

HIGH FREQUENCY TITRATION OF SOME WEAK ACIDS IN NON-AQUEOUS MEDIA

Thesis for the Degree of M. S.

MICHIGAN STATE UNIVERSITY

Ray Hooser

1956

THESIS

Midlight State .
University

HIGH FREQUENCY TITRATION OF SOME WEAK ACIDS IN NON-AQUEOUS MEDIA

By

Ray Hooser

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

Michigan State University
East Lansing, Michigan

ACKNOWLEDGMENTS

The author is greatly indebted to Dr. Andrew Timnick whose kindness and patient supervision made the completion of this investigation possible.

Grateful acknowledgment is also due to Dr. K. G. Stone and Dr. W. T. Lippincott for helpful suggestions, and to Mr. D. A. Costanzo for his timely assistance.

HIGH FREQUENCY TITRATION OF SOME WEAK ACIDS IN NON-AQUEOUS MEDIA

By

Ray Hooser

AN ABSTRACT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

Year

1956

Approved Grane Timnick

•

ABSTRACT

A grid-dip, capacitative type high frequency titration apparatus operating at 141 megacycles was used to determine whether high frequency titrations of weak acids in aprotic or basic solvents are practical and whether the method offers any advantages over potentiometric or indicator methods of analysis for these solvent systems.

Successful high frequency titrations of p-aminobensois, bensois, malenic, m-nitrobensois, and salicylic acids were performed in bensenemethanel mixed solvent with potassium methoxide in bensene-methanel. We successful high frequency titrations of catechol, hydroquinone, phenol, or resorcinol were accomplished employing this solvent-titrant system.

Resacctophenone, 8-quinolinol, 2,4,6-trichlorophenol, or vanillin were successfully titrated in dimethylformamide with potassium methoxide in bensene-methanol. The end point breaks for benzoic acid, salicylic acid, or methyl salicylate ranged from poorly defined to indeterminate. He successful high frequency titrations of phenol or catechol were accomplished employing this solvent-titrant system.

High frequency titrations of very weak acids in dimethylformanide with alcoholic potassium hydroxide titrant proved successful for the menchydroxy phenols, p-benzylphenol, p-bromophenol, o-hydroxydiphenyl, 2-naphthol, and phenol. The end point breaks for p-tert-amylphenel were sharp but the results were very erratic. High frequency titration

of catechol or phloroglucinol were unsuccessful, possibly because of exidation in excess basic titrant.

High frequency titrations of adipic acid, p-aminobensoic, bensoic acid, malonic acid, methyl salicylate, m-nitrobensoic acid, 8-quinolinol, resacetophenene, 2,4,6-trichlorophenol, or vanillin in dimethylformamide were performed successfully with alcoholic potassium hydroxide titrant.

Although comparable titration results were obtained for the dimethylformanide solvent system by high frequency and potentiemetric methods, the high frequency method is more attractive since the electrodes do not some into contact with the selution being titrated. By the high frequency method very weak acids were titrated in dimethylformanide.

Such titrations have not been carried out successfully by an indicator method.

TABLE OF CONTENTS

1	Page
INTRODUCTION	1
HISTORICAL BACKGROUND	2
Non-aqueous Titrimetry	2 4
EXPERIMENTAL	8
Reagents Apparatus Titration Procedures Visual Potenticmetric Conductimetric High Frequency	14
DISCUSSION OF RESULTS	
Response Curves Titrations in Bensene-Methanol Solvent (Potassium Methoxide as Titrant) High Frequency Titrations in Dimethylformanide Solvent (Potassium Methoxide as Titrant) Conductimetric Potentiometric High Frequency Titrations in Dimethylformanide Solvent (Alcoholic Potassium Methoxide as Titrant)	23 23 23
Hydroxide as Titrant) Potentiometric High Frequency Titrations in Dimethylformamide Solvent (Sodium Methoxide as Titrant) Visual Titrations in Ethylenediamine Solvent (Sodium Methoxide as Titrant) Visual Tabulation of Titration Results Unsatisfactory Solvent Systems for High Frequency Titrimetry.	37 37 37
SUMMARY AND CONCLUSION	47
LITERATURE CITED	53

.

The state of the s tion of the contract of the co

LIST OF TABLES

TABLE				F	age
I	Titrations	of	Very	Weak Acids	38
II	Titrations	of	Weak	Acids	41

LIST OF FIGURES

FIGU	RE P	age
, 1	Response Curves for Potassium Methoxide, at Various Frequencies	18
2	. Response Curves	19
3	. Response Curve for Alcoholic Potassium Hydroxide	20
7	. High Frequency Titration Curves for Weak Acids in Bensene- Methanol, Potassium Methoxide Titrant	21
5	. High Frequency Titration Curves for Weak Acids in Benzene- Methanol, Potassium Methoxide Titrant	22
6	High Frequency and Conductimetric Titration Curves for Bensoic Acid	24
7	. High Frequency Titration Curves for Weak Acids in Dimethyl- formanide, Potassium Methoxide Titrant	25
ε	. Calomel Electrode Performance	27
\$	Potenticmetric Titration Curves for Various Phenols in Dimethylformamide Titrated with Alcoholic Potassium Hydroxide	28
10	. High Prequency Titration Curves for Very Weak Acids in Dimethylformamide, Alcoholic Potassium Hydroxide Titrant	30
11	. High Frequency Titration Curves for Very Weak Acids in Dimethylformamide, Alcoholic Potassium Hydroxide Titrant	31
12	. High Frequency Titration Curves for Weak Acids in Dimethyl- formamide, Alcoholic Potassium Hydroxide Titrant	32
13	High Frequency Titration Curves for Weak Acids in Dimethyl- formamide, Alcoholic Potassium Hydroxide Titrant	33
וו	High Frequency Titration Curves for Weak Acids in Dimethyl- formamide, Alcoholic Potassium Hydroxide Titrant	34
15	High Frequency Titration Curve for a Mixture of Phenol and 2,4,6-Trichlorophenol	36

• • • • · · · · · · · · · · · · • • • • • • • • • •

INTRODUCTION

High frequency titrations are purported to offer two distinct advantages over potentiometric titrations in non-aqueous systems:

1) the electrodes are not in contact with the selution, thereby eliminating the serious problems of electrode deactivation and liquid-junction irregularities and, 2) measurements near the equivalence point have no special significance. The end point is determined by the intersection of the extrapolated straight line portions of the titration surve on either side of the end point where the excess of the ion being titrated or the excess of the titrant will repress the hydrolysis, solubility, or dissociation of the reaction products.

A major factor for the limited acceptance of high frequency titration methods has been the lack of a stable, sensitive, relatively simple instrument capable of operating in the megacycle region. Within the last year, Dowdall, et al., (4) and Johnson and Timnick (23) have reported the development of simple, stable instruments which possess the desired sensitivity for both aqueous and non-aqueous titrimetry.

Lippincott and Timnick (26) have found that the instrument developed by Johnson and Timnick gave excellent results for the titration of weak, substituted anilines in glacial acetic acid solvent with perchloric acid in glacial acetic acid. Therefore, this investigation was undertaken to determine: 1) if high frequency titrations of weak acids in aprotic or basic solvents are practical and, 2) if the method offers any advantages over potentiemetric or visual methods for these solvent systems.

HISTORICAL BACKGROUND

Non-aqueous Titrimetry

Folin and Wentworth (5) in 1910 carried out the first analytical non-aqueous titrations with the titration of some higher fatty acids in various aprotic solvents with sodium alcoholate, using phenel-phthalein as the indicator.

Although some work was done after this, the field languished until Bremsted, Lowry, and Lewis formulated their acid-base theories, thus putting non-aqueous titrimetry on a more firm theorical basis.

The next major advancement was the study of "super acids" by Hall, Cenant and Werner (1,16,17) in which they reported titrations of weak bases in glacial acetic acid medium with strong mineral acids.

The first non-aqueous acid-base titration to find wide acceptance was the procedure of Madeau and Branchen (28) for the determination of smine seids in acetic acid with perchloric acid in glacial acetic acid.

Moss, Elliott, and Hall (27) reported the successful titration of phenol and other very weak acids in ethylenediamine with sodium amino-ethoxide in the same solvent.

Mon-aqueous titrimetry came into prominence with the recent, rapid expansion of the chemical and pharmaceutical industries. Numerous, rapid control procedures for many organic intermediate and final products which are too weak as acids and bases to be determined in aqueous medium had to be developed. A major share of the credit for developing this field must be given to Frits (6-15), Riddick (34,35), Wollish and Pifer (30,31,32).

. .

All four types of solvents, basic, acidic, amphiprotic, and aprotic, have been utilized in non-aqueous titrimetry (34,35). The properties of the compound to be titrated must be considered in the choice of a suitable solvent. Since a basic solvent will enhance the apparent acidity of weak acids dissolved in it, ethylenediamine would be a proper choice of solvent for titrations of compounds such as phenol, o-bromophenol, or catechol. Likewise, an acidic solvent such as glacial acetic acid which enhances the apparent basicity of any weak base dissolved in it would be chosen for aniline, m-chloroaniline, and pyridine. Since there is little or no leveling effect in aprotic and amphiprotic solvents, they are often selected when differential titrations of mixtures containing compounds of substantially different pk's are desired. An example of this would be the differential titration of a mixture of phenol, acetic acid, and hydrochloric acid dissolved in dimethylformamide with alcoholic potassium hydroxide titrant (2).

Among the many titrants suggested for use in non-aqueous titrimetry, perchloric acid in glacial acetic acid has been almost universally adopted for titration of weak bases. However, no one titrant has yet been found which satisfies all the requirements for a good titrant for weak acids. Deal and Wyld's suggestion of potassium hydroxide disselved in isopropyl alcohol appears to the best developed thus far (2). Other titrants which have been tried are potassium methoxide, sodium methoxide, sodium aminoethoxide, and tetrabutylammonium hydroxide (6).

Workers in non-aqueous titrimetry have been plagued from the beginning with a lack of suitable means of end point detection.

Some specific indicators are available, but no series of indicators to cover the entire so-called "pH range" for each solvent system has yet been developed (6).

Instrumental methods of analysis which have been utilized to eirousvent this difficulty are potentiometry (6), photometry (33), conductimetry (18,19), and high frequency titrimetry (3,20,21,25,26,37). Of these, potentiometric titrimetry has received the most attention.

One problem which has not yet been completely solved is that of developing an electrode pair which will give stable response and not be easily deactivated in non-aqueous media. Of the many combinations suggested (6,2), the glass-calomel (sleeve type) electrode pair has given the best results of the pairs tried in this investigation.

The preceding discussion is only a brief sketch of the developments in non-aqueous titrimetry. For a more complete treatment, Riddick's reviews (34,35), Frits's booklet (6), and Palit's monograph (29) are excellent sources for information on this topic.

High Frequency Non-aqueous Titrimetry

Jensen and Parrack (21) who developed the first practical high frequency titration apparatus in this country were also the first to recognise the potential usefulness of high frequency titrimetry for non-equeous systems. They reported in their original paper the successful titration of bensoic acid or o-phthalic acid dissolved in acetone with sodium methoxide titrant.

•

.

•

•

For the next few years the literature on high frequency oscillators was mainly devoted to improving instrumentation. Jankowski (20) has an excellent review covering this period.

The first successful high frequency titrations in glacial acetic acid were reported acid with perchloric acid dissolved in glacial acetic acid were reported by Wagner and Kauffman (37). They compared potentiometric and high frequency results for aniline, p-toluidine, pyridine, and N,N'-bis (2-cyanosthyl)-2,5-dimethylpiperazine and expressed the view that results obtained from high frequency titrations for these bases compared very favorably with those obtained from potentiometric titrations.

Unsuccessful titrations were reported for urea, p-nitroaniline, and o-nitroaniline.

Jankowski (20) titrated successfully 8-quinolinol, aniline, hexamethylenediamine, pyridine, diethylaniline, and 2-alanine in glacial acetic acid with perchloric acid dissolved in glacial acetic acid.

No satisfactory end point for urea was obtained.

Dean and Caim (3), using a Sargent "Oscillometer," reported good results for the titration of salicylic acid, potassium acid phthalate, benzoic acid, e-nitrophenol, boric acid, and ammonium ion. The samples were dissolved in dimethylformamide and titrated with sodium methoxide in benzene-methanol. The end point for phenol was unsatisfactory.

Lippincott and Timnick (26) titrated a series of weak, substituted anilines in glacial acetic acid with perchloric acid dissolved in the same solvent, reporting results which compared very favorably with data obtained by potentiometric and classical conductimetric titrations.

•

_

. .

and the state of t

The compounds successfully titrated were:

iniline p-bromoaniline m-nitroaniline p-anisidine p-aminoacetophenone p-toluidine p-aminobenzoic acid p-chloroaniline p-itroaniline

They also were able to carry out differential titrations, not possible by potentiometric or conductimetric methods, of some pairs of the substituted anilines listed above.

Lane (25), in order to evaluate the usefulness for non-aqueous titrimetry of a portable instrument designed by Doudall, et al. (4), titrated some weak bases in glacial acetic acid and some weak acids in ethylenediamine. The compounds were:

In Glacial Acetic Acid

Benzidine Decame thylenebispyridinium nitrate 8-Hydroxyquineline o-Phenanthroline Quinoxaline Phenesine p-Mitreaniline Pyridine Heramethylenetetramine 2(2-Hydroxyphenyl)-bensiminazole Dianisyldimethylphosphonium iodide Dianisylethylmethylphosphonium iodide Dianisylmethylphosphine Tetraethylammonium bromide Tetraethylammonium iodide Tetraethylammonium nitrate Tetramethylammonium iodide Ethyltrimethylammonium iodide Phenyltrimethylammonium iodide Hexamethylenebispyridinium nitrate Tri (c-hydroxyphenyl)-sulphonium chloride

The quaternary ammonium halides were determined by the mercuric acetate reagent method suggested by Pifer and Wollish (31).

In Ethylenediamine

Dimedone
p-Nitrophenol
8-Hydroxyquinoline
2 (2-Hydroxyphenyl)-benzoxazole
4-Hydroxy-1,2,3-benzselenadiazole
2,3-Dihydroxy-5-methoxyquinoxaline
5-Hydroxy-2,3-diphenylquinoxaline
5-Hydroxy-2,3-di (2-phridyl)-quinoxaline
5,8-Dihydroxy-2,3-tetramethylenequinoxaline
5,8-Dihydroxy-2-phenylquinoxaline
5,8-Dihydroxy-2-isopropylquinoxaline
5,8-Dihydroxy-2,3-pentamethylenequinosaline
5,8-Dihydroxy-2,3-pentamethylenequinosaline
5,8-Dihydroxy-2,3-pentamethylenequinosaline

Ishidate and Masui (38) titrated a series of monobasic and dibasic carboxylic acids in bensene-methanol mixed solvent with sedium methoxide in bensene-methanol. They reported the titration of a series of alkaloids and acid salts of some organic weak bases dissolved in water or water-alcehol with perchloric acid in glacial acetic acid (39). In another paper (40) the titration of amino acids and organic bases dissolved in bensene-methanol solvent containing some acetic acid with perchloric acid in glacial acetic acid was reported.

EXPERIMENTAL

Reagents

No attempt to repurify the organic acids used in this investigation (except where noted below) was made since most were nominally
"pure." A comparison for a given compound of results obtained by
potentiometric, high frequency, and visual methods was deemed sufficient
basis for judging the merits of high frequency titrimetry for weak
acids. To check the purity of phenol by an independent method, the
brownination procedure described by Siggia (36) was employed. Although
Siggia states that resorcinol can be determined in the same manner,
satisfactory results were unattainable.

The compounds titrated, source and labeled purity, are:

Weak Acids

Adipic acid
p-Aminobensele acid
Benzoic acid
Malonic acid
Methyl salicylate
m-Nitrobenzoic acid
8-Quinolinol
Resacetophenone
Salicylic acid
2,4,6-Trichlcrophenol
Vanillin

Recrystallized from acetic acid
Eastman White Label
Primary reagent grade (General Chemical
Dow Company Company)
Eastman White Label
Eastman White Label
Eastman White Label
C.F. (Coleman & Bell)
Unknown

U.S.P. (Retort Pharmaceutical Co.)

Very Weak Acids

p-Bensylphenol p-Bromophenol Catechol Eastman White Label Eastman White Label Recrystallised from toluene

compounds similar to phenol in their pK values.

This classification will be used throughout the thesis to designate compounds similar to bensoic acid in their pK values.

This classification will be used throughout the thesis to designate

•

e e

...

Hydroquinone
c-Hydroxydiphenyl
-Naphthol
Phenol
Phloroglucinol
Resorcinol
p-Tert-amylphenol

Eastman White Label
Eastman White Label
Matheson Company
Eastman White Label
Eastman White Label
Eastman White Label
Eastman White Label

Other chemicals used were:

Primary Standards: bensois acid, potassium acid phthalate,
National Bureau of Standards or primary reagent grade.

Other Chemicals: potassium metal, sodium metal, antimony
metal, lithium chloride, potassium bromate, potassium
bromide, potassium iedate, potassium iedide, and
sodium thiosulfate, chemically pure.

Solvents: butylamine, Eastman White Label; ethylenediamine,
Eastman, 95-100%; isopropyl alcohol, ethanol, methanel,
and bensene, chemically pure grade; dimethylformamide,
Mathesen's technical grade.

Technical grade dimethylformamide required a blank correction of approximately 0.04 milli-equivalent per 150 milliliters. Dimethylformamide distilled at atmospheric pressure through a six foot long glass column packed with glass belies was found to have a larger blank correction than the charge (0.05 milli-equivalent per 150 milliliters selvent after distillation). Thus the dimethylformamide used in this investigation was used as purchased. The blank was determined by comparing the amount of titrant consumed with the theoretical amount of titrant required for a known weight of benzoic acid. Direct potentiometric determination of the blank was found to be unreliable. To prevent additional absorption of atmospheric carbon dioxide by the slightly

basic dimethylformamide, the solvent was stored in glass bettles and transferred to the titration cell by means of a 50 milliliter automatic burst provided with guard tubes filled with ascarite. "Oil pumped" mitrogen was used to force the solvent from the reservoir into the burst. The stopcock of the burst was not greased since any grease extracted by the dimethylformamide obscured high frequency end points.

Alcoholic potassium hydroxide* (0,1N and 0,26N) was prepared by dissolving, with gentle heating, sufficient potassium hydroxide in two liters of isopropyl alcohol. After allowing the solution to stand for twelve hours, it was filtered through a coarse sintered glass filter to remove the insoluble potassium carbonate. A nitrogen atmosphere was provided during the filtering operation to emulude atmospheric carbon dioxide. The filtered alcoholic potassium hydroxide was stored in glass bottles and dispensed from calibrated automatic burets. The burets were provided with guard tubes filled with ascarite. "Oil pumped" nitrogen was used to force the titrant from the reservoir into the burets.

These precautions were taken to protect the titrant from atmospheric carbon dioxide. The alcoholic potassium hydroxide was standardized against potassium acid phthalate dissolved in carbon dioxide-free distilled water, using phenolphthalein as the indicator. A few of the standardization titrations were carried out by high frequency titrinetry.

One tenth normal potassium methoxide and O.lN sodium methoxide were prepared and standardised against benzoic acid as described by Frits (6).

The term alcoholic potassium hydroxide is used in this thesis to designate potassium hydroxide dissolved in isopropyl alcohol.

The non-aqueous indicators, thymol blue, ase vielet, and e-nitroamiline, were prepared as suggested in Frits's booklet (6).

Potassium benseate required for obtaining a high frequency response curve for potassium benseate in dimethylformamide was prepared by adding potassium hydroxide dissolved in ethanel to an alcoholic solution of benseic acid. The resulting precipitate was isolated by filtration, recrystallized from hot alcohol, and collected by filtration. The precipitate was then dried in a vacuum desiccator for 48 hours.

Ipparatus

A Fisher "Titrimeter" was used for all potentiometric titrations.

Various combinations of the electrodes listed below were used:

1) antimony, 2) Beckman #1190 glass, 3) Beckman #1170 fiber type calcul, and h) Beckman #4970-71 sleeve type calcul.

A Serface Model RCH 15 Conductivity Bridge, in conjunction with a platinised platinum immersion electrode pair (cell constant of 0.1), was used for the conductimetric titration.

The especitative type high frequency instrument used in this investigation was a duplicate of the prototype designed and built by Johnson (22). The progress of a titration was followed by measuring the oscillator tube grid current changes with a Model XXI Sargent Pelarograph.

By the use of various combinations of capacitative type cells and coils or co-axial half-wave line the operating frequency of the instrument could be altered. Two capacitative type cells were

e e ∠tame v t

constructed. One was a band type in which two one-half inch wide copper bands, mounted one above the other approximately ene-half inch apart, encircled the titration vessel. The other consisted of two brass plates, one-half inch wide by one inch long, mounted against the titration cell at the same level, but three quarters of an inch apart. Other constructional details are identical with those presented by Johnson (22).

Operating frequencies were measured with a Signal Corps Het.

Monitor-BC-1255-A frequency meter.

The frequencies for various combinations of cells and coils or half-wave line were:

<u>Cell</u>	Industance	Frequency"	
Band type	42 turn ceil	11 MC	
Band type	8 turn coil	36 MC	
Plate type	42 turn coil	15 MC	
Plate type	8 turn coil	49 MC	
Plate type	Half-wave line (85 cm.)	141 MC	

The automatic bursts were calibrated using the titrant to be dispensed from them as the calibrating liquid. The coefficients of subical expansion of the titrants were determined in a 25 milliliter dilatemeter at five degree intervals from 20 to 35°C. The coefficient of subical expansion for 0.1% potassium methoxide in benzene-methanol (10/1) was found to be 0.12% per degree centigrade; for 0.1% alcoholic petassium hydroxide, 0.11% per degree centigrade. All volumes of titrant recorded in this investigation were corrected to 20°C.

Frequencies were measured with the titration vessel filled with 150 milliliters of dimethylformamide.

: - - - -

.

All analytical weighings were weighed to the nearest 0,1 milligram, employing weights calibrated against National Bureau of Standards calibrated weights, N.B.S. Test No. 87925.

Titration Procedures

Visual

The compounds listed on page 8 as weak acids were dissolved in 50 milliliters of dimethylformamide and titrated with 0.1N sodium methoxide to the first blue color of aso violet indicator (6). Before adding the sample the acid impurities in the dimethylformamide were neutralised with titrant to the same blue color.

The compounds listed on pages 8 and 9 as very weak acids were titrated in 50 milliliters of ethylenedismine to the orange-red color of e-nitroaniline with 0.1% sodium methoxide (6). As in the case of dimethylformamide the acid impurities were neutralised before the addition of the sample.

Potentiometric

Three electrode combinations were used in this investigations

1) antimony-glass system for titrations of bensoic acid dissolved in dimethylformanide with potassium methoxide, 2) calomel (fiber)-glass system for titrations of weak acids dissolved in dimethylformanide with alcoholic potassium hydroxide, and 3) calomel (sleeve)-glass system for titrations of very weak acids dissolved in dimethylformanide with alcoholic potassium hydroxide.

The Fisher "Titrimeter" was balanced at 0.5 volts.

and the second of the second o

en de la companya de la co

The samples were dissolved in 75 milliliters of dimethylformanide.

A nitrogen atmosphere was provided to protect the titration solution

from atmospheric carbon dioxide. Increments of 0.25 milliliter of

titrant were added at the beginning of the titration. Near the end

point the increments were reduced to 0.1 milliliter.

Conductimetric

The Serfass Conductivity Bridge was operated at 60 cycles.

External capacitance compensation was not employed since it did not seem to improve instrument balance.

The sample of bennoic acid was dissolved in 100 milliliters of dimethylformsmide. The titration vessel was provided with a cover to exclude atmospheric carbon dioxide.

High Frequency

The instrument was allowed to warm up for a minimum of two hours in order to stabilize its response.

The sample was weighed to the nearest 0,1 milligram and transferred to the polyethylene titration vessel. This vessel was then placed in the cell assembly and a polyethylene cover, centaining openings for a mitrogen gas inlet, glass stirrer, and buret tip, was slipped over the mouth of the titration vessel. The motor driven glass stirrer was positioned so that the paddle blades were below the bands or plates.

One hundred and fifty milliliters of selvent was transferred to the titration vessel with a 50 milliliter automatic burst. After the mitrogen flow had been adjusted to a moderate rate and the opening for the burst tip plugged with a small cork, the solution was stirred

for approximately 15 minutes to establish temperature equilibrium in the solution.

While the solution was attaining temperature equilibrium, the Sargent Model IXI Polarograph was turned on, the span voltage set at one volt, and the proper sensitivity (usually 0.100 microampere per mm.) selected.

After the required waiting period the titrant burst was positioned with its tip below the surface of the solution in the titration vessel.

Unless a complete titration curve was desired, the bridge control of the polarograph was not adjusted to bring the scale pointer to the lower end of the scale until approximately all but five milliliters of the theoretical amount of titrant required had been added. This step was taken because the initial formation of the salt of many of the compounds titrated so "loaded" the instrument that either an extremely large compensation setting was required to bring the pointer onto the scale again or the instrument went out of oscillation for the particular bridge control setting.

Once the initial amount of titrant had been added and the final adjustments of the bridge control made, the titrant was added in increments of 0.25 or 0.50 milliliter. Recorder readings were taken 30 seconds after each addition of titrant. Timed readings were necessary because of recorder fluctuations. Usually, readings were made over a span of 10 milliliters, five milliliters before and five milliliters after the end point.

e de la companya del companya de la companya de la companya del companya de la co

DISCUSSION OF RESULTS

Response Curves

Response curves are obtained by adding in known increments to pure solvent one of the substances removed, added or formed during an actual titration and recording the oscillator tube grid current changes produced. Semi-log paper is used to graph response against molarity because the concentration ranges involved in determining response curves extend through several powers of ten. There is no logarithmic relationship between response and molarity.

If response curves for the titrant, titrant diluent, the compound being titrated, and the salt formed during the titration were available for a given frequency, theoretical titration curves for a given solvent could possibly be constructed. Usually only the response curve for the addition of titrant to the solvent is obtained.

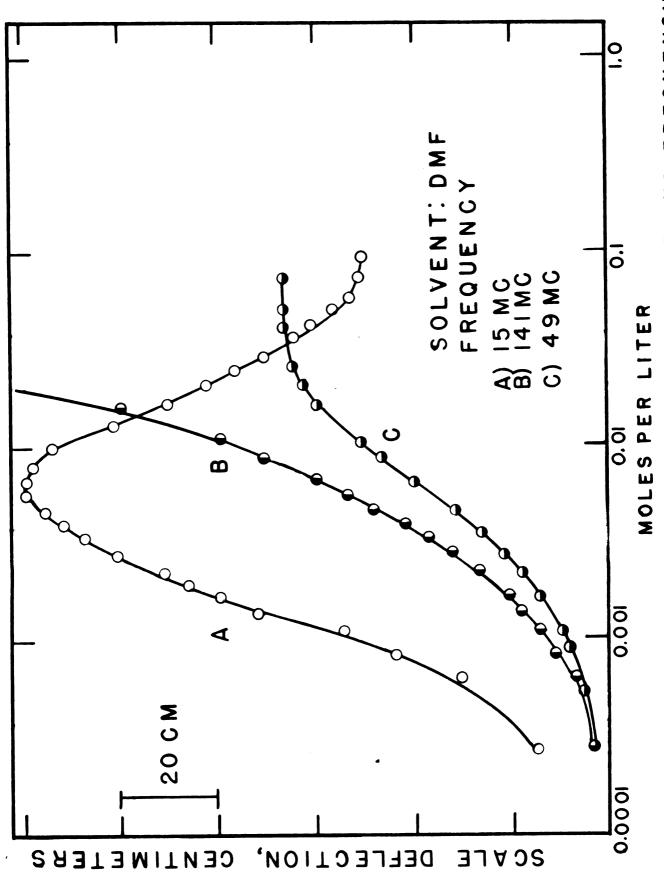
The response curves vary from bell to "S" shape, depending on the frequency, solvent, and titrant selected. Figure 1 shows the effect of frequency changes upon the shape of the response curves. The linear portions of the response curves indicate the optimum concentration level at which the response of the instrument is linear and large for changes in concentration. This information is used to select the proper sample size to obtain optimum linearity in the titration curve.

A rather complete survey at 11 megacycles of the response curves for the various elements involved in the titration of bensoic acid in dimethylformanide with potassium methoxide was made because of the

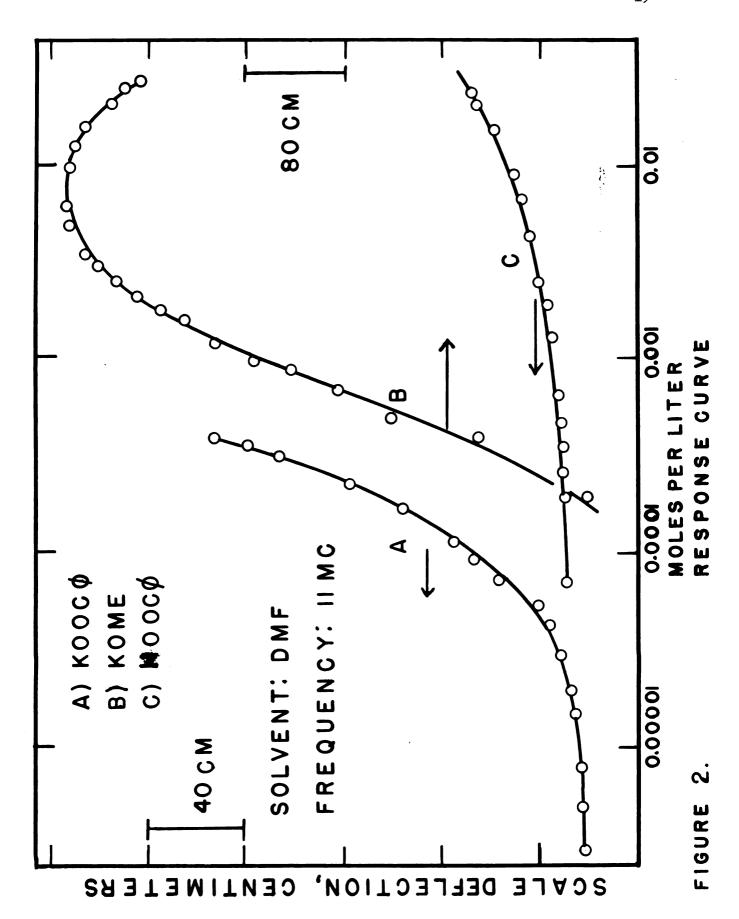
- \mathcal{J}_{i} . \mathcal{J}_{i} the second secon and the second of the second o \mathbf{y}_{i} , \mathbf{y}_{i} the state of the s $\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}$

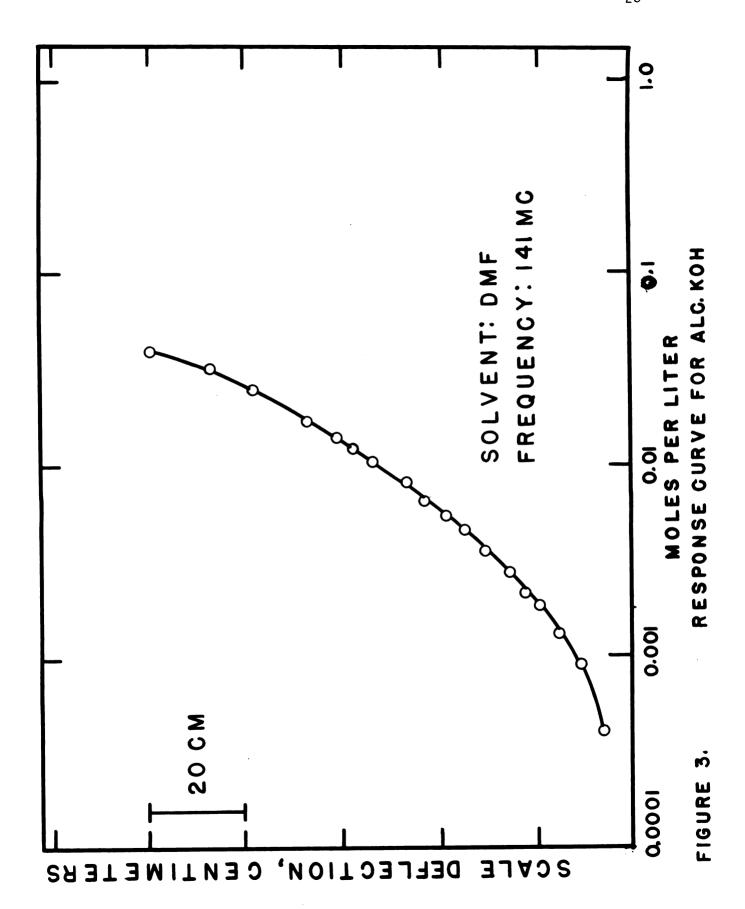
poorly defined end points obtained for this compound. From curve C of Figure 2 it is apparent that the response change due to the disappearance of bemsoic acid during the course of the titration is small. The slopes of the potassium bensoate curve (curve A, Figure 1) and of the potassium methoxide curve (curve B, Figure 1) are similar. Little or no change of slope of the titration curve can be expected when potassium bensoate ceases to be formed and the first excess of potassium methoxide is added. Benzene, methanol, or a mixture of the two caused no response change when added to dimethylformamide.

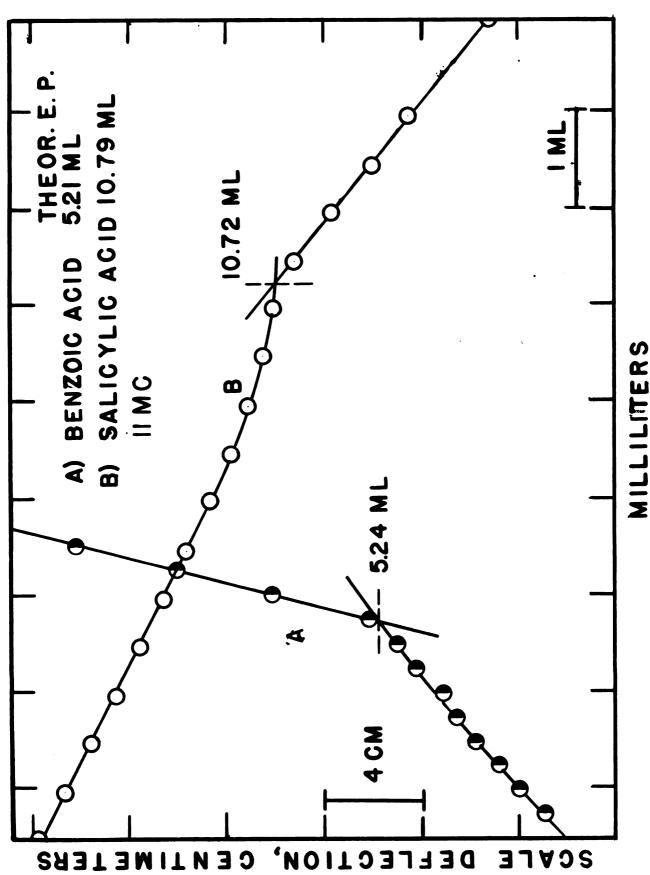
The response curve for alcoholic potassium hydroxide was determined at 141 megacycles. (Figure 3).

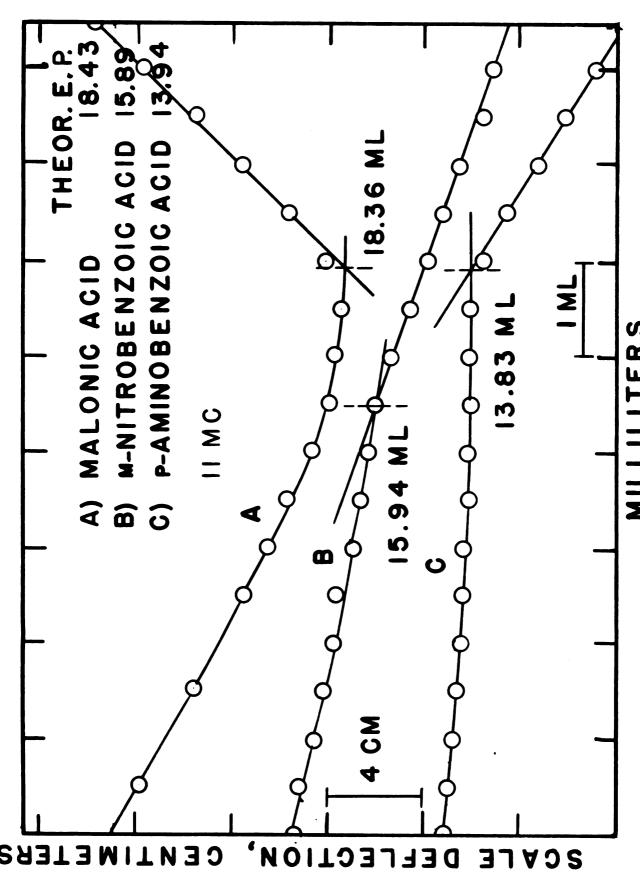

Titrations in Bensene-Methanol Solvent (Potassium Methoxide as Titrant)

High Frequency


A ratio of one part benzene to one part methanol was found to be a satisfactory mixed solvent for the titration of p-aminobensoic, benzoic, malonic, m-nitrobensoic, or salicylic acids with potassium methoxide titrant. Smooth titration plots and distinct end point breaks were obtained for these weak acids, as shown in Figures 4 and 5. The titration results for these compounds are listed in Table II.


No end point breaks were obtained for the titrations of resorcinol, hydroquinone, satechol, or phenol. The acidity of methanol precluded the successful titration of these compounds in this solvent system.


Pure benness was also tried as a solvent for phenol but the instrument showed no response on adding titrant to this solvent, even when 0,2 gram of lithium chloride was added to provide some instrument loading.


FREGUENCIES CURVES FOR KOME, AT VARIOUS I. RESPONSE FIGURE

H.F. TITRATION CURVES FOR WEAK ACIDS IN BENZENE-TITRANT METHANOL, KOME FIGURE 4.

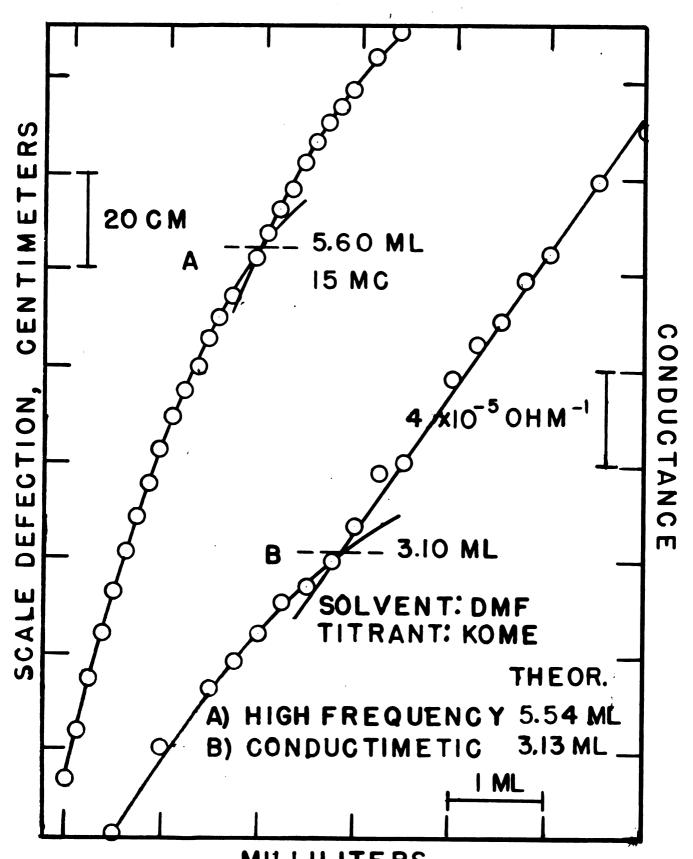
BENZENE-MILLILITERS URVES FOR WEAK ACIDS IN FIGURES. H.F. TITRATION CURVES FOR METHANOL, KOME TITRANT.

Titrations in Dimethylformanide Solvent (Potassium Methoxide as Titrant)

Conductimetric

The titration of bensoic acid with potassium methoxide was the only conductimetric titration performed in this investigation. The conductimetric titration curve is very similar to that obtained by high frequency titrimetry for the same compound as is shown in Figure 6.

Potentiometric


An antimony-glass electrode pair was used in conjunction with the standardisation of potassium methoxide with benzoic acid. No other compounds were titrated potenticmetrically with potassium methoxide.

High Frequency

Phenol could not be titrated successfully with potassium methoxide because the acidity of the methanol present in the titrant solution masked the end point.

Either poorly defined or no end point breaks were obtained for the titration of bensoic acid, catechol, or methyl salicylate. Oxidation of catechol in the presence of excess titrant may have prevented its successful titration (24).

Vanillin, 2,4,6-trichlorophenol, resacetophenone, or 8-quinolinol were titrated satisfactorily. Typical titration curves for these compounds are shown in Figure 7. Results are listed in Table II.

MILLILITERS
FIGURE 6. H.F. AND CONDUCTIMETIC TITRATION
CURVES FOR BENZOIC ACID.

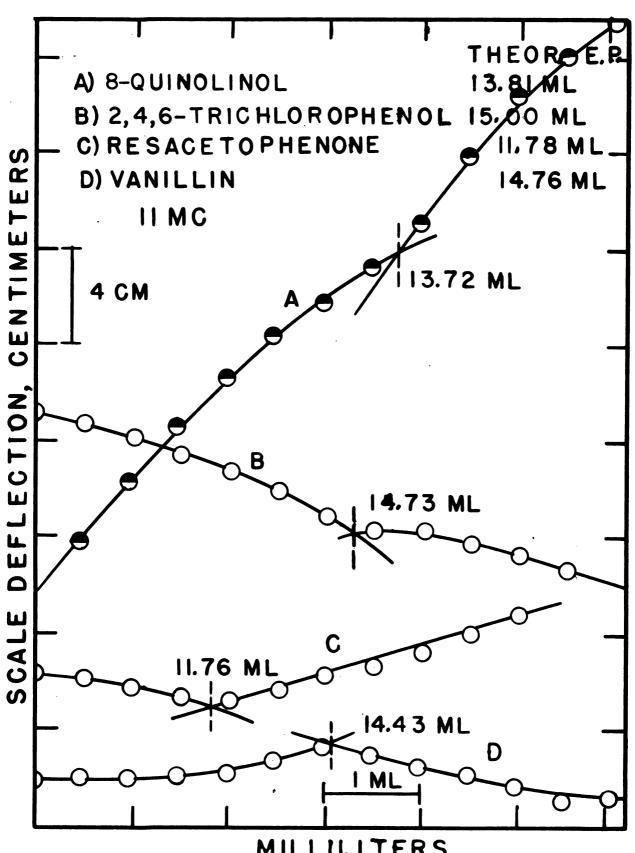
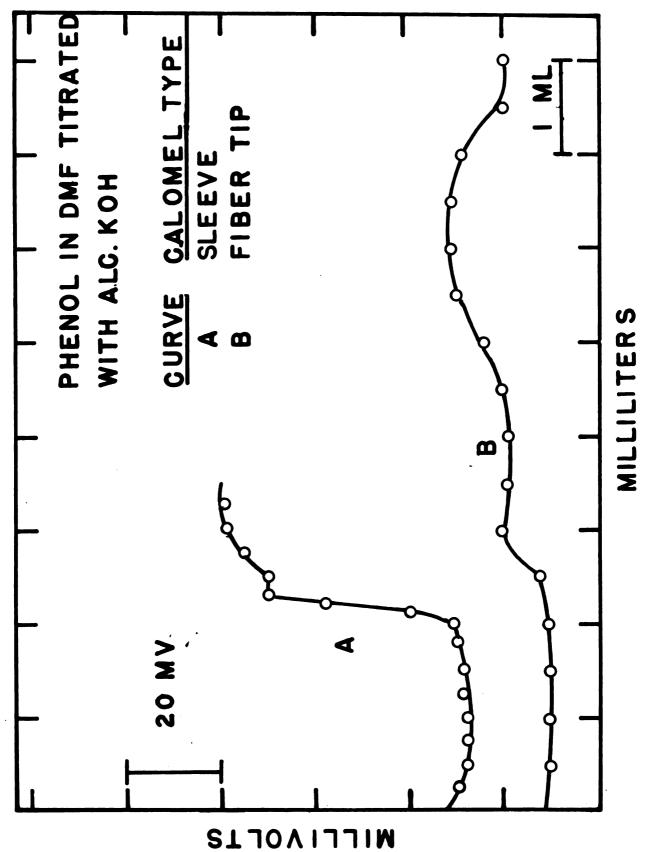
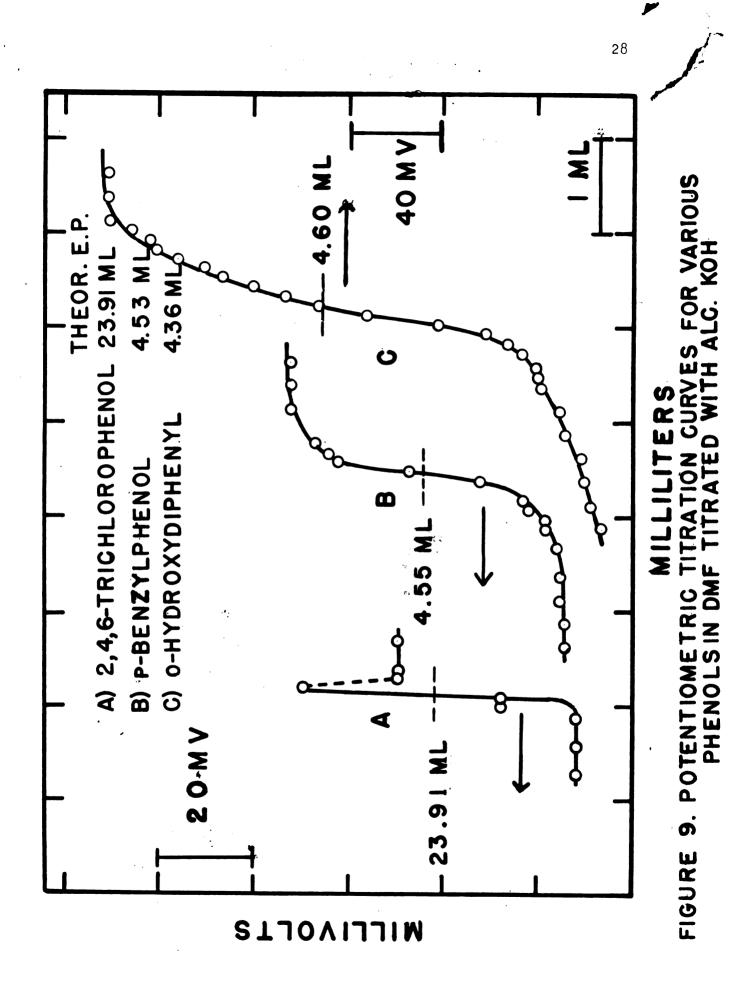


FIGURE 7. H.F. TITRATION CURVES FOR WEAK ACIDS IN DMF, KOME TITRANT.

Titrations in Dimethylformamide Solvent (Alsoholic Potassium Hydroxide as Titrant)


Potentiometric

hydroxide as a titrent for weak and very weak acids a sleeve type calomel electrode was not available, so a fiber tip type was tried. The fiber tip type calomel electrode was usable with the weak acid class even though it was less stable than the sleeve type. A serious draw-back to the utilization of the fiber tip type calomel electrode in dimethyl-formamide is the deposition of potassium salts on the fiber tip (2). It was ebserved that the electrode became sensitive to body capacitance upon prolonged use. To mitigate this effect somewhat, the electrode was soaked in water for a short period after a series of seven or eight titrations. A very erratic titration curve was obtained for phenol, Figure 3, curve B, when a fiber tip calomel electrode was used. The titration curve for 2,4,6-trichlorophenol, Figure 9, curve A, shows a large drop in potential immediately after the end point inflection.


The calcomel (sleeve type)-glass electrode system proved to be responsive and stable for titrations of most of the very weak acids. Curve B of Figure 9 and curve A of Figure 8 are typical for these compounds. The end point inflections were small but sharp, except in the case of e-hydroxydiphenyl. For this compound almost a milliliter of titrant was required before the potential leveled off after the initial sharp rise at the inflection point. A representative titration curve for this compound is curve C, Figure 9.

• •

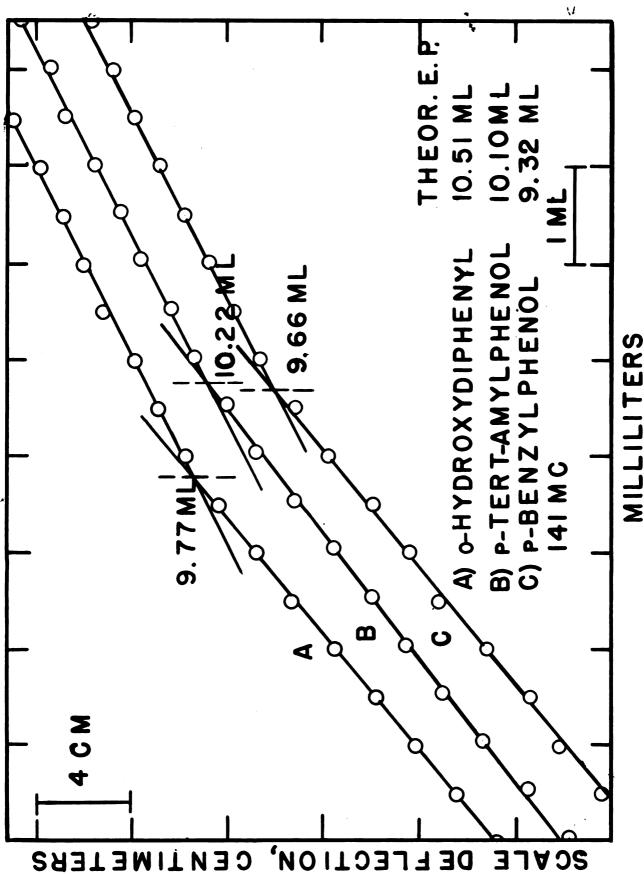
• •

PERFOR MANCE CALOMEL ELECTRODE FIGURE 8.

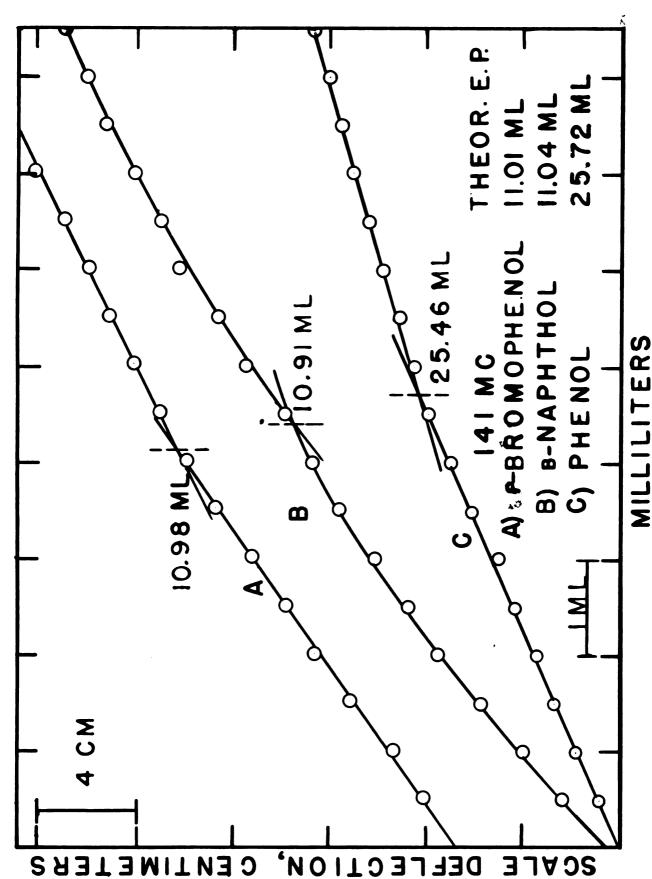
Titration results for the very weak acids are listed in Table I.

Titration results for the weak acids are listed in Table II.

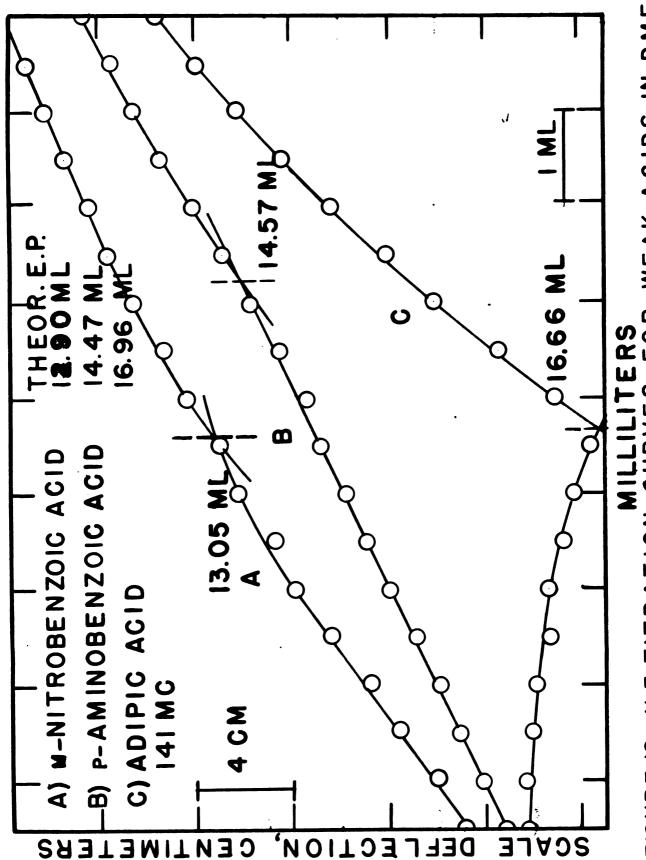
High Frequency

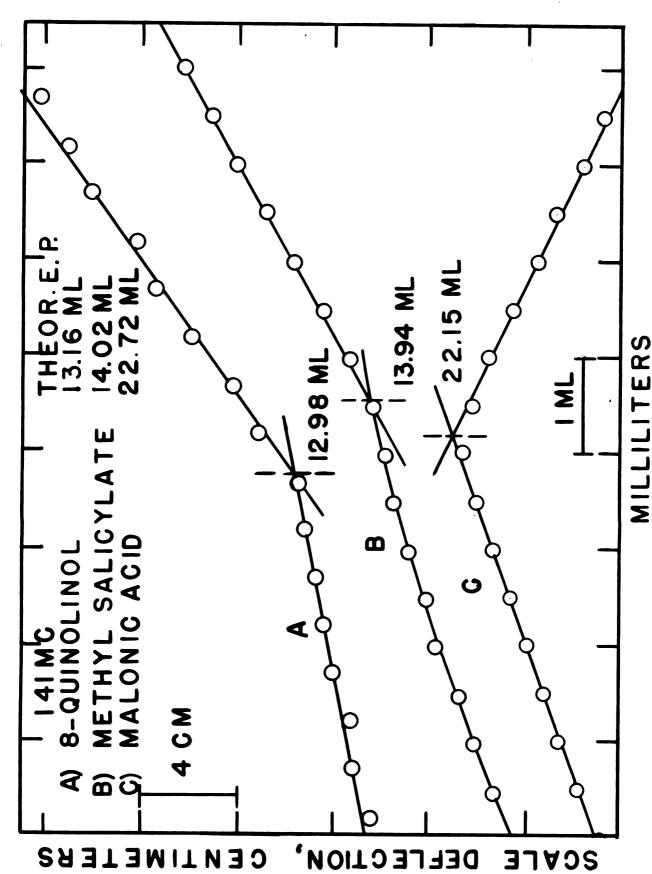

Distinct end point breaks were obtained for titrations of phenol, p-benzylphenol, p-bromephenol, o-hydroxydiphenyl, or p-naphthol, all very weak acids. Figures 10 and 11 are representative of the type of titration curves obtained for these compounds. Titration results are listed in Table I.

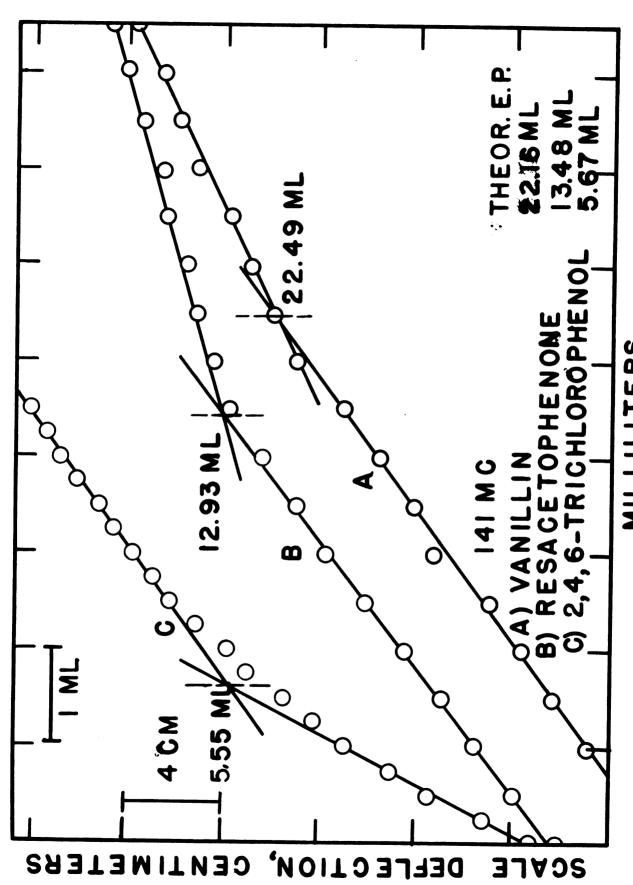
Para-tert-amylphenol failed to yield stoichiometric results even though the end point breaks were sharp and well defined as shown by curve C in Figure 10.


Stoichiometric results were unattainable for catechol or phloroglucinol. Black discoloration of the solutions after titration indicated
oxidation of the compounds in an excess of titrant. No attempt was
made to titrate resorcinol or hydroquinone. A possible solution to
this oxidation problem would be to bubble nitrogen through the solvent
to remove any dissolved oxygen before adding the sample.

The titration curves for benzoic or salicylic acids were unsatisfactory. At best, the scattering of individual points made the selection of the end point difficult.


Titration plots, Figures 12, 13 and 14, for adipic acid, 8-quinolinol, p-aminobenzoic acid, methyl salicylate, malonic acid, resacctophenone, m-mitrobenzoic acid, 2,4,6-trichlorophenol, or vanillin ranged from fair to good. Titration results are listed in Table II.


ERS FOR VERY WEAK ACIDS IN DMF, MILLILI FIGURE 10. H.F.TITRATION CURVES ALC. KOH TITRANT.


VERY WEAK ACIDS IN FOR FIGURE 11. H.F. TITRATION CURVES DMF, ALC. KOH TITRANT.

WEAK ACIDS IN DMF, LILITERS URVES FOR ALC, KOH TITRAN FIGURE 12. H.F. TITRATION

WEAK ACIDS IN DMF, FOR H.F. TITRATION CURVES ALC. KOH TITRANT. FIGURE 13.

ITERS ES FOR WEAK ACIDS IN DMF, MILLIL FIGURE 14. H.F. TITRATION CURV ALC, KOH TITRANT

As might be expected from pK values, the end point breaks for adipic or malonic acids were very well defined. The titration plots for p-aminobenzoic or m-nitrobenzoic acids, which have pK's similar to adipic and malonic acids, did not exhibit sharply defined end points. There was much scattering of individual points of the plots for these acids. The whole weak acid group, except for adipic and malonic acids, showed this tendency for scattered individual points of the titration plot, but not to such a marked degree.

Differential titrations of mixtures of phenol and 2,4,6-trichlorophenol were attempted. The data from the two titrations performed,
although not conclusive, indicate the feasibility of the simultaneous
titration of weak acids of different pK values by high frequency
titrimetry. The results are:

	Run I	Run II
Total acid	97.9	112.8

Figure 15 shows the titration curve for Run I.

Titrations in Dimethylformamide Solvent (Sodium Methoxide as Titrant)

Visual

Only two weak acids did not give entirely satisfactory titrations with aso violet indicator. The end point for adipic acid was obscured by precipitation of its potassium salt. Fading of the end point was observed when malonic acid was titrated. Titration results are listed in Table II.

•

the state of the s

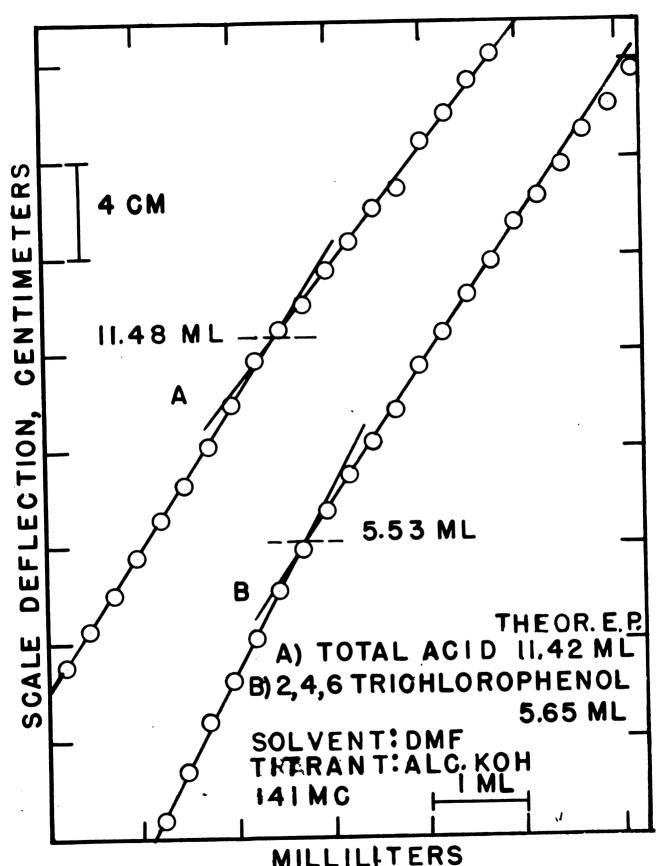


FIGURE 15. H.F. TITRATION FOR A MIXTURE OF PHENOL AND 2,4,6-TRICHLOROPHENOL.

Titrations in Ethylenediamine Solvent (Sodium Methoxide as Titrant)

Visual

The color change from yellow to orange-red for o-nitroaniline indicator used for titrations in ethylenediamine with sodium methoxide is not as distinct as the change to blue of ase violet in dimethyl-formamide. Little difficulty was encountered in determining the end point. Titration results for the very weak acids are listed in Table I.

Tabulation of Titration Results

The compounds titrated in this investigation were divided into two groups, weak acids and very weak acids. This division is based upon relative strengths. The tables of experimental results were therefore erganised on this basis.

The titration results obtained from high frequency, potentiometric, and visual procedures for individual compounds are grouped together under the name of the compound in order to facilitate comparison.

The size of the circles used in the titration plots is not proportional to error because of uncertainty as to the magnitude of error introduced by fluctuations of the recorder.

and the second of the second o

and the control of th and the second of the control of the

TITRATIONS OF VERY WEAK ACTOS TAME I

Percent. Purity **888**8 % % 7.801 8.7.8 22.2 100.6 100.6 M. Theor. 8.5° 8.2° 8.4° 4.57 25.63 8.22.83 72.4 7.47 M. Used 12.8 9.8 9.86 1.52 7.52 7.52 4.27 4.56 . Mormality p Tert-emylphenol p-Bensylphenol 6091.0 0,1609 0.09 0.09 0.09 0.09 0.2677 0.00 0.00 0.00 0.00 0.00 0.2677 Ale. KOH Ale. KOH Ale. KOH Alc. KOH Alc. KOH Alc. KOH Ale. KOH Ale. KOH Titrant KaQKe HaQKe Na Ofe Na Ofe Na Ofe Sample W. (greens) 0.2029 0.2147 0.2093 0.2045 0.1564 0.1537 0.2010 0.1975 0.2237 0.1792 0.1579 Solvent BBB 自自 N N 自自 He (111 mg) 999 17 (11,1 mc) Kethod W(lillac) 子子子 曲曲曲 Visual Visual Vienal

Vienal

7

Potq Pot

Continued next page

Corrected for blank, if a High frequency method. Dimethylformanide.

Potentiametrie Method Sthylenedianine.

. • • • •

Continued next page

TABLE I - Continued

Kethod	Solvent	Method Solvent Sample Wt. (grems)	Titrast	Hormality	M. Used	Ml. Theor.	Percent Parity
			re-d	p-Bromophenol			
HF(11,1 mo) HF(11,1 Mo)		0.1771.0	Alc. KOH	0.0961	10.62	10.65	99.1
P 0 4	500	0.1986	Ale. KOH	0.2677	96°4	h.29 h.26	101.7
Vienal	EDA EDA	0.1782 0.1296	Na.Ore Na.Ore	0,1609	6.45	6.40 4.66	100.8 100.4
•.			o-Hrdr	o-Hydroxyd1phenyl			
H (14,1 mc) H (14,1 mc) H (14,1 mc)	00 00 00	0.1471 0.1658 0.1575	Ale. KOH Ale. KOH Ale. KOH	0.0961 0.0961 0.0961	9.02 14.6 9.7.6	9.00 10.15 9.64	100.3 92.8 101.1
Pot Pot	DMT	0,1946 0,2041	Alg. KOH Alg. KOH	0.2677	0 K	87.4 87.4	101.4
Visual Visual	ACE ACE ACE ACE	0.1949 0.1869 0.1805	NaOffe NaOffe NaOffe	0.1609	1.1. 6.63	7.12 6.83 6.60	100.3 99.2 100.6
			B	Maphthol		٠	
HF(14,1 mc) HF(14,1 mc) HF(14,1 mc)	DATE TOTAL	0.1643 0.1174 0.0988	Alc. KOH Alc. KOH Alc. KOH	0.0961 0.0961 0.0961	8.4.4 8.4.4	10.86 10.64 1.7	98.8 98.8 98.1
Pot Pot	1000 1000	0.2015	Ale. KOH	0.2677	5.24	5.22	100.4
Visual Visual	FOA FOA	0,2140 0,2124	KaCKe KaCKe	0,1609	9.29 9.16	9.23 9.16	100.7

1 : : : : : .!

TABLE I - Continued

Method	Solvent	Sample Wt. (greens)	Litrant	Mormality	Œ	Used ^a)	fl. Theor.	Percent Purity
			Phy	Phemol-(pK-9.9)		•		
IF(11 nc)	DMF	0,1562	Ale KOH	4 0.1006		32	16.50	98.9
3	Dec.	0,1222	Alc KOH			86	12,91	8.8
1		6,2012				12	21,25	7.66
$\overline{}$	DAT	0,2832	•			66	29.47	4.86
${}$		0.2709	-		-	69	28,19	98.2
形(141 mo)	Dil	0.2374	Ale KOH		गुग गुढ	777	24.70	98.9
$\boldsymbol{\smile}$	DAG	0.2585		,		ርረ	26.90	102.3
$\boldsymbol{\smile}$	190	07670				な	20.78	102.1
ー		c,1876				88	19.98	7.76
~	90	0.2137				33	22,76	102.4
HF(1/1 mc)	Did	0.2127				ત	23.52	₹86
(무)		0.1031				8	97.11	27.3
ullet		0,1243	Ale Koh	1 0.2697		83	06.4	98.6
7 7 7	1 141	0.2310	Ale KOH	1 0.2697		8	9,10	98.9
Pot	Dec	0.1774	Ale KOH	1 0.2677		γ S	7.0h	1001
Pot	Ditt	0,1878	Ale KOH			7.46	7.45	1001
Vienel	KDA	0.1287	MaCH	0.1609		8.5	8,50	1001
Vistal	YON	0.1228	Nacho	0,1609		80.8	11.8	9.66
			Phenol	. by Bromination	tion			
Solvent	Sample W. (grame)	Aliquot	Blank 7 Average)	Titrant N	Mormality ^a NagS ₂ O ₃	M. Used	M. Theor.	Percent Purity
1000 ml. H20	0_3108	4) 100 HJ. C) 100 HJ.		Karasa Karasa Karasa Karasa	0.1008 0.1008 0.1008	28.23 28.11 28.10	28.13 28.13 28.13	99.7 98.8

! . ! 1 : : : . . :

TITRATIONS OF WEAK ACIDS TABLE II

	Solvent	Sample Wt. (grams)	Titrant	Normality	Ml. Used ^a	Ml. Theory	Percent Purity
			Adiple	Adiple Acid (pK-4,4)			
HF (141 mc)	Dep	0,1657	Ale KOH	0.0961	23,12	23.59	98.0
F(141 mc)	DMG	0.1936		0,0961	27.27	27.57	6.66
HF(14,1 mb)	DAG	0,1165		1960.0	16.29	16.59	98.2
F(141 mc)	DMC	0.0930	Ale KOH	0,2697	19.1	4.72	98.3
HF(141 mc)	DAG	0,1000		0.2697	5.05	5.07	36.6
ot g	DAG	0,1991	Ale KOH	0.0979	26.35	27.27	94.8
Pot	THE	0.1854		0,1095	22.90	23.17	98.8
Pot	DATE	0.0988	Ale KOH	0,2677	46.4	5.05	98.2
Visual Visual	Dic	0.0817	Na OMe Na OMe	0,1609	6.99	6.95	100.6
			p-Aminober	p-Aminobensoic Acid (pK 4.9)			
肝(11 mc)	Benzene-Methanol 0,2019	anol 0,2019	KONe	0,1056	13.83	13.94	99.2
HF(14,1 mc) HF(14,1 mc) HF(14,1 mc)	DMG	0.2945 0.2044 0.1855	Ale KOH Ale KOH	0,1091 0,1091 0,0961	19.83 13.69 14.17	19.68 11.66	100.7
Pot	DAG.	0.3145 0.4008	Alc KOH	0.0979	23.65 26.89	23.43	1.101
Visual Visual	DAG	0.1422	Nacme	0,1609	6.45 14.25	44.5	1,001

*Corrected for blank, if necessary bHigh frequency method Dimethylformamide dependentionetric method

. 1 : 1 • 1

Continued next page

Method	Solvent	Sample W. (grams)	fitrant	Mormality	M. Useda	M. Theory	Percent Purity
		Bet	Bensoie Acid (pK-4,2)	(pK-4.2)			
HF(11 mc) HF(11 mc) HF(11 mc)	Bensene-Methanol Bensene-Methanol Bensene-Methanol	0.0681 0.0835 0.0529	KOMe KOMe KOMe	0.1056 0.1056 0.1056	42.24 66.34 09.4	5.28 6.47 4.10	99.8 99.8 99.8
HF(11,1 mc) HF(11,1 mc) HF(11,1 mc) HF(11,1 mc)	Det Det Det	0.1386 0.1883 0.1633 0.1391	Alc. KOH Alc. KOH Alc. KOH Alc. KOH	0.0961 0.2697 0.2697 0.2697	11.59 5.60 14.94 11.1	11.81 5.72 4.96	98.0 98.0 98.7
Conductivity	Die	5070-0	KOKe	0,1084	3.06	3.09	0.66
		3	onic Acid	Malonic Acid (pK's-2,9,6,1)	T		
HP(11 mo)	Bensens-Methanol	0.2025	KOKe	0,1056	18.36	18,43	9.66
HF(14,1 mc) HF(14,1 mc)	200	0.2539	Ale. KOH	0.1091	21.79	22.36 22.35	97.k 97.3
P P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DAG DAG	0.2578 0.2576 0.1421	Alc. KOH Alc. KOH Alc. KOH	0.0979 0.1095 0.2677	24.60 22.20 4.90	25.31 22.61 5.10	97.k 98.2 96.3
Visual Visual	DACE	0.0905	Naome Naome	0,1609	10.92 8.45	10.81 8.40	101.1
			Methyl Salieylate	rlate			
HF(14,1 mc) HF(14,1 mc) HF(14,1 mc)	1947 1947 1947	0.1775 0.1996 0.2054	Alc. KOH Alc. KOH Alc. KOH	0.0961 0.0961 0.0961	13.57 13.57	12.21 13.65 14.05	98.6 99.4 97.9

TABLE II - Continued

• ,

1:

3	ğ	
74	10.00	
ָ ר	3	
	970	
E	1	

Method	Solvent	Sample Wt. (grams)	Titrant	Hormality	M. Used ^a	Ml. Theory	Percent Purity
		Methyl Sal	Salicylate (Continued)	t1med)			
Pot Pot	Dig	0.3229	Alc. KOH	0.0979	22.45	89.47 8.68	99.2
Pot	. DiG.	0.2940	Ale. KOH	0.2677	7.18	7.22	9.66
Visual	000	0.1310	MaOKe Ma OKe	0,1609	~~ ~~ ~~	ν.ν. Κ.Υ.	98.9
Visual		0.1206	HaCKe	0,1609	88°•	4.93	ر د
		m-Nitroben	m-Nitrobenzoic Acid (pK-3.5)	K-3.5)			
HF(11 no)	Bensene-Methanol	0.2805		0,1056	15.94	15.89	100.3
H (141 mc)		0.2029	A16. KOH	0.0%	z:33	2.2. 2.2.	101 2.5
H (1/1 mc)		० गुगा 8		1960.0	8.6	9.02	8.66
Pot Pot	DAT	0.3763	Alc. KOH Alc. KOH	0.0979 0.1095	22.82 21.20	23.00 21.16	99.4 100.1
Visual Visual		0.1330 0.1473	NaONe	0,1609	4.92 5.44	4.95 5.48	99. 5
		8-7a	8-juinolinol				
HF(11 mc)	DC	0,2095	XON	0,1056	13.64	13.73	8.66
HF(111 mc) HF(111 mc)	Der	0.3474 0.2027	Alc. KOF Alc. KOH	0,1091	22.57	21.94 12.80	98.3 98.6
Pot Pot		0.3278 0.3687	Ale. KOH	0.0979	23.25 23.55	23.20	101.0
Visual Visual	Der	0.111 0.1179	NaCKe NaCKe	0,1609	46.8 46.8	6.04 6.33	100.0

: I 1.

TABLE II - Centinued

Method	Selvent	Sample W. (grams)	Titrant	Hormality	Ml. Used ^a	M. Theory	Percent Purity
			Resecet	Resacetophenone	·		
HF(11 mc) HF(11 mc)		0.2230	KOMe KOMe	0,1056	13.27 11.68	13.88	95.6 99.9
HF(141 mc) HF(141 mc) HF(141 mc)	D 00	0.1971 0.1913 0.1593	Ale. KOH Ale. KOH	0.09 0.09 0.09 0.09	13.59 10.53	13.48 13.08 10.90	100.8 95.7 100.1
Pot Pot		0.3500	Alc. KOH Alc. KOH	0.0979 0.1095	23.35	23.50 21.69	99.6 1001
			Salicylio A	Salicylio Acid (pK's-3.0,13.4)	(4.51.		
HF(11 mc) HF(11 mc)	Bensene-Methanol 0.1574 Bensene-Methanol 0.2355	anol 0.1574 anol 0.2355	KOMe KOMe	0,1056 0,1056	10.72	10.79 16.15	99.3 100.5
H(14,1 mc) H(14,1 mc) H(14,1 mc)	1947 1947 1947	0.0990	Alc. KOH Alc. KOH Alc. KOH	0.0961 0.0961 0.0961	9.96 8.77 7.58	10.92 8.72 7.46	91.2 100.7 101.6
Pot Pot	00 00 00	0.3069 0.3553 0.2043	Alc. KOH Alc. KOH Alc. KOH	0.0979 0.1095 0.2677	22.35 23.50 5.47	22.70 23.49 5.53	98.7 100.0 99.2
Visual Visual	100 100 100	0,157 0,151,3	Na OKe NaOKe	0,1609	1.7. 1.0.7	7.08 6.94	100.4

.

	•	. •	 • .		• •	
• •	• • • •		 •	• • .	• • • •	
:: • • •			· ·	 	•,•	
	 	• • •	\$ • •		١	
	••	. : .	• •	• • •	•	
				•		

TABLE II - Continued

Method Solvent	Solvent	Semple We. (grans)	Titrant	Hormality	M. Used ^a	M. Theory	Percent Purity
			2 4 6-Trichl	2 4.6-Trichlorophenel (pK-7.6)	1.6)		
HF(11 mc)	1040	0.3112	KOKe	9501.0	14.65	74.92	98.2
7	100	0.4659		0,1091	£4,23	21.62	1.66
3:		14/2.0	Ale. KOH	0,1091 1,090 1,090	21.11 89 ct	11.33	98 4.09
H (1-1 mc)		0.2925		0.2697	, v , d	× × 5	98.5 97.9
Pot Pot	047 047 047	0.4552 0.4634 0.2447	Alc. KOH Alc. KOH Alc. KOH	0.0979 0.1095 0.2677	23.55 20.99 1.48	23.55 21.43 4.63	100.0 97.9 98.1
Visual Visual		0.1519 1841.0	NaOMe NaOMe	0,1609	4.72 1.60	4.78 4.68	98.7 98.3
			Vanil	Vanillin (pK-5,3)			
IF(11 no)		0.2358	KOM	0,1056	14.35	89.गर	8.76
HF (11,1 mc) HF (11,1 mc) HF (11,1 mc)	DAT DAT	0.363 0.3661 0.2409	Ale. KOH Ale. KOH Ale. KOH	0.1091 0.1091 0.0961	22.13 21.98 16.75	21.80 22.06 16.48	101.5 99.7 101.7
Pot Pot		न्द्रगह [°] ० भूताह [°] ०	Ale. Koh	0.0979	23.10	23.20	99.6
Visual Visual		0.1411 0.1438	Hadre	0.1609	<i>พ.พ</i> ช.ช. <i>พ.พ</i>	% %	4.96 4.99

. . . •

!

.

Unsatisfactory Solvent Systems for High Frequency Titrimetry

attempted, but the instrument would not respond to addition of titrant. The same phenomenon occurred when titration of bensoic acid or phenol were attempted in benzene with potassium methoxide. Even the addition of lithium chloride had no effect. Benzene-isopropyl alcohol (9/1 or 1/1) mixed solvent likewise gave no instrument response when the titration of phenol with alcoholic potassium hydroxide was attempted.

SUMMARY AND CONCLUSION

Without knowledge of the accuracy of the comparison methods it is impossible to appraise the accuracy of high frequency titrimetry for weak and very weak acids. This study was intended as a survey to determine whether such acids could be titrated by the high frequency method, therefore, no special effort was put forth to study factors which affect the precision of the method. To provide some basis for comparison, mean values for the respective methods have been computed and these values tabulated below. Only those values agreeing within two per cent were included in computing mean values.

Although only relatively few high frequency titrations were performed in benzene-methanol, this solvent system, in conjunction with potassium methoxide titrant, seems to offer many advantages for high frequency titrimetry of weak acids. These advantages are smoothness of titration plots, sharpness of the end point breaks, availability and relatively low cost of the solvents, lack of blank correction, and lack of objectionable odor. Successful titration of very weak acids is not possible because the end point is masked by the acidity of the methanol present.

Successful high frequency titrations of p-aminobenzoic, benseic, malenie, m-mitrobenseie, and salicylic acids were performed in bensenemethanel mixed solvent with potassium methoxide. The end point breaks for benseic acid were sharp and well defined, but no comparison can be made with results obtained by potentiometric or visual methods since

 $oldsymbol{\phi}_{i}$, which is the state of $oldsymbol{\phi}_{i}$, $oldsymbol{\phi}_{i}$, $oldsymbol{\phi}_{i}$

the titrant was standardized against bensoic acid employing these methods. The titration results for the others are:

	High Frequency	Potentiometric	Visual
p-Aminobensois asid	99.2%	101.45	100.9%
Malonic	99.6	erratic	100.4
m-Nitrobenzele acid	100.3	9 9.8	99.4
Salicylic acid	99.9	99.0	100.7

No successful high frequency titrations of phenol, catechol, hydroquinone, or resorcinol were accomplished employing this selvent-titrant system.

Only a few compounds were titrated in dimethylformanide with potassium methoxide since alcoholic potassium hydroxide proved to be a far superior titrant for very weak acids. Compounds which were successfully titrated by the high frequency method were 8-quinclinel, ressecto-phenone, 2,4,6-trichlorophenol, and vanillin. The titration plots were smeeth with little or no scattering of individual points. The titration results are:

	High Frequency	Potentiometric	Visual
8-Quinelinel	99.8\$	101.3%	101.15
Resacetophenone	99 .9	99.9	-
2,4,6-Trichlerophenol	98.2	98.0	98.5
Vanillin	97.8	99.9	99.5

No visual titrations of resacctophenous were performed because of insufficient sample. The end point breaks for bensoic acid, salicylic acid, or methyl salicylate ranged from poorly defined to indeterminate. The acidity of the methanol present in the titrant solution masked the end point break for phenol or catechol.

Except for salicylic acid these high frequency titration values represent only one titration.

^{**}Only one high frequency titration was performed for each of the compounds listed in the table.

•	•		•

• •

the second of th

in the first of the first section of the section of

-

High frequency titrations of very weak acids in dimethylformanide with alcoholic potassium hydroxide titrant proved successful for the monohydroxy phenols, p-benzylphenol, p-bromophenol, o-hydroxydiphenyl, p-naphthol, and phenol. Some scattering of individual points of the titration plots was observed but this phenomenon did not interfere with selection of the end point. The titration results are:

	High Frequency	Potentiometric	Visual
p-Bensylphenel	9 9.7%	100.5%	99.7%
p-Bromophenol	99.7	101.5	100.6
o-Hydroxydiphenyl	100.7	101.4	100.0
8-Naphthol	99.3	100.6	100.4
Phenol*	98.6	100.1	99.9

A result of 99.1 per cent was obtained for phenol by the standard bromination method. The end point breaks for p-tert-amylphenol were sharp but the results were very erratic. High frequency titrations of catechol or phloroglucinol were unsuccessful, possibly because of exidation in excess basic titrant. The titration solutions were black after the titrations.

High frequency titrations of adipic acid, p-emimoberacie, benzoic acid, malonic acid, methyl salicylate, m-nitroberacie acid, 8-quinolinol, resacetopheneme, 2,4,6-trichlorophenel, or vanillin were performed successfully in dimethylformamide with alcoholic potassium hydroxide titrant. The titration results are:

The value listed under "High Frequency" results is the mean of nine titrations values obtained from three series of titrations. Two other values were discarded because of a large deviation from the mean. Another series of titrations, 102,1%, 94,4% and 102,4%, also was omitted.

	High Frequency	Potentione tric	Visual
Adipie acid	98.8%	98.5%	100.5%
p-Aminobenzoic acid	100.5	101.4	100.9
Malonic acid	97.4	erratio	100.4
Methyl salicylate	98.6	98 .9	99.4
m-Nitrobenzoic acid	100.2	99.8	99.4
8-quinolinol	98.5	101.3	101.1
Resacetophenone	100.5	99.9	
2.4.6-Trichlorophenol	98.7	98.0	98.5
Vanillin	100.9	99.9	99.5
Salicylic acid	101.2	99.0	100.7

No visual titrations of resacctophenone were performed because of insufficient sample. Since benzoic acid was used as the standard or for determining the blank for the potentiometric or visual methods, no comparison was made. High titration results by the visual method for adipic acid may be due to the obscuring of the end point by the precipitation of potassium adipate during the titration. The individual points of the titration plots for all the weak acids, except adipic and malonic, showed some scattering. The scattering was largest for bensoic and salicylic acids. This scattering made selection of the end point semawhat difficult.

High frequency titrimetry for weak and very weak acids proved to be reasonably accurate. Of the three solvent-titrant systems used, benzene-methanel--potassium methoxide, dimethylformamide-potassium methoxide, and dimethylformamide-alcoholic potassium hydroxide, the last named system yielded the most erratic titration plots. The scattering of individual points of titration plots and small change of slope at the end point gave rise to difficulties in selecting the end point for some weak acids. This selvent-titrant system, however, was the only one with which successful titrations of very weak acids could

be performed. Bensene-methanol mixed solvent appears to be the better solvent for the titration of bensoic, salicylic, and other weak acids. There is little or no scattering of individual points of the titration plots and the end point breaks are distinct.

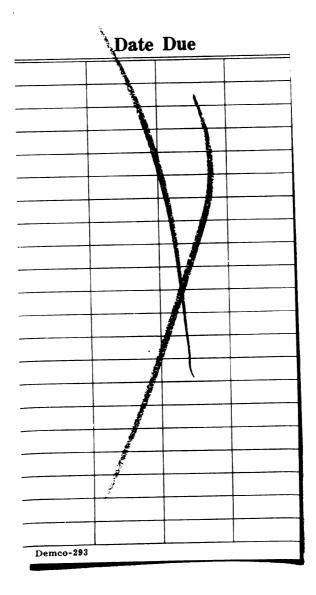
Although comparable titration results were obtained for the dimethylformamide solvent system by high frequency and potentiometric methods, the high frequency method is more attractive since the electrodes do not come into contact with the solution being titrated. By the high frequency method very weak acids were titrated in dimethylformamide. Such titrations have not been carried out successfully by an indicator method.

A possible solution to the problem of end point detection due to point scattering when the dimethylformanide-alcoholic potassium hydroxide system is employed would be to utilise an automatic recorder in conjunction with a constant delivery buret. Smoother titration curves would possibly be obtained.

Since any inherent instability of the electronic and mechanical systems of the Sargent Model IXI Polarograph is incorporated into the response values of the high frequency instrument, the substitution of a potentiometer type "mulling" arrangement employing calibrated "helipot," for the pelarograph might improve the stability of the response of the instrument.

The titrations were almost exclusively carried out at 141 megacycles. Possibly operation at a lower frequency would yield smoother titration plots for some of the systems studied.

State of the state


There was some difficulty defining the end point because of a slight curvature of the branches of the titration plots for some of the compounds and a lack of a large change of slope at the end point. Most of the titrations performed in this investigation were done with 0.1 M titrant, approximately 10 times the concentration of the sample solution. Increasing the titrant concentration to 0.2M might produce more linear plots and larger change of slope at the end point.

LITERATURE CITED

- 1. Conant, J. B., and Hall, N. F., J. Am. Chem. Soc., 49, 3062 (1927).
- 2. Deal, V. Z., and Wyld, G. E. A., Anal. Chem., 27, 47 (1955).
- 3. Dean, J. A., and Cain, C., <u>Tbid.</u>, 27, 212 (1955).
- 4. Dewdall, J. P., Linkinson, D. V., and Stretch, H., Analyst, 80, 491 (1955).
- 5. Felin, 0., and Wentworth, A. H., J. Biol. Chem., 11, 421 (1909-10).
- 6. Frits, J. S., "Acid-Base Titrations in Honaqueous Solvents," Columbus, Ohio, G. Frederick Smith Chemical Co., 1952.
- 7. Frits, J. S., Anal. Chem., 22, 578 (1950).
- 8. Ibid., 22, 1028 (1950).
- 9. Fritz, J. S., and Lisicki, N. M., Ibid., 23, 589 (1951).
- 10. Fritz, J. S., Ibid., 24, 306 (1952).
- 11. Frits, J. S. and Keen, R. T., Ibid., 24, 308 (1952).
- 12. Fritz, J. S., Ibid., 24, 674 (1952).
- 13. Fritz, J. S., and Keen, R. T., Ibid., 25, 179 (1953).
- 14. Frita, J. S., Ibid., 25, 407 (1953).
- 15. Frits, J. S., and Fulda, M. O., Ibid., 25, 1837 (1953).
- 16. Hall, M. F., and Conant, J. B., J. Am. Chem. Soc., 49, 3047 (1927).
- 17. Hell, N. F., and Werner, T. H., Ibid., 50, 2367 (1928).
- 18. Higuchi, T., and Rehm, C. R., Anal. Chem., 27, 408 (1955).
- 19. James, J. C. and Knox, J. G., Trans. Faraday Soc., 46, 254 (1950).
- 20. Jankowski, C. M., Unpublished Master's Thesis, Michigan State College of Agriculture and Applied Science, (1954).
- 21. Jensen, F. W., and Parrack, A. L., Ind. Eng. Chem., Anal. Ed., 18, 595 (1946).

- - - - the second of th
 - and the state of t
 - and the contract of the contra

- 22. Johnson, A. H., Unpublished Master's Thesis, Michigan State College of Agriculture and Applied Science, (1954).
- 23. Johnson, A. H., and Timnick, A., Anal. Chem., in press.
- 24. Karrer, P., "Organic Chemistry," Fourth English Ed., p. 435. Elsevier Publishing Co., New York, 1950.
- 25. Lane, E. S., Analyst, 80, 675 (1955).
- 26. Lippincott, W. T., and Timnick, A., Private Communication.
- 27. Moss, M. L., Elliott, J. H., and Hall, R. T., Anal. Chem., 20, 784 (1948).
- 28. Nadeau, G. F., and Branchem, L. E., J. Am. Chem. Soc., <u>57</u>, 1336 (1935).
- 29. Palit, S. R., Das, M. R., and Somayajulu, G. R., "Non-Aqueous Titration," Indian Association for the Cultivation of Science, Calcutta-32, India, 1954.
- 30. Pifer, C. W., and Wollish, E. F., J. Am. Pharm. Assoc., Sci. Ed., <u>40</u>, 609 (1951). C. A. <u>46</u>, 2751 (1952).
- 31. Pifer, C. W., and Wollish, E. G., Anal. Chem., 24, 300 (1952).
- 32. Ibid., 24, 519 (1952).
- 33. Reilly, C. H., and Schweiser, B., Anal. Chem., 26, 1124 (1954).
- 34. Riddick, J. A., Ibid., 24, 41 (1952).
- 35. <u>Ibid.</u>, <u>26</u>, 77 (1954).
- 36. Siggia, S., "Quantitative Organic Analysis via Functional Groups," Second Ed., p. 162, John Wiley and Sons, New York, 1954.
- 37. Wagner, W. F., and Kauffman, W. B., Anal. Chem., 25, 538 (1953).
- 38. Ishidate, M., and Masui, M., J. Pharm. Soc. Japan, 73, 487 (1953).
- 39. Toid., p. 867.
- 40. Masui, M., J. Pharm. Soc. Japan, 73, 1011 (1953). C. A. 48, 1895 (1954).

