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ABSTRACT 

NONDESTRUCTIVE EVALUATION OF FRESH CHESTNUT INTERNAL DECAY 
USING X-RAY COMPUTED TOMOGRAPHY (CT)  

 
By 

Irwin R. Donis-González 

Internal decay is an important quality attribute in chestnuts (Castanea 

spp.). Worldwide, internal decay is mainly caused by microorganism attack and 

physiological cell breakdown. It is problematic for the industry, and impacts 

consumer satisfaction, shelf life, and proper storage. Currently, destructive 

techniques can be employed to evaluate fresh chestnut internal 

quality.  However, clearly not all produce can be evaluated. In commercial 

situations, decayed chestnuts are eliminated by their proclivity to float in water. 

Nonetheless, performance significantly varies between species and throughput, 

making this floating method unreliable for sorting purposes. Thus, the overall 

objective of the study is to develop the methods to nondestructively visualize and 

automatically classify fresh chestnuts, based on their internal quality, using X-ray 

CT imaging.  

In this study, medical grade computed tomography (CT) was used to 

obtain transversal two-dimensional (2D) images from fresh chestnuts (cv. 

‘Colossal’ and Chinese seedlings). If the information obtained by the CT 

scanning of fresh chestnuts is to be used in an industrial setting for in-line 

sorting, automated interpretation of CT images is essential. For this purpose: (1) 

Chestnut CT image quality was optimized by studying the combined effect of 



 

image acquisition parameters (voltage – 120 kV, current – 170 mA and slice 

thickness – 2.5 mm) using response surface methodology, (2) effective image 

visualization techniques to infer fresh chestnut internal quality attributes were 

established, and (3) an image analysis algorithm for the automatic classification 

of CT images obtained from 2848 fresh chestnuts, during the harvesting years 

from 2009 to 2012, was developed and tested. 

The CT imaging system provided high-resolution and high-contrast images 

of the internal structure and components of fresh chestnuts. Approximately 50 

original CT image slices (stack) were obtained per chestnut, from three different 

planes (angular orientations) across the longitudinal (Z) (XY-plane-slice), 

horizontal (YZ-plane-slice) and vertical (XZ-plane-slice) axes. From this image 

stack, 6 secondary CT images per chestnut sample, including mean and 

maximum intensity value images for each of the planes were extracted. 

Thereafter, a total of 1194 grayscale intensity, and textural features were 

extracted from the 6 secondary CT images per sample. Ultimately, 86, 155 and 

126 features were found to be effective in designing a quadratic discriminant 

analysis classifier with an overall performance accuracy of 85.9 %, 91.2 % and 

96.1 % for 5, 3 and 2 classes, respectively.  

This study provides a powerful tool to accurately visualize and sort 

chestnuts based on their internal quality, leading to the improved marketability of 

attractive, safe, high quality chestnuts. Results show that this method is accurate, 

reliable, and objective and it is applicable to an automatic noninvasive in-line CT 

sorting system. 
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Chestnut (Castanea spp.) is one of the most popular nut-bearing trees in 

the countries of Asia, including China, Republic of Korea, and Japan; as well as 

the Mediterranean region (Ridley, 1999). Worldwide, from 1998 to 2011, chestnut 

production increased by approximately 92,000 kg per year (Food and Agriculture 

Organization Statistics Division (FAOSTAT), 2013). As observed in Fig. 1, in 

2011, chestnuts grown in Asia and Europe accounted for more than 95% of the 

worldwide production, with chestnut production increasing in Australia, New 

Zealand, Chile and Bolivia among others (Grau and France, 1999; Klinac et al., 

1999; Ridley, 1999; Fulbright and Mandujano, 2000; Mencarelli, 2001).  

In the United States, chestnuts are uncommon; people are more likely to 

be familiar with the unrelated and poisonous horse chestnut (Aesculus spp.) 

(Fulbright and Mandujano, 2000), than with any of the edible, sweet chestnut 

species, including C. dentata, C. mollissima, C. crenata, C. sativa, C. seguinii, C. 

pumila,  and C. henryi  (Anagnostakis et al., 1998; Fulbright and Mandujano, 

2000; Miller, 2003). This is partially due to chestnut blight (Cryphonectria 

parasitica, Murril and Barr), a fungus disease that virtually eliminated the once-

widespread American chestnut (C. dentata) during the first half of the twentieth 

century (Merkel, 1905; Metcalf and Collins, 1909; Gravatt and Marshall, 1926). 

Over the past twelve years, with the availability of blight resistant hybrids, as well 

as tolerant European and Chinese cultivars, commercial orchards, and wild forest 
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tree populations have significantly increased in the United States, including 

Michigan (Fulbright and Mandujano, 2000; Jacobs, 2007).  

 
Source: Food and Agriculture Organization Statistics Division (FAOSTAT), 2013 

Figure 1.  World chestnut (Castanea spp.) production in 2011 
 

Before the early 19th-century, especially in the European Mediterranean 

region and in Asia, chestnut consumption was predominant in rural areas, and 

was considered to be a food for the poor. Currently, chestnuts are mainly 

consumed by roasting the fresh product (Harte et al., 2003), but also are used as 

a cooking ingredient in diverse culinary applications, including pastries, and 

specialty dishes (Kelley and Behe, 2002; De la Montaña Miguelez et al., 2004; 

Blackwell, 2006; Borges et al., 2008). Additional to the fresh product, small 
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portions of chestnuts are consumed peeled. Mechanically peeled and 

subsequently frozen chestnuts are usually sold as a value-added product to 

extend the chestnut market beyond seasonal sales, providing the opportunity to 

expand markets and their utilization (Guyer et al., 2003; Gao et al., 2008). 

Positively, for the United States, Vossen (2000) claimed that the chestnut 

industry has a great potential, and a small rise in domestic consumption could 

generate a net revenue of up to 800 million US$ annually. Studies performed in 

Wisconsin and California, between the years 2000 and 2004, evaluating 

consumer preference for chestnuts, reflected that the majority of the interviewed 

had never tasted a chestnut, but were interested in exploring them as a new food. 

Overall quality and nutritional value were listed as the most important attributes 

influencing purchase and consumption decisions (Gold et al., 2004). 

Chestnut quality is measured not only by external factors such as color, 

shape, size, surface blemish, and surface mold growth, but also by internal 

disorders and freshness, which are very important for consumer acceptance. It is 

important to note that the external appearance usually is not altered, at least 

initially by internal disorders, making disordered chestnuts difficult to detect 

without destructive evaluation. Internal disorders usually are the result of 

anatomical and physiological changes within the tissue, such as moisture loss, 

chemical conversion, discoloration, senescence, microorganism attack, cell 

breakdown (physiological decay), and insect injury (Upchurch et al., 1993).  

In fresh chestnuts, microorganism attack is the most important internal 

disorders determining internal (kernel) quality. Penicillium sp., Aspergillus sp., 

Fusarium sp., Phomopsis castanea, Acrospeira mirabilis, and Sclerotinia 
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pseudotuberosa (syn. Ciboria batschiana, S. batschiana; anamorphic from 

Rhacodiella castanea, syn. Myrioconium castanea) have been persistently 

identified worldwide, including in the United States, as microorganisms that play 

an important role as casual agents in postharvest microbiological decay (Ridé 

and Gudin, 1960; Paglietta and Bonous, 1979; Ellis and Ellis, 1985; Montealegre 

and Gonzalez, 1986; Vettraino et al., 2005; Jerimini et al., 2006; Sieber et al., 

2007; Donis-González, 2008; Donis-Gonzalez et al., 2010). Other issues, like 

chestnut internal kernel breakdown (IKB) also threatens the industry, especially in 

Michigan. IKB is defined as physiological kernel decay, near the end of the 

harvesting season (September), where no fungal pathogens are linked with the 

condition. Symptomatic IKB chestnuts develop properly and no apparent issue 

can be observed on the chestnut shell. It has been hypothesized that IKB might 

be related to pollination incompatibility (Long, 2012). In some cases, these 

problems can lead to a completely unmarketable product. A certain amount of 

affected product may be sold in less demanding markets, nonetheless this 

practice results in important economic and potential market losses due to 

consumer rejection.  

In addition to quality concerns and product appearance, product safety is 

also a significant issue. Some fungi present in chestnuts are capable of secreting 

substances that are potent, acute toxins, or carcinogens to both animals and 

humans. These toxic agents are called mycotoxins, and their impact on domestic 

animals in terms of decreased growth rate, abnormal reproduction, and early 

death has long been recognized. The most important mycotoxins are aflatoxins, 

deoxynivalenol (DON), zearalenone, fumonisin B1, T-2 toxin, and ochratoxin A 



 5 

(Adams and Moss, 2000; Bullerman and Bianchini, 2007). These substances 

have been predominately isolated from grains such as wheat and corn, but can 

also been found in chestnuts (Overy et al., 2003; Donis-González et al., 2010a) 

as well as in other products including rice (Tanaka et al., 2007), grapes (Varga et 

al., 2007), beer, wine (Mateo et al., 2007), vegetable oil (Schollenberger et al., 

2008), peanuts, pecans (Lillard et al., 1970), and processed foods (Adams and 

Moss, 2000; Bullerman and Bianchini, 2007). 

 Currently, random and destructive sampling techniques can be employed 

to evaluate internal chestnut quality. However, in commercial situations, 

physiologically disordered, microbiologically decayed, and empty or damaged 

chestnuts, are eliminated by their proclivity to float in tap water, as healthy 

chestnuts tend to sink. Nevertheless, performance varies significantly between 

cultivars and throughput, proving that this floating method is unreliable for sorting 

purposes. Errors associated with the method might be caused by the large 

density variations among individual chestnuts and the presence of a perfectly 

healthy chestnut containing void spaces, thick shell, or pellicle embedded in the 

healthy kernel. Additionally, the technique is slow, cumbersome, and a significant 

amount of healthy product is also being discarded.  (Donis-González, 2008).  

 All these issues regarding postharvest mold, decay, safety concerns, and 

inability to sort chestnuts appropriately, reflect the need to develop a reliable 

technique for chestnut internal disorder detection, which is fast, practical and 

appropriate to apply for in-line sorting systems.  
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1.2 Chestnut fruit  

Many nuts, as well as chestnuts, are wrapped in a papery or spiny husk 

called the involucre, more commonly known as a bur (Fig. 2). This structure is 

usually mistaken as the fruit, but it is actually a whorl of modified leaves around 

the flower or flowers. Inside the involucre, depending on the species or cultivar, 

one to three chestnuts can be found. In chestnuts, the ovule 

 

Figure 2. Chestnut fruit morphology. A. Chestnut fruit longitudinal cut, B. 
Spiny burr attached to chestnut tree with chestnuts. For interpretation of 

the references to color in this and all other figures, the reader is referred to 
the electronic version of this dissertation 

 
 
or ovules (inside ovary) that develop into a seed or several seeds are called 

kernels, structures, which will swell and give rise to what is known as the shell  

(fruit called an achene or pericarp). The shell has an external brown wall with a 
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woody and shiny appearance. Two large cotyledons, forming the kernel, surround 

the embryo, which contains the radicle, hypocotyls and epicotyls. Between the 

shell and the kernel, is a thin brown papery-like structure, commonly called a 

pellicle, which is botanically known as a seed coat, testa or episperm (Mencarelli, 

2001; Miller, 2003). Usually there is only one kernel per shell, but in certain cases 

there may be two or more, commonly referred to as a multiple embryo chestnut. 

In different regions of Europe, including Italy and Spain, the term “marron”, or 

"marrone" denotes a single kernel nut, while the term “chatâigne”, “castaño” or 

“castaña” denotes double or even more kernels per shell. Therefore, from a 

botanical point of view, a chestnut is an achene type fruit, containing one or more 

seeds, known as a kernel with creamy, yellow-colored edible cotyledons, covered 

by a membrane called pellicle or episperm (Mencarelli, 2001; Miller, 2003).  

When chestnuts begin to ripen in late summer or autumn, the bur changes 

color from light green to yellow-brown and releases the chestnuts. Sometimes the 

bur opens on the tree, releasing the chestnuts, but the bur can also drop and 

open on the ground (Anagnostakis et al., 1998; Mandujano et al., 1998; Miller, 

2003; Willis et al., 2007). 

Unlike edible nuts such as almonds, hazelnuts, and walnuts, the chestnut 

kernel is slightly hard, rich in carbohydrates, mainly starch, but also sucrose, 

glucose and fructose (40 – 90 %), containing high fiber (14 - 19 %), protein (6 - 

10 %) and low lipids (0.4 - 10 %), which are 90 % unsaturated fatty acids 

(nutrients are expressed as the percentage of dry weight). After harvest, 

chestnuts water content is relatively high (> 50 %) (Anagnostakis and Devin, 

1999). Furthermore, chestnuts are a source of vitamin A, calcium, iron, fiber with 
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and antioxidants (Biomhoff et al., 2006; Gao et al., 2008). Biomhoff et al. (2006) 

as well as Anagnostakis and Devin (1999) reported that all these characteristics 

are highly beneficial for human health and are needed for proper nutrition and 

protection of animal cells, ranking chestnuts as a healthy food. 

After harvest, respiration of most seeds is usually characterized by a low 

and constant rate without any peak, reflecting a non-climacteric respiration 

pattern. The same relative pattern can be found in chestnuts, but when compared 

to other seeds and to most other nuts, chestnuts have a higher respiration rate. 

Subsequently, water loss and starch conversion to sugars is high (Kader, 2002; 

Willis et al., 2007). Based on several respiration rate studies (Harte et al., 2003), 

chestnuts were comparable to blueberries  (Perkins-Veasie, 2004) and iceberg 

lettuce (Smyth and Cameron, 1998; Kader, 2002), exhibiting a lower respiration 

rate than cut broccoli (Talasila et al., 1994), peas, asparagus, sweet corn, and 

mushrooms (Kader, 2002). 

In addition to physiological, and microbiological decay problems arriving 

from the field, the most common changes that occur in chestnuts after harvest 

are: moisture loss, starch conversion to sugar, fungal decay, cell breakdown, and 

insect damage (Wells, 1980). Only starch conversion to sugar, commonly known 

as "curing", positively affects chestnut quality, enhancing the flavor, sweetness, 

and acceptability of the product (Harte et al., 2003). The other three major factors 

have a negative affect on quality and storage potential of the final product 

(Paglietta and Bonous, 1979; Wells, 1980; Montealegre and Gonzalez, 1986; 

Harte et al., 2003; Jerimini et al., 2006). Because quality can only be maintained, 

sometimes monitored or detected, and not improved after harvest (Kader, 2002; 
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Willis et al., 2007; Kincaid et al., 2008), efforts have focused on increasing the 

storability of chestnuts by reducing microbes, insects, and maintaining the quality 

at harvest. Vossen (2000), reported that during three months storage, 

temperatures between -2 C to 0.5 C were recommended, playing an important 

role in inhibiting fungal decay, increasing storage, and reducing moisture loss. In 

Michigan, in addition to the recommended storage temperature (Vossen, 2000), a 

postharvest treatment has recently been incorporated and has proven to maintain 

chestnut quality during storage. Treatment consists in dipping fresh chestnuts for 

5 min in water containing 2700 ppm hydrogen dioxide + 200 ppm peracetic acid 

(Storox™, BioSafe Systems, Glastonbury, CT, USA) (Donis-González, 2008; 

Donis-González et al., 2010b). Nonetheless, as mentioned before, because there 

is no reliable commercially available sorting method, chestnuts that are already 

decayed at time of harvest, are still being stored among healthy product. The 

storing of decayed chestnuts inevitably increases costs for the chestnut industry. 

Furthermore, decayed, bad quality commodity additionally contaminates healthy 

chestnuts, causing them to decay during storage. Therefore chestnut sorting 

might be considered pre-storage as well as post-storage, before the product is 

sent to the client. 

1.3 World chestnut industry  

 According to the Food and Agriculture Organization Statistics Division 

(FAOSTAT), in 2013 at least 25 countries produced chestnuts. Reports from 

1998 to 2011, showed that Chestnut production and harvested area have 

experienced a continuous average growth. Chestnut production worldwide in 
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2011 was estimated to be over 2,015,000 metric tons (2.01 x 109 kg) distributed 

as following: China,  84 %; Republic of Korea,  3 %; Italy, Turkey, and Bolivia, 

 2-3 % each; France, Portugal, Spain, and Greece,  0.2-1 % each; and the 

United States, Australia, New Zealand, Chile, Peru, Brazil, Albania, among 

others, less than 0.1 % each (Fig. 1).   

China is the largest low-cost producer and exporter of chestnuts with an 

estimated production of 1,700,000 metric tons (1.7 x 109 kg). Approximately one 

third of their chestnut production is exported to Japan. Locally, most chestnuts 

are consumed fresh or roasted with an unspecified amount used in Chinese 

cuisine to develop a broad variety of dishes (Vossen, 2000).  

Republic of Korea, the second largest producer, yields significantly less 

chestnuts compared to China per year (55,780 metric tons = 55,780,000 kg), 

approximately half of which are exported to Japan and another countries like the  

United States ( 1 to 3 %) (Vossen, 2000).  

Japan is the largest chestnut importer and is among the largest consumer 

group, even though it is not the biggest producer. In the Republic of Korea and 

Japan, local or imported chestnuts are primarily stored under refrigerated 

conditions of 4 – 7 C, and consumed fresh, boiled, or as an ingredient in diverse 

dishes. Some are also stored dry or peeled for further use.  

Within Europe, Italy is the largest chestnut producer with approximately 

57,493 metric tons (57,493,000 kg) and leads the world in production of delicacy-

processed chestnut-based products such as marrone glacé (preserved chestnuts 

in sugared liquor). In Europe, the use of dry chestnuts and chestnut flour in 
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cooking has recently declined, but the popularity of these products is increasing 

elsewhere, especially in the United States. These value-added products, such as 

processed, dried, peeled, and frozen chestnut have reached more than 8.00 US$ 

per pound, prompting moves to expand the chestnut industry worldwide (Vossen, 

2000). Europe’s second largest producer is Portugal, with up to 21,990 metric 

tons (21,990,000 kg) per year. France is one of the biggest importers of 

chestnuts in Europe, mostly from Italy, Spain, and Portugal.  

Recently, the United States, Australia, New Zealand, Chile, and other 

countries in the Southern Hemisphere have begun to produce chestnuts and 

have established economically sustainable industries, mainly for export 

(Mandujano et al., 1998; Fulbright and Mandujano, 2000; Vossen, 2000). The 

United States has at least 5,000 acres of chestnut tree plantations. Of these, 

approximately 1,500 acres are less than 10-year-olds. Chestnut trees are mainly 

in California, Michigan, Oregon, Washington, Iowa, Idaho, Nebraska and Ohio 

(Vossen, 2000).  These commercial plantations are primarily from the cultivar 

‘Colossal’ (European-Japanese hybrid = C. sativa x C. crenata). This cultivar has 

been broadly used because it produces large nuts (up to 30 g), high yields (> 55 

kg per tree), and is commercially sold at nurseries (Fulbright and Mandujano, 

2000; Miller, 2003). Other cultivars such as ‘Dunstan Hybrid’ (a patented seedling 

of a third generation cross between American and Chinese chestnut hybrids = C. 

dentata x C. mollissima), ‘Skookum’, ‘Layeroka’, ‘Myoka’, ‘Skioka’, and ‘Eaton’, 

which have apparent Chinese characteristics, have also been planted (Miller, 

2003).  
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In recent years chestnut average production has been increasing (Vossen, 

2000). As an example, in 2003 approximately 1,500 kg of chestnuts were 

harvested by the Chestnuts Grower Incorporation (CGI) in Michigan, while in 

2007, a total of 22,000 kg were harvested (Blackwell, 2006). An important 

chestnut state is California, where the oldest commercial plantations are found. 

Vossen (2000) indicated that most of the early chestnut orchards in California 

were established by immigrants during the Gold Rush and are mostly seeds from 

European chestnuts.  

Michigan’s chestnut harvest starts in mid-September and proceeds 

through the first week of November, but may start and subsequently end slightly 

later, in northern or colder locations. Product is currently primarily sold through 

CGI, a producer owned and controlled marketing cooperative. Most chestnuts are 

sold from Thanksgiving through Christmas, via sales to specialty ethnic markets, 

retail stores, food processors, restaurants, holiday festivals, farmers’ markets and 

individual consumers. Fresh and frozen peeled chestnuts make up 60 % and 30 

%, of outlet sales respectively. The remaining product (10 %) is sold as flour, 

breading, and new dehydrated products such as chips and slices, and puree 

(Blackwell, 2006).  

Since freshness and microbial quality are sales factors in chestnut, 

domestic production has a definite advantage over imported chestnuts. But to 

maintain this advantage, local quality monitoring, sorting, storage conditions, and 

postharvest management strategies are all key strategies in preventing the 

chestnuts from molding and decaying. Regardless of poor quality and lack of 

freshness, mainly due to long-term storage and transport of imported chestnuts, 
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the United States annually imports between 5 and 15 million kg of fresh 

European and Chinese chestnuts, at a retail price of approximately 40 million 

US$ (4-8 US$ per pound).  This indicates that the United States chestnut 

consumption is high and economically significant. Nonetheless, in order for the 

United States to expand its markets, replace imported chestnuts, and fulfill all its 

local needs today, more than 20,000,000 m2 of production area would be 

required. Furthermore, if chestnuts are marketed efficiently and domestic 

consumption increases by only 0.22 kg per capita, the United Sates would 

require over 202,000,000 m2 of mature production area to meet the demand. 

Following this growth, the industry would be worth more than 300 million US$ per 

year, but may be worth more than 800 million US$ annually, if the increase in 

consumption is even higher (Vossen, 2000).  

1.4 Electronic sorting technologies 

 Presently, noninvasive techniques mainly using color computer vision 

systems are employed to determine external quality attributes (peel color, 

external defects and shape) in fresh vegetables, nuts and fruits (Brosnan and 

Sun, 2004; Mery and Pedreschi, 2005; Blasco et al., 2007; Gomes and Leta, 

2012; Moreda et al., 2012). In addition, techniques based on optical, magnetic 

resonance imaging (MRI), near-infrared (NIR), vibration, sonic and ultrasonic, 

have also been explored for non-destructive determination of internal quality 

attributes of a variety of agricultural and food products (Milczarek et al., 2009; 

Cubero et al., 2010; Lorente et al., 2011). Internal quality attributes which have 
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been explored include apple firmness and soluble solids content (Peng and Lu, 

2008), peach firmness (Lu and Peng, 2006), tart cherries pit presence (Qin and 

Lu, 2005), tomato mechanical damage (Milczarek et al., 2009) and pickle internal 

defects (Ariana and Lu, 2010). However, because of the morphological 

characteristics of some commodities, like chestnuts, which contain an external, 

relatively thick (1.0-2.0 mm), bright and shiny shell (> 70 gloss units), it is not 

possible to use traditional color or even NIR sorting methods available in the 

industry to evaluate internal quality traits. Currently, only destructive techniques 

can be reliably employed to evaluate internal components of a variety of fresh 

agricultural commodities, including chestnuts (Donis-González et al., 2013). 

Clearly invasive techniques can’t be applied to all produce and, thus there is a 

need to develop an in vivo in-line nondestructive tool capable of better assessing 

fresh agricultural commodity internal attributes. This will enable the fresh 

commodity industry to offer better quality products, therefore increasing customer 

satisfaction, increase market share profit growth and have less customer 

complaints (Garvin, 1984). One commodity which could extremely benefit from 

such technologies is the chestnut, due to its propensity toward internal decay, as 

described in Donis-González (2010). 

 Though not commercially available to the agricultural field, computed 

tomography (CT) is an important noninvasive diagnostic tool broadly used in the 

medical field and material sciences (Bushberg et al., 2002). Despite extensive 

research efforts and off-line application studies, a real-time in-line CT inspection 

system for internal quality attributes of fresh produce is not commercially 

available. However, because of X-ray capabilities of visualizing internal properties 
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of objects through thick matter, as well as recent advances in high-performance 

computing systems, new detector technologies including modern graphical 

processing unit (GPU) computing capabilities (Pratx and Xing, 2011) and high-

performance X-ray tubes, non-medical applications are gaining attraction. New 

detector technologies offer real-time imaging, equipment cost decreases, 

extended or continuous operation, and significant reduction in image 

reconstruction time (Butz et al., 2005; Hanke et al., 2008). 

1.5 Basic principles of X-ray computed tomography (CT) 

X-rays are short wave radiations (10 - 0.01 nm) with energy between 1.92 

x 10-17 and 1.92 x 10-14 J, which can penetrate matter. The wavelengths are 

shorter than those of visible light rays (390 - 700 nm) and ultraviolet rays (10 - 

400 nm), and longer than gamma rays (< 0.01 nm). X-rays are generated by 

bombarding electrons on a metallic anode (X-ray tube) (Bushberg et al., 2002). 

CT is an imaging modality where an X-ray tube is rotated around an object(s) and 

the attenuation is recorded on a detector (Fig. 3). Other equipment may contain a 

rotating stage in front of a fixed (non-moving) X-ray tube and detector (Bushberg 

et al., 2002).  

Data acquisition in a CT involves making X-ray transmission measurement 

through the object(s) at various angles around the object(s), as seen in Fig. 4a. 

Each X-ray that is acquired in CT is a transmission measurement through the 

object(s) along a line, where the detector measures X-ray intensity (It). The un-

https://en.wikipedia.org/wiki/Gamma_ray
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attenuated X-ray beam intensity (Io) is also measured during the scan by a 

reference detector. The relationship between It and Io is given by:  

I𝑡 =𝐼𝑜 𝑒
−μt (1-1) 

where t is the object(s) thickness and μ is the average linear attenuation 

coefficient along the X-ray path. It and Io are equipment dependent values, but 

the product μt (parameter of interest), is related to the internal structure of the 

object(s) along a given X-ray. When Eq. 1-1 is rearranged, the measured values 

It and Io can be used to calculate μt, as seen in Eq. 1-2.  

μt = 𝑙𝑛 (
𝐼𝑜
𝐼𝑡
) (1-2) 

where ln is the natural logarithm (constant approximately equal to 2.718281828), 

t is canceled out, and the attenuation coefficient (μ) for each X-ray is used in the 

CT reconstruction algorithm. This computation, which is a preprocessing step 

performed before two-dimensional (2D) CT image reconstruction, reduces the 

dependency of the CT image of the equipment-dependent parameters, resulting 

in a 2D CT image that depends primarily on the object(s) density (Bushberg et 

al., 2002).  After preprocessing of the raw data, a CT reconstruction algorithm is 

used to produce the 2D CT images. There are multiple reconstruction strategies, 

however, filtered back-projection reconstruction is the most widely used. The 

back-projection method uses planar projection data sets (preprocessed 
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sinogram) to build up the 2D CT image in the computer by reversing the 

acquisition steps, as seen in Fig. 4b. During acquisition, a detector integrates μ 

along a known path of each X-ray beam. During back-projection reconstruction, μ 

for each X-ray is smeared along the X-ray path in the image of the object(s). In 

addition to μ for each X-ray path, the reconstruction algorithm also records the 

acquisition angle and position in the detector array. The back-projection algorithm 

begins with an empty image matrix (512 x 512 pixels), and as the data from a 

large number of X-ray paths (180 up to 1000) are back-projected onto the 2D CT 

image matrix, a 2D CT image slice is generated (XY-plane-slice). In other words, 

μ is added to each pixel in a line through the image corresponding to the X-ray 

paths, as exemplified in Fig. 4c (van-Daatselaar et al., 2004; Goldman, 2008).
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Figure 3. X-ray computed tomography (CT) A. Traditional CT working 

principal of conveying objects through system, B. Measuring arrangement 
of the GE (GE Healthcare, Buckinghamshire, England, Great Britain) 
BrightSpeed™ RT 16 Elite CT used in these studies, C. Schematic 

representation of a CT system scanning (5 chestnuts per row) containing 
several 2D XY-plane CT images (slices). 
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Figure 4. CT imaging and data acquisition A. Transmission measurements 
through the objects at numerous angles (black arrows) around the object, 
B. Back-projected (reverse) transmission measurement onto 2D XY-plane 

CT image matrix, C. Back-projection reconstruction from projection values 
(P), for a simple image of four voxels.  
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In CT the difference in physical density of materials is visualized by 

changes in image intensity and it is expressed in ‘Hounsfield-Units’ (HU) (or ‘CT-

number’). Hounsfield-Units represent the X-ray attenuation capabilities of a 

specific material. In a 2D CT X-ray image, the HU(x,y) in each pixel (x,y), of the 

image is generated through a combination of X-ray projection images and by 

using Eq. 1-3, 

𝐻𝑈(𝑥,𝑦) = 1,000
𝜇(𝑥,𝑦) − 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
 (1-3) 

                                       
where (x,y), is the floating point number of the (x,y)-pixel before the XY-plane-

slice reconstruction, water is the attenuation coefficient of water (approximately 

0.195), and the HU(x,y) is the Hounsfield Unit observed in the final 2D CT image. 

Therefore, objects with a low-density like air, at standard temperature and 

pressure, have a low-HU (-1000 HU), and high-density materials like bone will 

have a high-HU (up to 3000 HU). In general, a HU-value equal to 0 stands for the 

density of distilled water (1.0 g cm-3); values in the positive range represent 

materials with a mass density above 1.0 g cm-3; and values in the negative range 

stand for those below 1.0 g cm-3 (Bushberg et al., 2002). 

In the case of several objects conveyed through a CT system, arranged in 

rows, as seen with chestnuts in Fig. 3b, a single scanning of the CT system 

consists of a block of 3D data stored as voxels. Voxels (volume elements), have 
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the same in-plane dimensions as pixels (2D image elements), but also include 

the slice thickness (d) dimension (Bushberg et al., 2002) as observed in Fig. 3c. 

However, not the entire block of data is acquired at once. Instead, each XY-

plane-slice is processed as the objects (chestnuts), previously arranged in rows 

and attached to the boards, are passing though the CT scanner. A XY-plane-slice 

is analogous to a virtual cross-section of the chestnuts imaged through the CT 

scanner. Therefore, the imaging procedure is done one XY-plane-slice (cross-

section) at a time, starting with t1- and ending with tn-XY-plane-slice, as outlined 

in Fig. 3c. In addition, newer helical technology and multi-slice detectors are 

available to allow multiple image slices to be obtained simultaneously while 

constantly moving the samples through the imaging aperture (Bushberg et al., 

2002).  

The originally acquired CT XY-plane-slices; containing images from 

several chestnuts per row, moving through the Z-axis (longitudinal direction) are 

stored in memory using a digital imaging and communications in medicine 

(DICOM) standard format. DICOM images are composed exclusively of shades 

of gray (16 bits), varying from black (low-density like air) at the weakest intensity 

to white at the strongest (high-density materials like bone). When visualized in 

traditional DICOM visualization software’s, like the Osirix Imaging Software 

V3.6.1 (http://www.osirix-viewer.com/) image pixels are expressed in HU. On the 

other hand, when imported into other software’s like MATLAB (2012a, The 

MathWorks, Natrick, MA, USA) (http://www.mathworks.com), DICOM images 

contain 65536 shades of gray (intensity values) per pixel, ranging from 0 to 
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65535, which are mapped to the original HU-values. In addition, DICOM files 

contain metadata that can easily be accessed, providing detailed information 

about the image, such as the size, dimensions, modality used to create the 

image, and equipment settings used to capture the image. For comprehensive 

information about the standard the reader can refer to the official DICOM web site 

(http://medical.nema.org/).  

There are multiple advantages of CT compared to traditional 2D projection 

X-ray imaging. First, CT completely eliminates the superimposition of images of 

structures within the samples and outside the region of interest. This is because 

in 2D X-ray imaging, only one projection image (X-ray transmission through 

sample) is acquired per object of interest. In contrast, depending on the CT 

scanner type, a CT image is acquired at different angles by reconstructing 

information obtained from 180 up to 1000 X-ray 2D transverse projection images 

(van-Daatselaar et al., 2004; Goldman, 2008). Second, because of the intrinsic 

contrast and high resolution of CT, physical density differences between 

materials as low as 0.5 % can be easily differentiated (Bushberg et al., 2002). 

Thirdly, the data from one CT imaging procedure can be reconditioned to be 

observed in various planes (different angular orientations) as seen in Fig. 5, or 

even observed volumetrically by creating a 3D image and merging the 

information from several 2D slices. Using a chestnut as a model in Fig. 5, each 

chestnut contains between 8 to 17 XY-plane-slices representing virtual cross-

sections of a chestnut along the longitudinal (Z) axis. This number of slices is 
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dependent on chestnut physical size and d, which in this case d = 2.56 mm. CT 

image slices can be viewed in different planes, such as 90 from the XY-plane 

toward the longitudinal axis (Z) – YZ-plane-slice, and 90 toward the horizontal 

axis (X) – XZ-plane-slice. This process of reconditioning CT images so that they 

can be observed in various planes (different angular orientations) is commonly 

known as re-slicing (Bushberg et al., 2002), As before, depending on chestnut 

size and d, each chestnut contains 8 to 17 YZ-plane-slices and XZ-plane-slices. 
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Figure 5. (a) 3D virtual cross-sections representation of a chestnut at three planes (different angular orientations) 
along the horizontal (X), vertical (Y), and longitudinal (Z) axes (Figure not to scale). (b) Original series of acquired 

CT XY-plane-slices.  
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Figure 5 (cont’d). 

 

 (c) Reconditioned (re-sliced) CT YZ-plane-slices. (d) Re-sliced CT XZ-plane-slices. 
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1.6 Application of CT in non-medical industries 

 CT has proven to be an invaluable diagnostic tool for numerous 

applications in the medical field and material sciences (Bushberg et al., 2002), 

ranging from tumor diagnosis and segmentation (Stadler et al., 2004; Deglint et 

al., 2007) to osteoporosis screening (Bushberg et al., 2002) to differentiation of 

encountered foreign bodies in corpses (Bolliger et al., 2009).  

In agriculture and animal science fields, off-line adaptation of CT 

technology has proven to be an accurate nondestructive descriptor of inner 

properties. For example, water content of oak (Quercus robur) and spruce (Picea 

abies) wood was accurately determined by Fromm et al. (2001) and an 

estimation of lean meat content and quality was made in pigs (Sus spp.) by 

Furnols et al. (2009). In agriculture, has been shown to be an accurate descriptor 

of internal characteristics.  

Postharvest internal evaluation of several nuts, fresh vegetables, and fruits 

has been recently shown to be achievable as well. Jha et al. (2010) described the 

potential of nondestructive techniques, including CT, to measure mango 

(Mangifera indica) internal quality (i.e. size, shape, pulp and moisture), and 

Kotwaliwale et al. (2006) differentiated nutmeat from shell components in fresh 

pecans (Carya illinoinensis). Barcelon et al. (1999b; 1999a) used CT to study 

internal quality of peaches (Prunus persica) and mango, including fruit density, 

moisture content, soluble solids, and acidity. In addition, studies done by 

Sornsrivichai et al. (2000) determined pineapple fruit (Ananas comosus) 
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translucency and ripeness. Moreover, using high resolution CT, which is a 

sampling tool that combines less than 1 to 2 mm thick CT image slices with a 

high spatial frequency reconstruction algorithm to generate CT images that show 

small details (Kelly et al., 2003), Mendoza et al. (2007) measured pore space in 

apples (Malus domestica), Lammertyn et al. (2003) obtained three dimensional 

(3D) spatial distribution of ‘Conference’ pear (Pyrus sp.) core breakdown, and 

Verboven et al. (2008) studied 3D gas exchange pathways in pears and apple 

1.7 Objectives and Hypothesis 

The comprehensive objective of the study is to develop the methods to 

nondestructively visualize and classify fresh chestnuts, based on their internal 

quality, using X-ray CT imaging.  This study will provide a powerful tool to sort 

chestnuts based on their kernel quality, leading to the improved marketing of 

attractive, safe, high quality chestnuts. 

 The specific objectives of the research are: 

1. To determine the combined effect of image acquisition parameters, 

which include voltage (kV), current (mA), and slice thickness (mm) on optimizing 

CT image quality (signal to noise ratio, volume accuracy, high contrast spatial 

resolution and low contrast detectability), using response surface methodology 

(CHAPTER 2).  

2. To establish effective image visualization techniques that will infer 

internal quality attributes of fresh chestnuts (healthy and decayed tissue, pellicle, 

void spaces and air), using X-ray CT images (CHAPTER 3). 
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3. To apply image pre-processing techniques (cropping and image 

enhancement), CT image segmentation, image feature extraction, feature 

selection, multivariate discrimination algorithms and artificial neural network 

(ANN) classifiers, which will automatically categorize fresh chestnuts based on 

their internal quality, using X-ray CT images (CHAPTER 4). 

 The hypothesis of this research is that by measuring multiple X-ray CT 

image features, using different image analysis techniques, in combination with 

multivariate statistical discrimination algorithms and ANNs classifiers, it will be 

possible to categorize chestnuts based on their internal quality. The long-term 

goal is to develop a system that automatically classifies chestnuts by their 

internal quality, after harvest. This nondestructive classification method will 

eventually replace the questionable water floating technique, currently used 

worldwide, to separate decayed from healthy chestnuts.   
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CHAPTER 2. APPLICATION OF RESPONSE SURFACE METHODOLOGY 

(RSM) TO SYSTEMATICALLY OPTIMIZE FRESH CHESTNUT COMPUTED 

TOMOGRAPHY (CT) IMAGE QUALITY  

2.1 Abstract 

The objective of this chapter is to describe a method that was developed to 

systematically and efficiently obtain a model of CT scanning factor levels, which 

returns optimized high quality chestnut (Castanea spp.) CT images. Chestnut 

two-dimensional CT images were used to describe this optimization procedure, 

considered to be a critical step in the development of a fast, nondestructive 

technique, capable of assessing fresh internal quality attributes and components 

of chestnuts, and other agricultural commodities. Response Surface Methodology 

(RSM), using a three-factor, three-level Box-Behnken statistical design, was used 

to optimize the factors affecting image quality, which include X-ray voltage, 

current, and slice thickness. Response variables representing image quality were 

digitally and automatically inferred from fresh chestnut image signal-to-noise 

ratio, Teflon® cylinder reference volume accuracy, a Quality Assurance (QA) high 

contrast spatial resolution phantom, and a QA low contrast detectability phantom. 

Second-order RSM prediction models for each response variable reflected a 

combined maximized CT image quality at a voltage, current, and slice thickness 

equal to 120 kilovolts, 170 milliamps, and 2.5 millimeters respectively. The 

experiment yielded optimal chestnut CT images that can accurately reflect 

internal decay of fresh chestnuts with an overall accuracy rate equal to 96 %, 



 30 

taking as reference data the subjective quality rating of five trained chestnut 

experts.  

2.2 Introduction 

Even though image quality is an important factor that has been addressed 

in the medical and veterinary fields (Mayo et al., 1994; Ford et al., 2003; Du et al., 

2007) little is known about how to statistically, routinely, systematically, and 

reliably optimize CT parameters. 

Response Surface Methodology (RSM) is a compilation of mathematical 

and statistical methods suitable to optimize, develop and improve processes 

(Myers et al., 2008), which can be helpful to quantitatively and routinely adjust 

parameters that influence CT image quality. RSM has never been applied to 

optimize CT image quality, but other engineering fields heavily rely in this 

technique to optimize processes, including the optimization of protease 

production (Braga et al., 2010), monitoring of ball bearings (Patil et al., 2010), 

and ultrasonic-stimulated solvent extraction (Wang et al., 2011). The RSM makes 

usage of factorial designs when a few significant parameters or factors are 

involved in optimization (Myers et al., 2008), including three-level complete 

factorial design, central composite design, equiradial designs, and Box-Behnken 

design among others (Myers et al., 2008). The Box-Behnken design is a 

balanced incomplete three-level block design, useful to fit second-order response 

surfaces, and in certain cases, it is as powerful as a three-level complete factorial 

design, only that it requires 15 runs instead of 27 without repetitions (Myers et al., 

2008).  
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Therefore, the aim of this study is to describe RSM using a Box-Behnken 

design as a reliable method to accurately and systematically optimize CT 

scanning parameters of utmost importance, which include voltage, current, and 

slice thickness, essential to obtain good quality chestnut CT images as described 

in theory by Renaudin et al. (1993), Mayo et al. (1994), Sharma et al. (2006), 

Goldman (2007), Sellakumar et al. (2007) and Arnold et al. (2010). This research 

offers a tool that will methodically yield useful, and high quality CT images in any 

field related with CT. Optimized chestnut CT images are obtained without the 

biased aid of human intervention as traditionally done in practice (General 

Electric Company, 2007), and without using unnecessary scanning runs, which 

are time consuming and computationally inefficient. More specifically, this method 

reliably yielded maximized quality CT images, which accurately reflect inner 

components of chestnuts.  

2.3 Materials and methods 

2.3.1 Chestnut sample collection, reference cylinders, and Quality Assurance 

(QA) phantom CT imaging scans 

A total of 50 physiologically mature and apparently healthy Chinese 

chestnuts (C. mollissima) were collected by hand, directly from chestnuts trees in 

a Michigan orchard. Following common postharvest procedures, samples were 

immediately submerged for 300 s in 5 L of room temperature distilled water 

containing 2700 μL L-1 hydrogen dioxide plus 200 μL L-1 peracetic acid 
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(Storox®1, BioSafe Systems, Glastonbury, CT, USA) with the objective of 

reducing mold contamination, and stored at 4 °C. During this process, the 

majority of decayed, empty or damaged chestnuts were eliminated by their 

proclivity to float, as healthy chestnuts tend to sink (Donis-González, 2008; 

Donis-González, 2008; Donis-Gonzalez et al., 2010). As it was important to 

obtain uniform healthy tissue matter for the signal-to-noise estimation, after 20 d, 

9 of the apparently healthiest chestnuts were attached to a rectangular acrylic 

transparent board (2.75 mm x 300 mm x 24 mm), using approximately 50 g of 

transparent silicone per chestnut, as seen in Fig. 6a.  

 
Figure 6. (a) Fresh chestnuts samples, and Teflon® reference cylinders, (b) 
Testing phantom, (c) 16-bit CT images of fresh chestnut samples for Signal-

to-noise Ratio (SNR) calculation, and Teflon® reference cylinders for 
volume accuracy (mm-3) estimate. (d) 8-bit CT image of QA phantom used 
to infer High Contrast Spatial Resolution (HCSR). (e) 8-bit CT image of QA 

phantom used to infer Low Contrast Detectability (LCD). 
 

                                            
1 Storox® is a registered Trademark BioSafe Systems.  
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To avoid sample confusion individual chestnuts were numbered. Parallel to 

the chestnuts, one row containing three Teflon®2 (Polytetrafluoroethylen) 

reference cylinders (38 mm diameter x 13 mm height) (Applied Plastics 

Technology Inc., Bristol, RI) were also attached to the board, using approximately 

85 g of transparent silicone per Teflon® cylinder (Fig. 6a).  

CT scans were performed in a GE BrightSpeed®3 RT 16 Elite, multi-

detector CT instrument (General Electric Healthcare, Buckinghamshire, United 

Kingdom) to the board containing chestnuts and Teflon® reference cylinders, 

resulting in a set of 2D CT images as seen in Fig. 6c, as well as to a standard QA 

phantom (Series QA-Phantom, GE BrightSpeed®, General Electric Healthcare, 

Buckinghamshire, United Kingdom) (Fig. 6b), resulting in a set of 2D CT images 

(e.g. Fig. 6d and Fig. 6e), as specified by General Electric Company (2007). Even 

though, not used to its fullest capabilities, because of fast CT scanning protocols, 

the CT instrument contains a Volara®3 digital data acquisition system (24-bit), 

which has the capability of acquiring images with a 0.65 mm isotropic image 

resolution (smallest detected structure), meaning that the spatial resolution in the 

horizontal-vertical plane (XY) and that in the longitudinal planes (XZ and YZ) can 

be the same (Tsukagoshi et al., 2007). Scanning parameters are in Table 1.  
                                            
2 Teflon® is a registered Trademark of E.I. du Pont de Nemours and Company. 

3 BrightSpeed® and Volara® are registered Trademarks of General Electric 

Healthcare. 
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Table 1. Scanning parameters for the CT – General Electric, BrightSpeed™ 
RT 16 Elite (GE Healthcare, Buckinghamshire, England, Great Britain) 
Units Parameter 

Voltage (kV)  80, 100, 120 
Current (mA) 10, 90, 170 
Slice thickness (pixel size in the Z-axis) (mm) – d 0.625, 2.5, 5 
Pixel size (mm) in the X- and Y-axes 0.73 

Resolution in the XY-plane (pixels mm-1)  1.37 

 Pixel area in the XY-plane (mm2) 0.53 

Resolution in the XZ- and YZ-planes (pixels mm-1) 0.625a, 2.5b, 5.0c 

Pixel area in the XZ- and YZ-planes (mm2) 1.82 

 Voxel volume (mm3) 0.46a, 1.82b, 3.65c 

Pitch (table movement – mm : rotation) 17.5:1 

Time per rotation (s) 1.2b,c, 1.7a 

Scan time (s) per 1000 mm of board-length  48b,c, 96a  

Reconstruction matrix 512 x 512 
Field of view (FOV) (mm) 500 
Original image intensity resolution 16-bit 

CT images per 1000 mm of board-length (tn) 1600a, 400b, 200c 
aSlice thickness (d) = 0.625 mm, bd = 2.5 and cd =  5.0 mm. 

2.3.2 RSM Box-Behnken design for CT image quality optimization  

Box-Behnken three-factor, three-level statistical design was used to 

optimize and evaluate main effects, interaction effects, and quadratic effects of 

the CT scanning parameters on image quality. In this study, image quality is 

characterized by four of the most important CT image quality measurements, 

including fresh chestnut image Signal-to-noise Ratio (SNR), reference cylinders 

Volume Accuracy (VA), High Contrast Spatial Resolution (HCSR), and Low 
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Contrast object Detectability (LCD) using a standard QA phantom (Goldman, 

2007).  Definition and description of how each of the image quality attributes was 

calculated is included in sections 2.3.3 through 2.3.5.  

The Box-Behnken design is specified by a set of points at the midpoint of 

each edge of a multidimensional cube and a center point triplicate, being 

appropriate to construct a second order polynomial model of the combined effect 

of scanning parameters (factors) to each response variable (Myers et al., 2008). 

The computer-generated models for every response variable representing image 

quality were developed using the language and environment for statistical 

computing software R (V2.10.0, R Development Core Team, Vienna, Austria). 

Models with coded-factors are specified as Eq. 2-1.   

 
(2-1) 

where Yn is each measured response or dependent variable representing image 

quality analyzed separately, associated with each factor level combination; b0 is 

the regression intercept; b1 through b33 are the regression coefficients; and X1, 

X2, and X3 are the independent variables or factors. Levels for each independent 

scanning variable, which represent values for each factor were coded as low (-1), 

medium (0), and high (+1) (Myers et al., 2008) (Table 2 and 3). Levels were 

selected based on equipment capabilities, prior preliminary experimentation, 

chestnut morphology, and size (Miller, 2003). The selected dependent, coded, 

and un-coded independent variables are shown in Table 3, showing how each 
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independent variable changes from one run to another. Un-coded voltage (X1), 

current (X2), and slice thickness (X3) parameter combinations used to perform 

CT scanning for each of the 15 runs are specified in Table 3. One run is 

considered as the procedure where all the CT images in total are acquired from 

the board containing fresh chestnuts, Teflon® reference cylinders, and the 

standard QA phantom using the combination of specified parameters. The QA 

phantom images were acquired separately, from the board.  

Table 2. Box-Behnken experimental design variables  
  Levels (coded) / un-coded 

Variables (units) Notation Low (-1) Medium (0) High (+1) 

Indep. variables (Factors – 
Xf)  

    

X1 - Voltage (kV)  V 80 100 120 

X2 - Current (mA) C 10 90 170 

X3 - Slice thickness (mm)  ST 0.625 2.5 5.0 

Dependent variables 
(Response - Yn) 

    

Y1 - Signal-to-noise Ratio SNR    

Y2 - Volume Accuracy  
(mm-3) 

VA    

Y3 - High Contrast Spatial 
Resolution 

HCSR    

Y4 - Low Contrast 
Detectability 

LCD    

 

After generating the RSM models presented in Table 2, the process was 

individually optimized for each response Yn, obtaining an optimized model per 
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response variable. Optimization was performed to find the levels of voltage (X1), 

current (X2), and slice thickness (X3) maximizing each Yn. 



38 

 

Table 3. Design matrix (un-coded factors) in respect to each response variables  
 Independent variables (Factors)  Dependent variables (Response)a 

Run Voltage 
(kV) 

Current 
(mA) 

Slice 
thickness 

(mm) 
 SNR ± SD 

Volume 
accuracy  ± 
SD (mm-3) 

HCSR ± SD LCD ± SD 

1 100 10 0.625  0.14 ± 0.19b 1.56 ± 0.35bc 0.08 ± 0.01a 0.16 ± 0.01a 
2 80 90 0.625  0.27 ± 0.54ab 2.31 ± 0.47c 0.19 ± 0.02b 0.21 ± 0.03b 
3 120 90 0.625  0.52 ± 0.41ab 2.39 ± 0.53c 0.30 ± 0.04c 0.28 ± 0.08b 
4 100 170 0.625  0.49 ± 0.38ab 2.58 ± 0.36c 0.39 ± 0.06c 0.24 ± 0.06b 
5 80 10 2.5  0.17 ± 0.32ab 0.67 ± 0.30ab 0.10 ± 0.02a 0.20 ± 0.06ab 
6 120 10 2.5  0.38 ± 1.14ab 0.68 ± 0.26ab 0.21 ± 0.03c 0.30 ± 0.02b 
7 100 90 2.5  0.59 ± 0.56ab 0.61 ± 0.25ab 0.40 ± 0.08c 0.52 ± 0.04c 
8 100 90 2.5  0.62 ± 0.57a 0.62 ± 0.54ab 0.43 ± 0.09c 0.46 ± 0.09c 
9 100 90 2.5  0.61 ± 0.52a 0.65 ± 0.22ab 0.44 ± 0.07c 0.46 ± 0.08c 
10 80 170 2.5  0.51 ± 0.33ab 0.63 ± 0.52ab 0.44 ± 0.13c 0.42 ± 0.08c 
11 120 170 2.5  0.66 ± 0.45a 0.60 ± 0.14ab 0.52 ± 0.03d 0.67 ± 0.15cd 
12 100 10 5.0  0.39 ± 0.43ab 0.61 ± 0.02b 0.27 ± 0.08bc 0.32 ± 0.03b 
13 80 90 5.0  0.59 ± 0.52ab 0.43 ± 0.24ab 0.39 ± 0.13c 0.47 ± 0.08c 
14 120 90 5.0  0.69 ± 0.62ab 0.45 ± 0.04a 0.50 ± 0.13cd 0.80 ± 0.16d 
15 100 170 5.0  0.70 ± 0.59ab 0.42 ± 0.01a 0.53 ± 0.15cd 0.72 ± 0.17d 

aANOVA for each run at P = 0.05 and Tukey multiple comparison of means post-hoc test. Values in each run followed by 
the same letter  within dependent variable are not significantly different. 
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2.3.3 Visual based fresh chestnut quality evaluation and SNR (Y1)  

Immediately after scanning, each fresh chestnut was transversely sliced in 

4-sections using a sharp hand knife. Slice sizes varied depending on chestnut 

size (5 to 7.5 mm thickness). All internal kernel faces between each slice (total of 

6) were then qualitatively assessed for disorders. Slice internal faces, were 

scanned using a 48-bit color, 9600 x 4800 dots-per-inch (DPI) charge-coupled-

device (CCD) scanner (Scan Maker S400, Microtek International Inc., China), 

using the ScanWizard 5 (Microtek International Inc., China) standard image 

acquisition software, yielding a tagged image file format (tiff) color image, with a 

resolution of 816 x 1123 pixels. Color scanning was performed for record keeping 

and to use as references, to accurately determine uniform healthy fresh tissue for 

SNR calculation from the 2D chestnut CT images. Before every scan, the 

scanner was thoroughly cleaned, using compressed air in combination with 

wiping the scanning glass with delicate task wipes, which had been previously 

soaked in mild non-streak glass cleaner. To avoid variability between images, 

and to stabilize the intensity of the scanner lamp, the scanner was on for at least 

15 min before scanning. It is important to mention that the scanner, which was 

used in this study, is internally calibrated every time it is tuned on, so no 

calibration and/or calibration targets are required 

(http://support.microtek.com/product_dtl_2.phtml?prod_id=38). 

The SNR is defined as the measurement that compares the level of signal 

in the fresh chestnut CT image to the level of background noise (graininess). It is 

calculated as the ratio of the mean (μ) Hounsfield Unit (HU) value of a 9 pixels2 
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square region of interest (ROI) (5.42 mm2), as seen in Fig. 7a containing fresh, 

healthy, uniform chestnut tissue to the standard deviation (SD) of the ROI, using 

Eq. (A. 1) in the appendix section A. Higher values imply higher signal in 

comparison to noise therefore yielding better quality images with less graininess 

(Goldman, 2007).  
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Figure 7. (a) Example of chestnut 16-bit CT image slice used for Signal-to-

noise Ratio (SNR) calculation, from a region containing fresh uniform 
chestnut tissue, using reference color image. (b) Example of Teflon® 

reference cylinder 8-bit CT image used to estimate volume accuracy (mm-3) 
with binary image after segmentation (simple global threshold of 135). (c) 

Example of cropped 8-bit CT image used to calculate High Contrast Spatial 
Resolution (HCSR) with binary image after segmentation (simple global 

threshold of 134). Each pattern consists of five bars and spaces called line 
pairs (lp). The sizes of the patterns are equivalent to 1.6 mm, 1.3 mm, 1.0 
mm, 0.6 mm, and 0.5 mm, respectively. (d) Example of cropped 8-bit CT 
image used to determine Low Contrast Detectability (LCD) with binary 

image after segmentation (simple global threshold of 94). Image displays 
various sized Holes (H). The diameter of each H equal 10.0 mm, 7.5 mm, 5.0 

mm, 3.0 mm, and 1.0 mm.  
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2.3.4 Volume accuracy (Y2) using Teflon® reference cylinders  

Volume accuracy estimation was calculated from Teflon® reference 

cylinders CT images, following Eq. (A. 2) found in the appendix section. Volume 

accuracy (mm-3), is defined as the extent to which the estimated volume of each 

of the Teflon® reference cylinders, using 8-bit CT images agrees with the mean 

standard true volume (~ 14,743 mm3) of three reference cylinders (Fig. 7b). 

Higher volume accuracy values represent better overall 3D information from a 

stack of 2D CT images.  

Volume accuracy estimate is assumed to be accurate, because the 

reference cylinders were precisely molded using compression technology 

(Applied Plastics Technology Inc., Bristol, RI) with pure, high HU (900), high 

quality Teflon®.  In addition, after cylinders were precisely and carefully cut, 

dimensions of each cylinder were confirmed using a digital caliper (ABSOLUTE 

Digimatic Caliper Series 500, Mitutoyo, Singapore) with a resolution equal to 0.01 

mm. 

2.3.5 HCSR (Y3) and LCD (Y4) calculation using a standard QA Phantom 

The HCSR and LCD are computed using a QA phantom, which is 

optimized to be used in the CT imager used in the study (General Electric 

Company, 2007); and applicable to this study, because its size and densities 

resemble those of the commodity of interest (i.e. fresh chestnuts) (Miller, 2003; 

Du et al., 2007).  
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In practice HCSR is estimated visually, with the aid of some quantitative 

measurements of resolution (General Electric Company, 2007). In this study, 

HCSR was measured using image analysis techniques (e.g. Fig. 7c) applying the 

derived Eq. (A. 3) in the appendix section. The HCSR of a CT image is a 

measurement that defines how well two high contrast objects placed close 

together are distinguished, and how small can these objects be visualized (Du et 

al., 2007; General Electric Company, 2007; Sande et al., 2010). In this study, 

higher HCSR values represent images that can better distinguish between two 

high contrast objects placed close together. 

The LCD represents the ability of a CT image to discriminate objects that 

vary slightly from their background (low contrast), defined by the smallest visible 

object (Du et al., 2007; General Electric Company, 2007). Conventionally LCR is 

determined visually as specified by General Electric Company (2007). In this 

study, LCD was calculated without the help of a human observer using derived 

Eq. (A. 4), as found in the appendix section, and using images as the one 

exemplified in Fig. 7d (General Electric Company, 2007; Sande et al., 2010). 

High LCD values represent images that can better discriminate small objects 

(sensitivity) (Du et al., 2007; Goldman, 2007).  

2.3.6 Optimized 2D CT image quality validation from an independent data set  

A completely different set of 2D CT images were acquired with optimized 

scanning parameters as summarized in Table 5, from 266 ‘Colossal’ (C. sativa x 

C. crenata), 266 Chinese independent chestnut samples, three Teflon® 

reference cylinders, and the QA phantom. CT image acquisition and processing 
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was the same as described in sections 2.3.1 and 2.3.2, except that in the case of 

the chestnuts, scanning boards were larger (915 mm x 335 mm), and naturally 

decayed chestnuts were not eliminated. After scanning, all chestnuts were sliced 

and color scanned for record keeping, and to use as samples for CT image 

quality validation, as described in section 2.3.3.  

The purpose was to first determine experimental CT image quality 

attributes (SNR, VA, HCSR, and LCD) from this independent set of 2D CT 

images, using ten repeated measurements (n = 10: 5-‘Colossal’ and 5-Chinese) 

for SNR, and three repeated measurements (n = 3) for reference cylinder VA, 

HCSR, and LCD. These experimental values of response were then compared 

with predicted values, using RSM models (Table 6) and optimized scanning 

parameters (Table 5).  

Second, CT images were used to study their effectiveness in reflecting 

fresh chestnut internal decay levels, in comparison with color image slices 

(optimized CT image quality validation).  Fresh chestnut quality was elucidated, 

using the Subjective Quality Rating (SQR) of a 5-expert panel of individuals 

working closely with chestnut production and research. Panelists were 

experienced in detecting, identifying, and quantifying quality attributes (decay) in 

fresh chestnuts. Each expert was presented with 11 randomized chestnut color 

image slices per cultivar (e.g. Fig. 7a and Fig. 8a), for subjective quality rating 

(total of 110 - n). The SQR was expressed as the apparent percentage of decay 

tissue in relation to the total area of each color image. A value equal to 100 

represents a chestnut slice that is completely decayed, while 0 indicates that the 
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chestnut does not contain decay. The SQR values obtained from the panel of 

experts were then linearly modeled in relationship to the Digital Quality 

Assessment (DQA) from their corresponding 2D CT images (Fig. 8b to Fig. 8e). 

The DQA was calculated using image analysis techniques as explained the 

appendix section, by using Eq. (A.1). DQA was expressed as the percentage of 

decay tissue in relation to the total area of each CT image. A value equal to 100 

represents a chestnut slice that is completely decayed, while 0 describes a 

chestnut that does not contain decay.  

 
Figure 8. Example of images used for Digital Quality Assessment (DQA). (a) 
Reference color image. (b) 16-bit optimized CT gray scale image. (c) Binary 

image of whole chestnut after segmentation, applying a simple global 
threshold of 400 HU to Fig. 8(b). (d) Binary image of transition points and 

pellicle after employing a Sobel filtering method to detect edges in Fig. 8(b). 
(e) Binary image of healthy tissue after segmentation, using a simple global 

threshold of 1050 HU to Fig. 8(b). Figure is partially presented in color. 
 

Calculations, image processing and analysis, from sections 2.3.1 through 

2.3.6 were done in MATLAB (2009a, The MathWorks, Natrick, MA). Data 

analysis for section 2.3.6 was performed using R (V2.10.0, R Development Core 

Team, Vienna, Austria). 



46 

 

2.4 Results  

2.4.1 RSM Box-Behnken design for CT image quality optimization  

The RSM using Box-Behnken design proved to be a reliable method that 

offered a clear perception in how the diverse factor level combinations of X-ray 

tube voltage, current, and slice thickness resulted in different responses for each 

of the CT image quality measurements (SNR, VA, HCSR, and LCD), as seen in 

Table 3. The Box-Behnken design presented sufficient information to test the 

lack-of-fit for each of the non-linear response models, as presented in the 

Analysis of Variance Analysis (ANOVA) (Table 4). This affirms that this design is 

as robust in terms of prediction performance, in comparison with a complete 

factorial design or others (Myers et al., 2008).  

Table 4 shows that all P values for the lack-of-fit criteria are non-significant 

( than 0.05), suggesting that the second order non-linear models can accurately 

predict the effect of the independent variables (factors) for each of the response 

variable (dependent) independently. Furthermore, the approach indicates that the 

non-linear models are optimally designed to provide an ideal insight on the 

behavior of a second-order response surface, including the inference of 

maximized stationary points (optimized conditions) as presented in Table 5 

(Myers et al., 2008). The relationship between the dependent and independent 

variables was completely interpreted, displayed, and studied in depth, using a set 

of response surface and interaction plots (Fig. 9-12), in combination with the 

regression coefficients for each response model, as summarized in Table 6. The 

values in Table 6 corresponding to the coefficients for each coded factor (voltage 

³
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(X1), current (X2), and slice thickness (X3)) are related to the effect of each of the 

factors on the change to each response variable (Yn). In other words, coefficients 

are used to study the mathematical relationship in the form of a polynomial 

equation for each of the measured response (Yn), as seen in Eq. 2-1 (Myers et 

al., 2008).  
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Table 4. ANOVA table for Signal-to-noise Ratio (SNR), Volume Accuracy (VA), High Contrast Spatial Resolution 
(HCSR), and Low Contrasts Detectability (LCD) non-linear response models 

 
 
 
 
 
 
 
 
 

Term df  
Sum of squares (SS)  Mean square (MS)  F-value 

SNR VA HCSR LCD  SNR VA HCSR LCD  SNR VA HCSR LCD 

Linear 3  0.01 7.2 0.40 4717.0  0.00 2.39 0.14 1572.4  210.4 143.7 182.38 236.8 

Quadr 
3  0.00 0.2 0.01 327.3 

 
0.00 0.06 0.00 109.1 

 
6.4 3.3 2.79 16.4 

Polyn. 
3  0.00 0.4 0.02 536.8 

 
0.00 0.12 0.01 178.9 

 
24.0 7.1 11.63 26.0 

Res.  
Err. 5  0.00 0.1 0.01 46.5 

 
0.00 0.02 0.00 6.64 

 
    

Lack- 
of-fit 3  0.00 0.1 0.00 41.5 

 
0.00 0.02 0.00 8.30 

 
4.4 8.2 1.59 3.32 

Pure  
error 2  0.00 0.0 0.00 5.0 

 
0.00 0.00 0.00 2.50 
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Table 4. Cont’d 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aANOVA for each dependent variable at P = 0.05 

Term df  
P-valuea  

 

 

SNR VA HCSR LCD  

Linear 3  0.0a 0.0a 0.0a 0.0a  

Quadr 
3  0.0a 0.1 0.1 0.0a 

 

Polyn. 
3  0.0a 0.0a 0.0a 0.0a 

 

Res.  
Err. 5      

 

Lack- 
of-fit 3  0.2 0.1 0.4 0.3 

 

Pure  
error 2      
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Table 5. Stationary maximized points in original units for each non-linear response variable model 
Response 

variable 

Factors  Eigenvalues 
Voltage 

(kV)  

Current 

(mA) 

Slice 

thickness 

(mm) 

 Voltage 

(kV) 

Current 

(mA) 

Slice 

thickness 

(mm) 

SNR 113 140 5.0  -0.003 -0.005 -0.012 

VA (mm-3) > 120a > 170a < 0.625a 

 

 0.757 0.085 -0.041 

HCSR 113 170 5.0  -0.034 -0.038 -0.066 

LCD 120 117 4.4  -9.502 -7.497 -1.250 

        

Max > 120a > 170a 5.0     

Min 113 140 < 0.625a     

Optimized 120 170 2.5     

aMaximum stationary point was not discerned.
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Table 6. Regression coefficients and P valuesa for each non-linear response variable model 
Term SNR  Volume accuracy 

(mm-3) 

 HCSR  LCD 

(code) Coeff.b p-value  Coeff. 

b 

p-value  Coeff. p-value  Coeff. p-value 

Intercept (b0) 0.5970 0.000a  0.5985 0.000a  0.4238 0.000a  0.4893 0.000a 

Voltage (X1) 0.1100 0.000a  0.0000 0.767  0.0458 0.001a  0.1695 0.000a 

Current (X2) 0.1533 0.000a  0.0814 0.085  0.1465 0.000a  0.1243 0.000a 

Slice thickness (X3) 0.0113 0.000a  -0.8775 0.000a  0.0868 0.000a  0.0837 0.000a 

Voltage x Current (X1X2) -0.0003 0.811  -0.0316 0.962  -0.0030 0.813  0.0584 0.125 

Voltage x Slice thickness 

(X1X3) 

-0.0019 0.202  -0.0279 0.387  0.0035 0.784  0.0531 0.123 

Current x Slice thickness 

(X2X3) 

0.0002 0.896  -0.2595 0.009a  -0.0074 0.567  0.0243 0.058 

Voltage2 (X12) -0.0040 0.033a  0.0830 0.834  -0.0367 0.032a  -0.0446 0.114 

Current2 (X22) -0.0120 0.000a  -0.0170 0.219  -0.0652 0.002a  -0.0883 0.009a 

Slice thickness2 (X32) -0.0036 0.004a  0.7553 0.000a  -0.0366 0.033a  -0.0103 0.688 

aANOVA for each term at P = 0.05, giving a statistical significance summary of the main dependent variable effects their 
interactions. bNote that Non-linear coefficients are scaled to the coded factors, as specified in Eq. (2-1). 
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Coefficients with higher values represent a higher probability for statistical 

interaction effects and quadratic relationship. A positive value signifies an effect 

that favors the response, while a negative value indicates an antagonistic effect 

(Myers et al., 2008).  

2.4.2  SNR (Y1) optimization 

Regression coefficients for the SNR (Table 6) indicate that the individual 

effect of voltage, current, and slice thickness are statistically significant, since the 

corresponding P values are ≤ 0.05. No interaction effects between any of the 

factors appear to be statistically significant. Table 4 shows the result of ANOVA 

for the CT image SNR, in addition it was determined that the R2 and R2 (adjusted 

for df) are 99.04 % and 97.81 %, respectively. This indicates that the factors 

remarkably explain the amount of variation in the observed values of SNR. 

Additionally, it is clear that the first, second, and polynomial order terms 

contribute significantly to the model (P value ≤ 0.05), so the canonical analysis or 

the relationships between factors in the data set is relevant (Myers et al., 2008). 

The stationary point is near the experimental region, and the three eigenvalues 

are negative, indicating that the stationary point is a maximum SNR (Table 5); 

clear evidence a set of optimal scanning conditions was inferred. Optimized 

response for SNR was established to be at a voltage, current, and slice thickness 

equal to 113 kilovolts (kV), 140 milliamperage (mA), and 5.0 mm respectively. 

The surface response plots shown in Fig. 9 (a-c) indicate that SNR increases with 

an increase in all factors (voltage, current, and slice thickness), consequently 
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increasing image quality. This can be visually confirmed in Fig. 13, where the 

combination of low voltage, current, and slice thickness yield CT images with low 

SNR, hence CT images have poor quality (i.e. high graininess) (Bushberg et al., 

2002; Du et al., 2007; Goldman, 2007). This graininess phenomenon is 

consistent with the theoretical fact that specifies that by increasing voltage, 

current, and slice thickness, a higher number of X-rays will be detected by the CT 

equipment, yielding better quality images with a higher SNR, and therefore less 

graininess (Bushberg et al., 2002; Du et al., 2007; Goldman, 2007). 
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Figure 9. Surface plots of SNR versus (a) slice thickness (ST - mm) for current (C - mA), (b) slice thickness (ST - 
mm) for voltage (V - kV).  
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Figure 9 (cont’d).  

 

(c) current (C - mA) for voltage (V - kV). 
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2.4.3 Volume accuracy (Y2) optimization 

Regression coefficients for VA (Table 6) indicate that the individual effect 

of slice thickness is the only statistically significant factor affecting volume 

accuracy, since the corresponding P value is ≤ 0.05. It is also observed that the 

interaction effect between slice thickness and current also has a significant 

contribution (P value ≤ 0.05). Table 4 shows the result of ANOVA for the CT 

image volume accuracy model that yielded an R2 and R2 (adjusted for df) of 

98.51 % and 96.59 %, respectively. This indicates that the factors highly explain 

the amount of variation in the observed values of volume accuracy. Additionally, it 

is clear that the first, and polynomial order terms contribute significantly to the 

model (P value ≤ 0.05), so the canonical analysis or the relationships between 

factors in the data set is relevant (Myers et al., 2008). The stationary point is not 

near the experimental region, and only one out of the three eigenvalues are 

negative, indicating that the stationary point could not be determined (Table 5). 

Therefore, clear evidence of a set of optimal scanning conditions could not be 

inferred (Myers et al., 2008).  

Even though optimized conditions could not be determined, the surface 

response plots shown in Fig. 10 (a, c, and d) indicate that volume accuracy is 

directly proportional to the voltage and the current, while volume accuracy is 

inversely proportional to slice thickness. Consequently, the combination of high 

slice thickness, low current, and voltage yield CT images with low volume 

accuracy, hence CT images under these conditions offer low 3D information. 
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Additionally, by statistically slicing, therefore evaluating the slice thickness and 

current interaction effect (Fig. 10-b), it can be seen that only low (0.625 mm) and 

high (5 mm) slice thickness causes a significant change in volume accuracy 

dependent of current. Medium (2.5 mm) slice thickness does not seem to 

significantly change volume accuracy with the variation of current. These results 

are consistent with other studies in the medical (Bushberg et al., 2002; Goldman, 

2007) and agricultural (Mendoza et al., 2007) fields, were it has been found that 

by reducing slice thickness, better overall 3D information or volume accuracy will 

be digitally perceived from CT images.  
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Figure 10. (a) Surface plot of volume accuracy (VA - mm-3) versus slice thickness ( ST - mm) for current (C - mA). 
(b) Interaction plot for volume accuracy (VA - mm-3) versus slice thickness (ST - mm) for current (C - mA). Data 

points followed by the same lower case letter within the same slice thickness are not significantly different at P = 
0.05 (ANOVA with post-hoc Tukey multiple comparison of means).  



59 

 

Figure 10 (cont’d).  

 
Surface plots of volume accuracy (VA - mm-3) versus (c) slice thickness (ST - mm) for voltage (V - kV), and (d) 

current (C - mA) for voltage (V - kV). 
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2.4.4 HCSR (Y3) and LCD (Y4) optimization 

Regression coefficients for both HCSR and LCD (Table 6) indicate that the 

individual effects of voltage, current, and slice thickness are statistically 

significant (P values ≤ 0.05). No interaction effects between any of the factors 

appear to be statistically significant.  

Table 4 shows the result of ANOVA for HCSR, in addition it was 

determined that the R2 and R2 (adjusted for df) are 98.83 % and 97.32 %, 

respectively. This indicates that the factors highly explain the amount of variation 

in the observed values of HCSR. Additionally, it is clear that the first, and 

polynomial order terms contribute significantly to the model (P value ≤ 0.05), so 

the canonical analysis (relationships between factors) in the data set is relevant 

(Myers et al., 2008).  

Table 4 displays the result of ANOVA for LCD, were the R2 and R2 

(adjusted for df) equaled 99.17 % and 98.11 %, respectively. This indicates that 

the factors remarkably explain the amount of variation in the observed values of 

LCD. Additionally, it is clear that the first, second, and polynomial order terms 

contribute significantly to the model (P value ≤ 0.05), so relationships between 

factors is relevant (Myers et al., 2008).  

The stationary points for both HCSR and LCD are within the experimental 

region, and the three eigenvalues are negative, indicating that the stationary point 

is a maximum (Table 5); therefore clear evidence of a set of optimal scanning 

conditions was inferred. Optimized response for HCSR was established to be at a 
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voltage, current, and slice thickness equal to 113 kV, 170 mA, and 5.0 mm 

respectively. Optimized response for LCD was established to be at a voltage, 

current, and slice thickness equal to 120 kV, 117 mA, and 4.4 mm respectively.  

The surface response plots shown in Fig. 11-12 (a-c) indicate that HCSR and 

LCD increase with an increase in all factors (voltage, current, and slice 

thickness). Analysis shows that increasing voltage, current, and slice thickness 

will result in an increase of HCSR and LCD. This can be visually confirmed in Fig. 

13, where the combination of low voltage, current, and slice thickness yield CT 

images with low HCSR and LCD, hence CT images have difficulty distinguishing 

between two high contrast objects placed close together, and the ability of 

discriminating objects that vary slightly from their background is limited 

(Goldman, 2007). It could be confirmed that both HCSR and LCD follow a similar 

response trend as the SNR, where objects place close together and small low-

contrast objects are obscured by high noise or graininess (Fig. 13) (Goldman, 

2007).  
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Figure 11. Surface plots of HCSR versus (a) slice thickness (ST - mm) for current (C - mA), (b) slice thickness (ST 

- mm) for voltage (V - kV).  
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Figure 11 (cont’d).  

 

(c) current (C - mA) for voltage (V - kV). 
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Figure 12. Surface plots of LCD versus (a) slice thickness (ST - mm) for current (C - mA), (b) slice thickness (ST - 

mm) for voltage (V - kV).  
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Figure 12 (cont’d). 

 
 (c) current (C - mA) for voltage (V - kV). 
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Figure 13. Example of Gray-scale CT image quality for low (-1), medium (0), and high (+1) factor combinations. 

Note that low (-1) and high (+1) level combinations are not part of the Box-Behnken design, but CT images were 
acquired for visualization and validation purposes. 



67 

 

2.4.5 Optimized CT image quality attributes and validation   

The study of the effect of independent variables on each of the response 

variables individually facilitated the determination of optimized conditions to 

acquire maximized quality images. Final optimized parameters for voltage, 

current, and slice thickness were set at 120 kV, 170 mA, and 2.5 mm (Table 5). 

These values were chosen, because analysis showed that increasing current and 

voltage result in a rise of all response variables, including SNR, VA, HCSR, and 

LCD. Even though it might seem tempting to exponentially increase voltage, and 

current even higher (above experiment upper boundary), it would not be 

recommended, due to the fact that it can be predicted that the gain in image 

quality will be minimum in comparison with a significant increase in X-ray dose, 

and decrease the usable life of the X-ray source, as specified by studies in 

medical field (Boone et al., 2003; Woodford et al., 2007), and CT hardware 

performance studies (Prokop, 2003; McCollough et al., 2006; Goldman, 2007). 

Based on the previously discussed RSM models, it is not recommended to 

decrease voltage, and current below 113 kV, and 140 mA respectively, because 

a significant loss in image quality, due to a significant increase in CT image noise 

would be observed. 

In contrast, it could be seen that if slice thickness increases, volume 

accuracy will decrease while SNR, HCSR, and LCD increase. Therefore a slice 

thickness optimized value of 2.5 mm was chosen, with the objective of finding an 

intermediate value, between maximized volume accuracy (slice thickness ≤ 0.625 

mm), while keeping high SNR, HCSR, and LCD (slice thickness ≥ 4.4 mm). In 
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addition, setting scanning slice thickness at 0.625 mm or lower, will not only lower 

2D CT image quality significantly, by reducing SNR, HCSR, and LCD; but will 

increase scanning time (Table 1), a critical factor in the development of fast CT 

scanning systems (Hampel et al., 2005; Du et al., 2007; Sellakumar et al., 2007; 

Bierberle et al., 2009).  

Final experimental optimized response for each image quality attribute; 

from the independent CT image validation set, is summarized in Fig. 14. These 

experimental values for optimized CT images indicated that the mean SNR, VA, 

HCSR, and LCD equaled 0.69 ± 0.25 (SD), 0.43 ± 0.13 mm-3, 0.52 ± 0.03, and 

0.74 ± 0.25 respectively. In comparison, the predicted response, using RSM 

models (Table 6) and optimized scanning parameters (Table 5) equaled 0.74, 

0.32, 0.54, and 0.75 for SNR, VA, HCSR, and LCD respectively (Fig. 14). 

Experimental values are in close agreement to predicted values; hence, the RSM 

prediction models are accurate. 
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Figure 14. Box-plots showing experimental results for CT image quality 
attributes (SNR, VA (mm-3), HCSR, LCD) from a completely independent 

validation data set, using optimized scanning parameters, as seen in Table 
5. The median of each experimental quality attribute is represented as a 
thick horizontal black line, upper and lower quartiles as a box with the 

maximum and minimum measurements as lines protruding from these. The 
mean experimental response for each quality attributes is symbolized as a 

black solid dot (). Predicted optimized response using non-linear response 
surface polynomial models (Table 2) is symbolized as a hollow circle (). 

 

It could be visually confirmed in Fig. 13, that SNR is one of the most 

important and determinant response variables that will enhance the detection of 

ROIs in fresh chestnuts (e.g. Slight decayed tissue vs. healthy tissue in 

chestnuts) and is highly related to the HCSR and LCR (Du et al., 2007; Goldman, 
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2007).  SNR does not seem to have a relationship to the 3D overall volumetric 

information, mainly because the scanned Teflon® reference cylinders (900 HU) 

have a high contrast in relation to their background (Air = -1000 HU). Volume 

accuracy might play a higher role if the difference in contrast between the 

Teflon® reference cylinders and the background wouldn’t have been as high (i.e. 

Fresh chestnut tissue). Nonetheless, it was observed that the smaller the slice 

thickness the higher the observed volume accuracy.  

The HCSR represents the detection of edges of structures and small 

foreign objects when a significant difference in contrast exists (Du et al., 2007; 

Goldman, 2007), for example to determine the presence of foreign objects in the 

chestnuts or void spaces. Resulting optimized 2D CT images showed that the 

smallest discernable line pair (lp) is the 1.0 mm bar pattern, which equals a 

spatial resolution of 1.5 lp mm-1 (General Electric Company, 2007).  

LCD results indicated that optimized CT images provide the ability to 

detect structures as small as 3 mm diameter (General Electric Company, 2007). 

More specifically for chestnut sorting purposes, this means that the smallest 

discernable section of tissue with a slight contrast difference (e.g. decay versus 

healthy), will be equal to 3 mm diameter in all directions, due to the intrinsic 

isotropic image resolution of the scanner (Tsukagoshi et al., 2007). Therefore, a 

section of decay, pellicle, void space, or other region of interest smaller than 3 

mm is practically undetectable using optimized CT images.     

Relationship between SQR values obtained from a 5-expert panel and the 

DQA from their corresponding 2D CT image validation set, obtained through 
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optimized scanning parameters (Fig. 15) demonstrated a significant positive 

correlation (R = 0.98, P < 0.05), with a coefficient of determination that accounts 

for 96.6 % of total variability explained by linear regression. This indicated a high 

match between the digital estimation of decay (DQA) and the human visual 

perception of decay (SQR), ultimately reflecting good scanning parameter 

optimization/selection. 
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Figure 15. Relationship between Subjective Quality Rating (SQR) values 

obtained from a 5-experts panel and the Digital Quality Assessment (DQA) 
from their corresponding CT image validation set, obtained through 

optimized scanning parameters. Black solid line represents the least-
square linear regression line (n  = 110). The two dashed lines indicate 95 % 

CI of the linear regression. The two dotted lines indicate 95 % prediction 
intervals of the linear regression. 
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2.5 Discussion  

The study applied RSM using Box-Behnken design as a systematic tool to 

optimize CT scanning settings (voltage, current, and slice thickness), using CT 

images of fresh chestnuts, Teflon® reference cylinders, and a specific QA 

phantom, as imaging models for CT image quality (SNR, VA, HCSR, and LCD).  

Currently, CT image quality assurance for different application is done by visually 

assessing image appearance, in combination with statistical parameters, and 

human aided quantitative measurements to validate visual tests, as described by 

several scientists including Goldman (2007), Ledenius et al. (2009), Prokop 

(2003), Arnold et al. (2010), and companies like General Electric Company 

(2007). The issue is that image quality assurance mainly relies in repetitive 

subjective measurements of quality, which is time consuming, prone to high 

variability, and bias dependent on the human observer capabilities and expertise. 

Contrarily, in this study, custom formulas were derived in an attempt to provide a 

new automatic and objective way to measure CT image quality by mimicking the 

procedure that is usually done by human raters.  

If necessary, the same tool can be applied and slightly modified to 

evaluate the effect of other determinant scanning factors critical for image quality, 

additional scanning response attributes, and further applications that will 

significantly advance the field of CT and especially fast CT scanning. 

Determinant factors for image quality that were not evaluated in this research, 

because of their minor effect in image quality in comparison to the studied factors 

can also be studied, like the effect of X-ray detector spacing, image 
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reconstruction algorithms, detector failure, X-ray tube focal spot, and number of 

projection images (Bushberg et al., 2002; Goldman, 2007). Other applications of 

the proposed tool include the systematic optimization of parameters for micro-CT 

system (Badr et al., 1997; Du et al., 2007), clinical applications (Badr et al., 1997; 

Huda et al., 2000; Woodford et al., 2007; Wang et al., 2011), X-ray CT dose 

reduction (Mayo et al., 1994; Boone et al., 2003; McCollough et al., 2006; 

Goldman, 2007; Ledenius et al., 2009), ultra-fast CT parameter optimization 

(Hampel et al., 2005; Bierberle et al., 2009), and potential image optimization for 

in-line postharvest sorting of agricultural commodities (Barcelon et al., 1999b; 

Barcelon et al., 1999a; Sornsrivichai et al., 2000; Butz et al., 2005).  

Optimized high-resolution 2D CT images, as obtained from this study, can 

accurately reflect subjective internal characteristics of fresh chestnuts with a high 

accuracy rate (96.6 %), with high contrast between internal chestnut structures. 

This information is useful to study chestnut optimum storage conditions, quality 

standards (Mencarelli, 2001), the effect of mechanical harvesting, pre-harvest 

treatments (Mandujano et al., 1998; Monarca et al., 2005; Sieber et al., 2007; 

Donis-González, 2008; Donis-Gonzalez et al., 2010), fresh chestnut in vivo fruit 

morphology for cultivar characterization (Ertan, 2007), and chestnut peelability 

(Guyer et al., 2005). In addition, fast image processing, pattern recognition 

(Wulfshohn et al., 1993; Kavdir and Guyer, 2007) and feature extraction (Kim and 

Schatzki, 2000) applied to more than one 2D CT image per sample, will be a 

requirement to develop in-line quality sorting algorithms and systems. Based on 

the size of possible discerned structures using optimized CT images, which is 

equal to objects larger than 3 mm (founded on LCD results) separated by at least 
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1 mm (established HCSR results) between them, it can be inferred that the 

minimum number of acquired images per sample (i.e. ~ 8-17 CT images per 

chestnut) are sufficient for the development of future quality-sorting algorithms, 

critical to offer premium quality fresh chestnuts.  

2.6 Conclusions 

The RSM using Box–Behnken design has proved to be a successful 

technique to assess the significance of three of the most important CT equipment 

scanning parameters (voltage, current, and slice thickness), in combination with a 

digital and automatic procedure of measuring CT image quality (SNR, VA, HCSR, 

and LCD). It is a reliable method or tool that will yield useful, and high quality CT 

images in any field related with CT, without the biased aid of human sight. 

Second-order (polynomial) RSM prediction models for each response variable 

reflected a combined maximized CT image quality at voltage, current, and slice 

thickness equal to 120 kV, 170 mA, and 2.5 mm respectively, for this specific 

postharvest application. More specifically, optimized scanning parameters 

provided fresh chestnut CT images with high-resolution and high-contrast with a 

high accuracy rate (96.6 %) between the digital estimation of decay (DQA), and 

human visual perception of decay (SQR). In addition, experimental response 

values from optimized CT images are in close agreement to optimized predicted 

response values using non-linear response models; hence, the models are 

accurate.   

Results obtained in this experiment not only offer an advanced technique 

that can statistically, routinely, systematically, and reliably optimize CT 
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parameters, but also progress in the study of fresh chestnut quality, as well as 

the development of an in-line CT sorter for chestnuts and other agricultural 

commodities.   
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CHAPTER 3. RELATION OF COMPUTED TOMOGRAPHY (CT) HOUNSFIELD 

UNIT MEASUREMENTS AND INTERNAL COMPONENTS OF FRESH 

CHESTNUTS 

3.1 Abstract 

In this study, a medical grade computed tomography (CT) was used to 

obtain XY-plane 2D CT images from decayed and healthy fresh chestnuts, from 

the hybrid cultivar ‘Colossal’ and Chinese seedlings. Attenuation coefficients, 

referred to as Hounsfield-units (HU) or CT numbers, were acquired from different 

2D CT image regions including air, and several chestnut components containing 

decayed tissue, healthy tissue, various imperfections such as pellicle invagination 

into healthy kernel, and void spaces. Results offer an in vivo accurate insight of 

fresh intact chestnuts, and suggest that CT technology is appropriate for in-line 

sorting. HU measurements can be used as a nondestructive predictor of fresh 

chestnut internal components with a 90.6% overall accuracy rate.  

3.2 Introduction 

CT methods for accurate visualization, segmentation and inner component 

identification of fresh chestnuts, which include the presence of decayed tissue, 

pellicle, void spaces and healthy tissue, are not available. It is hypothesize, that 

CT technology can be used as a tool to study fresh in vivo chestnut components. 

Additionally, with appropriate equipment and classification algorithms, the 

information gathered in this study will indicate if the technique is practical and 

suitable to apply for in-line sorting systems to accurately determine fresh chestnut 
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quality. For that reason, the objective of this study was to evaluate the HU values 

(Section 1.5) from different components of fresh chestnuts and their scanning 

environment (air) from images of the hybrid cultivar ‘Colossal’ and from Chinese 

chestnut seedling.  

3.3 Materials and methods 

3.3.1 Sample collection and preparation  

A total of 100 kg of physiologically mature chestnuts (C. sativa x C. 

crenata) cv. ‘Colossal’ and Chinese chestnut seedlings (C. mollissima), were 

obtained from Chestnut Growers Inc. (CGI; Grand Haven, Michigan, USA). These 

chestnuts were previously collected from seven commercial farms in Michigan. 

Postharvest treatment (dip) was done as described in section 2.3.1. In addition, 

physiological internal disorders were stimulated in 25% of the apparently healthy 

chestnuts (sinkers) by submerging them for 300 s in 80 C dH2O. This procedure 

induces chestnut kernel damage by heat-shock, causing it to subsequently 

degrade during storage. Internal microbial decay was artificially induced in 

another 25% group of sinkers. This was done by manually injecting 100 L of 

Penicillium expansum spore suspension, containing 3.8 x 106 spores L-1, through 

the shell and into the chestnut kernel, using a 1 mL sterile medical grade 

tuberculin syringe with a 0.21 mm x 15.9 mm needle (BD™, NJ, USA). P. 

expansum, used for the experiment, was previously isolated from infected 

chestnuts and cultured onto a semi-selective medium containing potato-dextrose-
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agar (PDA) (BD™), 20 μL L-1 streptomycin (Sigma-Aldrich, Mo, USA) and 50 μL 

L-1 ampicilin (Sigma-Aldrich) in a Petri dish. Spores were collected from a two 

week old fungal culture, growing at 25 °C. To prepare the inoculum, 15 mL of 

sterile dH2O was added to the culture and the spores were gently removed from 

the surface with a sterile bacteriological loop. Spore were enumerated with a 

hemocytometer and then adjusted to the desired concentration, by dilution with 

sterile dH2O. Previous steps provided four groups of chestnuts per species, 1) 

Apparently healthy chestnuts (sinkers), 2) Apparently naturally damaged 

chestnuts (floaters), 3) Heat-induced-damaged chestnuts, and 4) Penicillium-

inoculated chestnuts. The purpose of dividing the ‘Colossal’ and ‘Chinese 

seedling’ into four groups was to guarantee a uniform distribution of a diverse 

range of internal characteristics needed for the experiment.  

All chestnuts from each group were stored in mesh bags at 4 C. After 90 

d, 40 chestnuts from each group were randomly picked and attached to two 

rectangular wood pegboards (PB1 = 930 mm x 380 mm and PB2 = 1060 mm x 

380 mm), in 20 rows containing 8 chestnuts (160 total), using approximately 

0.005 kg of 100% transparent silicone per chestnut (General Electric, Waterford, 

NY, USA). Each pegboard (PB1 and PB2) contained a unique chestnut species 

(CS); PB1 contained Chinese seedlings and PB2 ‘Colossal’ chestnuts. 

Additionally, to avoid sample displacement, individual chestnuts were numbered 

and whole PBs containing chestnuts were wrapped using a 0.0033 mm stretch 

(shrink) polyethylene wrap (Just Packing Supplies Inc., New York, NY, USA) (Fig. 

3b). Immediately after, CT scans were conducted. 
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3.3.2 In vivo CT imaging scans 

 CT scanning was performed on whole PBs, placed on the GE 

BrightSpeed™ RT 16 Elite, multi-detector CT instrument (General Electric 

Healthcare, Buckinghamshire, United Kingdom), as seen in Fig. 3b. The 

experimental conditions (scanning parameters) for the CT observations are 

shown in Table 1, using the parameters corresponding to a slice thickness (d) of 

0.625 mm. This d was used to have a higher resolution in the Z-axis. A total of 

1505 and 1729 XY-plane 2D CT images (slices) from PB1 and PB2 were 

obtained, respectively. Fewer images were acquired from PB1, because it was 

shorter in length due to the fact that Chinese seedlings are smaller in comparison 

to ‘Colossal’ chestnuts. Total scanning time for PB1 equaled 89 s, and PB2 102 

s, which corresponds to a scanning time of approximately 0.6 s per chestnut.    

3.3.3 Visual based fresh chestnut quality and internal component assessment 

 Raw color sliced internal faces were color scanned, as described in 

section 2.3.3, for record keeping and to use as references to accurately 

determine HU values from the XY-plane CT images as described in section 3.3.4. 

All chestnuts were then categorized based on their internal disorder severity level 

(SL), irrespective of their group; where SL1 contained all chestnuts that are 

healthy, SL2 chestnuts which are partially disordered, and SL3 represented the 

group of chestnuts which are completely disordered.  A representative example 

of cross-sectional (XY-plane) CT 2D images in the fresh state, which reflects the 

distribution of healthy and disordered tissue among chestnut samples, is shown 

in Fig. 16. In these images, healthy - SL1 (e.g. ACT), partially affected (decayed) -
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SL2 (e.g. BCT and DCT), and completely affected by internal disorder - SL3 (e.g. 

CCT) chestnuts can be viewed. Parallel, at the right side of every CT image, 

freshly sliced raw color images (RGB), which correspond to approximately the 

same CT scanned slices, can also be observed (e.g. ARGB, BRGB, CRGB and 

DRGB). These images proved useful when judging internal quality, and to 

accurately resolve the HU values and ROIs on the CT images. Figure 16-DCT 

also exemplifies an image of a partially decayed fresh chestnut, affected by P. 

expansum, with an overlying HU-values-profile containing the HU values 

acquired at the grey profile-line (PL). As visual reference a HU-standard-bar can 

also be noticed. 
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Figure 16. Cross-sectional XY-plane 2D CT images and color raw image 
slices (RGB) of chestnuts. (A) shows a healthy chestnut (SL1). (B) shows a 
partially decayed chestnut (SL2). (C) shows a completely decayed chestnut 

(SL3). (D) shows a partially decayed chestnut (SL2), illustrating the HU-
values-profile taken at the grey line (PL), typifying the HU variation within 

components in the same chestnut.  
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3.3.4 HU-value inference using training data set    

HU-values from eighteen regions of interest (ROIs) were acquired from 

different internal tissues (components) of fresh chestnuts and their scanning 

environment (air), including decayed tissue, healthy tissue, pellicle, and void 

spaces from XY-plane 2D CT images of the chestnut sample. ROIs were 

designed to include all possible combinations where different chestnut 

components and air are present, as seen in Table 7.  
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Table 7.  Acquired HU value samples from different chestnut components and air, based on regions of interest 
(ROIs)  

ID 
   Examples  ROIs  Mean HU 

valued 

  Thresholdf 

 SUa  In Fig. 16  CSb 
 

SLc  Region (Categ.e)   
 L U 

A  SU1  A,B,C CT  5 
  

 Ch 
 

-  Air  -1000.94   -1024 -975 

B  SU1  A,B,C CT  5  Co  -  Air  -1001.15     

C  SU2  ACT  3  Ch  SL1  Void space  -830.21   -974 -500 

D  SU2  ACT  3  Co  SL1  Void space  -826.64     

E  SU2  BCT  3  Ch  SL2  Void space  -836.98     

F  SU2  BCT  3  Co  SL2  Void space  -837.58     

G  SU2  CCT  3  Ch  SL3  Void space  -825.48     

H  SU2  CCT  3  Co  SL3  Void space  -847.88     

I  SU1  BCT  4  Ch  SL2  Decayed  -273.35   -499 -210 

J  SU1  BCT  4  Co  SL2  Decayed  -293.67     

K  SU1  CCT  4  Ch  SL3  Decayed  -299.40     

L  SU1  CCT  4  Co  SL3  Decayed  -313.73     

M  SU2  ACT  2  Ch  SL1  Pellicle  -118.68   -209 24 
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Table 7.  (cont’d) 

ID 
 

SUa 
 Examples  ROIs  Mean HU 

valued 

  Thresholdf 

  In Fig. 16  CSb 
 

SLc  Region (Categ.e)   
 L U 

N  SU2  ACT  2  Co  SL1  Pellicle  -137.73     

O  SU1  ACT  1  Ch  SL1  Healthy  138.99   25 300 

P  SU1  ACT  1  Co  SL1  Healthy  115.82     

Q  SU1  BCT  1  Ch  SL2  Healthy  125.56     

R  SU1  BCT  1  Co  SL2  Healthy  112.84     
aSampled Unit (SU) to infer mean HU valued. SU1 = 4 mm2 (6.6 pixels2) square region/repetition (300), SU2 = 1-
pixel/repetition (300). bChestnut species (CS) = cv. ‘Colossal’ – Co, Chinese – Ch. cSeverity level (SL) = SL1, SL2 and 
SL3 represents healthy, partially decayed and completely decayed chestnuts, respectively. eCategories were inferred after 
performing ANOVA at P = 0.05 and Tukey multiple comparison of means test (Fig. 17). fLower (L) and upper (U) 
thresholds for each category estimated from maximum and minimum HU.  
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The first two ROIs included the HU-values of air, defined as the scanning 

environment, from different scans. Both ROIs, were acquired to evaluate the 

repeatability between CT scans in the 2D CT reconstructed slices and to 

determine the intrinsic difference between HU values acquired in a similar 

medium. To confirm this, 300 repeated measurements, each including the mean 

HU value of a 4 mm2 (6.6 pixel2) square region containing only air, from PB1 

(Table 7, ID-A) and PB2 (Table 7, ID-B) at different transverse XY-plane 2D CT 

images (slices) were obtained, as exemplified in Fig. 16 -ACT 5, -BCT 5 and -CCT 

5. This first step, after acquiring the images was to determine if significant 

variability between XY-plane 2D CT images (slices) occurred. This is important to 

corroborate because it will indicate if observed differences between HU values 

obtained from different ROIs are due to internal changes in physical and/or 

chemical characteristics of chestnut samples within evaluated ROIs or if changes 

are due to unknown problems in the equipment or image acquisition procedure.  

Thereafter, HU values of another sixteen different ROIs from chestnuts 

samples were acquired, based on CS, and disorder SL (Table 7). In total, three 

hundred random repetitions per measurement from dissimilar XY-plane 2D CT 

images were conducted for every ROI type. Depending in the ROIs size, each 

measurement either included the mean HU value of a 4 mm2 square region, or 

the HU value acquired from an individual pixel. The sampled region for each ROI 

can be found in Table 7 under the sampled unit (SU) column. All HU values were 

acquired using the Osirix Imaging Software V3.6.1, developed by Dr. Antoine 

Russet's Software Team (http://www.osirix-viewer.com/). Due to artifacts that 
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occur near sample transitions (beam hardening effects), care was taken to avoid 

sampling near changeover regions, between the different media types.  

HU values comparing the ROIs were analyzed using one-factor analysis of 

variance (ANOVA). Significance difference between ROI means was determined 

using the Tukey post-hoc multiple comparisons of means test at the 95% family-

wise confidence level (P = 0.05) (Ott and Longnecker, 2001). Calculations were 

performed using the language and environment for statistical computing software 

R V2.10.0 (http://cran.r-project.org/).   

3.3.5 Chestnut categories prediction using an independent testing data set  

XY-plane 2D CT images were acquired from a completely different and 

independent set of 266 ‘Colossal’ and 266 Chinese chestnuts, with the objective 

of testing the accuracy of how well the five categories can be forecasted (blindly 

classified), using only HU value measurements. From these CT images, 50 

independent HU value random measurements per each of the 5 categories and 

per CS were acquired, yielding a total of 500 independent testing data points. 

Accuracy refers to the percentage of correct category predictions inferred by 

acquired HU value, when compared with the true category label in the testing 

data set (Shapiro and Stockman, 2001). For example, a misclassification would 

occur if the sampled data point from pellicle tissue (e.g. Fig. 16-ACT 2) (true label) 

would yield a HU value equal to -300, automatically and mistakenly assigning this 

data point to the decay category, based on HU values thresholds summarized in 

Table 7, and further explained in sections 3.4.1 and 3.4.2. Chestnut sample
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handling, CT scanning imaging parameters and procedure, HU value tissue 

sampling, and data handling followed the procedure described in section 3.3.4. 

3.4 Results   

3.4.1 HU-value and category threshold inference using training data set    

CT image acquisition reliability and repeatability was confirmed by 

comparing HU values acquired from air, considered as a homogeneous standard 

medium. As expected and observed in Fig. 17, HU mean values of air including 

ROIs identified as A (Chinese data set) and B (‘Colossal’ data set) are not 

significantly different (P < 0.05) and fall under the same category (air). Analysis 

supported that under the specified experimental conditions (Table 1), the CT 

used in the study, has a HU value SD for a homogeneous standard medium 

equal to 1.80 HU. In other words, the equipment will be able to accurately 

discern between tissues only when the HU value difference is higher than 1.8 

HU.  
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Figure 17. Box-plots showing the HU values from ROIs obtained using a training data set. The median is 

represented as a thick horizontal black line, upper and lower quartiles as a box with the maximum and minimum 
measurements as lines protruding from these. Box-plots followed by the same letter and enclosed by the same 
rectangle are not significantly different between each other at P = 0.05 (ANOVA) (Tukey multiple comparison of 

means). Solid circles joined by a dashed black line (---) show the relationship between the mean of the HU values 
for each ROIs and subsequently each category. 

     ‘               ‘ 
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Fig. 17 offers a clear outline of the changes and variation of HU values 

associated with changes in internal characteristics within samples and between 

different SL. Supporting these observations, data showed that positive values, 

higher than 24.89 HU (density > 100.0 kg m-3), could be observed in areas 

containing healthy tissue. Negative HU-values, between -2.52 and -1001.08 HU 

(density < 100.0 kg m-3), correspond to the existence of pellicle, decayed and 

void spaces. Similar results were described in other studies, where moisture 

content and density changes in fruits (Barcelon et al., 1999b; Barcelon et al., 

1999a) and wood (Fromm et al., 2001), were reflected in significant HU value 

differences.  

Regions of interest that are not statistically different can be grouped in the 

same categorical variables as seen in the boxes around the ROIs in Fig. 17 and 

summarized in Table 7. Information from Fig. 17 was used to generate 

preliminary thresholds separating each neighboring category. These thresholds 

were developed by taking in account the minimum and maximum HU values for 

each category. ROIs followed by the same letter and enclosed by the same 

rectangle in Fig. 17 are encompassed in the same category since they are not 

significantly different between each other at P = 0.05. Fig. 17 also includes solid 

black dots located in the mean HU value per category, joined by a dashed line (--

-) to observe the change in HU values in between categories.  

Analyzing the statistical difference among ROIs in Fig. 17 revealed five 

categories, which separately categorize sampled ROIs containing air, void 

spaces, decayed tissue, embedded pellicle and healthy tissue as summarized in 
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Table 7. Significant changes, spread and high variability of HU values, based on 

the different ROIs can also be observed in Fig. 17, which indicated an increase in 

HU value across the categories. From Fig. 17, it is shown that the HU values 

obtained from the ROIs are independent of CS and SL, due to the fact that only 

the sampled region, which reflects changes on internal characteristics or chestnut 

internal components, determines the changes in categories. Seeing that it has 

been repetitively demonstrated that HU values are highly correlated to matter 

bulk density, as reported by several scientists, including Fromm et al. (2001) and 

Bushberg et al. (2002), it can then be confirmed that the significant change in HU 

value means between the categories, is due to the changes in tissue density 

within the chestnut. Even though this result seems obvious, because of the 

principals of CT X-ray technology, it is important to mention that it indicates that 

the HU values can be used as an index to segregate and group chestnuts, not 

only based on their internal characteristics or components, but also because the 

technology is sensitive enough to accurately quantify chestnut kernel density 

changes. Density is considered an important quality parameter for chestnut as 

well as for other commodities, as previously expressed by Barcelon et al. 

(1999a). By rapidly and accurately measuring commodity density, some other 

problems might also be predicted such as insect damage, mechanical injuries, 

and firmness.  

By observing Fig. 17, it can be concluded that physical and/or chemical 

changes in the chestnut kernel, some caused by internal disorders and others by 

the presence of void spaces and pellicle embedded in the healthy kernel tissue, 

result in the HU values declining in relationship with degraded tissue health. It 
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can also be seen that by comparing between categories and evaluating the mean 

HU value in combination with the total HU value range for each of the categories, 

a threshold can be set to accurately separate healthy tissue from pellicle as well 

as healthy tissue from decayed or disordered tissue. Pellicle can somewhat be 

separated from decayed tissue but can accurately be segregated from void-

spaces and air. Decayed tissue can additionally be separated from both void-

spaces and air. Finally, no well-defined threshold can be specified between air 

and void-spaces.  

3.4.2 Chestnut categories prediction using an independent testing data set  

Threshold value testing, summarized in Fig. 18 was useful to determine 

how well the predicted HU values can forecast chestnut components. Fig. 18a 

shows the prediction of the categories from an independent testing HU values 

data set, using the estimated thresholds. The selected HU value thresholds, 

which include lower (L) and upper (U) HU values for all the categories, can also 

be found in Table 7. Figure 18b includes the confusion matrix corresponding to 

this prediction procedure. Each column of the matrix represents the occasions in 

a predicted category, while each row represents the instances in an actual 

category. This matrix is beneficial, because it visibly documents the misclassified 

categories (Shapiro and Stockman, 2001). Additionally, Fig. 18c shows 

representative images, containing a labeled image generated from its 

corresponding CT image, based on HU value thresholds. In Fig. 18c, color 

images are also included as a quality reference. Labeled images were 

automatically generated using the region-growing tool in Osirix Imaging Software 
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V3.6.1 (http://www.osirix-viewer.com/). This tool is used in the medical field to 

isolate or label structures in a CT image automatically after the user has indicated 

lower and upper HU value bounds that will be labeled, as specified by Wang and 

Smedby (2010). As an example, the healthy tissue is yellow labeled (white in 

gray scale image), after setting the lower bound at 25 HU and the higher bound 

at 300 HU. All other categories are comparably labeled, with respective threshold 

intervals and varying colors.  

Results from Figs. 18a and 18b, show that the overall accuracy rate for all 

the categories prediction, using independent testing data is equal to 90.6 %. The 

highest accuracy rates were obtained from the prediction of the air category, and 

the healthy category, where 100.0 % of the samples can be separated from all of 

the other categories. Void spaces can be separated from the other categories 

with a 96.0 % accuracy rate, because 4.0 % of the data points were recognized 

as air. The lowest accuracy rate is present when trying to differentiate between 

decayed tissue and pellicle, with an average accuracy value equal to 78.6 %. 

Here, 20.0 % of the decayed tissue was mistakenly predicted as pellicle, and 

23.0 % of the pellicle was wrongly categorized as decayed tissue.  

Fig. 18c, indicated that regardless of the SL, XY-plane 2D CT images 

could be used to accurately categorize chestnut components and air, based on 

selected thresholds. Positively, decayed tissue is always isolated from healthy 

tissue and both categories are never misclassified. On the other hand, if closely 

observed, it can be seen that slight misclassification can be observed between 

decayed tissue and pellicle, as well as void spaces and air, especially if 

categories are mixed within each other, as seen in Fig. 18c(SL2) and 18c(SL3). 
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In addition, Fig. 18c(SL1) clearly states that certain tissues could be 

categorized incorrectly (healthy tissue as pellicle), due to artifacts and noise that 

occur near category transitions; broadly known as beam hardening effects 

(Bushberg et al., 2002). 
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 Figure 18. (a) Category prediction using estimated thresholds (horizontal black lines) with an independent testing 
data set. HU threshold values are indicated above each threshold line. The selected HU value threshold range for 
air, void spaces, decay tissue, pellicle tissue, and healthy tissue are -1024 to -975, -974 to -500, -400 to -210, -209 

to 24, and 25 to 300; respectively. 
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Figure 18 (cont’d) 

 
 (b) Confusion matrix corresponding to the category prediction accuracy (overall accuracy rate = 90.6%). (c) 

Representative images, containing automatically generated color labeled images from their corresponding CT 
images, based on HU-value threshold intervals. RGB raw image slices are also included as a quality reference.   
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3.5 Discussion 

Results show that CT technology can be used as a technique that will be 

able to visualize and measure macroscopic changes in chestnuts components. 

By doing this, the technique might be able to detect possible negative effects of 

mechanical harvesting and pre-harvest treatments, cultivar characterization and 

morphology (chestnut peelability), physiological changes during storage, and 

early pathogen development. In addition, the data presented in this study is 

essential for developing classification algorithms to sort chestnuts based on their 

internal characteristics. HU values obtained from XY-plane 2D CT images are 

used as a reference to determine the presence of internal components of 

chestnuts, which will be useful for developing future prediction models of chestnut 

internal quality. Nonetheless, results clearly indicated, that in addition to raw HU 

values, other methods related to image processing, pattern recognition 

(Wulfshohn et al., 1993; Kavdir and Guyer, 2007), and feature extraction (Kim 

and Schatzki, 2000), will be a requirement to aid the development of future 

sorting algorithms, and will be necessary to accurately separate void-spaces from 

air as well as pellicle from decayed tissue. Transferring this tool to different 

commodity industries will enable them to control and promote the quality of their 

products. In addition, for the chestnut and other fruits, vegetables, and nuts, this 

application will provide the opportunity to select products according to their final 

use.  

Further research is needed, to develop sorting algorithms (see Chapter 4) 

and to investigate optimal equipment settings for real-time sorting potential, as 
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well as determine hardware capabilities, sorting speed, and system cost 

considerations (see Chapter 5).  

3.6 Conclusion 

CT imaging provides high-resolution and high-contrast images of the 

internal structure and components of fresh chestnuts. Internal component 

prediction accuracy equal to 90.6% was achieved by using HU values as 

predictors. In future studies, sorting algorithm speed, equipment cost and 

characteristics, as well as other methods related to image processing, feature 

extraction and pattern recognition will be useful for the development of reliable 

sorting algorithms and CT sorting systems. More studies must be pursued to 

evaluate the accuracy of sorting algorithms and in-line classification (Chapter 4). 

The main advantage of using HU values with the aid of other algorithms 

will be that CT is a fast, non-invasive procedure that has the potential to be 

adapted for quality evaluation and in-line sorting. In general, this study indicated 

that CT has a high potential for nondestructively evaluating internal components 

of fresh chestnuts, which are attributes associated with chestnut kernel quality. 
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CHAPTER 4. POSTHARVEST NONINVASIVE ASSESSMENT OF FRESH 

CHESTNUT INTERNAL DECAY USING COMPUTED TOMOGRAPHY (CT) 

IMAGES  

4.1 Abstract 

X-ray CT is an effective noninvasive tool to visualize fresh agricultural 

commodities’ internal components and quality attributes, including those of 

chestnuts. There is no reported procedure to automatically, effectively and 

efficiently classify fresh commodities from a continuous in-line flow through a CT 

system. If the information obtained by CT scanning of fresh agricultural 

commodities is to be used in an industrial application (e.g. in-line sorting), 

automated interpretation of CT images is essential. For this purpose, an image 

analysis method (algorithm) for the automatic classification of CT images 

obtained from 2848 fresh chestnuts (cv. ‘Colossal’ and Chinese seedlings), 

during the harvesting years from 2009 to 2012, was developed and tested. 

Classification accuracy was evaluated by comparing the classes obtained from 

six secondary CT images per chestnut, derived from raw CT images, to their 

internal quality assessment. Internal quality assessment was done by an 

experienced human rater by visually and invasively rating fresh chestnut internal 

decay severity (quality) into 5-, 3- and 2- classes.  

After CT image preprocessing, cropping and segmentation, 1194 grayscale 

intensity and textural features were extracted from the six resultant CT images 

per sample. Relevant features were selected using a sequential forward selection 

algorithm with the Fisher discriminant objective function. 86, 155 and 126 
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features were effective in designing a quadratic discriminant classifier with a 4-

fold training for the 3 different class scenarios. Performance accuracy of 85.9 %, 

91.2 % and 96.1 % for 5, 3 and 2 classes was found, respectively. Results show 

that this method is accurate, reliable, and objective in determining fresh chestnut 

internal quality, and it is applicable to an automatic noninvasive in-line CT sorting 

system.  

4.2 Introduction 

Researchers agree that the absence of sorting commodities in industry 

using in-line CT systems is primarily due to their limitations in gathering useful 

information, and optimum data handling, when operating at high-speed (Butz et 

al., 2005). More specifically, if CT in-line systems were to be developed, little is 

currently known about how to efficiently handle the high amount of acquired data, 

while continuously scanning. In addition, there is no available procedure reported 

to automatically, effectively and efficiently classify fresh agricultural commodities 

from a continuous in-line flow of entities going through a CT scanning system.  

Pattern recognition algorithms, which are an intrinsic and an important part 

of computer vision systems, offer a mechanism of classifying commodities based 

on their quality attributes, and can be applied to CT systems. In general, systems 

are trained from patterns of interest extracted from a set of images, representing 

different quality categories. A pattern or feature is represented by a group of 

textural and image intensity features, which are able to define all of the quality 

categories. The system then assigns a new image series to a specific quality 

category or class (Duda et al., 2000). The first step consists of extracting a high 
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number of features (patterns) from the different categories of known images. 

Features then must be selected by their capacity of correctly separating the 

images into different categories, therefore training the system, and allowing it to 

automatically classify new images. Classification is done using statistical and 

clustering algorithms by assigning images per sample, to its corresponding class 

(Duda et al., 2000; Mery and Soto, 2008). The reader may refer to complete 

information regarding statistical pattern recognition methods, which have been 

extensively described in several publications, including Jain et al. (2000), Duda et 

al. (2000),  Bishop (2007), and Holmström and Koistinen (2010). Steps used to 

generate the pattern classification algorithm to categorize chestnut quality using 

CT images are illustrated in Fig. 19, and in depth explained in the materials and 

methods section. 

Therefore, the aim of this study is to describe a reliable method that will 

systematically, rapidly, and efficiently classify a fresh agricultural commodity (i.e. 

chestnuts) using CT images, obtained from a commercially available medical 

grade CT system. This classification method is unique because it automatically 

uses a set of CT images to determine the overall quality of fresh chestnuts, 

without the aid of a human sorter. This research offers a novel tool, which can 

methodically classify chestnuts from high-throughput 2D CT images. In addition, 

the developed algorithm can be used to study the potential development of an in-

line CT system, and can be accessed by scientists to automatically and efficiently 

classify CT acquired images, in other domains. This automatic classification 

algorithm is a critical step in the development of a fast, in-line, nondestructive CT 

system, capable of assessing fresh internal quality attributes
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and components of individual chestnuts, other agricultural commodities, in 

addition to other objects of interest (e.g. airplane parts). 
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Figure 19. Procedure used to generate the pattern classification algorithm 

to categorize chestnut quality using CT images. 
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4.3 Materials and methods 

4.3.1 Sample collection and preparation 

 A total of 1424 physiologically mature Chinese seedlings (C. mollissima) 

and 1424 (C. sativa x C. crenata) cv. ‘Colossal’ chestnuts (Total of 2848) were 

obtained from Chestnut Growers Inc. (CGI; Grand Haven, Michigan, USA). 

Chestnuts were collected from seven commercial farms in Michigan. Equal 

numbers of chestnuts were collected every year, from the 2009 through the 2012 

harvesting season (September-October). Following common postharvest 

procedures samples were treated, after each collection year, as described in 

section 2.3.1. Samples were then handled as described in section 3.3.1, with the 

objective of attempting to generate a uniform distribution of a diverse range of 

internal characteristics (different classes of decay) needed for this study. Every 

year, after approximately 90 storage days (4 C), chestnuts were similarly 

attached (facing toward the same direction) to rectangular polyethylene boards 

(915 mm x 335 mm x 2.8 mm), in 19 rows containing 7 chestnuts (133 total), as 

described in section 3.3.1 and seen in Fig. 3b. CT scans were then conducted on 

each board following the procedure described in section 3.3.2, only that in this 

case, instead of using the parameters corresponding to a slice thickness (d) of 

0.625 mm (visualization purposes), a d equal to 2.5 mm was used, as concluded 

during the CT image optimization procedure in Chapter 1. 
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4.3.2 CT image preprocessing:  

Image preprocessing (re-slicing, cropping and contrast enhancement), 

image visualization, segmentation, feature extraction, statistical analysis, and the 

automatic classification/validation for this study were done in MATLAB (2012a, 

The MathWorks, Natrick, MA, USA) (http://www.mathworks.com), and in the 

language and environment for statistical computing software R (V2.10.0, R 

Development Core Team, Vienna, Austria) (http://cran.r-project.org/), using a 

Macintosh environment on a Lion operating system with 2.53 GHz Intel Core 2-

Duo, 8 GB random access memory (RAM), 1067 MHz double data rate 3 (DDR3) 

(Apple Inc., Cupertino, California, USA). Feature extraction, feature reduction, 

and the automatic classification/validation for this study were performed by 

partially using the “Balu” free toolbox for pattern recognition 

(http://dmery.ing.puc.cl/index.php/balu/), developed by the Department of 

Computer Science at the Pontifical Catholic University of Chile (Santiago, Chile). 

This toolbox contains more than 200 functions for image processing, feature 

extraction, feature transformation, feature analysis, feature selection, 

classification, clustering, performance evaluation, image sequence processing, 

and more.  

4.3.3 CT image re-slicing 

Because of the intrinsic 3D characteristic of CT imaging, CT image slices 

were re-sliced following the steps described in section 1.5 (Fig. 5). Depending on 

chestnut physical size and d, each chestnut contains between 8 to17 XY-, YZ- 



106 

 

and XZ-plane-slices representing virtual cross-sections of a chestnut along the Z, 

X and Y axes.  

4.3.4 Individual chestnut CT image cropping 

Chestnut rows and individual chestnuts were visually/manually cropped 

from the overall CT data set containing the scanning table, volume of air and 

other chestnuts, by determining their spatial location, as shown in Fig. 20. Pixels 

in Fig. 20a (entire board XZ-plane-slice) correspond to the mean intensity value 

of all pixels at the same planer location (x,z) in the XZ-plane-slices stack. In Fig. 

20a, Z1- and Z2-spatial-location-values are manually determined to crop each 

chestnut row, generating Fig. 20b (row XZ-plane-slice), 20c (row XY-plane-slice) 

and 20d (row YZ-plane-slice). To crop each individual chestnut, X1-, X2-, Y1-, and 

Y2-spatial-location-values are manually inferred, as seen in Fig. 20a, 20b, 20c 

and 20d. Pixels in Figs. 20a-20d, correspond to the mean of all pixel values at the 

same planer location ((x,y), (y,z) or (z,x)) within each plane in the chestnut stack.   

For each chestnut that is re-sliced making up the three different image 

stacks per plane, a total data set of approximately 50 raw CT image slices of 

about 50 x 50 pixels each (depending on chestnut physical size) are generated. 

For further analysis, data set dimensionality is then reduced from these original 

50 raw CT images per chestnut sample to 6 resultant CT images per sample 

(secondary CT image set – Fig. 19). To accomplish this reduction, pixels in final 

cropped chestnuts, as seen in Fig. 20e (mean XZ-plane-slice), 20f (mean XY-

plane-slice) and 20g (mean YZ-plane-slice) are generated from the mean 
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intensity value of all pixel values at the same planer location ((x,y), (y,z) or (z,x)) 

in all of the XZ-, XY- or YZ slices per chestnut.  
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Figure 20. Mean intensity values of pixels in all of the: (a) YZ-plane-slice of the whole board containing chestnuts, 
(b) YZ-plane-slices for the first chestnut row, (c) XY-plane-slices for the first chestnut row, (d) XZ-plane-slices for 
the first chestnut row. Mean intensity values of pixels in final secondary CT cropped chestnut for the (e) YZ-, (f) 
XY- and (g) XZ-plane-slices. Maximum intensity values of pixels in final secondary CT cropped chestnut for the 
(h) YZ-, (i) XY- and (j) XZ-plane-slices. The beginning of the first (Z1-), the end (Z2-) of the row, the left (X1-), the 
right (X2-) side, the bottom (Y1-) and the top (Y2-) of the first chestnut -spatial-location-values are shown in red. 
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An additional example of a resultant mean CT image slice, viewed from the 

XZ-plane can also be seen in Fig. 21b. In addition, cropped chestnuts are also 

used to generate the second 3 resultant images based on the maximum intensity 

value of all pixel values at the same planer location ((x,y), (y,z) or (z,x)) in all of 

the reconditioned XZ-, XY- and YZ-plane-slices per chestnut, as shown in Figs. 

20h (maximum XZ-plane-slice), 20i (maximum XY-plane-slice), and 20j 

(maximum YZ-plane-slice). An example of another resultant maximum CT image 

slice, viewed from the XZ-plane is also included in Fig. 21f. Therefore, three 

mean and three maximum intensity value CT images from the three different 

planes (XY, XZ and YZ) are obtained per chestnut sample (total of 6). 
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Figure 21. (a) Partially decayed fresh raw chestnut slices. (b) Original secondary mean CT image (YZ-plane-slice), 

(c) adjusted secondary mean CT image (YZ-plane-slice), (d) final contrast enhanced secondary mean CT image 
(YZ-plane-slice). (e) Segmented CT image from final contrast enhanced secondary mean CT image (YZ-plane-

slice) (binary mask). (f) Original secondary maximum CT image (YZ-plane-slice), (g) adjusted maximum 
secondary maximum CT image (YZ-plane-slice), and (h) final contrast enhanced secondary maximum CT image 

(YZ-plane-slice). 
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4.3.5 Contrast enhancement  

The most important characteristic in CT X-ray images is image contrast. 

Image contrast is the difference in luminance of the grayscale intensity values 

(separation between the darkest and brightest regions of an image) that makes 

the representation of different structures in a CT image discernable (Wang et al., 

1983). This includes the different tissue types reflected in chestnut CT images 

(Donis-Gonzalez et al., 2012). Contrast enhancement is a vital step in image 

processing, and it is done to increase image quality (Zimmerman et al., 1998; 

Jagannath et al., 2012).  Multiple techniques exist, which are used to improve 

digital image contrast, including morphological operations enhancement, as 

described in Sreedhar and Panlal (2012).  

In this study, a set of image preprocessing steps were implemented to 

increase secondary CT image contrast, based on morphological enhancement as 

described in Wirth et al. (2004). First, image contrast is improved in each of the 

original secondary CT images (Fig. 21b and 21f) by creating an adjusted mean 

and maximum secondary CT image as exemplified in Fig. 21c and 21g, 

respectively. This first step is done by mapping the original outputted secondary 

CT image grayscale values (Fig. 21b and 21f), so that 1 % of their pixels at low 

and high intensities (2 % in total) are saturated (limited to lowest and maximum 

pixel values). Second, a top-hat operation (high grayscale intensity regions) using 

a 5-neighbors disk shaped flat structuring elements (SE) is applied to the 

adjusted secondary CT images (Fig. 21c and 21g), generating the top-hat image. 

Third, a bottom-hat operation (low grayscale intensity areas) using the same SE 
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as described in previous step is also applied to the secondary CT adjusted 

images (Fig. 21c and 21g), creating the bottom-hat image. The form and size of 

the SE is appropriate because of the natural shape of the chestnuts, reflected in 

the CT images. Finally, contrast enhanced secondary CT images are produced 

as illustrated in Fig. 21d (mean) and Fig. 21h (maximum) by adding the top-hat 

image to its corresponding adjusted image and subtracting its linked bottom-hat 

image (i.e. adjusted image + top-hat image – bottom-hat image). This stretches 

the high intensity areas toward increased intensity, while low intensity regions are 

stretched towards decreased intensity. 

4.3.6 CT image segmentation (Binary mask):  

Image segmentation is implemented to recognize the region of interest in 

an image, which in this case is the chestnut in each CT image. CT image 

segmentation was done by using the balanced histogram thresholding method, 

as described in Anjos and Shahbazkia (2008). This is a simple histogram based 

thresholding procedure broadly used for automatic image threshold. This 

methodology assumes that the CT image is divided in two main classes, (1) the 

foreground (chestnut CT image) and (2) the background (air). To do so, the 

methodology finds the optimum threshold level (first minimum grayscale value in 

mean CT image histogram) from a CT mean slice, which will divide the image 

into the two classes. Example of a segmented image for one plane, using this 

routine, can be found in Fig. 21f.  
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4.3.7 Visual based fresh chestnut quality and internal component assessment: 

Raw color sliced internal faces were color scanned, as described in 

section 2.3.3, for record keeping. All chestnuts were then qualitatively assessed 

for disorders, void spaces, and embedded pellicle. All chestnuts were then 

categorized based on their internal disorder severity level into five, three and two 

categorical groups as described in section 4.1.8 and visualized in Figs. 23, 24, 

and 25, respectively. An additional representative example of cross-sectional raw 

color images in the fresh state is shown in Fig. 21a. In these images, fresh slices 

of a partially decayed chestnut can be viewed.  

4.3.8 Feature extraction: 

In general, feature extraction involves algorithms that detect and isolate 

desired information from segmented images, including CT images (Nixon and 

Aguado, 2008). The idea is to use the extracted features to decide to which 

quality class does a chestnut belong. The type of extracted features play an 

intrinsic and very important role in classifying images appropriately (Jain et al., 

2000).   

In this study, features were extracted from the six contrast enhanced 16-bit 

secondary CT intensity images per chestnut. A total of 199 features were 

extracted per secondary/resultant CT image, and then features from the six 

resultant CT images were concatenated to form a feature vector (x) with 1194 

components, as partially illustrated in Fig. 19. Extracted features per CT image 

included: (1) 6 basic intensity features, (2) 26 Haralick textural (Tx) features, (3) 
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95 intensity local binary pattern (LBP) features, (4) 67 Gabor intensity textural 

features, and (5) 5 contrast features.  

 Basic intensity features: 

Six standard features, describing overall image intensity information, were 

derived from the segmented image region, for each of the contrast enhanced 

secondary CT grayscale images. Standard features included the mean (𝜇) – Eq. 

4-1, standard deviation (𝜎) – Eq. 4-2, kurtosis (k) – Eq. 4-3, skewness (s) – Eq. 4-

4, mean gradient [first-order derivative (𝑓′(𝑥(𝑖,𝑗)))] – Eq. 4-5, and mean 

Laplacian [second-order derivative (𝑓′′(𝑥(𝑖,𝑗)))] – Eq. 4-6 (Shapiro and 

Stockman, 2001; Nixon and Aguado, 2008; Mery et al., 2011).  

𝜇 =  
1

𝑛
∑𝑥(𝑖,𝑗)

𝑛

𝑖=1

 (4-1) 

𝜎 = √
1

𝑛
∑(𝑥(𝑖,𝑗) − �̅�)

2
𝑛

𝑖=1

  (4-2) 

𝑘 =

1
𝑛
∑ (𝑥(𝑖,𝑗) − �̅�)

4𝑛
𝑖=1

(
1
𝑛
∑ (𝑥(𝑖,𝑗) − �̅�)

2𝑛
𝑖=1 )

2

 

 (4-3) 
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𝑠 =

1
𝑛
∑ (𝑥(𝑖,𝑗) − �̅�)

3𝑛
𝑖=1

(
1
𝑛
∑ (𝑥(𝑖,𝑗) − �̅�)

2𝑛
𝑖=1 )

3

 

 (4-4) 

𝑓′(𝑥𝑖𝑗) =
𝑥(𝑖,𝑗)+1 − 𝑥(𝑖,𝑗)

((𝑖, 𝑗) + 1) − (𝑖, 𝑗)
 (4-5) 

𝑓′′(𝑥𝑖𝑗) =
𝑓′(𝑥(𝑖,𝑗)) − 𝑓

′(𝑥(𝑖,𝑗)−1)

((𝑖, 𝑗) + 1) − (𝑖, 𝑗)
 (4-6) 

where, 𝑥(𝑖,𝑗) represents the grayscale value of pixels in each of the segmented 

CT images, and n the total number of evaluated pixels (i x j).  

 Haralick textural (Tx) features: 

Twenty six Tx features were extracted from each of the contrast enhanced 

secondary CT grayscale images in order to obtain information about their 

intensity values distribution. To obtain these Tx features, first a co-occurrence 

matrix (C) (Eq. 4-7) is computed per CT image, which represents the joint 

probability distribution of intensity pairs of neighboring pixels.  

𝐶Δx,Δy(n,m)

=  ∑∑{
1, if 𝐼(𝑖, 𝑗) = Ng  and 𝐼(𝑖 + Δ𝑥, 𝑗 + Δ𝑦) = Ng 

0, otherwise

𝑗

𝑗=1

𝑖

𝑖=1

 
(4-7) 

where, C is defined over an i x j CT image (I), parameterized by an offset (Δx,Δy). 

This matrix is square with dimensions n (row) x m (column) (Eq. 4-8), 
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represented by the number of gray intensity level in the CT image (Ng), which is 

equal to 216 (65536) in a 16-bit CT image. As it can also be seen in Eq. 4-7, an 

element (n,m) of C is generated by counting the number of times a Ng in the i-

pixel is adjacent to an Ng in the j-pixel. Since, adjacency in a 2D image can occur 

in four directions or offsets - (Δx,Δy)   (horizontal, vertical, left and right diagonals) 

four C-matrices can be calculated.  

𝐶 = [

𝑐(1,1) ⋯ 𝑐(1,𝑁𝑔)

⋮ ⋱ ⋮
𝑐(𝑁𝑔, 1) ⋯ 𝑐(𝑁𝑔, 𝑁𝑔)

] (4-8) 

Subsequently, basic Tx statistical features as described in Eqs. 4-9 – 4-23 

were computed (Table 8). Both mean and range values for each of the Tx 

features, for a mask containing five different neighboring pixels, were processed. 

Since rotation invariance is an important criterion for features extracted from the 

CT images, invariance was accomplished for each of these statistics, by 

calculating the mean over the four directional C-matrices (4 offsets). 
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Table 8. Haralick textural (Tx) features (Haralick, 1979) 
Tx feature Formula 

 
1. Angular 
Second 
Moment 

∑∑𝐶(𝑛,𝑚)2

𝑚𝑛

 (4-9) 

2. Contrast 

∑ 𝑖2 {∑∑ 𝐶(𝑛,𝑚)

𝑁𝑔

𝑚=1

𝑁𝑔

𝑛=1

}

𝑁𝑔−1

𝑖=0

, |𝑛 − 𝑚| = 𝑖 (4-10) 

3. 
Correlation 

∑ ∑ (𝑛𝑚)𝐶(𝑛,𝑚) −𝑚𝑛 μ𝑥μ𝑦
𝜎𝑥𝜎𝑦

 

 (4-11) 
where μ𝑥 , μ𝑦, 𝜎𝑥 and 𝜎𝑦  are the means and 

standard deviation of 𝑐𝑥  and 𝑐𝑦 , the partial probability 
density functions. 

4. Sum of 
Squares: 
Variance 

∑∑(𝑛 − μ)

𝑚

2

𝑛

𝐶(𝑛,𝑚) (4-12) 

5. Inverse 
difference 
moment 

∑∑
1

1+ (𝑛 −𝑚)2
𝑚𝑛

𝐶(𝑛,𝑚) (4-13) 

6. Average 
sum 

∑𝑖𝐶𝑛+𝑚(𝑛)

2𝑁𝑔

𝑛=2

 

where n (row) and m (column) are the coordinates of 
an entry in the C, as described in Section 2.6.2. 
𝐶𝑛+𝑚(𝑖) is the probability of C coordinates 
summing to n + m. 

(4-14) 

7. Entropy 
sum (𝑓7) 

−∑𝐶𝑛+𝑚(𝑛) log{𝐶𝑛+𝑚(𝑛)}

2𝑁𝑔

𝑛=2

 (4-15) 

8. 
Variance 
sum ∑(𝑖 − 𝑓7)

2𝐶𝑛+𝑚(𝑛)

2𝑁𝑔

𝑛=2

 (4-16) 
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Table 8. (cont’d) 
Tx feature Formula 

 
9. Entropy 
(𝐻𝑋𝑌) −∑∑𝐶(𝑛,𝑚) log(𝐶(𝑛,𝑚))

𝑚𝑛

 
(4-17) 

10. 
Variance 
difference ∑ 𝑛2

𝑁𝑔−1

𝑛=0

𝐶𝑛−𝑚(𝑖) (4-18) 

11. Entropy 
difference  

− ∑ 𝑝𝑛−𝑚(𝑛) log{𝑝𝑛−𝑚(𝑛)}

𝑁𝑔−1

𝑛=0

 (4-19) 

12. 
Correlation 
meas. - 1  

𝐻𝑋𝑌 − 𝐻𝑋𝑌1
max{𝐻𝑋,𝐻𝑌}

 (4-20) 

13. 
Correlation 
meas. - 2 

(1 − exp[−2(𝐻𝑋𝑌2 −𝐻𝑋𝑌)])
1
2 (4-21) 

where HX and HY are the entropies of 𝐶𝑛  and 𝐶𝑚 . 

𝐻𝑋𝑌1

= −∑∑𝐶(𝑛,𝑚) log{𝐶𝑛(𝑛)𝐶𝑚(𝑚)}

𝑚𝑛

 (4-22) 

𝐻𝑋𝑌2

= −∑∑𝐶𝑛(𝑛)𝐶𝑚(𝑚) log{𝐶𝑛(𝑛)𝐶𝑚(𝑚)}

𝑚𝑛

 (4-23) 

 

 Intensity local binary pattern (LBP) textural features: 

Ninety-five LBP features (classic and semantic) were extracted from each 

of the contrast enhanced secondary grayscale CT images to compute the 

relationship between the intensity of each pixel with its eight neighboring pixels, 

using the occurrence histogram (classic – cLBP), and a histogram clustered by 
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the pixel intensity value (semantic – sLBP). LBP approach introduces an operator 

where a neighborhood of up to 36 pixels for the cLBP, and 56 pixels for the sLBP 

of the images are thresholded in relation to the center pixel value, forming a new 

binary sub-image (Ojala et al., 2002; Ahonen et al., 2009; Chai et al., 2013) (Eq. 

4-24, Fig. 22). The rotations of the selected neighborhoods inside each image 

increase the number of LBP features, giving a rotation invariant reliable 

characterization of the image. The values of the pixels in the thresholded 

neighborhood are multiplied by the binomial weights given to the corresponding 

pixels. Finally, the values of the eight pixels are summed to obtain the LBP 

(Pietikäinen et al., 2000) (Eq. 4-25). LBP are defined as: 

𝑠(𝑁𝑔0 ∙ 𝑁𝑔𝑖) = {
1, 𝑖𝑓 𝑁𝑔𝑖  >  𝑁𝑔0 
0, 𝑖𝑓 𝑁𝑔𝑖  ≤  𝑁𝑔0

 (4-24) 

𝐿𝐵𝑃(𝑑,ℎ) = ∑𝑠(𝑁𝑔0 ∙ 𝑁𝑔𝑖)2
𝑖−1

8

𝑖=1

 (4-25) 

where, 𝑁𝑔0 is the gray value of the center pixel in the circularly symmetric 

neighborhood, and 𝑁𝑔𝑖  takes the different eight pixels values from the 

neighborhood. LBPs have been found to be influential features for texture 

classification in images (Ojala et al., 2002; Ahonen et al., 2009). Example of 

cLBP images with different neighborhood size operations for a maximum intensity 

XY-plane-slice CT image of a partially decayed and a healthy chestnut can be 

can be found in Fig. 22. 
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 Intensity Gabor textural features: 

Sixty-seven Gabor features were extracted per contrast enhanced 

secondary CT grayscale images. The general Gabor function is complex, 

exponential and modulated by a Gaussian envelope function (Kumar and Pang, 

2002). 

𝑓(𝑥, 𝑦)

=
1

(2𝜋𝜎𝑥𝜎𝑦)
exp(−

1

2
(
𝑥2

𝜎𝑥
2
+
𝑦2

𝜎𝑦
2
)) exp(2𝜋𝑗𝑢0𝑥) 

(4-26) 

where, 𝜎𝑥 and 𝜎𝑦 denote the Gaussian envelope along the 𝑥 and 𝑦 axes, and 𝑢0 

defines the radial frequency. In the frequency domain, the Gabor function acts as 

a multi-scale and multi-orientation band pass filter with a real and an imaginary 

component, using the Gaussian function. The self-similar filter banks can be 

obtained by dilations and rotation of 𝑓(𝑥, 𝑦) through the generating function, as 

seen in Eqs. 4-27 – 4-29: 

𝑓𝑟𝑠(𝑖, 𝑗) =∝
−𝑃 𝑓(𝑖′, 𝑗′)          (4-27) 

where,   

𝑖′ =  ∝−𝑃 (𝑖(𝑐𝑜𝑠𝜃𝑟) + 𝑗(𝑠𝑖𝑛𝜃𝑠))             (4-28) 

 ∝−𝑃> 1; 𝑟 = 1,2,… , 𝑆;   𝑠 = 1,2… , 𝐿.     (4-29) 

𝑟 and 𝑠 represent the index for dilation (scale) and orientation, respectively. S is 

the total number of dilatations (scales) and L is the total number of orientations, 
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𝜃𝑟  and 𝜃𝑟  are the angle for each 𝑟 and 𝑠. In this study, S = 8 and L = 8 are 

used, as proposed by Ng et al. (2005b). By applying the Gabor filter (fr) to an 

mage 𝐼(𝑖, 𝑗), the magnitude information or magnitude filtered image 

(𝐼𝑟𝑠(𝑖, 𝑗)) is obtained as follows: 

𝐼𝑟𝑠(𝑖, 𝑗) =   {[𝑓𝑟𝑠(𝑖, 𝑗)𝑒 ∗ 𝐼(𝑖, 𝑗)]
2  + [𝑓𝑟𝑠(𝑖, 𝑗)0 ∗

𝐼(𝑖, 𝑗)]2}
1

2     
  (4-30) 

where “*” denotes a 2-dimensional convolution operation, and 𝑓𝑟𝑠(𝑖, 𝑗)𝑒  and 

𝑓𝑟𝑠(𝑖, 𝑗)0 represent the real (even), and imaginary (odd) parts of the Gabor 

filter, respectively.  

After the feature extraction, the 𝑘 extracted features were arranged in a 𝑘 –

vector: 𝑤 = [𝑤1…𝑤𝐾]
𝑇  and normalized (Mery and Soto, 2008): 

�̃�(𝑎,𝑏) =
𝑤(𝑎,𝑏) −   �̅̅̅�𝑏

𝜎𝑏
      (4-31) 

𝑎 takes values from 1 to the number of samples (scales), and 𝑏 takes values from 

1 to the number of features (orientations).    �̅̅̅�𝑏 and 𝜎𝑏  are the mean and 

standard deviation of the b-th. Gabor feature. Gabor features, extracted from the 

magnitude filtered images with different scales and orientations may be helpful 

for extracting useful textural features from an image and important for 

classification. Gabor features are useful in image processing applications such as 
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optical character identification, texture recognition in fruits/food, iris and 

fingerprint recognition (Zhang, 2002; Ng et al., 2005a; Zhu et al., 2007). 

Magnitude Gabor filtered maximum intensity XY-plane-slice CT images can be 

found for a healthy and a decayed chestnut in Figs. 22a and 22b, respectively. 

 Contrast features:  

Image contrast is defined in section 2.3.3. In addition to statistical textural 

techniques, which can be used to calculate contrast as described in Eq. 4-10, 

contrast was calculated in each of the contrast enhanced secondary CT 

grayscale images using additional techniques (5-methods) previously applied to 

detect defects in aluminum casting X-ray images (Kamm, 1998), as seen in Eqs. 

4-32 to 4-34:  

𝐾1 =
𝐺 − 𝐺𝑁
𝐺𝑁

 (4-32) 

𝐾2 =
𝐺 − 𝐺𝑁
𝐺 − 𝐺𝑁

 (4-33) 

𝐾3 = 𝑙𝑛 (
𝐺

𝐺𝑁
) (4-34) 

where, related to this study, G is the mean gray intensity value using an eroded 

segmented region of the originally segmented CT image. This eroded segmented 

region was obtained by applying an erosion algorithm (imerode in MATLAB) to 

the original segmented region (whole chestnut) using a 15 x 15 disk SE. As in 

contrast enhancement, this SE is appropriate because of the natural shape and 
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size of the original segmented chestnuts. GN is the mean gray intensity value of 

the whole segmented region (whole chestnut).  

Other methods of measuring contrast as proposed in Mery (2001), and 

Mery and Filbert (2002) were also customized to this study. These other two 

contrast measurements are calculated through inputting values into Eqs. 4-37 

and 4-38, obtained from three consecutive steps by: (1) calculating a gray 

intensity profile in the i-direction (P1) and in the j-direction (P2) in relationship to 

the centroid of the whole segmented image towards the border of the segmented 

image (background), (2) compute the first order function that contains the first 

and last points in P1 and P2, therefore eliminating the bias ramp (approaching the 

background) for each of the profiles (R1 and R2), and (3) generate the new 

profiles (Q1 and Q2) without the background ramp, as seen in Eqs. 4-36 to 4-38:  

𝑄1 = 𝑃1 − 𝑅1 (4-35) 

𝑄2 = 𝑃2 − 𝑅2 (4-36) 

𝐾𝜎 =  𝜎𝑄 (4-37) 

𝐾 = 𝑙𝑛(𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛) (4-38) 

where  𝜎𝑄, 𝑄𝑚𝑎𝑥 and 𝑄𝑚𝑖𝑛 are the standard deviation, the maximum and 

minimum value of Q, respectively. For a schematic representation and extended 

information of the steps required to obtain 𝐾𝜎  and K, refer to Mery and Filbert 

(2002).  
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4.3.9 Feature selection:  

After feature extraction, it is necessary to select the best features to train 

the classifier (Mery and Soto, 2008). The purpose of the feature selection step, 

also known as feature reduction, is to obtain a smaller subset of features (m) 

from the original data set (x), which will yield the highest classification rate 

possible (Jain et al., 2000). High dimensionality increases time and space 

requirements for processing data. Also, in the presence of irrelevant and/or 

redundant features, classification methods tend to over-fit and become less 

interpretable, especially when the number of features is much larger than the 

number of samples. Feature selection algorithms usually involve maximizing or 

minimizing an objective function (f), whose output can be calculated for the 

generated m, therefore measuring their classification potential (effectiveness) and 

working as a feedback signal to select the best features.  

In this study, the sequential forward selection (SFS) technique (algorithm), 

taking feature dependencies into account (eliminates features that are highly 

correlated r ≥ |0.95|) (Silva et al., 2002), was selected as a search strategy (Jain 

et al., 2000). SFS is one of the most widely used techniques, it is fast and starts 

by selecting the best single feature in x (m = 1) then adds one feature at a time, 

while eliminating features that are not relevant, and constantly monitoring the 

classification effectiveness using different criterion functions. Three different 

objective functions were evaluated in this study: (1) the Fisher score (J(W) – Eq. 

4-39), (2) linear discriminant analysis (LDA – Eq. 4-40), and (3) quadratic 

discriminant analysis (QDA) objective functions (Jain et al., 2000; Bishop, 2007). 
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𝐽(𝑊) = arg max
|�̃�𝐵|

|�̃�𝑊|
 (4-39) 

where arg max stands for the “argument of the maximum” or the points of the 

given argument for which J(W) reaches its maximum value. |�̃�𝐵| and |�̃�𝑊| 

represent m-between-class (interclass) and m-within-class (intraclass) scatter 

(covariance), respectively (Duda et al., 2000; Jain et al., 2000).   

LDA is a subspace feature selection method (i.e. feature transformation), 

allowing feature combination, which is based on J(W). It finds a linear 

transformation (𝑊 ∈ ℝ𝑑x𝑚), projecting the x-data into an m-dimensional 

subspace in which the between-class  (|𝑊𝑇�̃�𝐵𝑊|) scatter is maximized while 

the within-class scatter (|𝑊𝑇�̃�𝑤𝑊|) is minimized, as seen in Eq. 4-40. To 

calculate the between and within scatter (covariance) it is assumed that both 

have the same covariance matrix. (Duda et al., 2000; Quanquan et al., 2011).   

𝐿𝐷𝐴 (𝑊) = arg max
|𝑊𝑇�̃�𝐵𝑊|

|𝑊𝑇�̃�𝑤𝑊|
 (4-40) 

Similar to LDA, QDA is a subspace feature selection method and can also 

be used for classification/validation (Section 4.1.8). The difference is for QDA, the 

between and within covariance matrices are assumed to be different between 

each other (arbitrary) (Duda et al., 2000).  
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Figure 22. (a) Healthy and (b) partially decayed chestnuts with their corresponding secondary maximum CT 

image (XY-plane-slice) (55 pixels x 65 pixels). (1) Local Binary Patter (LBP) transformations using different pixel 
comparison (d,h) was applied to the secondary maximum CT image. (2) Secondary maximum CT image Gabor 

filtered transformed images (Irs(i,j)) at different scales (r) and orientation (s) for an θ = 45 are included. (3)  
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Figure 22 (cont’d) 

 
Example of Haralick textural (Tx) features, contrast and intensity features obtained from included secondary 
maximum CT image. For visual reference, three-color fresh raw image slices of the evaluated chestnut are 

included. 
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4.3.10 Classification (training and validation): 

A supervised learning approach was used to train the pattern classification 

algorithm (Duda et al., 2000). Supervised classes, known as labels, were based 

on 5-, 3- and 2-categorical-groups, were each chestnut was invasively 

categorized into 5-, 3- or 2-quality-classes, based on their internal disorder 

(decay) severity level. An internally developed rating system was used, which 

clearly and accurately defines the classes, taking in account invasive 

standardized quality assessment methods, such as that described in UNECE 

(2010). The rater is experienced in detecting, identifying, and quantifying quality 

attributes (i.e. decay) in fresh chestnuts.  

Quality classification per chestnut was expressed as the apparent 

percentage of decay tissue in relation to the total area of each chestnut. In the 

case of the 5-class-classification, a class-5 represents a chestnut that is 

completely decayed, class-2 through class-4 represent chestnuts that are 

partially to highly decayed, while class-1 is designated to chestnut with no decay 

(healthy), as seen in Fig. 19 and Fig. 23a. Sample distribution, used to train and 

validate the 5-class-classifier, can be observed in Fig. 23a. For the 3-class-

classification, a class-3 represents a chestnut that is completely decayed, a 

class-2 denotes partial to high decay, and class-1 indicates that the chestnut 

does not contain decay, as seen in Fig. 19 and Fig. 24a. Sample distribution, 

used to train and validate the 3-class-classifier is included in Fig. 24a. For the 2-

class-classification, a class-2 represents any chestnut with decay, while a class-1 

shows that the chestnut does not contain decay, as seen in Fig. 19 and Fig. 25a. 
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Sample distribution, used to train and validate the 2-class-classifier, can be seen 

in Fig. 25a.  
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Figure 23. (a) Sample distribution used to train and validate the 5-class classifier. Figure also contains an 

example for each of the 5 categorical classes, representing the quality index levels. 
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Figure 23 (cont’d) 

 
(b) Quadratic discriminant analysis (QDA) classifier performance using validation set with 4-folds, in relation to 

the number of selected features (m). Black line represents the classification mean performance, dotted black line 
(---) represent 95 % confidence intervals for the validation pool. (c) Validation confusion matrix corresponding to 

the chestnut quality class prediction using 25 % of samples with 86-m (overall accuracy rate equal to 85.9 %). 
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Figure 24.  (a) Sample distribution used to train and validate the 3-class classifier. Figure also contains an 

example for each of the 3 categorical classes, representing the quality index levels. 
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Figure 24 (cont’d) 

 

(b) Quadratic discriminant analysis (QDA) classifier performance using validation set with 4-folds, in relation to 
the number of m. Black line represents the classification mean performance, dotted black line (---) represent 95 % 
confidence intervals for the validation pool. (c) Validation confusion matrix corresponding to the chestnut quality 

class prediction using 25 % of samples with 155-m (overall accuracy rate equal to 91.2 %). 
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Figure 25. (a) Sample distribution used to train and validate the 2-class classifier. Figure also contains an 

example for each of the 2 categorical classes, representing the quality index levels. 
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Figure 25 (cont’d) 

 
b) Quadratic discriminant analysis (QDA) classifier performance using validation set with 4-folds, in relation to 

the number of m. Black line represents the classification mean performance, dotted black line (---) represent 95 % 
confidence intervals for the validation pool. (c) Validation confusion matrix corresponding to the chestnut quality 

class prediction using 25 % of samples with 126-m (overall accuracy rate equal to 96.1 %). Figure is partially 
presented in color. 
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Using the optimized selected features obtained from section 4.3.9, 

decision boundary lines, planes, and hyper planes were implemented using LDA 

(Section 2.7, Eq. 41), QDA (Section 2.7), Mahalanobis distance (MD) (Eq. 4-41), 

a two-layer artificial neural network (ANN), a three-layer ANN using a logistic 

activation function, and a three-layer ANN using a Softmax activation function 

following the applied procedure in Ren et al. (2006; 2010), Mery et al. (2010), 

Leiva et al. (2011), and Donis-González et al. (2013). In general, this step 

assigns the object (i.e. set of 6 secondary CT images per chestnut) to a specific 

quality category (class).  

LDA, and QDA were described in section 4.3.9. The MD measures the 

difference between two points in the space defined by two or more variables 

(features). The MD takes the correlations within a data set between the variable 

into consideration, meaning that it depends on the covariance matrix of the 

attribute and adequately accounts for the correlations. The MD is the distance 

between an observation and the mean for each group in m-dimensional space, 

defined by m-features and their covariance. A small value of MD increases the 

probability of a set of features (new sample) to be closer to the class’s mean and 

the more likely it is to be assigned to that group-class. The MD between a set of 

features (m) and a class (μ) is defined as: 

𝑀𝐷 = √(𝑚 − 𝜇)𝑡∑ (𝑚− 𝜇)
−1

 (4-41) 
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where Σ-1 is the inversed covariance matrix. The MD does not depend upon the 

scale on which the variables are measured (Duda et al., 2000).  

When used for classification ANN, is usually a collection of neuron-like 

processing units with weighted connections between the units. ANNs are 

computer algorithms, which are highly parameterized statistical models that can 

automatically find relations in the data without a predefined model. ANNs first 

linearly transform the input feature vector by multiplying it with a weight matrix 

(wji) then, the activation function (f(∙)) is applied to each coordinate of the 

resulting vector to produce a value. Training an ANN involves determining the wji 

that maximize the performance for a set of supervised training data, using a 

specific f(∙) (Duda et al., 2000). In general, ANNs transform a feature vector in the 

input space (input-i) to a vector in the output space (output-k).  

A two-layer ANN was evaluated in this study, this type of ANN can only 

implement a linear decision boundary or activation function (f(∙)). Multilayer 

networks can be built by subsequent application of additional wji and additional 

nonlinear f(∙). In addition to the simple linear two-layer ANN, two three-layer 

ANNs were also evaluated in this study using two different f(∙): (1) logistic and (2) 

Softmax. More information, in depth discussion, methodology description, and 

followed steps for each of the applied the different classifiers can be found in 

Duda et al. (2000). 

Performance of each of the classifiers was measured as the correctly 

classified chestnuts, using the set of secondary CT images, in reference to its 
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supervised categorical class (label). Classifier validation was implemented using 

a 4-fold stratified technique, therefore yielding an average estimate of classifier 

performance with 95% CI (Confidence Intervals) for the validation pool (Jain et 

al., 2000). In the experiment, 75% of the samples were used for training and 25% 

were used for validation repeated four times.  

4.4 Results   

In this study, the features were reduced from 1194 to 86 (5-class 

classifier), 155 (3-class classifier) and 126 (2-class classifier) features, in order to 

avoid overtraining. This feature reduction was implemented using different 

algorithms. The SFS with the Fisher discriminant objective function (J(W)) 

method offered the most powerful features, yielding the best classifier 

performance. Reducing overall feature space diminishes the computational time, 

allowing for possible in-line implementation. The other feature selection methods, 

using addition objective functions, as described in section 4.3.9 performed poorly 

(Results not shown). The main selected features for all of the classifiers are 

enumerated in Table 9. Example of image transformation (cLBP and Gabor) and 

some of other selected features, obtained from a healthy and partially decayed 

chestnut can be seen in Figs. 22a and 22b, respectively. Validation of 

classification was carried out using a 4-fold stratified validation with 25% of the 

samples for each fold (repetition). The best overall classifier is the QDA classifier. 

Other classifiers were also tested, however the overall classification performance 

was lower in all cases, as can be seen in Table 10. 
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Table 9. Main selected features (seventy five) for the Quadratic discriminant 
analysis (QDA) classifier using sequential forward selection (SFS) in 

combination with the Fisher discriminant objective function (J(W)) for the 5-
, 3- and 2-class classifiers.   

n Selected feature (m) n Selected feature 
(m) 

n Selected feature 
(m) 

1 �̃�(3,3) [XY-max] 26 �̃�(1,1) [YZ-max] 51 Tx(13,1)-Mean 
[XY-max] 

2 Tx(8,1)-Mean [XY-
mean] 

27 cLBP(1,6) [XY-max] 52 �̃�(3,3) [YZ-mean] 

3 Tx(9,1)-Mean [XY-
max] 

28 cLBP(1,2) [XY-max] 53 �̃�(2,6) [XY-max] 

4 Intensity-Std. Dev. 
[XY-max] 

29 sLBP(1,48) [XY-
max] 

54 Contrast-Ks [XY-
max] 

5 �̃�(5,8) [XY-max] 30 cLBP(1,5) [XY-max] 55 cLBP(1,3) [XY-
max] 

6 Tx(1,1)-Mean [XY-
max] 

31 sLBP(1,40) [XY-
max] 

56 Contrast-K [XY-
max] 

7 Intensity-Skewness 
[XY-mean] 

32 sLBP(1,5) [XY-max] 57 Tx(11,1)-Mean 
[XY-max] 

8 cLBP(1,9) [XY-max] 33 sLBP(1,41) [XY-
max] 

58 Tx(6,1)-Range 
[XY-max] 

9 �̃�(7,4) [XY-max] 34 sLBP(1,25) [XY-
max] 

59 Tx(10,1)-Mean 
[XY-max] 

10 Tx(5,1)-Range [YZ-
max] 

35 �̃�(6,7) [xY-max] 60 Tx(7,1)-Range 
[XY-max] 

11 Intensity-Mean [XY-
max] 

36 sLBP(1,40) [YZ-
mean] 

61 cLBP(1,36) [XY-
max] 

12 �̃�(4,7) [XY-max] 37 cLBP(1,16) [XY-
max] 

62 sLBP(1,20) [XY-
max] 

13 Mean Laplacian [XY-
max] 

38 cLBP(1,12) [XY-
max] 

63 Tx(6,1)-Mean [XY-
max] 

14 Tx(12,1)-Mean [XY-
mean] 

39 cLBP(1,26) [XY-
max] 

64 Tx(7,1)-Mean [XY-
max] 

15 Tx(13,1)-Mean [XY-
max] 

40 �̃�(4,4) [XY-max] 65 Tx(13,1)-Mean 
[XZ-mean] 

16 Tx(3,1)-Mean [XY-
max] 

41 �̃�(4,6) [XY-max] 66 sLBP(1,54) [XY-
max] 

17 sLBP(1,50) [XY-max] 42 Tx(13,1)-Mean [XY-
mean] 

67 �̃�(5,7) [XY-max] 
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Table 9. (Cont’d) 

18 �̃�(7,6) [XY-max] 43 �̃�(6,5) [XY-max] 68 sLBP(1,45) [XY-
max] 

19 sLBP(1,34) [XZ-max] 44 �̃�(2,3) [XY-max] 69 �̃�(1,7) [XY-max] 
20 Tx(5,1)-Range [XY-

mean] 
45 �̃�(1,3) [XY-max] 70 Tx(9,1)-Mean [XZ-

max] 
21 Intensity-Skewness 

[XY-mean] 
46 �̃�(1,4) [XY-max] 71 sLBP(1,47) [XZ-

mean] 
22 Intensity-Skewness 

[XY-max] 
47 Tx(4,1)-Mean [XY-

max] 
72 Tx(5,1)-Mean [XZ-

mean] 
23 Tx(12,1)-Mean [XY-

max] 
48 LBP(1,13) [XY-max] 73 Mean Laplacian 

[XY-mean] 
24 Tx(3,1)-Mean [XY-

mean] 
49 sLBP(1,13) [XY-

max] 
74 LBP(1,32) [XY-

max] 
25 LBP(1,1) [XY-max] 50 LBP(1,24) [XY-max] 75 Tx(1,1)-Mean [XZ-

mean] 

Tx(k,p)-(Mean, Range): Haralick texture features, where k is the texture type, as 
seen in section 2.6.2 – Table 8, and p is the number of neighbor pixels.  
LBP(d,h): Classic local binary patterns sematic. sLBP(d,h): Sematic local binary 
patterns. Where d is the number of compared pixels with h – neighboring pixels. 
See section 2.6.3. 
�̃�(a,b): Gabor filters, where a is the frequency number, and b is the number of 
orientations. 
Between brackets [] are the different CT images used to extract features (XY-
mean = XY-plane-slice mean images, YZ-mean = YZ-plane-slice mean image, 
XZ-mean = XZ-plane-slice mean image, XY-max = XY-plane-slice maximum 
image, YZ-max = YZ-plane-slice maximum image, and XZ-max = XZ-plane-slice 
maximum image).  For reference, see sections 1.5 and 4.3.3.  
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Table 10. Classifier performance using selected features (m) with a 4-folds validation  
Classifier   5-classes  3-classes  2-classes 

  Mean UCI1 LCI2  Mean UCI LCI  Mean UCI LCI 

QDA  85.9 87.2 84.6  91.2 92.1 90.3  96.1 96.9 95.3 
ANN-Logistic  85.9 87.3 84.5  88.9 89.7 88.1  95.6 96.5 84.7 
ANN-Softmax  85.6 87.0 84.2  86.7 87.5 85.9  95.9 96.6 95.2 
LDA  84.6 86.3 82.9  91.0 91.9 90.1  96.5 97.4 95.6 
MD  83.9 85.4 82.4  87.6 88.5 86.7  93.2 94.1 92.3 
ANN-linear  81.6 82.9 80.2  86.6 87.5 85.7  93.3 94.4 92.2 
m  86  155  126 

1Upper Confidence interval 
2Lower Confidence interval 
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Performance results for 5-, 3- and 2-classes, using the selected QDA 

classifier, for increasing number of features (m), are included in Figs. 7b, 8b and 

9b, respectively. It can be seen how performance increases in relation to an 

increase in m and that with the 86-, 126- and 155-m the classifiers had a high 

overall performance accuracy classification rate of 85.9 % (5-classes), 91.2 % (3-

classes) and 96.1 % (2-classes). Classifier performance slightly increases after 

the reduced number of selected features (m), but not notably (> 0.5 %), so 

additional features are not required to classify internal chestnut quality. In 

addition, it is not recommended to use a higher number of features to avoid 

classifier over-training, due to overall sample size, as recommended by Duda et 

al. (2000). 

 Figs. 23c, 24c and 25c include the confusion matrix corresponding to the 

overall QDA classifier performance. This matrix is beneficial, because it visibly 

documents the misclassified classes (Shapiro and Stockman, 2001).  

4.5 Discussion   

By observing Table 9, it can be seen that the most important features for 

classification mainly include textural features (approximately 88 %) including: (1) 

LBP features, (2)Tx and contrast features, and (3) Gabor features at different 

scale and orientation, acquired from the different CT images. Less influential, 

about 12 % of the utmost important features involve the basic intensity features. 

Examples of some of the extracted features, and image transformations to XY-

plane-slice CT images can be seen in Fig. 22. 
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Textural features are important because they cannot be attributed to a 

single pixel value, but rather to several pixels in the image and their relationship. 

It can be postulated that LBP textural features are among the most influential 

features, because they are invariant to monotonic grayscalse changes; therefore 

CT image noise and imaging variability do not play an imperative role (Ojala et 

al., 2002). LBP grayscale textural features captured the local structure and 

textural variations between decayed, healthy and partially decayed chestnuts 

clearly reflected in the CT images and the generated LBP images, as reflected in 

Fig. 22. In general, Tx and contrast features, which were also highly important, 

described the pixel spatial variation and their relationship in the segmented 

image. For example, CT images that contain pixels which are similar between 

each other have a low variance sum (Tx(8,p)), while images that contain a high 

variability of pixel intensity values have a high contrast (K) and high variance sum 

(Tx(8,p)) (Haralick, 1979). Therefore, in this study, a uniform healthy or decayed 

chestnut will represent pixels that are highly correlated (low variance sum - 

Tx(8,p)), but a low overall image contrast (K) as observed in Fig. 22a. On the 

other hand, CT images of chestnut that have a high variation between the pixels 

(e.g. decayed tissue embedded in healthy tissue from partially decayed 

chestnuts) will have a higher variance sum (Tx(8,p)) and contrast values (K) as 

exemplified in Fig. 22b. Gabor textural features captured different image 

information by means of combining different scaling and orientation factors. 

Gabor features, extracted from magnitude Gabor filtered images (Irs(i,j)), have 
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been found to be appropriate for texture representation and discrimination (Zhu et 

al., 2007), thus it is hypothesized that Gabor features offer information regarding 

the development of chestnut decay, yielding a different feature value to chestnuts 

with partial decay in comparison to chestnuts that are either completely decayed 

or healthy. Examples, of several magnitude Gabor images (Irs(i,j)) generated by 

applying 3 different Gabor filters to a maximum secondary CT images (XY-plane-

slice) of a healthy and partially decayed chestnut can be observed in Figs. 6a and 

6b, respectively. These Irs(i,j) are useful to visualize how Gabor features can 

differentiate between chestnuts that contain internal decay in comparison to a 

healthy chestnut. It is clear that Gabor filtered secondary CT images of a 

decayed chestnut present a higher level of textural attributes in comparison with 

a healthy chestnut. 

Even though simple image intensity features only account for roughly 12 % 

of the most important features, these features represented and summarize the 

overall quality appearance of the chestnuts in the CT images. It could be 

quantified that decayed tissue has a lower intensity in comparison with healthy 

tissue (See Fig. 22). However, possibly because of the high variation between 

the CT images of the same class and CT image noise, simple intensity features 

by themselves do not provide enough information and are not as sensitive to 

accurately classify chestnuts, as it was initially hypothesized and briefly 

discussed in Donis-González et al. (2012).  

It was observed that the secondary contrast enhanced maximum intensity 

value CT images (Figs. 20h-20j, Fig. 21f and Fig. 22), which summarized the 
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overall pixel values of all of the cropped chestnut CT image slices, offered better 

features than the secondary contrast enhanced mean intensity value CT images 

(Figs. 20e-20g and Fig. 21d). After feature selection, 80 % of the features were 

extracted from secondary maximum intensity CT images, while only 20 % are 

extracted from secondary mean intensity CT images. This might be the case, 

because maximum images are less variable, have a higher contrast and can 

easily discern between healthy and decayed tissue, as visually observed in Fig. 

21. Fig. 21 shows that it is visually easier to distinguish the decay tissue in the 

secondary maximum intensity CT image in comparison to the secondary mean 

intensity CT image. In addition, secondary XY-plane-slices offer better features in 

comparison to reconditioned secondary YZ-plane-slices and XZ-plane-slices. The 

reason behind this is that image spatial resolution is higher in the XY-plane in 

comparison to the images in the YZ- and XZ-planes (anisotropic voxels), as was 

summarized in Table 1. Loss in image resolution in both planes comes from the 

fact that images are re-sliced onto the Z-axis using CT images that have been 

acquired every 2.5 mm (d), while pixel size in both the X and Y planes is equal to 

0.73 mm, considerably smaller that d. It is hypothesized that this loss in 

resolution could be emended by evaluating different CT scanning techniques and 

CT image reconstruction algorithms, but more research is required to accurately 

address this issue. 

  A confusion matrix is a specific table layout that allows visualization of the 

performance of a classification algorithm. Each column of the matrix represents 

the instances in a predicted class, while each row represents the instances in an 

actual class. The name stems from the fact that the matrix makes it easy to see if 
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the system is confusing two classes (i.e. commonly mislabeling one as another). 

It also reports the number of false positives, false negatives, true positives, and 

true negatives. The diagonal of the matrix represents the true positives and true 

negatives of each class (correct classification), while the other values represent 

the false positives and false negatives (classification error) (Duda et al., 2000). In 

this study, false negatives designate chestnuts that are classified as decayed, 

while being healthy. In this scenario, healthy chestnuts might be unnecessarily 

discarded creating direct profit losses. On the other hand, false positives reflect 

chestnuts that are decayed and classified as healthy. This means that potentially 

a client will obtain chestnuts that are decayed while expecting to receive a 

healthy product. False negatives might generate customer complaints and might 

create an indirect economic loss, which is difficult to directly calculate.  By 

analyzing the confusion matrix in Fig. 23c, it could be seen that classification 

errors occur evenly across the different classes. This means that in general, 

healthy chestnuts (class-1) and minimally decayed chestnuts (class-2) present 

similar classification accuracy when trying to discriminate between chestnuts that 

contain medium to high decay (class 3,4 and 5). In other words, chestnut quality 

is similarly discerned regardless of the quality level. Similar results are seen in 

the confusion matrices found in Figs. 24c and 25c for the 3- and the 2-class 

classifiers, respectively.  

Results from this study show that CT images, acquired using a medical 

grade CT scanner, can be used as a technique that will be able to classify 

chestnuts based on their internal quality. This technique objectively, rapidly, and 

automatically classifies chestnut slices into up to 5-classes by measuring different 
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textural, and basic intensity features from six CT images. Most importantly, 

chestnuts that are healthy can be accurately classified from decayed chestnuts 

with a 96 % accuracy rate (2-class-classifier). This high classification rate can be 

accomplished with a relatively low number of features in relation to the available 

number of images, with appropriate feature selection (i.e. = SFS), and 

classification techniques (i.e. = QDA). Therefore this study offers a tool, to 

objectively forecast the overall quality of fresh chestnuts. It helps the research 

community to understand which are the features that play an important role in the 

ideal classification of CT images. In addition, it creates a general structure that 

could be used as a reference tool in the development of an in-line noninvasive 

quality sorter of fresh chestnut, and similar products, like peanuts, almonds, and 

other fresh commodities (e.g. apples, cucumbers, cherries, pineapples) using a 

fast CT systems (i.e. using digital cameras). Transferring this tool to different 

commodity industries will enable them to control and promote the quality of their 

products. In addition, for the chestnut and other fruits, vegetables, and nuts, this 

application will provide the opportunity to select products according to their final 

use. 

4.6 Conclusions  

The CT imaging system provides high-resolution and high-contrast images 

of the internal structure and components of fresh chestnuts. After scanning and 

cropping, approximately 50 original CT image slices (stack) were obtained per 

chestnut, from three different planes (angular orientations) across the longitudinal 

(Z) (XY-plane-slice), horizontal (YZ-plane-slice) and vertical (XZ-plane-slice) 
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axes. From this image stack, 6 secondary CT images per chestnut sample, 

including mean and a maximum intensity value images for each of the planes 

were extracted. Secondary extracted CT images were then preprocessed 

(contrast enhancement) and segmented, using a balanced histogram 

thresholding method. Thereafter, a total of 1194 grayscale intensity, and textural 

features were extracted from the segmented region in the 6 secondary CT 

images per sample. SFS was carried out to reduce the dimensionality of the total 

image-extracted features. Ultimately, 86, 155 and 126 features were found to be 

effective in designing a QDA classifier with a 4-fold cross-validated overall 

performance accuracy of 85.9 %, 91.2 % and 96.1 % for 5, 3 and 2 classes, 

respectively.  

Although the specific developed classification procedure might not be 

applicable to other foods, agricultural commodities or other applications directly, 

the methodology is broadly valid. Before applying the classification procedure to 

other commodities or other applications (e.g. industrial), it will be necessary to 

train it appropriately. These results showed that this method is an accurate, 

reliable, and objective innovative tool to determine chestnut internal quality, and 

would be applicable to an automated noninvasive in-line CT sorting system.  
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CHAPTER 5. DISCUSSION AND FINAL REMARKS  

In response to the need for postharvest internal quality sorting equipment 

for fresh chestnuts, and the economical benefits of appropriate produce quality 

assessment, the long-term goal of this research is to aid in the design of 

commercial-scale fast in-line CT sorting equipment, thus enabling the chestnut 

industry to quickly sort produce, based on its internal quality attributes (i.e. 

internal decay). Nonetheless, before developing commercially available in-line CT 

equipment to sort chestnuts and other commodities, some concerns need to be 

addressed, including the potential sorting speed of the CT equipment, cost, and 

client acceptability (reaction to the potential of food irradiation).  

The first CT scanner developed by Godfrey Hounsfield in 1971, took 

several hours to acquire the projection images and took several days to 

reconstruct them into a single 2D slice. After the CT system's 42 years of applied 

history, current CT systems can scan a whole adult human body and create a 3D 

reconstruction within seconds (Bushberg et al., 2002). In non-medical fields (e.g. 

agriculture), scanning can be made several times faster by sacrificing image 

resolution and quality, reducing the number of projection images to reconstruct 

2D slices, decreasing number of slices acquired per sample, changing the energy 

and current required for scanning, implementing new technical and hardware 

scanning concepts, among several other parameters. In the agriculture and food 

industries, the sorting throughput requirements vary among commodities, but 

range between one to forty items per second (Chen and Sun, 1991), with 

chestnuts falling within this range. The intention would be to eventually develop a 
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sorting machine that can fulfill these throughput needs. In this study, image 

acquisition and reconstruction is equal to approximately 0.6 s per chestnut. 

Feature extraction, re-slicing and classification all together total 1.8 s per 

chestnut. This would yield a classification throughput rate of approximately 1 

chestnut every 2 s. This time is only ideal for the lower end of the agricultural 

application speed sorting range, resulting in equipment that could sort around 

500 kg of chestnuts on an 8 h shift day. I am confident that future research, 

including equipment parameter and hardware modifications for in-line sorting, 

could significantly increase this throughput. Development of such sorting 

equipment to fulfill these high throughput requirements, using computed 

tomography, is a challenge. Yet, based on observed changes over the life span 

of CT, and especially recent advances that have significantly increased image 

acquisition rate, reconstruction speed, image quality, resolution, and reduced X-

ray exposure, I think that soon it will be possible to use this technique for sorting 

purposes.  

Such technology is already being developed and tested for a fast in-line 

CT quality inspection system for mass production in the car industry (Stuke and 

Brunke, 2010). Other scientists, such as Hampel et al. (2005) and Bierberle et al. 

(2009) are evaluating the use of an ultra-fast CT X-ray system to study gas-liquid 

two-phase pipe flow. As another example, with the purpose of preliminary 

evaluation of a method that can significantly increase traditional CT scanning 

speed and can be developed further to in-line sorting purposes, a small set of 

chestnut samples (n = 400, year = 2011) were scanned using the ultrafast 

ROFEX-scanner (Fraunhofer Institute of Electron Beam and Plasma Technology, 
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Dresden, Germany – Fig. 26a). This scanner was operated at its fixed settings 

equal to 150 keV maximum X-ray energy with a maximum electron beam power 

of 10 kW. The system can provide a temporal resolution of up to 7000 frames s-1 

at a spatial resolution of roughly 1 mm, depending on attenuation behavior of the 

object. To achieve similar results in objects with higher attenuation behavior than 

water, temporal resolution has to be reduced, therefore increasing scanning time 

as was required in chestnuts. Chestnuts were labeled and packed in a thin plastic 

hose. The hose was pulled through the scanning plane using a stepper motor, at 

a constant speed of 1 m s-1, as seen in Fig. 26b. From this, sets of cross 

sectional 2D CT images for every chestnut were acquired. The frame rate was 

chosen to 2000 frames s-1 (10-20 times faster than the traditional CT imaging 

systems), which is a good compromise between image quality and temporal 

resolution. Fig. 27 offers preliminary visual results of what can be inferred about 

fresh quality using ultrafast ROFEX CT-images. It can be seen that differences in 

the gray scale intensity values (HU-values) between different tissues types are 

better observed when distinctive tissue types coexist within the same chestnut, 

such as in the images in Fig. 27b. It can also be observed from these CT images 

it is difficult to visually distinguish between extremely decayed (Fig. 27c) and 

healthy chestnuts (Fig. 27a). On the other hand, when decay tissue is embedded 

between healthy tissue (Fig. 27b), a slight visual difference in grayscale values 

can be visually observed. Nonetheless, the presence of void spaces and pellicle 

were easily discerned. Preliminary results indicated that the scanning conditions -

using the ROFEX scanner were not optimal to detect decay because the 
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maximum X-ray energy of 150 keV was too high, resulting in diminishing the 

ability to differentiate tissue differences. Therefore, future studies will focus in 

optimizing image quality using different scanning parameters (e.g 60 keV X-ray 

energy); with the objective of rapidly and effectively detecting properties in 

different fresh agricultural produce, for example chestnut decay. Technology, 

such as ROFEX CT technology, if appropriately applied with its fast scanning 

capabilities, could easily be potentially installed in-line to automatically and 

rapidly sort agricultural commodities, including chestnuts.   

 
Figure 26. (a) Ultrafast Rossendorf electron beam X-ray tomograph (ROFEX) 

scanner working principle. (b) Experimental setup of the ROFEX-scanner. 
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Figure 27. Visual preliminary results of CT images (lower row) obtained 
using the ROFEX-scanner with its corresponding color raw image slices 
(upper row). (a) Healthy, (b) partially decayed (rotten) and (c) completely 
decayed chestnuts. (d) 3D reconstruction of two chestnuts, showing a 

rotten section in one of the chestnuts (white arrow). 
 

 Currently, an accurate estimation of the cost and cost effectiveness of 

using CT sorting systems is not available and is difficult to predict or even 

speculate because the equipment is not commercially available. More studies are 
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required to accurately measure these. Prices depend on the type of machine, but 

in general, a new CT scanning machine costs between 75,000 US$ to 1,000,000 

US$, without considering operating and maintenance costs (Abrams and McNeil, 

1978; Cenegage and Krapp, 2002).This is considerably less expensive than a 

homologous MRI device, but more expensive than 2D X-ray equipment (Alanen 

et al., 2004). Prices are especially high and significantly inflated because 

currently CT is only used in the medical industry and the economics of scale and 

Moore’s law have not applied (Goetz, 2010). Nevertheless, it can be expected 

that in the near future, changes in the technology, efforts to develop new 

concepts, and different applications, should significantly reduce the price of CT 

equipment, enabling the technology to be used in agriculture, food, and other in-

line sorting applications.  

Differently to X-ray for food quality diagnostic purposes, as described in 

this dissertation, food treatment using X-ray radiation to improve microbial safety 

has been extensively studied. The safety of consumption of irradiated food has 

also been comprehensively studied. Several international specialist groups in 

collaboration with the World Health Organization (WHO), the FAO, the 

International Atomic Energy Agency (IAEA), and the Scientific Committee on 

Food (SCF) of the European Commission concluded that irradiated foods, with 

appropriate technologies, are safe and nutritionally suitable. Specific applications 

of food irradiation are approved in over 55 countries, including the United States 

of America. In general, food irradiation is described as a process where food is 

exposed to ionized energy, utilizing X-rays of 5 MeV maximum kinetic energy, 
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gamma photons emitted by 60Co and 137CS radioisotopes, and 10 MeV 

accelerated electrons. None of these sources have induced radioactivity in the 

food or its packaging. In general, the maximum allowed absorbed dose 

(measured in grays - Gy) in food applications is 60 kGy, which occurs with meat, 

poultry and fish. To extend shelf-life of fresh fruits/vegetables and dry spices 

dosages ranging between 0.1-3.0 kGy are recommended (Farkas and Mohácsi-

Farkas, 2011). In the case of the CT scanner used in this study, applying the 

settings optimized in Chapter 2, the CT equipment emits up to 0.1 MeV kinetic 

energy, and a maximum of 8 x 10-9 kGy per cm3 scanned. These values are 

considerably lower than the amount permitted in food irradiation. Because of this, 

I am confident that CT sorting of agricultural products should not cause any 

substantial safety concerns. Consumer acceptance is a matter of education, and 

good communication leads to lessening the unfair image that irradiated food is 

malicious (Teisi et al., 2009). Misrepresentation of food irradiation prevents the 

utilization of a safe and beneficial process. The advantage is that marketing trials 

have shown that an increasing amount of consumers are willing to buy irradiated 

foods, if properly informed about the technology (Eustice and Bruhn, 2006).  

Up to now, work related to CT for internal quality attributes in food and 

agriculture has been limited to visualization. In addition to the optimum 

visualization of internal attributes of chestnuts, which was described in this study, 

this research also provides a novel technique to automatically classify chestnuts 

using CT images. The research conducted to develop this dissertation provides 

important tools and scientific information to appropriately develop, and hopefully 
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move forward in the incorporation of CT equipment technology into a specific 

agro-food industry application (chestnuts quality inference), and possibly others.  

Information obtained from this dissertation, even though specific to chestnuts, 

offers a blue print to be applied to other commodities (see appendices C), it is 

likely to be adaptable to measure and classify a wide range of internal quality 

attributes in other commodities. In addition, if practically applied, the sorting 

equipment will enable the chestnut industry to: Efficiently use by-products; lessen 

the negative environmental and health effects of field agro-chemical usage 

because of better postharvest monitoring; offer safer products (e.g. early 

detection of mycotoxins producing microorganism); avoid loss of produce 

quantity; detect postharvest chestnut pathogens, with the primary objective of 

taking immediate actions to avoid negative effects of microorganisms colonization 

(e.g. reduction of nutritional quality), thus increasing industry revenue and 

sustainability.  

This study demonstrated that CT is a reliable technique for chestnut 

internal quality detection and classification, capable of providing unique quality 

information that is not obtainable by any other commercially available equipment, 

and is appropriate to apply as an in-line sorting system. It indicated that CT 

technology has the ability to effectively detect common and economically 

important internal quality attributes from fresh chestnuts, with better and higher 

spatial and contrast resolution than commercially available 2D X-ray sorters (Fig. 

28a). As a demonstration and evaluation, a preliminary study with whole fresh 

intact chestnuts, conducted in the years 2009 and 2010 with a commercially 

available 2D X-ray sorter, yielded slight, almost undetectable, differences 
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between chestnut quality levels (Fig. 28b). On the other hand, as demonstrated in 

this study and dissertation, when chestnuts were imaged using a medical grade 

CT scanner, excellent visual chestnut tissue characterization, accurate 

quantification of internal defects, and high non-invasive classification rates were 

observed.  

 Figure 28. (a) Commercially available in-line traditional X-ray sorter, and (b) 
its corresponding 2D X-ray images.  
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Additional to the previously mentioned benefits, the possible integration of 

this postharvest technology sorting system into the traditional packinghouse 

setup, which includes chestnuts, as sketched in Fig. 29, will lead to reducing the 

industry reliance on hand labor, decreasing steps during the packaging process, 

possibly minimizing waste, reducing water usage and, lessen product losses. 
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Figure 29. Typical unit operations in mechanized packinghouse (Thompson et al., 2002). Vision of future 

integration of in-line Computed Tomography (CT) for sorting fresh agricultural products*. *: Flowchart in red are 
the proposed sections that will be potentially improved.
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APPENDIX A 

Estimation of SNR, Volume accuracy, High contrast spatial resolution 

(HCSR), Low Contrast Detectability (LCD), and digital quality assessment 

(DQA) 
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A. 1: Estimating SNR. The mean value of 10 repeated ROI measurements from 

different 16-bit CT images (Fig. 7a), containing healthy chestnut tissue was used 

as the final SNR value within each run.  

𝑆𝑁𝑅 =

∑

(

 
 
 
 
 
 

(
∑ 𝐻𝑈𝑝𝑥
𝑥
𝑝𝑥=1

𝑥 )

(

 
√∑ (𝐻𝑈𝑝𝑥 −𝐻𝑈̅̅ ̅̅ )

2𝑥
𝑝𝑥=1

𝑥 − 1

)

 

)

 
 
 
 
 
 

#𝑅𝑂𝐼
𝑖=1

#𝑅𝑂𝐼
 

(A. 1) 

 

where,  

HUpx = Hounsfield unit value of each pixel (px).  

 = Mean intensity of all pixels in each ROI.  

x = Number of pixels for each ROIs. 

A. 2: Estimating Volume Accuracy. Teflon® reference cylinder estimated volume 

was digitally estimated by calculating the area of each XY-plane 2D CT image as 

seen in Fig. 7b, using corresponding binary images (after applying a simple 

global threshold of 135) to count the number of pixels in the segmented region, 

multiplying this value by the slice thickness and then summing the total number of 

acquired images per cylinder. Therefore, total volume accuracy is defined in Eq. 

(A. 2). 

HU
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𝑉𝐴 =  ∑(
1

#𝑅𝐶 ∗ |𝑇𝑉𝑗 − 𝐸𝑉𝑗|
)

#𝑅𝐶

𝑗=1

 (A. 2) 

where,  

TV = Teflon® reference cylinders true volume (~ 14,743 mm3). 

EV = Digitally estimated Teflon® reference volume  

RC = Number of reference cylinders (3).  

A. 3 and A. 6: Estimating HCSR and LCD. HCSR was calculated using a 

replication of three 8-bit CT images (e.g. Fig. 7c), without the aid of a human 

observer and adapted from the specified protocol in General Electric Company 

(2007), by deriving and applying Eq. (A. 3).  

 

(A. 3) 

where,  

im is the number of analyzed images (3).  

N each box sized to fit into each pattern (lp) as observed in Fig. 7c, 

representing a quantitative assessment of changes in image resolution. 
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Values of N range from 1 to 5, where N equal to 1, 2, 3, 4, 5 are boxes in 

the patterns with a lp equivalent to 1.6 mm, 1.3 mm, 1.0 mm, 0.6 mm, and 

0.5 mm, respectively.  

Ipx is the intensity value of each px. 

 is the mean intensity of all px in each box (N).  

x is the total number of pixels in each box (N).  

c = Constat equal to 40 I, indicating the optimum SD intensity for an lp of 

1.6 mm (baseline), as specified by General Electric Company (2007).  

CC = Number of Connected Components (objects or blobs) in the binary 

image (Shapiro and Stockman, 2001) after applying a simple global 

threshold of 134 to its corresponding XY-plane 2D CT image (Fig. 7d).  

TCC = Total Connected Components (CC) in one image (30).  

The LCR was consistently calculated for each run; using a replication of 

three CT images as exemplified in Fig. 7d. Combined sets of criteria (Eq. 

(A. 4) and (A. 5)) were used to develop Eq. (A. 6), which characterizes 

LCD.  

 

(A. 4) 

where,  

MC = Mean Circularity (Shapiro and Stockman, 2001) from three binary 

image repetitions after applying a simple global threshold of 94 to its 

I
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corresponding XY-plane 2D CT image (e.g. Fig. 7d) for each set of holes 

(H) - k (total of 5). Values of k range from 1 to 5, where k equal to 1, 2, 3, 

4, 5 represents the circular holes in the membrane with a diameter 

equivalent to 10.0 mm, 7.5 mm, 5.0 mm, 3.0 mm, and 1.0 mm, 

respectively. 

im = Number of analyzed images (3). 

A = Area of each k.  

P = Perimeter of each k 

In theory, MC increases as each k becomes more circular (Shapiro and 

Stockman, 2001). 

 

      (A. 5) 

where,  

MAE = Mean Area Error from a triplicate of binary images after applying a 

simple global threshold of 94 to its corresponding XY-plane 2D CT image 

(e.g. Fig. 7d) for each hole (H). 

im = Number of analyzed images (3). 

TA = True Area (known from each H true diameter). 

EA = Estimated Area (counting number of pixels for each H in binary 

image). 

MAE decreases, as each hole (H) is closer to its true area (TA). 
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(A. 6) 

where, 

MC = Mean  Circularity using Eq. (A. 4) 

MAE = Mean Area Error using Eq. (A. 5). 

SDH = Mean area value of the Smallest Detected hole (H). 

A. 7: Estimating Digital Quality Assessment (DQA). To perform the DQA, each 

16-bit CT gray scale image (e.g. Fig. 8b) corresponding to the subjectively 

evaluated fresh-raw color image (e.g. Fig. 8a), was first segmented into a binary 

image containing the area (total number of pixels) of whole chestnut tissue per 

slice, by applying a simple global threshold of 400 HU (e.g. Fig. 8c). Second, 

transition points, Shell, and Pellicle area was determined after applying a Sobel 

filtering method to detect edges and tissue transition points (Shapiro and 

Stockman, 2001), as seen in Fig. 8d. Third, healthy tissue was determined by 

calculating the binary image area after segmentation, using a simple global 

threshold of 1050 HU (Fig. 8e). A simple global threshold can effectively be used 

to segment any of the CT images because images are not sensitive to changes in 

lighting conditions, scanned object color, and potential seasonal changes, as it is 

the case when processing real color images (Blasco et al., 2007). Ultimately, CT 

digital DQA was expressed as seen in Eq. (A. 7).   
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(A. 7) 

where, 

HT = Area of healthy chestnut tissue. 

WT = Area of whole chestnut tissue. 

SP = Area of shell, pellicle and transitions points.  
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APPENDIX B 

 CT imaging in other fresh agricultural commodities 
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Figure 30. Color raw images of (a) chestnuts, (b) pineapples, (c) tart cherries and (d) pickling cucumbers showing 

the regions of interest (ROIs) for each fresh commodity. 
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Figure 31. (a) Color raw image slices, cross-sectional 2D CT images acquired using the GE BrightSpeed™ RT 16 

Elite CT scanner, and 3D reconstruction of pineapples.  
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Figure 31 (cont’d) 

 
(b) Black dots showing the HU-values for the mean of 100 data points per each pineapple ROI (n = 100). Values 

followed by the same letter are not significantly different between each other at P = 0.05 (ANOVA) (Tukey multiple 
comparison of means). Vertical bars represent the standard deviation (SD) of each ROI.  
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Figure 32. (a) Color raw image slices, cross-sectional 2D CT images acquired using the GE BrightSpeed™ RT 16 

Elite CT scanner, and 3D reconstruction of tart cherries.  
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Figure 32 (cont’d) 

 

(b) Black dots showing the HU-values for the mean of 100 data points per each tart cherry ROI (n = 100). Values 
followed by the same letter are not significantly different between each other at P = 0.05 (ANOVA) (Tukey multiple 

comparison of means). Vertical bars represent the SD of each ROI.  
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Figure 33. (a) Color raw image slices, cross-sectional 2D CT images acquired using the GE BrightSpeed™ RT 16 

Elite CT scanner, and 3D reconstruction of pickling cucumbers.  
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Figure 33 (cont’d) 

 
(b) Black dots showing the HU-values for the mean of 100 data points per each pickling cucumber ROI (n = 100). 
Values followed by the same letter are not significantly different between each other at P = 0.05 (ANOVA) (Tukey 

multiple comparison of means). Vertical bars represent the SD of each ROI.  
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