STRESS ANALYSIS STEBL FIRE TOWER

Thesis for the Degree of B. S. MICHIGAN STATE COLLEGE Richard W. Jones 1941

THESIS

$$
0
$$

SUPPIEMENTTRY IN BACK OF BOOK

Stress Analy8is. Steel Fire Tower

A Thesis Submitted to
The Faculty of MICHIGAN STATE COLLEGE 01 AGRICULTURE AND APPLIED SCIENCE

By
Richard W. Jones
Candidate for the Degree of
Bachelor of Science

OUTLIME

I. INTRODUC'IION
II. IETIOD OF ANALYSIS
III. BAGNITUDE CF LOADS
A. DEAD LOADS
B. LIVE LOADS
IV. DEMRNINATIC: OF STRESSES
A. COLN:IN STRES ES
B. DLAGONAL SMRISEES
C. STRESSES IN HORIZCNIAL STRUTA
D. STRESEES IN HORIZONTAL GIRTK
V. ALLOWABLE STRESSES
A. COLJInis
B. DisGONALE
C. HORIZCNTAL STRUTG
D. HORIZONTAL GIRTS
VI. CONCLUSION

INTRODUCTITON

The need for steel observation towers, or fire towers, of the type which is analyzed in this thesis arose along with the need for the prevention and control of forest fires in the nations' timberlands. One of the most important factors in fire prevention and control is the detection of all fires while they are still in their early stages. Once a fire gets a good start, it is a difficult job to arrest 1ts progress and keep it from spreading farther. One man, armed with a pair of high-powered field glasses and situated in the cab of a fire tower one hundred feet above the ground, can watch over a large area of forest and can 1mmediately report any traces of smoke he may see. If two men in different towers can see the same smoke, the exact location of the fire can be determined and men and equipment can be rushed to the spot before the fire has a chance to become very large.

A large number of these steel fire towers have been erected. The United States Forest Service has built them in the National Forests, and most of the state conservation departments have erected them to guard over their state forests.

The steel observation tower which is anslyzed in this thesis is 109' high to the top of the cab, and is the most modern type in use at the present. This type has been adopted as standard by the Michigan Department of Conservation.

The tower is designed and built by the Aermotor Company, Chicago, Illinois. It consists mainly of structural steel angles, and all parts are cut to size, drilled properiy, and galvanized at the factory. The members are shipped to the location of the new tower, and all the parts are numbered so that the tower is ready to assemble. It can be erected by a crew of four or five men, being assembled by means of either bolts and lock nuts. or bolts. nuts and lock washers. The blueprint in the pocket in the back of the thesis shows an assembly view of the tower, the number of each plece, the size and number of all rolled sections, the size of bolts used and assembly dotails wherer needed. Also includod in the back pocket is a checklist of all parts, giving the part number, quantity, name and description of each plece. All the information used in the analysis of the tower was taken from the assembly drawing and the checkilst. The main purpose in choosing this subject for a thesis was to enable the author to become more familiar with the mothods of design and analysis of steel structures in general, and to apply these methods to a problem which required a technique different from the techniques that wore used in the several design courses given in the civil engineering curriculum.

KETHOD OF ANALYGIS

The method used to analyze the steel fire tower is similar to that which is commonly used in the design and analysis of a water tower. There are, however, certain features of the fire tower which make the problem of analysis somewhat different, and which require a slightly different procedure.

The presence in the structure of numerous interior bracing members and additional members in the exterior framework makes the tower a statically indeterminate structure. Therefore it can not be solved by the ordinary methods of mechanics. In order that it may be analyzed by a method which is not too hiehly technical, but which is practical and usable, certain assumptions are made to simplify the analysis. These assumptions are:

The principal members which take the stresses are the columns, the diagonal braces and the horizontal struts, as shown in Fig . 1 . The remaining members, with one exception, are not considered to take any stress, although their weight is included in the dead weight of the tower. The one exception consists of the horizontal girts to which the stairways are fastened. These girts are checked for stress caused by the weight of the stairways.

$$
1
$$

These assumptions form the basis for the complete stress analysis of the tower. The analysis is divided into three parts, each of which is followed through in detail on the following pages. The three parts are:
(1) The determination of the magnitude of the loads acting on the tower. These consist of the dead load and the live load.
(2) The determination of the total stresses and the unit stresses in the principal members, caused by the dead and live loads.
(3) The determination of the allowable unit stresses in the principal members, and a comparison between the actual unit stresses as found in part (2) and the allowable unit stresses.
1

DEAD AND LIVE LOADS

DEAD LOAD

The dead load to be considered in the analysis consists of the weights of the individual members, the weight of the people and equipment in the cab, and the weight due to snow on the cab roof.

In a symmetrical four-leg tower, the vertical dead load is commonly assumed to be divided equally between the four columns, and it is assumed that the struts and diagonals are not stressed by such vertical loads. However, in this tower, each column is made up of six lengths of structural steel angle, varying in size from $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$ at the top of the tower to $5^{\prime \prime} \times 5^{\prime \prime} \times 3 / 8^{\prime \prime}$ at the bottom. Since the total weight on each column is not the same at different elevations, the maximum weight on each member of each column must be found. This is done by passing a section horizontally through the tower at the lower ond of each member of the column, as shown in Fig. 1. Section "A-A" passes through the lower end of part $U-900$, section " $B-B$ " through the lower end of part U-901, etc. The total vertical load above each section is found, and that load is divided equally between the four column members through which the section passes.

SNOAN LOAD

The allowance for snow load depends on the pitch of the roof, the climate and the material of which the roof is made. Since these towers are used in so many locations, the maximum load for the given conditions is used. The computations for the snow load are as follows:

$$
\begin{aligned}
& \text { Pltch }=\frac{\text { rise }}{\text { span }}=\frac{25^{\prime \prime}}{96^{\prime \prime}}=\frac{1}{4} \\
& \text { Type of roof }=\text { metal } \\
& \text { Snow allowance }=25 \text { lb. per sq. ft. of } \\
& \text { horizontai surface. } \\
& \text { (from Structural Theory, by } \\
& \text { Sutherland and Bowman, p.61) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Horizontal projection of roof area }=7^{\prime} \times 7^{\prime} \\
& \\
& =49 \mathrm{sq} . \mathrm{ft.} \\
& \text { Say } 50 \mathrm{sq} . \mathrm{ft} .
\end{aligned}
$$

WEIGHTS OF STAIRWAYS

Before the weight of each stairway can be computed, its length must be found. The slope of all the stalrways is shown in the figure:

$$
\begin{aligned}
& L^{2}=12^{2}+94^{2} \\
& L^{2}=144+85.56 \\
& L^{2}=229.56 \\
& \mathrm{~L}=15.15 \\
& \mathrm{~L}=\text { length of stairway } \\
& =\text { rise of stairway } \times \frac{15.15}{12} \\
& =\text { rise of stairway } \times 1.26
\end{aligned}
$$

Rise of stairway is shown in Fig. 10.

$$
\begin{aligned}
& L_{2}=6.75^{\prime} \times 1.26=8.5^{\prime}=8^{\prime}-6^{\prime \prime} \\
& L_{3}=9.0^{\prime} \times 1.26=11.35^{\prime}=11^{\prime}-4^{\prime \prime} \\
& L_{4}=10.5^{\prime} \times 1.26=13.25^{\prime}=13^{\prime}-3^{\prime \prime} \\
& L_{5}=12.75 \times 1.26=16.08^{\prime}=16^{\prime}-1^{\prime \prime} \\
& L_{6}=13.5^{\prime} \times 1.26=17.0^{\prime}=17^{\prime}-0^{\prime \prime} \\
& L_{7}=17^{\prime}-0^{\prime \prime} \\
& L_{8}=17^{\prime}-0^{\prime \prime} \\
& L_{9}=17^{\prime}-0^{\prime \prime}
\end{aligned}
$$

$$
1
$$

The following are the computations for the weights of the stairways. The first figure is the part number as shown on the assembly drawing in the back pocket, followed by the quantity, description, weight per lineal foot and total weight of each part:

STAIPNAY NO. 1:

$\begin{aligned} & U-676 \\ & U-677 \end{aligned}$		
	16-2 $2 \times 1 / 8 \times 1 \times 0^{n} \times 1.65$	26.4
	16-2×2 $21 / 8 \times 9$ 910 1.65	20.4
	8 Treads - $2 \times 10 \times 2{ }^{\text {c }}$ - ${ }^{\prime \prime}$ ¢ 4.29	68.6
U-690		2.8
U-691		5.6
U-698	$1-2 \times 2 \times 1 / 8 \times 4 .-53 / 8^{\prime \prime} \times 1.65$	7.4
	Total	168.0

STAIRNAY NO. 2:

$\begin{aligned} & \text { U-678 } \\ & \text { U-679 } \end{aligned}$	4-1交 $\times 1 \frac{1}{8} \times 1 / 8 \times 8^{\prime}-6^{n} \times 1.23$	41.81 b .
		$\begin{aligned} & 29.7 \\ & 22.9 \end{aligned}$
	9 Treads - $2 \times 10 \times 2{ }^{\prime}-0^{\prime \prime} \times 4.29$	77.3
U-692		20.9
$\begin{aligned} & U-949 ; \\ & U=951 ; \end{aligned}$	U-950 $2 \times 2 \times 1 / 8 \times 16^{\prime}-4^{\prime \prime}$ © 1.65	27.0
	Total	219.6 1b.

STAIRNAY NO. 3:

$\begin{aligned} & \mathrm{U}-680 \\ & \mathrm{U}-681 \end{aligned}$	4 - 17 $\times 1 \frac{1}{2} \times 1 / 8 \times 11^{\prime}-4^{\prime \prime}$ (19) 1.23	55.7 1b.
	$\begin{aligned} & 24-2 \times 2 \times 1 / 8 \times 1^{\prime}-0^{H} @ 1.65 \\ & 24-2 \times 2 \times 1 / 8 \times 9_{4}^{24} 1.65 \end{aligned}$	70.2
	12 Treads (1) 8.58 1b. each	103.0
U-693		27.7
$\begin{aligned} & U-949 ; \\ & U-951 ; \end{aligned}$	U-950 (Same as no. 2)	27.0
$\begin{aligned} & \mathrm{U}-703 \\ & \mathrm{U}-704 \end{aligned}$		13.1
	Total	296.710.
	Or	300.01 lb

STAIRIAY NO. $4:$

$\begin{aligned} & U-682 \\ & U-683 \end{aligned}$		65.3 2b.
		81.8
	14 Treads (3) 8.58	120.2
U-694		32.5
$\begin{aligned} & U-949 ; \\ & U-951 ; \end{aligned}$	U-950 (Same as no. 2)	27.0
$\begin{aligned} & \mathrm{U}-703 \\ & \mathrm{U}-704 \end{aligned}$	(Same as no. 3)	13.1
	Total	339.91 b 。
	Or	340.01 b .

1

STAIR：TAY NO．5：

$\begin{aligned} & U-684 \\ & U-685 \end{aligned}$	4 －1䨖 $\times 1$ 1雨 $\times 1 / 8 \times 16^{\prime}-1^{\prime \prime} \times 1.23$	79.1 1b．
	$\begin{aligned} & 34-2 \times 2 \times 1 / 8 \times 1 x^{\prime}-0^{\prime \prime} \times 1.65 \\ & 34-2 \times 2 \times 1 / 8 \times 94^{\prime \prime} @ 1.65 \end{aligned}$	99.4
	17 Troads（6） 8.58	146.0
U－695	2－1乭 $\times 1 \frac{1}{8} \times 1 / 8 \times 16^{\prime}-0 \frac{1}{4}^{10} \times 1.23$	39.4
$\begin{aligned} & \text { U-949; } \\ & \text { U-951; } \end{aligned}$	U－950（Same as no．2）	27.0
$\begin{aligned} & U-703 \\ & U-704 \end{aligned}$	（Same as no．3）	13.1
	rotal	404.0 1b．

STAIR：AYS NO．6，7，8，9：

$\begin{aligned} & U-686 \\ & U-687 \end{aligned}$	4 －1考 $\times 1 \frac{1}{3} \times 1 / 8 \times 17^{2}-0^{\prime \prime}$（1） 1.23	83.81 b
	$\begin{aligned} & 36=2 \times 2 \times 1 / 8 \times 1^{\prime}-0^{\prime \prime} \times 1.65 \\ & 36=2 \times 2 \times 1 / 8 \times 9^{2} \times 1.065 \end{aligned}$	105.0
	18 Treads（1） 8.58	154.7
U－696	$2-1 \frac{1}{8} \times 1 \frac{1}{2} \times 1 / 8 \times 17^{2}-0^{\prime \prime} 1.23$	41.8
$\begin{aligned} & U-949 ; \\ & U-951 ; \end{aligned}$	U－950（Same as no．2） U－952	27.0
$\begin{aligned} & U-703 \\ & U-704 \end{aligned}$	（Same as no．3）	13.1
	Total	425.418.
	Or	426.0 1b．

RAILINGS AT 6th, 7 th \& 8th LANDINGS:

$$
\begin{aligned}
& \text { U-955 } 2-2 \times 2 \times 1 / 8 \times 3^{0}-7^{\frac{1}{8} n} 1.6511 .91 \mathrm{~b} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
\mathrm{U}-959 \\
\mathrm{U}-960 & 2-1 \frac{1}{2} \times 1^{\frac{1}{5}} \times 1 / 8 \times 2^{\prime}-10^{\text {M }} \text { (1) } 1.23 & 7.0
\end{array} \\
& \text { Total 25.2 1b. }
\end{aligned}
$$

WEIGHTS OF LANDINGE:
(Weights of $2^{\text {" }}$ wooden planks $=7$ 1b. per $\mathrm{Bq} \cdot \mathrm{ft}$.)
Landiñ No. 1: $\left(\frac{2.5+4.5}{2}\right) \times 2 \times 7 \quad 49 \mathrm{Ib}$.
Landing No. 2: $\left(\frac{6 \times 3}{2}\right) \times 7$ 63 Ib.

Landing No. 3: $\left(\frac{6 \times 3}{2}\right) \times 7$ 631 b.

Landing sio. 4: $\left(\frac{8 \times 4}{2}\right) \times 7$ 112 1b. Landing No. 5: $\left(\frac{8+3.5}{2}\right) \times 2.5 \times 7 \quad 1001 \mathrm{~b}$.

Landing No. 6: $(6 \times 2.5) \times 7 \quad 105$ 1b.

Lanalng No. 7: " \quad " 105 10.

Landing NO. 8: " $" \quad 105$ 1b.

DEAD LCAD ABOVE SECTION A－A：

WEIGHT OF CAB－

U－956	1	Ventilator and base	
U－670	4	Roof section－ 20 ga ．galv． $17 \mathrm{sq} . \mathrm{ft}$ ．ब3 $1.5 \mathrm{ib} . / \mathrm{sq}$ ． ft.	102
U－947	4		21
$\begin{aligned} & U-661 \\ & U-662 \end{aligned}$	8	```Roof ancles- 2 x 2 x 1/8 x 4'-10^k " < 1.65```	65
U－655	1	$\text { Cap plate- } 12^{\prime \prime} \times 12^{\prime \prime} \times 3 / 16^{\prime \prime}$	6
$\begin{aligned} & U-663 \\ & U-664 \end{aligned}$	8	Gusset plate for roof angles－ $4^{\text {II }} \times 6^{n} \times \frac{1}{2}$	13
U－919	4		137
U－920	4	$\begin{aligned} & \text { Roof girt ollps- } \\ & \quad 3 \times 3 \times 5 \times 5 \text { 青n } \end{aligned}$	10
U－667	48	Sash cllps－1＂$\times 13 / 4^{\prime \prime} \times 3 / 16^{\prime \prime}$	1
U－666	4	Fenestra metal sash with glass and U－668 clips－	300
U－587	4	```Window sills- 3\times3\times 立 x 6'-11" @4.9```	136
U－669	4		168
$\begin{aligned} & U-588 \\ & U-589 \\ & U=590 \end{aligned}$	2 1 1	Cabgirts－${ }_{3 \times 3 \times 6 \times 11^{\prime \prime} \times 4.9}$	136
$\begin{aligned} & U-591 \\ & U=592 \end{aligned}$	$\frac{1}{1}$		69
U－593	1	```Cab girt- 3\times3x 4 x 2'-107! (3)4.9```	15

Weight forwarded- 1189 1b.
Equipment in cab- 100
Maximum of five men ब今 160 lb . each- 800
Floor of cab and trapdoor- $50 \mathrm{sq} . \mathrm{ft}$. © $7 \mathrm{lb} . / \mathrm{sq}$. ft 350
Snow load- 1250
Nuts, bolts, etc.- 100
WEIGHT OF STAIRWAYS-
Weight of stalrway no. 1- 168
One half welght of stairway no. 2- 110
WEIGHT OF COLUTNS-
U-900 4 No. 1 corner post- $3 \times 3 \times \pm 19^{\circ}-10^{\prime \prime} 4.9$ 388weight detweit cab Landiio \& lst landing-
U-546 8 No. 1 angle brace-
$2 \times 2 \times 1 / 8 \times 9^{+}-7^{\prime \prime}$ ब1. 1.65 126
U-596 8 No. 1 girt- $2 \times 2 \times 1 / 8 \times 3^{\circ}-9_{8}^{271} \times 1.65$ 50
U-562 4 No. 1 tie- $2 \times 2 \times 1 / 8 \times 3^{\prime}-9^{\prime \prime} \times 1.65$ 25
U-571 8 Gusset plate, no. 2 girt- 37
 92
U-599 1U-921 1 Girt, lst Landing-41
U-601 1 Girt, lst Landing- $2 \frac{1}{2} \times 2 \frac{1}{2} \times 3 / 16 \times 2^{\prime}-10^{1 \prime \prime}$ © 3.07 9
U-602 2 Girt, ist Landing-$2 \times 2 \times 1 / 8 \times 5^{\prime}-1^{\prime \prime} @ 1.65$17
1

WEIGHT BETNEEN 1st LANDING \& 2nd LNNDING-
Weight forwarded- 4852 1b.U-547 8 No. 2 angle brace-$2 \times 2 \times 1 / 8 \times 9^{\prime}-11 \frac{1}{2}$ 家 1.651232
U-604 8 No. 3 girtU-563 4 No. 2 tie-$2 \times 2 \times 1 / 8 \times 3^{\prime \prime}-10^{\prime \prime} 1.65$25
Landing no. 1- 49
TOTAL WEIGHT ON SECTION A-A5115 1b.

$$
1
$$

DEAD LOAD ABOVE SECTION B-B:
WEIGHT BEThiEEN 2nd Linding \& 3rd Landing-

Welght above section A-A - 5115 lb.
U-605 2 No. 4 girt$2 \times 2 \times 1 / 8 \times 8^{\prime}-4$ 젼 91.6528

U-548 8 No. 3 angle brace-

$$
\begin{equation*}
2 \times 2 \times 1 / 8 \times 12^{\prime}-5^{\prime \prime} \oplus 1.65 \tag{165}
\end{equation*}
$$

U-609 3 Girt, 2nd landing$2^{\circ} \times 2 \times 1 / 8 \times 6^{\prime}-2191.6531$
 36
 65
 34

WEIGHT BETNEEN 3rd LANDING \& 4th LaNDING-

U-923 1 G1rt, 3rd landing$4 \times 4 \times$ ※ $\times 6^{\top}-5^{\prime \prime} \times 6.6$ 43
1

Weight forwarded-
6131 1b.
U-615 2 Girt, 3rd landing-
2 备 $\times 2 \frac{1}{2} \times 1 / 8 \times 7^{\prime}-6^{\prime \prime} \times 2.08$
32
U-616 1 G1rt, 3rd landing$2 \frac{1}{3} \times 2 \frac{1}{8} \times 1 / 8 \times 7^{1}-1 \frac{11}{4}$ @ 2.08 15
 75

U-549 8 No. 4 angle brace$2 \times 2 \times 1 / 8 \times 14^{\prime}-6 \frac{1}{4}$ " 61.65192

U-565 4 No. 4 tie$2 \times 2 \times 1 / 8 \times 5^{\prime}-10^{\prime \prime}$ © 1.65 39

One half weight of stairway no. 2 110

Weight of stairway no. 3 - 300

One half weight of stairway no. 4 170
Landing no. 2 - 63
Landing no. 3 - 63
1

DEAD LOAD ABOVE SECTION C-C:

WEIGHT BETWEEN 4 th LANDING \& 5th LANDING

DEAD LOAD ABCVE SECTION D-D:

WEIGHT BETMEEN 5th LANDING \& 6th LANDING-
Weight above section C-C - 9034 1b.
U-916 $4 \quad$ No. 3 splice angleo $4 \times 4 \times 4 \times 1^{1}-3^{\prime \prime} 6.6$ 33
U-575 8 Gusset plate, no, 10 girt- 56
 259
U-925 1 Girt, 5th landing- 5×3 丕 $\times 7 / 16 \times 7^{\prime}-10^{\prime \prime}$ (1) 12.0 94
 11
U-630 2 Girt, 5th landing- $3 \times 3 \times \frac{1}{4} \times 10^{\prime}-4 \frac{11}{3} \times 4.9$ 98
U-631 1 Girt, 5th landing- $3 \times 3 \times \frac{1}{4} \times 9^{\top}-6$ 스숭 4.9 47
U-903 4 No. 4 comer post- $4 \times 4 \times 5 / 16 \times 13^{\prime}-64{ }^{\prime \prime}$ © 8.2444
U-551 8 No. 6 angle brace-$2 \times 2 \times 1 / 8 \times 19^{\prime}-3{ }^{\prime \prime} \times 1.65255$
U-632 8 No. 11 girt- $2 \frac{1}{2} \times 2 \frac{1}{2} \times 1 / 8 \times 7^{\prime}-6^{\prime \prime} \times 2.08$ 125
U-567 4 No. 6 tie- $2 \times 2 \times 1 / 8 \times 7^{\mathbf{3}}-5^{\text {n }}$ @ 1.65 49
One half weight of staimway no. 5 - 202
One half welght of stairway no. 6 - 213
Landing no. 5 - 100
1

DEAD LOAD ABOVE SECTION E－E：

Weight above section D－D－

11029 1b．

 U－635 1

U－927 1 Girt．6th landing－
$5 \times$ 效 $\times 7 / 16 \times 12{ }^{\prime}-2^{\prime \prime} 12.0146$
U－928 1 DO．
$2 \frac{1}{2} \times 2 \frac{1}{2} \times 3 / 16 \times 5{ }^{\prime}-7$＂ 3.0718
U－638 2 DO．

120
U－639 1 Do．
$3 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{6} \times 10^{\prime}-111^{\prime \prime}$
64

U－904 4 No． 5 corner post－
$4 \times 4 \times 7 / 16 \times 19^{\prime}-99^{\prime \prime}=11.3895$

U－553 4 DO．
2 窘 $\times 2 \frac{1}{2} \times 1 / 8 \times 11^{\prime}-4$＂
U－554 4 Do． $2 \frac{1}{2} \times 2 \frac{2}{2} \times 1 / 8 \times 14^{\prime}-9 \frac{1}{2}^{\prime \prime}$
U－555 4 DO．

2 咅 $\times 2 \frac{1}{2} \times 1 / 8 \times 13^{1}-4^{n}$
435

140
U－568 4 No． $7 \frac{7}{2} \times 2 \frac{1}{2} \times 1 / 8 \times 4^{\prime}-6^{\prime \prime}$
1
Welght forwarded- 13362 1b.
U-642 2 No. 14 girt-U -643 $\quad 1 \quad 3 \times 3 \times$ 立 $\times 17^{\prime}-10^{\prime \prime}$ (1) 4.9349
U-644 1
U-931 1 Girt, 7 th landing-$6 \times 4 \times 3 / 8 \times 23^{1}-7 \frac{7}{2} n$ 12 12.3168
U-646R 1 DO.
U-646L $1 \quad 2 \frac{1}{2} \times 2 \frac{1}{2} \times 3 / 16 \times 4^{1}-2 \frac{1}{4}^{n}$ @ 3.07 26
U-928 1 Do.
$2 \frac{2}{2} \times 2 \frac{1}{2} \times 3 / 16 \times 5^{1}-7^{\text {月 }}$ 18
One half weight of staimay no. 6 - 213
Weight of stairway no. 7 - 426
One half weight of stairway no. 8 - 213
Landing no. 6 - 105
Landine no. 7 - 105
Railing at Landing no. 6 \& no. 7 - 50

DEAD LOAD AT BASE:

Weight above section E-E -
15035 Ib.
U-918 4 No. 5 splice angle-

$$
4 \times 4 \times 7 / 16 \times 2^{\prime}-1 \text { " } 11.3
$$

U-579 8 Gusset plate, no: 15 girt-

$$
11^{\prime \prime} \times \frac{11}{} \times 18^{\prime \prime}
$$

112
 478

U-556 4 No. 8 angle brace$2 \frac{1}{2} \times 2 \frac{1}{4} \times 1 / 8 \times 12^{\prime}-5^{\prime \prime}$ (32 2.08

U-557 4 Do.

$$
2 \text { 겿 } \times 2 \frac{1}{3} \times 1 / 8 \times 13^{\prime}-8^{\prime \prime}
$$

U-558 4 DO.

$$
2 \frac{1}{2} \times 2 \frac{1}{2} \times 1 / 8 \times 14^{\prime}-9{ }^{\prime \prime}
$$

U-559 4 Do.

$$
\begin{equation*}
2 \frac{2}{2} \times 2 \frac{1}{2} \times 1 / 8 \times 16^{\prime}-0^{\prime \prime} \tag{473}
\end{equation*}
$$

U-905 4 No. 6 corner post-

U-569 4 No. 8 tie-

$$
3 \times 3 \times \div \times 9^{\prime}-7^{\prime \prime} \& 4.9
$$

$$
188
$$

U-562 4 Girt, section E-E -

$$
4 \times 4 \times \frac{1}{4} \times 12^{\prime}-11 \varepsilon^{2} \text { (2) } 6.6
$$

$\begin{array}{llll}\mathrm{U}-654 & 2 & \text { No. } 16 \text { girt- } \\ \mathrm{U}-655 & 1 & 3 \times 3 \times 19^{\prime}-10_{4}^{211} \text { \& } 4.9 & 388 \\ \mathrm{U}-656 & 1 & \end{array}$

U-658L 1 DO.
 39

U-928 1 DO.
$2 \times 2 \frac{3}{3} \times 3 / 16 \times 5^{\prime}-7$ "18
Weight forwarded-18525 1b.
U-623 4 No. $17 \times{ }_{3}$ irt- 409
U-580 8 Gusset plate, base- 10"×れ"× 9 5/8" 55
One half weicht of stairway no. 8 - 213
One half weight of staimway no. 9 - 213
Landing no. 8 - 105
Railing at Landing no. 8 - 25
TOTAL WEIGHT ON BASE 29545 1b.

LIVE LOAD

The only live load which is considered to act on the tower is the wind load. Since the tower is quite likely to be located in an area where the wind attains a high velocity and in addition is a fairly high structure in itself (100'), maximum values for wind pressure are used.

The maximum value for the unit wind pressure must be found first. According to the principles of aerodynamics, the value for most structural shapes is as follous:

$$
\begin{aligned}
& p=c q \text {, where } p=u n i t \text { wind pressure, } \\
& c=a \text { coefficient, and } \\
& \text { q = velocity pressure. } \\
& \text { But } q=0.00256 v^{2} \text {. } \\
& \text { where } \quad V=\text { wind velocity } \\
& \text { in M. P. H., } \\
& \text { and } 0=2.0 \text { (ave. value) } \\
& \mathrm{p}=2\left(0.00256 \mathrm{~V}^{2}\right) \\
& p=0.00512 v^{2} \\
& \text { Assume maximum } V=75 \mathrm{H} . \mathrm{P} . \mathrm{H} . \\
& \mathrm{p}=0.00512 \times 75^{2} \\
& \mathrm{p}=28.8 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft} \text { Use } 30 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft} .
\end{aligned}
$$

The unit wind pressure used in the computations is 30 lb . per sq. ft. on the surface of the cab normal to the wind direction and on the projected area, normal to the wind direction, of the structural steel members.

Since the members are relatively small and spaced far apart, it is assumed that there is no shielding effect of members in the same line of wind direction.

The major compressive wind stress in a column occurs when the wind blows in a diagonal direction; that 18, when the direction of the wind makes an angle of 45 degrees with the sides of the tower.

The wind load per foot of height is 170 lb . per ft. on a section near the base, as computed in Fig. 2. The value of this distributed load is assumed to be the same over the entire height of the tower.

The total wind load on the cab is computed thus:

$$
\begin{aligned}
& P=p \times A \\
& P=30 \times 9.9 \times 7.5 \\
& P=2230 \mathrm{lb} . \quad \text { (Seo Fig. 6) }
\end{aligned}
$$

1

HORIZONTAL SECTION NEAR BASE

$$
\text { FIG. } 2
$$

$$
\begin{aligned}
& a=5 \sec 45^{\circ}=7.07^{\prime \prime} \\
& \mathcal{A}=2.5 \sec 45^{\circ}=3.54^{\prime \prime} \\
& c=2.5 \sin 45^{\circ}=1.77^{\prime \prime} \\
& \sigma=5 \sin 45^{\circ}=3.54^{\prime \prime}
\end{aligned}
$$

AREA, NORMIALTO WIND, PER FOOT OF HEIGHT:
5×5 <s: $2(12 \times 3.57)=85 \mathrm{sq}$ in $2(12 \times 7.07)=170$..
$2 \frac{1}{2}+2 \frac{1}{2} 2: 4(\therefore \times 1.77)=85 \ldots$.

$$
7(i 2 \times 354)=170
$$

STAIRWAY: $12 \times 24=205 .$.

WIND LOAD,
PER FOOT OF HEIGHT:

$$
\begin{aligned}
P & =\rho \times A \\
& =30 \times 5.55 \\
& =166.5 \mathrm{H} \mathrm{ft}
\end{aligned}
$$

$$
\text { TOTAL }=793 \text { sc. in }=5.55 \text { sg. At }
$$

1

The maximum wind stress in a diagonal occurs when the wind direction is parallel to one side of the tower. The wind load in this case is 145 Ib. per ft. of height, figured at a section near the base, 28 shown in Fig. 3. This value is assumed over the entire height of the tower. The uniformly distributed load is assumed to be concentrated at the joints, as shown in Fig. 4. The values for the concentrated loads are:

$$
\begin{aligned}
& P_{0}=30 \times 7 \times 7.5=1575, \text { say } 16001 \mathrm{~b} \\
& P_{1}=\frac{675}{2} \times 145=4901 \mathrm{~b} \\
& P_{2}=\left(\frac{675}{2}+\frac{6.75}{2}\right) 145=9801 \mathrm{~b} \\
& P_{3}=\left(\frac{675}{2}+\frac{9}{2}\right) 145=11401 \mathrm{~b} \\
& P_{4}=\left(\frac{2}{2}+\frac{105}{2}\right) 145=14201 \mathrm{~b} \\
& P_{5}=\left(\frac{105}{2}+\frac{1275}{2}\right) 145=16901 \mathrm{~b} \\
& P_{6}=\left(\frac{1275}{2}+\frac{135}{2}\right) 145=19101 \mathrm{~b} \\
& P_{7}=\left(\frac{135}{2}+\frac{2025}{2}\right) 145=24501 \mathrm{~b} \\
& P_{8}=\left(\frac{2025}{2}+\frac{2025}{2}\right) 145=29401 \mathrm{~b}
\end{aligned}
$$

HORIZONTAL SECTION NEAR BASE

FIG 3.

TOTAL AREA, NORMAL TO WIND,
PER FOOT OF HEIGHT:
$\begin{aligned} & 5 \times 5 \angle 5: 4(12 \times 5)= 240 \text { sq in } \\ & 2 \frac{1}{2} \times 2 \frac{1}{2} \angle 5: 4(12 \times 25)=120 \\ & \text { STAIRWAY: } 12 \times 17= 204 \\ & \text { TOTAL } 68.7 \mathrm{sq} . \mathrm{in}=475 \mathrm{sq} \mathrm{A}\end{aligned}$
WIND LOAD, PER FOOT OF HEIGHT:

$$
\begin{aligned}
P & =p \times A \\
& =30 \times 4.75 \\
& =142=\#,
\end{aligned}
$$

1

DISTRIBUTED LOAD OF 145 LB. PER FT 15 CONSIDERED AS CONCENTRATED AT THE JOINTS, AS
SHOWN.

WIND LOAD FOR MAXIMUM DIAGONAL STRESS

$$
\text { FIG. } 4
$$

1

DETERTNATION OF STQESCES

COLUTN STPECESES

The stresses in the members making up the columns are compressive stresses, due to the dead load (weight) and the 1ive load (wind).

The compressive stress due to dead load in any member is found by dividing the total welght above the section through that member by four, since it is a four-post tower. The results are shown in Table 1 below. The section numbers and column numbers refer to Fig. 1.

TMiSLE 1

SECTION	$\begin{gathered} \text { COLUN } \\ \text { NO. } \end{gathered}$	WEIGITT ABOVE SECIION	V-COMPONENT COLUNN STRESS
$A-A$	U-900	5115 Lb .	1279 1b.
$\mathrm{B}-\mathrm{B}$	U-901	7244	1811
C-C	U-902	9034	2259
D-D	U-903	11020	2755
E-E	U-904	15035	3759
Base	U-905	19545	4886

WIND LOAD FOR MAXIMUM COLUMN STRESS
FIG. 6.
1

TABIE 2

SE TION	y	$(99.75-y)$	$.2065 x$ $(99.75-y)$	x	y^{2}
A-A	12.28	87.47	18.06	12.44	150.80
B-B	28.22	71.53	14.77	15.73	796.37
C-C	44.35	55.40	11.44	19.06	1966.92
D-D	57.82	41.93	8.66	21.84	3343.15
E-E	77.56	22.19	4.58	25.92	6015.55
Base	99.75	0	0	30.50	9950.06

SECTICN	$\begin{aligned} & (A) \\ & 85 y^{2} \end{aligned}$	$(y+3.75)$	$\begin{gathered} (B) \\ 2230 x \\ (7+3.75) \end{gathered}$	$(A)+(B)$	V_{c}
A-A	12,818.00	16.03	35.746.90	48,564.90	3904
$B-B$	67.691.45	31.97	71,293.10	138.984 .60	8836
$C-C$	167,188.20	48.10	107.263.00	274.451.20	14400
D-D	284,167.75	61.57	137.301.10	421.468.90	19298
$E-E$	511,321.75	81.31	181,321.30	692,643.10	26722
Base	845.755.10	103.50	230:805.00	1,076,560.10	35297

The totel vertical component of the compression in the colum nombers equals the vertiaal component due to the dead load plus the rertical component due to the live 10ad. The axial compressive stress is found from the vertLeal component as follows:

$$
\begin{aligned}
& \operatorname{Tan} \phi=\frac{\frac{1}{2}(30.5-9.9)}{99.75} \\
& \tan \phi=.1032 \\
& \phi=5^{\circ}-54^{\prime}
\end{aligned}
$$

EIG. 72
$\operatorname{Cos} \phi=\frac{V-c o m p o n e n t}{s t r e s s}$

Stress $=\frac{\text { Y-component }}{\text { cos } \phi}$

Stress $=\frac{\text { Y-aomponent }}{0085^{2}-54}$

Stress $=\frac{\text { Y-component }}{.9947}$

TABIE 3

SOFFUTATIONS FOR TOTAL CCGFRESSIVE STRESS

AND UNIT CCMPRUSSIVE SIMESS

SECTION	$\begin{gathered} \text { V-CONPOHEN' } \\ \text { DEAD LOAD } \\ \hline \end{gathered}$	$\begin{gathered} \text { V-COMPONENT } \\ \text { LIVE LOAD } \\ \hline \end{gathered}$	$\begin{gathered} \text { V-COMPCHE:S } \\ \text { TOTLL } \\ \hline \end{gathered}$	$\begin{aligned} & \text { COMPRESSION } \\ & \text { IN MEHSER } \end{aligned}$
A-A	1,279	3,904	5,183	5,211
B-B	1,811	8,836	10,647	10,704
C-C	2,259	14,400	16,659	16.748
D-D	2.755	19,298	22,053	22,170
E-E	3.759	26,722	30,481	30,643
Base	4,886	35,297	40.183	40.397

SECTION	$\begin{gathered} \text { COLUKN } \\ \text { NO. } \end{gathered}$	SIZE CF COLUM	$\begin{gathered} \text { ARLEA } \\ \text { (SQ. IN.) } \end{gathered}$	UNIT SERESS (COMPRESSICN)

A-A	U-900	$3 \times 3 \times 1 / 4$	1.44	3.620	sq in
$B-B$	U-901	$3 \frac{1}{2} \times 3 \frac{1}{2} \times 1 / 4$	1.69	6.335	1
C-C	U-902	$4 \times 4 \times 1 / 4$	1.94	8,633	11
D-D	U-903	$4 \times 4 \times 5 / 16$	2.40	9,238	"
$E-E$	U-904	$4 \times 4 \times 7 / 16$	3.31	9,258	"
Base	U-905	$5 \times 5 \times 3 / 8$	3.61	11,190	'

DLAGCNAL STMESSES

The wind load which causes the maximum stress in the diagonals is shown in Figure 4. If the tower is considered as being made up of four bents, then the wind force will be resisted by the two bents whose planes are parallel to the wind direction. Therefore each bent will take one half of the concentrated wind loads. The loading on one bent is shown in Figure 10.
Before the stresses in the diagonals can be computed. the lengths of the horizontal and diagonal struta must be determined. This is done on the following pages in Tables 4 and 5.
1

$$
\begin{aligned}
\text { Decrease in length in } 99.75^{\prime} & =21.56^{\circ}-6.72^{\prime} \\
& =14.84^{\circ}
\end{aligned}
$$

Decrease in leneth in $1.0^{\circ}=\frac{14.84}{99.75}=.1488^{\circ}$

$$
x=21.56-.1488 y
$$

FIG. 8.

TABLE 4

pr	20.25	3.01	18.55
no	40.50	6.03	15.53
km	54.00	8.04	13.52
11	66.75	9.93	11.63
gh	77.25	11.49	10.07
of	86.25	12.83	8.73
cd	93.00	13.84	7.72
ab	99.75	14.84	6.72

$$
11
$$

CORPUTATIONS FOR LENGTH OF DINGONAL STRUTS-

The equations which are used for finding the lengths of the diagonal struts are derived in Fig. 9 below, and the computations are tabulated in Table 5.

FIG. 2

Equations:

$$
\begin{align*}
& a+2 b=0 \\
& 2 b=0-a \\
& b=\frac{c-a}{2} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& a^{2}=h^{2}+(a+b)^{2} \\
& d=\sqrt{h^{2}+(a+b)^{2}} \tag{2}
\end{align*}
$$

STRUT	"0"	*a"	"0-an	"b"	" $n^{\prime \prime}$
28	7.72	6.72	1.00	0.50	6.75
cr	8.73	7.72	1.01	0.51	6.75
eh	10.07	8.73	1.34	0.67	9.00
83	11.63	10.07	1.56	0.78	10.50
1m	13.52	11.63	1.89	0.95	12.75
ko	15.53	13.52	2.01	1.01	13.50
$n \mathbf{r}$	18.55	15.53	3.02	1.51	20.25
$p t$	21.56	18.55	3.01	1.51	20.25
Strut	${ }^{\prime \prime} \mathrm{h}^{20}$	${ }^{12} a+b^{\prime \prime}$	$(a+b)^{2}$	$h^{2}+(a+b)^{2}$	" $\mathrm{d}^{\prime \prime}$
ad	45.56	7.22	52.13	97.69	9.88
cf	45.56	8.23	67.73	113.29	10.64
eh	81.00	9.40	88.36	169.36	13.01
81	110.25	10.85	117.72	227.97	15.10
1 m	162.56	12.58	158.26	320.82	17.91
ko	182.25	14.53	211.12	393.37	19.83
$n \mathrm{n}$	410.06	17.04	290.36	700.42	26.47
pt	410.06	20.06	402.40	812.46	28.50

1

WIND LOAD ON ONE BENT
ONLY TENSION DIAGONALS SHOWN

$$
F 1610
$$

1

The method used for computing the diagonal stresses is as follows: First the method of sections is used and horizontal sections are passed through the tower at each horizontal strut. Moments are taken about the joints in the right-hand column (joints b-d-f. etc.) to determine the upward vertical thrust (v) in the corresponding jointa In the left-hand column. Then, by using the method of joints, the vertical component of the stress in each diagonal can be found. Since the glope of each strut is known, the axial tensile stress in each diagonal can be determined.

The following sample computations show the procedure used in determining the diagonal stresses. The complete computations are tabulated in Tables 6 and 7.

$$
\begin{aligned}
\Sigma M_{b}=0 ; & V, 2 b=M_{b} \\
& V, 6.72=3.75 \times 800 \\
& V, 6.72=3000 \\
& V_{1}=446.4
\end{aligned}
$$

$$
\begin{aligned}
\Sigma M_{d}=0 ; & V_{2} \times c d=M_{d} \\
& V_{2} \times c d=M_{b}+\Sigma F_{x} \times \Delta y \\
& V_{2} \times 7.72=3000+1045 \times 6.75 \\
& V_{2} \times 7.72=10,053.75 \\
& V_{2}=1302.3
\end{aligned}
$$

$$
\begin{aligned}
\Sigma M_{f}=0 ; & V_{3} \times \text { ef }=M_{f} \\
& V_{3} \times e f=M_{d}+\Sigma F_{x} \times \Delta y \\
& V_{3} \times 8.73=10,053.75+1535 \times 6.75 \\
& V_{s} \times 8.73=20,415.0 \\
& V_{3}=2338.5
\end{aligned}
$$

At ioint "R":

$$
\begin{aligned}
& \Sigma V=0 ; \quad a d_{v}=V_{2}-v, \\
& a a_{v}=1302.3-446.4 \\
& a d_{v}=855.9 \\
& a d=855.9 \times \frac{\text { lensth }}{V-\text { proj }} . \\
& a d=855.9 \times \frac{9.88}{6.75} \\
& a d=1253 \mathrm{lb} .
\end{aligned}
$$

At joint "c":

$$
\begin{aligned}
& \Sigma V=0 ; c f_{v} \\
&=V_{3}-V_{2} \\
& c f_{v}=2338.5-1302.3 \\
& c f_{v}=1036.2 \\
& \text { of }=1036.2 \times \frac{1 \text { ength }}{V-\text { proj }} . \\
& c f=1036.2 \times \frac{10.64}{6.75} \\
& c f=1634 \mathrm{lb} .
\end{aligned}
$$

TABL5 6

ABOVE SECTION	$\sum F_{x}$	Δy	x	MOMENT M	V
ab	800	3.75	6.72	$3,000.0$	446.4
cd	1045	6.75	7.72	$10,053.75$	1302.3
Of	1535	6.75	8.73	$20,415.0$	2338.5
Gh	2105	9.00	10.07	$39,360.0$	3908.6
ij	2815	10.50	11.63	$68,917.5$	5925.8
km	3660	12.75	13.52	115.582 .5	8549.0
no	4615	13.50	15.53	177.885 .0	11454.3
pr	5840	20.25	18.55	296.145 .0	15964.7
st	7310	20.25	21.56	444.172 .5	20601.7

TABLE 7

| JOINT | DIAGONAL | V-COMP. | LENGTH | V-PRCJ. | TENSION
 IN MENBER |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | ad | 855.9 | 9.88 | 6.75 | 1253 |
| c | cf | 1036.2 | 10.64 | 6.75 | 1633 |
| e | eh | 1570.1 | 13.01 | 9.00 | 2270 |
| g | gj | 2017.2 | 15.10 | 10.50 | 2901 |
| 1 | im | 2633.2 | 17.91 | 12.75 | 3685 |
| k | ko | 2905.3 | 19.83 | 13.50 | 4268 |
| n | nr | 4510.4 | 26.47 | 20.25 | 5896 |
| p | pt | 4637.0 | 28.50 | 20.25 | 6526 |

TABLE 8

DIAGONAL	TENSICN	$\begin{gathered} \text { BOLT } \\ \text { DIAMET TER } \\ \hline \end{gathered}$	EFFICTIVE NET AREA	$\begin{gathered} \text { UNIT } \\ \text { SIRESS } \end{gathered}$
ad	1253	5/8"	0.29	$4320 \mathrm{lb} / \mathrm{sq} \mathrm{in}$
or	1633	5/8'	0.29	5640
eh	2270	5/8"	0.29	7830
gj	2901	5/8"	0.29	10000
1 m	3685	5/8"	0.29	12700
ko	4268	5/8"	0.29	14700
nr	5896	3/4"	0.39	15100
pt	6526	3/4"	0.39	16730

efrective net area at section y-y: (she fig. 11)

Net area = Area of angle - two holes
Net area $=$ Area of angle $-(\mathrm{d}+1 / 8) \times 2 \mathrm{t}$

For $2 \times 2 \times 1 / 8$ angle and $5 / 8^{\prime \prime}$ bolt;

Net area $=0.48-(5 / 8+1 / 8) \times 2 \times 1 / 8=0.29 \mathrm{sq} \mathrm{in}$
For $2 \frac{1}{2} \times 2 \frac{7}{2} \times 1 / 8$ angle and $3 / 4^{\prime \prime}$ bolt;

Net area $=0.61-(3 / 4+1 / 8) \times 2 \times 1 / 8=0.39 \mathrm{sq} \mathrm{in}$
1

The stresses in the horizontal struts are determined by the method of joints. The joints in the left-hand column are used, as before. The following sample computations show the procedure used to determine the stresses. The complete computations are tabulated in Table 9.

At soint " a ":

$$
\begin{aligned}
& \Sigma H=0 ; a b \\
&=a d_{h} \\
& a b=a d \times \frac{H-p r o j_{0}}{1 e n g t h} \\
& B u t, H-p r o j=a+b \quad(\text { Fig. } 9) \\
& a b=a d \times \frac{a+b}{1 e n g t h} \\
& a i=1253 \times \frac{7.22}{9.88}=9161 b
\end{aligned}
$$

At joint "c":

$$
\begin{aligned}
\Sigma H=0 ; c d & =c f_{h} \\
c d & =c f \times \frac{H-p r o d}{\text { length }} \\
c d & =c f \times \frac{a+b}{1 e n g t h} \\
c d & =1633 \times \frac{8.23}{10.64}=12631 b
\end{aligned}
$$

TABLE 2

STRESSES IN HCRIZONTAL GIRWS WHICH SUFPCRI STAIQMAYS-

Although these nembers are not consldered to take any of the live load stresses, they do support the dead weight of the stairways. Because of the fact that they are quite long and have the concentrated load of the stairways near the center of the girt, they are analyzed for both shear and bending moment.

The method used for the analysis is as follows: the girt is treated as a simple beam, supported at both ends, and acted upon by two loadings. The first is a uniformly distributed load equal to the weight per unit length of the member. The second loading consists of two concentrated loads, each one of which is equel to one half the weight of the stairway which it represents.

The total shear and bending moment for each member are found by drawing their shear and bending moment diagrams. These are shown in Figures 12 to 19 inclusive. The unit shearing and bending stresses are then computed and the results are tabulated in Table 10.

$$
\begin{aligned}
& \therefore-\quad \because \\
& \therefore \therefore x=x-x-8
\end{aligned}
$$

$$
\leftarrow, \bar{j}
$$

$$
\begin{aligned}
& 11-20
\end{aligned}
$$

Fis
1

6

$$
5 \times \underset{y}{6}-\cdots,
$$

$$
\begin{gathered}
1-5 \\
5 x-2,-x, y
\end{gathered}
$$

1

$$
\begin{aligned}
& 1-7-7
\end{aligned}
$$

$$
5
$$

Maximum bending stress:

$$
\begin{aligned}
\mathbf{I}=\frac{M}{S}, \text { where } \mathbf{f}= & \text { maximum bending stress }, \\
M= & \text { bending moment (in-lbs), } \\
S= & \text { section modulus about axis } \\
& \text { parallel to short leg. }
\end{aligned}
$$

Maximum shearing stress:

$$
\begin{aligned}
v=\frac{V}{A}, \text { Where } & v=\text { maximum shearing stress, } \\
V= & \text { total shear } \\
A= & \text { cross-sectional area } \\
& o f \text { member. }
\end{aligned}
$$

TABLF 10

U-921;	$\mathbf{f}=\frac{256 \times 12}{.79}=3890 ;$	$\mathbf{v}=\frac{174}{1.69}=67.5$
U-922;	$\mathbf{f}=\frac{255 \times 12}{.79}=3870 ;$	$\mathbf{v}=\frac{139}{1.69}=82.3$
U-923;	$\mathbf{f}=\frac{318 \times 12}{1.1}=3470 ;$	$\mathbf{v}=\frac{176}{1.94}=90.8$
$\mathbf{U - 9 2 4 ;}$	$\mathbf{f}=\frac{554 \times 12}{2.6}=2560 ;$	$\mathbf{v}=\frac{227}{3.53}=64.4$
$U-925 ;$	$\mathbf{f}=\frac{612 \times 12}{2.6}=2820 ;$	$\mathbf{v}=\frac{253}{3.53}=71.7$
$U-927 ;$	$\mathbf{f}=\frac{1215 \times 12}{2.6}=5610 ;$	$\mathbf{v}=\frac{286}{3.53}=81.0$
$U-931 ;$	$\mathbf{f}=\frac{1437 \times 12}{3.3}=5225 ;$	$\mathbf{v}=\frac{297}{3.61}=82.3$
$U-940 ;$	$\mathbf{f}=\frac{2195 \times 12}{3.8}=6940 ;$	$\mathbf{v}=\frac{342}{4.18}=81.9$

ALLOMABLE STRESSES

The final atep in the analysis of the fire tower is the determination of the allowable unit stresses in each member, and a comparison between the allowable stresses and the actual stresses as computed in the preceding pages, to make sure that none of the computed stresses exceed the allowable value.
1

COLUN STMES:ESS

The column members are in compression. The allowable unit compressive stress is found by the formula,

$$
\begin{aligned}
& \mathrm{s}_{c}=17,000-0.485 \times \frac{\frac{1}{2}_{2}^{2}}{}, \text { where } \\
& \mathrm{s}=\text { allowable compressive stress, } \\
& 1=\text { greatest unsupported length, } \\
& \mathbf{r}=\text { least radius of gyration. }
\end{aligned}
$$

The computations for the allowable stresses in the column members, along with the computed actual atresses, are tabulated in Table 11.

TABLE 11

$\begin{gathered} \text { COLUHIN } \\ \text { NO. } \end{gathered}$	1/r	$\begin{gathered} \text { ALLOWABLEK } \\ \mathbf{8}_{c} \\ \hline \end{gathered}$		$\begin{gathered} \text { AC TUAL } \\ \mathbf{S}_{\mathbf{c}} \\ \hline \end{gathered}$	
U-900	72	14,540	1b/sq in	3,620	$\mathrm{lb} / \mathrm{sq}$ in
U-901	93	12,830	'	6,335	"
U-902	96	12,150	"	8,633	"
U-903	104	11,775	"	9,238	"
U-904	105	11,640	"	9,258	"
U-905	83	13,670	"	11,190	"

DIAGCNAL STRESCES

The diagongl struts are in tension. Table 12 gives the comparison between the actual and allowable stresses.

TABLE 12

STRUT	UNIT STRESS ACTUAL	UNIT STRESS ALLO:ABLE
ad	4,320	20,000
cf	5,640	n
eh	7,830	$"$
gJ	10,000	n
im	12,700	n
ko	14,700	n
nr	15,100	4
pt	16,730	n

It is also necessary to check the bolts against fallure by single shear or bearing. The computations for this are tabulated in Table 13. The allowable loads in aingle shear and bearing are based on the following allowable unit stresses:

$$
\begin{array}{ll}
\text { Shear: } & s=10,0001 b / \mathrm{sq} \text { in } \\
\text { Bearing: } & s=20,0001 b / \mathrm{sq} \text { in }
\end{array}
$$

TMBLE 13

STRUT	NO. \& DIAM. OF BOLTS	$\begin{aligned} & \text { ALLOWABLE } \\ & \text { S.S. } \end{aligned}$	$\begin{aligned} & \text { IENSION } \\ & \text { BE:RING } \end{aligned}$	AGTUAL TERSION
ad	$1-5 / 8^{\prime \prime}$	3070*	3130	1253
of	$1-5 / 8^{\prime \prime}$	3070\%	3130	1633
eh	2-5/8'	6140*	6260	2270
EJ	$2-5 / 8^{\prime \prime}$	6140*	6260	2901
1 m	2-5/8 ${ }^{\text {c }}$	6140*	6260	3685
ko	$2-5 / 8^{\prime \prime}$	6140*	6260	4268
$n \mathrm{n}$	$2-3 / 4^{\prime \prime}$	8840	7500*	5896
pt	2-3/4"	8840	7500*	6526

1

STRESEES IN HORIZONTIL STRUTS

The horizontal struts are in compression. The allowable unit compressive stress is found by the formula,

$$
\begin{aligned}
& s=17,000-0.485 \times \frac{\frac{1}{2}^{2}}{\mathbf{r}^{2}} \\
& \qquad \text { But, maximum } 1 / \mathrm{r} \text { ratio }=87 \\
& s=17,000-0.485 \times 87^{2} \\
& s=17,000-3,670 \\
& s=13,330 \mathrm{lb} / \mathrm{sq} \text { in }
\end{aligned}
$$

Table 14 gives the comparison between the actual and allowable unit stresses in the horizontal struts.

TABLE 14

$a b$	636	13.330
cd	1.403	1
ef	3.417	"
Eh	3.416	"
13	1,797	1
km	2.172	"
no	2.246	H
pr	2,368	"

As before: it is necessary to check the bolts against fallure by single shear or bearing. The same allowable unit stresses are used that were used for the diagonals, and the computations are tabulated in Table 15.

TABLE 15

STEESEES IN HORIZONTAL GIRTS
The unit stresses in the horizontal girts which support the stairways are given in Table 10. They are well below the allowable unit stresses, which are:
Bending; s $20,0001 \mathrm{~b} / \mathrm{sq}$ in
Shear; s $23,0001 \mathrm{~b} / \mathrm{sq}$ in

CONCLUSION

From the standpoint of safety, this type of fire tower seems to be well designed. In most of the members which were checked, the unit stresses are far below the allowable. In only a feu cases do they even approach the allowable. In addition, there are a great many small bracing members which were not taken into account in the checking. These members increase the gtrength and rigidity of the tower. Apparentiy a generous factor of safety was used in the original design.

From the standpoint of economy, it seems possible that the design could be better. However, it may be that the tower was purposely over-designed to take care of stresses which might possibly be introduced either in the erection of the tower or by forces or loads which were not taken into account in the design.

BIBLIOGRAPHY

1. Howe, G. E., "Wind Pressure on Structures". Civil Engineeringe Vol. 10, No. 3.
2. Grinter, L. E. Theory of Modern Steel intinctures. Vol. 2, 1st Edition, 1937.
3. Ketchum. M. S. Stmuctural Enfincers' Handbook, 2nd Edition, 1918.
4. Sutherlaid, IA. ana Bownan, H. L. Etructural Theory, 2nd Edition, 1935.
5. American Institute of Steel Construction, Steel Construction, 3rd Edition, 1940.

WIND LOAD FOR MAXIMUM COLUMN STRESS
FIG.

WIND $\angle O A D$ ON ONE BENT ONLY TENSION DIAGONALS SHOWN

$$
F / G
$$

DEAD $\angle O A D$ ON COLUMNS

FIG. 1

HORIZONTAL SECTION NEAR BASE FIG.

TOTAL AREA, NORMAL TO WIND, PER FOOT OF HEIGHT:

$$
\begin{aligned}
5 \times 5 \angle 5: 4(12 \times 5)= & 240 \mathrm{sq.} \mathrm{in.} \\
2 \frac{1}{2} \times 2 \frac{1}{2} \angle 5: 4(12 \times 2.5)= & 120 \\
\text { STAIRWAY: } 12 \times 17= & 204 \\
\text { TOTAL } & 684 \mathrm{sq.} \mathrm{in.}=4.75 \mathrm{sq.} \mathrm{fl}
\end{aligned}
$$

WIND LOAD, PER FOOT OF HEIGHT:

$$
\begin{aligned}
P & =p \times A \\
& =30 \times 4.75 \\
& =142.5 \# / \mathrm{ff}
\end{aligned}
$$

DISTRIBUTED LOAD OF 145 LB. PER FT. IS CONSIDERED AS CONCENTRATED AT THE JOINTS, AS SHOWN.

WIND LOAD FOR MAXIMUM DIAGONAL STRESS

$$
\begin{aligned}
& \text { SN } 5 \times \frac{3}{8} \angle C O / u m n
\end{aligned}
$$

-....... BUNDLING AND LOADING CHECKLIST FOR ONE 991-9" STAIRWAY TOWER, WITH ANCHOR FIXTURESDRAWINGS MC-39 \& MD-70

ORDER NO. \qquad CAR NO. \qquad DESTINATION \qquad TALLIED IN BY \qquad DATE LOADED \qquad
TALJIED OUT BY \qquad DATE UNLOADED \qquad
TALLLY NO. NO.PCS.
IN BDLS. MARK IN BDL.
DESCRIPTION
TALLY OUT
4. U-900 1 \#1 Corner Post-
$3 \times 3 \times 1 / 4 \times 19193 / 4^{\prime \prime}$ \qquad
4 U-901 1 \#2 " "- $3 \frac{1}{2} \times 3 \frac{1}{2} \times 1 / 4 \times 160^{\prime \prime}$
\qquad 4 U-902 1 \#3 " " -
$4 \times 4 \times 1 / 4 \times 16123 / 16^{\prime \prime}$ \qquad
4 U-903 I \#4 " "-
$4 \times 4 \times 5 / 16 \times 13^{\prime} 61 / 8^{\prime \prime}$ \qquad
4 U-904 I \#5 " " -
$4 \times 4 \times 7 / 16 \times 19^{\prime} 99 / 16^{\prime \prime}$ \qquad
3 U-905 1 \#6 " " -
$5 \times 5 \times 3 / 8 \quad \times 22^{\prime} 3^{\prime \prime}$
1 U-905X 1 \#6 " " - with U-45 P1.- $5 \times 5 \times 3 / 8 \mathrm{x}$ "
1 U-914 4 \#1 Splice Angle-
$3 \times 3 \times 1 / 4 \times 0110^{\prime \prime}$
1 U-915 4 \#2 " " -
$3 \frac{1}{2} \times 3 \frac{1}{2} \times 1 / 4 \times$ l' $01 / 2^{\prime \prime}$ \qquad
1 U-916 4 \#3 " " -
$4 \times 4 \times 1 / 4 \quad x$ I' 3 "

1. U-917 4 \#4 " " -
$4 \times 4 \times 5 / 16 \times 1$ ㅇ $51 / 2^{\prime \prime}$ \qquad
1 U-918 4 \#5 " " -
$4 \times 4 \times 7 / 16 \times 2111$
1 U-546 8 \#l Angle Brace-
$2 \times 2 \times 1 / 8 \quad \times \quad 9^{\prime} 63 / 4^{\prime \prime}$ \qquad
1 U-547 8 \#2 " " -
" \quad x $9^{\prime} 117 / 16^{\prime \prime}$
2 U-548 4 \#3 " " -
" \quad x $12^{\prime} 51 / 8 \prime$ \qquad
2 U-549 4 \#4 " " -
2 U-550 4 \#5 " " -
2 U-551 4 \#6
" $\times 19^{\prime} 31 / 16^{\prime \prime}$
\qquad 1 U-552 4 \#7

- Upper Sec.- $2 \frac{1}{2} \times 2 \frac{1}{2} \times 1 / 8$
x $12^{\prime} 91 / 4^{\prime \prime}$ \qquad
\qquad I U-553 4 \#7
1

1. U-554 4 \#7
.- Lower " - "
$x 11^{\prime} 33 / 4^{\prime \prime}$ \qquad
\qquad
1 U-555, 4 \#7 _ " " _ "

$$
\text { x } 14^{\prime} 91 / 4^{\prime \prime}
$$

\qquad
\qquad 4 \#7
x $13^{\prime} 33 / 4^{\prime \prime}$ \qquad
1 U-556
4 \#8
x $12^{\prime} 51 / 16^{\prime \prime}$ \qquad
I U-557 4 \#8 " " - " " - "
I U-558 4 \#8 " " - Lower " - "
x $13^{\prime} 81 / 16^{\prime \prime}$ \qquad
\qquad x $14^{\prime} 91 / 16^{\prime \prime}$ \qquad
1 U-559 4 \#8 " " - " " - "
x $16^{\prime} 01 / 16^{\prime \prime}$ \qquad

\qquad 1 U-591
$\begin{array}{lll}1 & " 1 \\ 1 & " & "-\end{array}$
\qquad 1 U-593 I " " -
\qquad 1 U-596 8 \#1 Girt-
\qquad 1 U-756X 2 \#2 " -
$1 \begin{array}{llll}\text { U-598 } & 1 & \# 2 & "- \\ U-599 & 1 & \# 2 & "-\end{array}$
\qquad 1 U-921 1 Girt- 1st Landing-
\qquad 1 U-601 1 "- lst " -
1 U-602 2 "- lst " -
\qquad 1 U-604 8 \#3 Girt-
\qquad 1 U-605 2 \#4 " -
1 U-606 I \#4 "-R.-
U-607 1 \#4 " - L.-
\qquad 1 U-922 1 Girt- 2nd Landing-
\qquad
\qquad
\qquad
\qquad
\qquad
x $7^{\prime} 013 / 16^{\prime \prime}$
\qquad
$2 \frac{1}{2} \times 2 \frac{1}{2} \times 1 / 8 \times 4^{\prime} 6^{\prime \prime}$
$3 \times 3 \times 1 / 4 \times 9171 / 16^{\prime \prime}$ \qquad
$8 \times 1 / 4 \times 12-3 / 16^{\prime \prime}$ Plate \qquad
$8 \times 1 / 4 \times 13-3 / 8^{\prime \prime}$
11. $\times 1 / 4 \times 17-15 / 16^{11}$ Plate $10 \times 1 / 4 \times 9-5 / 8^{\prime \prime}$
$3 \times 3 \times 1 / 4 \times 6$ 61 21 5/8" \qquad " $\quad x \quad 61103 / 4^{\prime \prime}$

n	x	$"$
n	x	$"$
$"$	x	$"$

x $2^{\prime} 101 / 2^{\prime \prime}$ \qquad
$2 \times 2 \times 1 / 8 \quad \times \quad 3199 / 16^{\prime \prime}$ \qquad
$2 \frac{1}{2} \times 2 \frac{1}{2} \times 3 / 16 \times 7^{\prime} 51 / 4^{\prime \prime}$ \qquad

$" 1$	x	"
$"$	x	$" 1$

\qquad
$3 \frac{1}{2} \times 3 \frac{1}{2} \times 1 / 4 \times 71 \times 3 / 8^{\prime \prime}$ \qquad $2 \frac{1}{2} \times 2 \frac{1}{2} \times 3 / 16 \times 21103 / 8^{\prime \prime}$ \qquad
$2 \times 2 \times 1 / 8 \quad \times \quad 5^{\prime} 11 / 16^{\prime \prime}$ \qquad
" $\times 4^{9} 35 / 8$ " \qquad
" x 8' $47 / 16^{\prime \prime}$ \qquad
$\begin{array}{rlr}2 \frac{1}{2} \times \underset{11}{2 \frac{1}{2}} \times 3 / 16 & x & " 1 \\ & x & \prime \prime\end{array}$
$3 \frac{1}{2} \times 3 \frac{1}{2} \times 1 / 4 \times 6123 / 1611$ \qquad
\qquad 1 U-609 3 Girt- 2nd Landing-
1 U-610 8 \#5 Girt-
\square 1 U-611 2 \#6 " -
\square
1
$1 \begin{array}{llll}\text { U-612 } & 1 & \# 6 & \text { " }- \text { R.- } \\ \text { U-613 } & 1 & \# 6 & \text { " }- \text { L. }\end{array}$
1 U-923 1 Girt- 3rd Landing-
\qquad $1 \begin{array}{llll}\text { U-615 } & 2 & "-3 r d & " \\ \text { U-616 } & 1 & "-3 r d & "\end{array}$
1 U-617 8 \#7 Girt-
1 U-618 2 \#8 " -
1 U-619 I \#8 "-R.-

1 U-924 1 Girt at 4th Landing-
\square 1 I U-622 3 " " 4th " -

1 U-624 8 \#9 Girt--
1 U-625 2 \#10 Girt-
\qquad $1 \begin{array}{llll}\text { U-626 } & 1 & \# 10 & \text { " }- \text { R.- } \\ \text { U-627 } & 1 & \# 10 & \text { " - L.- }\end{array}$
1 U-925 1 Girt at 5th Landing-
I U-629 1 " " 5th " -
1 U-630 2 " " 5th
1 U-631 I " " 5th
\qquad 2 U-632 4 \#11 Girt-
2 U-633 I \#12 " -
\qquad 1 U-634 1 \#12 " - R.-
\qquad 1 U-635 1 \#12 "-L.-
\qquad 1 U-927 I Girt-- 6th Landing--
1 U-928 3 " -6 th, 7 tin \& 8th Landing- $2 \frac{1}{2} \times 2 \frac{1}{2} \times 3 / 16 \times 5^{\prime \prime \prime \prime}$
$2 \times 2 \times 1 / 8 \times 61115 / 16^{\prime \prime}$ U-613 1 \#6 "- L.-U-620 1 \#8 - L.-
\qquad
$2 \times 2 \times 1 / 8 \quad \times \quad 61511 / 16^{\prime \prime}$
$3 \times 3 \times 1 / 4 \times 13123 / 8^{\prime \prime}$
$5 \times 3 \frac{1}{2} \times 7 / 16 \times 71815 / 16^{\prime \prime}$
$3 \times 3 \times 1 / 4 \quad \times \quad 8^{\prime} 113 / 16^{\prime \prime}$
$5 \times 3 \frac{1}{2} \times 7 / 16 \times 7197 / 811$ $2 \frac{1}{2} \times 2 \frac{1}{2} \times 3 / 16 \times 3143 / 8^{\prime \prime}$ $3 \times 3 \times 1 / 4 \times 10^{\prime} 45 / 8^{\prime \prime} \quad \square$ $2 \frac{1}{2} \times 2 \frac{1}{2} \times 1 / 8 \times 71513 / 16^{\prime \prime}$ $3 \frac{1}{2} \times 3 \frac{1}{2} \times 1 / 4 \times 15^{\prime} \times 3 / 4^{\prime \prime}$

$$
x 15^{\prime} 23 / 4^{\prime \prime}
$$

$5 \times 3 \frac{1}{2} \times 7 / 16 \times 12^{\prime} 17 / 8^{\prime \prime}$
\qquad

2 U-638 I " - 6th Lending-
\qquad $\begin{array}{llllll}1 & U-639 & 1 & "-6 t h & " & - \\ 1 & U-673 & 1 & "-6 t h & " & -R . \cdots \\ & U-674 & 1 & "-6 t h & " & -L .-\end{array}$
$\begin{array}{llllll}1 & U-639 & 1 & "-6 t h & " & - \\ 1 & U-673 & 1 & "-6 t h & " & -R . \cdots \\ & U-674 & 1 & "-6 t h & " & -L .-\end{array}$
$3 \frac{2}{2} \times 3 \frac{1}{2} \times 1 / 4 \times 10^{\prime} 33 / 4^{\prime \prime}$ \qquad
x $10^{\prime} 113 / 16^{\prime \prime}$ \qquad
$\underline{\square}$ --
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1 U-640 4 \#13 Girt-
$2 \frac{1}{2} \times 2 \frac{1}{2} \times 1 / 8 \times 16^{\prime} 91 / 2^{\prime \prime}$
$3 \times 3 \times 1 / 4 \times 171911 / 16^{\prime \prime}$ \qquad
2 U-642 1 \#14 " -
1 U-643 I \#14 " - R
1 U-644 I \#14 " - L.-
\qquad 1 U-931 1 Girt at 7th Landing-
$\ldots \ldots$
$1 \begin{array}{lllllll}\text { U-646R } & 1 & " & " & 7 \text { th } & " & - \\ U-646 L & 1 & " & " & 7 \text { th } & \text { " } & -\end{array}$
4 U-651 I \#15 Girt-
4 U-652 I Girt-Section E-E-
2 U-654 1 \#16 Girt-
1 U-655 1 \#16 " - R.-
I U-656 1 \#16 "-L.-
1 U-940 1 Girt- 8th Landing-
$1 \begin{array}{llll}1 & \text { U-658R } & 1 & "-8 t h \\ \text { U-658L } & 1 & "-8 t h & \text { " }\end{array}$
4 U-623 1 \#17 Girt-
1 U-661 4 Roof Angles- R.-
I U-662 4 " " - L.-
2 U-666 2 Sash with Glass \& U-668 Clips- Mark: "GLASS HANDLE WITH CARE"

2 U-669 2 Siding-
1 U-670 4 Roof Section-U-947 4 Flashing for Roof-

1 U-676 1 \#1 Stairway
1 U-677 1 \#1 "
1 U-678 1 \#2 \quad "

1. U-679 1 \#2 " - L.

1 U-680 1 \#3 \# -R.
1 U-681 1 \#3 " 1 - L.
1 U-682 I \#4 " -R.
I U-683 I \#4 " - L.
\#20 Ga, Galv. Sheet Steel
$\begin{array}{lllll}" & " & " & " & " \\ " & " & " & " & "\end{array}$
\qquad .
$6 \times 4 \times 7 / 16 \times 171117 / 8^{\prime \prime}$ \qquad
 \qquad
$3 \times 3 \times 1 / 4 \times 20^{\prime} 105 / 16^{\prime \prime}$ \qquad
$2 \times 2 \times 1 / 8 \times 4^{\prime} 103 / 8 \prime \prime$ \qquad
" x " \qquad

1- 99:-9" Stairway Torer- Drgs. NC-39 Revised -5-
\& MD-70

CHECKLIST OF BOLTS WITH LOCK NUTS FOR ONE 99'-9" STAIRWAY TOWER, WITH ANCHOR FIXTURESDRGS. MC-39 REVISED $3 / 20 / 36, ~ M D-97$ \& $\operatorname{MD}-70$ (Box 5)

205-3/4 x. 1 /4" Galv. Bolts with Hex. Nut
Unthrd.
Length Location
1/2" E \& J

Note: $3 / 4^{\prime \prime}$ Bolts shall have Square Heads and shall be Galvanized after Threading. 3/4" Nuts shall be Tapped after Gilvanizing.

If you find any errors or shortages, return this chocklist with your complaint.
$3-23-36$
AERMOTOR CO.
Chicago

CHECKLIST OF BOLTS WITH LOCK NUTS POR ONE 99'-9" STAIRWAY TOMER, YITH ANCHOR FIXTURIS DRGS. MC-39 REVISED $3 / 20 / 36$, MD-97 \& MD-70 (Box 6)

$$
204-3 / 4 \times 2^{\prime \prime} \text { Galv. Bolts with Hox. Nut }
$$

Unthrd.
Length Location 3/4" $\quad 4^{11} \& K$

Note: 3/4" Bol.ts shall have Square Heads and shall be Galvanized after Threading. 3/4" Nuts shall be Topped after Galvonizing.
\qquad

If you find any errors or shortages, return this check?ist with your complaint.

Location

$809-3 / 8 \times 2$ 1/2" Galv. Carriage Bolts with Hex. Nut Wood
405 - Galvanized Lock Nuts - 5/8"

Note: $3 / 8$ " Carriage Bolts shall be Galvenized after Threading. 3/8" Nuts shall be Tapped after Galvanizing. All lock nuts of the same size to be soparately packed. Washers not to be used with $1 / 4^{\prime \prime}$ Brass Bolts or $3 / 8^{\prime \prime}$ Carriago Bolt... Lock nuts not to be used on $3 / 8^{\prime \prime}$ Carriage Bolts.

If you find any crrors or shorteges, return this checklist with your complaint.
AERMOTOR CO.
$3-23-36$
Chicago

CHECKLIST OF WASHERS FOR ONE 991-9" STATRMAY TOWER, WITH AIMCHOR FIXTURESDRGS. MC-39 REVTSED 3/20/36, MD-9? \& MD--'/0 (Bo天 8)

$$
\begin{aligned}
& 405-11 / 16 \times 1-1 / 4 \times 3 / 1611 \text { Galv. Mashers } \\
& 919-13 / 16 \times 1-7 / 16 \times 3 / 16^{11} \\
& 39-9 / 16 \times 1-1 / 16 \times 3 / 16^{\prime \prime} " \text { " } \\
& 284-7 / 16 \times 3 / 4 \times 1 / 8^{\prime \prime} \quad " \quad " \\
& 50-11 / 16 \times 1-1 / 4 \times 1 / 4^{\prime \prime} \text { Galv. Filler Washors } 2 \\
& \text { Note: Washors not to be used with } 1 / 4^{\prime \prime} \text { Brass Bolts or } \\
& \text { 3/8" Carriage Bolts. } \\
& \text { All washers of the same size to be separately packed. }
\end{aligned}
$$

Packed by \qquad
Date \qquad
If you find any errors or shortages, return this chockist with your complaint.
AERMOTOR CO.
3-23-36
Chicafo

CHECKLIST OF SMALL PARTS FOR ONE $99^{\prime}-9^{\prime \prime}$ STAIRWAY TOWER, WITH ANCHOR FIXTURESDRGS. MC-39, MD-97 \& MD-70
(Box 1)

If you find any errors or shortages, return this checklist with your complaint.

2-22-39
AERMOTOR CO.
Chicago

CHECKLIST OF SMALL PARTS FOR ONE 99'-9" STAIRWAY TOWER, WITH ANCHOR FIXTURESDRGS. MC-39, MD-97 \& MD-70
(Box 2)

```
4 - U-920- Roof Girt Clipw \(3 \times 3 \times 1 / 4 \times 0^{\prime}-55 / 8^{\prime \prime}\) Angle
```



```
1 - U-665- Cap Plate- \(12 \times 3 / 16 \times 12^{\prime \prime}\) Plate
8 - U-672- Filler Washer- \#20 Ga. Galv. Sheet Steel
2 - U-675- Flange for Flag Pole, Cast Iron
8 - U-721- Washer for Anchor- \(5 \times 1 \times 5^{\prime \prime}\) Flat
48 - U-667-Clips for Sash-7/16" hole- \(1 \times 3 / 16^{\prime \prime}\) Flat x \(0^{\prime}-13 / 4^{\prime \prime}\)
```

Packed by
Date

If you find any errors or shortages, return this checklist with your complaint.

113
132
THS
Blueprint

SUPPLEMENTAYY MATERAL

