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AN ABSTRACT

This thesis develops a system of logic containing

both modal operators and quantifiers. This system contains

C. I. Lewis' system 84, but it does not contain restrictions

of type theory. In it, certain departures from similar

systems of Ruth Barcan, Rudolf Carnap, and Frederic Fitch

are proposed. One such departure is the inclusion in the

system of a notation for singular existence as this has

been done by Henry Leonard.

The thesis also includes an outline of a

second system which is an attempt to codify G. Freges

notion of the oblique occurrence of a term in a context.

This system is applied to a treatment of the paradoxes

of the theory of types, in order to Justify abandoning

type theoretical restrictions in the first system.
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CHAPTER I

INTRODUCTION

1.1 Professor Henry S. Leonard has recently published

a paper entitled "The Logic of Existence"1 which modifies

the logical system of Principia gathgmgtigaz in order to

deal with questions of existence of which there is no treat-

ment in the latter system.

The alterations in logic proposed by Professor

Leonard consist, in part, in a notation for singular

existence which takes variables as arguments, recognition

of certain laws governing existence, not expressible in

Principia Mathematigg, and the introduction into logic of

terms which do not denote.

The following two systems are based upon Professor

Leonard's paper.

1.2 Throughout his paper, "The Logic of Existence",

Professor Leonard calls attention to the importance of con-

sidering the topic of modal logic and its bearing upon

questions of existence. This emphasis of Professor Leonard's

paper has influenced the following formulations in many ways.

In the first of the following systems, existence

is not, as in Professor Leonard's system, introduced by

 

1. Henry S. Leonard, "The L0 ic of Existence," Philoso hical

Studies, Vol. VII, Number 4, June 1956), pp. 49- 4.

2. Alfred North Whitehead and Bertrand Russell, Principia

Mathematics, The Cambridge University Press, Firs E on

0.



definition. It is rather taken as primitive. The postu—

lates of System I are used to characterize this primitive.

The considerable hearing which modal logic has

upon existence is illustrated in System I in that, only in

a modal system such as System I, can a primitive "existence"

be adequately characterized. Had System I been an entirely

material logic, the resulting system would not have been

awficiently rich in connections with the primitive "existence"

to have specified the interpretation intended for it.

One such connection, between deducibility and

existence, which is called to our attention in "The Logic

of Existence", consists in the invalidity of the following

argument:

Santa Claus lives at the North Pole. (1)

:.Someone lives at the North Pole. (2)

The argument from (1) to (2) is invalid because, in addition

to premise (l), a premise to the effect that Santa Claus

exists is required in order that (2) might be inferred.

Because of this consideration, System I contains

only the formula:

fx.Elx —3 (3y)fy (3)

rather than the stronger:

fx -3 (3y)fy (4)

Systems of modal logic which leave existence out

of account and contain the invalid formula (4), contain untrue

theorems such as:



 

 



~0~ (3x) (fxv~fx) (5)

Difficulties occasioned by results such an (S) in systems of

quantified modal logic, like those of Ruth Barcan Marcus3

and Rudolf Carnap,4 have caused much controversy among

logicians.

Unlike Mr. Leonard's system, System I contains as

a law, the formula: "Elx", and thereby also contains the

restriction that only terms which denote are allowed as

suitable for substitution. For this reason, System I is so

to speak, a logic of denotation.

A material logic which, unlike Mr. Leonard's system,

does not introduce terms that do not denote, does not require

a notation for singular existence. It will be maintained in

what follows, that a modal logic requires consideration of

singular existence even though that logic does not allow of

terms that do not denote.

 

3. Ruth C. Barcan, "A Functional Calculus of the First Order

Based on Strict Implication." :29 Journal 9; Symbolic Logic,

vol. 11 (1946) p. 1.

_ "The Deduction Theorem in a Functional

Calculus of First Order Based on Strict Implication", The

Journal 9; Symbolic Logic, vol. 11 (1946) p. 115.

‘ g;_ , "The Identity of Individuals in a Strict

Functional CalciIfis of Second Order", Thg Journal 9f Symbolic

Logic, vol. 12 (1947) p. 12.

4. Rudolf Carnap "Modalities and uantification”, 1p;

Journal of Symbolic Logic, vol. 11 1946), p. 33.

 

 

Meaning and Necessit , The University of

Chicago Press, I947.

 



 

       



1.3 To a certain extent, System II is based upon a

criticism of "The Logic of Existence." However, before

considering this criticism, it might be well to review

certain traditional difficulties concerning existence.

Parmenides made claims to the effect that every-

thing that we believe in or speak of must exist; or put in

other words, we cannot believe in or speak of a thing that

does not exist. A fair sample of such doctrines is to be

found in Plato's Thg Sophis :5

Stranger. The truth is, my friend that

we are faced with an extremely difficult

question. This "appearing" or "seeming"

without really being and the saying of ‘

something which yet is not true--all these

expressions have always been and still are

deeply involved in perplexity. It is

extremely hard, Theaetetus, to find correct

terms in which one may say or think that

falsehoods have a real existence, without

being caught in a contradiction by the mere

utterance of such words.

Theaetetus. Why?

Stranger. The audacity of the statement

IIes in its implication that "what is not"

has being; for in no other way could a

falsehood come to have being. But my young

friend when we were of your age the great

Parmenides from beginning to end testified

against this, constantly telling us what he

also says in his poem:

'Never shall this be proved-~that

things that are not are; but do

thou, in thy inquiry, hold back thy

thought from this way.‘

So we have the great man's testimony, and the

best way to obtain a confession of the truth

 

5. Plato, Th; Sophist, 236D-237B.



may be to put the statement itself to a mild

degree of torture. So, if it makes no dif-

ference to you, let us begin by studying it

on its own merits.

In System I, a theorem affirms that everything we speak of

exists, or that it is impossible to speak of a thing that

does not exist.

It can be proved that:

(x)E:x ) (x)(an ) Elx) (6)

(where 'xSy' abbreviates 'x speaks of y')

and further that:

(X)E!x ' (7)

and thereby:

(x)(an ) Elx) (8)

Since it can also be obtained that (8) is analytic, it follows

that it is impossible, in the sense of inconsistency, that

anyone speaks of a thing that does not exist.

However, Parmenides' injunction may rather be to

the effect: "Do not speak with terms that do not denote".

Putting the rule in such a terminology of mention rather than

of use changes the rule from a necessarily true, and hence

unbreakable one, to one which is breakable, and in fact is

broken.

Thus for instance, we might ask, is it true that

"Santa Claus wears a red suit"? Or even, is it true that

"Santa Claus does not exist"? Apparently, each of these

sentences is not true, since were they to be true, the term
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"Santa Claus" must denote something having respectively the

properties of wearing a red suit and of not existing.

The point of the second of "Parmenides' rules"

would then seem to be to prevent us from asserting sentences

which must be automatically untrue because they contain terms

which denote nothing.

Sensible though this second rule seems, the

acceptance of it raises a particularly vexing problem of how

an assertion of non-existence can be true, since such an

assertion seemingly must break the rule if it is to be true.

1.4 The last difficulty was left unresolved. However,

before proceeding to a discussion of any of the several ways

of resolving it that will be recognised here, a way of avoid-

ing it will be examined that will not be followed here.

This way of avoiding the difficulty might be called

"the logic of possibles".

This approach will recognise some things that, while

they do not exist, nevertheless are at least "possibles", and

claim that every term denotes something and that terms such

as ”Santa Claus" merely denote possibles rather than actuals.

"Possible logic" will recognise two systems of

quantifiers. Square brackets might be adopted as a notation

for generalization in an inclusive sense over both possibles

and actuals: "[Xfo" to mean: f is true of everything,

possible or actual. The more usual sort of generalization

 

 

 



over everything that exists might be defined:

(x)fx =Df|:x](E£x)fx). A weak form of existential general-

ization might be defined as:L3fox =Df~IxJ~fx. The usual

strong form of existential generalization might be given the

definition: (3x)fx =Df l3x](E:x.fx).

Mr. W. V. Quine has discussed this problem and

criticised the position of "the logic of possibles" outlined

here.6 He makes the well taken point that while "existence"

is a free word and hence there is nothing to stop us from

using it in such a way as to apply to only a special class of

things rather than to everything unrestrictedly, to do so is

nevertheless to take away the word's usual meaning.

However, it is not only the case that the'logic of

possibles" takes away the meaning of the term "existence,"

but it takes away the meaning of quantifiers as well. In fact

the "logic of possibles" reinterprets the whole of logic as

applying to only a restricted class of things, with a new

set of quantifiers and kind of existence for the things that

are left over. In short, an objection to "the logic of

possibles" is that what was meant by parenthetic quantifiers

in the first place is the meaning which the "logic of possibles"

gives to bracket quantifiers, after the parenthetic quantifiers

have been suitably misinterpreted.

 

6. Willard Van Orman Quins, "On‘What There Is", From A

Logical Point of View, Harvard University Press, l9é3.



The logic of possibles achieves its extension of

the usual logic by misconstruing that logic in a narrow way.

1.5 A clue to a resolution of the problem of how there

can be true statements of non-existence is to be found in

one standard means of making such statements--by employing

Russell's theory of definite descriptions.

The sentence "the man who lives at the North Pole

does not exist" can be true without incurring any paradox.

This is so since it can be read as saying that the preperty

of being a man living at the North Pole has either no in-

stances or more than one instance. A feature of the

sentence that is important to note is that though the definite

description occurring in it does not denote anything, it

nevertheless does refer to something; namely the property of

living at the North Pole.

Frege has proposed the term "oblique" to apply to

linguistic expressions which, although they do refer, do not

do so in the usual mode of denotation. The definite des-

cription in the example in question would seem to be

occurring in a way which perhaps could be described by Frege's

"oblique".

In any case, the term "oblique" will be taken in all

of the following discussion to apply to any reference made

by a term which is not a reference by denotation. The term

 

 



"oblique" in its present meaning might be defined as follows:

("ny" abbreviates "x refers to y", "ny abbreviates "x

denotes y", and "xOy" abbreviates "x obliquely refers to y").

x0y =Df ny.-ny (9)

Such oblique usages of terms allow non-denoting terms to be

used in true sentences because such terms may refer in some

oblique way to something of which the sentence says some-

thing true.

So to speak, the last statement of Parmenides' rule

should be reformulated so as to read: "Do not speak using

terms that do not denote and are not used obliquely". Any such

non-oblique or denotative mode of reference will be referred

to hereafter as "direct reference".

As was mentioned above, System I is a logic of

denotation, and therefore also a logic of direct reference.

System II on the other hand, is a logic of con-

notation and of oblique reference. System II is based upon

a mode of reference in which the referents are connotata

rather than, as in System I, denotata. Angle brackets

("<>") are introduced in System II with the meaning that

an expreSSion together with angle brackets enclosing it shall

be taken to name the connotatum of the expression enclosed in

such brackets. Although the usage of angle brackets is

characterized in System II by postulates and rules of trans-

formation, two points concerning the interpretation might be

mentioned here rather than deferred to Chapter IV.
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First, the relation of connotation is analogous

to that of denotation in that in either mode of reference,

a term has at most one referent, but differs from the latter

in that every referent in the mode of connotation is a

characteristic or prOperty which is, so to speak, a

definitional criterion by which one identifies the associated

denotatum. This is to say, the possession of, or failure

to possess, the connotatum of a given term is a test by which

a thing may be respectively accepted or rejected as the

denotatum of that term. Secondly, sentences as well as

terms may be enclosed in angle brackets, and if the former is

the case, then the indicated connotatum is a definitional

characteristic of a state of affairs.

However, the meaning of the angle bracket notation

will be explained in more detail later. The last point to

be made in the present section is the criticism of "The Logic

of Existence", which was mentioned at the opening of Section

1.3 but was deferred until a consideration could be made of

the difficulties which lead to Parmenides' injunction in

one or another of its forms.

That criticism is that "The Logic of Existence"

allows statements of non-existence to appear in the system

without an explicit notation indicating the mode of reference

in which such statements are to be interpreted. The absence

of such a notation becomes even more serious in the interpre—

tation of propositional logic than in the interpretation of
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a functional logic such as "The Logic of Existence". It

 
will be maintained later, that many formulas which are valid

laws of propositional logic if interpreted in a direct mode

of reference, are not valid when interpreted in another mode

of reference.

1.6 Every denotative logic, such as System I, allows

the substitution only of terms which denote in any inference

carried out within that logic. As a consequence of this,

any argument which is purportedly carried out within such a

logic, but which contains steps which make substitutions of

terms which do not denote for free variables in formulas

of the logic, is an invalid argument, and since it is not

carried out within the rules of the logic in question, is in

fact not an inference of that system of logic at all. One of

the purposes of developing System II is to show that at least

some of the paradoxes of the theory of types require such

arguments in order that they might be inferred.

In particular, the term "k" defined:

k =Df f<~rf) (11)

would seem not to denote a property. Speaking obliquely,

the property of non-self—application does not exist. But if

such is the case, then the argument which leads to Russell's

paradox is not an inference within either System I or

Principia Mathematics.  
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Russell proscribesin general, all reference to

"illegitimate totalities". It will be suggested that the

phrase "illegitimate totality" might be interpreted to mean

"non-existent totality". Parmenides' injunctions then pro-

vide a means for avoiding the paradoxes of the theory of

types which does not depend upon the reason given by Russell

in formulating the theory of types, namely that unrestricted

generalization is not possible.

In fact, since no term banned from use by Parmenides'

injunction denotes something, it follows that the injunction,

while it does restrict the vocabulary of a language to which

it is applied, does not correspondingly place any limitation

upon the range of subject matters which can be discoursed

about within that language. Or in other words, avoidance of

paradox, and unrestricted generalization, are together possible.

Put differently, since there are no non-existents, and

hence no non-existent totalities, we may restrict general-

ization to "legitimate totalities", and also, generalize quite

unrestrictedly to everything.

As a summary of the position on existence outlined

above, the following quotation from a tract which Cornford

suggests was written in approximately 400 B.C., speaks for

itself:7

 

7. Francis Macdonald Cornford, Plato'g Theory of Knowledgg,

Routledge & Kegan Paul Ltd., p. 209.
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"It seems to me in general that there

is no art that is not, for it is irrational

to think that something which is is not.

For what 'being' have things that are not

which one could look at and say of it that

'it is'? For if it is possible to see

things that are not, as you can see things

that are, I do not understand how one can

regard them as not being, when you can see

them with your eyes and think of them in

your mind that they are..."
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CHAPTER II

DIRECT DISCOURSE AND DENGTATIVE LOGIC: SYSTEM I

2.1 Formation rules and Nomenclature.

2.11 A purpose of Chapter II is to develop a quanti-

fied modal logic. This quantified modal logic will be

referred to hereafter as System I.

2.12 The primitives of System I are those of the pro-

positional modal logic of C. I. Lewis,1 and in addition, five

primitives peculiar to this system. Two of the latter

primitives are signs of grouping.

2.121 The primitives of Lewis are the curl ('~'), the '

dot ('.'), and the diamond (’0').

2.122 The first of three additional primitives that are

not signs of grouping is the predicate of universal in-

stantiation ('A'). To assert the sentence 'A is true of f',

or, 'Af' is to assert that 'f is a property possessed by

everything'. (The expression 'A' is adopted to suggest a

contraction of 'all'.) The more usual notation '(x)fx' will

later be introduced by a definition involving 'A'.

In Principia Mathematica '(x)fx' is not interpreted

to be synonymous with 'f is true of everything unrestrictedly'.

The theory of types calls for a limitation upon the

 

1. Clarence Irving Lewis and Cooper Harold Langford, Symbolic

Logic, The Century Co., 1932.
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universality of a generalization.2 However in the present

system, the interpretation of 'Af' is intended in the un-

restricted sense.

2.123 The second primitive in addition to those of C. I.

Lewis is the predicate of singular existence ('EE').

2.124 The third primitive is the cap (”N'). The cap is

placed over variables preceding prepositional formulas. The

resulting formulas signify pgpperties. Although the cap is

often taken to signify classes, a double cap (EAT) will be

used for this purpose in the present system. The double cap

is introduced by a definition Which is essentially the

Principia Mathematicg definition of indefinite descriptions.3

2.125 The two signs of grouping of the present system are

the left parenthesis ('('), and the right parenthesis (’)').

C. I. Lewis uses a dot system of grouping in his systems of

propositional modal logic. The use of parentheses rather than

dots is a departure of the present notation from that of C. I.

Lewis. (Other departures, all minor, will be noted in due

course.)

2.13 Two kinds of variables occur in System I. 'p', 'q',

'r', or one of these variables followed by a numerical sub-

script will be employed as p;ogositional variables. 'x',

 

2. A. N. Whitehead and Bertrand Russell, Principia Mathematica

v.1 Chapter II.

3. Ibido, *20001’ V0 1 p0 188.
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'y', 'z', 'w', 'f', 'g', 'h', or one of these letters fol-

lowed by a numerical subscript, will be used as n93:

propositional yggigplgs.

2.14 'F' and 'F' followed by a numerical subscript will

be referred to as formula variablgg. These will be the only

meta-linguistic variables used. They do not occur in

System I.

2.15 A variable-sequence is defined to be any formula

satisfying all of the following conditions.

(1) The first sign of the formula is a left

parenthesis, and the last sign of the

formula is a right parenthesis;

(2) Every sign of the formula that is

neither the first nor last sign of the

formula, is a non-propositional variable;

(3) At least two signs of the formula are

variable tokens.

2.16 A first formula is defined to be any one of the fol-

lowing expressions.

(1) (~p)

(2) (p.q)

(3) 60p)

(4) E!

(5) A

2.17 A wgll fggmgd formula is defined to be any first

formula, any variable-sequence, or any expression obtainable
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from first formulas and variable-sequences by means of one

or more successive applications of the following Formation

Rulgg. (Not all first formulas and not all well formed

formulas are assertable, or propositional.)

FRl. A well formed formula may be formed by sub-

stituting in any well formed formula, F, any

propositional or non-propositional variable or

well formed formula for any occurrence of any

variable which is respectively propositional

or non-propositional, provided that occurrence

is free in F.4

FR2. A well formed formula may be formed by pre-

fixing any series of one or more capped non-

. propositional variables not containing two

variable tokens of the same variable type, to

any well formed formula F, such that F contains

at least one occurrence which is free in F of

each variable in the series being prefixed to F.

 

2.18 F1 is bound in F2 if and only if:

(1) F1 is a variable, and F2 is a well

formed formula; and

(2) There is a formula, F3, such that:

(a) F1 is contained in F3 and F3 is

contained in F2;

4. "Propositional" and "non—propositional" are defined below,

in 2.111; "free in F" is defined below, in 2.19.
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(b) F3 can be formed by an application

of FR2; and

(c) F3 contains in its initial series

of capped variables, a variable of the

same variable type as F1.

2.19 F1 is free in F2 if and only if:

(1) F1 is a variable and F2 is a well

formed formula; and

(2) F1 is contained in F2 and F1 is not

bound in F2.

2.110 F1 binds F2 if and only if:

(1) F1 and F2 are tokens of the same variable

type; and

(2) There is a formula F3, a formula F4,

and a formula F5; such that:

(a) 'F1 and F2 are contained in F3; and

(b) F4 is a series of capped variables,

and F; a prOpositional formula, such that

F3 can be formed in accordance with FR2,

by prefixing F4 to F5; and

(c) F1 is contained in F4, and F2 is not

bound in F5.

2.111 A pzopositional formula is any well formed formula

the first sign of which is a left parenthesis. A ppp:

propositional formula is any well formed formula the first
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sign of which is not a left parenthesis.5

2.2 Definitions.

2.21 A well formed non-propositional formula, F, is proper

if it satisfies either of the following conditions.

(1) No occurrences in F of any variable are free

in F, and the substitution of F for 'x' in the formula 'Elx'

yields a true sentence.

(2) There is at least one occurrence of a variable

which is free in F, and the substitution of F for 'x' in the

formula 'Eix', and subsequent existential generalization of

the resulting formula with respect to every free variable

occurring in it yields a true sentence.

2.22 C. 1. Lewis' definitions of the modal and truth

functional connectives are adopted in this system, with the

exception of the definition of strict equivalence. A double

arrow (Kiy') is here used as a sign of strict equivalence.

System I contains the following additional

definitions.

D1. 331‘ =Df ~(A5‘:(~(rx))

D1 defines the predicate of plural existence.

D2 defines the Principia notation for universal

instantiation.

D2. (x)fx =Df Ai(rx)

 

5. For example, the first three first formulas are pro-

positional, and the last two are non-propositional.
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D3 defines the Epippipip notation for plural existence.

D3. (3x)fx =Df 3:i(rx)

D4 defines identity.

D4. x=y =Df (f)(fx)fY)

D5 defines the definite description.

D5. f(9x)gx =Df C3x)(fx.gx).(x)(y)((gx.gy)) x=y)

Finally, D6 defines class abstraction.

D6. rich) =Df (3h)(fh.(x)(gx a hx)

Definitions 5 and 6 are essentially the Principip

definitions, *14.01, and *20.01.

2.3 Postulates.

2.31 The propositional logic of System I is C. I. Lewis'

System S4. System I therefore contains Lewis' postulates

B1-B4, B6, B7, and Becker's postulate.6

2.32 Four postulates concerning quantification are assumed

in System I.

Pl (x)fx.E!y-3fy

P2 (x)(p-3(E!x) fx))€3(p-3(x)fx)

 

6. These are:

B1. (p.q)“3(q.p)

B2. (p. )-3

B3.

B4. ((p. q).pr)-—3(p.(q. r))

B6. ((p—Bq).(q-3r))—B(p—3r)

B7. (p .-9(p—3q))

Becker's Postulate. ~O~p—3~<>-<>~p

(B5 of Lewis' original postulate set for S4, has

been shown by McKinsey to be reducible to those above. See:

J. C. C. McKinsey, "A Reduction in Number..." , American

Mathematical Society Bulletin, vol. 40 (1947), BT‘EEfiiI
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P3 O~ (3x)E!x

P4 A Elx

2.4 Transformation rules.

2.41 Some expressions involve predicates formed with cap-

ped variables in such a way that the capped variable expression

as a whole, so to speak, "reduces to" an expression not in-

volving capped variables. For example, the expression:

(§(Mx)a) (l)

which says of a, that it is an x such that M is a property

of x, reduces to:

(Ma) (2)

which says of a, that it possesses M.

Again, predicates involving more than one capped

variable may also "reduce to" simpler expressions. The

expression:

(99(ny)ab) (3)

reduces to:

(Rab) (4)

The following definition is an attempt to codify

the relation of reducing to. This definition is not itself

a transformation rule, although whenever a first line reduces

to a second line, the second line is deducible from the first.

The corresponding transformation rule--the rule of reduction--

will be defined later.

2.42 F1 reduces to F2 if and only if:
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There is a variable sequence, F3, containing n%1

variables (n>O) and a well formed formula, F4, consisting

of a sequence of n capped variables followed by a proposi-

tional formula, F5, such that:

(1) F1 can be obtained from F3 by substituting

F4 for the first variable occurrence in F3, and some non-

propositional variable or non-propositional formula for every

other variable occurrence in F3; and

(2) F2 can be obtained from F5 by sub-

stituting for each variable occurrence in F5 which is bound

by a variable in the kth position in the series of capped

variables preceding F5 in F4, the expression substituted for

the k/lst variable occurrence in F3 in the series of sub-

stitutions prescribed in (l).

2.43 If a formula or variable is substituted in another

formula for one or more expressions to yield a resultant

formula, some of the signs in the resultant formula are

obtained by exchange of a substitute for an expression in the

formula upon which substitution was carried out, while other

signs in the resultant formula are simply copied from the

formula Upon which substitution is carried out. Signs of the

former sort will be said to result from exchangg, and those of

the latter sort, to result gppm pppyipg.

2.44 For the sake of a more usual notation for quantifiers,

and other variable binders, definitions 2, 3, 5, and 6 were

given in section 2.22. However, System I recognises only caps
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There is a variable sequence, F3, containing n/l

variables (n>O) and a well formed formula, F4, consisting

of a sequence of n capped variables followed by a prOposi-

tional formula, F5, such that:

(1) F1 can be obtained from F3 by substituting

F4 for the first variable occurrence in F3, and some non-

propositional variable or non-propositional formula for every

other variable occurrence in F3; and

(2) F2 can be obtained from F5 by sub-

stituting for each variable occurrence in F5 which is bound

by a variable in the kth position in the series of capped

variables preceding F5 in F4, the expression substituted for

the k/lst variable occurrence in F3 in the series of sub-

stitutions prescribed in (l).

2.43 If a formula or variable is substituted in another

formula for one or more expressions to yield a resultant

formula, some of the signs in the resultant formula are
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formula upon which substitution was carried out, while other
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formula Upon which substitution is carried out. Signs of the
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There is a variable sequence, F3, containing n/l

variables (n>O) and a well formed formula, F4, consisting

of a sequence of n capped variables followed by a proposi-

tional formula, F5, such that:

(1) F1 can be obtained from F3 by substituting

F4 for the first variable occurrence in F3, and some non-

propositional variable or non—propositional formula for every

other variable occurrence in F3; and

(2) F2 can be obtained from F5 by sub-

stituting for each variable occurrence in F5 which is bound

by a variable in the kth position in the series of capped

variables preceding F5 in F4, the expression substituted for

the k%lst variable occurrence in F3 in the series of sub-

stitutions prescribed in (1).

2.43 If a formula or variable is substituted in another

formula for one or more expressions to yield a resultant

formula, some of the signs in the resultant formula are

obtained by exchange of a substitute for an expression in the

formula upon which substitution was carried out, while other

signs in the resultant formula are simply copied from the

formula upon which substitution is carried out. Signs of the

former sort will be said to result from exchangg, and those of

the latter sort, to result £39m pppyipg.

2.44 For the sake of a more usual notation for quantifiers,

and other variable binders, definitions 2, 3, 5, and 6 were

given in section 2.22. However, System I recognises only caps
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as "official" binding signs, hence it is assumed that all

defined expressions introduced by D2, D3, D5, and D6, are

eliminated prior to application of all except the last of the

following transformation rules. The last transformation rule

is a rule for introducing such defined expressions subsequent

to an inference not involving them. The Transformation Rules

of System I are the following.

TRl. (Adjunction, abbreviated 'Adj') If F1

and F2 are postulates or inferred lines, then the

line F1.F2 may be inferred.

TR2. (Detachment, abbreviated 'Detach') If

F1 and F1I3F2 are previously obtained lines, then

F2 may be inferred.

TR3. (Exchange) If F1 is an obtained line, con-

taining F2, and F26$F is an obtained line, then

3

F3 may be substituted for F2 in F1 to yield an

inferred line F4; provided that every variable

type is such that, there is a token of that type

which is free in F2 but bound in F1, if and only if,

there is a token of that type which is free in F3

and bound in F4.

The proviso to TR3 is necessary because without it,

an inference of the following sort would be

sanctioned by TR3.

(A9(fxv~fx)) (5)

(rxv~rx)<=—=> (fyv-i‘y) (6)

(A§(fyv-fy)) (7)
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Line (7), inferred from (5) and (6), is not well

formed. However, this "inference" violates the requirement

that every variable type of which there is an occurrence free

in the substitute, but bound in the line in which the sub-

stitute occurs, must have an occurrence in the substituted

expression which is free in the substituted expression, but

bound in the line in which the substituted expression occurs.

TR4. (Free variable substitution) Any

variable which is propositional or non-propositional

may be substituted for every free occurrence in any

previously obtained line of any variable which is

respectively propositional or non-propositional

provided; every sign in the resulting line which

results from exchange is free in the line as a

whOle.

TR5. (Bound variable substitution) If F1 is a

capped variable in any obtained line, then any

non-propositional variable may be substituted for

F1 and every variable bound by F1 provided; that in

the resulting line, every variable F2 is such that

F2 is bound by the variable substituted for F1 if

and only if F2 results from exchange.

Examples of the need for the proviso to TR5 are the

following.

(Afi(fyv~fx))) (fyv(A§¢~fx))) (9)

(Ay(fyv~fy))) (fyv(AxC~fx))) (9)
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If its proviso is ignored, TR5 would sanction the inference of

the invalid (9) from the valid (8). The part of the proviso

to TR5 which is violated in going from (8) to (9), is the

requirement that every variable in the inferred line which is

bound by a capped variable resulting from exchange must itself

result from exchange. The further demand of the proviso to

TR5 that all bound variables in the inferred line which result

from exchange must be bound by the capped variable which

results from substitution, is violated in the following invalid

argument.

(Ai(A§(rxy))) ) (fxy) (lo)

(Ay(A9(fyy))) ) (fxy) (11)

(10) is a valid formula of System I, while (11)

is not even well formed.

' TR6. (Formula substitution.) Any propositional

or non-propositional formula, F1, may be sub-

stituted for every free occurrence of any variable

which is respectively propositional or non-

prOpositional in any obtained line, provided; every

variable in the resulting line which is free in an

occurrence of F1 resulting from exchange, is also

free in the resulting line as a whole, and every

non-propositional formula in the resulting line is

proper.

The following argument illustrates the need for a

part of the proviso to TR6.
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(Ai(p)rx)) 3 (p)(Ai(rx))) (12)

(Af((rx) J (fx)) 3 ((fx) 3 (A§(fx))) (13)

(12) is a valid law of System I, while (13) is not

valid. The proviso to TR6 is violated in that, not every

variable in the resulting line which is free in an occurrence

of the substitute which results from exchange, is free in the

line as a whole. The latter part of the proviso to TR6 is

worded so as to apply only to occurrences of the substitute

in the resulting line which result from exchange. The purpose

of this restriction is to allow some perfectly valid infer-

ences which would be proscribed were this part of the proviso

made to apply to every occurrence of the substitute in the

resulting line.

<4i<p><rx)>) 3 (p3<A9<ry))) (14>

(ia<(ry) 3 (fx))) ) ((ry) D (Aicry>)> (15)

The inferalce from (14) to (15) is a substitution

of '(fy)' for 'p' in (14) to yield (15). Both the inference

itself and the formulas involved are valid. However, because

(15) contains in its consequent an occurrence of the sub-

stituted '(fy)', which contains an occurrence of 'y' which

is free in that substitute but not free in (15) as a whole,

this valid inference would not be allowed by'TR6 if its

proviso were to be so worded as to apply to any occurrence of

the substitute in the resulting line, rather than to only those

occurrences of the substitute which result from exchange.
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That part of the proviso to TR6 which demands that

every formula in the resulting line be proper, has to do with

the avoidance of the paradoxes of the theory of types, and its

relevance will be discussed later.

TR7. (Reduction, abbreviated 'Reduc') If F1

is any obtained line which contains F2 and F2 reduces

to F3, then a new line may be inferred by sub-

stituting F3 for F2 in F1.

TR8. (Universal Generalization, abbreviated

'U.G.') If F1 is any postulate or theorem, con—

taining at least one occurrence of some variable

which is free in F1, then a new line may be infer-

red by substituting 'A' for the first variable of

some two variable variable—sequence and a formula

which can be formed in accordance with FR2 by fol-

lowing a capped occurrence of the variable in

question by F1, for the second variable of the

variable-sequence; provided that in the resulting

line, every non-propositional well formed formula

is proper.

A ninth transformation rule will often be appealed

'to in the course of proofs. This rule governs exchange in

zaccordance with definitions. Although listed as one of the

irules of the formalized part of System I, TR9 will only on

<3ccasion be involved in formal proofs. Often TR9 will only

lye used to introduce contextually defined terms and expressions



such as the classical notations for quantifiers, which must

be eliminated prior to application of the other transformation

rules. Therefore, TR9 will frequently be somewhat informal in

application, its proper use being often left in part to intuition.

TR9. (Definitional exchange) Any expression may

be exchanged with its definitional equivalent in

any postulate or theorem. Definitional exchanges

may be preceded by one or more substitutions of

variables or formulas for each occurrence of some

free variable in the definition, subject to the

restrictions of quantifier control. Such sub-

stitutions may be followed by one or more reductions,

also prior to exchange.

2.5 Theorems.

2.51 Proof annotations in the derivations to follow will

follow the method of C. 1. Lewis in Symbolic ngig. The

proofs of Section I will be given in full. The proofs of

later sections will be abbreviated in accordance with con—

ventions which will be introduced prior to the use of these

abbreviations. Certain theorems of Lewis' system S4 not proved

in Symbolic Logic will be stated without proof. The theorems

of section 0 are the latter theorems of S4. The theorems of

section 1 are dependent upon the first postulate, those of

section 2 upon the first two postulates, and those of section 3

upon the first three postulates, and those of section 4 upon
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upon all four postulates, while those of section 5 are

miscellaneous items dependent upon various combinations of

the postulates.

2.52 Section 0.

'1‘.0.1 ~0~p «3 ~O-0~p

T.O.2 ~0~p .3 (q8~<>~p)

13.0.3 (paq) —3 (r-3(p3q))

T. 04 ~<>-<>~(pv-p)

r.0.5 ((pv~p)-3q)-3~<>~q

’i‘.0.6 (paq)—3~°~(p3q)

2.53 The following is a translation of the f3fi¥i?§¥¥gfis

in §2.32) for functional logic in System 1, into standard

notation.

rl (Mahmud) -3(£x))

£2 ((A2(pat(szx))(rx))))awautm

s3 (<>(~(3'.sz))) '

B4 (E11)

2.54 Section 1.

r1.1 ((A1) 3((sz)3(£x)))

(From 14.25 L and L; (AH/p; (13::qu (rad/r)

((((Af).(Elx))-3(fx)) é? ((Af)-3((E§x))(fx)))) (1)

(rrom (1), and 2.1, by Exchange) ED (2)

In more usual notation, Tl.1 might be written:

(x)fx -3(E'.x)fx).

and could have been proven in this form. However, had T1.1
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been proven in the latter form, some steps in the proof would

not be explicitly sanctioned by the transformation rules.

In particular, the rule for exchange in accordance with def-

inition would have been somewhat informally applied.

T1.2 (((fx).(3!x)) -3(31f))

(From 12.43 L and L: (Af)/P; ((Elxhlfo/Q)

(((Af)-8((E!x))(fx)))-3((~((Elx))(fx)))-3(~(Af)))) (1)

(From Tl.l, and (l) by Detach) “

((~((E'.x))(fx)))-a(~(Af))) (2)

((2), by Formula Substitution; £(~(fx){/f)

H-Hazxnd(~(unx>n -3(~(.a(~(:xnm (:5)

((3), by Reduo) ‘

((~( (sunHuHH a (~(12(~(rx))m (4)

The formula '(£(~(fx))x)' in (3) reduces to '(~(fx))'.

Applying the definition of 'reduce to' (see section 2.42) with

n‘l, and:

F4;

F5;

«£41:an

'(~(fx))'

'(xx)'

vierw

'(~(fx))'

it can be seen that the conditions of the definition are met.

(From 14.12 L and 1.: (sthp; (”inn/q)

((~((Etx))(~(fx))))(=$ ((E'.x).(~(~tk))))) (5)
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(From (4). and (5), by Exchange)

(((Elx).(~(~(fx))))-‘3(~(a§(~(fx))))) (a)

(From 12.5 L and L: (fx)/p)

((3)6 (~(~(fx)))) (7)

(From (6), and (7), by Exchange)

(Manama(~(A£(~(:x))m (a)

(From (8), and 01, by exchange in accordance with def.)

(((Etx).(fx))-3 (3'.f)) (9)

Although step (9) was obtained by means of exchange in

Accordance with Definition, it is not actually a part of the

unformalized development of System I. only those definitions

which must be eliminated prior to application of the Trans-

formation Bules are incompletely formalized. To have explicitly

given the conditions under which definitions not eliminated

prior to application of'the Transformation.Rules, may be

exchanged for their definitional equivalents, would have

required two rules for definitional exchange; one applicable

only to definitions eliminated prior to such application, and

another, applicable only to definitions not so eliminated.

Because of its inconvenience, such a procedure is not followed

here. However, the defhnition called for in (9) need not be

eliminated prior to application of the Transformation Rules,

and.therefore (9) is at least in principle, capable of being

formalized.



 

(
u
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(From 12.15, L and L: (szx)/p; (fx)/q)

(((Etx).(12))é¢((fx).(E:x))) (10)

(From (9) and (10) by exchange) QED. (11)

2.55 In subsequent proofs, various abbreviations will be

used in order to simplify exposition. rarentheses will be

omitted if grouping is evident from context. Some lines of

proofs, easily supplied by the reader, will also be omitted.

Although the more conventional notation for quantifiers is

no more compact than the primitive notation for quantifiers

introduced above, the former will for the most part replace

the latter. If signs of grouping are omitted, the scape of

a first connective will extend over the scope of a second,

if the first precedes the second in the following list:

'td'. (43', '2', '3', 'v', '.', '0', '~J, "'. Following

the proofs there is a catalOgue at all formulas assumed to

be proper.

2.56 Section 2.

can (p-3(x)fx)-3(x)[p-B(3'.x)fx)3

(Tl.l, To.3)

(p-3(x)fx)afl(p-3(x)fx).(,(x)fx-3(n‘.'.x)fx)3 (1)

((1), 11.6 L&L) (p.3(x)rx)-3[p-a(szx)rx)l (2)

(15.2 par) [p-3(s:x)rx)J-3[stx)[p-a(s:x)rx)34 (a)
t"

((2). (a), 11.5 L&L)

(p—3(X)fx)sBEth3EP-3(E:x)fx)ll (4)
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((4), U.G., -2) 13;) (5)

12.2 (x)fp-3(s:x)rx)3tam-hum)

(12, 22.1, 11.03 Lei) :10 (1)

12.3 (x)[(s'.x.rx)—3pj(shank—3p;

(12.2, 12.44 1&1.) (x)[~(szx)rx)-3~p.e¢(~(x)£x-a~p) (1)

((1). ~p/p) .151) (2)

"12.4 (x)(p-3fx)-3(p-3(x1fx)

('11) [(x)(P-3fx)..$'.x)J-3 (p-arx) (1)

(15.2151) mammal) (2)

((1), (2), 110.3)

[(x))p-3fx).otxg-B[(p-fo).£fx-3(ntx)fx)li (3)

((31,112 1a..) [(pr-afx).me-atpamxmn (4)

((4). U. 3., 14.25 1&1) I

(X)[(x)(p-3fx)-3(Jix)[p-3(;S'.x)fx)33 (5)

((5). :2) :33 (6)

Theorem 2.4 illustrates both a way in which quanti-

_ fied modal logic differs from quantified material logic, and

also the neel for including existence in modal legic. Jhile

the analogue of 2.4 with material implication replacing strict

implication is true hiconditionaly, the converse of 2.4 is not

true (see comment after T2.7), and in order to obtain a law

analogous to T2.4 the main connective of which is an equi-

valence relation, the antecedent of 2.4 must be weaxened by

introducing 'E!’ as in T2.2.
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r2.5 (x)(£x-3gx)-3[(x)£x—3(x)gx3

(1’1) (x)(fx—agx).mx-3(fx-ng) (1)

((1). r1, T0.3)

(x)(fx'381).E'.x-3((x)fx.)£'.x—3fx).(fx-3gx) (2)

((2). 11.6 JUL-L, 14.26 Lax.)

(x)(fx-381)-3 Elx)[(x)fx-3(E$x)gx)] (3)

((3), U. G., 22) can ’ (4)

T2.6 ~<)~(x)£x¢a(x)~0~(E'.x)£x)

(T2.2: pv~P/P) (x)(pv~p—3.E'.x)fx) (=Hpv~p-3(x)fx) (l)

(T0.5) (pv~p-QE'.x)fx)¢=}-O~(E1x)fx) (2)

(TO.5) (pv~p-3(x)fx)®~9~(x)fx (3)

((1), (2). (3)) QED (4)

r2.7 (ad-494:1? ~°~(x)£x

(T2.4: pv~P/C1) (x)(pv~p-3fx)-3(pv~p-3(x)fx) (1)

(Tons: tic/a) (DV~p-3fx)9~O-fx (2)

(T0.5: (x)fx/q) (pv~p-3(x)fx)®~0~(x)fx (3)

((1). (2>,'(3)) can (4)

The converse of T2.7 is not valid. an.exception to

the converse of T2.7 can be obtained by substituting 'E%' for

'f' in such a supposed law. The "law" fails because, while it is

necessarily the case that everything exists (see T2.15). it

is not the case that everything necessarily exists, and in

fact, of anything it is contingent that it exists (see T3.1).

Had the converse of T2.4 been valid, than the con-

verse of 12.? would have followed. Hence the invalidity of
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this converse, as exhibited above, also exhibits the in-

validity of that converse.

12.8 (x)(fx-3gx)-3~O~(x)(fx)gx)

(12.7) (x)~0~(£x)gx)-3 ~0~(x)(rx)gx) (1)

((1), 18.7 L3G.) QED (2)

T2.9 (3100 (E'.x.fx)® 0 (3x)fx

(132.6, 12.11 L&L: ~p/p) ~(x:)~0~(E'.x)fx) (as)

--Q~(x)fx (1)

((1), 33, 12.3 1.51.) QED (2)

T2.10 0(3x)fx-a(3x)0fx

(22.7, 12.43 1.21.) --0~(x)fx-3~(x)~0~fx (1)

((1). 12.3 1.21., 2.3) can (2)

The counter instance given earlier to disprove

the converse of T2.7 also disproves the converse of T2.10.

22.11 0 (x)fx a (1)0 (Elx)fx)

(11.1, T0.6) ~0~[(x)fx-3(E'.x)fx)3 (1)

(18.53 tax.) [E(inn-3(szxarx)l.o(x)£xJ-amaintain2)

((1), (2), 18.61 eat) cam-3mm...) (3)

r2.12 (3x)+(six.rx)-a +5101:

I (12.43 1.84.. 22.11) ~(x)O(E'.x)fx)-t3 ~O(x)ix (1)

((1), 12.3 1&1, 14.01 L833, 11.3) 9311' (2)

The converses of T2.11 and 132.12 can be proved

only as material implications in this system (see 513.5).

However, these converses could have been obtained as strict
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implications had Lewis' postulate Cll been assumed, or had

PS of the present system been replaced with V~0~Q~C31)E1x'.

For if it is necessarily contingent that something exists,

then as a result of the so called "paradoxical" properties of

strict implication, the theorems in question could be obtainei.

In any case, both.Qntecedent and consequent of T2.ll are

always true,.while both antecedent and consequent of T2.12 are

always false.

T2.13 is an alternative form of r2.6.

12.13 ~Q~(x)fx€=)(x)(E'.X‘3fx)

(T2.6, 18.7 LdL) QED (1)

r2.14 ~()~(x)s'.x

(22.13, 14/1, 12.1 1.2;.) QED (1)

r2.15 ~9~(x)(tx)mx)

(15.2 LdL) ix-3(fXJE%x) (l)

((1), u.c.) (x)fsix-3(rx)s'.x)3 (2)

(192.13, (2)) QED ' (3)

It is on account of T2.l5 that farmenides' claims

that everything which one talks about, thinks about, etc.,

exists, can be affirmed as so, and indeed, as logically

necessary.

Since however, the converse of T2.8 is invalid,

(f)~0~(x)(fx)mtx) does not imply (f)(x)(fxr33%x). In fact

it is not the case that (f)(x)(eramlx). Jhile all pro-

perties are extensionally included in the pr0perty of

being an existent, existence is not in the intension of
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every propertyut‘nat is, not all pr0perties "imply

existence“. For example, no necessary properties imply

existence.

T2.15

T2.17

(x)(E'.x)fx) “3(x)fx

(21) [(x)(s'.x)ix).s'.x] -3(E'.x)fx)

((1), 14.26 121, 12.5 121, 12.7 12L)

(x) (ELfox) .E'.x-3fx

(14.26 121, (2). U.G., 12) QED

(x)(E‘Lx)fx)<‘=¢(x)fx

(15.2 121) 11—3 (E'.x)fx)

((1), U.G., 12.5) (x)fx-3(x)(atx)fx)

((2), 22.16, 11.03 1&1) can

(1)

(2)

(3)

(1)

(2)

(3)

T2.17 affirms in effect, that a generalization about

everything that exists is a generalization about every-

thing.

"legitimate," or existent, totalities is an unrestrictedly

As a result or r2.17, a generalization about all

universal generalization.

T2.18

T2.l9

(31)fxd=9 (31)(E'.x.fx)

(11.3 131, 11.2) fx.E'.x-3L3x)(Elx.fx)

((1), U.G., r112.13) (3x)fx-an)(E'.x.fx)

(n.2, T2.3) (3x)(E'.x.fx)—-3(3x)fx

((2). (3)) QED

(x)(fx)-E'.x)4==v ~(3x)fx

(132.1?) (x) (-fx }~E'.x)¢=D-~(x)~fx

((1), 12.3 1&1, D.3) QED

(l)

(2)

(3)

(4)

(1)

(2)
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T2.l9 asserts that, none of a certain mind of thing

exists, is equivalent to, that kind of thing does not have

plural existence.

€22.20 (x)(y)m-3(N)(x)m

(Pl) (4:)(y)fxy.slx (y)fxy

(T1.l) (y)fxy «3(Ety3fxy)

((1). (2), 11.6 1&1, 14.26 111, 12.15 111)

(x)(3)fxy.dty.Eix-3fxy

((3), 14.26 1&1, U.G., 1'2) (x)(y)fxy.h".y—3(x)fxy

((4), 14.26 1&1, U.G., 22) QED

12.21 (x)(r)fxy<=>(y)(x)£xr

(By proof similar to that for T2.20)

(mum -3 (x)(3)fxy

((1), 12.21, 11.03 1&1) can

T2.22 (fox-ng).(x)($x-3hx)-a(x)(fx-3hx)

(21) (x)(fx-—351).E'.x-3(fx-ng)

((1): g/f. h/g, 19.68 121)

(x)(fxagx).E£x.(x)(gx6hx)-3(fx€gx).(gx€hx)

((2), 11.6 121, 14.26 1&1, U.G.. 22) QED

T2.23 (x)(fx)gx).(x)(nghx)—3(x)(fx3hx)

(Proof similar to that for T2.22)

2.57 Section 3.

1.501 9'”ng

(1)

(2)

(3)

(4)

(5)

(l)

(2)

(l)

(2)

(3)
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(731.2: s:/r, 12.76 121) s:x«:3(3x)E:x

((1), 23, 18.52 1&1) 130

T3.2 Q~(3x)fx

(n.2, EL/f, 12.76 121) "ax-3 (3x)E‘.x

((1), 19.51 L861.) Etx.fx-3 (3mm:

((2). U.G.. 132.3) (3x)fx-3 (3x)E'.x

((3), 18.52 1&1) 110

T3.3 ¢~9(3x)fx

(T3.2) O~(3x)0fx

((1). 12.10) QED

There are many true cases of plural existence.

Since it is also the case that the formula 'p-30p' is valid,

there are also many cases of consistent plural existence.

By T3.3, these cases of consistent plural existence are

also cases of contingently consistent plural existence.

These are results of the view that plural existence is

always contingent, and of some of the above laws governing

commutation of modal operators with quantifiers.

Because of these results, the present system is

inconsistent with postulate 611 of Lewis and Langford

Symbolic gggig. This postulate is one of several specula-

tions of Professor Oskar Becker. These appear in Appendix

II of Symbolic ngig, as alternative assumptions concerning

iterated modalities. These alternative assumptions are the

following:

(1)

(2)

(1)

(2)

(3)

(4)

(1)

(2)
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010: ~0~p —3 ~9-0~p

Cll: OLD-3‘0”“?

012: p3 ~0~0p

and in addition to these, one further alternative:

013: 00p

Lewis shows that in a system such as the present

one, which assumes postulate’ClO, postulate (:15 has exceptions.

Furthermore, if 012 be added to such a system, (:11 becomes

a theorem. Since the present system is inconsistent with

C11, it is also inconsistent with 012.

Hence in the present system, all of the above

speculations are decidable. 011, 012, and 013 all have

exceptions, while 010 is a postulate.

T3.4 O(x)fx

(T3.2, D3) Q-(x)~fx (1)

(1) Omar-11: (2)

((2). 12.3 121) QED (3)

TEA affirms that all generalizations are con-

sistent. This view is a result of assuming that it is

contingent that something exists and that a generalization

to everything that exists is a generalization to everything

unrestrictedly. That it is contingent that something

exists is equivalent to its being consistent that nothing

exists. But a generalization to everything that exists

would be guaranteed true were it the case that nothing
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existed, since the antecedent of that generalization

would be always false. hence any generalization to

everything that exists--and therefore any generaliza-

tion--is consistent. Although T3.4 affirms as consistent,

even a universal generalization over an inconsistent

property, as in 'O(x)(fx.~fx)' , nevertheless, System i

does not allow as valid '0[(3x)E'.x.(x)(fx.—-fx)]' . That

is to say, it is true that everything is (say) red and

not red, only provided that nothing exists.

23.5 +(fx)-3~(fx-3;~3'.x)

(18.52 1&1, 23.1, 12.44 1&1) 122 (1)

23.6 (x)02x)o(x)rx

(23.4, 15.2 1&1) ans (1)

133.7 Q(x)fx)(x)Q(E'.x)fx)

(22.11) ,QED (1)

23.8 (x)O(E:x)£x))o(x)2x

(23.6) (x)<)(s:x)rx)3<)(x)(E:x)2x) (1)

((1). 22.17) QED (2)

23.9 on”: '4 (x)o(s:x)rx)

(23.7, 23.8) QED (1)

T5.10 ¢~Gx)fx 5 (x)0~(E'.x.fx)

(23.9) QED (1')

505.11 ~0(x)fx 5 (3x)~¢(E'.x)fx)

(23.9) QED (1)
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2.58 Section 4.

2.581 For the most part, the theorems of section four

depend upon the postulate 'Etx'. This postulate is so to

Speak, tacit, in the system of Principia Mathematics, since

while Principia mathematics contains the restriction that

only terms which denote are allowed in the system, 34 of

the present system does not appear in Principia mathematics.

The logic of rrincipia.hathematica is contained in the

present system. T4.4 and T4.5 of System I correSpond

respectively to l"10.1 and *10.21 of Principia. However,

the inference of these formulas characteristic of Brincipia

Mathematics depends upon the postulate 'Elx'.
 

2.582 The first three theorems and the fifth are

presented in section four because they are key theorems in

the inference or the postulates of Principia.mathematica.

Unlike the remaining theorems of section four, they do

not depend upon B4, and might have given in section two.

24.1 (x)(p)fx) '3PD(x)fx

(P1) (x)(p)fx).E'.x --3p3fx

((1), 14.26 1&1) (x)(p)fx).p 42:13::

((2), U.G., 21) (x)(P)fx).P —3(x)2x

((3), 14.26 1&1) 222

T4.2 p)(x)fx—3(x)(p)fx)

(11.7 1&1.) p.(p)(x)fx) a (x)fx

((1), T1.1) p.(p)(x)fx) ‘3 :31fo1:

(1)

(2)

(3)

(4)

(1)

(2)
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((2), 14.26 1&1) p)(x)fx €3£Lx)(p)fx) (3)

((6), U.G.. 22) 253 (4)

T4.5 (x)(p)fx)¢$p)(x)fx

(T4.1, T4.2, 11.03 Ldl) 23 (1)

T4.4 (x)fxlfx

(21, 14.26 1&1, r4) QED (1)

24.5 (x)(p)fx) ) (p)(x)fx)

(24.1, 14.1 1&1) 150 (1)

Theorems such as T4.5 and 22.2 are sometimes

referred to as "confinement” laws. Such confinement laws

can be validly formulated for material connectives without

intrOducing tne predicate 'Ei'. This fact, plus the

validity or 24.4 in a logic allowing only of terms wnicn

denote, makes possible in such a.logic, a quantified material

calculus that does not contain PEl'.

T4.6 (3X)Etx

(T1.2) .;l‘.x.;-S'.x-8(3X)L3'.x (1)

((1), 24) QED (2)

fihile T4.6 is orten taken to so an assumption or

logic, in a system such as £rincipia hathematica such a
  

theorem cannot be obtained, since a notation for singular

existence is not available.

2.59 Section 5.

25.1 x‘y ) (fx-ny)
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(T4.4, f/x) (f)(fx)fy) D (fxlfy)

(D4, (1)) x‘y J [(fx-fo) ) (fx-ny)]

((2), 15.8 1&1, 12.1 1&1) 122

T5.2 x‘y)~0~x‘y

(19.52 1.1%: fx/q, fy/r, Elf/p, 14.1 L811.)

(fx-ny) ) (ELf.fx-3fy)

((1). T5.1) x‘y ) (2:1.2x-ary)

((2). 14.26 1&1, U.G., 18.7 1&4, 24.3)

x‘y 3 (r)~9~(s:23(rx)£y))

(T2.6, (3), D4) 188 H

25.3 x‘y 2 ~Q~x=y

(18.42 1&1, 25.2)

T5.3 is true if modal terms are interpreted

as terms of the object language. If a is identical with

b then everything true of a is also true of b. Hence

modal terms of the object language which apply to a also

apply to b.

On the other hand, if modal terms are construed

as terms of the metalanguage, then those that apply to

'a' may not also apply to 'b'. This is so because 'a'

and 'b' are not identical, and therefore not every pro-

perty of 'a' is a prOperty of 'b'.

For example, the sentence '~Q~(RaveRa)' meaning,

a is red or a is not red, is true; and would be a theorem

of the present system, were the constants 'a' and 'R'

(l)

(2)

(3)

(l)

(2)

(5)

(4)

(l)
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added to the list of first formulas for System 1.

Similarly, "(Bav~Ra)' is analytic' is also true.

However, if an occunsnce of 'b' is substituted

for one out not for two of the occurrences of 'a' in each

of these quoted sentences, and further a is identical

with b, then the result of substitution on the first of

these sentences is true while the result of substitution

on the second sentence is a sentence which would in many

languages be false.

In particular, in the language of System I, if

'analytic' were defined to mean a sentence which is a

substitution instance of a theorem of System 1, then

"(Ravaflb)' is analytic' would be false.

But '~9~(Rav~Rb)' makes an assertion about the

same thing as does i'~'°"(Rav~Ra)', and moreover makes the

same claim concerning that thing as does the latter.

Hence both of these last two sentences are true.

T5.5 is not valid if definite descriptions of

the nussellian sort are allowed to replace the variables

in T5.3. No assertion of necessity containing a definite

description the scOpe of which is the sentence or formula

to which the sign of necessity is prefixed, is res-

pectivly true or valid. This is because every statement

containing a definite description is analysed by hussell into

a statement of plural existence; and none of these are

analytic. For example, ‘~O~(qx)(fx):(qx)(fx)' which is

equivalent to, L~0~((3x)(x=x.fx).(x)(y)((fx.fy
) x=y))' is

not only invalid but contravalid as well.
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Definite descriptionsare involved with T§.3 in

the usual formulations of certain "paradoxes" such as the

paradox of morning star and evening star and the paradox

of analysis.7 A. F. Smullyan was the first writer to notice

that in systems using Russell's analysis of definite des-

criptions, these "paradoxes" could be traced to certain

fallacies involving scopes of definite descriptions,8 al-

though suggestions of such a solution can be found in the

earlier writings of Alonzo Church.9 W. V. Quins has sug-

gested some of the latest versions of such paradoxes,10

while Frederic B. Fitch has given what is perhaps one of the

latest and most comprehensive analyses of the fallacies

inVOIVEd e 11

In addition to the above reasons, there is at least

one other reason why T5.3 may seem paradoxical. Some

logical writing (for instance Frege's) and perhaps in-

formal discourse, enploys a sense of identity which is

apparently quite different from that of '=' in System

I. By 'a is identical with b' is meant something is

named by 'a' and by 'b'. Under this interpretation, the

 

7. W. V. Quine, "Reference and Kodality", in From 3 Logical

Point 2; View.

"The Problem of Interpreting Modal Logic",

Egg—EEEFEEiffif'symbolio Logic, vol. 12 (1947) p. 43.

8. Arthur Francis Smullyan, Review of "The Problem of Inter-

preting Modal Logic", The Journal 2; Symbolic Logic, vol. 12

(1947) p. 139. .

l: r_____________, "Modality and Description," Thg

Journal pf Symbolic Logic", vol. 13 (1948), p. 31.
 

9. Alonzo Church, The Journal 9: Symbolic ngic, vol. 7

(1942), p. 100.

10. See footnote 7.

11. Frederic Brenton Fitch, "The Problem of Morning Star

and Evening Star", Philosophy pf Science, vol. 16, pp. 137-141.



 

I
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term '=' is taken to involve surreptitous mention of

expressions taken as arguments to it. These statements

are also statements of plural existence and so are con-

tingent. In consequence of this, T5.3 again fails to be

valid with '=' so interpreted.

If definite descriptions are not substituted for

variables in T5.5 and the sense of "' is that of D4, and

h49~' is given the interpretation of 'necessarily' rather

than the interpretation of 'is analytic', then T5.3 loses its

paradoxical features. Or rather, T5.5 is a "paradox of

necessity" in the same sense that '~p)(p)q)' is a "paradox

of material implication".

T5.4 ~0~x=x

(12.9 1&1, U.G.) (cumin)

((1), D4) x‘x ’

((2), 25.2) QED

T5.5 31(Qx)(fx)¢$(3x)(fx).(x)(y)[(fx.fy))x‘y]

(D5, 12.11 1&1) '

E'.('(x)(gX)€-9(3x)(;d'.x.gx).(x)(y)[(gx.gl)))x=y3

((1): 1/8; T2.18) QED ‘

If the primitive 'El' takes a definite des-

cription as an argument then T5.5 shows that the resultant

statement is equivalent as a theorem to a condition which

is equivalent to the condition taken in Principia

,Hgthematica to be equivalent by definition to 'E$(Qx)(fx)'.
 

Or, put differently, what is essentially the Principia's

general definition for 'fTQx)(gx)' reduces in System 1 to

(1)

(2)

(5)

(1)

(2)
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what is essentially the Principia's definition for

'E%(Qx)(fx)' when 'EL' is substituted for 'f'.

This last fact is the justification for using

the same notation fer singular existence in System I

as is used in Brincipia Mathematica.

In T5.5 as in other uses in System I of definite

descriptions, the Principia convention that scOpes are

taken to be the stallest possible when not explicitly

indicated may be followed. It is however, unnecessary

to introduce scope Operators in System I, provided that

the rules of transformation are exactly followed. Perhaps

this can best be made clear by a consideration of the

example used in Principia to justify the introduction of

scOpe Operators.

The example chosen in Principia is, except for

minor notational differences, the following:32

f(Qx)gx ) P

This may be either:

[(31J(fx.gx).(x)(y)((gx.gy))x‘y)J ) p

or:

L31)((fx)p).gx).(x)(y)((gx.gy))x‘y).

But if ~Sl(9x)(gx), then the first of these is true and

the second is false. it would therefore, seem to be

necessary to introduce some such device as the Principia

scOpe Operator in order to distinguish between these two

cases.

 

12. Principia Mathematica, *14, SummarV.
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However, even prior to the introduction of

scOpe Operators, only the first of'the above translations

of the first statement containing the definite des-

cription, can be made in System I.

The second is rather a case of l‘9(fx)p)(’)x)(gx)'.

It might seem plausible that the latter could be inferred

from.'f(Qx)(gx))p' by substituting upon 'p.3p' to Obtain:

2(2x1p)(7x)(gx) ahrxapuvxugx)

then reducing this to obtain:

f(?x)(gX) )p ‘3 Q(fx)p)(’)x)(g1)

But the rule of reduction (and the definition

of 'reduce to') has been so formulated as not to allow

reduction of a sentence consisting of a predicate

followed by a definite description.

'f(7x)(gx))p' can hOwever, be inferred from

'§(rx)p)(?x)(gx)'.

That ambiguity in sentences and formulas con-

taining definite descriptions can be avoided without the

introduction of scope Operators is relevant to the modal

"paradoxes" as they have been treated by Smullyan and

Fitch. Although no explicit rules of reduction appear

in Principia, scOpe Operators appear to have been intro-
 

duced with the intent of distinguishing between sentences

which involve definite descriptions as arguments to

predicates and are obtainable by one or more reductions on

each other.
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However, to allow such reductions prior to the

introduction of scope Operators is to allow'invalid rules

of inference, as the above inference from a true premise

to a false conclusion illustrates. Hence the need for

some such device as the sCOpe Operator.

In order to obtain the modal paradoxes, such

invalid reductions must be allowed in addition to sub-

sequent invalid use of definite descriptions without

their then required scOpe Operators.

T5.6 222(2x)

(12.1 1&1, 14.1 1&1, U.G.) (x)(£x 5 2x) (1)

((1), 24.4) (3g)(x)(fx 2 gr) (2)

((2), T2.18) (33)(E:g.(x)(£x 2 gX)) (3)

((3),.D4) Q.E.D.l

In spite of 15.6, System I is canpatible with

Russell's thesis that classes are fictions. T5.6, as

well as any other statement containing ambiguous des-

criptions, is analysed in such a way that the ambiguous

descriptions occurring in it are syncategorematic. If for

example, the predicate '3' used above is substituted for

'f' in 15.6, the result of substitution is 'Eifile)‘. But

this resultant sentence does not literally assert existence

of a class, it is rather an assertion with a complex

notation for a relation between existence and redness.
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Similar remarxs concerning scOpes and scope

Operators apply to ambiguous descriptions as were mentioned

immediately preceding $5.6 for definite descriptions. if

System i is formally followed, then no scOpe Operators

need be used, but if reduction is taken to be applicable

to ambiguous descriptions, then SOOpe operators are

necessary.

The following is a cataIOg of formulas assumed

to be prOper in.the course of the above proofs.

Cl.

02.

03.

C4.

05.

06.

07.

08.

09.

010.

011.

012.

013.

014.

015.

A

3'.

aux)

£(~£x)

fiEp-B(Elx)fx)3

9Epa(x)fx)—3 kmxatpa «mum;

9(p-3fx) ’

9[(X)(p-3fX) atazxatpatmxnrxnu

£(fx-agx) I '

§((x)(fx-agX)-33Lx)[(x)fx-3(Elx3gx)3)

§[(x)fx-3(Elx)gx)3 -

§tpv~P-3fX)

£(pv~p-afx)

£(fxlgx)





016.

017.

018.

019.

020.

C21.

022.

023.

024.

025.

026.

027.

028.

029.

030.

031.

032.

C33.

034.

035.

036.

037.

038.

039.

C40.

£~¢~(fx)gx)

9-04 Elx )fx)

QEO~(ELx)fx)J

flomlxmzn

QKNXHX—BOMLIHXH

980(Elx)~fx)3

280~(Elx.fx)3

§L~O~(E$x.fx)3

QEEtx—Sfx]

Qw'maczx)

§[Etx‘3(fx)dix)3

QEfXDEli

9(Elfox1

£[(x)(Eurx)—aa'.x)£xi

QEfx-3(Q(E’.x)fx)x)] -

£(sz)(£(~rx)x)) '

fin-flaunm]

§(E'.x)~£x) '

£(-rx)-E'.x)

9((y)£xy)

magnum

9mm)

QUxHy )rxy.;c'.y 313'.me

QUxHN )fxy.rl'.y-3(£(E'.x)fxy )XU

9[(x)(y )ny ——3 EtyDlexy]

52



041.

042.

043.

044.

045.

046.

047.

C48.

049.

050.

051.

052.

053.

054.

C55.

056.

057.

058.

C59.

060.

061.

062.

C63.

064.
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y‘UxHnyy -—3 (9(Ety)(x)fxy)y)3

Manx-y)

§[(x)(fx-3gx).(x)(g23hx) -3LB'.x)(fX-3lix)]

£[(x)(fx-3gx).(x)(gfihx) -3 (9(3Lx)(fX—-3hx))x)3

£[(x)(rx3gx).(x)(gx3hx)—3:«3'.x>(£x)hx)3

2[(x)(£x)gx).(x)(gx)hx) .3 (Manxnfxfihxnxn

§(~dix) -

Q[d'.x.fx-3 (3mm;

§(~(£(~fx)x) I

§(Ofx)

Qtprx)

Q[(x)(p)fx).p-3£fl'.x)ij

’x‘uxnpmm a (mum);

QEpNxHx-BB'JMprxU .

Minty) I

9(331’3’)

fEx‘y )~O~(E'.r)( fx)fy ) )J

9E~O~(Eu)(rx)£y)3 I

3tx=y )(?(~Q~(a'.r)(£x)fy)))f)l

¥(£x)£x)

£(~Etx.gx)

£[(y)[(gx.gy})x‘y53

9ng.gy))x=y3 '

9m: 2 fx) '
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CWAPTTR III

OBLIQUE DISCOURSE AND CONNCTATIVE

LOGIC: SYSTEM II

3.1 The paradoxes of the theory of types were avoided

in System I by the theory of prerequisites together with

the assumption that "Qt~(xx))" and other "paradoxical

predicates" do not denote anything.

While this assumption may be looked upon as to

some degree justified simply by its avoidance of paradox

and by a certain intuitive appeal, nevertheless in the

absence of more conclusive evidence, it seems to have

the rather unsatisfactory appearance of having been intro-

duced ad hoc.

3.2 The purposes of the present section are to suggest

a system of logic within which the above questions may be

more critically investigated and to apply the resulting

system to the investigation Of the particular issue of

‘whether or not "§C~(xx))" denotes something.

3.3 The description of the following logic is not

intended to be complete. The following is an account of

some of the more salient features of a logic suitable to the

above purposes.

3.4 The questions concerning singular existence which

are prerequisites in System I, cannot themselves be inves-

tigated in System I, because these are issues which must be
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settled prior to an application of System I. This is why

a new system of logic must be developed to investigate

these questions of singular existence.

3.5 Even if a given term does not denote any existent

thing, the term itself exists. This fact suggests a

metalinguistic approach to the investigation of the pre-

requisites to System I. The central question concerning

prerequisites in connection with a term, would be whether

or not the term denoted something. If investigation

revealed that a term "a" denoted something, then the

sentence "Ela" would be true; and if "a" did not denote

anything, then "Ela" would not be true--or false.

This approach to the investigation of prerequi-

sites would be quite in accord with previous suggestions

to the effect that an oblique mode of discourse is necessary

to carry out those investigations.

To discourse in such a way as to mention terms

is to use those terms obliquely since a term in quotes is

not used in order to talk about something denoted by the

term, but rather as a syncategorematic part of a larger

expression consisting of the term in question enclosed in

quotes, which is used to talk about the term itself.

3.6 Though such a metalinguistic approach may seem

promising, it will not be followed here. The drawback of

this approach as far as the present system is concerned

consists in its adoption of semantical terms such as
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"denotation" as technical terms of the system. The

eXplication of the meaning of such terms is beyond the

SCOpe of the present discussion.

3.7 Although the present system will avoid semantical

terms as formal devices, it nevertheless will be a system

of oblique reference. The mode of reference will be that

of connotation. The meanings of "connotation" and of

"denotation" that are intended, are those which were in-

troduced informally in Chapter 1. Although no extremely

precise explication of these terms will be attempted,

since these terms will be used only to talk about the

system rather than in it, some discussion of the present

usage, in part by way of review of the discussion of

Chapter 1, would seem to be appropriate.

3.8 Both connotation and denotation are modes of ref-

erence. Each mode of reference is analogous to the relation

of naming in that, just as any given term names at most one

thing, so there is at most one thing denoted or connoted

by any term. Of these two modes of reference, denotation

is most similar to the relation of naming, and in fact is

here taken to be synonymous with it.

The single things which are denoted and connoted

by a term will be referred to respectively as that term's

denotatum and connotatum. The connotatum of any term or

of any sentence is always a property.





The connotatum of a term is a characteristic

which is so to speak, a definitional criterion by means

of which one identifies the denotatum of the term. A

candidate for a denotatum of a term may be accepted or

rejected as that term's denotatum, accordingly as it

possesses or fails to possess the connotatum of that term.

3.9 The primary purpose for which System II will be

used will be to investigate questions of singular

existence. A system of connotative logic could investi-

gate the subject of connotative discourse generally, after

the anaIOgy of Russell's general analysis of definite

descriptions in any context in which they might occur, by

means of the contextual definition:

f(9x)gx =Df (3x)(Y)((EYEx=y).fx). (1)

But rather than this, the present investigation

will be concerned only with the analysis of connotative

assertions of existence, after the analogy of Russell's

analysis of this particular context for definite descriptions:

E!(?x)fx =Df Cax)(y)((fy E x=y) (2)

The reason for this restriction is of course,

that the primary purpose for which System II is used here,

is to investigate the prerequisites of System I.

3.10 An expression enclosed in angle brackets such

as "(a)" will be taken to be a name of the connotatum of

the expression enclosed in such brackets. Since the
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connotatum of an expression is a characteristic possessed

only by a denotatum of the expression, a statement of

singular existence in the connotative mode of interpre-

tation will be expressed by asserting plural existence to

be a property of a terms connotatum:

3: <8) (3)

"Santa Claus does not exist." or, "There is no Santa

Claus." might be written:

~32 (s) (4)

Sentences as well as terms may be enclosed in such

angle brackets and in this case, the connotatum named by

the bracketed expression together with the brackets enclosing

it, is a characteristic satisfied only by a state of

affairs which the enclosed sentence denotes.

In general, a criterion for the truth of a

sentence of the form:

3:<F> (5)

where F is a sentence, will be taken to be whether or not

F denotes a state of affairs.

3.11 Just as denotative logic assumes that every term

used in the logic denotes something, so connotative logic

assumes that every term used in it connotes something.

Rather than being developed as an independent

system, the following logic will be formulated as an

application of System I.
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Because of the above two points, the following

system cannot be formulated with just one kind of pro-

positional and non-propositional variables. The variables

of System I will be employed in System II with their

previous restriction that only terms which denote may

be involved in any formulas substituted for them. In

addition, in System II, the letters "u", and "v" will be

used as prOpositional variables, while the letters "a",

and "b" will be used as non-propositional variables, each

with the restriction that only terms which connote may be

substituted for them.

3.12 The following is a listing of principles of

System II. This listing is not a list of postulates for

connotative logic, but rather a combination of what might

be both postulates and theorems of connotative logic, in a

deveIOpment which proceeded more rigorously than the present

one.

P1: 33 <(u1)u2)> . 3! <(u23u3)> 3 3: <(u1) u3)>

Principle 1 might be called "The Principle of

Connotative Transitivity".

P2: 31<u> . 31<u3v> )3:<v)

Principle 2 might be called "The Principle of

mcdus Ponens".

P3: 31<u 3~ (326m))

Principle 3 might be called "The Principle of
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Double Negation". The converse of Principle 3 is not

valid. Some sentences are such that neither they nor

their negates denote a state of affairs. For example,

neither the sentence "Santa Claus wears a red suit." nor

its negate, "Santa Claus does not wear a red suit" indic-

ates a state of affairs about someone denoted by the term

"Santa Claus".

P4: 33(u.v> E (32(u).31(v>)

Principle 4 will be called "The Principle of

Conjunctive Distribution".

p5: 31(u v v) 3 (3:(u>v3:<v>)

Principle 5 will be called "The Principle of

Di sjunctive Distribution". Unlike the Principle of

Conjunctive Distribution, which is true biconditionally,

the converse of the Principle of Disjunctive Distribu-

tion is not true. Let "RC" abbreviate "Santa Claus wears

a red suit". Let "W" abbreviate "Snow is white.". It is

true that W31<Rc>v 31(W>", because it is true that

"32(W>" and that everything which functions as a term in

the sentence denotes something, and therefore the dis-

junction as a whole is true. However, the sentence

"3:<Rc v W>" is false (and not merely untrue), because

"c" does not denote anything, and therefore the sentence

"Rc v W" cannot denote a state of affairs about something

denoted by "c".
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valid. Some sentences are such that neither they nor

their negates denote a state of affairs. For example,
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denoted by "c".
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P6 31<u>3 316m u)

Principle 6 is another form of a principle of

double negation.

P7: 31(u)v~3:<u)

Principle 7 is a law of excluded middle.

Principle 7 is actually not a special principle of System

II, but is rather merely a direct application of the usual

law of excluded middle of System I. P7 is mentioned here

mainly in order to allow comparison of it with the invalid

"law of excluded middle": W3!(u>v 316:u>".

P8: (3!<a>.3!<b>)) (31(ab)vfflé~ab>)

Principle 8 is another law of excluded middle

which is very similar to the invalid "law" mentioned

immediately above P8. Through the use of non-propositional

variables, the fact can be expressed that the invalid "law"

above is true under a restricting condition. Principle 8

expresses the fact that so to speak, there are no exceptions

"in nature" to the law of excluded middle; or in other

words, that everything either possesses or fails to possess

any given property.

In addition to stating such particular principles

of connotative logic as those above, certain general meta-

linguistic rules can be formulated which describe how valid

laws of denotative logic can be transformed into valid

laws of connotative logic.
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Rule 1: Form the negate of any valid formula of the

material propositional calculus. Replace each occurrence

of a denotative propositional variable in the resulting

formula with an occurrence of some connotative proposi-

tional variable. Enclose the resulting formula in angle

brackets, and precede the whole with the expression “~33".

The resulting formula will be a valid formula of connotative

logic.

Rule 2: If F1)F2 is any valid formula of the propositional

calculus, such that every variable an occurrence of which is

in F2, also has at least one occurrence in F1, then form

,3:<F1))3K?éi Replace each occurrence of any denotative

propositional variable in the resulting formula with an

occurrence of some connotative propositional variable. The

resulting formula will be a valid formula of connotative

logic.

The above 8 principles and two rules suffice to

determine a considerable amount of material connotative logic.

3.13 Since System II is being developed within System I,

the methods of inference of System I are also available in

System II.

An additional rule for System II is a rule for

substitution upon free connotative variables, analogous to

the rules of System I for substitution upon free denotative

variables.
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Two further rules, or perhaps extensions of previous

rules, are a rule of reduction, and a rule for exchange in

accordance with definitions, when the expressions which

are respectively reduced or exchanged, occur within angle

brackets and hence may not denote anything.

3.14 If the above principles and methods of connotative

logic are employed, the formula "~31<k>" may be proved to be

a theorem of System II (where "k" is Russell's predicate) as

follows:

(From P3: kk/u) :3:(kk>)-(3:é-kk>) (1)

((1), and exchange in accordance with the

definition: k =Df {it-13))

310(k)) ~(3:<—i‘(~rf)k>) (2)

(From (2) by reduction) 310(k) )~(3£<—~kk>) (3)

(From P6) ~31<- (kk)>)~ 310(k) (4)

(From (3), and (4)) map 3 ~3£<kk> (5)

(From (5)) ~3i<kk> (6)

(From (6) by exchange in accordance with the

definition of "k")

~3z<14<~rfm> (7)

(From (7) by reduction) ~gfllé-kk> (8)

(From (6), and (8) by adjunction)

~32<kk> ..._3:<. kk> ( 9)

(From P8: k/a; k/b) (31<k>.:31<k>)3(33<kk>v

31<~kk>) (10)
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(From (10)) 336:) Mazda.) v 326mm (11)

(From (9). and (11)) ~33<k> (12)

3.15 Principle 8 and its use in the above proof sug-

gest that investigation of principles of connotative logic

which involve non-propositional, and possibly, quantified

variables, might prove fruitful.

However, it seems very unlikely that connotative

logic will admit of a calculus of non-propositional var-

iables which will have an importance in connotative logic,

comparable to the importance of the theory of quantifiers

in denotative logic.

One of the difficulties lies in finding an inter-

pretation for bound variables which are enclosed in angle

brackets and bound by capped variables or quantifiers which

are outside the angle brackets. A similar problem of

interpretation arises in all oblique modes of speech.

An expression occurs obliquely in a given sentence

if and only if:

(1) The expression in question purports to denote

something (or is a term), and occurs in the sentence.

and, (2) When taken as asserted, the sentence does not

purport to denote a state of affairs concerning, or to dis—

course concerning, something purportedly denoted by the

expression.
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A frequent oblique mode of Speech is mention.

The term "water" in the sentence, ""Water" has five letters."

satisfies the two conditions above, and therefore occurs

obliquely in this sentence.

Because of these difficulties of interpretation,

such fundamental methods of inference as Universal and

Existential generalization, are unavailable for connotative

variables. The absence of these methods is in itself a

serious limitation upon connotative logic insofar as it

treats of non-propositional variables.

3.16 As a final attempt to give some explication of the

use of angle brackets in this chapter, it may be helpful to

indicate that §(f)(gf E ~ff) is plausible as a connotatum

of "f(~(ff))". Or, put differently, that:

<f<~ff>> = é(r)(gf s ~ff)

(The present author hopes that'§(f)(gf E ~ff)"

denotes something.)



 

H
I



67

CHAPTER IV

APPLICATIONS

4.1: Paradoxes of Logic

4.1 Russell's paradox can be avoided on the grounds

that,

~3:<k), (1)

and (l) was proven as a theorem in the course of develop-

ing System II. In this paradox, 'k' is defined:

k =Df x0~xx). (2)

Paradoxes very similar to Russell's are given in Principia

Mathematigg. These paradoxes involve relations which are

analogous to Russell's monadic predicate. One such

relation is there defined:

R =Df many). (3)

Substitution of 'RRR' for 'p' in 'p E p' yields:

(RRR) 5 (BER). (4)

Substitution on (4) in accordance with (3), and sub-

sequent reduction, yields:

(BBB) E~(RRR). (5)

Although it will not be done here, a proof similar to

that for (1) can be given in System II for:

~3:(R). (6)

By this means, the paradoxical (5) can be avoided in

much the same way as Russell's paradox. Relations with
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definitions similar to (2) and (3) can be given for any

number of arguments. Each such relation gives rise to

a paradox. All such paradoxes are avoidable by a proof

of non-existence for the relation on which each depends.

Each such proof can be given in System II.

Grelling's paradox is a paradox rather different

from any of these. We might examine how this paradox can

be dealt with in System II.

Grelling's paradox arises from considerations such

as the following. Some terms are applicable to themselves,

others are not. For instance 'short' is applicable to

itself, as is ’word', while 'elephant' is not. Let us

define 'Heterological', (abbreviated 'Het') to mean non-

self-applicable. If 'Het' is heterological, then it is

not heterological; and if 'Het' is not heterological,

it is heterological.

Abbreviating 'is applicable to' by 'App', 'Het'

may be defined as:

Het =Df ie-xAppx). (7)

Grelling's paradox may be obtained as follows.

Taking,

'Het'App'Het' 5 Het'Het', (8)

as a postulate, we can from,

Het'Het‘ 5 Het'Het', (9)

by means of a definitional exchange in accordance with
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(7), subsequent reduction and use of (8), obtain:

Het'Het' 5-Het'Het’. (10)

(10) is the contradiction of Grelling's paradox.

Another rule in addition to Rules 1 and 2 of

System II, governing transformationofvafim laws of

denotative logic into valid laws of connotative logic,

might be formulated as follows.

Rule 3: If F2 is any valid formula of material logic that

contains no propositional variables, and F1 is a con-

junction of formulas which are substitution instances of

'3:<a)' by replacement of 'a' with a variable, and F1

contains at least one instance of every variable of which

F2 contains an instance; then 1:133:02) is a valid

formula of connotative logic.

If Rule 3 is added to System II, then,

~(3:<aet). 3:<'Het').33QHet'App'Het' 5

Het'Het'>) , (11)

can be proven as follows.

(By Rule 3) (31(a) .3141») )33: {ab 5 ab) (a)

((a): Het/a; 'Het'/b)

(3:<Het).3:('Het'>))3:(Het'Het' 5 Het'Het'> (b)

((b), exchange in accordance with (7), reduction)

(3:(Het>.3:<'net'>))33<Het'31et' 54Het'ipp'

Het'> (C)

(By Rule 2)
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3i<aba ca>333Q~aba E.~ca> (d)

((d): 'Het'/a; App/b; Het/c)

3:<'Het'App'Het' 5 Het'Het'>)

32<~'Het'App'Het' 5..Het'_aret') (e)

((c), (e)) (3:<Het).az<'net'>.3:<'net'App'Het'

5 Het'Het'>)) (3!<Het”—T_et' 5 ”"Yet'App'Het'>.

32<~'Het'li.pp'Het' 5 ~Het'Het'>) (f)

Rule 2) _31<(ab E ~bcb).(~bcb E ~abX)3

3:<eb 5 ~ab> (g)

((g): Het/a; 'Het‘/b; App/c)

3:<(Het'Het' 5 ~‘Het'App'Het').(~'Het'App'Het'

5»- Het'Het')>)31<Het'Het' 5 ~Het'IIet'> (h)

((f), (h), by Conjunctive Distribution)

(33(Het).3:<'Het'>.3:<'Het'App'Het'

Het'Het'>) 231(Het'net' 5 ~Het'Het'> (1)

(By Rule 1) A3L§~v(ab E ~ab)> (j)

((3): Het/a; 'Het'/b)

~314~ (Het'Het' 5 ~Het'Het')> (1:)

(From P6 of System II) 3£<Het'I-Iet' 5 enet'netp

333:6 (BIet'Het' 5~ Het'Het')> (l)

((k), (1)) ~31<Het'I-Iet' 5 ~Het'Het'> (m)

((1), (r0) QED (n)

In order that the Grelling paradox be avoided,

it is not necessary to maintain that any particular one

of the factors to the conjunction in (l) is false. Since
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the derivation of the paradox depends on each of these

factors being true, to Show that their conjunction is

false is sufficient to avoid the paradox.

Another paradox for which interesting results

can be obtained by application of the foregoing logic is

the following.

fa ands~fa appear to Share such consequences as

Eta and (3x)(fxv~fx), but Since these consequences are

contingent, it follows that<O(fa¢~fa), or, that fa and

~fa are not contradictories.

W. V. Quine has made some comments to this paradox

in a review of a discussion of it by Everett J. Nelson.1

Since Mr. Quine's review raises several important questions

concerning both this paradox and other closely allied

paradoxes, the following discussion of the above paradox

will follow this review in the points raised in it.

hr. Quine opens his discussion by making the well

taken point that "the supposed existential consequences

of 'fa' and *‘fa'" should be questioned. However, Mr.

Quine goes on to suggest as evidence for this that the

entity a is not a "constituent of the propositions fa

and ~fa", and as evidence for this in turn:

 

1. Everett J. Nelson "Contradiction and the presupposi-

tion of existence" Mind, n. s. v. 55 (1946), pp. 319-27.

Review by W. V. Qulne,The Journal of S‘mbolic Log__,

vol. 12, p. 52.
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... consider the propositions Hesperus is

the Evening Star and HeSperus is the Morning

Star. Being respectively analytic and

synthetic, these propositions are distinct:

yet the supposed constituents Evening Star

and morning Star wherein alone they can

differ are one and the same thing. Clearly

we must View the constituents not as the

Evening Star and the Morning Star (i.e., the

planet named by 'Evening Star' and 'Morning

Star'), but rather as the respective meanings

of 'Evening Star' and 'M rning Star'.

Without here investigating all of the very complex

questions raised by this comment (such as what 'being a

constituent of a proposition' means, under what conditions

propositions are distinct, whether or not the morning star

and the evening star are the only constituents of the

propositions in question wherein they can differ, and

whether named things or meanings are involved in pro-

positions); it will only be argued here that the contention

that HeSperus is the Evening Star and Hesperus is the

Morning Star are respectively analytic and synthetic, is

highly questionable.

Some of the questions involved in the problem of

when statements of identity are analytic and when con-

tingent, were raised during the elaboration of the system

above. In application of these results, it is the case

that, if the phrases 'Evening Star' and 'Horning Star'

are meant to be definite descriptions in the sense of,

say, Russell; then both Hesperus is the Evening Star and
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Hesperus is the Korning Star are contingent for the

reasons given in the discussion in the system. On the

other hand, if these phrases are meant to be names then

both Hesperus is the Evening Star and Hesperus is the

horning Star are analytic. But in neither case will one

of these be analytic and the other contingent.

In any case, the original point still stands that

fa does not always entail Ela.

Kr. Quine mentions in passing (as they will also

be mentioned here) some further paradoxes such as hat

while 9 is 0, is analytic; 9 is the number of planets, is

contingent.

Hr. Quine next examines certain questions concerning

the contrast between meaning and naming and the conditions

under which sentences of the form 'Elx' can be inferred from

premises of the form 'fx'. These issues lie outside the

scope of the present discussion since they are topics in-

volving metalogic rather than modal connections. Yet in

this discussion Mr. Quine does suggest certain conditions

under which fx may entail Elx. He suggests that logical

functions of E: entail existence, but that other functions

might be regarded as unknowable as to whether or not they

entail existence. The positive part of this comment wauld

certainly seem to be correct, and indeed to constitute

one of the soundest means available for determining if
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fx entails Elx. On the other hand the negative part of

the suggestion is not always true, Since it can be

proven that analytic properties do not entail existence

(Theorem 3.5).

Finally, Hr. Quine very nearly recognises the

position that is here being proposed when he suggests

that "the usual convenient techniques of logic which

allow proof of '(3x)(fxv~fx)' and inference of '(3x)fx'

from '(x)fx' can be accepted as a semi-logical amalgam,

comprising pure logic plus a true extra-logical premise

to the effect that there is something." The only inac-

curacy in this statement as a description of the present

position is that the true extra-logical premise is not

that 'something exists' but rather the formula ‘Elx', the

result that something exists being a theorem, not a

postulate.

4.2: Identity of States of Affairs.

Truth and falsity are ways of being representative.

A sentence is true or false accordingly as it does or does

not have a denotatum. As mentioned earlier, the denotata

of sentences are here taken to be states of affairs (ahd

the term "proposition" is here taken to be synonymous with

"state of affairs").

Often, in spite of what has just been said, the

terms "true" and "false" are applied to states of affairs
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(or propositions); rather than sentences. Moreover, it

is clear from an examination of such instances of usage

that the meanings of "true" and "false" are not species

representativeness. Some authors have suggested that

such usages Should be dismissed as mere confusion; on the

grounds that only sentences can be true or false while

propositions or states of affairs simply either exist

or do not exist.

But putting the matter this way actually serves

to bring to light the quite legitimate meaning which "truth"

and "falsity" have in application to states of affairs.

Using "P" for the property of being a proposition,

the terms "true" and "false" might be defined in this

second sense as follows:

Tx =Df Px.E£x (1)

Fx =Df Px.~E!x (2)

Among the consequences of these definitions are the

facts that there are no false states of affairs, but

rather, all states of affairs (or propositions) are true:

~(3X)(PX.FX) (3)

(x)(meTx) (4)

(3) and (4) are consequences of Th. 2.8; the principle

that everything exists.

Furthermore, these results are consonant with the

View stated above thatirue sentences have denotata, while

false sentences do not. If a true sentence is a sentence
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that denotes a true state of affairs; then all sentences

that are not true (e.g. false sentences) do not denote a

true state of affairs. But sentences that do not denote

a true state of affairs do not denote any state of

affairs (again because everything exists). Therefore

false sentences do not denote states of affairs.

This View of true sentences as posessing denotata,

while false sentences do not, raises an apparent problem

concerning the connectives of logic.

When we assert a material conditional:

A3B (5)

it would seem natural to interpret such a statement as

asserting that the state of affairs denoted by "A" stands

in a certain relation (material implication) to another

state of affairs denoted by "B". Howeversuch a view cannot

be the case when "A" and "B" are false; since in this case

there are no states of affairs denoted by "A" and "B" to

stand in the relation of material implication (or any

other relation) to one another. Obviously, similar remarks

could be made about other logical connectives as well--what

can the connective 'r" be applying to in the sentence “wA”

if "A" is false?

The answer to this difficulty suggested here is

that the connectives of propositional logic are all re-

lations with twice as many argument places as propositional

variables whichtmey connect. These arguments are properties

t
a
-
“



77

‘5
“
h
i
s
.
u
‘
J

-‘
.
.
1

and individuals, rather than states of affairs. For

instance, rather than writing a material implication as:

p3q (6)

we might more appropriately write this formula as:

(f,x)J(g,y) (7)

construing "D" as denoting a relation of four argument

places rather than two. If this is done, then of course the

above problem about what is being related by the relation

of material implication when sentences which are argu-

ments to "J" are false disappears. What is being related

are properties and perhaps individuals, but in any case

things which exist even if they do not result in a state

of affairs.

Again, similar comments apply to thecmher con—

nectives such as "~". The curl can be construed as a

dyadic relation, and the formula "~p" written as:

~'(f,x) (8)

Such a construal of the propositional connectives

need not involve the abandonment of the use of pro-

positional variables however. In fact, such a construal

need not involve any alterations in the usual prOpositional

logic. Propositional variables can be viewed as, so to

speak, "dummy" variables and the expressions which are

substituted for them as determining the arguments to the

connective in.mxstion though not denoting these arguments.
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In short, the change being suggested is only a change in

interpretation of the usual propositional calculus rather than

a change in the calculus itself.

What this suggested change amounts to is the view

that sentences which occur as arguments to propositional

connectives are not terms (although the same sentence

might very well be a term in other contexts).

However, if this view be a correct one, it has

some significant consequences for the problem of under

what circumstances states of affairs or propositions are

identical with one another.

An important question ini;his regard is: if pro-

positions are such that each is deducible from the other,

then are they always identical with one another?

Suppose we were to attempt to formulate this

question as follows: "Is it the case that:

pééq:):p = q ?" (/)

The Sign of strict equivalence in the antecedent

of (9) however does not relate states of affairs denoted

by substitution instances of "p" and "q" while the Sign

of identity in the consequent of (9) does. For this

reason the problem which has just been eliminated in the

case of propositional connectives is raised again in (9)

in the case of the Sign of identity occuning in it. If

false sentences are substituted for "p" and "q" in (9)

then since these sentences will occur as terms, the
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resulting sentence will be purporting to say something

about their denotata when in fact there are no such

denotata.

Evidently, (9) is not a satisfactory formulation

of the problem. However, the fact that true sentences do

denote states of affairs might suggest that it could be

satisfactorily formulated under the restriction that the

substitution instances of "p" and "q" be true. (Of course

this restriction cannot be formulated merely by asserting

(Q) to be materially implied by the condition that "p.q"

be true:

(p.q)) ®®q=3=p = q) (10)

for (10) involves the same problem as does (9); nanely

that since substitution instances of "p” and "q" occur

as terms in the sentence as a whole, the sentence purports

to denote some fact or state of affairs about things

denoted by those terms which do not denote anything.)

The question might however, be formulated as

follows. Let the term "P" be defined as:

xPy, f : x is a prOposition analysable into y's

having the property f.

Now the restricted form of the problem might be

put:

(fx)¢$(gY). sz,f. wa,g :J: z = w (ll)

This last formulation avoids the difficulties

raised above in that any substitution instance of (ll)
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will not contain terms that do not denote provided that

only denoting terms are substituted for free variables in

(11).

A perhaps interesting fact; which, though it is

by no means conclusive evidence against (11), might

nevertheless lead one to question it; is that if the

usual logical assumption that any given property and any

given subject of that property determine at most one

state of affairs, is extended to the further assumption

that any given state of affairs and any given property

determine at most one subject of that property; then (11)

is false.

Suppose it to be the case that:

xPz,f. wa,f. x = y :3: z = w (12)

Let "5" name the sun, and "m" name the moon. Since:

3 fl m (13

we can infer from (12) and (13) that:

xPs,f. me,f :3: x f y (14)

Further, let "H" abbreviate "heavy or not heavy". Since

both Hs and Hm are analytic, it follows that:

rise—earn (15)

Yet from (14) it follows that:

xPs,H. me,H :3: x 1 y (16)

It is also true that since H is an analytic property; Hs

and Hm are true, or determine states of affairs, and that

therefore:
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(3X)(xPs,H). (3y)(me,H) (17)

But from (15), (16), and (17), the denial of the

principle expressed in formula (11) is deducible.

As was mentioned earlier, this result is not con-

clusive evidence against (11). However the result does

make it seem doubtful that the intuitive acceptability

of (11) is in itself enough to settle the matter.

In any case, the primary purpose of the present

argument is not to examine the question of under what con-

ditions propositions are identical. The purpose of the

present discussion is rather to show that an adequate

treatment of this question will be involved with the

logical problems raised by terms that do not denote.

4.3: A Problem in the Theory of Perception

There is a further problem; in the theory of

perception, which calls for a logic of terms which do not

denote. many authors have discussed this, or related

problems; however, the present account will make primary

reference to a paper on perception by H. A. Prichard.

Prichard asks the question: "What do we see?",

and he concludes that although the naive answer is "bodies"

this is not true because it cannot account for illusions

 

2. H. A. Pritchard, "Perception", in Knowledge and Egrceptigg

Oxford University Press, lQFO, P. 52.
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and that in fact, in doing what we ordinarily call

"seeing a body" we actually are seeing sensa (as, colors)

and mistaking these for bodies. The purpose of the present

section is to show how formulations of this point, and

others which Prichard makes, require a logic of terms

which do not denote.

To take an example which Prichard himself takes,

suppose that I ask what it is that I see when I have an

experience of seeing the moon as being yellow. If I

describe my experience as 'seeing the moon as being

yellow'; I would appear to be asserting that I am

instantiating a certain triadic relation which might be

symbolized as: "P(x,y,f)", and described in general in

this manner:

P(x,y,f) : x sees (or perceives) y as possessing

the property f.

The instance in question would then be describable as:

"a sees m as possessing the property yellow"

or: "P(a,m,Y)".

But Prichard maintains that the patch of color

which is the sensum of which I am aware when I see the

moon as yellow, is not the moon (nor presumably, the

property of being yellow) and therefore is not included

among the arguments to P in P(a,m,Y). We might therefore

introduce a further relation-~that of sensing-~in order

to have a notation for "a senses the-moon-as-yellow",
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where the phrase "the—moon-as yellow", names the sensum

in question. However, before doing this, it is as well

to notice immediately a certain inadequacy in formulation

of the phrase "the-moon—as-yellow". Prichard will wish

to maintain that sensa are relative to percipients. The

phrase "the-moon-as-yellow" (say); and thereby the

original sentence amended to: "a senses a-perceiving-the-

moon-as—yellow".

If we adopt the letter "S" as a notation for the

dyadic relation of sensing:

xSy : x scnses y.

then the above sentence might be expressed as:

aS(a—percé1ving—the-moon-as-yellow).

Or alternatively as:

aS(a-perceiving-m—as-Y).

The question naturally arises of how to interpret the

English phrase "a-perceiving-mes-Y".

A suggestion made by several investigators is to

interpret such hyphenated phrases as names for states of

affairs. As the reader may have already guessed, such a

suggestion will be followed here by regarding the phrase

"a—perceiving-m-as-Y" as denoting the state of affairs

that a perceives m as Y. The original sentence "a senses

the moon as yellow" will therefore be taken to beequiva-

lent to "aS(P(a,m,Y))".

:
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Although a does not experience either the moon,

or the property yellow in perceiving the moon as yellow;

he nevertheless does experience the state of affairs (or

proposition) that he perceives the moon as yellow. In

fact the state of affairs which a experiences (or senses)

is the patch of yellow color which is his sensum.

The purpose of the present section is not to

argue for this analysis of perceiving and sensing, but

rather to show how this analysis calls for a logic of

non-denoting terms.

Suppose that within this theory, we wished to

give formal expression to what might be regarded as a

plausible law of perception: "Whenever x perceives y as

possessing the property f; then x senses the state of

affairs produced by x's perceiving y as f.". It might

seem to be possible to express this "law" in the following

formula:

(x)(y)(f)(P(x,y,f))xS(P(X,y,f))) (1)

However this "law" is not even an admissably formulated

one in a logical system such as Egipgipig Mathemgticg.

Suppose that a does not perceive b as possessing G. From

(1) the following can be inferred:

P(a,b,G)3aS(P(a,b,G)) (2)

but since the state of affairs that a perceives b as

possessing G does not exist; (2) contains in its conse—

quent the term "P(a,b,G)" which does not denote anything.
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(Of course the expression"P(a,b,G)" is not a term

occummnce in the antecedent of (2) and therefore this

occurmwpe does not give rise to difficulty.) Ordinarily

a sentence which is a material conditional with a false

antecedent is true. However this principle presupposses

that all of the terms which appear in the material

conditional denote--as does every principle of tradi-

tional logic; and indeed, every sentence in which the

terms appearing in the sentence all occur directly in the

sentence. Since (2) contains such a non-denoting term,

it is unacceptable as it stand; and moreover, the dif-

ficulties of formulation which it raises can be given

no simple solution in any logic which permits only terms

:hich denote. Therefore in spite of the fact that (2) is

a material conditional with a false antecedent, it must

be regarded as either false or meaningless.

Prichard's point that we ordinarily mistake our

sensa for bodies; runs afoul of similar difficulties.

Suppose this point were to be formulated as

follows: "If x perceives y as f and x's perceiving y as

f is a case of ordinary, unreflective, perception; then

x mistakes P(x,y,f) for y." then "P(x,y,f)" occurs as a

term in this sentence. For the same reasons as in the

earlier example, this formulation also will break down in

cases of x not perCEiving y as f.
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Fan? more examples such as these of "principles"

of perception which call for some such logic as will be

proposed in the previous chapter could be found. These

exaMples would for the most part, occur in theories of

perception which take sensa to be states of affairs or

propositions rather than bodies; however theories which

make such proposals are today to be widely found in the

literature on perception. The formulation of such

theories in classical logical systems is not wholly

impossible. However, such formulations would involve

considerable circumlocution at best.

Perhaps enough has been said in this last example

of application, and in the preceding ones; to show that

there are uses of a logic allowing terms which do not

denote over and above whatever intrinsic interest such

a system might have.
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CHAPTER V

MISCELLANEOUS COMKENTS AND FURTHER

TOPICS OF INVESTIGATION

Sections 5.1 - 5.6 are a series of rather dis-

connected comments on several topics. All of these

comments are intended to illustrate views of their

topics which reflect the position of earlier chapters.

Sections 5:7 - 5.11 briefly indicate some further

problems of this treatment of that earlier position.

5.1 In System I, 'E!’ is a primitive. Two theorems

of System I fix the interpretation of 'E'; in the sense

that they limit the interpretations which can be made of

'E' in such a way as to prevent it from having a great

many unintended interpretations. These are:

‘~04X)B!x (1)

and,

(XX}~E!X (2)

Interpretations of 'E!‘ can easily be found

which will satisfy one of these conditions but not the

other. However, there are few alternative interpretations

which will satisfy both (1) and (2).

For instance, it has often been suggested that

'existence' can be adequately explicated by self identity.

And indeed, self identity does satisfy (1). However, self

identity does not satisfy (2); and therefore, is not
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adequate as an explication of 'El'.

Again, it is easy to find interpretations which

give conditions that are contingent of everything. But

few of these interpretations will also satisfy (1).

5.2 It has often been maintained that syntactical

criteria of inference are adequate to the purposes of

logic. There would seem to be evidence that this View

is unwise.

One of the conditions necessary to the correct-

ness of an inference isthat no false conclusion can be

inferred from a true premise. However, no sentence con-

taining a subject term that does not denote something is

true, and syntactical criteria alone never suffice to

show whether or not a term denotes. Purely syntatical

criteria of inference that are adequate, may not be as

easily formulated as was at first supposed.

5.3 It is sometimes thought that all uses of modalit-

ies as terms of the object language can be replaced by use!

of the models as terms of the metalanguage. Hore often than

not, the reasons for such a supposition are that for any

assertion of modal connection in the object language

there can always be found a parallel assertion of meta—

linguistic connection.
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This last claim would indeed, seem to be true.

So that for instance, rather than saying “~0~(fxv~fx)',

we might rather say 'analytic'(fxv~fx)". However the

first claim of the preceding paragraph is much stronger

and more dubious. Moreover, acceptance of the second

claim of the preceding paragraph by no means entails

acceptance of the first.

One of the reasons for this is that while any

statement of modality may be translated into the meta-

1anguage in such a way as to be well formed, often larger

contexts containing statements of modality are not such

that those contained statements of modality can be

translated into the metalanguage in such a way that the

larger context makes sense. For instance if the expres-

sions '9<~‘9~(fxv~fx)' and '(flxa-O ~(fxv~fx)' are translated

by replacing their contained assertions of necessity as in

the preceding paragraph, they result in 'Q analytic'

(fxv~fx)", and 'Gx)analytic'(fxv~fx)". But these last

statements are difficult to allow as well formed.

5.4 Sometimes the law (Ex)fx¢%>(3x)(Elx.fx)' is called

into question on the grounds that there are fictitious

characters in fiction. The argument is often put that

since there are fictitious characters, but no fictitious

characters that exist, the above law fails in this case.
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Actually, this last claim that there are ficti-

tious characters, is only a special case of what might

be called truth within a myth. In a sense, it is true

as claimed that in the myth of Oz, the tin woodman and

the cowardly lion exist, and that in reality these things

are not so. But to say this is only to say that given

those things asserted in the story of Oz as premises,

one can deduce that the tin woodman and the cowardly

lion exist. This might be put symbolically by using 'Oz'

as an abbreviation for the conjunction of those things

asserted in the story of Oz, 'Tx" for 'x is a tin

woodman', and 'Cx' for 'x is a cowardly lion'. The last

statements then become:

Cz-BE!(Qx)(Tx) (3)

and,

Oz-3E!(?x)(Cx) (4)

In other words, to be in a myth is to be implied by that

myth. But furthermore, the tin woodman does not exist.

We might therefore assert that in Oz the tin woodman

exists, but he nevertheless does not exist:

(Oz-3E:(lx)(Tx))c~E:(?x)(Tx) (5)

But from (S) we should not infer that there are non-

existent tin woodmen.

‘ 5 The ontological argument for the existence of God
1.,

proceeds by defining the term'God' in such a way that
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'existence' enters into its definition. The argument

then continues with a line of reasoning to the effect that

with the term so defined, it is an essential feature of

God that he exist. Since anything must possess its

essential features, continues the argument, it must then

be the case that God exists.

This version of the ontological argument might be

put into the notation of System I as follows.

he might introduce the term 'God' by a defini-

tion such as:

God =DF (qx)(E1x.Ox). (6)

Here, '0' is used to abbreviate some further qualifying

condition such as 'is omnibenevolent', or, 'is omnipotent';

over and above existence itself, as in the definition of

'God'. What this further condition means need not be

examined for the purposes of the present remark. The

present comments will be concerned solely with the

logical properties of 'El', rather than with the inter-

pretation of '0'. It may be that 'O' intensionally

contains 'E!’. This is to say, it may be that to assert

'O' of anything, is to imply that 'E:' is applicable to

that thing. In case this is so, (6) contains 'E' in a

way that is superfluous. But again, whether or not this

is so, while it will be relevant to whether or not (6)

is as economical as possible, need not be of concern for

the present point.
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The argument above infers 'EIGod', presumably

by appeal to some such principle as 'f(flx)(fx)'.

But in System I, this principle is not available,

though,

E!(?x)(fX)-3f(7x)(fx). (7)

is available. However, from (7) and (6) the desired

conclusion does not follow without begging the question,

since we require,

Ez(’)x)(szx.0x) (8)

as a premise in order to conclude 'ElGod' by means of

(6) and (7) 0

5.6.1 Concerning the previously mentioned topic of

truth within a myth, the myth that nothing exists is a

particularly fruitful one. In one sense, there would be

no truths if nothing were to exist. This is true both in

the sense that there would be no true sentences and also

in the sense that there would be no true propositions,

were it the case that nothing exists. These facts are

consequences of

(3X)Elx-€%(3X)fx (9)

by substituting "is a sentence" and "is a proposition"

for "f".

On the other hand, some things are true in an

empty universe, in the sense that there are some things

that are implied by nothings existing. This might be put:



(axli3f)(~43x)E1x-afx) (10)

5.6.2 These facts are more than mere curiosities, for

they indicate (as we see immediately below) that certain

formulas of the quantified material calculus, which are

sometimes called laws of "confinement" and of Which

(3x)(p)£x) ) (p)(3x)fx) (11)

is an example, are such that if the horseshoes appearing

in them are replaced with flowers, the resulting formulas

are not valid laws.

(11) and its converse

(p)(3x)fx) D (EIHPDfx) (12)

are both valid laws of the quantified material calculus

which govern "confinement" of existential quantifiers

over material implication. if the central connective in

(12) is replaced with a flower, the resulting formula

(p)(3x)fx) —3 (aprlfx) (13)

is invalid in System 1. An exception to (15) can be

obtained by substituting 'LBXfo' for 'p' in (13):

((3x)fx)(3x)fx) -—3 (3x)((3x)fx)fx) (14)

But in System i, the antecedent of (14) is analytic, and

the consequent of (14) contingent, and hence (14) itself,

contravalid. on the other hand, the converse of (15) is

a theorem of System i.

"Confinement" of existential quantifiers over flowers

rather than over horseshoes might also be investigated.
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If the horseshoes in the antecedent and con-

sequent of (11) are replaced with flowers, the result is:

(axnparxi 3 (pecans). (15).

But i15) would seem to have exceptions on the grounds of the

argument concerning the empty universe given at the outset

of 5.6. And of course, if (15) is rejected, then the

formula obtained by replacing the horseshoe in (15) with a

flower, must also be rejected.

rhe converse of (15) can as a strict implication,

be rejected on grounds similar to those which lead to a

rejection of (15). Substituting 'CBx)fx' for 'p‘ in

(p-3L3x)fx) —3 (Epr—fo). (16)

yields

. l(3x)fx-3(3x)fx) ~3 (3x)((3x)fx am). (17)

Which is contravalid in System I on the same grounds as is i

(14).

The converse of (15) is, however, a more difficult

case to decide. it may'be that, as with (11), the con-

verse of (15) is valid as a material, but not as a strict,

implication.

This converse,

(P—3(3x)fx) ) (Bprafx), (18)

can be shown to be equivalent in System i to

(X%Q(P.fx))Q(p.(x)fx). (l9)
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(19) may have the rollowing exception, sub-

stituting '(3x)~Rx' for 'p' and 'B' for 'f' in (19),

(where 'Rx' abbreviates 'x is red') yields

(x)0(Gx)~Rx.Rx) )0(Gx)~Rx.(x)Rx) (20)

While it would seem to be so that of everything it is true

that it is consistent both that it be red and that some-

thing fail to be red, it would seem not to be the case

that it is consistent both that something is not red and

that everything is red. But if these last things are so,

then (20) is not true.

These tentative results may be summarised as follows:

(3x)(p)fx))(p)t§x)fx) valid (21)

(p)(3x)fx))(3x)(p)fx) " g (22)

(3x)(p)fx)-3(P)(31)fx) " (25)

(p)(3x)fx)—3(3x)(P)fx) invalid (24)

(3x)(P-3fx))(P-3(3x)fx) " (25)

(p-3(3x)fx))(3x)(p—3fx) " (26)

(3x) (p—3fx)-3(p-3(3x)fx) " (2'7)

(p3(3x)fx)—3(3x)(p-3fx) " (28)

5.6.3 The laws of the above list that are given as valid

can be shown to be theorems of System I. The author is not

aware of a proof for any of the formulas listed as invalid.

There are, however, theorems of System I which are ana-

logues, respectively , of (24)-( 28 ):
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('p)(3x)£x).ELx-at'aprirx) (29)

Gx)(~(>-E'.x.p-3fx) ) (p-B(’3x)fx) (30)

(P-S(3x)fx).~$~b3'.x) D (BXHP-BfX) (31)

(3X)(~Q~E'.x.(P-3fX))—3(P-3(3x)fx) (32)

(p—3(3x)£x).~<>~ELx—3(3x)(’pgfx) (35)

The only law of this list that is of serious

interest is (29), the other laws being trivializei by

their containing a counter-analytic condition in their

antecedents.

The equivalence laws which are consequences of (50)-

(53) and laws which are similar to their converses, lose

interest for similar reasons. however, the equivalence law:

(P8(BX)fX).(BX)E'.x<—'9 (Hpr‘B‘fx) (34)

is a theorem of System 1, not so trivializei. So to Speak,

the formulas '(pBGx)fx)' , and'(3x)(p—3fx)' , are not equi-

valent because the latter makes a "surplus assumption" of

existence which the former does not make. This "surplus

assumption" is the denial of the myth that nothing exists.

5.7 This and the remaining sections of Chapter 5,

suggest prdblems which will not be investigated in this

thesis, but which might be studied if the topics discussed

here were to be carried further.

The Tarski pardigm of truth does not apply to all

sentences. Some of those to which it does not apply are
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those sentences which have terms which do not denote any-

thing as subjects.

It might be possible to extend the Tarski paradigm

to cover the latter sentences if some such codification

as the following were adopted.

Let ’8' name the sentence 'X'. The following

might then be taken as a criterion of the truth of s:

3!<X> (35)

The Tarski paradigm does not apply to sentences containing

S is true

subject terms which do not denote, because these terms

occur in the direct mode of discourse on one side of the

biconditional equivalence which formulates the test of

truth. However, such terms cannot so occur in (35), and

so such a criterion as this might extend the Tarski test

to sentences containing terms which do not denote as

subjects. I

But this method leads to an ambiguity in the case

of falsity. There are available two alternative ways

of defining falsehood. Letting as before, '8' be a name

of a sentence 'X', falsehood of 8 might be tested by the

criterion:

5 is false 5 ~33<x> (36)

or, on the other hand, by the criterion:

3z<~x> (37)

In order that a sentence be false, (36) so to

S is false

speak, requires that the sentence not say what is so,
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while (37) requires rather, that the sentence say what

is not so.

If (36) is taken as a criterion of falsity,

sentences with subject terms that do not denote are

false. If (37) is taken as a criterion of falsity,

then such sentences are neither true nor false.

5.8 One of the difficulties of the connotative logic

sketched in Chapter 4 is that the notion of an oblique

usage of a term is not adequately explicated. The

explication of the notion of oblique discourse is another

topic which might be investigated further.

An important feature of this notion is that it,

like the notions of bound and free variable, are ways

in which constituent expressions are related to larger

expressions of which they are parts. For this reason,

it is misleading to Speak as has been done above, of

an expression simply as "oblique" or as "direct", without

including some specification of the context in which the

term is intended to be asserted to be oblique or direct.

The sort ofthing that is meant by saying that a

term is oblique in a sentence of which the term is a

part, is that the sentence does not make an assertion

about something denoted by that term. However, this

definition must wait upon a clarification of the seman—

tical terms that are involved in it before it can be



regarded as an adequate explication. In this respect

the notions of oblique and direct differ from those of

free and bound; the latter being terms which can be

syntactically defined.

Some of the advantages that go with the syntacti-

cal definitions of free and bound can also be enjoyed by

the notions of oblique and direct, provided that a

syntactical criterion of oblique and direct such as the

following is adopted.

A term occurs obliquely in a sentence of System II,

if and only if, there is some pair of angle brackets in

the sentence which enclose the term.

Although this criterion does have much of the

advantageous immediacy of the definitions of free and

bound, it nevertheless also has two serious drawbacks.

First, the definition provides a criterion of

obliquity only for sentences of System II. There are

many cases of obliquity which are, for instance, instances

of expressions which occur within quotes, and which are

not instances of obliquity in System II.

Second, and perhpas more serious, the above

criterion of obliquity provides only an extensional test

of obliquity, not an intensional condition of obliquity.

Because of this last difficulty, the criterion cannot be

taken as a definition of oblique discourse.
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The first of the above conditions of obliquity would

not seem to share either of these last two disadvantages.

5.9 The formation rules of System II were not

specified. There is however, an important condition that

an adequate set of formation rules for System II should

satisfy. No variable should be bound in such a way as to

occur obliquely in the propositional formula following its

binder. In other words, no bound variable should occur

enclosed in a pair of angle brackets that do not enclose

its binder.

It is a general restriction on all oblique dis-

course, tbat sentences which involve "binding over" oblique

contexts do not make sense. That is, no variable which is

oblique in a context and bound by a binder which is out—

side of that context, occurs in such a way that there is

a sentence containing this binder and context, which makes

sense. i

This difficulty was mentioned previously in

Section 5.3. Ketalanguages which make use of expressions

enclosed in quotes, are examples of languages of oblique

discourse, other than the connotative language of System II.

The logical use of bound variables is such an

effective technique that it is possible that oblique dis-

course vill never be as useful as direct discourse, simply

because this restriction on oblique discourse is so strong.

 



5.10 Various syntactical criteria of analyticity have

been proposed. Fer instance, a criterion due essentially

to Quine, is that a sentence is analytic if and only if,

it is a substitution instance of a law of logic. Some—

times it has been further maintained that these criteria

are adequate as definitions for 'analytic'. Useful though

such criteria may be, they are, however, very likely not

adequate as definitions for 'analytic', because they are

not intensionally equivalent to analyticity.

The following might be considered as an intensional

criterion of analyticity. S is analytic, is equivalent to,

the expression formed by prefixing S with a sign of

logical necessity, is a true sentaice.

5.11 The paradoxes of the theory of types are avoided

in Principia mathematica by proscribing altogether, the

substitution of some expressions, and restricting sub-

stitution of other expressions to special contexts.

The former sort of restriction might be called an

absolute proscription, and the latter, a relative pro-

scription, of substitution.

In System I, much more reliance was put upon

absolute than upon relative prescriptions of substitution,

than is the case in Principia Kathenatica. Yet in both

 

I. This suggestion is due to Mr. Leonard.
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system-, some relative proscriptions of substitution are

necessary. Relative proscriptions are, for instance,

necessary to avoid allowing substitution of non—propositional

expressions for propositional variables. A further

topic of investigation would be that of examining to

what extent absolute restrictions on substitution are

sufficient to avoid paradox, and to what extent relative

restrictions are necessary for this purpose.
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