associated with composition such as 

substitution, replacing, plugging in, and inside or outside function, (5) taking or raising a 
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function such as taking sin or raising to the power of e, (e.g., e 

x
 ) and (6) other topics that 

textbooks explicitly connected to composition. 

The criteria of the first phase were intentionally broad with the goal to err on the side of 

inclusion rather than exclusion. The criteria of the second phase then reduced the amount of data 

collected from the first phase and refined the grain size of the unit of analysis. In the third phase, 

the composition coding scheme was applied to the remaining content. The rest of this section 

provides details for each of these phases, the associated criteria, and the unit of analysis of each 

phase. 

3.3.1 Phase One: Data Collection. The first phase, called the Data Collection phase, 

analyzed every page of each textbook. The criteria for this phase were designed to be inclusive 

with regard to identifying the pages that contained text on or related to composition. A broad and 

large scope was intended to reduce the possibility that core composition content was left out of 

the data set.  

The Data Collection phase had five criteria. If a page met one of these criteria, it was 

included in the data set. These criteria were: 

1. The page was listed in the index under composition, or the entire lesson that was 

explicitly titled to be about composition; 

2. Any form of the word composition was located on the page ; 

3. The page was located in a lesson that used or could have used the concept of 

composition; 

4. The page contained notation or language that meant composition;  

5. An entire lesson on a concept that included notation and language similar to composition. 
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Additionally, if during Phase One, any topic or lesson was identified in only one of the 

textbooks, the other curricula were then double checked to verify that the topic or lesson was not 

overlooked.  

The first criterion was straightforward and included lessons with the titles such as: 

“Composition of Functions,” “Algebra with Functions,” “New Functions from Old Functions,” 

and “Compositions of Transformations.” The second criterion was similarly straightforward as 

the page contained a form of the word composition (e.g., compose, composite) or it did not. The 

remaining three criteria were used to identify composition located in other sections of the 

textbooks and deserve a further discussion of the kinds of topics or concepts they encompassed. 

The third criterion included the following topics and concepts closely related to the 

concept of composition: inverse function, iteration, recursion, solving transcendental functions, 

solving via substitutions such as u- or trig-substitutions, and the chain rule. Table 3.1 

summarizes topics and concepts encompassed by criterion 3.  

Table 3.1 
Topics and concepts related to criterion 3 for inclusion in the Data Collection phase 
Criteria 3 Relation to composition 

 
Inverse Functions A function composed with its inverse results in the 

identity function. 

 
Iteration A “process of repeatedly composing a function 

with itself” (GA2, p. 716). 
 Recursion Uses the previous output as the input 

 
Solving Transcendental Equations Composition with the transcendental function’s 

inverse is needed to remove the unknown from the 
argument of the function. 

 Solving via u-substitution Decomposition 
 Chain Rule Derivatives of composite functions 

 
By definition inverse functions are functions that result in the identity function when composed 

with the original function, e.g., ( f  ◦ f 
-1

)(x) = x = ( f 
-1

 ◦ f )(x). Iteration is the “process of 

repeatedly composing a function with itself” (GA2, p. 716). Recursion expresses new output in 
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terms of previous outputs (from the same function) which is connected to the sequence view of 

composition. Solving transcendental functions with the variable in the argument requires either 

(1) composition with the inverse function to “remove” the variable from the argument or (2) 

using a definition or property. For example, solving e
2x

 = 5 could be performed using 

composition by taking the natural logarithm of both sides giving ln(e
2x

) = ln(5) which becomes 

2x = ln 5. It could also be solved by using the definition of logarithms which says that e
2x

 = 5 

means that 2x = ln 5. Solving via substitution is also closely related to the concept of 

decomposition. For example, solving the equation x
4
 + 2x

2
 + 1 = 0, can be solved by letting  

u = x
2
, so that the equation becomes u

2
 + 2u + 1 = 0. Composing this new equation with u = x

2
 

would result in the original equation. Any page that included these concepts was included by 

criteria 3.  

The fourth criterion included the notation and language used for composition: 

substitution, replacing, and plugging in; combining, sequencing, or linking functions; referring to 

an inside or outside function; “taking” a function or “raising” it to a power; and using the circle 

or nested parenthetic notation. Frequently, the procedure of composition is described as 

substituting, replacing, or plugging one function in for all of the x’s of another. Composition is 

also described as the combining of functions or the linking of function machines or as a 

sequencing of functions where the output of the first function, or “inside function” is used as the 

input of the second, or “outside function.” The idea of “taking” the square root, logarithm or a 

trigonometric function is language that means to compose functions. For example, if the equation 

is sin θ = 0.4, the instructions “Take sin
-1

 of each side” results in sin
-1

(sin θ) = sin
-1

 0.4. The 
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instructions to “take” means to compose sin
-1

 x with sin θ and apply the  sin
-1

 x function to 0.4. 

Similarly, the term “raise” in the instructions “raise e to each side” means to compose e with the 

expressions on both sides of an equation. For example, raising e to both sides of the equation  

ln(x + 2) = 3 means to compose e with ln(x + 2) and e with 3 resulting in e
ln(x + 2)

 = e
3
.   

The notations of the circle, ◦, and nested parentheses, f (g(x)), are used to denote 

composition. The nested parentheses can indicate the functions being composed within the 

notation itself or in separate statements. For instance, the functions being composed in the 

notation of f (g(x)) must be defined in separate statements. The notation f (x + 5) defines the g(x) 

function within the notation and the f (x) function in a separate statement. Conversely, 3g(x) – 7 

defines the f (x) function within the notation and the g(x) function in a separate statement. 

The fifth criterion included the entire lesson of topics and concepts that used notation and 

language similar to composition. Those topics included difference quotient, even and odd 

functions, graph transformations, and symmetry which all utilize the parenthetic notation such as 

f (x + h) or f (-x) and solving systems of equations which uses the language of substitution. Table 

3.2 summarizes topics and concepts included by criterion 5. 

Table 3.2 
Topics and concepts related to criterion 5 for inclusion in the Data Collection phase 
Criterion 5 Relation to composition 
 Difference Quotient Composition notation of f (x + h). 
 Even and Odd Functions Composition notation of f (-x). 
 Graph Transformations Composition notation of f (x + h). 
 Symmetry Composition notation of f (-x). 
 Systems of Equations The term substitution 

 

In summary, the Data Collection phase evaluated every page of each textbook to 

determine, in a broad sense, the pages which explicitly or implicitly contained text on 

composition.  
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3.3.2 Phase Two: Data Reduction. The purpose of Phase Two was to further reduce the 

data set by identifying more precisely the data that was central to the composition concept. This 

refinement of the data occurred by changing the unit of analysis from the page level to the 

sentence or problem level. All text or images on a page were analyzed individually. This 

included sentences, problem statements, graphs, tables, and other images along with their 

captions. I will refer to these items as elements of the data set. For a sentence to be included in 

the Phase Two data set, it had to directly connect to composition and not be just related to 

composition. An element was admitted in the Phase Two data set if it met one of the following 

seven criteria: 

1. A sequencing of functions or transformations where the output of the first is the input of 

the second  

2. The operation of composition on functions 

3. The circle or nested parenthetic notation 

4. The language associated with composition of substitution, replacing, plugging in, and 

inside or outside function 

5. Taking or raising a function such as “taking sin
-1

” or “raising to the power of e” 

6. Other statements explicitly connected to composition 

7. The decomposition of a function into parts that result in the original function when 

composed (e.g., u-substitution) 

These criteria, unlike those in the Data Collection phase, required an element to be 

connected to composition. Affiliation to a topic such as inverse functions or any other topics 

described in criteria 3 and 5 of the Data Collection phase were no longer sufficient to be included 

in the data set. Each element had to have its own connection to composition. For example, an 
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inverse function can be described in three different ways: First, an inverse function switches a 

function’s domain with its range; second, the inverse function undoes the original function; third, 

the inverse function composed with the original function results in the identity function. Only an 

element found in the third presentation of inverse functions would be admitted into the Phase 

Two data set. The first two presentations do not meet any of the criteria for Phase Two, while the 

third presentation meets criteria 2 and 3. 

Even though the concepts of even and odd functions, symmetry, and graph 

transformations use parenthetic notation, criterion 3 alone was not sufficient for them to be 

included in the Phase Two data set. The treatment of symmetry and even and odd functions in 

these textbooks involves computing f (–x) or replacing the x’s or y’s in a function with –x or –y, 

respectively. If an element of these topics only met criterion 3, it was not included. On the other 

hand, if an element met other criteria, it was included. The topic of graph transformations also 

connects to composition by parenthetic notation such as f (ax + h) + k. The treatment of graph 

transformations in these textbooks, however, mainly focuses on the value (positive or negative) 

of a, h, and k and how that affects the graph of a function. Similarly, the treatment of the graph 

transformations of trigonometric functions focuses on the amplitude, period, and phase shift. 

Because the focus was on the specific values and not on the entire expression in the parenthesis, 

(ax + h), criterion 3 was not a sufficient condition to include an element in the graph 

transformation section in the data set. It had to meet additional criteria. See Appendix B for a list 

of inclusions and exclusions by mathematical topic.  

Table 3.3 shows the total number of pages in the lessons explicitly about composition 

(criterion 1 of Phase One) and the number of pages identified in Data Collection and Data 
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Reduction phases. It also shows the total number of elements analyzed in Phase Three or the 

Data Analysis phase of the study.  

 

Table 3.3 
Number of pages included in the three analysis phases of this study. 

Total Number of Pages in the 
Total Number of Elements 
in the Data Analysis Phase 

 Total 
Number 
of Pages 

in 
Textbook 

Composi-
tion 

Lesson(s) 

Data 
Collection 

Phase 

Data 
Reduction 

Phase 

Composition 
Content 

Substitution 
Content 

Algebra 1       

Glencoe 846 0 177 112  27 378 

Pearson 763 5 151 83 182 102 

Geometry       

Glencoe 955 10 283 248 140 545 

Pearson 711 14 55 38 81 25 

Algebra 2       

Glencoe 978 14 354 198 456 237 

Pearson 777 35 289 191 794 304 

Precalculus       

Glencoe 836 10 287 166 683 235 

Pearson 703 0 143 74 63 80 

Cengage 888 9 324 182 578 188 

Wiley 608 14 229 96 592 35 

Calculus       

Cengage 65
+
 25 67 50 226 20 

Wiley 68
+
 15 80 51 218 16 

Total 8198 151 2439 1489* 4040 2165 
+ The Calculus texts were only analyzed through the chain rule lesson in single variable 
Calculus. 

*732 of these pages included composition content. The remaining 757 only contained 
substitutions terms. 

 

In summary, the Data Reduction phase, reduced the amount of data collected in the first 

phase by focusing on the more explicit elements of composition in the textbooks. It also 

identified the specific sentences and problems that would be analyzed in the third phase, data 
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analysis. As shown in Table 3.3, the amount of composition content that would have been missed 

by only looking at composition located in the composition lesson(s) of each textbook is 

considerable. 

3.3.3 Phase Three: Data Analysis. The third phase of the analysis applied the 

composition coding scheme to each element in the Phase Two data set. The coding scheme 

contained categories of conceptual, procedural, and conventional knowledge of composition, the 

type of representation(s) and type of function(s), and the location of the data element within a 

textbook. The coding scheme also consisted of a category for the terms of substitution, replace, 

and plug in. The rest of this section describes major/general aspects of each of these categories. 

Examples are provided in chapters 4 and 5 and the complete coding scheme is found in 

Appendix C. 

Both the conceptual and procedural composition codes captured content of domain and 

range of composite functions, properties such as associativity and commutativity, decomposition, 

geometric compositions, connections to other topics such as inverse functions and trigonometric 

functions, application problems, and other various ideas. The procedural codes captured the how 

to aspects of the curricula while the conceptual codes focused on the general definitions, 

principles, and connections of composition to other topics. For example, elements on the non-

uniqueness of decomposition were conceptual while elements on the actual process of how to 

decompose a function were procedural. Another example would be elements that discuss the 

non-commutativity of composition were conceptual while finding both f ◦ g and g ◦ f were 

procedural. 

The conventional composition codes comprised the language and notation used with 

composition. Elements such as “( f ◦ g )(x) is read as ‘f of g’ or ‘f circle g’ ”, or those referring to 
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inside and outside functions were captured by this category. Describing composition as a 

combination of functions or as substitution was also included in the conventional codes. The 

notations component of this category included the circle and nested parentheses notations.  

If a data element included a function, the type of representation used to represent the 

function and the type of function was coded. There were eight representation codes and 15 

different types of functions. The representation codes were the representations of algebraic, 

graphical, tabular, mappings on sets of domain and range, lists of ordered pairs, function 

machines, verbal names such as REC for 
x

1
 or ABS for |x|, and geometry for pictures or figures 

not on a coordinate graph. The types of functions included polynomials (including its order and 

the number of terms), rational functions, functions defined as ordered pairs, exponential 

functions, logarithmic functions, piecewise-defined functions, square and cubic roots, absolute 

value, the greatest integer function, trigonometric and inverse trigonometric functions, 

reflections, rotations, translations, and glide reflections. 

In addition to these composition categories, the location of each element was also coded. 

The location codes included codes for content found in the student or teachers edition as well as 

in exposition, examples, homework and review problems, chapter tests, comments made in the 

margins, and the answers to the problems found in the teachers guide.  

The terms of substitution, replace, and plug in were included to study the treatment of 

these terms throughout the texts. These were categorized into four main categories: Equality, 

Values, Expressions, and Methods. Equality involved substitution of something of equal 

quantity, Values involved substituting a value for a variable, Expressions involved substituting 

an expression for a variable, and Methods involved the term substitution being used as part of the 

name of a procedure or algorithm such as direct substitution. 
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While an initial coding scheme was created prior to data analysis, it was necessary to 

create and adjust codes during the actual coding of this study. Afterwards, a second coder was 

given the coding scheme to determine the inter-rater reliability of the composition coding 

scheme. This second coder coded a random sample of 300 elements. Overall there was 83% 

agreement between the coders.  

The next chapter discusses the formal definitions of composition and the meanings and 

uses of the terms of substitution, replace, and plug in. Chapter 5 then presents the findings from 

the conceptual, procedural, conventional, representation type, and function type codes.  
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CHAPTER 4: DEFINITIONS OF COMPOSITION AND MEANINGS OF 

SUBSTITUTION 

The definitions of composition and the meanings of other words associated with 

composition are essential in studying the treatment of composition in the written curriculum. In 

this chapter, I first discuss the definitions of composition in the secondary and early collegiate 

curriculum and how these definitions develop over time. The second part of this chapter 

discusses the meanings of the word substitution, one of the key words used to describe the 

procedure of composing.  The discussion focuses on the different meanings and their relation to 

the concept of composition. 

4.1 Definitions of composition 

The focus of this section is on the definitions of composition located in glossaries and 

lessons where composition is formally defined. These definitions can be characterized by four 

aspects of composition: The sequence view of composition, the requirements of the domain and 

range of composite functions, the operation view of composition, and the notation of the 

composition rule (g ◦ f )(x) = g( f (x)). These definitions became more mathematically abstract as 

the mathematics courses progress (see Table 4.1).  

Table 4.1 
Four principles of composition definitions arranged by course. 
 Sequence 

View 
Domain & 

Range 
Operation 

View 
Notation 

Algebra 1  x    
Geometry  x    
Algebra 2   x x x 
HS Precalculus   x  x 
College Precalculus    x x 
College Calculus   x x 
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It is important to keep in mind that this section focuses on the definitions of composition and 

does not wholly describe the textbooks’ treatments of composition.
3
 The following provides 

examples of definitions for each aspect of composition.  

4.1.1 Sequence view of composition. The main principle of the sequence view of 

composition is that it is a pointwise operation. Singular points, values, and objects, such as 

polygons, are mapped through a chain of processes. Initially, composition is defined as a 

succession of processes where the output of the first process is the input of the second process. 

This occurs in the context of geometric transformations (Example 4.A) and functions (Example 

4.B).  

Example 4.A When a transformation is applied to a figure and then another 

transformation is applied to its image, the result is called a composition of 

transformations (GG, p. 641). 

Example 4.B A composition of functions is a combination of two or more functions 

(PA1, glossary). 

Example 4.A processes figures through multiple transformations. Example 4.B combines 

functions by linking function machines together, which causes values to be processed through 

one function and then the result to be processed through another (see Figure 4.1). 

                                                 
 
3
 When additional information was needed to understand the meaning of a definition, context 

was only taken from the exposition in the section where the definition was located. 
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         Figure 4.1. Combination of function machines (PA1, p. 423).  

 
4.1.2 Domain & Range. By Algebra 2, definitions of composition progress from 

referring to a rule that maps particular values to referring to entire sets of values such as the 

domain and range. The principles of domain and range appeared in these definitions in two ways. 

First, the range of the first function must be in the domain of the second function (Example 4.C). 

Second, the composition of functions has its own domain and range (Examples 4.D and 4.E).  

Example 4.C  Suppose f and g are functions such that the range of g is a subset of the 

domain of f. Then the composition function f ◦ g can be described by [f ◦ 

g](x) = f [g(x)]. (GA2, p. 411) 

Example 4.D  The composition of function f with g is defined by [f ◦ g](x) = f [g(x)]. The 

domain of f ◦ g includes all x-values in the domain of g that map to g(x)-

values in the domain of f. (GP, p. 58) 

Example 4.E  For two functions f :A→B and g: B→C, the composite function meets the 

following conditions. 

 g ◦ f : A→C 

 g ◦ f (x) = g( f (x))    (PA2, p. 110) 

In contrast to Examples 4.A and 4.B which use particular inputs and outputs, Example 

4.C refers to sets of inputs and outputs (domain and range). While this example still describes a 

pointwise operation, there is a shift from singular values to sets of values. Example 4.D refers to 

You can link function machines to make more complex functions. 
The diagram illustrates an example. 

Multiply 
by 6. 

x  Subtract 
5.
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f ◦ g as having a domain and range of its own and Example 4.E discusses the composite f ◦ g as a 

function (or object) itself with its own domain and range. Thus, similar to the examples in the 

sequence view, these examples refer to functions as processes, where the domain is mapped to 

the range, but they introduce the idea that the composite f ◦ g is a function itself, defined by its 

domain and range. Even though the functions here can be viewed as processes, the understanding 

that a function results from a composition is important in helping students make the shift from 

viewing functions as processes to viewing functions as objects, as required in the context of 

composition. This understanding is an important bridge between the sequence view and 

operation view of composition. 

4.1.3 Operation View. By collegiate Precalculus, definitions of composition treat 

functions as objects. Composition operates on functions (e.g., formulas) yielding another 

function (or new formula). Examples 4.F and 4.G illustrate that the composition of functions 

results in a function. 

Example 4.F  For two functions f (t) and g(t), the function f (g(t)) is said to be a 

composition of f with g. The function f (g(t)) is defined by using the output 

of the function g as the input to f (WP, p. 86). 

Example 4.G  The composite of f and g is the function f (g(x)); f is the outside function, g 

the inside function (WC, p. 666). 

 While Example 4.F defines the composite function using outputs and inputs, the context 

of the surrounding text indicated that the goal of composition was to determine the function or a 

representation of the function and not individual values. Example 4.G took the operation view a 

step further by emphasizing in the second clause that the objects being operated on (the outside 

and inside object) are both functions and did not refer to inputs and outputs. 
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4.1.4 Notation. The final aspect defines composition by its rule (Example 4.H).  

Example 4.H  Given two functions f and g, the composite function f ◦ g (also called the 

composition of f and g) is defined by (f ◦ g)(x) = f (g(x)) (CP, p. 193). 

Defining composition solely by its notation rule was the most abstract of all the definitions, but 

is the most common among all the courses. In one entire collegiate series, this completely 

defined composition.  

This analysis has illustrated how the development of the definitions of composition 

begins with the sequence view in Algebra 1 and Geometry and moves to the operation view by 

collegiate Precalculus. The appearance of the sequence view and operation view in textbook 

definitions, indicates that these views effectively frame the treatment of composition in the 

written curriculum and may be useful in framing the teaching and learning of composition. These 

two views could aid teachers in identifying how their students view composition and assist 

students in understanding composition both sequentially and operationally. 

4.2 Meanings of Substitution 

In addition to formal definitions, textbooks provide explanations and illustrations on how 

to perform a composition. Three of the four curricula analyzed in this study use the term 

substitution to explain the procedures of evaluating a composition. In the composition section of 

these textbooks, substitution indicates that one function is being placed into another or that an 

expression is being put in place of a variable or function notation. Example 4.I and Figure 4.2 are 

two instances of the use of substitution which appear on the same page as a formal definition of 

composition in their respective textbooks. 

Example 4.I The result is a new function h(x) = f (g(x)) obtained by substituting g into 

f. (CC, p. 33) 
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 Figure 4.2. GA2, p. 411, Example 3b.  

 
In Example 4.I the entire process of function composition is summarized as substitution, while 

Figure 4.2 uses substitution to describe small steps within the process of composition. 

Other terms used in ways similar to substitution include replace and plug in. Figure 4.3 

and Examples 4.J and 4.K demonstrate this. 

 
 Figure 4.3. GP, p. 58, Example 2  

Example 4.J For Exercise 60, [( f ◦ g)(x)], remind students that they will be finding  

 f (x
2
 + 8). So every x in x

2
 + 2x – 8 will be replaced with x

2
 + 8. (GA2, p. 

415) 

Example 4.K Plugging in is the same process as substitution. (PA1, p. 364) 

The use of replace in Figure 4.3 is identical to the use of the first substitute in Figure 4.2. 

Example 4.J uses the term replace to explain in detail the same process that Example 4.I uses the 

term substitution to describe. Meanwhile, Example 4.K explicitly defines the terms of plugging 

in as substitution.  

Since substitute, replace, and plug in are used to explain the procedure(s) of composition, 

a further discussion of how textbooks define and use these words is pertinent to the development 

of the composition concept. The rest of this section discusses the ways that substitution is 

For f (x) = 2a – 5  and g(x) = 4a, find [ f ◦ g](x) and [g ◦ f ](x), if they exist 
a.  [ f ◦ g](x) = f [g(x)] Composition of functions [g ◦ f ](x) = g[ f (x)] 
  = f (4a)              Substitute = g(2a – 5) 
 = 2(4a) – 5          Substitute again = 4(2a – 5) 
 = 8a – 5                Simplify = 8a - 20 

Given f (x) = x
2
 + 1 and g(x) = x – 4, find each of the following. 

a.  [ f ◦ g](x) 
 [ f ◦ g](x) = f [g(x)] Definition of f ◦ g 
 = f (x - 4) Replace g(x) with x - 4 

 = (x - 4)
2
 + 1 Substitute x - 4 for x in f (x). 

 = x2 - 8x + 16 + 1 or x2 - 8x + 17 Simplify
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defined and used throughout the texts. It also compares and contrasts these uses to the use of 

substitution that occurs in composition. 

Substitution appears throughout the secondary and early collegiate mathematics 

curriculum with various definitions and uses. In total, the terms substitution, replace, and plug in 

appear 2165 times in these four curricular series. For the rest of this section, the term substitution 

will indicate any of the three terms substitution, replace, and plug in. As seen in Figure 4.4, 

substitution occurs most frequently in the early high school curriculum and declines after the 

geometry course. The majority of the instances of substitution occur in worked out proofs and 

examples in the student edition (SE) or in the problem answers located in the teachers edition 

(TE). 
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Figure 4.4. Distribution of the terms substitution, replace, plug in by course. 

Each instance of substitution involves putting a numerical value or expression in place of 

something else in a formula, but the reasons and explanations for each substitution can be 
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divided into four different categories. These categories were (1) Equality, such as substituting -1 

for cos , (2) Values, replacing a single variable with a numerical value such as evaluating a 

function or checking an answer for correctness, (3) Expressions, replacing a single variable with 

an expression, such as happens in the composition of functions, or replacing an expression as a 

single variable such as in u-substitution, and (4) Methods, the word substitution was used as part 

of the name of particular methods, such as solving systems of equations via substitution or 

synthetic substitution. Table 4.2 provides brief descriptions, examples, and the total number of 

instances for each of these categories. 

Table 4.2 
Descriptions, examples, and the total number of instances for the categories of substitution.  

Category 
Total 

Instances 
Description Example 

Equality 622 
 

Equal values, quantities, or 
measurements are 
“substituted” for each 
other. 

A quantity may be substituted for its equal 
in any expression. (GA1 p. 16) 
 

Given: m JKL = 8x+13, m NKL = 6x+11   
Proof: m JKL = m NKL; 8x+13 = 6x+11 
by substitution (GG, p. 40) 

Values 579 
 

A numerical value is 
substituted for a variable. 

Substituting t = 20, Q = 88.2 and t = 23, Q 
= 91.4 gives two equations for Q(0) and a: 
(WC, p. 12) 

 

     Check 
 

      (64)* 
 

Substitution is used to 
check the correctness 
of an answer. 

 

Check Your Answer: Substituting x = [final 
answer] into the original equation and using 
a calculator, we get [a true statement]. (CP, 
p. 332) 

 

     Evaluate 
 

      (28)* 
 

An expression is 
evaluated by 
substituting a value 
for the variable. 

 

The value f (-6) is found by substituting -6 
for each x in the equation. (GA2, p. 64) 

Expressions 447 
 

Replacing a single variable 
or function notation with 
an expression, or vice 
versa.  

Substitution involves substituting an 
expression from one equation for a variable 
in the other. (GA1, p. 388) 
 

Replace g(x) with x2 – 9 (GP, p. 59) 
 

Since x = cos t and y = sin t, we can 
substitute x and y into this equation: ... 
giving .... (WP, p. 569) 
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Table 4.2 (Cont’d)   
Methods 302 

 
Substitution is part of the 
name of the method or 
algorithm.  

Similarly, direct substitution provides the 
correct answer in part (b). (CP, p. 851) 
 

Solve systems of linear equations with two 
variables using substitution and elimination 
(PA1, p. 403) 

*Numbers in parentheses are included in the 579 elements in the Values category. 
 
The substitution that occurs with composition is included in the Expressions category. 

This type of substitution is different from the other categories because it changes functions and 

creates new ones. The other categories do not change the function. As the name of the Equality 

category suggests, one quantity is substituted with another representation of equal value. The 

Values category uses substitution to identify parameters of a function or the value of a function 

at specific point(s). In all cases the Values category is used to obtain more or specific 

information about functions and not to change them. The substitution terms identified by the 

Methods category also do not change functions. These are simply key words to indicate what 

procedures are used to solve the problem. The rest of this section describes these four categories 

of substitution with detailed examples, the main locations of each category, and how the meaning 

(explicit or implicit) of substitution changes over time. Figure 4.5 shows the distribution of these 

categories by course.  
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Figure 4.5. Distribution of the substitution categories by course. 

4.2.1 Equality. The Equality category contains the most instances of substitution and was 

the first substitution category to occur in the high school curriculum. Substitution is originally 

called the Substitution Property of Equality and defined in the following manner. “A quantity 

may be substituted for its equal in any expression. If a = b, then a may be replaced by b in any 

expression. [For example,] if n = 11, then 4n = 4 · 11” (GA1, p. 16). This definition indicates 

that given the value of an unknown variable, that value may be substituted into an equation 

because the value and the unknown variable represent the same quantity. This same definition is 

used in another text of the same curricular series as shown in the example in Figure 4.6. 
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 Figure 4.6. GG, p. 134, Example 1 

The example in Figure 4.6 uses the substitution property of equality as the reason for 

replacing (–5) · 4 with –20 and 70 + 20 with 90 since (–5) · 4 equals –20 and 70 + 20 equals 90. 

Generalizing from this example, all arithmetic could be explained with the reason of the 

substitution property of equality. Even though the entire name of the property is used at first, this 

only lasts for nine pages where it is noted in the text that “The Substitution Property of Equality 

is often just written as Substitution” (GG, p. 143). This abbreviation explicitly connects 

substitution indicating equality to every other use of the word substitution. A total of 622 

instances (about 29% of all the instances of substitution) were classified in the Equality category. 

The majority of those in the Equality category (413) are located in the answers sections in the 

teachers’ edition. An additional 167 instances in the Equality category are reasons located in the 

worked out steps of examples or proofs. Figure 4.5 shows that the number of Equality instances 

is highest in geometry and algebra 1 and almost negligible in the remaining courses. 

Although the substitution property of equality is formally defined, other terms which are 

not explicitly connected to this property are used in its place. For example, the textbook example 

in Figure 4.7 (GG, p. 237) could have used the reason of substitution on lines 9, 11, 13 and 14.  

Solve -5(x + 4) = 70. Write a justification for each step. 
   -5(x + 4)  = 70 Original equation or Given 
  -5 · x + (-5) · 4  = 70 Distributive Property 
 -5x – 20  = 70 Substitution Property of Equality 
  -5x – 20 + 20  = 70 + 20 Addition Property of Equality 
   -5x = 90 Substitution Property of Equality 

 
5

90

5

5





 x

 Division Property of Equality 

   x  = -18  Substitution Property of Equality 
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     Figure 4.7. GG, p. 237, Example 5 

Lines 9, 11, and 13 simply denote the items that are equal. Line 14 is very similar to the use of 

the substitution property of equality in Figure 4.6.
4
 However, the term simplify is never formally 

defined or informally explained in any of the texts that formally define substitution. This makes 

it impossible to compare and contrast the authors intended meanings of the terms simplify and 

substitution.  

The purpose of drawing attention to these terms is that these undefined terms are used in 

place of the defined term of substitution. It may be the case that the meaning of the term 

substitution shifts from equality to something else. Such a shift in the meaning of substitution, 

however, is not explicitly explained in any of the texts. The categories of Values and Expressions 

represent uses of substitution that shift from the meaning of equality to something closer to the 

substitution that happens in composition. 

4.2.2 Values. The Values category is the first of two categories that entails substitution 

different from equality. In this case, a single variable is replaced by a numerical value. This 

                                                 
 
4
 Lines 9, 11, 13, and 14 were not included in the total number of instances for substitution since 

they were not explicitly labeled as substitution. 

  (1) Find the measures of the sides of isosceles triangle ABC. 
  (2) Step 1 Find x. 
  (3)  AC  = CB Given 
  (4) 4x + 1  = 5x – 0.5 Substitution 
  (5)   1  = x – 0.5 Subtract 4x from each side. 
  (6)   1.5  = x Add 0.5 to each side. 
  (7) Step 2 Substitute to find the length of each side. 
  (8)   AC  = 4x + 1 Given 
  (9) = 4(1.5) + 1 or 7 x = 1.5 
(10)   CB  = AC Given 
(11) = 7 AC = 7 
(12)   AB  = 9x – 1 Given 
(13) = 9(1.5) – 1 x = 1.5 
(14) =12.5 Simplify 

C 4x + 1 5x – 0.5 

9x – 1 
BA
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occurs by substituting a value into a general formula (Example 4.L), checking the answer to a 

problem (Example 4.M), or evaluating a function at a specific value (Example 4.N).  

Example 4.L  So we replace z by 9 in the equation of the sphere and get.... (CP, p. 601) 

Example 4.M  Check your work by substituting x = 5 and y = 2 into each equation. (PA1, 

p. 362) 

Example 4.N  The value f (-6) is found by substituting -6 for each x in the equation. 

(GA2, p. 64) 

Examples 4.L, 4.M, and 4.N all substitute a numerical value in place of a variable. These 

are different from the equality category above because the variables in each of these examples 

attain the numerical value that is being substituted for them, but they are not equal to that value 

at all times. If the letters being replaced by numbers were unknowns, these examples would be 

coded as Equality; however, in each case these are variables which attain many values. A total of 

579 instances (about 27% of all the instances of substitution) were classified in the Values 

category. The majority of those in the Values category (402) are reasons located in the worked 

out steps of examples or proofs. Figure 4.5 shows that the number of Values instances is greatest 

in Algebra 1 and 2 and decreases in Precalculus and Calculus. 

4.2.3 Expressions. The Expressions category also entailed substitution that differs from 

equality. In contrast to the Values category, this category substitutes expressions, function 

notation, and variables in place of other expressions, notations, or variables. This is illustrated in 

Figure 4.3 and Examples 4.O, and 4.P. 

Example 4.O  Substitute x + 3 for x in the equation of the parabola. (PG, p. 553) 

Example 4.P  Now we can substitute sin t = x from the first equation to get y = 1 + x2. 

(CP, p. 566) 
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In Figure 4.3, the expression x – 4 replaces the function notation g(x). In Example 4.O, the single 

variable x is replaced with the expression x + 3. In Example 4.P the expression sin t is replaced 

with the single variable x. In each case, an expression either replaces something or an expression 

is the object being replaced. A total of 447 instances (about 21% of all the instances of 

substitution) were classified in the Expressions category. The majority of those in the 

Expressions category (147) are reasons located in the worked out steps of examples or proofs. 

Figure 4.5 shows that compared to the instance of the other substitution categories, the 

percentage of Expressions instances increases over time. 

Two textbooks provide explicit statements that explain substitution in a way that was 

coded in the Expressions category.  

Example 4.Q Substitution involves substituting an expression from one equation for a 

variable in the other. (GA1, p. 388, Exercise #5)
5
 

Example 4.R The key idea in using these formulas (or any other formula in algebra) is 

the Principle of Substitution: We may substitute any algebraic expression 

for any letter in a formula. (CP, p. 27) 

Examples 4.Q and 4.R both use the word substitution to define substitution. Example 4.Q is a 

review problem in the Substitution method for solving systems of equations and is located at the 

end of the chapter on systems of equations. Example 4.R explains how to use special product 

formulas (e.g., (A + B)
2
 = A

2
 + 2AB + B

2
). Both mention substitution using expressions and 

neither indicates equality. It is also interesting that the statement in Example 4.Q is from the 

same book as the Substitution Property of Equality mentioned in the description of the Equality 

                                                 
 
5

 In terms of coding, Example 4.Q received a code of Method for the first instance of 
“substitution” and a code of Expressions for the second instance of “substituting.” 
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category. This is interesting because a single book provides multiple definitions for the word 

substitution without discussing (even in the teachers edition) the similarities and/or differences of 

these definitions. 

Another curricular series attempts to define the term substitution as replacing a variable 

with an expression and the term plugging in as replacing a variable with a number or value.  

Example 4.S  Plugging in is the same process as substitution. When you "plug in 

numbers," you replace a variable with a number. When you "substitute," 

you replace a variable with an expression that (usually) involves variables. 

In fact, "plugging in" in [this curriculum], is just a special case of 

substitution when the expression you are substituting is just a number. 

(PA1, p. 364, TE) 

This example says that plugging in is for values and substitution is for expressions. However the 

following examples, from the same series, demonstrate that this convention is not always 

consistent. 

Example 4.T Some students have difficulty with plugging expressions into functions 

such as f (x + 2). (PA1, p. 432) 

Example 4.U  We can just plug those new expressions in for x and y. (PG, p. 549) 

Example 4.V  Substitute x = 3 into (1) to find that A = f (3) = -46. (PP, p. 192) 

Examples 4.T and 4.U have expressions plugged in and Example 4.V had values substituted. 

Similar to the Equality category, substitution is specifically defined in one way and used in 

another.  

4.2.4 Methods. In this analysis, seven methods or algorithms included the terms 

substitution or replacing as part of the methods’ name: (1) solving a system of equations via 
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substitution, (2) linear substitution, (3) synthetic substitution for evaluating functions, (4) direct 

substitution, (5) trigonometric substitution, (6) back-substitution with matrices and solving 

systems of equations, and (7) replacing-the-axes with graph transformations. Even though these 

instances of substitution were coded separately from the other substitution categories, each of 

these methods relate in some way to one or more of the other three categories. Solving a system 

of equations via substitution relates to Equality if the system is dependent, but relates to 

Expressions if the system is independent or inconsistent. Synthetic substitution, direct 

substitution, and back-substitution are related to Values. Trigonometric substitution and 

replacing-the-axes are related to Expressions. 

A total of 302 instances (about 14% of all the instances of substitution) were classified in 

the Methods category. The majority of those in the Method category (84) are reasons located in 

the worked out steps of examples or proofs.  

In summary, substitution is a key word used to describe the procedure of composition. 

Throughout the curriculum, the word substitution is used to mean equality, the act of substituting 

values and expressions, and as the name of specific methods or algorithms. The substitution used 

in composition was categorized in the Expressions category, which was the only category that 

allowed for the creation of new functions. Figure 4.8 shows the frequencies and main locations 

of each category.  
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Figure 4.8. Distribution of the substitution categories and their location. 

This figure shows that two-thirds of the Equality category was located in the problem answers in 

the teachers edition with most of the remaining third located in worked out examples and proofs 

in the student edition. Also about two-thirds of the Values category and over one-third of the 

Expressions category was located in worked out examples and proofs. 
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CHAPTER 5:  

CONCEPTUAL AND PROCEDURAL TREATMENT OF COMPOSITION 

Composition provides functions with structure, similar to the arithmetic operations 

provide structure to numbers. Simple functions can be combined to create more complicated 

functions and complicated functions can be broken down or decomposed into simple or familiar 

ones. This chapter on the conceptual and procedural treatment of composition in curricula is 

organized around the compositive structure of functions. First, I discuss the descriptions and 

informal definitions of composition. Second, I discuss the treatment of the properties of 

composition. This is followed by the conceptual and procedural treatment of evaluating a 

composition and decomposing a composite function.  

5.1 Definitions of Composition 

The definitions of composition discussed in the previous chapter are the definitions 

textbooks identify as the “formal definition.” Frequently this is indicated by shading the word 

being defined or by putting a box around the entire definition. Within each text, there are also 

statements that informally define or describe composition. Additionally, there are definitions and 

descriptions of other concepts that use composition. This section discusses both the informal 

describing of composition and the formal and informal descriptions of concepts that use 

composition. 

There are nine informal descriptions of composition in these textbooks. Three of these are 

located in review problems (such as “What is composition?”). One informal definition refers to a 

composition of transformations being a sequence of transformations and another simply states 

that “The function f (g(t)) is said to be a composition of f with g” (WP, 398). Describing 

composition as the linking of two or more function machines occurs four times, including once 
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in college Precalculus. This demonstrates that even though formal definitions of composition 

tend toward the operation view, the sequence view is still a part of the composition content in 

higher grade levels.  

Composition is used in 35 elements to explicitly define the mathematical concepts of 

translations, rotations, glide reflections, and affine transformations. Nine elements define 

translations as the composition of two reflections over parallel lines. Similarly, nine elements 

define rotations as the composition of two reflections over intersecting lines. An additional five 

elements focus on classifying a composition of reflections as either a translation or rotation. Nine 

elements define glide reflections as the composition of a translation and a reflection. Three 

elements define affine transformations as a composition of a translation and a dilation. All but 

one of the translation, rotation, and glide reflection elements appear in Geometry while all three 

affine transformation elements appear in Algebra 2.  

Composition can also be used to define inverse functions. However, in these texts, 

inverse functions are defined as swapping the domain and range or as “reversing” or “undoing” a 

function. Instead of appearing in the definition, the composition concept usually appears as the 

inverse function property or cancellation property of inverse function. These properties state that 

the composition of a function and its inverse result in the identity function. Since composition 

appears as a property of inverse functions instead of in the definition, a detailed discussion of 

composition and inverse functions will appear in the section on the properties of composition 

(Section 5.2.3). 
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5.2 Composite Structure of Functions 

Functions are closed under the operation of composition. This means that composing two 

or more functions results in another function.  There are a total of 24 conceptual elements that 

discuss this general principle of functions (Example 5.A).  

Example 5.A So far, we have used composition to build complicated functions from 

simpler ones. (CP, 195) 

An additional 71 elements consist of statements and problems of the composite structure of 

functions. These include the composition of functions with special properties and how those 

properties influence the properties of the resulting composite function. This would include 

connecting the function notation of a composite function to its formula (Example 5.B), the 

composition of two continuous functions (Example 5.C), compositions of even and odd functions 

(Example 5.D), compositions of increasing and decreasing functions (Example 5.E), the period 

of a composite function (Example 5.F), the composition of one-to-one functions (Example 5.G), 

and other principles related to the structure of composite functions (Example 5.H).  Also, the 

derivative of a composite function is defined by its compositive parts and the informal 

justifications of the chain rule is related to principles of composition (Example 5.I).  

Example 5.B Let u(x) = sin x and f (x) = sin2x. Is f (x) equal to u(u(x)) or to (u(x))2? 

(WP, 427) 

Example 5.C If f and g are continuous, and if the composite function f (g(x)) is defined 

on an interval, then f (g(x)) is continuous on that interval. (WC, 57) 

Example 5.D Determine whether (f ◦ g)(x) is even, odd, neither, or not enough 

information if f is even and g is odd (GP, 63). 
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Example 5.E Let f (x) be an increasing function. Is f ( f (x)) increasing, decreasing, or is 

it impossible to tell? (WP, 429) 

Example 5.F True or False. If f (x) is a periodic function with period k, then f (g(x)) is 

periodic with period k for every function g(x). (WC, 66) 

Example 5.G Prove that, if functions f, g: R → R are one-to-one, then f ◦ g is one-to-

one. (PA2, 123) 

Example 5.H True or False. If f (x) and g(x) are quadratic, then f (g(x)) is quadratic. 

(WP, 430) 

Example 5.I If u changes twice as fast as x and y changes three times as fast as u, then 

it seems reasonable that y changes six times as fast as x, and so we expect 

that 
dx

du

du

dy

dx

dy
 . (CC, 157) 

Table 5.1 displays the distribution of these elements across the curriculum and shows that the 

majority of the elements on the composite structure of function happen in college texts. The lone 

exception is the Algebra 2 text that develops graph transformations as affine transformations, 

which are defined as compositions. 
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Table 5.1 
The distribution of elements on the composite structure of functions. 
  Algebra 

1 
Geometry Algebra 

2 
HS 

Precalculus 
College 

Precalculus 
Calculus 

Conceptual    
 Composite 

Notation 
- - - - 13 2

 Closure 2 - 13 - 4 5
 Continuity - - - - 11
 One-to-one - - 2 - - -
 Other  - - 2 - 5 1
 Derivative - - - - - 11
       

Procedural   
 Continuity - - - - - 11
 Even/Odd - - - 4 3 2
 Inc/Dec - - - - 5 1
 Period - - - - - 2
 Derivative  - - - - - 1
 

5.2.1 Domain and Range. Since the composition of functions yields a function, the 

concept of domain and range are relevant to composition. Because the domain and range of a 

composite function is dependent on the domain and range of the functions being composed, the 

elements with conceptual and procedural codes refer to the domain and range of the inside 

function, the outside function, and the composite function.  

A total of 234 elements involve the domain and range of composite functions; 29% 

conceptual and 71% procedural. The elements with a conceptual code include elements that (1) 

use the Sequence view and Operation view, (2) use the terms “input” and “output” to refer to 

domain and range, and (3) restrict the domain of composite functions composed with inverse 

trigonometric functions. The elements with a procedural code include elements that have 

students find the domain and range of the outside function, the inside function, or the composite 

function.  

All of the elements with a conceptual code referred to the domain of a composite 

function, an inside function, or an outside function. The range of a composite function, however, 
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never appeared in the elements with a conceptual code. The only mention of range was the range 

of an inside function of a composition.  

The Operation view and Sequence view of composition can be applied to conceptual 

elements of domain and range of composite functions. In the Operation view, the focus is on the 

domain or range of the composite function f ◦ g. In the Sequence view, the attention is on the 

range of the inner function being a subset of the domain of the outer function. The Operation 

view is focused on the result of a composition (Example 5.J), while the Sequence view is focused 

on the relationship of the output of the inner function and the input of the outside function 

(Example 5.K).  

Example 5.J The domain of f ◦ g is the set of all x in the domain of g such that g(x) is in 

the domain of f. (CP, 193) 

Example 5.K Suppose f and g are functions such that the range of g is a subset of the 

domain of f. (GA2, 411) 

The Operation view appears in 12 elements and the Sequence view appears in 15 elements. Note 

that not every composition element on domain and range could be coded as either Operation 

view or Sequence view (Examples 5.L). An additional 18 elements use the terms “input” and 

“output” in ways similar to domain and range (Examples 5.M and 5.N). 

Example 5.L Emphasize how the domain changes when you switch the order of the 

composition. (PA1, 433)  

Example 5.M In the composition (g ◦ f ), the output f (x) is used as input for g. (GA2, 

410) 

Example 5.N If f : A → B and g: B → C, you can define a new function that maps inputs 

in A to outputs in C with the following rule: x→g( f (x)). (PA2, 109) 
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Lastly, 12 elements with a conceptual code involve explicit statements of the restricted 

domain of composite functions involving inverse trigonometric functions. While all textbooks 

that included sections on inverse trigonometric functions discuss the restriction of their domains, 

only one high school precalculus text explicitly discusses the affect that these domain restrictions 

have on composite functions (Example 5.O).  

Example 5.O Because the inverse trigonometric functions are defined only on an 

interval, rather than for all values, compositions of functions involving 

inverse trigonometric functions may or may not exist, depending on the x-

value. (GP, 286) 

Table 5.2 shows how the elements with a conceptual domain and range code were distributed 

across the curriculum. 

Table 5.2  
The distribution of the conceptual Domain and Range elements related to compositions across 
the curriculum. 
 Algebra 

1 
Geometry Algebra 

2 
HS 

Precalculus 
College 

Precalculus 
Calculus 

Domain of a 
Composite Function 
(Operation view)  

- - 2 5 4 1 

       

Domain of a 
Composite Function 
(Sequence view)  

- - 7 3 3 2 

       

Domain of a 
Composite Function 
(no view)  

2 - 4 3 2 2 

       

Terms of “Input” and 
“Output” 

4 - 5 - 9 - 

       

Restricting the 
Domain of a 
Composite Function 

- - - 12 - - 

 
The 167 elements with procedural codes direct students to find the domain and range of 

the outside function, the inside function, or the composite function. Finding the domain occurs in 
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98% of the elements, while finding the range occurs only in 10%. Table 5.3 shows the 

distribution for finding the domain and range across the curriculum.  

Table 5.3 
The distribution of elements with Domain and Range procedural codes across the 
curriculum. 
Total   Algebra 

1 
Geometry Algebra 

2 
HS 

Precalculus
College 

Precalculus 
Calculus

 Find domain   
96%  Composite 1% - 1% 34% 52% 8%
5%  Inside - - - 2% 2% 1%
6%  Outside - - 1% 2% 1% 1%

        

 Find range   
7%  Composite < 1% - - 6% < 1% -
1%  Inside - - 1% - - -
1%  Outside - - < 1% - < 1% -

 
One can see that finding the domain of the composite is heavily emphasized in precalculus. 

5.2.2 Associative and Non-commutative Properties of Composition. The properties of 

associativity and commutativity are also relevant to the compositive structure of functions. The 

operation of composition is associative, but not commutative. There are some functions such as 

iterations, inverse functions, and any function with the identity function that are commutative 

under composition, but composition is not commutative in general. 

The associative property of composition appears a total of ten times. All ten of these 

appear in a single Algebra 2 text. Four are conceptual (i.e., a statement that f ◦ (g ◦ h) = (f ◦ g) ◦ h) 

and six are procedural (i.e., given formulas for f, g, and h, compute f ◦ (g ◦ h) = (f ◦ g) ◦ h.  

In contrast to the appearances of the associative property, the principle of commutativity 

appears 280 times and in every course. Approximately 31% of these are conceptual (see 

Examples 5.P and 5.Q).  

Example 5.P Notice that in most cases, f ◦ g ≠ g ◦ f. Therefore, the order in which two 

functions are composed is important. (GA2, 412) 
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Example 5.Q When two rotations are performed on a single image, does the order of the 

rotations sometimes, always, or never affect the location of the final 

image? Explain. (GG, 648) 

Another 37% are procedural code elements that compute both f ◦ g and g ◦ f, and 31% are 

procedural code elements that compute f ◦ g and g ◦ f in adjacent problems or statements. The 

remaining 2% find functions or values that are commutative (see Examples 5.R and 5.S).  

Example 5.R Find two functions f and g such that f (g(x)) = g( f (x)) for every number x. 

(PA1, 428) 

Example 5.S Find all numbers b, such that f (g(b) = g( f (b)). (PA2, 108) 

The distribution of these elements across the curriculum is shown in Figure 5.1. 

678
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12
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1

21
25

48

1
6

13

43

6

2221

4

0
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40

Algebra 1 Geometry Algebra 2 HS
Precalculus

College
Precalculus

Calculus

Conceptual

Compute f(g(x)) and g(f(x))

Compute f(g(x)) and g(f(x)) in adjacent elements

Find functions or values

Figure 5.1. Distribution of the non-commutative property elements across the curriculum. 
 

Figure 5.1 shows that the non-commutative property of composition appears most 

frequently in Algebra 2 and College Precalculus. Filtering out the elements on the non-
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commutativity of affine transformations, the Algebra 2 course still contains the most element 

with 63 conceptual code elements and 70 procedural code elements. In college Precaclulus, over 

two-thirds of the procedural code elements are elements that are computations of f ◦ g and g ◦ f in 

adjacent problems. These were included in this study as implicit non-commutativity. 

5.2.3 Compositive Identity and Compositive Inverse. The function f (x) = x is the 

compositive identity for the set of functions. The compositive identity appears in the composition 

content in two ways. First, the composition of the compositive identity with any other function, 

g(x), results in the function g(x). Second, the composition of a function with its inverse yields the 

compositive identity. This section discusses the compositive structure of functions through both 

of these instances as well as the elements on finding the inverse of a composite function. 

There are a total of 25 elements on composing the function f (x) = x with another 

function. Of these, 80% are conceptual (Examples 5.T and 5.U) and 20% are procedural. All of 

the procedural elements involve composing the compositive identity with other functions. All of 

the procedural elements and 75% of the conceptual elements appear in a single Algebra 2 text, 

while the remaining conceptual elements appear in both college Precalculus texts. 

Example 5.T Is there an identity function when doing composition; in other words, is 

there some function f so that for any function g, f ◦ g = g ◦ f = g? (PA2, 

109) 

Example 5.U Show that, for any function f, we have f ◦ I = f, I ◦ f = f, and  

f ◦ f -1 = f -1 ◦ f = I. (CP, 207) 

As illustrated in Example 5.U, the compositive identity is related with compositive 

inverses in that any function composed with its inverse results in the identity function. In total, 

437 elements refer to compositive inverses. Of these, 37% are conceptual and 63% are 
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procedural.  All of these elements were classified into four categories: (1) general inverse 

functions, (2) verifying two functions are inverses, (3) the inverse relationship between 

exponentials and logarithms, and (4) the inverse relationship between trigonometric and inverse 

trigonometric functions. The inverse relationship between exponentials and logarithms occurs in 

43% of the compositive inverse elements. The majority of the conceptual code elements are 

statements such as logbb
x
 = x and e

ln x
 = x and the majority of the procedural code elements 

involve using those statements in a problem such as “[Use] a calculator and the fact that  

ln(e
5k ) = 5k ” (WC, 27). Verifying that two functions are inverses appears in 27% of the 

compositive inverse elements. The majority of these elements are procedural and have students 

show that both f ◦ f -1 and f 
-1

 ◦ f are equal to the compositive identity. The general inverse 

functions category accounts for 21% of the compositive inverse elements. Examples of general 

inverse functions conceptual code elements are shown in Examples 5.V and 5.W and an example 

of procedural code elements is found in Examples 5.X. 

Example 5.V Notice that the composition of f and f -1 is always the identity function. 

(GP, 68) 

Example 5.W This property tell us that composing a function and its inverse function 

returns the original value as the end result. (WP, 409) 

Example 5.X f 
-1

( f (x)) = f -1(x + 5) = x + 5 - 5 = x (PA2, 120) 

The inverse relationship between trigonometric and inverse trigonometric functions 

appears in 9% of the compositive inverse elements. The elements with conceptual and procedural 

codes in this category are similar to those in the exponentials and logarithms category. Many of 

the conceptual elements state that the relationships of cos(cos
-1

 x) = x is valid for -1   x   1 and 
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cos
-1

(cos x) = x is valid for 0   x    . The procedural code elements then use that information 

in a problem or example such as “using the cancellation property cos(cos
-1

 x) = x …) (CP, 467).  

Table 5.4 shows the distribution of elements in all the Compositive Inverse categories. 

This table shows, as other tables have shown, that compositions with inverse functions appear 

more frequently in College Precalculus than in High School Precalculus.  

Table 5.4 
Distribution of elements in the Compositive Inverse categories. 
Total   Algebra 2 HS 

Precalculus
College 

Precalculus 
Calculus

 Inverse Function    
15%  Conceptual 6% 3% 4% 2%
6%  Procedural 6% - - -

 Verify an Inverse  
3%  Conceptual 1% 1% 1% -

25%  Procedural 10% 9% 6% -
 Exponential-Logarithm  

13%  Conceptual 1% 5% 5% 3%
30%  Procedural 6% 5% 17% 2%

 Trig-Inverse Trig  
7%  Conceptual < 1% 3% 3% 1%
2%  Procedural - - 2% -

 

In addition to the principle of compositive inverses, another 15 elements are associated 

with finding the inverse of a composite function. Fourteen of these appear in a single Algebra 2 

text while the remaining element is located in both college Precalculus texts. All of these 

elements use the sequence view of composition as illustrated in Example 5.Y. 

Example 5.Y If A(c,d) is putting on your socks and A(a,b) is putting on your shoes, then 

the composition A(a,b) ◦ A(c,d) represents putting on first your socks and 

then your shoes. To undo this process, you first take off your shoes 
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(represented by (A(a,b)
-1

) and then take off your socks (represented by 

(A(c,d)
-1

). (PA2, T847) 

In summary, complicated functions can be built from simple ones through the operation 

of composition. The properties of those simple functions may provide information on the 

properties of the composite function. Similarly, the domain and range of a composite function 

are directly related to the domain and range of the composing functions. The associative property 

rarely appears across the entire curriculum and the non-commutative property of composition is 

explicitly mentioned more in the High School courses than the collegiate courses. The majority 

of elements on the compositive inverse focus on the inverse relationships between logarithmic 

and exponential functions and trigonometric and inverse trigonometric functions. Within each of 

the topics in this section, (1) there are more procedural code elements than conceptual code 

elements and (2) College Precalculus has more composition elements than any other course. 

5.3 Evaluating a Composition and Decomposing Functions 

Creating a new function through composition is sometimes called evaluation. The 

operation of composition, like arithmetic operations, can be reversed. The reversing or undoing 

of a composition is called decomposition. This section discusses the treatment of evaluating 

compositions and decomposing composite functions across the curriculum. 

5.3.1 Evaluate a composition. There are 1749 elements on evaluating a composition. All 

of these are procedural. This total includes evaluating a composite function at a numerical value 

(e.g., ( f ◦ g)(5) ), evaluating a function at an expression (e.g., f (a), f (5a), or f (x + a) ), 

evaluating an expression at a function (e.g., 3[ f (t)] + 2 ), a combination of evaluating a function 

at an expression and evaluating an expression at a function (e.g., f (x – 1) – f (x) ), and evaluating 

a composition (e.g., ( f ◦ g)(x) ). Also included in this total is evaluating a composition of 
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geometric transformation (e.g., reflect the figure across line l and then rotate it 90 degrees), and 

writing a composition of geometric transformations or affine transformations as a single 

transformation (e.g., a reflection across two parallel lines as a translation). In addition to these 

different forms of evaluating compositions, there are elements that work through the steps 

involved in evaluating a composition. For example, the first step in evaluating [g ◦ f ](x) for the 

functions f (x) = 2x – 5 and g(x) = 4x involves substituting the expression 2x – 5 into the notation 

for f (x), resulting in g(2x – 5). The second step involves substituting the expression 2x – 5 into 

the x’s of the expression for g(x), resulting in 4(2x – 5).  

Table 5.5 
Distribution of evaluating a composition across the curriculum. 
Total  Algebra 

1 
Geo-
metry 

Algebra 
2 

HS 
Precalculus

College 
Precalculus 

Calc-
ulus 

33% Evaluate a 
composite function 

3% - 8% 7% 13% 3%

        

9% Evaluate a 
composite 
geometric 
transformation 

- 8% < 1% - - -

        

17% Evaluate a function 
at an expression 

2% - 4% 3% 7% 1%

        

3% Combination: 
 f (x – 1) – f (x) 

- - 1% < 1% 1% 1%

        

2% Evaluate an 
expression at a  
function  

< 1% - < 1% - 2% < 1%

        

35% Evaluate a 
composition 

< 1% - 16% 5% 12% 2%

        

5% Write a 
composition of 
transformations as 
a single 
transformation 

- 3% 2% - - -

        

12% Steps involved in 
evaluating a 
composition 

- - 4% 1% 5% 2%
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Table 5.5 shows the distribution of all of the evaluation categories across the curriculum. 

The most frequent categories are Evaluating a composition (35%) and Evaluating a composite 

function (33%). The categories of Evaluating a composition and Writing a composite 

transformation as a single transformation are similar. In each case you have two objects 

(functions or transformations) and the goal is to define or describe the combination as a single 

object. The uniting of these two categories results is 40% of the evaluation elements. Similarly, 

the categories of Evaluating a composite function and Evaluating a composite geometric 

transformation can be united, resulting in 42% of the evaluation elements. The table also shows a 

difference in the amount of composition content between high school precalculus and college 

precalculus. 

5.3.2 Decomposition. Decomposition is the opposite of evaluating a composition and 

involves the breaking apart into composite parts. While evaluating a composition creates a 

composite function, decomposition begins with a composite function with the goal to find two 

functions whose composition is the given composite function. There are a total of 218 

decomposition elements; 6% are conceptual and 94% are procedural.  

Elements with conceptual decomposition codes include defining decomposition 

(Example 5.Z), the non-uniqueness of decompositions (Example 5.AA) and the composite 

structure of functions (Example 5.BB). There is an even distribution among these three 

categories with each accounting for approximately one-third of the conceptual elements. 

Example 5.Z To decompose a function h, you need to find two functions whose 

composition is h. (GP, 59)  

Example 5.AATrue or False. There is more than one way to write h(x) = (3x
2
 + 1)

3
 as a 

composition h(x) = f (g(x)). (WP, 430) 
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Example 5.BB But in Calculus it is often useful to be able to decompose a complicated 

function into simpler ones. (CC, 34) 

The procedural elements are more diverse. They include decomposing a function into two 

or three functions (71%), providing a composite function, h, and one of either f or g and 

requesting students to determine the remaining function (27%), putting a restriction on the type 

of functions allowed to be used in the decomposition (e.g., neither function can be the identity 

function) (14%) , finding a second composition that results in the same given function 

(procedural of the non-uniqueness principle) (1%), and numerical decomposition such as in a 

table or graph where students must use the numerical value of the composite function to 

determine the value(s) of the functions being composed (see Figure 5.2) (10%). 

 
Complete the table given h(x) = g( f (x)). 

      
 X f (x) g(x) f (g(x))  
 0 2    
 1  0 0  
 2  3 2  
 3 0  1  
 4 3 2 4  
     (WP, 402) 

       Figure 5.2. Example of numerical decomposition. 
 
In summary, evaluating compositions occurs eight times more than decomposing 

composite functions. The majority of the evaluating and decomposing elements focused on 

finding formulas and values resulting from a composition. In total, over 99% were coded with 

procedural codes.  

This chapter has discussed the descriptions and explanations of composition, the 

compositive structure of functions, the associative and non-commutative properties of 

composition, the compositive identity and compositive inverse, the evaluating compositions and 
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the decomposition of composite functions. Composition occurs in every course from Algebra 1 

in high school through college Calculus and was predominately found in college Precalculus. Of 

the 3081 elements referred to in this section, 6% of them were coded as conceptual and 94% 

were coded as procedural. While the conceptual elements are distributed across every section 

except for evaluating a composition, the procedural elements were clustered in the domain and 

range, non-commutatitvity, compositive inverse, evaluating compositions, and decomposition 

sections.  
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CHAPTER 6: REPRESENTATIONS AND TYPES OF FUNCTIONS 

This chapter discusses the types of representations and types of functions used in the 

composition content across the secondary through calculus curriculum. I also discuss other 

terms, such as taking and raising, that indicate composition. 

6.1 Representations of Composition 

Algebraic, graphical, and numerical tables are common representations of mathematics 

and have been referred to as the “Big Three” (Kaput, 1998). This section discusses these and 

other representations used in the treatment of composition and how they are distributed across 

the secondary and early collegiate curriculum. In addition to single representations, the use of 

multiple representations also appears in the treatment of composition. This section also discusses 

which representations are used together, how they are used together, and where they are located. 

The composition content in these textbooks used eight different types of representations. 

In addition to the Big Three, the representations of numerical (not tables), verbal, function 

machines, mapping diagrams, and geometric figures are also used to represent composition. The 

numerical representations (not tables) include ordered pairs and numerical functional 

relationships such as in Examples 6.A and 6.B.  

Example 6.A  For each pair of functions, find [f ◦ g](x) and [g ◦ f ](x), if they exist. 

f = {(1,8), (0, 13), (15, 11), (14, 9)}, g = {(8, 15), (5, 1), (10, 14), (9, 0)} 

(WP, 100) 

Example 6.B Suppose that j(x) = h
-1

(x) and that both j and h are defined for all values of 

x. Let h(4) = 2 and j(5) = -3. Evaluate, if possible, j(h(4)). (GA2, 411) 

Verbal representations include written out descriptions that are usually denoted in mathematical 

symbols such as “subtract 3” (for x – 3) or “ABS” to indicate the absolute value function (|x|).  
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Example 6.C f is the rule “square” and g is the rule “subtract 3.” The function f ◦ g first 

subtracts 3 and then squares; the function g ◦ f first squares and then 

subtracts 3. (CP, 193) 

Function machines are figures which illustrate that a function machine produces exactly one 

output for every input and composition is the linking of two or more of these machines (see 

Figure 6.1). 

 
         Figure 6.1. A function machine representation of composition. 

Mapping diagrams map particular points through multiple functions or through a single 

composite function (see Figure 6.2).  

 
Figure 6.2. A mapping diagram representation of composition 

Lastly, geometric figures include geometric shapes and pictures that are transformed via 

composite transformations (see Figure 6.3).  

 
Figure 6.3. Examples of a geometric figure representation.  

x 

g(x) 

f (g(x)) 
g

f 

f  ◦ g 

x  
input 

g f
x

2
+ 1 x

2
 + 1 

output (CP, 192) 

F 
G 

E 

D 

Rotated 90○ about the origin after being 
reflected in the y-axis 

The glide reflection shown is the 
composition of a translation along w

  
followed by a reflection in line l. 

(GA2, 215) (GG, 641) 
w


 

l
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A total of 2769 elements received a representation code. Of these elements, over 81% 

contained an algebraic equation or expression. Table 6.1 shows the location and relative 

frequency of each representation across the curriculum.   

Table 6.1.  
The distribution of each type of representation across the composition curriculum. 

Total  
Algebra 

1 
Geometry

Algebra 
2 

HS 
Precalculus

College 
Precalculus 

Calculus 

81.3% Algebraic 4.4% 17.3% 20.2% 29.3% 10.1%
6.7% Geometric 

Figures 
 6.2% 0.4% < 0.1%  

6.0% Graphical 0.4% 0.8% 0.8% 0.9% 2.0% 1.2%
4.6% Verbal  1.1% 1.9% 0.2% 0.8% 0.6%
2.7% Tables < 0.1% 0.1% 2.2% 0.3%
1.6% Numerical  1.1% 0.2% 
1.1% Machine 0.8% 0.1% 0.1% 0.1%
0.1% Mapping 

Diagrams 
 < 0.1% < 0.1% < 0.1% 

 
Algebraic, graphical, and verbal representations appear throughout the curriculum. Numerical 

and function machine representations are predominately found in secondary texts, while tables 

predominately appear in college texts. Additionally, Table 6.1 illustrates that, in every type of 

representation, composition is emphasized more in college precalculus than in high school 

precalculus. 

Of the 2769 elements, 110 (4%) were coded with more than one representation. Of these, 

46 contained both algebraic and graphical representations, 37 contained both algebraic and 

verbal representations, 8 contained algebraic, function machine, and verbal representations, and 

5 contained both graphical and tabular representations. Table 6.2 displays the distribution of 

elements with multiple representations across the composition curriculum.  
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Table 6.2 
The distribution of elements with multiple representations across the composition curriculum. 

Total  
  Algebra 

1 
Algebra 

2 
HS 

Precalculus 
College 

Precalculus
Calculus

46 Algebraic Graph  10 8 7 9 12
37 Algebraic Verbal  15 2 11 9
5 Graph Table  2 3
4 Algebraic  Table  2 2
2 Table  Machine  2  
4 Algebraic  Numerical   1 3
1 Algebraic Machine   1

1 
Mapping 
Diagram  

Machine  
1  

     
8 Algebraic  Verbal Machine 6  2
2 Algebraic  Verbal Graph  2

 
The predominance of algebraic representation also exists in the elements with multiple 

representations. Of the 110 elements with multiple representations, 102 (93%) include an 

algebraic representation. The graphical and verbal representations are contained in 53 and 47 

elements respectively, while function machine figures are contained in 12. Also of note, the 

college precalculus course contained more than twice the number of elements with multiple 

representations than the high school precalculus course (29 and 13, respectively.) Expanding the 

comparison to the entire high school and college curriculum, the amount of the composition 

content using multiple representations contained in four years of high school is equal to the 

amount in the one year of college precalculus and calculus (55). 

These elements with multiple representations have been classified into two categories: 

Display and Create. The Display category included instances where two or more representations 

are displayed either in the same element or explicitly linked together such as in example 6.D. 

The Create category includes instances where one representation is provided and then prompts 

for another representation to be created such as in Example 6.E.  
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Example 6.D. For example, the rule “square, then subtract” is expressed as the function  

f (x) = x
2
 – 5. (CP, 149) 

Example 6.E. Suppose f (x) = 2x + 3 and g(x) = x
2
. Find a way to construct the graph of   

f ◦ g from the graphs of f and g. (PA2, 114) 

Of the 110 multiple representation elements, 62 displayed two or more representations and 43 

requested that another representation be created. The remaining five elements both displayed 

multiple representations and requested that another representation be created.  

The majority of elements in the Create category were graphs being created from algebraic 

functions. The most common representation pairings in the Display category were verbal-

algebraic representations and algebraic-graphical representations. The five elements in both the 

Create and Display categories all provided both the algebraic and verbal representations and 

requested that a function machine be created. Tables 6.3 and 6.4 show all the representations that 

were used by elements in Create and Display categories, respectively. Please note that the five 

elements in both categories are NOT included on either table. 

Table 6.3 
The combinations of representations in the Create category. 
Representation Given Representation to Create Total 
Verbal Algebraic 7 
Algebraic Graph 30 
Algebraic Table 3 
Table Graph 1 
Machine Table 2 
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Table 6.4 
The combinations of representations in the Display category. 

Combinations of Representations Total  
Algebraic Verbal  30  
Algebraic Graph  18  
Algebraic Numerical  4  
Algebraic  Verbal Machine 3  
Algebraic  Verbal  Graph 2  
Table Graph  2  
Algebraic Table  1  
Algebraic Machine   1  
Mapping Diagram Machine  1  

 
The majority of elements with multiple representations are located in problems for 

students such as homework exercises and review problems. In fact, 100% of the Create elements 

and 58% of the Display elements are located in such problems. The remaining Display elements 

are located in the exposition (16%), examples (15%), teachers edition (6%), and figures (5%). 

Table 6.5 summarizes the locations of all elements. 

Table 6.5  
The locations of elements with multiple representations broken down by category. 
Location Create Another 

Representation 
Display Multiple 
Representations 

Both 

Exposition - 10 - 
Example - 9 - 
Problem for student to complete 43 36 5 
Figure - 3 - 
TE - 4 - 

 
In summary, algebraic representation received the greatest amount of attention in the 

composition content. Approximately 81% of the elements with representations codes and 93% of 

the elements with multiple representations codes were algebraic. The instances of multiple 

representations included translations between representations (Create) and the connections 

among representations (Display) with the majority of the connections being between the 

algebraic and verbal representations. 
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6.2 Types of Functions Used in Composition 

The composite structure of functions allows complicated functions to be made from 

simple ones. This section discusses the types of functions used in the composition content of 

textbooks and how they are distributed across the curriculum. 

The composition content in these textbooks use eleven different types of functions; 

polynomials, trigonometric, root functions (e.g., square root, cube root, n
th

 root), rational 

functions, exponential, logarithmic, absolute value functions, piecewise-defined functions, 

geometric transformations (such as rotations, reflections, and translations of figures), and affine 

transformations (such as translations and dilations of graphs).  A total of 2597 elements 

contained at least one of these types of functions. The majority are polynomials (50%) followed 

by trigonometric (12%), root functions (12%), and exponential (12%). Table 6.6 shows the 

distribution of each function type across the curriculum.  

Table 6.6 
The distribution of each type of function across the composition curriculum. 
Total*  Algebra 

1 
Geometry Algebra 

2 
HS 

Precalculus 
College 

Precalculus 
Calculus

50% Polynomials 3.7% -- 15.5% 8.6% 17.5% 4.9%
12% Trigonometric -- -- 0.8% 3.9% 6.1% 2.0%
12% Root Functions 0.3% -- 2.7% 3.5% 4.4% 1.2%
12% Exponential -- -- 1.8% 1.5% 6.5% 2.1%
10% Logarithmic -- -- 1.5% 1.6% 5.0% 1.5%
10% Affine 

Transformations 
-- -- 10.4% -- -- --

8% Geometric 
Transformations 

-- 7.1% 0.8% 0.2% -- --

7% Rational 
Functions 

0.5% -- 0.5% 2.1% 3.4% 0.7%

2% Piecewise-defined 0.1% -- -- 0.4% 0.8% 0.3%
1% Absolute Value 0.5% -- < 0.1% < 0.1% 0.6%

* The percentage totals do not sum to 100 because many elements contained more than one 
type of function. 
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While most types of functions occur throughout the curriculum, geometric 

transformations predominately appear in Geometry and affine transformations only appear in 

Algebra 2. All other types of functions are emphasized more in college Precalculus than in high 

school Precalculus.  

The compositions of transcendental functions predominately involve the composition of 

inverse functions. Seventy-one percent of the trigonometric functions compose trigonometric and 

inverse trigonometric functions. Similarly, 62% of the compositions involving exponential 

functions and 77% of those involving logarithmic functions are the composition of exponentials 

and logarithms with a focus on the cancellation property of inverse functions. 

Of the 2597 elements with a function type code, 2414 (93%) are the composition of two 

functions, 159 (6%) are the composition of three functions, 12 are the composition of four 

functions (7 of which were iterations), and the remaining 12 are compositions of more than four 

functions (all of which were iterations).  

The coding of polynomial degree and the number of terms of polynomials revealed that 

63% of the polynomials are linear, 31% are quadratic, 4% are cubic polynomials, and 1% have a 

degree higher than 3. With regard to the number of terms of each polynomial 25% are single 

term or monomials, 66% are binomials, and 8% are trinomials. Tables 6.7 and Tables 6.8 show 

the distribution of degrees and number of terms among inner, middle, and outer polynomials 

functions of a composition. The term “middle function” refers to the function(s) between the 

inner and outer functions in a composition of three or more functions. For example, in the 

composition of four functions ( f ◦ g ◦ h ◦ k)(x), the functions g and h are middle functions. 
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Table 6.7 
The distribution of the polynomial orders across the outer, inner, and 
middle functions of a composition. 
Total  Linear Quadratic Cubic Higher Order  

42% Outer 23.0% 16.3% 2.1% 0.7%  
5% Middle 2.8% 1.3% 0.3% 0.2%  

49% Inner  34.5% 12.2% 1.7% 0.3%  
 

Table 6.8 
The distribution of the number of terms of polynomials across the outer, inner, and middle 
functions of a composition. 
Total  Monomial Binomial Trinomial Higher Number of Terms  

42% Outer 9.2% 27.5% 5.3% -- 
5% Middle 0.8% 3.1% 0.7% 0.2% 

49% Inner  14.0% 33.0% 1.7% 0.1% 
 
In addition to showing the distribution of the degrees of polynomials and the number of 

terms of polynomials, Tables 6.7 and 6.8 indicate that the majority of polynomials are the inner 

function of a composition. Merging the data on the degree and number of terms of polynomials 

reveals that about half of all polynomials being composed are linear binomials. This means that 

about 25% of the secondary and early collegiate composition curriculum involves linear two-

term polynomials (see Table 6.9).  

Table 6.9 
The distribution of the number of terms of polynomials of a given order. 
 1 Term 2 Terms 3 Terms Higher number of Terms 
Linear 13.9% 49.0% -- --
Quadratic 8.8% 14.7% 7.8% --
Cubic 1.5% 2.0% 0.5% 0.3%
Higher Order 0.9% 0.6% -- --

 
With the majority of polynomials being simple and the transcendental functions focusing 

on inverse properties, compositions with rational functions and piecewise functions are one of 

the more challenging types of functions that students encounter in the composition content of 

textbooks. There are 189 elements involving rational functions and 40 elements involving 

piecewise-defined functions. The majority (129) of the elements with rational functions have a 
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rational function as the outer function of the composition. Having a rational function as the 

outside function in a composition is important since it appears later in the curriculum with the 

derivative of the natural logarithmic function and the chain rule. With regard to the piecewise 

function elements, two are represented with tables, two algebraically (both of which are 

iterations), and the remaining 36 are represented graphically such as in Figure 6.4.  

 

 
Figure 6.4. Example of a graphical piecewise-defined function composition element. 

 
In summary, the overwhelming majority of composition content in textbooks uses 

polynomials with only one- or two-terms. The majority of transcendental functions focus on the 

cancellation properties of inverse functions. Piecewise functions appear most commonly in 

graphs and the small amount of rational functions appears as the outer function of a composition. 

While most types of function appear throughout the curriculum, trigonometric, exponential, 

logarithmic, and piecewise-defined functions occur most disproportionally in collegiate 

Precalculus.  

 g(x) 

 f (x)

(GP, 62) 

Find ( f  ◦ g)(-4) 
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6.3 The Language of Composition 

When solving equations, the words take, raise, and apply indicate composition. 

(Examples 6.F and 6.G) These terms occur 171 times across the curriculum. They are most 

commonly used with root functions (57), power functions (33), logarithmic functions (53), 

exponential functions (15), and trigonometric functions (15).  

Example 6.F Add 1, then take the cosine of the result. (PP, 57) 

Example 6.G We solve for l by raising e to both sides: (WP, 211) 

Throughout the curriculum in this study, the principle of composition is never explicitly 

connected to the terms take, raise, and apply. Occasionally, this principle is described as the 

One-to-One Property of certain types of functions. The One-to-One Property is described as log 

x = log y if and only if x = y. Similarly, it is described for exponential functions as e
x
 = e

y
 if and 

only if x = y. In one high school precalculus text, the term take is explicitly connected to the 

One-to-One Property of logarithmic and exponential function (Example 6.H).  

Example 6.H This application of the One-to-One Property is called taking the logarithm 

of each side of an equation. (GP, 192) 

Table 6.10 shows the distribution of these terms for different types of function across the 

curriculum.  

Table 6.10 
Distribution of “taking” or “raising” a function across the curriculum. 
Total  Algebra 

1 
Geo-
metry 

Algebra 
2 

HS 
Precalculus

College 
Precalculus 

Calc-
ulus 

53 Take log - - 2 11 33 7
57 Take root function - - 28 4 25 -
33 Take a power - - 12 6 15 -
15 Take trig function - - 1 3 11 -
15 Raise to a number - 5 2 5 2 1
8 Take other function 2 - 3 1 2 -
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Forty-six percent of these instances involve transcendental functions and half involve taking a 

root function or a power (e.g., squaring). Even though the same language, take, was used for all 

of these different types of functions, there was no explicit presentation on how taking a power is 

not necessarily a one-to-one function (unlike the explicit content on the One-to-One Property of 

transcendental functions). 

Taking is valid mathematically because of the compositive structure of functions. The 

composition of two functions is a function and more specifically, the composition of two one-to-

one functions is a one-to-one function. However this is rarely explicitly connected to the 

principles of taking and raising.  

This chapter has discussed the types of representations and types of functions used in the 

written curriculum to treat the concept of composition. Algebraic representations appeared most 

frequently across the curriculum while multiple representations appeared sparingly. Linear 

polynomials occur most frequently in the composition content, while rational functions and 

piecewise-defined functions occur least. Transcendental functions predominately focus on the 

cancellation properties of inverse functions. Lastly, when solving equations with transcendental 

functions, composition is commonly referred to as taking.  
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CHAPTER 7: DISCUSSION 

This study was motivated by research results of students’ performance on composition 

tasks. The treatment of composition in the written curriculum in this study was examined to 

identify the opportunities students have to interact with composition. The following research 

questions guided my study: In mathematics textbooks,  

(1) when is composition formally introduced and how is it originally defined and explained 

to students?  

(2) what vocabulary terms and notations are used with composition and how are they 

defined, explained, and used?  

(3) which representations and types of functions are used in the composition content?  

(4) which topics are explicitly connected to composition and in what ways?  

(5) is the high school treatment of composition different than the treatment in college 

precalculus? If so, how?  

In this chapter, I return to these questions and discuss possible implications the results might 

have on student learning.  

7.1 Definitions and Terms of Composition 

Composition appears formally defined in every course from Algebra 1 through Calculus. 

Beginning in Algebra 1, composition is formally defined using the Sequence view of 

composition. In higher level courses, formal definitions use the Operation view of composition. 

The main difference between these two views is the set of objects that are being operated on. In 

the sequence view the objects are numbers, points, and figures and in the operation view the 

objects are functions.  
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Even though the formal definitions progress from the Sequence view to the Operation 

view, the informal descriptions and explanations of composition do not follow the same 

trajectory. All courses use both views to explain how to perform composition. Since the 

Sequence and Operation views are used throughout curriculum, while the Operation view is 

more mathematically abstract, it is not necessarily more sophisticated than the Sequence view. 

The relationship between these two views is not hierarchical. Both views are important to 

understanding composition just like the rule of a function (the sequence view) is important to 

understanding the function itself (the operation view).  

In all courses, many problems and examples focus on determining the formula that results 

from a composition. Since the focus is on the resulting function, the majority of these elements 

subscribe to the Operation view. This may result in students habitually finding a formula 

whenever a problem involves composition. For example, Horvath (2010) showed that students 

routinely determined a formula for h(x) = ( f ◦ g)(x) and h′(x) when asked to find the value of the 

derivative of h(x) at a point. The students used the Operation view to determine h(x) and then 

used derivative rules to find h′(x). If their understanding of composition was more flexible, they 

could use the Sequence view with the chain rule (requiring less algebra). 

Language is another aspect that influences student learning. The term substitution is 

frequently used to describe the act of composing, but is used across the curriculum to mean 

equality, substituting a value for a letter or variable (e.g., evaluation), substituting an expression 

for a variable, and a name for a method. Although the change from the formal definition to other 

meanings occurs within a single text, neither the teachers’ guide or the student edition notifies 

the user of this change in meaning.  
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It may be that part of the difficulty of composition for students is associated with these 

multiple meanings of the term substitution. The shift from substitution meaning equality to 

substitution meaning evaluation is subtle but mathematically important. This shift parallels the 

difference between a letter representing an unknown fixed quantity or value and a letter 

representing a variable quantity (Clement, 1982) or generalized number (Graham & Thomas, 

2000). Evaluation requires the substitution of a single valid value, but the value and the variable 

are not equivalent and are not interchangeable. Symbolically, substitution meaning equality 

could be represented as 3x , and substitution meaning evaluation could be represented as  

x = 3. 

7.2 Representations and Types of Functions 

The overwhelming majority of composition content is algebraic or symbolic. Of the few 

elements with multiple representations, many of them involve displaying more than one 

representation or creating a second representation different than the one provided. Despite all the 

research on multiple representations (e.g., Elia, et al., 2007; Leinhardt, Zaslavsky, & Stein, 

1990), multiple representations seldom appears in the composition content of the curriculum. A 

few exceptions include a single problem requesting the composition of two graphs. The benefit 

of problems such as this is not to make students proficient in composing graphs, but to see 

compositive structure in a representation other than algebraic. This could support students’ 

understanding of the structure composition provides to functions and not just the operation of 

composing two or more functions. For example, students could sketch the composite graph 

pointwise (using the sequence view) or they could use the operation view by composing a curve 

with a line by using graph transformations. An increase in the percentage of non-algebraic 

representations will allow students to experience compositive structure in another setting and 
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connect different aspects of composition across multiple representations. This could provide 

students an opportunity to experience a broader picture of the compositive structure of functions. 

Since the majority of composition content is algebraic, current literature on students 

understanding of functions can be reframed. For example, Meel (1998) and Carlson and 

colleagues (2010) found that students were successful with compositions represented 

algebraically. Knowing that the majority of composition content is algebraic, we can interpret 

Meel’s results as supporting Selden and colleagues (1994) finding that students were successful 

with familiar problems. Not surprisingly, students are successful with problems they have 

previously experienced. 

The majority of the functions used in composition content is what Even (1993) called 

“nice” types of functions. Approximately 50% of all composition content consists of linear 

polynomials (32%) or the inverse relationship of transcendental functions (16%). “Non-nice” 

functions such as piecewise-defined functions, seldom appear and many of these are written in 

ways that simplify the demands on students. For example, many of the composition elements 

with piecewise-defined functions have students graphically evaluate a composition at a specific 

value. This simplifies the problem because the issues of domain and range associated with the 

algebraic representation of piecewise-defined functions are removed and the difficulty of finding 

the resulting graph from the composition of two graphs is also averted by using only a specific 

value.  

Interestingly, some types of functions that appear less frequently in the composition 

curriculum have been difficult for students even though they are “nice” functions. For example, 

rational functions occur as the outside function in a composition in only 5% of the textbook 

elements. Horvath (2010) showed that students have difficulty performing compositions with the 
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rational function on the outside of the composition. While “nice functions” allow students to 

solve problems quickly, they do not provide students opportunities to grapple with compositive 

structure in complicated or non-routine situations, which support students understanding of the 

composition concept. 

7.3 Compositive Structure 

The compositive structure of functions occurs throughout the curriculum both explicitly 

and implicitly. This section discusses the potential benefits of explicitly comparing and 

contrasting composition to the arithmetic operations and explicitly discussing the role of 

composite structure in transcendental functions.  

7.3.1. Compare & Contrast Composition to Arithmetic Operations. When compared 

to the arithmetic operations, composition receives little attention. Comparing and contrasting the 

new operation of composition to the familiar operations of arithmetic has the potential to 

improve students’ understanding of composition. For example, the limit laws of addition, 

subtraction, multiplication, and division behave similarly. The limit of the 

sum/difference/product/quotient is the sum/difference/product/quotient6 of the limits. The limit 

of the composition, however, is not the composition of the limits. A discussion identifying this 

difference could help students understand both composition and limits and could include the 

limit of continuous functions and the cases when one or both functions in a composition are 

continuous. This could lead to “If f is continuous at the limit of g, then the limit of the 

composition equals the value of the outside function evaluated at the limit of the inside function” 

(CC, 102). Comparing and contrasting composition to the arithmetic operations could help 

                                                 
 
6 As long as the denominator in a quotient is not zero. 
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students see the structure of each operation and how these structures have similar and different 

behavior. 

Comparing and contrasting the operations of multiplication and composition may be 

particularly beneficial to students. Previous research has documented that students confuse these 

two operations the most (e.g., Engelke et al., 2005; Horvath, 2010). Multiplication and 

composition both use parenthetic notation and the terms of and cancellation; however these 

notations and terms have different meanings in the different structures. For example, when 

parentheses indicate multiplication, one can use the distributive property to write the expression 

4(x + y) as 4x + 4y. When parentheses indicate composition such as sin(x + y), the outside 

function cannot be distributed across the inner function multiplicatively. Instead, one has to use 

the angle sum formula to attain an equivalent expression such as sin(x)cos(y) + cos(x)sin(y). 

Another example is the term of. The value of one-half of one-fourth can be determined by 

multiplying 
2

1
 and 

4

1
 while “f of g” and “take the natural log of both sides” indicates 

composition and not multiplication. Cancellation also occurs in both multiplication and 

composition. In multiplication, cancellation happens rationally with the multiplicative inverse. 

The written curriculum, however, rarely mentions the compositive structure explicitly with 

respect to compositive cancellation. It is typically referred to as a property of inverse functions. 

Understandably, using similar terms for different operations could be confusing. Explicitly 

comparing and contrasting the similar terminology of multiplication and composition may help 

students differentiate between these two structures. 

7.3.2. Transcendental Functions. Composite structure is embedded in transcendental 

functions. For example, we express these functions verbally as “sine of x squared” or “take the 

natural log of both sides.” Both of these statements use the word “of” just like in “f of g” which 
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means to compose f with g. Composition also exists with the cancellation of transcendental 

functions. Typically the cancellation is a compositive cancellation involving inverse functions. 

Despite these connections, the composite structure of transcendental functions is rarely made 

explicit in the written curriculum.  

Explicitly connecting compositive structure to transcendental functions has the potential 

to improve students’ understanding of transcendental functions. It could help students understand 

the importance of having arguments with transcendental functions. For example, cos without an 

argument is meaningless. Using the words “compose log x with both sides” instead of “take log 

of both sides” could help students identify that they are using the compositive structure when 

they solve equations and “take” functions.  

Explicitly connecting compositive structure to transcendental functions could also 

increase students’ understanding of function in general. For example, some may argue that using 

multiplicative cancellation with transcendental functions, such as 
 

x

x

x

x 1

log

1log 



 or 

cos

sin

cos

sin


x

x
, is due to a lack of knowledge about function. However, this mathematical error is 

associated with the compositive structure of functions and not solely with the definition of 

functions.  

Current literature on students using multiplicative cancellation with transcendental 

functions has described this type of behavior as the linear extrapolation error (Matz, 1980) and 

treating the name of a function as a variable (Liang & Wood, 2005; Yen, 1999). All of these 

interpretations involve claims of students generalizing (incorrectly) from more familiar 

situations. Although many of these authors suggest that the definitions of specific functions 

should be emphasized, such as “loga b is the exponent required on the base a to produce the 
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value b,” I would advocate emphasizing the compositive structure of transcendental functions 

and contrasting it with multiplicative structure. This connects transcendental functions to 

mathematical concepts beyond its definitions. Additionally, composite structure provides a 

natural connection among the different types of transcendental functions. It may be that 

implicitly using compositive structure, students over-generalize the multiplicative structure 

because they view composition as something to do and not as a structure of functions. Providing 

students with an increased number of explicit experiences with composition prior to and during 

the learning of transcendental function, may improve their understanding of composition 

specifically and of functions more generally. 

More explicit exposure throughout the curriculum, where appropriate, has the potential to 

provide gains for students in understanding compositive structure without increasing the amount 

of time needed to teach and learn the material and without the need to create a new 

developmental sequence.  

7.4 Comparing the Composition Content in Secondary and Collegiate Courses 

It may not be surprising that more composition elements appear in college texts, than in 

high school texts since more advanced mathematical concepts build on prior concepts. The 

difference in the composition content in precalculus courses at the different levels is surprising. 

In all of the aspects of composition discussed in previous chapters, the college Precalculus texts 

have more composition elements than the secondary texts in all but one instance. On the largest 

scale, the college precalculus texts have 78 more composition elements in 43 fewer total pages. 

In some aspects, such as Evaluating a Composition and Multiple Representations, there are twice 

as many elements in collegiate precalculus. In other aspects, such as the Types of 

Representations, there is only a 13% increase. The one aspect that has more elements in high 
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school precalculus is the conceptual elements on domain and range. Table 7.1 summarizes 

previous tables in this dissertation and aggregates all of the high school and college Precalculus 

statistics from each table. The purpose of this table is to compare values across rows to see the 

difference in the composition content in secondary and collegiate Precalculus. To keep the 

connection to previous tables, if the previous table used percents, then the row in Table 7.1 

associated with that table also uses percents. The same is true regarding raw counts.  

Table 7.1 
Comparison between the amount of composition content in secondary and collegiate 
precalculus. 
Table/Figure 

Number 
Description of Table HS 

Precalculus 
College 

Precalculus 
Amount More in 

College Precalculus 

Table 3.3 Number of Textbook Pages 1539 1496 -43

Table 3.3 Number of Total Elements 118 196 +78

Table 5.1 Composite Structure 4 30 +26

Table 5.2 Conceptual Domain & Range 23 18 -5

Table 5.3 Procedural Domain & Range 44% 57% +13%

Figure 5.1 Non-Commutative 39 71 +32

Table 5.4 Compositive Inverse 26% 38% +12%

Table 5.5 Evaluate a Composition 16% 40% +24%

Table 6.1 Types of Representations 31% 35% +4%

Table 6.2 Multiple Representations 13 29 +16

Table 6.6 Types of Functions 22% 44% +22%

Table 6.9 “Taking” or “Raising” 30 88 +58

 

7.5 Limitations & Implications 

7.5.1 Limitations. As with any study involving curriculum, it is possible, in fact likely, 

that the enacted curriculum will be very different from the written curriculum. Teachers make 

individual choices on what content to teach and when and how to supplement textbooks. The 

purpose of this study was to identify what opportunities the written curriculum provides teachers 
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and students with respect to the concept of composition. Additionally, this study was did not 

analyze an exhaustive list of written curriculum. While the twelve selected textbooks were 

carefully chosen, these findings are limited to the content of these twelve texts. I also 

acknowledge limitations associated with the methods used in this study. Despite analyzing each 

book multiple times to identify composition content, some relevant content may have been 

overlooked based on the range of interpretations of composition. My study uses my perspective 

of where to draw the line with respect to implicit composition content (see Appendix B). 

Although I based my perspective of composition on many conversations with colleagues and 

study of advanced mathematical texts and prior research, others might choose to draw the line 

somewhere else. 

7.5.2 Implications for Teaching & Curriculum Development. Composition occurs 

throughout the secondary and early collegiate curriculum and provides an underlying 

mathematical structure for functions. If compositive structure was made more explicit at the 

secondary and collegiate levels, it would likely help students develop a more robust and flexible 

conception of composition and improve their understanding of other concepts associated with 

composition. 

As discussed previously, research has shown that students struggle to understand 

composition and transcendental functions. This study has shown that connections to composition 

are not frequently made explicit in the written curriculum. Teachers and curriculum developers 

might consider using composition and the compositive structure to connect mathematical ideas 

across the curriculum. Including explicit composition content with transcendental functions 

could provide structure to connect the different types of transcendental functions. Additionally, 
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including composition, where appropriate, provides students with the opportunity to experience 

and identify how composition and compositive structure appears in multiple contexts.  

Compositive cancellation is another aspect that could be made explicit. Compositive 

cancellation is only connected to inverse functions and the compositive structure is not explicitly 

discussed in these texts. Contrasting compositive cancellation with multiplicative cancellation 

could help students see how these two structures are different even though they use the same 

language and notation. 

Lastly, an increase in the percentage of non-algebraic representations and multiple 

representations could help students understand composition. In these texts, many of the elements 

with multiple representations involve the display of more than one representation or the creation 

of a second representation. A task that requires students to perform the composition of two 

graphs is one such example of a non-algebraic task. This could be accomplished using the 

sequence view of plotting points or by the operation view with graphic transformations. The 

purpose of such a task would not be solely to help students become proficient in composing 

graphs, rather to help them see compositive structure in another setting to get a broader picture of 

how this structure works. Other benefits include connecting commutative composition to 

commutative graph transformations. 

7.5.3 Implications for Research. While there are many possible implications for 

research from this study, this section mentions only a few. First, research on the teaching and 

learning of function could be reconceptualized to include the compositive structure of function. 

Carlson and colleagues (2010) included composition as an essential topic in preparing students 

for calculus and this dissertation has pointed out various parts of the curriculum where 

compositive structure played an essential role in the mathematics. Research on number sense has 
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benefited from studies on the arithmetic operations and it is reasonable to expect that research on 

function sense would similarly benefit from studies of composition. Second, future research on 

composition could use the sequence view and operation view of composition as a framework to 

study students understanding of composition. For example, a study could focus on which view 

students use when solving a variety of problems in a variety of contexts. Third, teaching 

experiments could be conducted to study the suggested changes to the curriculum and interviews 

could be conducted to examine how students interpret some of the ideas that implicitly relate to 

composition. This could include a study of students on what it means to them to “take the natural 

log” and determine why they think it is a valid mathematical move. Composition is a rich and 

important topic with many possibilities for future work. 
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APPENDIX A: SURVEY OF CALCULUS AND PRECALCULUS TEXTBOOKS 
 

Author(s) & Title of textbook 
 Name of Institution           Course Number | Course Title 

 
Calculus Textbooks 

 
Anton, Bivens, & Davis Calculus: Early Transcendentals 
 Case Western Reserve University  Math 121 | Calculus for Science and Engineers 
 University of Colorado at Denver  Math 1401 | Calculus I 
Apostol Calculus 
 California Institute of Technology  Math 1a  | Calculus of One Variable 
 Massachusetts Institute of Technology  18.014  | Calculus I with Theory 
Briggs & Cochran Calculus 
 Tulane University    Math 1150 | Long Calculus 
 University of Virginia   Math 1310 | Calculus I 
Briggs & Cochran Calculus: Early Transcendentals  
 Louisiana State University  Math 1550 | Calculus I 
 University of Connecticut   Math 1125Q | Calculus Ia 
Edwards Calculus: Early Transcendentals  
 Case Western Reserve University  Math 121 | Calculus for Science and Engineers 
Ellis & Gulick Calculus  
 University of Maryland    Math 140 | Calculus I 
Goldstein, Lay, Schneider & Asmar Calculus & It's Applications  
 University of California, Berkeley  Math 16A | Analytic Geometry & Calculus 
Hass, Weir, & Thomas University Calculus  
 University of Nebraska    Math 106 | Analytic Geometry and Calculus I 
 Virginia Polytechnic Institute and State University   
       Math 1205 | Calculus I 
 University of Georgia    Math 2250 | Calculus I for Science and  
          Engineering 
 University of Hawaii    Math 241 | Calculus I 
Hughes-Hallet, et al Calculus  
 Duke University    Math 31 | Introductory Calculus 
 Ohio State University   Math 151.02 | Calculus and Analytic Geometry I 
 University of Arizona    Math 124/125 | Calculus I 
 University of Colorado at Boulder  Math 1300 | Analytic Geometry/Calculus I 
 University of Michigan    Math 115 | Calculus I 
 Yeshiva University   MAT 1412 | Calculus I 
Kreider, Lahr & Diesel Principles of Calculus Modelling: An Interactive Approach  
 Dartmouth     Math 3  | Introduction to Calculus 
Larson, Hostetler, & Edwards Calculus: Early Transcendental Functions  
 University of South Florida   Math 2281 | Engineering Calculus I 
 University of South Florida   Math 2311 | Calculus I 
Mueller & Brent Just-In-Time: Algebra and Trigonmetry for Students of Calculus  
 Ohio State University (supplemental)  Math 15.01 | Calculus and Analytic Geometry 
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Rogawski Calculus  
 University of California, Los Angelos  Math 31A | Differential and Integral Calculus 
Rogawski Calculus: Early Transcendentals  
 Louisiana State University   Math 1550 | Calculus I 
 Rutgers      Math 151 | Calculus I for the Mathematical and  
          Physical Sciences 
 University of California, San Diego  Math 20A | Calculus for Science and  
          Engineering 
 University of Cincinnati    15 Math 251 | Calculus I 
 University of Illinois, Chicago   Math 180 | Calculus I 
Salas, Hille, & Etgen Calculus: One & Several Variables  
 Georgia Institute of Technology   Math 1501 | Calculus I 
Simons Calculus with Analytic Geometry  
 Massachusetts Institute of Technology  Math 18.01 | Calculus I 
Smith & Minton Calculs: Early Transcendentals  
 Arizona State University    Math 270 | Calculus with Analytic Geometry I 
Stewart Calculus  
 University of Missouri    Math 1500 | Analytic Geometry & Calculus I 
 Kansas State University    Math 220 | Analytic Geometry & Calculus I 
 University of New Mexico   Math 162 | Calculus I 
 University of Pennsylvania   Math 103 | Introduction to Calculus 
 University of Texas    M408C | Calculus I 
 University of Washington   Math 124 | Calculus with Analytic Geometry I 
 Vanderbilt University   Math 155a | Accel Single-Vari Calc I 
 University of California, Irvine   Math 2A | Single-Variable Calculus 
 Emory University     Math 111 | Calculus I 
 University of Iowa    22M:025 | Calculus I 
 Pennsylvania State University   Math 140 | Calculus with Analytic Geometry I 
 John Hopkins University    110:108 | Calculus I 
 University of Notre Dame   Math 10550 | Calculus I 
 University of California, Berkeley  Math 1A | Calculus 
 University of California, Riverside  Math 9A | First Year of Calculus 
 University of Albany (SUNY)   AMAT 112 | Calculus I 
 Indiana University    Math M211 | Calculus I 
Stewart Calculus: Early Transcendentals  
 Columbia University    Math V1101 | Calculus I 
 University of Illinois, Urbana-Champaign Math 220 | Calculus 
 Ohio State University   Math 151.01 | Calculus and Analytic Geometry 
 Syracuse University   Mat 295 | Calculus I 
 Tulane University    Math 1210 | Calculus I 
 University of Florida    MAC 2311 | Analytic Geometry and Calculus I 
 Rice University     Math 101 | Single Variable Calculus I 
 Wayne State University    MAT 2010 | Calculus I 
 University of Kentucky    Math 113 | Calculus I 
 University of California, Santa Cruz  Math 19A | Calculus for Science , Engineering,  
          and Mathematics 
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 Tufts University    Math 11 | Calculus I 
 Montana State University   M171Q | Calculus I 
 Florida State University   MAC 2311 | Calculus I 
 Ohio State University   Math 151.01 | Calculus and Analytic Geometry 
 University of Minnesota    Math 1271 | Calculus I 
 University of Rochester    Math 161 | Calculus IA 
 Purdue University    MA 161 | Plane Analytic Geometry and  
          Calculus I 
 University of South Carolina   Math 141 | Calculus I 
 University of North Carolina at Chapel Hill Math 231 | Calculus Function One Variable I 
 University of Oregon    Math 251 | Calculus I 
 Brown University    Math 0090 | Introductory Calculus, Part I 
 University of California, Santa Barbara  Math 3A | Calculus with Applications, first  
          course 
 University of Toronto    MAT 135Y | Calculus I 
 Northwestern University   Math 212 | Single Variable Calculus I 
 Northwestern University   Math 220 | Differential Calculus of One  
          Variable Functions 
 University of Kentucky    MA 113 | Calculus I 
 University at Buffalo (SUNY)   Math 141 | College Calculus I 
 Yale University     Math 112 | Calculus of Functions of One  
          Variable I 
 McGill University    Math 140 | Calculus I 
 University of Massachusetts   Math 131 | Calculus I 
Stewart Calculus: Early Vectors  
 Texas A&M University   Math 171 | Analytic Geometry and Calculus 
Stewart Essential Calculus  
 University of Pittsburgh   Math 0220 | Analytic Geometry and Calculus I 
 University of Southern California  Math 125 | Calculus I 
 New York University   V63.0121 | Calculus I 
 Oregon State University    Math 251 | Differential Calculus 
Stewart Essential Calculus: Early Transcendentals  
 Carnegie Mellon University  21-120  | Calculus I 
 Washinton State University   Math 171 | Calculus I 
 University of Alabama    Math 125 | Calculus I 
 Georgetown University   Math 035 | Calculus I 
Stewart Calculus: Concepts and Contexts  
 Brandeis University    Math 10a | Methods and Techniques of  
          Calculus 
 Washington University in St. Louis  Math 131 | Calculus I 
 North Carolina State University  MA 141 | Calculus I 
 Boston University    CAS MA 123 | Calculus I 
 Stony Brook University (SUNY)   Math 125 | Calculus A 
 Stanford University   Math 19 | Calculus 
 Stanford University   Math 41 | Calculus 
 Harvard University   Math 1a | Calculus I 
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 University of Tennessee    Math 141 | Calculus I 
 University of Kansas    Math 121 | Calculus I 
Stewart Custom edition  
 University of Delaware    Math 241 | Analytic Geometry and Calculus A 
Thomas, Weir, & Hass Thomas' Calculus  
 Michigan State University  Mth 132 | Calculus I 
Thomas, Weir, & Hass Thomas' Calculus: Early Transcendentals  
 Cornell University    Math 1110 | Calculus I 
 University of California, Davis   Math 021A | Calculus 
 Colorado State University   Math 160 | Calculus for Physical Scientists I 
Thomas, Weir, & Hass Thomas' Calculus with Second Order Differential Equations 
 University of Wisconsin, Madison  Math 221 | Calculus and Analytic Geometry 
Varburg Calculus  
 Iowa State University   Math 165 | Calculus I 
Varburg Calculus with Differential Equations  
 University of Utah    Math 1210 | Calculus I 
 



 108

Precalculus Textbooks 
Aufmann College Algebra & Trigonometry  
 Boston University    CAS MA 118 | College Algebra and Trigonometry 
Axler Precalculus: A Prelude to Calculus   
 Georgia Institute of Technology   Math 1113 | Precalculus 
 University of Wisconsin    Math 114 | Algebra and Trigonometry 
Axler Precalculus  
 Michigan State University   Mth 116 | College Algebra & Trigonometry 
 University of Oregon    Math 112 | Elementary Functions 
Barnett, Ziegler, & Byleen Precalculus  
 University of California, Irvine   Math 1A-1B | Precalculus 
Beecher, Penna, & Bittinger Algebra & Trigonometry  
 University of Pittsburgh    Math 0032 | Trigonometry and Functions 
Beecher, Penna, & Bittinger College Algebra  
 Kansas State University    Math 100 | College Algebra 
Blitzer Precalculus  
 Stony Brook University (SUNY)   Mat 123 | Introduction to Calculus 
 Arizona State University    MAT 170 | Precalculus Mathematics 
Blitzer Algebra and Trigonometry  
 University of Alabama    Math 115 | Precalculus Algebra and  
          Trigonometry 
 University at Buffalo (SUNY)   Math 115 | Survey of Algebra and  
          Trigonometry 
Coburn Precalculus  
 University of Illinois, Urbana-Champaign Math 115 | Preparation for Calculus 
 University of Texas    M305G | Preparation for Calculus 
 University of California, Los Angelos  Math 1  | Precalculus 
 University of California, San Diego  Math 4C | Precalculus for Science and  
          Engineering 
 University of California, Berkeley  Math 32 | Precalculus 
Cohen, Lee, & Sklar Precalculus: A Problem-Oriented Approach  
 University of California, Santa Cruz  Math 3  | Precalculus 
 University of California, Davis   Math 012 | Precalculus 
Cohen, Lee, & Sklar Precalculus  
 University of Arizona    Math 120R | Calculus Preparation 
Collingwood & Prince Precalculus (Online Book) 
 University of Washington   Math 120 | Precalculus 
Connally Functions Modeling Change: A Preparation for Calculus  
 Syracuse University    Mat 194 | Precalculus 
Connally, Hughes-Hallet, Gleason, et al. Functions Modeling Change: A Preparation for 
Calculus  
 University of California, Santa Barbara  Math 15 | Precalculus 
 Yeshiva University    MAT 1160 | Precalculus 
Dugopolski College Algebra & Trigonometry  
 University of California, Riverside  Math 5  | Introduction to College  
          Mathematics 



 109

 University of California, Riverside  Math 8A | Introduction to College  
          Mathematics for Science 
Dugopolski Precalculus: Functions & Graphs  
 University of California, Riverside  Math 8B | Introduction to College  
          Mathematics for Science 
 University of Colorado, Boulder   Math 1150 | Precalculus Mathematics 
 University of South Carolina   Math 115 | Precalculus Mathematics 
Estry Precalculus  
 Montana State University   M 151Q | Precalculus 
Faires & DeFanza Precalculus  
 New York University    V63.0009 | Algebra & Calculus 
 University of Cincinnati    15 Math 250 | Calculus 0 
 University of Connecticut   Math 1060Q | Precalculus 
Goodman & Hirsch Precalculus: Understanding Functions  
 University of Delaware    Math 117 | Pre-Calculus for Scientists and  
          Engineers 
Hungerford Contemporary Precalculus  
 University of Pittsburgh    Math 0200 | Prep for Scientific Calculus 
Keedy Algebra & Trigonometry  
 Vanderbilt University    Math 133 | Precalculus 
Larson & Hostetler Precalculus  
 Georgia Institute of Technology   Math 1113 | Precalculus 
 University of Utah    Math 1050 | College Algebra 
 University of Utah    Math 1060 | Trigonometry 
Larson & Hostetler Precalculus with Limits  
 University of Florida    MAC 1147 | Precalculus Algebra and  
          Trigonometry 
Larson & Hostetler Precalculus: A Concise Course  
 University of Colorado, Denver   Math 1130 | Precalculus Mathematics 
Larson, Hostetler, & Edwards Precalculus: Functions and Graphs  
 University of Kansas    Math 104 | Precalculus 
Lial, Greenwell, & Ritchey Calculus with Applications  
 Cornell University    Math 1101 | Calculus Preparation 
Mueller & Brent Just-In-Time Algebra and Trigonmetry for Calculus  
 Carnegie Mellon University   21-105  | Pre Calculus 
Online Departmental Texts (Different for each institution) 
 University of Washington   Math 120 | Precalculus 
 Texas A&M University    Math 150 | Functions, Trigonometry, and  
          Linear  Systems  
 Washington State University   Math 107 | Precalculus 
 University of Cincinnati (calculus supplement)  
       15 Math 250 | Calculus 0 
 Stony Brook University (SUNY) (calculus supplement)  
       Mat 123 | Introduction to Calculus 
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Ratti & McWaters Precalculus  
 University of South Florida   MAC 1147 | Precalculus, Algebra, and  
          Trigonometry 
Rockswold Algebra & Trigonometry with Modeling and Visualization  
 Oregon State University    Mth 112 | Elementary Functions 
Stewart Calculus  
 University of California, Riverside  Math 8B | Introduction to College  
          Mathematics for Science 
Stewart, Redlin, & Watson Algebra and Trigonometry  
 Pennsylvania State University   Math 041 | Trigonometry and Analytic  
          Geometry 
Stewart, Redlin, & Watson Precalculus  
 Brandeis University    Math 5a | Precalculus Mathematics 
 Ohio State University    Math 150 | Elementary Functions 
 Rutgers University    Math 640:115 | Precalculus College Mathematics 
 University of Hawaii    Math 140 | Precalculus 
 University of Maryland    Math 115 | Pre-Calculus 
 University of Missouri    Math 1160 | Precalculus Mathematics 
 University of New Mexico   Math 150 | Pre-Calculus Mathematics 
 University of Tennessee    Math 130 | Precalculus 
 Wayne State University    MAT 1800 | Elementary Functions 
Sullivan Algebra & Trignometry  
 Iowa State University    Math 142 | Trigonometry & Analytic Geometry 
 Louisiana State University   Math 1023 | College Algebra and Trigonometry 
 University of Nebraska    Math 103 | College Algebra & Trigonometry 
 University of Miami    Math 107/108 | Precalculus Mathematics I/II 
Sullivan College Algebra  
 University of Miami    Math 105 | Algebra and Trigonometry 
Sullivan Precalculus  
 Case Western Reserve University  Math 120 | Elementary Functions and Analytic  
          Geometry 
 Iowa State University    Math 142 | Trigonometry & Analytic Geometry 
 University of Illinois, Chicago   Math 121 | Precalculus Mathematics 
 University of Iowa    22M:009 | Elementary Functions 
 University of Minnesota    Math 1155 | Intensive Precalculus 
 University of Minnesota    Math 1051/1151 | Precalculus I/II 
Sullivan Precalculus: Enhanced with Graphing Utilities  
 Florida State University    MAC 1140 | Precalculus Algebra 
Sullivan & Sullivan Precalculus: Concepts Through Fuctions  
 North Carolina State University   MA 111 | Precalculus Algebra and  
          Trigonometry 
Swokkowski & Cole Precalculus: Functions and Graphs  
 Cornell University    Math 1009 | Precalculus Mathematics 
 Georgetown University    Math 001 | Pre-Calculus 
 University of Georgia    Math 1113 | Precalculus 
 University of North Carolina   Math 130 | Precalculus Mathematics 
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Swokowski & Cole Algebra and Trigonometry with Analytic Geometry  
 Indiana University    Math M027 | Pre-Calculus Mathematics with  
          Trigonometry 
 Purdue University    Math 159 | Precalculus 
Swokowski & Cole Fundamentals of Trigonometry  
 Kansas State University    Math 150 | Plane Trigonometry 
Warner & Costenoble Applied Calculus  
 Virginia Polytechnic Institute and State University  
       Math 1015 | Elementary Calculus with  
          Trigonometry (Precalculus) 
Young Algebra & Trigonometry  
 Tufts University     Math 4  | Fundamentals of Mathematics 
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APPENDIX B: PHASE TWO INCLUSIONS AND EXCLUSIONS OF IMPLICIT COMPOSITION 

Table B.1 
Data Elements Included and Excluded by Phase Two Criteria 

Topic Rationale for Inclusion Examples - Included Examples - Excluded 
Chain Rule The chain rule is defined using composition, 

( f ◦ g)′(x) = f ′(g(x)) · g′(x) and it is used to 
find the derivative of a composite function.  
 

The derivative of a composite 
function f [g(x)] is the derivative 
of the outer function f evaluated at 
the inner function g multiplied by 
the derivative of the inner function 
g (GP, 799). [Criteria 2, 3, & 6] 

 

Difference 
Quotient The Difference Quotient, 

h

xfhxf )()( 
,  

uses parenthetic notation. Also, simplification 
of the Difference Quotient requires the 
evaluation of f (x + h). 

Substitute f (x) = ln x into the 
difference quotient (GP, 217). 
[Criteria 4]  

True or False. If f (x) = x
2
 + x, then 

h

xfhxf )()( 
 = 2x + h (WP, 

430). [Criteria 3] 

 

Even and 
Odd 

Functions 

Determining if a function is even or odd and 
the procedure of composition are both 
referred to as substitution or plugging in. To 
determine whether a function is even or odd, 
–x is plugged into the x’s of f (x). Only 
elements that explicitly connected 
composition to even and odd functions or the 
procedure of determining whether a function 
is even or odd to terms of substitution were 
included in Phase Two. 

Determine whether ( f ◦ g)(x) is 
even, odd, neither, or not enough 
information for each of the 
following (GP, 63). [Criteria 2] 

Even Function: For every x in 
the domain of f, f (-x) = f (x) 
(GP, 18). 
 
Odd Function: For every x in the 
domain of f, f (-x) = - f (x) (GP, 
18). 
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Table B.1 (Cont’d) 

Topic Rationale for Inclusion Examples - Included Examples - Excluded 
Evaluating 
functions at 

specific 
values 

Evaluating functions numerically could be 
thought of as the composition of a function 
with a constant function. This view, however, 
was never used in any of the texts analyzed. 
Numerically evaluating functions was not 
sufficient for an element to be included in the 
Phase Two data set. It must also contain other 
content that satisfied the criteria of Phase Two 
such as having the terms of substitution, 
replace, or plug in present. 

When you have an equation such 
as 4x - 3y = 11, you can find one 
point easily by plugging in 0 for x 
and solving for y (PA1, 344). 
[Criteria 4] 

Given f (x) = 2x
2
 – 8, find f (6) 

(GA1, 64). 

Graph 
Trans-

formations 

The notation used with graph transformations 
is similar to the parenthetic notation used in 
composition. Connections between these two 
concepts were rarely made explicit. 
Frequently, the function notation, f (ax + h) + 
k, is typically used in the box features of the 
texts. Equations, such as (x + h)2 + (y + k)2 = 
r2, are used elsewhere. The main focus of 
graph transformations content is to identify 
the a, h, and k in the equation and describe 
how this shifts and transforms the graph and 
not on principles of composition. Graph 
transformations with trigonometric functions 
typically focus on identifying the amplitude, 
period, and phase shift of the transformed 
function. Content on graph transformations 
was included in Phase Two if it speaks about 
these transformations in Sequence view 
language (first one transformation and THEN 
another) or function notation is used. 

For example, if we apply a 
horizontal shift followed by a 
horizontal stretch, we may get a 
different result than if we first 
applied the horizontal stretch 
followed by the horizontal shift 
(WP, 256). [Criteria 1] 
 
Write a formula for the trans-

formation of f (x) = x  given by  
6 f (x – 8) (WP, 246). [Criteria 3] 
 

Let 
x

xf
1

)(  . 

)3(2
3

1
2

3

2
)( 












 xf

xx
xr

(CP, 279). [Criteria 3] 
 

The graph of y = (x - h)
2
 + k is 

the graph of y = x
2
 translated |h| 

units left if h is negative or |h| 
units right if h is positive and |k| 
units up if k is positive or |k| 
units down if k is negative (GA2, 
320). 
 
The general form of the tangent 
function, which is similar to that 
of the sinusoidal functions, is  
y = a tan(bx + c) + d, where a 
produces a vertical stretch or 
compression, b affects the 
period, c produces a phase shift, 
and d produces a vertical shift 
(GP, 269). 
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Table B.1 (Cont’d) 
Topic Rationale for Inclusion Examples - Included Examples - Excluded 
Higher 
Order 

Derivatives 

Second and higher order derivatives are found 
by repeatedly applying the derivative. Each 
time, the result of the previous derivative is 
used to determine the next derivative. This 
implicit idea of composition was not included 
in Phase Two. 

 We see that the successive 
derivatives occur in a cycle of 
length 4 and in particular,  

f
 (n)

(x) = cos x whenever n is a 
multiple of 4 (CC, 155). 
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Table B.1 (Cont’d) 
Topic Rationale for Inclusion Examples - Included Examples - Excluded 

Inverse 
Functions 

Inverse functions can be defined as (1) 
switching the domain and range so that the 
range maps to the domain, (2) the function 
whose composition with the original function 
results in the identity function, and (3) 
undoing a function. Interchanging the domain 
and range was not included in Phase Two.  
Explicit connections between inverse 
functions and composition, such as denoting 

( f ◦ f 
-1

) (x) = x = ( f 
-1
◦ f )(x) or referring to 

this principle as the “inverse function 
property” or “cancellation property of inverse 
function” was included in Phase Two. Lastly, 
when undoing a function referred to 
processing the output of the original function 
through the inverse function (a Sequence 
view of composition), it was included in the 
study by Criteria 1. Other forms of undoing 
were not sufficient to be included in Phase 
Two. 
 

When f (g(x)) = g( f (x)) = x, f and 
g are inverses of each other (GP, p. 
641). [Criteria 3] 
 
By definition the inverse function  

f 
-1

 undoes what f does: If we start 

with x, apply f, and then apply f
 -1

, 
we arrive back at x, where we 
started (CP, 201). [Criteria 1] 
 

The functions f and f 
-1

 are called 
inverses because they "undo" each 
other when composed (WP, 90). 
[Criteria 2] 
 
Answer: They are inverse 
functions. They "undo" each other, 
giving you back your input (PA1, 
434). [Criteria 1] 
 
The inverse of a function is a rule 
that acts on the output of the 
function and produces the 
corresponding input. So the 
inverse "undoes" or reverses what 
the function has done (CP, p. 199). 
[Criteria 1] 

The inverse relation is the set of 
ordered pairs obtained by 
exchanging the coordinates of 
each ordered pair (GA2, 417). 
 
When a relation is expressed as 
an equation, its inverse relation 
can be found by interchanging 
the independent and dependent 
variables (GP, 65). 
 
This exercise points out that if f 
and g are inverses and the point 
(a, b) is on the graph of f, the 
point (b, a) is on the graph of g 
(PP, 258). 
 
Extend the idea of finding an 
inverse of a function by undoing 
its steps in reverse order to find 
the inverse of an affine 
transformation (PA2, 532). 
 
The operation of taking a 
logarithm "undoes" the 
exponential function; the 
logarithm and the exponential 
are inverse functions (WP, 181). 
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Table B.1 (Cont’d) 
Topic Rationale for Inclusion Examples - Included Examples - Excluded 

Iteration Iterations can be explained as performing a 
function, then applying the function to the 
output value and repeating that process as 
many times as needed. The nested parenthetic 
notation such as g(g(g(x))) is also used with 
iterations. 

Iteration is the process of 
repeatedly composing a function 
with itself (GA2, 716). [Criteria 6] 
 
For Problem 3, when students 
choose a positive number and 
apply g repeatedly, their number 
tends towards the number 1.680. 
(PA2, 101). [Criteria 1] 

 

Parametric 
Equations 

Parametric equations also have implicit 
connections to composition. However, only 
elements that connected parametric equations 
to substitution were included in Phase Two. 

Write y = t
2
 + 2 and x = 3t – 1 in 

rectangular form by substituting 

3

1


x
x  for t in the equation for y 

(GP, 465). [Criteria 4] 

 

Periodic 
Functions 

Periodic functions are similar to graph 
transformation in that it uses parenthetic 
notation, but the major focus of periodic 
functions is identifying the value of p in the 
equation f (x + p) = f (x). Content on periodic 
functions was included if there was an explicit 
connection to composition. 
 

True or False. If f (x) is a periodic 
function with period k, then f 
(g(x)) is periodic with period k for 
every function g(x) (WC, 66). 
[Criteria 3] 

The period of a periodic function 
is the least positive number p so 
that f (x + p) = f (x) always (PP, 
p. 57). 

Polar Coor-
dinates 

Polar coordinates also have implicit 
connections to composition. However, only 
elements that connected polar coordinates to 
substitution were included in Phase Two. 

  

 
   



 117

Table B.1 (Cont’d) 
Topic Rationale for Inclusion Examples - Included Examples - Excluded 

Raising to a 
power 

Raising numbers and functions to a power use 
parenthetic notation. Simply raising to a 
power, however, does not always emphasize 
composition. For example, the equation of a 
circle, for instance, squares (x+h), but the 
focus is on the general form of the equation 
and not on the squaring the output of x+h. 
Thus, this alone was not sufficient to be 
included in the data set of Phase Two and 
required other content to be present in an 
element that satisfied the Phase Two criteria.  

 

A verbal description near (x + 7)
3
, 

such as “add seven and then cube 
the result.” [Criteria 1] 
 

( f (x))
2 [Criteria 3] 

 

(x + 7)
3
  

 

(4
2
)
3 

 

Recursion Recursion is implicitly connected to the 
Sequence view of composition. It involves 
using previous output(s) to determine future 
outputs. Also, functions can be expressed in 
recursive form and closed form. All instances 
of recursion were originally included, and 
then later excluded from the Phase Two data 
set. The categorizing of recursion as implicit 
composition and recursion as function form 
became problematic. The differences need to 
be examined as the primary focus of study, 
rather than as a secondary component. 
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Table B.1 (Cont’d) 
Topic Rationale for Inclusion Examples - Included Examples - Excluded 
Add, 

subtract, 
multiply, or 
divide both 
sides of an 
equation 

Adding 4 to both sides of the equation 5x – 4 
= 4x2 – 3 can be considered a composition. If 
g(x) = 5x – 4 and f (x) = x + 4, then the result 
of the composition f (g(x)) is the same as 
adding 4 to the left hand side of the equation. 
Since this was never presented as composition 
in any of these textbooks, this interpretation 
was not used to include the arithmetic 
operations in the Phase Two data set.  

  

Substitu-
tion 

Substitution a term often used to refer to the 
procedure of composition. To evaluate the 
composition f (g(x)), g(x) is substituted into 
the x’s of f (x). 
 
U-substitution and trig-substitution is also 
used to solve equations. This is related to 
decomposing a composite function. 

Substitute x - 4 for x in f (x) (GP, 
58). [Inclusion by Criteria 4] 
 
Sasha goes to the board and covers 
up the sin x [in the equation  
4 sin x + 5 = 7] with her hand:  
4  + 5 = 7 (PP, 18). [Inclusion by 
Criteria 7] 

 

Taking a 
function of 
both sides 
of an 
equation. 

When taking a function of both sides of an 
equation, a function is being applied to a 
function which is composition. For example 
“take sin of both sides” means to compose the 
sine function with the expressions on both 
sides of an equation.  

This application of the One-to-One 
Property is called taking the 
logarithm of each side of an 
equation (GP, 192). [Inclusion by 
Criteria 5] 
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Table B.1 (Cont’d) 
Topic Rationale for Inclusion Examples - Included Examples - Excluded 

Symmetry Similar to the topic of even and odd functions, 
symmetry about the origin, x-axis, and y-axis 
is related to composition through parenthetic 
notation and the substitution terms. Elements 
containing the substitution terms were 
included in the Phase Two data set, but 
statements such as  
f (-x) = f (x), f (x) = - f (x), f (-x) = - f (x) were 
not sufficient for inclusion. 

Algebraic Test: Replacing x with   
-x produces an equivalent equation 
(GP, 16). [Criteria 4] 

Graphical Test: The graph of a 
relation is symmetric with 
respect to the y-axis if and only 
if for every points (x, y) on the 
graph, the point (-x, y) is also on 
the graph (GP, 16). 
 

Systems of 
Equations 

The topic of systems of equations connects to 
composition through the term substitution. 
Substitution is the name of a method for 
solving systems of equations and the term 
often used to refer to the procedure of 
composition. The results of each of these 
concepts however are different. Solving 
systems results in values while composition 
results in functions.  

  

 



 120

APPENDIX C: COMPOSITION CODING SCHEME 
 

MC: Expressions that are mathematically problematic (incomplete, not well-defined, etc.) about 
composition. 

 
S: The element is a statement. This includes exposition, explanation in the solution of a worked 

example.  
P: The element is a problem that the student is given to solve. 
IP: The element is instructions to a problem that the student will solve more than once for 

different functions or given information. Note: If the student is to solve it only once, it 
would just be coded as P. 

Q: Question in the TE. 
F: In a Figure 
 
Conceptual Composition Codes 
CC 01 Domain of ( f ◦ g )(x) (operation): The values of x in the domain of g such that g(x) is an 

element in the domain of f, the domain of ( f ◦ g ) consists of just those values of x. Note: 
the focus is on the final composed function. 

CC 02 Domain (sequence view): g(x) must be in the domain of f  Note: the focus is on the range 
of the inside function being a subset of the domain of the outside function 

CC 02a Domain (first half of CC 02): x maps to g(x)  
CC 03 Domain of the composition (no view): Domain that is not CC 01 or CC 02 
CC 04 Output of the “inside”, is the input of the “outside”: Similar to CC 02, but no reference to 

domain and range, only input and output 
CC 05 The composition f(g(x)) is undefined if g(x) is not an element of the domain of f(x):  
CC 06 Associativity: ( f ◦ g ) ◦ h = f ◦ (g ◦ h) : 
CC 07 Commutativity: In general, f ◦ g ≠ g ◦ f : 
CC 08 Some pairs of f and g are commutative:  
CC 09 Composition of 2 one-to-one functions is one-to-one:  
CC 10 Composite is defined where both g(x) and f (x) are defined: 
 
CC 11 Composition describe via the Sequence view: First one function and then another, then 

another, output used as input, etc.  
CC 12 Composition described via the Operation view: The result of a composition is a function 
CC 13 Definition of Composition: ( f ◦ g )(x) = f (g(x)), and others  
CC 14 Composition is linking 2 function machines (SV):  
CC 15 Difference/Similarities of composition with the arithmetic operations:  
CC 16 Define a new function using composition:  
 
CC 19 Other Properties of composite functions: such as lim of composite = f (lim g) 
 
CC 24 Compute by substitution:  
CC 25 Inverse functions “undo” each other when composed: Explicit link to composition 

required. 
 
CC 29 Trig inverse Domain Stuff:  
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CC 30 Identity function: Such as compose with the identity and other identity function text 

connected to composition. 
 
CC 31 Non-uniqueness of decomposition: Decomposition of a function is not unique.  
CC 32 Definition of Decomposition: two (or more) functions whose composition is h 
CC 33 You can decompose a function: 
 
CC 35 Conceptual of PC 35:  
 
CC 41 Define a composition of geometric transformations or describe its properties: Define a 

glide reflection (p. 299, Glencoe Geometry) (GG, p. 588 #39), translation, rotation, etc. 
CC 42 Composition of Geometric Transformations via sequence view: First one transformation 

and then another, then another, etc. 
CC 43 Operation view (transformation): The result of a composition is a transformation 
CC 44 Composition of reflections stuff:  
 
CC 51-# Number of elements in a composition: # indicates how many elements 
 
 
CC 61 Statements explicitly connecting composition to other items: When f and g are 

compositively commutative and equal x (the identity function), they are inverses of each 
other. 

CC 62 Statements explicitly connecting other items (i.e., inverse functions) to composition:  
 

CC 65 Cancellation property Log/Exp: Example log10 10
3
 = 3 or ln e

x
 = x 

CC 66 Cancellation property Trig: Example sin(sin
-1

x) = x 
CC 67 Composition of a function and its inverse is the identity function: This also includes the 

cancellation property of inverse functions not listed in CC 65 or CC 66. 

CC 68 Conceptual part of verify f and f
 -1

 are inverses: 
 
CC 71 Important skill/concept in future mathematics (i.e., calculus):  
 
CC 74 Conceptual u-substitution stuff: i.e., Talking about “lumping” 
CC 75 Monic in “2x” or something else nontrivial: 
CC 76 Plug the u back in: 
CC 77 Conceptual PC 77 stuff: 
CC 78 Statement about compositive structure: Build more complicated/complex functions from 

simple ones, etc. 
 
CC 80 Composition of more than 2 functions is possible:  
CC 81 Decompose into more than 2 functions is possible: 
 
CC 83 Define an affine transformation:  
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CC 88 Chain rule allows the derivative of a composite function: 
 
CC 91 Composition in real-world situations 
CC 96 Seems conceptual about composition, but doesn’t fit elsewhere 
CC 97 units of application problems:  
 
 
Procedural Composition Codes 
PC 01o Domain of the “outside”: Find the domain of the outside function 
PC 01i Domain of the “inside”: Find the domain of the inside function 
PC 02 Domain of a composed function: Find the domain of a composed function (including 

finding “any restrictions” requests) 
PC 02a Assertion of the domain: Just the answer 
 
PC 03o Range of the “outside”: Find the range of the outside function 
PC 03i Range of the inside: Find the range of the inside function 
PC 04 Range of composed function: Find the range of a composed function 
 
PC 06 Associativity: Compute both  ( f ◦ g ) ◦ h and  f ◦ (g ◦ h)  
PC 07 Commutativity: Compute both f ◦ g and g ◦ f. 

PC 07-b: the second part of computing both f ◦ g and g ◦ f  Note: I created a second line 
to capture the different FC codes 

PC 08 Find 2 functions such that f (g(x) = g( f (x)):  
PC 09 Reverse the order of function machines:  
PC 10 Given f find g such that f (g) = g( f ):  
 
PC 11 Evaluate a composite f ◦ g at a numerical point: (f ◦ g)(4) not dependent on view 
PC 12 Evaluating a function “at a variable”: The variable must be different than the one used to 

define the function. Example: Given f, Find f (a) [Ex: f (t) = 2t
3
, f (g) = 2g

3
] 

PC 12-c The variable has a coefficient on it: Given f, Find f (3a) 
PC 13 Evaluating a function “at an expression”: Given f, Find f (x + h) 
PC 14 A function put “inside” a formula or expression: Key feature/difference between PC 26 is 
that the argument is just a single variable. Example: 3[ f (t)] + 2 
PC 15 Evaluate a composition where f and g are defined external to the request for composition: 

Given the outside and inside function (formula, graph, table, machine, etc.) provide an 
expression for the composition (Notation has f and g as objects) (similar to PC 42) 

PC 16 Compose a function with the identity function:  
PC 17 Evaluate a composition via the sequence view: Given f (outside) and g (inside), evaluate 

( f ◦ g ) at a given value a (or numerical value), by first evaluating g(a) and then 
evaluating f (g(a)). 

PC 18 Evaluate a composition via the operation view: Given f (outside) and g (inside), evaluate 
( g ◦ f ) at a given value a (or numerical value), by first representing ( g ◦ f ), then 
evaluating at a. 

 
PC 19 Define a composite mapping (or ordered pairs): Given two mappings f  and g, find  

( f ◦ g )(x). 
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PC 20 Define a composition of affine transformations as a single affine transformation:  
PC 21 Evaluate a composition of trig functions (using inverse trig functions which is the same as 

the original function) at a numerical value: sin(sin-1 ¾) or sin(arcsin ¾) 
PC 22 Evaluate a composition of trig functions (using inverse trig functions which is the 

different to the original function) at a numerical value: cos(tan-1 1) or tan(arcos 1) 
PC 23 Given the output, find the input of the composition:  
PC 24 (operation view) Perform composition by plugging in/substitution/replacing an expression 

for a variable:  
PC 25 Find [something] of the result: (SV) 
 
PC 26 Evaluating a function “at an expression (PC 13) is used within another formula or 

expression (PC 14): Key feature/difference between PC 14 is that the argument is just an 
expression. This includes things like “f (x + 1) – f (x)”. If “f (x + 1) – f (5)” instead of f (x) 
it is PC 14. f (x) is a “variable” while f (5) is a number. 

PC 27 Worked out step of composition where the inside is plugged into the f (g(x)) formula (step 
1) 

PC 28 Worked out step of composition where the g(x) is plugged into the formula for f (x) (step 
2) 
PC 84 When a PC 27 or PC 28 code is done at the same time was a numerical value is 

evaluated for x (see GA2 p. 412 “Solve” section of Ex 4) 
PC 29 Trig functions that have multiple functions as the angle (or argument):  

Ex. tan[cos
-1

2

3
 + sin

-1 
2

1
 ] 

PC 30 Graph a composition  
 
PC 31 Check (or verify) your work of decomposition by composing the functions:  
PC 32-# Decomposition: Given a function, decompose it into # of functions. (usually 2 

functions) 
PC 33 Restriction on the decomposition: (i.e., Neither function can be the identity function) 
PC 34 Given f (x) (outer) and (f ◦ g)(x), find g(x) (inner):  
PC 35 Given g(x) (inner) and (f ◦ g)(x), find f (x) (outer): 
PC 36 Given one function, find the other function such that (f ◦ g)(x) = x: Finding a one-sided 

inverse function 
PC 37 Given one function and a composition, Find 2 other function such that composing the 3 

function results in the given composite function:  
PC 38 Restriction on PC 37: (i.e., Use only linear functions) 
PC 39 Given one function, find the other function such that (f ◦ g)(x) = (g ◦ f )(x) = x: Find a two-

sided inverse function 
PC 40 Another decomposition where the composition results in the original/given function:  
 
PC 41 Two Geometric Transformations (sequence view): First one transformation and then the 

second. (elements with “this THEN that” would be coded here) 
PC 42 Write Two Geometric Transformations with a single rule: (Note: Similar to PC 15) 
PC 43 Given a single transformation, produce 2 transformations that result in the original when 

composed: (decompose idea) 
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PC 51-# Number of elements to be composed: i.e.,   )(xhgf   Note: # indicates how many 
objects 

 

PC 60 Draw a function machine: 
PC 62 Write composition into function Notation: See SP p. 279 
PC 63 Find the inverse of a composition:  

PC 65 Using the cancellation property Log/Exp: Ex. log 10
3
 = 3 or ln e

x
 = x 

PC 66 Using the cancellation property Trig: Ex. sin(sin
-1

x) = x 
PC 67 Doing the CC 67 principle: Compose a function with its inverse to get the identity  

PC 68 Verify / Show the inverse function: Verify that a function g is the inverse function f 
-1

 by 
verifying that f ◦ g = x and g ◦ f = x 

 
PC 71 Write a composite trig function algebraically without involving trig functions: 
PC 72 Write an algebraic expression as a composite trig (or inverse trig) function: 
PC 73 Lumping with graphing:  
PC 74 u-subsitution: Let variable = an expression in the equation or expression and then 

substitute that variable into the equation to assist in solving it. 
PC 75 Do monic polynomial in something nontrivial: 
PC 76 Plug back in for u: 
 
PC 77 Both f (g) and g( f ) are found in subsequent 

problems/exercises/examples/sentences/statements: Ex. Problem 3 finds f (g) and 
problem 4 finds g( f ) and nothing is noted about it commutativity or that they are finding 
both. 

PC 78 Using composite structure to solve problems: 
PC 79 Work from the inside out: 
 
PC 80 Numerical Decomposition: 
 
PC 81 Repeated substitution: Ex: y(x) = 5x, z(y) = 2y + 1, find z(x)  Ex: PA2, p. 35 #6 
PC 82 Graph Transformation that uses composition similar to PC 14: (GP p. 54 #64-71) 
PC 83 Define f and g so that f (g(specified value) = another specified value 
PC 84 When a PC 27 or PC 28 code is done at the same time was a numerical value is evaluated 

for x (see GA2 p. 412 “Solve” section of Ex 4) 
PC 85 Evaluating pretend students’ work: 
PC 86 Find values such that f (g(b)) = g( f (b)): 
PC 87 Find a value such that f (g(a)) = specified value: 
PC 88 Differentiate a composite function: 
PC 89 Compose with the Identity Function: 
 
PC 91 Contextual Word Problem, Solving Real-World Problems/Functions 
PC 92 What does the composite function represent (in the context of the problem) 
PC 93 Does ( f (g(x)) or g( f (x)) represent the context of the problem? 
PC 94 Use a graphing calculator to graph the composite: 
PC 95 Use a graphing calculator to help determine the domain: 
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PC 96 Use Sketchpad to graph a composite: 
PC 97 What are the units of the composite function?: 
 
Other Composition Related Codes 
 
 Iteration 
OC 01 Iteration (the inside and outside function are the same): Example: Find f ( f (1) 
OC 02 Find a function that is its own inverse: f ( f (x)) = x 
OC 03 Find a function that when composed with itself 3 times (or 3 iterations) the result is x: 
OC 04 More than 3 iterations:  
OC 05 Definition of Iteration: (CC) 
OC 06 Repeatedly apply the function: 
OC 07 Iteration convergence or end behavior: (CC) 
OC 08 Find if the function converges or find the end behavior: 
OC 09 Other PC convergence or end behavior: (PC) 
OC 10 Other iteration stuff: (PC) 
OC 11 Other iteration stuff: (CC) 
OC 12 Notation: 
 
 

Function Operation 
OC 21 Find the domain of functions added, subtracted, multiplied, or divided:  
OC 22 Find the range of functions added, subtracted, multiplied, or divided: 
OC 23 Function operation (addition): 
OC 24 Function operation (subtraction): 
OC 25 Function operation (multiplication): 
OC 26 Function operation (division): 
 
 Difference Quotient 
OC 31 Evaluate the difference quotient: Not given VC code. 
OC 32 Statement of the difference quotient: Not given VC code. (if shown, even in an example) 
OC 33 limit of the difference quotient: Not given VC code. 
OC 34 The difference quotient must be used to solve a problem: 
OC 35 The limit of the difference quotient must be used to solve a problem: (this is when it is not 

shown) 
 
 Take & Raise 
OC 41 Take the log (or ln) of both sides: 
OC 42 Raise both sides to the e or 10:  

OC 43 Square, cube, 4
th

 power, etc. both sides: 
OC 44 Take the square root of both sides: 
OC 45 Take a trig function to both sides: Ex. Take the sin of both sides 
OC 46 Take or Raise both sides to something not listed in OC 41-45: such as the opposite, the 

reciprocal, etc. 
OC 47 Take the absolute value: 
OC 48 Take inverse: 
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OC 49 Take f (or some other function): 
OC 50 Take limit: 
 
OC 51 “untaking” log: 
OC 52 “take log” happens in worked out steps, but not explicitly stated in the text: 
OC 53 set exponents equal in an exponential equation: 
OC 54 Square root property: (similar to OC 53) 
OC 55 “Take e” or “Raise to the e”: (similar to OC 51/52/53) 
 

OC 63 n
th

 root n>2: 
OC 64 raise # to each side: 
OC 65 raise to x (exponent) the each side: 
 
OC 61 Worked out steps shows log applied to both sides of the equation: 
OC 62 Worked out steps shows square root applied to both sides of the equation: 
OC 66 Worked out steps shows trig (or trig inverses) applied to both sides of the equation: 
 
Affine Transformations 
OC 71 PC 
OC 72 CC 
OC 73 Find k such that T(a) ◦ T(b) = T(k) 
OC 74 Transforming Equations: 
OC 75 Write a single Affine Transformation: 
 
Graph Transformations (graphing) 
OC 81 PC 
OC 82 CC 
 
 
Conventional Composition Codes 
VC 01 Spoken mathematics (of): ( f ◦ g )(x) is read as “f of g”  
VC 02 Spoken mathematics (circle): ( f ◦ g )(x) is read as “f circle g”  
VC 03 Spoken mathematics (“composed with” or “composition”): ( f ◦ g )(x) is read as “f 

composed with g” 
VC 04 Spoken mathematics (other): ( f ◦ g )(x) is read as ____________ (fog)  
VC 05 In f (g(x)), f is called the “outside” function: 
VC 06 In f (g(x)), g is called the “inside” function (or innermost): 
 VC 47 a function is called the “middle” function: 

VC 48 The “variable” is a function: 
VC 49 a function “of” a function: 
VC 50 In f (g(x)), g is called the “first” function: 
VC 51 In f (g(x)), f is called the “second” function: 

 VC 52 In f (g(x)), g is called the “input”: 
VC 53 “output”: 
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VC 07 Parenthetic notation with f and g defined external of the composition: composition is 
denoted as f (g (x)), where f (x) = …. and g(x) = …. There can be more than one VC 07 
code if more than one expression of parentheses is printed in the problem/statement. 
(Note: one expression with 3 sets of parentheses is only one VC 07 code.) 

VC 08 Parenthetic notation using function names (trig, log, e) and not f and g:  
sin(arcsin x + arccos x) 
VC 18 (old VC 08-e): The exponential function is used, but no parentheses are used. 
VC 19 The log function is used, but no parentheses are used. 
VC 20 The exponential function with an real number base, but no parentheses are used. 

VC 20(not used every time—this should be deleted) 
 
VC 09 Parenthetic notation f (outside) is defined external and g (inside) is defined internal of the 

composition: Example f (x + h), f (4x), etc. There can be more than one VC 09 code if 
more than one expression of parentheses is printed in the problem/statement. (Note: one 
expression with 3 sets of parentheses is only one VC 09 code.) 

VC 10 Parenthetic notation f (outside) is defined internal and g (inside) is defined external of the 

composition: Example f (t) = 2t
3
, Find 3[f (t)] + 2 

 
VC 11 Circle notation: composition is denoted as ( f ◦ g )(x) There can be more than one VC 11 

code if more than one circle is printed in the problem/statement. (Note: one expression 
with 3 circles is only one VC 11 code.) 

 VC 11-multi: If an expression has more than one circle in it. 
 
VC 12 Definition / Notation of Composition: ( f ◦ g )(x) = f (g(x))   
 
VC 14 Neither VC 07 or VC 11, just told to evaluate the variable at the given value: 
VC 15 Parentheses related to the order of operations: (working from the inside of parentheses 

out) 
VC 16 sequence or chain of variables: y = f (u) = expression(u) and u = g(x) = expression(x) (see 

CC p. 33) 
VC 17 Double prime notation used to indicate the second image of a transformation (single 

prime for first image): 
VC 18 (old VC 08-e): The exponential function is used, but no parentheses are used. 
VC 19 The log function is used, but no parentheses are used. 
VC 20 The exponential function with an real number base, but no parentheses are used. 
 
VC 21 Composition is described as “substitution”: 
VC 22 Composition is described as “replacing”: 
VC 23 Composition is described as “plugging in”: 
VC 24 Composition is described as “combining”: 
VC 25 Composition is described as “linking function machines”: 
 
VC 31 Caution/Warning about not confusing composition with multiplication such as: Do not 

mix up f (g(x)) with f times g 
VC 32 f(x) is read as “f of x”:  similarly, f (5) is read “f of 5” 
VC 33 The word “of” means multiply with a fraction or decimal: 
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VC 34 Other notation comment: 
 
VC 41 The word ‘combine’ is used: 
VC 46 the “next” function: 
VC 47 a function is called the “middle” function: 
VC 48 The “variable” is a function: 
VC 49 a function “of” a function: 
VC 50 In f (g(x)), g is called the “first” function: 
VC 51 In f (g(x)), f is called the “second” function: 
VC 52 In f (g(x)), g is called the “input”: 
VC 53 “output”: 
 
VC 57 Parentheses, f(g(x)), are used: (such as in an explanation) and there is not an explicit 

formula attached to it. 
 
VC 74 “lumping” technique:  
 
VC 97 The word decompose is in the element 
VC 98 The word composition is in the element: 
VC 99 The word composition is in the element, but it doesn’t fit in another code: 
 
Representation Composition Codes 
RC ##γ (where γ indicates the part of the composition - outside (o), middle (m), or inside (i)) 

RC ##o (outside):   
RC ##m (inside):  
RC ##n (middle): 
RC ##i (second middle) 
RC ##a (answer or result):  
RC ##+ (anything over 4 things composed):  
RC ##d (the representation of the thing to be decomposed): 
 

RC 01 Algebraic Representation: This will also include instances similar to sin
-1

(sin
3


). 

RC 02 Graphical Representation: Coordinate graph 
RC 03 Tabular Representation:  
RC 04 Mapping Representation:  
RC 05 Ordered-Pairs Representation: 
RC 08 Function Machine:  

RC 09 Verbal names: such as REC for 
x

1
 and ABS for |x|, or just the words square root written 

out. 
RC 10 Geometry: Picture or figure not on a coordinate graph or anything  
RC 11 Numerical: h(4) = 2 (no other info given) 
 
Function Type Composition Codes  
 



 129

FC ##γ (where γ indicates the part of the composition - outside (o), middle (m), or inside (i)) 
 This is for FC 01, FC 04-FC 20 (basically all except FC 02 and FC 03) 

FC ##o Polynomial (outside):  
FC ##m Polynomial (middle):  
FC ##n Polynomial (second middle, if any):  
FC ##i Polynomial (inside): 
FC ##d Polynomial (decompose): If the problem asks students to decompose a function, 

then the type of function that is given to the student is given the d gamma code. 
FC ##do Polynomial (decompose): The given outside function (problem asks the student 

to provide the inside function) 
FC ##di Polynomial (decompose): The given inside function (problem asks the student to 

provide the outside function) 
 
FC 02γ-# The number of terms in the polynomial:  

γ indicates the outside (o), middle (m), or inside (i) part of the composition 
# means the number of terms in the polynomial 

Ex: (ax
2
 + bx + c)

3
 is coded as FC 02o-1 and FC 02i-3 (the outer function has on term 

(x
3
) and the inner function has three terms (ax

2
, bx, and c) 

 
FC 03: Order of the polynomial 
FC 03γ-0 Constant term: x = a  
FC 03γ-1 Linear polynomial: ax + b:  

FC 03γ-2 Quadratic polynomial: ax
2
 + bx + c:  

FC 03γ-3 Cubic polynomial: ax
3
 + bx

2
 + cx + d:  

FC 03γ-4 Polynomial of order 4:  
FC 03γ-5 Polynomial of order 5: 
…. 
 
FC 01 Polynomial:  

FC 04 Rational Function/Expression: Note: If the function is written as 
7

5x
with the 

denominator being a constant and not a polynomial with degree>0 is considered a 
polynomial (or FC 01). The example would then be coded in FC 02 and FC 03 as 

7

5

7

1
x . 

FC 05 Defined as ordered pairs or elements (could be mapping defined for each element): 
FC 06 Exponential:  
FC 07 Logarithmic:  
FC 08 Piecewise-defined function:  
FC 09 Square root function: 
FC 10/## Absolute Value /## is the type of function inside the absolute value:  
FC 11 Greatest Integer Function:  
FC 12 Cubic Root:  
FC 13 Identity Function f (x) = x:  
FC 14 Trigonometric:  



 130

FC 15 Inverse Trig Function (trig
-1

 notation):  
FC 16 Inverse Trig Function (arc notation) : 

FC 17 Non-simple or factored polynomial: Example 2(x – 5)
2
 

 
FC 18 Reflection (Geometric situation) 

FC 18a write a double (composition) reflection composition as a single transformation 
FC 19 Rotation (Geometric situation) 

FC 19a write a double (composition) rotation as a single transformation 
FC 20  Translation (Geometric situation) 

FC 20a write a double (composition) translation as a single transformation 
 
FC 21 Glide Reflection 
FC 22 Dilation 
FC 23 n’th root function (greater than cube root): 
FC 24 Affine Transformation: 
FC 25 Affine Transformation – Translation: 
FC 26 Affine Transformation – Dilation:  
 
Location Composition Codes  
LC 01 Preparation Material/Diagnoses Problems: Before a lesson to review prerequisite skills 

(Examples here are still LC 06) 
LC 02 Exposition: The location of a sentence is in the explanation 
LC 03 Pop up Box: The location of a sentence is in a pop up box or material in the margin(s) of 

the Student Manual. 
LC 04 Key Concept / Blue Box: The location of a sentence is in an “important” box. 
LC 05 Proof Box: The location of a sentence is located inside a proof in the exposition (the proof 

may or may not be enclosed in a box). 
LC 06 Example: The location of a sentence is in an example (prep/diagnosis example goes here) 
LC 07 Example Exercise or Mid-lesson Exercise: The problem is immediately after an example 

in the text or part of the lesson for students to work through. 
LC 08 Exercise: The location of a sentence is in an exercise 
LC 09 Review Problems / Maintaining Skills/Skills Refresher: Problems in another section to 

review previously learned material (e.g., Spiral Review, Standardized Test Practice, 
Skills Review) 

LC 10 Chapter Summary/Review or Reflection (text, not problems):  
LC 11 Chapter Review Problems/Test or Mid-Chapter Test (end of investigation test/reflection 

problem): 
LC 12 Chapter Review Problems Example:  
LC 13 Cumulative Review Problems: 
LC 14 Activity or Project: The location of the content is in an activity section 
LC 15 Exercises that are indicated (in Stewart) to be Example Exercises: Indicated by a pencil in 

the Exercises list and noted after every example 
LC 16 Lesson/unit goal statement: 
LC 17 Caption on a picture, image, or figure: 
LC 18 In the figure, graph, itself: A curve (or function) on a graph with the equation labeled as in 

WP p. 77, Fig 2.12 
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LC 21 TE Exposition: The location of a sentence is in the Teacher Guide. 
LC 22 TE box feature: The location of a sentence is in a feature (box) in the TE. (e.g., 

Differentiated Instruction) 
LC 23 TE Example: The problem is an additional example located in the TE. 
LC 24 Question and Answer are both in the TE: (see p. 271 Glencoe Geometry) 
LC 25 TE Exposition on exercises, problems, examples:  
LC 26 TE lesson/unit goal statement: 
 
LC 37 (LC 28) TE Answer to an LC 07: 
LC 38 (LC 27) TE Answer to Exercise (LC 08): 
LC 39 (LC 30) TE Answer to an LC 09: 
 
LC 31 (LC 31) TE Answer to an LC 11: 
LC 32 TE Answer to an LC 13: 
LC 33 (LC 29) TE Answer to an LC 23: 
LC 34 TE Answer to LC 14: 
 
Substitution / Replace / Plug in Codes - The word(s) substitution, replace, or plug in must be 
used. 

 

Equality: Equal values are “substituted” in for values such as cos(
3


) = 

2

1
. It also indicates 

two expressions are equal such as x = loga b or h = csin A. 
Ex: A quantity may be substituted for its equal in any expression. (GA1 p. 16) 

If a = b, then a may be replaced by b in any expression. (GA1 p. 16) 
(5 · 2) = 10 by substitution 
Given: m<JKL = 8x + 13   Proof: m<JKL = 8x + 13 by substitution (GG, p. 40) 

   
Check: Substitution is used to check if the answer is correct. 
 
Evaluate: An expression is evaluated by substituting a value for the variable. 

Ex: The value f (-6) is found by substituting -6 for each x in the equation. (GA2, p. 64) 
 

Values: A numerical value is substituted for a variable. Note: Evaluating at an expression 
goes under SV->Expres 

Ex: Substitute x = -5 into (2) and solve for A. (PP, p. 268) 
Substituting t = 20, Q = 88.2 and t = 23, Q = 91.4 gives two equations for Q(0) and a: 

(WC, p. 12) 
 

Method: Substitution is part of the name of the method or algorithm. These include: (1) 
solving a system of equations via substitution, (2) synthetic substitution, and/or (3) direct 
substitution. (4) trigonometric substitution, (5) back-substitute, and (6) replacing-the-axes.  
Note: Even if the method is to substitute values (i.e., back-substitution), I put it here. 

Ex: Similarly, direct substitution provides the correct answer in part (b). (CP, p. 851) 
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Solve systems of linear equations with two variables using substitution and 
elimination (PA1, p. 403) 

 
Expressions: One of the following situations. 

SV->Expres: Replacing a single variable with an expression, even when the expression is 
another single variable. 
Ex: Substitution involves substituting an expression from one equation for a variable in 

the other. (GA1, p. 338) 
Replacing x by (x - h) moves a graph to the right by h (to the left if h is negative) 

(WC, p. 18) 
 

Expres->SV: Replacing an expression with a single variable (such as u-substitution) 
Ex: When you find two values for H, replace H by sin x and then solve for x. (PP, p. 20) 

Since x = cos t and y = sin t, we can substitute x and y into this equation: ... giving .... 
(WP, p. 569) 

 
FN->Expres: Function notation is replaced with an expression 

Ex: Replace g(x) with x
2
 – 9 (GP, p. 59) 

 
FN->SV: Function notation is replaced with a single variable 

Ex: Replace f (x) with y (GP, p. 67) 
 
SV->FN: A single variable is replaced with function notation 

Ex: Replace y with f -1(x). (GP, p. 67) 
 
None: Problems associated with instructions that refer to substitution in some way, but the 
word substitution is not used in the problem statement itself. Ex: Problem #16 (PA2, p. 314) 
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