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AN ABSTRACT

This thesis develops a system of logic containing
both modal operators and quantifiers, This system contains
C. I. Lewis' system 84, but it does not contain restrictions
of type theory. In it, certain departures from similar
systems of Ruth Barcan, Rudolf Carnap, and Frederic Fitch
are proposed. One such departure is the'inclusion in the
system of a notation for singular existence as this has
been done by Henry Leonard,

The thesis also includes an outline of a
second system which is an attempt to codify G. Frege's
notion of the oblique occurrence of a term in a context,
This system is applied to a treatment of the paradoxes
of the theory of types, in order to justify abandoning
type theoretical restrictions in the first system,
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CHAPTER I
INTRODUCT ION

1.1 Professor Henry S. Leonard has recently published
a paper entitled "The Logic of Existence"1 which modifies
the logical system of Principia Mggggmggigga in order to
deal with questions of existence of which there is no treat-
ment in the latter systen,

The alterations in logic proposed by Professor
Leonard consist, in part, in a notation for singular
existence which takes variables as arguments, recognition
of certain laws governing existence, not expressible in

Principia NMathematica, and the introduction into logic of

terms which do not denote,
The following two systems are based upon Professor
Leonard's paper,
1.2 Throughout his paper, "The Logic of Existence",
Professor Leonard calls attention to the importance of con-
sidering the topic of modal logic and its bearing upon
questions of existence. This emphasis of Professor Leonard's
paper has influenced the following formulations in many ways.
In the first of the following systems, existence

is not, as in Professor Leonard's system, introduced by

l. Henry S. Leonard, "The Logic of Existence " Philos hical
Studies, Vol., VII, Number 4, (June 1956), pp. 49

2. Alfred North Whitehead and Bertrand Russell, Princigg
Mathematica, The Cambridge University Press, Firs on



definition, It is rather taken as primitive. The postu=-
lates of System I are used to characterize this primitive,

The considerable bearing which modal logic has
upon existence 1is illustrated in System I in that, only in
a modal system such as System I, can a primitive "existence"
be adequately characterized., Had System I been an entirely
material logic, the resulting system would not have been
sufficiently rich in connections with the primitive "existence"
to have specified the interpretation intended for it.

One such connection, between deducibility and
existence, which i1s called to our attention in "The Logic
of Existence", consists in the invalidity of the following
arguments

Santa Claus lives at the North Pole, (1)

~.Someone lives at the North Pole, (2)
The argument from (1) to (2) is invalid because, in addition
to premise (1), a premise to the effect that Santa Claus
exists 1s required in order that (2) might be inferred.

Because of this consideration, System I contains

only the formulas

fx ,Elx 3 3y)fy (3)
rather than the stronger:
fx 3 (Ay)fy (4)

Systems of modal logic which leave existence out

of account and contain the invalid formula (4), contain untrue

theorems such as:






~0~ (@x) (£xv~fx) (5)
Difficulties occasioned by results such as (5) in systems of
quantified modal logic, llke those of Ruth Barcan Marcus3
and Rudolf Carnap,4 have caused much controversy among
logicians,

Unlike Mr. Leonard's system, System I contalns as
a law, the formulas "E!x", and thereby also contains the
restriction that only terms which denote are allowed as
suitable for substitution. For this reason, System I 1s so
to speak, a loglc of denotation.

A material logic which, unlike Mr. Leonard's system,
does not introduce terms that do not denote, does not require
a notation for singular existence. It will be maintained in
what follows, that a modal logic requires consideration of
singular existence even though that logic does not allow of

terms that do not denote,

3. Ruth C. Barcan, "A Functional Calculus of the First Order
Based on Strict Implication," The Journal of Symbolic Logic,
vol, 11 (1946) p. 1.

"The Deduction Theorem in a Functional
Calculus of First Order Based on Strict Implication™, The
Journal of Symbolic Logie, vol. 11 (1946) p. 115.

- _ , "The Identity of Individuals in a Strict
Functional Calculus of Second Order", The Journal of Symbolic
Logic, vole, 12 (1947) p. 12,

4, Rudolf Carnap, "Modalities and Quantification", The
Journal of Symbolle Logic, vol. 11 (1946), p. 33.

Meaning ahd Necessity, The University of
Chicago Press, 1947,







l.3

To a certain extent, System II is based upon a

criticism of "The Logic of Existence." However, before

considering this criticism, it might be well to review

certain traditional difficulties concerning existence,

Parmenides made claims to the effect that every=-

thing that we believe in or speak of must exist; or put in

other words, we cannot believe in or speak of a thing that

does not exist, A fair sample of such doctrines is to be

found in Plato's The Sophist:

5

Stranger. The truth is, my friend, that
we are faced with an extremely difficult
question, This "appearing" or "seeming"
without really being, and the saying of
something which yet is not true--all these
expressions have always been and still are
deeply involved in perplexity. It is
extremely hard, Theaetetus, to find correct
terms in which one may say or think that
falsehoods have a real existence, without
being caught in a contradiction by the mere
utterance of such words,.
Theaetetus, Why?
Stranger. The audacity of the statement
Tles in its implication that "what is not"
has being; for in no other way could a
falsehood come to have being. But my young
friend, when we were of your age the great
Parmenides from beginning to end testified
against this, constantly telling us what he
also says in his poem:
'Never shall this be proved--that
things that are not are; but do
thou, in thy inquiry, hold back thy
thought from this way.'
So we have the great man's testimony, and the
best way to obtain a confession of the truth

5

Plato, The Sophist, 236D-237B,



may be to put the statement itself to a mild
degree of torture, So, if it makes no dif=-
ference to you, let us begin by studying it
on its own merits.
In System I, a theorem affirms that everything we speak of
exists, or that it is impossible to speak of a thing that
does not exist,
It can be proved that:
(x)E!x ) (x)(aSx ) E!lx) (6)
(where 'xSy' abbreviates 'x speaks of y')

and further that:

(x)E!x : (7)
and thereby:
(x) (aSx ) E!x) (8)

Since it can also be obtained that (8) is analytic, it follows
that it is impossible, in the sense of inconsistency, that
anyone speaks of a thing that does not exist.

However, Parmenides' injunction may rather be to
the effect: "Do not speak with terms that do not denote",
Putting the rule in such a terminology of mention rather than
of use changes the rule from a necessarily true, and hence
unbreakable one, to one which is breakable, and in fact is
broken.

Thus for instance, we might ask, 1s it true that
"Santa Claus wears a red suit"? Or even, is 1t true that
"Santa Claus does not exist"? Apparently, each of these

sentences 1s not true, since were they to be true, the term






"Santa Claus" must denote something having respectively the
properties of wearing a red suit and of not existing,

The point of the second of "Parmenides' rules"
would then seem to be to prevent us from asserting sentences
which must be aﬁtomatically untrue because they contain terms
which denote nothing,

Sensible though this second rule seems, the
acceptance of it raises a particularly vexing problem of how
an assertion of non-existence can be true, since such an

assertion seemingly must break the rule if it is to be true,

1.4 The last difficulty was left unresolved. However,
before proceeding to a discussion of any of the several ways
of resolving it that will be recognised here, a way of avoid-
ing it will be examined that will not be followed here.

This way of avoiding the difficulty might be called
"the logic of possibles".

This approach will recognise some things that, while
they do not exist, nevertheless are at least "possibles", and
claim that every term denotes something and that terms such
as "Santa Claus" merely denote possibles rather than actuals,

"Possible logic" will recognise two systems of
quantifiers. Square brackets might be adopted as a notation
for generalization in an inclusive sense over both possibles
and actualss "[x)Jfx" to means f is true of everything,

possible or actual. The more usual sort of generalization




over everything that exists might be defined:

(x)fx =Df [ xJ(E!x)fx). A weak form of existential general-
ization might be defined as:[Ix)fx =Df-[xJ~fx. The usual
strong form of existential generalization might be given the
definition: (3x)fx =Df Bx]J(E!x.fx).

Mr, W. V. Quine has discussed this problem and
criticised the position of "the logic of possibles™ outlined
here.6 He makes the well taken point that while "existence™
is a free word and hence there 1s nothing to stop us from
using it in such a way as to apply to only a special class of
things rather than to everything unrestrictedly, to do so is
nevertheless to take away the word's usual meaning.

However, it 1s not only fhe case that the"oglec of
possibles" takes away the meaning of the term "existence,"
but it takes away the meaning of quantifiers as well., In fact
the "logic of possibles" reinterprets the whole of logic as
applying to only a restricted class of things, with a new
set of quantifiers and kind of existence for the things that
are left over. In short, an objection to "the logic of
possibles" is that what was meant by parenthetic quantifiers
in the first place is the meaning which the "logic of possibles"
gives to bracket gquantifiers, after the parenthetic quantifilers
have been suitably misinterpreted.

6. Willard Van Orman Quine, "On What There Is", From A
Logical Point of View, Harvard University Press, 1953.



The logic of possibles achieves its extension of

the usual logic by misconstrulng that logic in a narrow way.

1.5 A clue to a resolution of the problem of how there
can be true statements of non-existence is to be found in
one standard means of making such statements--by employing
Russell's theory of definite descriptions,

The sentence "the man who lives at the North Pole
does not exist" can be true without incurring any paradox.
This is so since it can be read as saying that the property
of being a man living at the North Pole has either no in-
stances or more than one instance, A feature of the
sentence that is important to note is that though the definite
description occurring in it does not denote anything, it
nevertheless does refer to something; namely the property of
living at the North Pole,

Frege has proposed the term "“oblique" to apply to
linguistic expressions which, although they do refer, do not
do so in the usual mode of denotation. The definite des-
cription in the example in question would seem to be
occurring in a way which perhaps could be described by Frege's
"oblique".

In any case, the term "oblique" will be teken in all
of the following discussion to apply to any reference made

by a term which is not a reference by denotation. The term




"oblique" in its present meaning might be defined as follows:
("xRy" abbreviates "x refers to y", "xDy abbreviates "x
denotes y", and "xOy" abbreviates "x obliquely refers to y").

xOy =Df xRy.~ xDy (9)
Such oblique usages of terms allow non-denoting terms to be
used in true sentences because such terms may refer in some
oblique way to something of which the sentence says some-
thing true,

So to speak, the last statement of Parmenides' rule
should be reformulated so as to reads "Do not speak using
terms that do not denote and are not used obliquely". Any such
non-oblique or denotative mode of reference will be referred
to hereafter as "direct reference".

As was mentioned above, System I is a logic of
denotation, and therefore also a logic of direct reference.

System II on the other hand, is a logic of con-
notation and of obligue reference, System II is based upon
a mode of reference in which the referents are connotata
rather than, as in System I, denotata. Angle brackets
("{?") are introduced in System II with the meaning that
an expression together with angle brackets enclosing it shall
be taken to name the connotatum of the expression enclosed in
such brackets., Although the usage of angle brackets is
characterized in System II by postulates and rules of trans-
formation, two points concerning the interpretation might be

mentioned here rather than deferred to Chapter IV,
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First, the relatlon of connotation 1s analogous
to that of denotation in that in either mode of reference,

a term has at most one referent, but differs from the latter
in that every referent in the mode of connotation is a
characteristic or property which is, so to speak, a
definitional criterion by which one identifies the associated
denotatum. This is to say, the possession of, or failure

to possess, the connotatum of a given term is a test by which
a thing may be respectively accepted or rejected as the
denotatum of that term. Secondly, sentences as well as

terms m2y be enclosed in angle brackets, and if the former is
the case, then the indicated connotatum is a definitional
characteristic of a state of affairs,

However, the meaning of the angle bracket notation
will be explained in more detall later. The last point to
be made in the present section is the criticism of "The Logic
of Existence", which was mentioned at the opening of Section
1.3 but was deferred until a consideration could be made of
the difficulties which lead to Parmenides' injunction in
one or another of its forms.

That criticism 1is thét "The Logic of Existence"
allows statements of non-existence to appear in the system
without an explicit notation indicating the mode of reference
in which such statements are to be interpreted. The absence
of such a notation becomes even more serious in the interpre-

tation of propositional logic than in the interpretation of
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a functional logic such as "The Logic of Existence", It
will be maintained later, that many formulas which are valid
laws of propositional logic 1i1f interpreted in a direct mode
of reference, are not valld when interpreted in another mode

of reference,

1.6 Every denotative logic, such as System I, allows
the substitution only of terms which denote in any inference
carried out within that logiec, As a conseqﬁence of this,
any argument which 1s purportedly carried out within such a
logic, but which contains steps which make substitutions of
terms which do not denote for free variables in formulas
of the logic, is an invalid argument, and since it is not
carried out within the rules of the logic in question, is in
fact not an inference of that system of logic at all. One of
the purposes of developing System II is to show that at least
some of the paradoxes of the theory of types require such
arguments in order that they might be inferred.

In particular, the term "k" defined:

k =Df T(~fp) (11)
would seem not to denote a property. Speaking obliquely,
the property of non-self-application does not exist. But 1if
such 1s the case, then the argument which leads to Russell's

paradox is not an inference within either System I or

Principia Mathematica.
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Russell proscribes in general, all reference to
"{llegitimate totalities"™. It will be suggested that the
phrase "illegitimate totality" might be interpreted to mean
"non-existent totality". Parmenides' injunctions then pro-
vide a means for avolding the paradoxes of the theory of
types which does not depend upon the reason given by Russell
in formulating the theory of types, namely that unrestricted
generzlization 1s not possible,

In fact, since no term banned from use by Parmenides'
injunction denotes something, it follows that the injunction,
while it does restrict the vocabulary of a language to which
it i1s applied, does not correspondingly place any limitation
upon the range of subject matters which can be discoursed
about within that language. Or in other words, avoidance of
paradox, and unrestricted generalization, are together possible.

Put differently, since there are no non-existents, and
hence no non-existent totalities, we may restrict general-
ization to "legitimate totalities™, and also, generalize quite
unrestrictedly to everything.

As a summary of the position on existence outlined
above, the following quotation from a tract which Cornford

suggests was written in approximately 400 B.C., speaks for

itse1f37

7. Francis Macdonald Cornford, Plato's Theory of Knowledge,
Routledge & Kegan Paul Ltd., p. 209.
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"It seems to me in general that there
is no art that is not, for it 1s irrational
to think that something which 1is, is not.
For what 'being' have things tha% are not
which one could look at and say of it tha%
'it 1s'? For i1f it 1s possible to see
things that are not, as you can see things
that are, I do not understand how one can
regard them as not being, when you can see
them with your eyes and thin% of them in
your mind that they are..."
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CHAFPTER II
DIRECT DISCCURSE AND DENCTATIVE LOGIC: SYSTEL I

2.1 Formation rules and Nomenclature,
2.11 A purpose of Chavter II is to develop a quanti-
fied modal logic., This quantified modal logic will be
referred to hereafter as System I,
2.12 The primitives of System I are those of the pro-
positional modal logic of C. I. Lewis,1 and in addition, five
primitives peculiar to this system. Two of the latter
primitives are signs of grouping,
2.121 The primitives of Lewis are the curl ('~'), the -
dot ('.'), and the diamond ('Q'),
2.122 The first of three additional primitives that are
not signs of grouping 1s the predicate of universal in-
stantiation ('A'). To assert the sentence 'A is true of f°',
or, 'Af' is to assert that 'f is a property possessed by
everything'. (The expression 'A' is adopted to suggest a
contraction of 'all'.) The more usual notation '(x)fx' will
later be introduced by a definition involving 'A'.

In Principia Mathematica '(x)fx' is not interpreted

to be synonymous with 'f is true of everything unrestrictedly’.

The theory of types calls for a linitation upon the

1. Clarence Irving Lewis and Cooper Harold Langford, Symbolic
Logic, The Century Co., 1932,
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universality of a generélization.2 However in the present
system, the interpretation of 'Ae' 1s intended in the un-
restricted sense,

2.123 The second primltive in addition to those of C. I.
Lewis is the predicate of singular existence ('E!'),

2.124 The third primitive is the cap ('"A'), The cap 1is
placed over variables preceding propositional formulas, The
resulting formulas signify properties. Although the cap is
often taken to signify classes, a double cap ('A') will be
used for this purpose in the present system. The double cap

is introduced by a definition which is essentially the

Principia Mathematica definition of indefinite descriptions.3
2.125 The two signs of grouping of the present system are

the left parenthesis ('('), and the right parenthesis (')').
C. I. Lewis uses a dot system of grouping in his systems of
propositional modal logiec. The use of parentheses rather than
dots 1s a departure of the present notation from that of C. I.
Lewis., (Other departures, all minor, will be noted in due
course.)

2.13 Two kinds of variables occur in System I. 'p', 'q',
'vr', or one of these variables followed by a numerical sub-

script will be employed as propositional variables. 'x°',

2. A, N, Whitehead and Bertrand Russell, Principia Mathematica
V.1l Chapter II,

3. Ibido, *20.01, Vo 1 p. 188.
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'y'y 'z', 'w', 11 'g' 'h', or one of these letters fol-
lowed by a numerical subscript, will be used as non=-
propositionsl variables.,
2.14 'F' and 'F' followed by a numerical subscript will
be referred to as formuls variables., These will be the only
meta-lingulstic variables used. They do not occur in
System I,
2.15 A varisble-sequence is defined to he any formula
satisfying all of the following conditions.
(1) The first sign of the formula is a left
parenthesis, and the last sign of the
formula is a right parenthesis;
(2) Every sign of the formula that is
neither the first nor last sign of the
formula, 1s a non-propositional varlable;
(3) At least two signs of the formula are
variable tokens,

2.16 A first formula is defined to be any one of the fol-

lowing expressions,

(1) (p)
(2) (p.q)
(3) ©p)
(4) E!
(5) A
2,17 A well formed formula is defined to be any first

formula, any variable-sequence, or any expression obtainable
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from first formulas and variable-sequences by means of one
or more successive applications of the following Formation
Rules. (Not all first formulas and not all well formed
formulas are assertable, or propositional.)
FRl1. A well formed formula may be formed by sub-
stituting in any well formed formula, F, any
propositional or non-propositicnal varisble or
well formed formula for any occurrence of any
variable which 1s respectively propositional
or non-propositional, provided that occurrence
is free in F.4
FR2, A well formed formula may be formed by pre~
fixing any serlies of one or more capped non-
_propositional variasbles not containing two
variable tokens of the same variable type, to
any well formed formula F, such that F contains
at least one occurrence which 1is free in F of
each variable in the series being prefixed to F.

2.18 F, 1s bound in F_. if and only if:

1 2
(1) F, is a variable, and F, is a well
formed formulaj and
(2) There is a formula, F3, such that:

and F. 1s

(a) Fy is contained in F3 3

contained in F2;

4, "Propositional' and "non-propositional" are defined below,
in 2,111; "free in F" 1s defined below, in 2.19,
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(b) F3 can be formed by an application
of FR23; and
(c) F3 contains in its initial series
of capped variables, a variable of the
same variable tyvpe as Fl'
2619 Fl 1s free in F, if and only if:
(1) Fy is a variable and F2 is a well
formed formulas and
(2) F, 1is contained in F, and F1 is not
bound in F,.
2.110 F{ binds F, if and only if:
(1) Fy and F, are tokens of the same variable
types and
(2) There is a formula F3, a formula F,,
and a formula FS; such that:
(a) F; and F, are contained in F3; and
(b) F, is a serles of capped variables,
and F5 a propositional formula, such that
F3 can be formed in accordance with FR2,
by prefixing F, to F5; and
(¢) Fy 1s contained in F,, and F, 1s not
bound in F5’
2.111 A propositional formulg is any well formed formula
the first sign of which is a left parenthesis. A non=-

propositional formula is any well formed formula the first
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sign of which 1s not a left parenthesis.5

2.2 Definitions.
2.21 A well formed non-propositional formula, F, is proper
if 1t satisfies elther of the following conditions.

(1) No occurrences in F of any variable are free
in F, and the substitution of F for 'x' in the formula 'E!lx!
yvields a true sentence,

(2) There 1s at least one occurrence of a variable
which 1s free in F, and the substituticn of F for 'x' in the
formula 'E!x', and subsequent existential generalization of
the resulting formula with respect to every free variable
occurring in it yields a true sentence,

2.22 C. I. Lewis' definitions of the modal and truth
functional connectives are adopted in this system, with the
exception of the definition of strict equivalence. A double
arrow ((39') is here used as a sign of strict equivalence.

System I contains the following additional
definitions.

D1. f =Df ~(AR(~(£fx))

D1 defines the predicate of plural existence.

D2 defines the Principia notation for universal

instantiation.

D2. (x)fx =Df AR(fx)

5. For exaiple, the first three first formulas are pro-
positional, and the last two are non-propositional.
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D3 defines the Principia notation for plural existence,

D3, (3x)fx =Df FR(fx)

D4 defines identity.

D4, x=y =Df (f)(fxOfy)

D5 defines the definite description.

D5. £(9x) gx =Df (3x) (fx.gx).(x)(y) ((gx.gy)) x=y)

Finally, Dé defines class abstraction.

D6. f2(gx) =Df (3h) (fh.(x)(gx = hx)

Definitions 5 and 6 are essentially the Principia
definitions, *14,01, and *20.01.
243 Postulates.
2.31 The propositional logic of System I is C. I. Lewis!'
System S4, System I therefore contains Lewis' postulates
B1-B4, B6, B7, and Becker's postulate.6
2.32 Four postulates concerning quantification are assumed
in System I.

Pl (x) fx Ely 3fy

P2 (x) (p 3(E!x) £x))3 (p 3(x)fx)

6. These are:

Bl. (p.q)3(q.p)

gz. (p.q) 3

3. p3(p,p
B4, ((p.q).r) 3(p.(g.r))

B6. ((p3q).(gq3r)) 3(p3r)

B7. (p.(p-3q)) 3q

Becker's Postulate, ~0~p-3~0~~0~p

(BS of Lewis' original postulate set for S4, has
been shown by licKinsey to be reducible to those above. See:s
Jo. C. C. lcKinsey, "A Reduction in Number...", American
Mathematical Society Bulletin, vol. 40 (1947), p. 432.)
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P3 O~ (Ix)Elx
P4 Elx
2.4 Transformation rules,
2.41 Some expressions involve predicates formed with cap-

ped variables in such a way that the capped variable expression
as a whole, so to speak, "reduces to™ an expressiocn not in-
volving capped variables, For example, the expression:

(% (Mx) a) (1)
which says of a, that it 1is an x such that 1lI is a property
of x, reduces to:

(Ma) (2)
which says of a, that it possesses M,

Again, predicates involving more than one capped
variable may also "reduce to" simpler expressions. The
expression:

(29 (Rxy) ab) (3)
reduces to:
(Rab) (4)

The following definition is an attempt to codify
the relation of reducing to. This definition is not itself
a transformation rule, although whenever a first line reduces
to a second line, the second line is deducible from the first,
The corresponding transformation rule--the rule of reduction--
will be defined later.,

2.42 Fq reduces to F2 if and only 1if:



22

There is a variable sequence, F3, containing n#l
variables (n>0) and a well formed formula, F,, consisting
of a sequence of n capped variables followed by a proposi-
tional formula, Fg, such that:

(1) Fy can be obtained from F3 by substituting
Fyp for the first variable occurrence in F3, and some non-
propositional veriable or non-propositional formula for every
other variable occurrence in F3; and

(2) F, can be obtained from Fs by sub-
stituting for each variable occurrence in F5 which is bound
by a variable in the kth position in the series of capped
variables preceding Fg in F,, the expression substituted for
the k#1lst variable occurrence in F3 in the series of sub-
stitutions prescribed in (1),
2.43 If a formula or variable is substituted in another
formula for one or more expressions to vield a resultant
formula, some of the signs in the resultant formula are
obtained by exchange of a substitute for an expression in the
formula upon which substitution was carried out, while other
signs in the resultant formula are simply copied from the
formula upon which substitution is carried out. Signs of the
former sort will be said to result from exchange, and those of

the latter sort, to result from copying.
2.44 For the sake of a more usual notation for quantifiers,
and cther variable binders, definitions 2, 3, 5, and 6 were

given in section 2.22. FHowever, System I recognises only caps
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There is a variable sequence, F3, containing nfl
variables (n>0) and a well formed formula, F,, consisting
of a sequence of n capped variables followed by a proposi-
tional formula, Fg, such that:

(1) Fy can be obtained from F3 by substituting
F4q for the first variable occurrence in F3, and some non=-
propositional variable or non-propositional formula for every
other variable occurrence in F3; and

(2) F, can be obtained from Fg by sub-
stituting for each variable occurrence in F5 which is bound
by a variable in the kth position in the series of capped
variables preceding F5 in F4, the expression substituted for
the kflst variable occurrence in F3 in the series of sub-
stitutions prescribed in (1),
2.43 If a formula or variable is substituted in another
formula for one or more expressions to yield a resultant
formula, some of the signs in the resultant formula are
obtained by exchange of a substitute for an expression in the
formula upon which substitution was carried out, while other
signs in the resultant formula are sirmply copied from the
formula upon which substitution is carried out. Signs of the

former sort will be said to result from exchange, and those of

the latter sort, to result from copying.
2.44 For the sake of a more usuval notation for quantifiers,
and other variable binders, definitions 2, 2, 5, and 6 were

given in section 2.22. However, System I recognises only caps
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as "official" binding signs, hence it is assumed that all
defined expressions introduced by D2, D3, D5, and Dé, are
eliminated prior to anplication of all except the last of the
following transformation rules, The last transformation rule
is a rule for introducing such defined expressions subsequent
to an inference not involving them. The Transformation Rules
of System I are the following.

TR1. (Adjunction, abbreviated 'Adj') If Fl
and F, are postulates or inferred lines, then the
line Fl.F2 may be inferred,

TR2, (Detachment, abbreviated 'Detach') 1If
Fl and FifBFz are previously obtained lines, then
F2 may be inferred.

TR3. (Exchange) If Fy is an obtained 1line, con-

taining Fp, and FX=F, is an obtained line, then

F3 may be substituted3for F2 in Fl to yield an
inferred line F4; provided that every variable
type 1is such that, there 1s a token of that type
which is free in F2 but bound in Fl, if and only if,
there is a token of that type which 1s free in F3
and bound 1in F,.

The proviso to TR3 i1s necessary because without it,
an inference of the following sort would be
sanctioned by TR3.

(AR (£xv~fx)) (5)
(£xv~£x){=> (fyv~fy) (6)

(AR (£yv=£y)) (7)
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Line (7), inferred from (5) and (6), is not well
formed. However, this "inference" viclates the requirement
that every variable type of which there is an occurrence free
in the substitute, but bound in the line in which the sub-
stitute occurs, must have an occurrence in the substituted
expression which is free in the substituted expression, but
bound in the line in which the substituted expression occurs,

TR4, (Free variable substitution) Any

variable which 1s prorositional or non-propositional

may be substituted for every free occurrence in any
previously obtained line of any varilable which 1is
respectively propositional or non-propositional
provideds every sign in the resulting line which

results from exchange is free in the line as a

whole.

TR5., (Bound variable substitution) If F; is a

capped variable in any obtained line, then any

non-propositional variable may be substituted for

F1 and every variable bound by Fl provided; that in

the resulting line, every variable F, is such that

F2 is bound by the variable substituted for Fl if

and only if F2 results from exchange.

Examples of the need for the proviso to TR5 are the

following.

(AR (fyv~rx)) ) (Lyv(AXR(TX))) ¢

(A} (£yv~£y)) ) (£yv(AR(~£fx))) (9)
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If its proviso is ignored, TR5 would sanction the inference of
the invalid (9) from the valid (8). The part of the proviso
to TR5 which 1s violated in going from (8) to (9), is the
requirement that every variable in the inferred line which is
bound by a capped varilable resulting from exchange must itself
result from exchange, The further demand of the proviso to
TRS that all bound variables in the inferred line which result
from exchange must be bcund by the capped variable which
results from substitution, is violated in the following invalid
argument,
(AX(A§(fxy))) > (fxy) (10)
(AF (A9(£yy))) > (£xy) (11)
(10) 1is a valid formula of System I, while (11)
is not even well formed,
TR6. (Formula substitution.) Any propositional
or non-propositional formula, Fy, may be sub-
stituted for every free occurrence of any variable
which is respectively propositional or non-
propositional in any obtalned line, provided; every
variable in the resulting line which is free in an
occurrence of F1 resulting from exchange, is also
free in the resulting line as a whole, and every
non-propositional formula in the resulting line is
PTOpET.

The following argument i1llustrates the need for a

part of the proviso to TRé.
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(A% (pXfx)) ) (pI(AX(£x))) (12)

(AX((£x) ) (£x)) 3 ((£x) D (AX(£fx))) (13)

(12) is a valid law of System I, while (13) is not
valid, The proviso to TR6 is violated in that, not every
variable in the resulting line which 1s free in an occurrence
of the substitute which results from exchange, is free in the
line as a whole. The latter part of the proviso to TRé is
worded so as to apply only to occurrences of the substitute
in the resulting line which result from exchange. The purpose
of this restriction is to allow some perfectly valid infer-
ences which would be proscribed were this part of the proviso
made to apply to every occurrence of the substltute in the
resulting line,

(AR (pX(£x))) > (P> (AF(£))) (14)

(AR((£y) D (£x))) ) ((£y) 3 (AF(EY))) (15)

The inferaace from (14) to (15) is a substitution
of '"(fy)' for 'p' in (14) to yield (15). Both the inference
itself and the forrmules involved are valid. However, because
(15) contains in its consequent an occurrence of the sub-
stituted '(fy)', which contains an occurrence of 'y' which
is free in that substitute but not free in (15) as a whole,
this valid inference would not be allowed by TR6 if its
proviso were to be so worded as to apply to any occurrence of
the substitute in the resulting line, rather than to only those

occurrences of the substitute which result from exchange,
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That part of the proviso to TR6 which demands that
every formula in the resulting line be proper, has to do with
the avoidance of the paradoxes of the theory of types, and its
relevance will be discussed later.

TR7, (Reduction, abbreviated 'Reduc') If Fy

is any obtained line which contains F2 and F2 reduces

to F3, then a new line may be inferred by sub-
stituting F3 for F2 in Fl'

TRS, (Universal Generalization, abbreviated

'U.G.') If F, is any postulate or theorem, con-

taining 2t least one occurrence of some variable

which 1s free in F,, then a new line may be infer-
red by substituting 'A' for the first variable of
some two variable variable-sequence and a formula
which can be formed in accordance with FR2 by fol-
lowing a capped occurrence of the variable in
question by F,, for the second variable of the
variable-sequence; provided that in the resulting
line, every non-propositional well formed formula
is proper,

A ninth transformation rule will often be appealed
to in the ccurse of proofs. This rule governs exchange in
accordance with definitions. Although listed as one of the
rules of the formalized part of System I, TR9 will only on
occasinn be involved in formal proofs. Often TR9 will only

be used to introduce contextually defined terms and expressions



such as the classical notations for quantifiers, which must
be eliminated prior to application of the other transformation
rules. Therefore, TR9 will frequently be somewhat informal in
application, its proper use belng often left in part to intuition.
TR9., (Definitional exchange) Any expression may
be exchanged with its definitional equivalent in
any postulate or theorem., Definitional exchanges
may be preceded by one or more substitutions of
variables or formulas for each occurrence of some
free variable in the definition, subject to the
restrictions of quantifier control. Such sub-
stitutions may be followed by one or more reductions,

also prior to exchange,

2.5 Theorems.

2.51 Proof annotations in the derivations to follow will
follow the method of C., I. Lewis in Symbolic Logic. The
proofs of Section I will be given in full, The proofs of
later sections will be abbreviated in accordance with con-
ventions whrich will be Introduced prior to the use of these
abbrevistions, Certaln theorems of Lewls' system S4 not proved
in Symbolic Logic will he stated without proof. The theorems
of section 0 are the latter theorems of S4, The theorems of
section 1 are dependent upon the first postulate, those of
section 2 vpon the first two postulates, and those of section 3

upon the first three postulates, and those of section 4 upon
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upon all four postulates, while those of section 5 are
miscellaneous items dependent upon various combinations of

the postulates.

2.62 Section O.

7.0.1 ~0~p 3 ~0~~0~p

Te0e2 ~0~p 3 (g3~0~p)

T.0.3 (p3q) 3 (r-3(p3a))

T, 04 ~¢~~0~(pv~p)

T.0.6 ((pv~p)3q) 3~0~q

Te0eb (p3q) 3~9~(p3q)

2.53 i'he following is a translation of the fgﬁiiﬁééi&Sf

in §2.32) for functional logic in System I, into standard
notation.
1 (((af).(Eix)) 3 (£x))
P2 ((aR(p3((Eix))X(£x)))) 3(p3(a2)))
B3 (O(~(3EV)))
r4 (Elx)
2,54 Section 1.
Tl1.1 ((af) 3((Elx))(£x)))
(From 14.26 L and L; (Af)/p; (E!x)/q; (£x)/r)
((((af).(Bix))-3(2x)) & ((af) 3((EBix))(£x)))) (1)
(From (1), and P,1, by ixchange)  IED (2)
In more usual notation, Tl.1l might be written:
(x)£x 3 (Bix)fx),

and could have beeh proven in this form. However, had Tl.1l
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been proven in the latter form, some steps in the proof would

not be explicitly sanctioned by the transformation rules.

In particular, the rule for exchange in accordance with def-

inition would have been somewhat informally applied.

T1.2 (((f£x).(2'x)) I (3if))

(From 12.43 L and L: (Af)/p; ((Eix)d(£x))/q)

(((af) S((EIx)I(£x))) S((~((E1x)I(£x))) S(~(4£)))) (1)
(From T1.1, and (1) by Detach) “

((~((B'x))(£x))) g (~(aL))) (2)
((2), by Formula Substitution: =®(~(£x))/2f)
((~((23x) 2 R(~(£x))x))) 3 (~(aR(~(£x))))) (3)
((3), by Redue) |

((~((E'x))(~(2£x)))) 3 (~(AR(~(£x))))) (4)

The formula '(f(~(tx))x)' in (é)lreducea to '(~(£x))*'.

Applying the deﬁnitioﬁ of 'reduce to' (see section 2.42) with

n*l, and:

it can bse

Fg:
Fo;

Y(R(~(£x))x)"
1(~(2x))"
"(xx)!

1R (~(2£x))"
"(~(£x))?

seen that the conditions of the definition are met.

(From 14.12 L and L: (2%x)/p; (~{£x))/q)
((~((Bix))(~(2£x)))) S ((£'x) (~Hx))))) (5)
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(from (4), and (5), by sLxchange)

(((Bix).(~(~(£x)))) 3(~laR(~(£x))))) (6)
(From 12.3 L and L: (f;)/p)

((£x) S (~(~(£x)))) (7)
(From (6), and (7), by Lxchange)

(((Bix).(£x)) 3 (~(aR(~(£x))))) (8)
(From (8), and 01, by exchange in accordance with def.)
(((e4x).(£x)) 3 (3iL)) (9)

Although step (9) was obtained by means of =xchange in
aAccordance with Definition, it is not actually a part of the
unformalized development of System I. ounly those definitions
which must be eliminated prior to application of the Transg=-
formation Rules are incompletely formalized. To have explicitly
given the conditions under which definitions not eliminated
prior to application of the Transformation Rules, may be
exchanged for their definitional equivalents, would have
required two rules for definitional exchange; one applicable
only to definitions eliminated prior to such application, and
another, applicable only to definitions not so eliminated.
Because of its inconvenience, such a procedure is not followed
here. However, the definition called for in (9) need not be
eliminated prior to application of the Transformation Rules,
and therefore (9) is at least in principle, capable of being

formalized,
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(From 12.15, L and L: (£!x)/p; (£x)/q)

(((2ix).(£x))B ((£x).(Eix))) (10)
(From (9) and (10) by exchange) QED. (11)
2.55 In subsequent proofs, various abbreviations will be

used in order to simplify exposition. rarentheses will be
omitted if grouping is evident fram context. Some lines of
proofs, easily supplied by the reader, will also be omitted.
Although the more conventional notation for quantifiers is
no more compact than the primitive notation for quantifiers
introducei above, tne former will for tne most part replace
the latter. If signs of grohping are omitted, the scope of
a first connective will extend over the scope of a second,
if the first precedes the second in the following list:
@, T3, s, 0, e, LY, ), T, "=, Following
the proofs there is a catalogue ef all formulas assumed to
be proper.
2.56 Section 2.
T2.1 (p3(x)fx)3(x)[p 3(iixdfx))

(T1.1, 10.3)

(p3(x)2x)30(p 3(x)fx).((x)fx F(EixIfx)) (1)
((1), 11.6 L&L) (p3(x)fx)-3[p-8(iixdfx)d] (2)

(15.2 L&L) [pBtatxdrx)s3[stxdp=3(£4x)£x)Jd (3)
((2), (3), 11.6 1L&Lu)
(p3(x)£x)-3[itxd[pI(&ix)fx) ] (4)
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((4)y Uece, -2) 23D

2.2 (x)[p-3(E1x)fx)] & (p 3(x)fx)
(£2, ©2.1, 11.03 L3L) 72D

2.3  (xjltovx.fx) 3ps @ [(Ix)fx 3p)
(2.2, 12.44 L30) (x)[~(21x)Ex)Fp.® (~(x)£x3~p)
(1), -~p/p) 2D

2.4 (x)(p3fx) 3 (p=3(x,£fx)
(:1) [(x)(p=8fx).c'x)a1=3 (p=[tx)
(15.2 L&) fx—3(:3'.x)f1.c)
(1), (2), 20.3)
((x)p=3fx).stx.Bl(pBfx) (fxB(24xIfx) i
(131, 11.6 +2.) [(x)(p32x).2xi=3[p3(5tx)2x) ]
((4), U. G., 14.26 18&L) |
(x)[(x)(p3£x)3(2ixd[p3('xIfx)is
((5), £2) 22D

(5)

(1)

(5)
(6)

Theorem 2.4 illustrates both a vwaey in which guanti-

fied modal logic differs from quantified material logie, &and

also tne neel for including existence in modal liogic. .Juile

the analogue of 2.4 with waterial implication replacing strict

implication is true biconditionaly, ivhe converse of <.4 is not

true (@ee comment after T2.7), and in order to obtain a law

analogous to 12.4 the main connective of whicn is an equi-

valence relation, the antecedent of 2.4 must be weaxened by

introducing 'E!' as in 2.2,
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72,6 (x)(fx-3gx)-=8[(x)fx-3(x)gx]

(P1) (x)(£x3gx).iix3(£x-3gx) (1)
((1), £1, 10.3)
(x)(£x3gx).Eix3((x)£x.uix3£x).(£x3gx) (2)
((2), 11.6 LoL, 14.26 L&L)

(x)(fxZgx)3 E4x)(x)fx-3(EixJgx)] (3)
((3), U. G., 22) Q@D | (4)

T2.6 ~)~(x)fx & (x)~~(Eix)fx)
(T2.,2: pv~p/p) (x)(pv~p3Eix)fx) & (pv~p3(x)fx) (1)

(10.5) (pv~p=32ix)fx)e ~(~(Elx)Ifx) (2)
(T0.5) (pv~p-3(x)Lx}p~~(x)£Lx (32)
(v, (2), (3)) WD (4)
72,7  (x)~9~2x-3 ~O~(x)2x
(T2.4: pv~p/q) (x)(pv~p-3fx)3(pv~p—3(x)Ffx) (1)
(T0.5: #x/q) (pv~p-3fx) & ~O-fx (2)
(T0.6: (x)fx/q) (pv~p-3(x)fx)E ~~(x)fx (3)
((1), (2), (3)) QED (4)

The converse of T2.7 is not valid. an exception to
the converse of T2,7 can be obtained by substituting 'Ei' for
'£' in such a supposed law. 4dhe "law" faills becuuse, while it is
necessarily the case that everything exists (see 12.15), it
is not the case that everything necessarily exists, and in
fact, of anything it is contingent that it exists (see T3.1).
Had the converse of T2.4 been valid, then the con-

verse of 12,7 would have followed. Hence the invalidity of
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this converse, as exhibited above, also exhibits the ine
validity of that converse,
12,8 (x)(fx -3gx)3~¢~(x)(£xIgx)
(172.7) (x)~¢~{£xIgx) 3 ~0~(x)(LxIgx) (1)
((1), 18,7 L&L; QED (2)
T2.9 (3x)Q (Elx.2x) Q@ (Ix)£x
(P2.6, 12.11 L&L: ~p/p) ~(x)Q~(Eix)tx) &

~p~(x)fx (1)

((1), 03, 12.3 L&) QED (2)
72,10 Q(3x)fx3(3x)¢ £x

(72,7, 12.43 LEL) ~P~(x)fx3~(x)~fx (1)

((1), 12.3 1&L, D.3) QD (2)

The counter instance given earlier to disprove
the converse of 12,7 also disproves the converse of T2,10.

72.11 ¢ (x)fx =3 (x){) (Eix)fx)

(T1.1, T0.6) ~~[(x)£x-3(2ix)fx)] (1)
(18.53 L2L) [[(x)fx-a(szm)].Qix)rxj-a(}(m_x)fx)(2)
((1), (2), 18.61 igh) O(x)tx—éO(Exx)fi) (3)
72,12 (Gx)~¢~(Eix.fx 3 ~)~(Ix)fx
 (12.43 L&L, T2.11) ~(x)0(E2x)£x)3 ~)(x)fx (1)
((1), 12.3 L&L, 14.01 L&L, D.3) QED (2)

The converses of 12.11 and T2,12 can be proved
only as material impliecations in this system (see T3.5).

However, these converses could have been obtained as strict
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implications had Lewis' postulate Cll bsen assumed, or had

P3 of the present system been replaced with '~{)~(~(3x)Elx'.
For 1f it is necessarily contingent that something exists,

then as a result of the so called "paradoxical" properties of

strict implication, the theorems in question could be obtainei.

In any case, both 8ntecedent and consequent of I2.11 are

always true, while both antecedent and consequent of T2,12 &are

always false.,
T2.13 is an alternative form of 12.6.

12,13 ~Q~(x)2x ¢ (x)(Eix-3£x)
(72.6, 1847 L&) QED
T2.14 ~4~(x)E'x
(P2.13, &/£, 12.1 Léu) QED
T2.15 ~9~(x)(fx)ilx)
(16.2 LXL) Eix-3(£x)iix)
((1), UeGs) (x)[BEix 3(£xIEx))
(72.13, (2)) QED |

It is on account of T2.16 that rLarmenides' claims

that everything which one talks about, thinks about, eto.,

exists, can be affirmed as so, and indeed, as logically

necessary.
Since however, the converse of T2.8 is invalid,
(2)~4~(x)(£x)ilx) does not imply (£)(x)(fx-32%x). In fact
it 18 not the case that (f)(x)(£x-3six). «+hile 8ll pro-
perties are extensionally included in the property of

being an existent, existence is not in the intension of

(1)

(1)

(1)

(2)
(3)
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every property--tnat is, not &8l1ll properties "imply
existence", For example, no necessary properties imply
exigstence,
72,16 (x)(Eix)fx)-3(x)fx
(F1) [(x)(Eix)fx).Eix] -3 (Eix)fx) (1)
(€1), 14.26 L3L, 12.5 i&L. 12.7 Lgd)

(x)(Etx)fx) Eix-3fx (2)

(14.26 L&L, (2), UeGs, 22) Q2D (3)
72.17 (x)(Eix)fx) 4= (x)£x

(16.2 L&L) f£x -3 (Eix)fx) (1)

((1), U.Gs, £2.5) (x)fx-3(x)(2%xI)fx) (2)

((2), T2.16, 11.03 L&L) ARED (3)

T2,1? affirms in effect, tnat a generalization sabout
everything that exists is a generalization about every-
thing. A8 a result or 12.17, a generalization about all
"legitimate,” or existent, totalities is an unrestrictedly
universal generalization,

72,18 (Jdx)fx& (Ix)(Eix.Lx)

(11.3 1&, T1.2) fx.BElx -3 (3x)(Eix.fx) (1)
((1), U.Ge, T2,3) (OOx)fx 3 3x)(Eix.fx) (2)
(TL.2, 12.3) (3x)(Bix.fx)3(3Ix)Lx (3)
((2), (3)) QED (4)

2,19 (x)(fx)>Elx)éep ~(3Ix)Pfx

(T2.1%) (x)(~fx)~Eix)&d ~(x)~fx (1)
(€1), 12.3 L&L, D.3) QiED (2)
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T2.19 assarts that, none of a certain <ind of thing

exists, is equivalent to, that kind of thing does not have

plural existence,

72,20

r2.21

T2.22

T2.23

(x)(y)£xy 3(3)(x)fxy
(P1)  (x)(y)fxy.iix  (3)fxy
(T1.1) (y)fxy 3 (Ely)ifxy)
((1), (2), 11.6 L&L, 14.26 L3L, 12.15 L%L)
(x)(y)fxy.2ly.Elx 3fxy
((3), 14.26 L&L, U«G., £2) (x)(y)fxy.siy S(x)Lxy
((4), 14.26 L%L, U.G., P2) 2ZD
(x)(3)fxy & (y) (x)Exy
(By proor similar to that for T2.20)
(3)(x)fxy 3 (x)(3)fxy
((1), T2.21, 11.03 L&) QLD
(x)(£x3gx).(x)(gx3hx)-3(x)(£x-3hx)
(F1) (x)(fx3gx).L%x 23 (£x-3gx)
((1): g/, b/g, 19.68 L&L)
(x)(£fx3gx).Elx.(x)(gx3hx) 3 (£x3gx).(gxdhx)
(€2), 11.6 L&, 14.26 L&L, U.G., P2) QED
(x)(£xlgx)«(x)(gxdhx)3(x)(£xdhx)
(Proof similar to that for 72,22)

2,67 Section 3.

13.1

¢~ivx

(1)
(2)

(3)

(4)
(5)

(1)

(2)

(1)

(2)
(3)
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(Tl.2: EYV/f, 12.76 L&L) Eix-3(Ix)Eix

((1), P3, 18.52 L&) QED
3.2 {~(3x)fx

(T1.2, 2%/£, 12.76 L&L) E'x =3 (3x)E.x

((1), 19.51 L&L) Eix.fx-3 (Ix)ilx

((2), UeGo, 12.3) (3Ix)fx 3 (Ix)BL'x

((3), 18,52 LiL) 1=D
73.3 Q~P(3x)fx

(13.2) ¢Q~(3x) Qfx

(¢1), 12.10) QED

There are many true cases of plural existence.
Since it 1s also vhe case that the formula 'p3¢Qp' is valid,
there are also many cases ofr consiatent plural existence,
By 13.3, these cases of consistent plural existence are
also cases of contingently consistent plural existence.
These are results of the view that plural existence is
always contingent, and of some of the above laws governing
commutation of modal opsrators with quantifiers.

Because of these results, the present system is
inconsistent with postulate Cll of Lewis and Langford

Symbolie Logic. 1This postulate is one of several speeula-

tions of Professor Oskar Becker. ‘hese appear in Appendix

11 of Symbolic Logic, as alternative assumptions concerning

iterated modalities., These alternative assumptions are the

following:

(1)
(2)

(1)
(2)
(3)
(4)

(1)
(2)
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C10: ~¢~p 3 ~¢~—0~p

C1l: ¢p3~0~Fpr
C12: p3~~¢p

and in addition to these, one further alternative:
Cl13: {¢p

Lewis shows that in a system such as the [present
one, wnich assumes postulate‘Clo, postulate Cl3 has exceeptions.
Furthermore, if C1l2 be added to such a system, Cll becomes
a theorem. Since the present system is inconsistent with
Cll, it is also inconsistent with Cl2.

Hence in the present system, all of the above
speculations are decidable, (Cll, Cl2, and C1l3 all have
exceptions, while C10 is a postulate.

3.4 ((x)fx

(13.2, D3) Q(~(x)~fx (1)
(1) Q~—~(x)—1x (2)
(€2), 12.3 L&L) QED (3)

T3.,4 affirms that all generalizations are con-
gistent. 1lhis view is & result of assuming that it is
contingent that something exists and that a generalization
to everything that exlasts is a generalization to everything
unrestrictedly. That it is contingent that something
exists is equivalent to its being consistent that nothing

exists. bBut a generalization to everything that exists

would be guaranteed true were it the case that nothing
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existed, since the antecedent of that generalization
would be always false., Hence any generalization to
everything that exists--and therefore any generaliza-
tion--is consistent. although T3.4 affirms as consistent,
even & universal generalization over an inconsistent
property, as in '(x)(fx.~fx)', nevertheless, System 1
does not allow as valid '¢[(Ix)Eix.(x)(fx.~fx)]'. That
is to say, it is true that everything is (say) red and
not red, only provided that nothing exists.
3.6 ~~(fx)3~(fx3:ix)

(18.562 L&L, 13.1, 12.44 L2L) 22
3.6 (x)Qfx) {(x)fx

(13.4, 15.2 L&L) QD
3.7 {(x)E£xI(x)Q(EixIEx)

(12.11) <QED
3.8 (x)Q(Eix)fx)) {(x)fx

(13.6) (x){(EixIfx))¢ (x)(EixIPx)

((1), ©2.17) QED
3.9 {(x)fx = (x)Q(Bix)ex)

(T3.7, T3.8) QED
T3.10 ¢~dx)fx = (xX)~(E'x.fx)

(T3.9) QED
13,11 ~()(x)fx = Fx)~¢(Eix)fx)

(T3.9) 2ED

(1)

(1)

(1)

(1)
(2)

(1)

(1)

(1)
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2.58 Jection 4.
2.581 for the most part, the theorems of section four
depend upon the postulate 'E'lx'. This postulate is so to

speak, tacit, in the system of Principia ilathematica, since

while lrincipia iathematica contains the restriction that

only terms which denote are sllowed in the system, 4 of

the present system does not appear in Principia mathematica.

The logic of rrincipia Mathematica is contained in the

present system. T4.4 and 14.5 of System I correspond
respectively to *10.1 and *10,21 of Principia. Lowever,

the inference of these formulas characteristic of rrincipia
Mathematica depends upon the postulate 'kKix',

2.582 1'he first vhree theorems and the fifth axe
presented in section four pecause they &re key theorsms in

the inference or tine postulates of Principia iathematica.

unlike the remaining theorems of section four, they do
not depend upon r4, and might have given in section two.
4.1 (x)(pXx) Spiix)ex |

(P1) (x)(p)fx).E'x =3 p)fx

((1), 14.26 L&L) (x)(p)fx).p -3 &ix)fx

((2), UeGe, 11) (x)(pI)fx).p 3 (x)fx

((3), 14.26 L&) 22D
T4.2 pl(x)fx =3 (x)(pifx)

(11.7 L&) p.(pdX(x)fx) -3 (x)£x

((1), T1.1) p.(pdXx)fx) 3 2ix)fx

(1)
(2)
(3)
(4)

(1)
(2)
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((2), 14.26 L&) pdx)fx =334x)(pIfx) (3)

((6), UdGe, P2) QED (4)
T4.3 (x)(p)fx)e>plix)fx

(T4.,1, T4.2, 11.03 L&L) 2= (1)
4.4 (x)fxOfx

(rl, 14.26 L&L, P4) 72D (1)
4.5 (x)(pXfx) ) (pd(x)£fx)

(T4.1, 14.1 L&) D (1)

Theorems such as T4.5 and 12.< are sometimes
referred to us "confinement" laws. Such confinement laws
can ne validly tosmulated tor materisl connectives without
invroducing wne predicate 'HLl', Tais fact, plus tue
valiaity oi 4.4 in a logic allowing only of terms wanica
deuote, makes possible in such a logic, & quantiried material
calculus that does not contain 'Li'.
r4.6 (Ix)E'lx

(T1.2) .ix.iitx 3 (3x)i%x (1)

((r), 24) 2ED (2)

#hile T4.6 is otten tsaizen to ve &u assumpdLion or

logic, in a system such as :rrincirpia lathemravica such a

theoren cannot be obtained, since a notation for singular

existence is not availsable,

2.59 Jection 5.

T5.1 x=y ) (£x-3fy)
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(t4.4, £/x) (£)(£xdfy) J (£xOfy)

(04, (1)) x=y ) [(£x=3fx) ) (fx3fy)]

((2), 15.8 L&L, 12.1 L&L) Q3D
T5.2 X7y I )~x*y

(19.52 L8L: *x/q, fy/r, 21f/p, 14.1 L2L)

(£x3fy) J (Eif.fx-3fy)

((1), T6.1) x=y J (E%tf.fx-3Ly)

((2), 14.26 L&, UsGe, 18.7 L&, T4.3)

x*y ) (£)4~(E1£)(£x)fy))

(12.6, (3), D4) IED
6.3 x*y = ~x*y

(18.42 L&L, T5.2)

T5.3 is true if modal terms are interpreted
ags terms of the object language. If a is identieal with
b then everything true of a is also true of b. Hence
modal terms of the objeet langusage which apply to a also
apply to b.

On the other hand, if modal terms are construed
ag terms of the metalanguage, then those that apply to
'a' may not also apply to 'b', This is so because 'a!
and 'b' are not identical, and therefore not every pro-
perty of 'a' is a property of 'b',

For exsmple, the sentence '~{~(LKav~Ra)' meaning,
8 is red or a is not red, is true; and would be a tneorem

of the present system, were the constants 'a' and 'R’

(1)
(2)
(3)

(1)

(2)

(3)
(4)

(1)
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added to tne 1list of first formulas for System I.
Similerly, ''(kav~3ia)' is snalytic' is s&lso true.

However , if an occumence of 'b' is substituted
for one out not for two of the occurrences of 'a' in each
of these quoted sentences, and further a is identiecal
with b, then the result of substitution on the first of
these sentences is true while the result of substitution
on the second sentence is a sentence which would in many
langutiges be false,

In particular, in tne language of 3ystem I, if
'analytic' were defined to mean & sentence which is a
substitution instance of a theoreﬁ of System 1, then
'' (Rav~Rb)' is analytic' would be false,

But '~9~(Rav~Rb)' makes an assertion about the
same thing as does '~O~lkav~Ra)', and moreover makxes the
same claim concerning tgat thing as does the latter.
Hence both of these last two sentences are true.

T5.3 is not valid if definite aescriptions of
the nussellian sort are allowed to replace the variables
in 15.3. No assertion of necessity containing a definite
description the scope of which is the sentence or formula
to which the sign of necessity is prefixed, is res-
pectivly true or valid. This 1s because every statement
containing a definite description is anslysed by hussell into
a statement of plural existence; and none of these are
analytic. For example, 0~ (7x)(fx)=(7x)(fx)' which is

equivalent to, '~ ((Ix) (x=x.fx).(x)(y) ((fx.fy) x=y))"' 1is
not only invalid but contravalid as well.
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Definite descriptiorsare involved with TS.3 in
the ususl formulaticns of certain "paradoxes" such as the
paredox of morning star and evening star and the paradox
of analysis.7 A, F. Smullyan was the first writer to notice
that in systems using Russell's analysis of definite des-
criptions, these "paradoxes" could be traced to certain
fallacies involving scopes of definite descriptions,8 al-
though suggestions of such a solution can be found in the
earlier writings of Alonzo Church.9 %e V. Quine has sug-
gested some cf the latest versicns of such paradoxes,lo
while Frederic B, Fitch has given what is perhaps one of the
latest and most comprehensive analyses of the fallacies

involved.11

In addition to the above reasons, there is at least
one other reason why T%.3 mav seen paradoxical., Some
logical writing (for instance Frege's) and perhaps in-
formal discourse, eiployvs a sense of identity which is
apparently quite different from that of '=' in System
I, By 'a is identical with b' is meant something is

named by 'a' and by 'b', Under this interpretaticn, the

« W. V. Quine, "Reference and liodality", in From a Logical
oint of View.

o]

_ "The Problem of Interpreting lodal Logic",
e Journal of &ymbolic Logic, vol. 12 (1947) p. 43.

=

8, Arthur Francis Smullyan, Review of "The Problem of Inter-
preting liodal Logic", The Journal c¢f Symbolic Logic, vol. 12

(1947) p. 129. . '
—_— __ , "llodality and Description," The
Journal of oymbolic Logic"™, vol, 13 (1948), p. 31.

9. Alonzo Church, The Journal of Symbolic Logic, vol. 7
(1942), p. 100,

10, See footnote 7.

11. Frederic Brenton Fitch, "The Problen of Uorning Star
and Evening Star", Philosophy of Science, vol, 16, PpP. 137-141,
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term '=' is taken to involve surreptitous mention of
expressions taken as arguments to it. These statements
are also statements of plural existence and so are con-
tingent. In consequence of this, 15.3 agein fails to be
valid with '=' so interpreted.

If definite descriptions are not substituted for
variables in 15.3 and the sense of '*' is that of D4, and

'~)~' 1s given the interpretation of 'necessarily' rather

than the interpretation of 'is analytic', then 15.3 loses its

paradoxical features. Or rather, 16.3 1s a "paradox of
necessity" in the same sense that '~p)(p)q)'Ais a "paradox
of material implication",
T6 .4 ~)~x=x
(12.9 L8L, U.G.) (£)(£x)fx)
((1), Da) x=x
((2), T5.2) QED
T5.6 23(9x)(2x)&(3x)(£x).(x)(y)[(Lx.£y) dx=y]
(D6, 12.11 L&L) -
EV(1x) (gx)&(3x) (2ix.gx) o (x) (3)[(gxegy ) )x=3]
((1): £/g; T2.18) QuD _
If the primitive 'KE!' tukes & definite des-
cription as an argument then T6.5 shows taat the resultant
statement is equivalent as & theorem to a condition which

is equivalent to the condition tagen in rrincipia

Kathematica to be equivalent by definition to *E}(9x)(£x)'.

Or, put differently, what is essentially the rrincipia's

general definition tor '£(9x)(gx)' reduces in System 1 to

(1)
(2)
(3)

(1)
(2)
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what is essentially the Principia's definition for

'B4(9x)(£x)' when 'Bi' is substituted for ‘'f£'.
This last fact is the justification for using
the same notation for singular existence in System I

ag is used in rsrincipia Kathematica,

In T6.5 a8 in other uses in System I of definite
deseriptions, the rXrincipia convention that scopes are
taken to be the smallest possible when not explieitly
indicated may be followed. It is however, unnecessary
to introduce scope operators in System I, provided that
the rules of transformation are exactly followed. Yerhaps
this can best be made clear by a consideration of the
example used in irincipia to justify the introduction of
scope operators,

The example chosen in lrincipia is, except for
minor notational differences, the Iollowingzl'2

£(9x)gx ) p
This may be either:

L(3x)(fxegx)e(x)(y)((gxegy)I)x=3)d D P
or:

(3x)((£xIp)egx)e(x)(y)((gRegy) x>y ).

But if ~E'(Jx)(gx), then the first of these is true and
the second is false., 1t would therefore, seem to be
necessary to introduce some such device as the rrincipia
gcope operator in order to distinguish.between these two

cages,

12, FPrincipia lMathematica, *14, Summsry.
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However, even prior to tne introduction of
gscope operators, only the first of the above translations
0of the first statement containing the definite des-
oeription, can be made in System I,

The second is rather a case of '®(£xJIp)(7x)(gx)’.
It might seem plausible that the latter could be inferred
from '£(9x)(gx)Jlp' by substituting upon 'p3p' to obtain:

&(£xJp)()x)(gx) =3 R(£xdp)(1x)(gx)
then reducing this to obtain:

2(7x)(gx) Ip -3 #(£x)p) (9x) (gx)

But the rule of reduction (and the definition
of 'reduce to') has been so formulated as not to allow
reduction of a sentence consisting of a predicate
followed by a definite description.

"£(7x)(gx)Ip' can however, be inferred from
'2(2x0p) 17x) (gx)'

That ambiguity in sentences and formulas con-
taining definite descriptions can be avoided without the
introduction of scope operators is relevant to the modal
"paradoxes" as they have been treated by Smullyan and
Pitch. Although no explicit rules of reduction appear
in Principia, scope operators appear to have been 1nfro-
ducel with the intent of distinguishing between sentences
which involve definite descriptions as arguments to
predicates and are obtainable by one or more reductions on

each other,
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However, to allow sueh reductions prior to the
introduction of scope operators is to allow invalid rules
of inference, as the above inference from & true premise
to a false conclusion illustrates. Hence the need for
some such device ag the scope operator.

In order to obtain the modal paradoxes, such
invalid reductions must be allowed in addition to sub-
sequent invalid use of definite descriptions without
their then required scope operators,

5.6 5%(£x)

(12.1 1&L, 14.1 1&L, U.G.) (x)(fx = f£x)

((1), T4.4) (3g)(x)(2x = gx)

((2), 12.18) (3g)(Elg.(x)(fx & gx))

((3), D4) Q.E.D.

In spite of 156.6, System 1 is campatible with
Russell's thesis vhat classes are fictions. T65.6, as
well as any other statement containing ambiguous des-
criptions, is analysed in such & way that the ambiguous
descriptions occurring in it are syncategorematic. If for
example, the predicate 'R' used above is substituted for

"£1' 4n 75.6, the result of substitution is 'E®(Rx)'. But

this resultant sentence does not literally assert existence

of a class, it is rather an assertion with a complex

notation for a relation betwesn existence and redness,

(1)
(2)
(3)
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Similar remarxs concerning scopes and scope

operators apply to ambiguous descriptions as were mentioned

immediately preceding 1w6.6 for definite descriptions. 1f

System 1 is formally followed, then no scope operators

need be used, but if reduction is taken to be applicable

to ambiguous descriptions, then scope opsrators are

necessary.

The following is a catalog of formulas assumed

to be proper in the course of the above proofs.

Cl.
C2.
C3.
C4.
Cb.
Cé6.
C7.
c8.
Co.
Cl10.
Cll.
ciz.
Ci3.
Cl4.
Cls.

1
[

L.

A

3

2(£x)

£(~1x)

2(p3(ELxIPx)J

lp3(x)£x)3 iz'.xatpa (Eix)£x)])J
2(p3£x) -
x)(p32x)3(23xd[p 3 (EdxIex)])J
£(£x3gx) '
2(x)(fx 3gx)3atxd[(x)fx 3 (ElxIgx)])
2 (x)2x3(E1x)Igx) ]

2(pv~p 3£x)

2(pv~p 3fx)

(£xdgx)






Clé.
Cc17.
cis.
cl9.
C20.
C21.
c2z.
cz3.
C24.
C25.
C26.
ca7.
cas.
Ca29,
C30.
C3l.
C32.
C33.
C34.
C35.
C36.
c37.
Cc38.

C39.
C40.

£~(£xdgx)
£-9~(21x)fx)
R[0~(E}x)I2x)]

260 (21x)fx)]
2[O(x) £x 3¢ (2imIPx) ]
2Q0(21x)~fx)]
R~(21x.fx) ]

R~ (21x.£x)]

2ivx 3]

2latx 3.4tx)
R[21x3(£xI8ix) ]
R[LxIELX]

Q(E'.x)ij

20 (x) (E1)fx)-33%x)fx]
2 ex 3 (Bt )x)]
2(E1x)(R(~fx)x))
2 £x3(21x)fx) ]
2(2tx>~£x) |

R (~—fx>iix)
2(y)exy)

£(2((3) £xy)x)

J(2xy)
2(x)(y)Lxy. ity -3 BLxIPXy

Q[(x)(y)fxy.zﬂ'.y-a(ﬁ(‘r:'.x)fxy )x) )
A (x)(y)Exy 3 B4y dix)Lxy)

o2



C4l.
caz.
c43.
C44.
C45.
C46.
can.
C48.
C49.
C50.
Cbl.
Cbz.
Cs3.
Co4.
C55.
Cb6.
ce7.
C58.
Cb9.
C60.
C6l.
Cé2.
Cé63.
Cé4.

(=) (y) £xy 3 (Fietydix)exy)y)]
9((x)£xy)

Qix)(£x 3gx).(x)(gx3hx) 3:31x)(£x3iix)]
20(x) (£x3gx).(x) (gx3nx) 3 (2(3x)(£x3hx))x)]
R (x)(£x)gx).(x)(gxdhx) 341x)(£xOhx)]
R0 (x) (£xIgx) . (x)(gxdhx) -3 (R(2%x)(£x0hx) )x) ]
R(~stx)

RA stz fx -3 (Ix)ilx,

R~(R(~£x)x)

R £x)

2(pdfx)

(x)(pI)fx).p-3iixIfx )

20(x)(pi)fx).p 3 ($(£1x)2x)%) ]
Rp)(x)fx3E1x)(pdfx)] |

2 exoy) |

Fiexo2y)

Blx=y >0~ (EL2I(£x)fy)) ]
B~)~(2123(£x)23) ] |

9[x=y MR (~~ (202 £xd2y) ) )E) ]

B(£xd2x)

£(~Elx.gx)

20(3)[(gx.gy) x=y ]

Plgxegy)dx=y] |

Dirx = £x)

53



C65.
C66.

Cé67.

B(~(x)(fx = gx))

Rfx = gx)

B~

JOLY- 4

(x)(fx = gx)))

54
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CTLFT™R III

OBLIZUE DISCOURSE AND CCONNCTATIVE
ICGIC: S¥STEL II

3.1 The paradoxes of the theory of types were avoided
in System I by the theory of prerequisites together with
the assumption that "®(~(xx))" and other "paradoxical
predicates" do not denote anything.

While this assumption may be looked upon as to
some degree justified simply by 1ts avoidance of parédox
eand by a certein intuitive appeal, nevertheless in the
absence of more conclusive evidence, it seems to have
the rather unsatisfactory appearance of having been intro-
duced ad hoc.,.

3.2 The purposes of the present section are to suggest
a system of logic within which the above questions may be
riore critically investigated and to apply the resulting
system to the investigation of the perticular issue of
whether or not "#(~(xx))" denotes something.

3.3 The description of the following logic is not
intended to be complete. The following is an account of
sone of the more salient features of a loglic suitable to the
above purposes.

3.4 The questicns concerning singular existence which
are prerequisites in System I, cannot themselves be 1nves-

tigated in System I, because these are issues which must be
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settled prior to an application of System I. This is why
a new system of logic must be developed to investigate
these questions of singular existence,

3.5 Even if a given term does not denote any existent
thing, the term itself exists, This fact suggests a
metalinguistic approach to the investigation of the pre-
requisites to System I. The central question concerning
prerequisites in connection with a term, would be whether
or not the term denoted something. If investigation
revealed that a term "a" denoted something, then the
sentence "El!a" would be true; and if "a" did not denote
anything, then "E!a" would not be true--or false.

This approach to the investigation of prerequi-
sites would be quite in accord with previous suggestions
to the effect that an oblique mode of discourse is necessary
to carry out those investigations.

To discourse in such a way as to mention terms
is to use those terms obliquely since a term in quotes is
not used in order to talk about something denoted by the
term, tnt rather as a syncategorematic part of a larger
expression consisting of the term in question enclosed in
quotes, which is used to talk about the term itself.,

3.6 Though such a metalinguistic approach may seen

pronising, it will not be followed here. The drawback of
this approach as far as the present system is concerned

consists in its adopticn of semanticel terms such as
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"denotation™ as technical terms of the system., The
explication of the meaning of such terms is beyond the
scope of the present discussion,
37 Although the present system will avoid semantical
terms as formal devices, it nevertheless will be a systenm
of oblique reference, The mode of reference will be that
of connotation., The meanings of "connotatlon" and of
"denotation" that are intended, are those which were in-
troduced informally in Chapter 1. Although no extremely
precise explication of these terms will be attempted,
since these terms will be used only to talk about the
system rather than in it, some discusslon of the present
usage, in part by way of review of the discussion of
Chapter 1, would seem to be appropriate,
3.8 Both connotation and denotation are modes of ref-
erence, Each mode of reference 1is analogous to the relation
of naming in that, just as any given term names at most one
thing, so there i1s at mnst one thing denoted or connoted
by any term. Of these two modes of reference, denotation
is most similar to the relation of naming, and in fact is
here taken to be synonymous with 1it,

The single things which are denoted and connoted
by a term will be referred to respectively as that term's
denotatum and connotatum. The connotatum of any term or

of any sentence 1s always a property.






The connotatum of a term is a characteristic
which 1s so to speak, 2 definitional criterion by means
of which one identifies the denotatum of the term. A
candidate for a denotatum of a term may be accepted or
rejected as that term's denotatum, accordingly as it
possesses or fails to possess the connotatum of that term.
3.9 The primary purpose for which System II will be
used will be to investigate questions of singular
existence. A system of connotative logic could investi-
gate the subject of connotative discourse generelly, after
the analogy of Russell's general analysis of definite
descriptions in any context in which they might occur, by
means of the contextual definition:

£(9x)egx =Df (Ix) (y) ((gyZx=y)ofx) . (1)

But rather than this, the present investigation
will be concerned only with the analysis of connotative
assertions of existence, after the analogy of Russell's
analysis of this particular context for definite descriptions:

E!(Ix)fx =Df (@x)(y) ((fy £ x=y) (2)

The reason for this restriction 1is of course,
that the primary purpose for which System II 1s used here,
is to investigate the prerequisites of System I,
3.10 An expression enclosed in angle brackets such
as "{a)" will be taken to be a name of the connotatum of

the expression enclosed in such brackets. Since the
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connotatum of an expression i1s a characteristic possessed
only by a denotatum of the expression, a statement of
singular existence in the connotative mode of interpre-
tation will be expressed by asserting plurel existence to
be a property of a terms connotatums
3t <a) (3)
"Santa Claus does not exist." or, "There 1is no Santa
Claus." might be written:
~ ) (4)
Sentences as well as terms may be enclosed in such
angle brackets and in this case, the connotatum named by
the bracketed expression together with the brackets enclosing
it, 1s a characteristic satisfied only by a state of
affairs which the enclosed sentence denotes.
In general, a criterion for the truth of a
sentence of the forms
ELR ) (5)
where F is a sentence, will be taken to be whether or not
F denotes a state of affairs,
3.11 Just as denotative logic assumes that every term
used in the logic denotes something, so connotative logic
assumes that every term used in it connotes something.
Rather than being developed as an independent
system, the following logic will be formulsted as an

application of System I.
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Because of the above two points, the following
system cannot be formulated with just one kind of pro-
rositional and non-propositionnal variables. The variables
of System I will be employed in System II with their
previous restriction trat only terms which denote may
be involved in any formulas substituted for them. In
addition, in System II, the letters "u", and "v" will be
used as propositional variables, while the letters "a",
and "b" will be used as non-propositional variables, each
with the restriction thet only terms which connote may be
substituted for them,

3.12 The following is a listing of principles of
System II. This listing 1s not a 1list of postulates for
connotative logic, but rather a combination of what might
be both postulates and theorems of connotative logic, in a

development which proceeded rnore rigorously than the present

one,
Pl 3 (upduy) o 32 Lupdug)) > 3 {updug)y
Principle 1 might be called "The Principle of

Connotative Transitivity",

P23 T w . 3!<u)v> ) Jtdwy

Principle 2 might be called "The Principle of

Modus Ponens",

P3: FJiupd~ (1 &u))
Principle 3 might be called "The Principle of
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Double Negation", The converse of Principle 3 is not
valid., Some sentences are such that neither they nor
their negates denote a state of affairs. For example,
neither the sentence "Santa Claus wears a red suit." nor
its negate, "Santa Claus does not wear a red suit" indic-
ates a state of affairs about someone denoted by the term
"Santa Claus",
P4: Fiuwy 2 (FT).3vD)

Principle 4 will be called "The Principle of
Conjunctive Distribution".
PS5: Jtdu v v) ) (31 {wy vAVY)

Principle 5 will he called "The Principle of
Di sjunctive Distribution"., Unlike the Principle of
Conjunctive Distribution, which 1s true biconditionally,
the converse of the Principle of Disjunctive Distribu-
tion is not true, Let "R," abbreviate "Santa Claus wears
a red suit", Let "W" abbreviate "Snow is white.,". It 1s
true that "3!<Rc>v A1{W)H", because it is true that
"31{WH" and that everything which functions as a term in
the sentence denotes something, and therefore the dis-
junction as a whole is true. However, the sentence
"R, v W)" is false (and not merely untrue), because
ne" does not denote anything, and therefore the sentence

"Rc v W" cannot denote a state of affairs about something

denoted by "c".
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Conjunctive Distribution, which 1s true biconditionally,
the converse of the Principle of Disjunctive Distribu-
tion 1s not true, Let "R," abbreviate "Santa Claus wears
a red suit", Let "W" abbreviate "Snow is white.". It is
true that "34(R.)v JW)", because it is true that
"3!(W>" and that everything which functions as a term in
the sentence denotes something, and therefore the dis-
junction a2s a whole is true. However, the sentence
"3!<Rc v W>" is false (and not merely untrue), because
"e" does not denote anything, and therefore the sentence

"Rc v W" cannot denote a state of affairs about something

denoted by "c".
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Pé Jidwya Fe~u)

Principle 6 is another form of a principle of

double negation,
P72 38wy w3 u)

Principle 7 1s a law of excluded middle.
Principle 7 1s actually not a special principle of System
II, but is rather merely a direct application of the usual
law of excluded middle of System I, P7 is mentioned here
malnly in order to allow comparison of it with the invalid
"law of excluded middle": "J!{ujv Jt&u)".

P&: (31{a).31{p)) ) (Filab) vl ab))

Principle 8 1is another law of excluded middle
which is very similar to the 1nvalid "law" mentioned
immediately above P8. Through the use of non-propositional
variables, the fact can be expressed that the invalid "law"
above 1is true under a restricting condition., Principle 8
expresses the fact that so to speak, there are no exceptions
"in nature" to the law of excluded middlej or in other
words, that everything either possesses or fails to possess
any given property.

In addition to stating such particular principles
of connotative logic as those above, certain general meta-
linguistic rules can be formulated which describe how valid
laws of denotative logic can be transformed into valid

laws of connotative logic.
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Rule 1: Form the negate of any valid formula of the
material oropositional calculus. Replace each occurrence
of a denotative propositional variable in the resulting
formula with an occurrence of sorme connotative proposi-
tional variable., Enclose the resulting formula in angle
brackets, and precede the whole with the expression Wi,
The resulting formula will be a valid formula of connotative
logic.
Rule 2: If Fl)F2 is any valid formula of the propositional
calculus, such that every variable an occurrence of which is
in F,, also has at least one occurrence in Fy, then form
3!<F1>)3KF5L Replace each occurrence of any denotative
propositional variable in the resulting formula with an
occurrence of some connotative propositional variable. The
resulting formula will be & valid formula of connotative
logice

The above & principles and two rules suffice to
determine a considerable amount of material connotative logic.
3.13 Since System II 1s being cdeveloped within System I,
the methods of inference of Systemn I are also available in
System II,

An additional rule for System II 1s a rule for
substituticn upon free connotative variables, analogous to

the rules of System I for substitution uron free denotative

variablese.
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Two furtrer rules, or perhars extensions of previous

rules, are a rule of refuction, and a rule for exchange in
accordance with definitions, when the expresslcns which
are respectively reduced or exchenged, occur within angle
brackets and hence may not denote anything,
3.14 If the above princirles and methods of connotative
logic are emnployed, the formula wJ1{¥Y" may be proved to be
a theorem of System II (where "k" is Russell's predicate) as
follows:

(From P3: kp/w) Fig) )~ (Fiky)) (1)

((1), and exchange in accordance with the

definition: k =Df f(~f,))

2NeYd ~3F1e P=1pK)) (2)
(From (2) by reduction) E_l!<kk> )~ (3ie~k))  (3)
(From P6) ~ Ji—~ (ky )~ k) (4)
(From (3), and (2)) Itk > Ik (5)
(From (5)) ~ Jtky) (6)

(From (6) by exchange in accordance with the
definition of "k")

~ 1 E £ K (7)
(From (7) by reduction) ~33!<~kk> (@)
(From (€), and (8) by adjunction)

~31 (k) e~ Ky (9)

(From PR: k/aj k/b)  (31dk)+ T1k)) W Ttlkk)v
EHEG 39D (10)

(W
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(From (10)) k) ) (Fi{kk) v Ji& kD) (11)
(From (9), and (11)) ~3i(k) (12)
3.15 Frinciple &€ and its use in the above proof sug-

gest that investipetinn of vrinciples of connotative logic
which involve non-propositional, and possibly, quantified
variables, might prove fruitful,

However, it seems very unlikely that connotative
logic will admit of a calculus of non-propositional var-
iables which will have an importance in connotative logic,
compareble tn the Importance of the theory of quantifiers
in denotative loric,

One of the difficulties lies in finding an inter-
pretation for bound variables which are enclosed in sngle
brackets and bound by capped variables or quantifiers which
are outside the angle brackets. A sinilar problem of
interpretation arises in all oblique rmodes of speech.

An expression occurs obliquely in a given sentence
if and only 1if:

(1) The expression in question purports to denote
sonething (or 1s a term), and occurs in the sentence,
and, (2) Vhen taken as asserted, the sentence does not
purport to denote a state of affairs concerning, or to dis-
course concerning, something purportedly denoted by the

expression,
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A frequent oblique mode of speech is mention,

The term "water" in the sentence, ""Water™ has five letters."
satisfies the two conditions above, and therefore occurs
obliquely in this sentence,

Because of these difficulties of interpretation,
such fundamental methods of inference as Universal and
Existential generalization, are unavallable for connotative
variables, The absence of these methods is in itself a
serious limitation upon connotative logic insofar as it
treats of non-propositional variables,

3.16 As a final attempt to give some explication of the
use of angle brackets in this chapter, it may be helpful to
indicate that 2(f)(gf = ~ff) 1is plausible as a connotatum
of "?(~(ff))". Or, put differently, that:

{f~5£)) = 8(£) (g 7 ~£1)

(The present author hopes that ®(f)(gf Z ~ff)"

denotes something,)



t
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CHAPTER IV
APPLICATIONS

4,1: Paradoxes of Logic
4.1 Russell's paradox can be avoided on the grounds
that,

~ k), (1)
and (1) was proven as a theorem in the course of develop-
ing System II. 1In this paradox, 'k' is defined:

k =Df &(~xx), (2)

Paradoxes very similar to Russell's are given in Principia

Mathematica., These paradoxes involve relations which are
analogous to Russell's monadic predicate. One such
relation is there defineds:

R =Df %€ xxy). (3)
Substitution of 'RRR' for 'p' in 'p = p' yilelds:

(RRR) = (RRR). (4)
Substitution on (4) in accordance with (3), and sub-
sequent reduction, yields:

(RRR) £~ (RRR)., (5)
Although it will not be done here, a proof similar to
that for (1) can be given in System II for:

~3{R). (6)
By this means, the paradoxical (5) can be avoided in

much the same way as Russell's paradox. Relations with
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definitions similar to (2) and (3) can be given for any
number of arguments. Each such relation gives rise to
a paradox. All such paradoxes are avoidable by a proof
of non-existence for the relation on which each depends,
Each such proof can be given in System II,

Grelling's paradox is a paradox rather different
from any of these, 7e might examine how this paradox can
be dealt with in System II,

Grelling's paradox arises from considerations such
as the following, Some terms are applicable to themselves,
others are not., For instance 'short!' is applicable to
itself, as is 'word', while 'elephant' is not. Let us
define 'Heterclogical', (abbreviated 'Het') to mean non=-
self-applicable., If 'Het'! is heterological, then 1t is
not heterological; and if 'Het' 1s not heterological,
it is heterological,

Abbreviating 'is applicable to' by 'App', 'Het'
may be defined as:

Het =Df RéxAppx). (7)

Grelling's paradox may be obtained as follows.
Taking,

'Het'App'Het? = Het'Het!', (8)
as a postulate, we can from,
Het'Het' = Het'Het', (9)

by means of a definitional exchange in accordance with
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(7), subsequent reduction and use of (), obtain:
Het'Het' = ~Het'Het'. (10)
(10) 1is the contradiction of Grelling's paradox.
Another rule in addition to Rules 1 and 2 of
System II, governing transformation of valid laws of
denotative logic into valid laws of connotative logic,
might be formulated as follows.
Rule 3s If F, 1s any valid formula of materlal logic that
contains no propositicnal variables, and Fl is a con-
Junction of formulas which are substitution instances of
'Ji{a)' by replacement of 'a' with a variable, and F1
contains at least one instance of every variable of which
F2 contains an instance; then Fl),3!<12> is a valid
formula of cnnnotative logic.
If Rule 3 1s added to System II, then,
~(Jt{Het). 1L Het') .J1"Het "App'Het" =
Het'Het')), (11)
can be proven as follows,
(By Rule 3) (3!/a).30{b))Ftlab I ab) (a)
((a)s Het/a; 'Het'/b)
(31<Het).3:('Het'>))3:<Het'Het' = Het'Het? (b)
((b), exchange in accordance with (7), reduction)
(3t {Het) 31" Het D) J1{Het et Z~'Het"App'
Het ") (c)
(By Rule 2)
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3i{aba I cayyJi{~aba I ~ca) (a)
((a): ‘'et'/a; App/b; Het/c)

1 'Het'App'Het' I Het'Het'))

Jt{~"Yet'App'Het' =~ Het'Het!) (e)
((c), (e)) (FidHet). T 'Het"> .J1{1Tlet'App'Het"
= Fet'Het'))) (J!{Het'"et" I ~'et'App'Het"),

Jt~'Fet'App'Het"' = ~Het'Het!')) (f)
Rule 2) Ji{(ab = ~bcb).(~bch = ~ab)))
_3!<ab = ~ab> (g)

((g): Het/a; 'Het'/bs; App/c)
Jt{(Het'Het? = ~'Het'App'Het').(~'Het'App'Het'
=~ Het'Fet'))Jt(Het 'Het' = ~Het'Het') (n)
((£), (n), by Conjunctive Distribution)

(3W/Het) .J{'Het'> .1 {"Het ' App'Het?

Het'Het')) 23! (Het'Het' = ~Het'Fet!) (1)
(By Rule 1) ~3!&~ (ab z ~eb)) (3
((3): Het/aj; 'Het'/b)

~J1é~ (Met'Het' = ~Het'Tet')) (%)
(From P6 of System II) J!{Het'HEet' = ~Het'Het"
Y1~ (Het'Het! =~ Het'Het')) (1)
((x), (1)) ~7t{Fet'Het! = ~Het'Het" (m)
((1), (m)) QED (n)

In order that the Grelling paradox be avnided,
it is not necessary to® maintain that any particular che

of the factors to the conjunction in (1) is false, Since
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Ji{aba = cg))ﬂ!é-aha = ~ca) (da)
((d): 'Met'/a; App/bj; Het/c)

g1 'Het'App'Het" I Het'Het'))

Ji{~"Tet'App'Het! I~ Het'Het") (e)
((c), (e)) (Fi{Het). It {'Het"> .31 Het 'App Het"
= Fet'Het'))) (J!{Het'Het' = ~'Yet'App'Het'),

Jt{~'Fet'App'Het"' = ~Het'Het')) (f)
Rule 2) Jt{(ab = ~beb).(~bcb = ~ab)))
3t{ab = ~ab) (g)

((g): Het/a; 'Het'/b; App/c)
t{(Het'Het" = ~'Het'App'Het').(~'Het'App'Het!
=~ Het'Het")))Ji(Het 'Het' = ~Het'Het') (h)
((£f), (h), by Conjunctive Distribution)

(3K/Betd . J1{'Het "> .31 {'Het ' App'Het"

Het'Het')) 31 (Het'Het' = ~Het'Het!) (1)
(By Rule 1) ~3!&~ (ab = ~eb)) (3
((j): Het/a; 'Yet'/b)

~Jt1é~ (Het'Het' = ~Het'Uet!')) (k)
(From P6 of System II) Ii{Het'Eet' = ~Het'Het"
Y1~ (Het'Het! E~ Het'Het')) (1)
((k), (1)) ~Ji{Het'Wet! = ~Het'Het?") (m)
((1), (m)) QED (n)

In order that the Grelling paradox be avoided,
it is not necessary t0® maintain that any particular cne

of the factors to the conjunction in (1) is false., Since
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the derilvation of the paradox depends on each of these
factors being true, to show that their conjuncticn is
false is sufficient to avoild the paradox.

Another paradox for which interesting results
can be obtalned by application of the foregoing logic is
the following.

fa and ~fa appear to share such consequences as
E!a end (3x)(fxv~fx), but since these consequences are
contingent, it follows that {(fa.~fa), or, that fa and
~fa ere not contradictories,

We Vo Quine has made some comments to this parasdox
in a review of a discussion of it by Everett J. Nelson.1
Since lir., Quine's review raises several Iimportant questiocons
concerning both this paradox and other closely allied
paradoxes, the following dlccussion of the above paradox
will follow this review in the polnts raised in 1it,

Iire Quine opens his discussion by making the well
taken point that "the supposed existential consequences
of 'fa' and *fa'" should be guestioned. However, lir,
Quine goes rn to sugeest as evidence for this that the
entity a is not a "constituent of the propositicns fa

and ~fa"™, and as evidence for this in turn:

l. Everett J. Nelson, "Contradiction and the presuprosi-
tion of existence" Mind, n.s.v. 55 (1946), pp. 319-27.

Review by W. V. Quine, The Journal of Symbolic Logic,
vol. 12, Pe 520
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«ss consider the propositions desperus is

the Fvening Star and Hesperus is the llorning

Star. Being respectively analytic and

synthetic, these proposlticns are distinct:

yet the supposed constituents Evening Star

and lMorning Star wherein alone they czan

differ are one and the same thing. Clearly

we must view the constituents not as the

Evening Star and the liorning Star (i.e., the

rlanet named by 'Evening Star!' and 'liorning

Star'), but rather as the recpective meanings

of 'Evening Star' and ‘'liorning Star’',

Without here investigating all of the very ccnplex
questions raised by this coment (such as what 'being a
constituent of a proposition' means, under what ccnditions
provositions are distinct, whether or not the morning star
and the evening star sre the only constituents of the
propositions in question wherein they can differ, and
whether named things or neanings sre involved 1n rro-
positions); it will only be argued here that the contention
that Hesperus is the Tvening Star and Fesperus is the
Morning Ster are recpectively anzlytic and synthetic, is
highly questionable,

Some of the questions involved in the problem of
when statements of identity are analytic and when con-
tingent, were ralcsed during the elaborsticn of the system
above. In applicaticn of these recsultes, it is the case
that, if the phrases 'Evening Ster' and 'llorning Star?

are meant to be definite descriptions in the sense of,

say, Russell; then both Hesperus is the Fvening Star and
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Hesperus 1s the ilorning Star are contingent for the
reasons given in the discussion in the svstem. On the
other hand, if these phrases are meant to be names then
both lesperus is the Evening Star and iespervs is the
llorning Star are analvtic. But in neither case will one
of these be anelytic end the other contingent,

In any case, the original point still stands that
fa does not always entail Ela,

Ir. Quine mentions in passing (as they will also
be menticned here) some further paradoxes such as that
while 9 1is O, is analytic; 9 is the number of planets, is
contingent,

ir, Quine next examlnes certain questions concerning
the contrast between meaning and naming and the conditions
under which sentences of the form 'E!x' can be inferred from
preriises of the form 'fx', These 1ssues lie outside the
scope of the present discussion since they are topics in-
volving metalogic rather than modal connections, Yet in
this discussion ir. Quine does suggest certain conditions
under which fx may entail E!x., He suggests that logical
functions of E! entall existence, but that other functions
might be regarded as unknowable as to whether or not they
enteil existence., The positive part of tris comment vnuld
certainly seemn to be correct, and indeed to constitute

one of the soundest means available for determining if
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fx entails Elx. On the other hand the negative part of
the suggestion is not always true, since it can be
proven tha*t analytic properties do not entail existence
(Theoren 3.5),

Finally, lir. Quine very nearly recognises the
position that is here being proprosed when he suggests
that "the usual convenient technigues of logic which
allow proof of '"(3x)(fxv~fx)' and inference of '(Ix)fx!'
from '"(x)fx' can be accepted as a semi-logical amalgan,
comrrising pure logic plus a true extra-logical prenise
to the effect that there is something." The only inac-
curacy 1n this statement as a description of the present
position is that the true extra-logiczl premise 1s not
that 'something exists' but rather the formula 'Elx', the
result that something exists being a theorem, not a

postulate,

4,2: Identity of States of Affairs,

Truth and falsity are wavs of belng representative,
A sentence 1s true or false accordingly as it does or does
not have a denotatum. As mentioned earlier, the denotata
of sentences are here taken to be states of affairs (ahd
the term "proposition" is here taken to be synonymous with
"state of affairs").

Often, in spite of what has Just been said, the

terms "true" and "false" are apnlied to states of affairs
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(or propositions); rather than sentences. Jdoreover, it
is clear from an examination of such instances of usage
that the meanings of '"true" and "false" are not species
representativeness, Some authors have suggested that
such usages should be dismissed as mére confusion; on the
grounds that only sentences can be true or false while
propositions or states of affairs simply either exist

or do not exist,

But putting the matter this way actually serves

to bring to light the quite legitimate meaning which "truth"

and "falsity" have in application to states of affairs.
Using "P" for the property of being a proposition,
the terms "true" and "false" might be defined in this
second sense as follows:
Tx =Df Px.,Elx (1)
Fx =Df Px.~E!x (2)
Among the consequences of these definitions are the
facts that there are no false states of affairs, but
rather, all states of affairs (or propositions) are true:
~(3x) (Px.Fx) (3)
(x) (Px)Tx) (4)
(3) and (4) are consequences of Th, 2.8; the principle
that everything exists.
Furthermore, these results are consonant with the
view stated above that true sentences have denotata, while

false sentences do not. If a true sentence is a sentence

r‘.\.
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that denotes a true state of affairs; then all sentences
that are not true (e.g. false sentences) do not denote a
true state of affairs. But sentences that do not denote
a true state of affairs do not denote any state of
affairs (acain beczuse everything exists)., Therefore
false sentences do not denote states of affairs.

Tris view of true sentences as posessing denotata,
while false sentences do not, raises an apparent problem
concerning the connectives of logic,

When we assert a material conditional:

A)B (%)
it would serm natural to interpret such a statement as
asserting that the state of affairs denoted by "A"™ stands
in a certain relation (material inplication) to another
state of affairs denoted by "B", However such a view cannot
be the case when "A"™ and "B"™ are false; since in this case
there are no states of affairs denoted by "A" and "B" to
stand in the relation of material implication (or any
other relation) to one another. Obviously, simllar remarks
could be nade about other logical connectives as well-=what
can the connective ™" be applying to in the sentence wo Al
if "A" is false?

The answer to this difficulty suggested here is
that the connectives of propositional logic are all re-
lations with twice as many argument places as prepositicnal

variables whichthey connect. These argunents are properties

e
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and 1ndividuals, rather than states of affairs, For
instance, rather than writing a material implication as:

plgq (6)
we might more appropriately write this formula as:

(£,x)(g,y) (7)
construing "J)" as denoting a relation of four argument
places rather than two. If this 1s done, then of course the
above problem about what is being related by the relation
of material implication when sentences which are argu-
ments to "J)" are false disappears. %Wheat 1s being related
are properties and perhaps individuals, but in any case
trings which exist even if they do not result in a state
of affairs,

Again, similar comments apply to theather con-
nectives such as "~", The curl can be construed as a
dyadic relation, and the formula "~p" written as:

~(f,x) (&)

Such a construal of the propositionzl connectives
need not involve the abandonment of the use of pro-
positional variables however, In fact, such a construal
need not involve any alterations in the usual propositional
logic. Prorcsitinnal variables can be viewed as, so to
speak, "dummy" variables and the expressions which are
substituted for them as determining the arguments to the

connective in question though not denoting these arguments,
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In short, the change being suggested 1s only a change in
interpretation of the usual propositional calculus rather than
a change 1n the calculus itself,

What this suggested change amounts to is the view
that sentences which occur as erguments to propositionzl
connectives are not terms (although the same sentence
might very well be a term in other contexts).

Yowever, if this view be a correct one, it has
some significant ccnsequences for the problem of under
what circumstences states of affairs or propositions are
identical with one another,

An important question int his regard is: 1if pro-
positions are such that each is deducible from the other,
then are they always identical with cne another?

Suppose we were to attempt to formulate this
question as follows: "Is it the case that:

p&qslép = q 2" (9)

The sign of strict equivalence in the antecedent
of (9) however does not relate states of affairs denoted
by substitution instances of "p" and "q" while the sign
of identity in the crnsequent of (9) does. For this
reason the problem which has just been eliminated in the
case of propecsitional connectives 1s raised egain in (9)
in the case of the sign of identity occuring in it. 1If
false sentences are substituted for "p" and "g" in ()

then since these sentences will occur as terms, the

I SN




79

resulting sentence will be purporting to say something
about thelr denotata when in fect there are no such
denotata.

Evidentlv, (9) 1s not a satisfactory formulation
of the rroblem. However, the fact that true sentences co
denote states of affairs might suggest that it could be
satisfactorily fornulated under the restriction that the
substitutinn instances of "p" and "q" be true. (Of course
this restriction cannot be formulated merely by asserting
(9) to be materially imrlied by the condition that "p.q"
be true:

(peg)) P&q:I:p = q) (10)
for (10) invelves the same problen zs does (9)3 nanely
that since substitution instances of "p" and "q" occur
as terms in the sentence as a whole, the sentence purpcrts
tc denote some fact or state of affairs about things
denoted by those terms which do not denote anything.)

The guestion might however, be formulated zs
follows., Let the tern "P" be defined as:

xPy, £ ¢ x 12 a proposition analysable into y's
having the property f.

llow the restricted form of the problem might be
puts

(rx)& (gy). zFx,f. wPy,g )t 2 = w (11)

This lest formulation avoids the difficuvlties
raised sbove in that any substitution instance of (11)

P S
b






will no*t contain terms that do not denote providad that
only denoting terns are substituted for free variables in
(11).
A perhaps interesting fact; which, though it is
by no means conclusive evidence against (11), might
nevertheless lead one to question it; is that if the
usuel logical assumption that any given property and any
given subject of that property determnine at most one
state of affairs, is extended to the further assumption
that any given state of affesirs and any given property
determine at most one subject of that property; then (11)
is false,
Suppose it to be the case that:

xPz,f, yPw,f, x =y 2)s z = w (12)
Let "s" name the sun, and "m" name the moon. Since:

s#Em (3
we can infer from (12) and (13) that:

xPs,f, yPu,f D: x #y (14)
Further, let "H" abbreviate "heavy or not heavy". Since
both Hs and Hm are analytic, it follows thst:

Hs&Hm (1%5)
Yet from (14) it follows that:

xPs,H. yPm,H 3): x F ¥y (16)
It is also true that since H is an analytic propertyj; Hs
and Fm are true, or determine states of affairs, and that

therefore:

e

e
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(3x) (xPs,H) . (Jy) (yPm,H) (17)

But from (15), (16), and (17), the denial of the
principle expressed in formula (11) is deducible.

As was mentioned earlier, this result is not con-
clusive evidence against (11). However the result does
nalze it seem doubtful that the intuitive acceptability
of (11) is in itself enough to settle the matter,

In any case, the primary purpose of the present
argument is not to examwine the question of under what con-
ditions propositions are identical. The purpose of the
present discussion is rather to show that an adequate
treatment of this question will be involved with the
logical problemns raised by terms that do not denote,

4,3: A Problem in the Theory of Perception

There is a further prcblem; in the theory of
perception, which calls for a logic of terms which do not
denote. 1ilany authors have discussed this, or related
problems; however, the present account will mzke primary
reference to a paver on perception by H. A. Frichard,

Prichard asks the question: "What do we see?",
and he concludes that although the naive answer is "bodies"

this is not true because it canrnot account for illusions

2. H. A, Pritchard, "Perception", in Knowledge and Perception
Oxford University Press, 1950, P. 52.
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and that in fact, in doing what we crdinarily call

"seelng a body" we actually are seeing sensa (zs, colors)
and mistaling these for todies. The purpose of the present
section 1s to show how formulations of this point, and
others which Prichard makes, require a logic of ternms

which do not denote,

To take an example which Prichard himself takes,
suppose that I ask what it is that I see when I have an
experience of seeing the moon as being vellow., If I
describe my experience as 'seeing the moon as being
vellow'; I would appear to be asserting that I an
instantiating a certaln triadic relstion which might be
symbolized ass "P(x,y,f)", and described in general in
thils manner:

P(x,v,f) ¢ x sees (or perceives) y as possessing
the property f.

The instance in question would then be describable as:

"a sees m as possessing the property yellow"

"P(a,m,Y) ".

But Prichard maintains that the patch of color

ors

which is the sensum of which I am aware when I see the
moon as yellow, is not the moon (nor presumably, the
property of being yellow) and therefore is not included
among the arguments to P in P(a,m,Y), We might therefore
introduce a further relatlon--that of sensing--in order

to have a notation for "a senses the-moon-as-yellow",
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where the phrase "the-moon-as yellow", names the sensun

in question. However, before doing this, it 1s as well

to notice imnedlately a certain inadequacy in formulation
of the phrase "the-moon-szs-yellow". Prichard will wish

to mailntain that sensa are relative to perciplents. The
phrase "the-moon-as-yellow" (say); and thereby the
criginal sentence amended teo: '"a senses a-perceiving-the-
moon-as-yellow",

If we adopt the letter "S" as a notation for the
dyadic relation of sensing:

XSy ¢ X senses Y.
then the abeove sentence might be expressed ass
aS(a-perceiving-the-moon-as-vellow),
Or alternatively as:
aS(a-perceiving-m-as-Y),
The question naturally arises of how to interpret the
English phrase "a-perceiving-mas-Y",

A suggestion made by several investigators 1is to
interpret such hyphenated phrases as names for states of
affairs. As the reader may have already guessed, such a
suggestion will be followed here by regarding the phrase
"a-perceiving-m-as-¥" as denoting the state of affairs
that a perceives m as Y, The original sentence "a senses

the moon zs yellow" will therefore be taken to beequiva-

lent to "aS(P(a,m,Y))".

| ——s —r
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Although a does not experience either the moon,
or the property yellow_in perceiving the moon as yellow;
he nevertheless does experience the state of affairs (or
proposition) that he perceives the moon as yellow. In
fact the state of affairs which a experiences (or senses)
is the patch of yellow color which 1s his sensum,

The purpose of the present section is not to
argue for this analysis of perceiving and sensing, but
rather to show how this analysis calls for a logic of
non-denoting terms,

Suppose that within this theory, we wished to
give formal expression to what might be regarded as a
plausible law of perception: "Whenever x perceives y as
possessing the property f3; then x senses the state of
affairs produced by x's perceiving y as f.". It might
seen to be possible to express this "law" in the following
formula:

(x) (y) (£) (P(x,y,£) )xS(P(x,y,f))) (1)
However this "law" is not even an admissably formulated
one in a logical system such as Principia Mathematica.
Suppose that a does not perceive b as possessing G. From
(1) the following can be inferred:
P(a,b,G))aS(P(a,b,q)) (2)

but since the state of affairs that a perceives b as
possessing G does not exist; (2) contains in its conse-

quent the term "P(a,b,G)" which does not denote anything.

pEV
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(0f course the expression"P(a,b,G)" is not a tern
occurrexce in the antecedent of (2) and therefore this
occurrerce does not give rise to difficulty.) Ordinarily
a sentence which is a nmaterial conditional with a false
antecedent is true., However this principle presupposses
that all of the terms which appear in the naterial
conditional denote--as does every principle of tradi-
tional logic; and indeed, every sentence in which the
terms appearing in the sentence all oecur directly in the
sentence. Since (2) contains such a non-denoting term,
it is unacceptable as it stand; and moreover, the dif-
ficulties of formulation which it raises can be given
no simple solution in any logic which pernits only terms
which denote. Therefore in spite of the fact that (2) is
a material conditional with a false antecedent, it must
be regarded as either false or meaningless.

Prichard's point that we ordinarily mistzke our
sensa for bodies; runs afoul of similar difficulties.

Suppose this point were to be formulated as
followss "If x perceives y as f and x's perceiving y as
f is a case cf ordinary, unreflective, perception; then
x nistakes P(x,y,f) for y." then "P(x,y,f)" occurs as a
term in this sentence. For the same reasons as in the
earlier example, this formulation also will break down in

cases of x not percelving y as f.
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i‘any nore exa~ples such as these of "principles"
of percepticn which call for scme such logic as will be
proposed in the previous chapter could be found. These
examples would for the most rart, occur in theories of
percepticn which take sensa to be states of affairs or
propositions rather than bocdles; however theories which
make such proposals are today to be widely found in the
literature on perception. The formulation of such
theorles in classical lorical systems is not wholly
impossible. However, such formulations would involve
considerable circumlocuticn at best,

Perhaps enough has been sald in this last example
of application, and in the preceding ones; to show that
there are uses of a loglic allowing terms which do not
denote over and above whatever intrinsic interest such

a system might have,
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CHAFTER V
MISCUILANEQUS COILENTS AND FURTHER
TOFICS OF INVESTIGATION
Sections 5.1 - 5.6 are a series of rather dis-
connected conments on several topics., All of these
comments are intended to 1llustrate views of thelr
topics which reflect the position of earlier chapters,
Sections 57 - 5,11 briefly indicate some further
problems of this treatment of that earlier position,
5.1 In System I, 'E!' is a primitive. Two theorems
of System I fix the interpretation of 'E'; in the sense
that they 1imit the interpretations which can te nade of
'E' in such a way as to prevent it from having a great
many uninten®ed Iinterpretations. These are:
~~4x)T1x (1)
and,
(x¥~E!x (2)
Interpretations of 'E!' can eacily be found
which will satisfy one of these conditions but not the
other. However, there are few alternative interpretations
which will satisfy both (1) and (2).
For instance, it has often been sugrested that
'existence! can be adequately exrlicated by self identity.
And indeed, self identity dces satisfy (1). Eowever, self

identity does not satisfy (2); and therefore, is not
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adequate as an explication of 'El',
Again, 1t 1s easy to find interpretations which
glve conditions that are contingent of everyvthing. But

few of these interpretations will also satisfy (1).

5e2 It has often been maintained that syntactical
criteria of inference are adequate to the purposes of
logic, There would seem to be evidence that this view
is unwise.

One of the ccnditions necessary to the correct-
ness of an inference isthat no false conclusion can be
inferred from a true premise., However, no sentence con-
taining a subject term that does not denote something is
true, and syntactical criteria alone never suffice to
show whether or not a term denotes., Furely syntatical
criteria of inference that are adequate, may not be as

easily formulested as was at first supposed.

53 It 1s sometimes thought that all uses of modalit-
ies as terms of the object language can be replaced by uses
of the modals as terms of the metalanguage. Liore often than
not, the reasons for such a supposition are that for any
assertion of modal connectitn in the object language

there can always be found a parallel assertion of meta-

lineuistic connection,
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This last claim would indeed, seen to be true,

So that for instance, rather than saying '~d~(fxv~fx)"',
we night rather say tanalytic'(fxv~fx)'?!, However the
first claim of the preceding parsgraph is much stronger
and more dubious, lloreover, accertance of the second
claim of the preceding paragraph by no nmeans entails
acceptance of the first,

One of the reasons for this is that while any
statement of modality may be translated into the meta-
language 1n such a way as to be well formed, often larger
contexts containing statements of modality are not such
that those ccontained statenents of nodality can be
translated into the umetalanguage in such a way that the
larger context iakes sense. For instance if the expres-
sions "XP~(fxv~Fx)' and '(Ix}{ ~(fxv~fx)' are translated
by replacing their contained assertions of necessity as in
the preceding paregraph, they result in 19 analytic!
(fxv~fx)'', and '&)anzlytic'(fxv~fx)''., But these last

statements are difficult to allow as well formed,

5.4 Sometimes the law '@x)fx& (3x) (E1x.fx)' is called
into question on the grounds that there are fictitious
characters in fiction. The argument is often put that
since there are filctitious characters, but no fictitious

characters that exist, the above law falls in this case.
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aActually, this last claim that there are ficti-

tious characters, is only a speclal case of what mizght
be called truth within a myth., In a sense, it 1is true
as claimed that in the myth of 0z, the tin woodman and
the cowardly lion exist, and that in reality these things
are not so. But to say this 1s only to say that given
those things asserted in the story of 0Oz as premises,
one can deduce that the tin woodnan and the cowardly
lion exist., This might be put symbolically by using '0z'
as an abbreviation for the conjunction of those things
asserted 1In the story of Oz, 'Tx'’ for 'x is a tin
woodman', and 'Cx' for 'x 1s a cowardly lion'. The last
statements then become:

Cz 3E!1(1x) (Tx) (3)
and,

0z 3E! (1x) (Cx) (4)
In other words, to bte in a myth is to bte implied by that
nyth, PBut furtherhore, the tin woodman does not exist,
Ve might therefore assert that in Oz the tin woodman
exists, but he nevertheless does not exist:

(0z-3E!(1x) (Ix)) ~EL(1x) (Tx) (9)
But from (%) ve should not infer that there are non-

existent tin woodmen,.

5e5 The ontological argument for the existence of God

proceeds by defining the term'God' in such a way that
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'existence' enters into its definition., The argument
then centinues with a line of reasoning to the effect that
with the term so defined, it is an essential feature of
God that he exist., Since anything must possess its
essentlal features, continues the argument, it must then
be the case that God exists.

This version of the ontological argument might be
put into the notation of System I as follows.,

Wwe might introduce the term 'God' by a defini-
tion such as:

God =DF (1x)(E!x.0x). (6)

Here, '0' is used to abbreviate some further qualifying
condition such as 'is omnnibenevolent', or, 'is omnipotent!;
over and above existence itself, as in the definition of
'God'. What this further condition means need not be
examined for the purposes of the present remark. The
present comments will be concerned sclely with the
logical properties of 'El', rather than with the inter-
pretation of '0'. It may be that '0' intensionally
contains 'E!', This is to say, it may be that to assert
'0' of anything, is to imply that 'E!l' is applicable to
that thing. 1In case this is so, (6) contains 'E' in a
way that is superfluous. But again, whether or not this
is so, while 1t will be relevant to whether or not (6)
1s as economical as possible, need not be cf concern for

the present point,
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The argument above infers 'ElGod', presumably
by appeal to core such principle as 'f(1x)(fx)',

But in System I, thils principle i1s not available,
though,

E! (Ix) (£x) 3£ (9x) (£x), (7)
is available. MHowever, from (7) and (6) the desired
conclusicn does not follow without begging the question,
since we require,

E!()x) (E!x.0x) (8)
as a prenise in order to conclude 'E!God' by means of

(6) and (7) o

5.6e1 Concerning the previously mentioned topic of
truth within a nyth, the myth that nothing exists is a
particularly fruitful one. 1In one sense, there would be
no truths if nothing were to exist. This is true both in
the sense that there would be no true sentences and also
in the sense that there would be no true propositions,
were it the case that nothing exists, These facts are
consequences of
(3x)Elx 3~(Ix) Ix (9)

by substituting "is a sentence™ and "is a proposition"
for “f",

On the other hand, some things are true in an
enpty universe, in the sense that there are some things

that are implied by nothings existing. Thils might be put:



(3x)(3f) (~(3x)E'x 3£fx) (10)
5.6.2 rhese facts are more iwuau meire curaivsities, for
they indicate (as we ses immediateiy below) that certain
formulas of the quantified mater isl calculus, which are
sometimes called laws of "confinement™ and of which

(3x)(pi)fx) ) (pd)(3x)£x) (11)
is an example, are such that if the horseshoes appearing
in them are replaced with flowers, the resulting formulas
are not valid laws.

(11) and its converse

(p)(3x)£x) I (3Ix)(pifx) (12)
are both valid lLaws of the quantified umater ial calculus
which govern "confinement" of existential gquantifiers
over material implication. Lf the central connective in
(12) is replaced with a flower, the resulting formula

(pi)(3x)£x) 3 (Ix)(pIfx) (13)
is invalid in System L. An exception to (13) can be
obtained by substituting ' (Ix)fx' for 'p’ in (13):

((3x)£x2(3Ix)£x) 3 (Ix) ((Ix) £xIfx) (14)
But in System 1, the antecedent of (14) is analytic, and
the consequent of (1l4) contingent, and hence (14) itself,
contravalid. un the other hand, the converse of (13) is
a theorem of System 1.

"Confinement" of existential quantifiers ovexr flowers

rather than over horseshoes might also be investigated.
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If the horseshoes in the antecedent and con-

sequent of (11) ;re replaced with flowers, the result is:
(3x)(p-3£x) ) (p3(Fx)£x). (15)

But flS) would seem to have exceptions on the grounds of the

argument concerning the empty universe given at the outset

of 5.6. And of course, if (15) 1is rejected, then the

formula obtained by replacing the horseshoe in (15) with a

flower, must 8lso be rejected.

rhe converse of (15) cuan as & strict implication,
be rejected on grounds similar to those wnich lead to a
re jection of (13). Substituting *®(3x)£x' for 'p' in

(p33x)fx) 3 (3x)(p3£x), (16)
yields
| ((3Ax)fx3(3x)£x) 3 (Ix) ((Ix)£x 3£x), (17)
which is contravalid in System I on the same grounds as is |
(14).

The converse of (15) is, however, a more difficult
case to decide., 1t may'be that, as with (11), the con-
verse of (15) is valid as a material, but not as a strict,
implication.

this converse,

(p3(3x)£x) ) (Ix)(p3£fx), (18)
can be shown to be equivalent in System 1 to

(x)P(Pefx) I po(x)Lx) (19)
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(19) may have the 10llowing exception, sub-
stituting '(3x)~Rx' for '"p' and 'R' for '£' in (19),
(where 'LRx' abbreviates 'x is red') yields

(x))((Ix)~Rx.kx) I {((Fx)~Ex.(x)Ex) (20)

Vhile it would seem to be so that of everything it is true
that it is consistent both that it be red and that some-
thing fail to be red, it would seem not to be the case
that it is consistent both that something is not red and
that everytning is red. But if these last things are so,
then (20) is not true.

These tentative results may be summarised as follows:

(3x)(pd£x) ) pd)(Ix)£x)  valid (21)
(pJ(3x)£x)I(3x)(pifx) " (22)
(3x)(pdfx)3(pd(3x)£x) " (23)
(p)(3x)£x)3(3x) (pifx) invalid (24)
(3x) (p3fx) I p3(3x)£x) " (25)
(p3(3x)£x) )(3x) (p3fx) n (26)
(3x) (p3fx)-3( p3(2x) £x) " (27)
(p3(3x) £x F3(3Ix) ( p3fx) " (28)

5.6.3 The 1aws of the sbove list that are given asg valid
can be shown to be theorems of System I, 7The author is not
aware of a moof for any of the formulas listed as invalid.
There are, nowever, theorems of System I which are ana-

logues, respectively,of C4-(28):



96

(pJ)(3x)fx)£3x3(Ix)(pi)fx) (29)
E x) (~)~Zix.p3fx) ) (p3(Ix)fx) (30)
(p3(3Ix)fx) ~)~ilx) I (3x)(p3fx) (31)
(2x) (~B4x. (p3fx) ) 3(p3(3x) £x) (32)
(p3(3x) £x) ~~Elx -3(Ix) ( p3Fx) (33)

The only law of this list that is of serious
interest is (29), the other laws being trivializei by
their cantaining a counter-anslytic condition in their
antecedents.

1he equivalence laws which are consequences of (30)-
(33) and laws which are similar to their converses, lose
interest for similar reasons. However, the equivalence law:

(p313x)£fx) 4(Ix)EVx & (Ix)(p3fx) (34)

is a theorem of System 1, not so trivializei. 350 to speak,
the formulas '(p3(3x)fx)', and'(3Ix)(p3fx)’, are not equi-
valent because the latter makes a "surplus assumption” of
existence which the former does not mekxe. 4this "surplus

assumpt ion" is the denial of the myth that nothing exists.

5.7 Ihis and tvhe remaining sections of Chapter 5,
suggest problems which will not be investigated in this
thesis, but which might be studied if the topics discussed
here were to be carried further,

The Tarski pardigm of trutn does not apply to all

sentences, Jome of those to whnich it does not apply are
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those sentences which have terms which do not denote any-
thing as subjects.

It might be possible to extend the Tarski psradign
to cover the lztter sentences if some such codification
as the following were adopted,

Let 'S" name the sentence 'X'. The following
might then be taken as a criterion of the truth of S:
31X (35)

The Tarski paradigm does not apply to sentences containing

S 1s true

subject terms which do not denote, because these terms
occur in the direct mode of discourse on one side of the
biconditional eqgulvalence which formulates the test of
truth. However, such terms cannot so occur in (3%5), and
so such a critericon as tris might extend the Tarski test
to sentences containing terms which do not denote as
subjects,

But tris method leads to an ambiguity in the case
of falsity. There are available two eclternztive ways
of defining falsehood. Letting as before, 'S' be a nane
of a sentence 'X', falsehood of S might be tested by the
criterion:

S is false = ~3:1<¢X) (36)

or, cn the other hand, by the criterion:
XD (37)

In order that a sentence be false, (3f) so to

S is false

it

speak, recuires that the sentence not say what is sc,

{pp—
'
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while (37) requires rather, that the sentence say what
is not so.

If (36) is taken as a criterion of falsity,
sentences with subject terms that do not denote are
false, If (37) is taken zs a criterion of falsity,
then such sentences are neither true nor false.
5¢8 Cne of the difficulties of the connotative logilc
sketched in Chapter 4 is that the notion of an oblique
usage of a term is not adequately explicated. The
explication of the notion of oblique discourse is another
topic which nmight be investigated further,

An important feature of -this notion is that it,
like the notions of bound and free varlable, are ways
in which constituent expressions are related to larger
expressicns of which they are parts. For this reason,
it 1s misleading to speak as has been done above, of
an expression sinply as "oblique™ or as "direct", without
including some specification of the context in which the
term 1s intended to be asserted to be oblique or direct.

The sort ofthing that is meant by saylng that a
term 1s cblique in a sentence of which the term is a
part, is that the sentence does not make an assertion
about something denoted by that term. Yowever, this
definition must wait upon a clarification of the seman-

tical terms that are involved in 4t before it can be



regarded as an adequate explication. In this respect
the noticns of oblique and direct differ from those of
free and bound; the latter belng terms which can be
syntacticzlly defined,

Some of the zdvantages that go with the syntacti-
cal definitions of free and bound can also be enjoyed by
the notions of oblique and direct, provided that a
syntactical criterion of oblligue and direct such as the
following is adopted,

A term occurs obliquely in a sentence of System II,
if and only if, there i1s some pair of angle brackets in
the sentence which enclose the term.

Althcuch tris criterion dces have much of the
advantageous irmediscy of the definitions of free and
bound, it nevertheless also has two serious drawbackse

First, the definition provides a critericn of
obliquity only for sentences of System II, There are
many cases of obliquity which are, for instance, instances
of expressions which occur within quotes, and whrich are
not instances of obliquity in System II.

Second, and perhpas mnore serious, the above
criterion of obliquity provides only an extensional test
of obliquity, not an intensional condition of obliquity.
Because of this last difficulty, the criterion cannot be

taken as a definition of chlique discourse.

| E——raamt st
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The first of the above conditicns of obliquity would
not seem to share either of these last two disadvantages.
5.9 The formation rules of System II were nct
specified. There is however, an imrortant condition that
an adequate set of formation rules for System II cshould
satisfy. Iio variable should be beound in such a way as to
occur obliquely in thre propositional formula following its
binder, 1In other words, no bound variable should cccur
enclosed in a palr of angle brackets that do not enclose
its hrinder,

It is a general restriction on all oblique dis-
course, that sentences wrich involve "binding over" obligue
contexts do not make sense. That is, no variable which is
oblique in a context and bound by a binder which is cut-
side of that context, occurs in such a way that there is
a sentence containing t!is binder and context, wrich makes
sense,

This difficulty was nentioned previously in
Section 5.3, letalanguages which nalke use of expressions
enclosed in quotes, are examples of languages of obligue
discourse, other than the connoctative language of Systen II,

The loriczl use of bound veriables 1s such an
effective technique that it is possibie that oblique dis-
course vill never be as useful as direct discourse, simply

because thils restriction cn oblique discovrse is so strong.




5.10 Various syntactical criteria of analyticity have
been proposed, [I'rr instznce, a criterion due ecssentially
to Guine, 1s that a sentence is anelytic if and only if,
it is & substitutinn instance of a law of logic. Sone-
times it has teen further maintained that these criteriea
are adeqguate as definitions for 'anzlytic'. Useful though
such criteria may te, they are, however, very likely not
adeqrate as definitions for 'analytic', because they are
not intensionslly equivalent to anslyticity.

The following might b2 ccnsldered as an intensicrel
critericn of analyticity. S is analytic, is equivalent to,
the expression formned by prefixing S with a sign of
logicel rnecessity, is a true sentence, |
.1l The paradoxes of the theory of types are avoided

in Princiria lLiathenstica by proscribing altogether, the

substitutlon of some expressions, and restrlicting sub-
stitution of other expressions to special contexts.

Tre former sort of restriction micht be called an
absolute proscription, and the latter, a relative pro-
scription, of substitution.

In System I, ruch more reliance was rut vpon
absclute than upon relatilve proscriptions of substitution,

then is the case in Princinis Mathemztica, Yet in btoth

1. This suggestion is due to lir, Leonérd.
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systems, some relative proscriptions of substitution are
necessary. Relative proscriptions are, for instance,
necessary to avoid allowing substitution of non-propositional
exrressions for propositionsl variables. A further

toplc of investigation weuld be that of examining to

what extent absolute restrictions on substitution are
sufficient to aveold paredox, and to what extent relative

restrictions are necessary for this purpose,
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