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T3“ EVALUATIOT: cs EFSECTQ or To.» can VIE-nan is

There are two ways in which the change of position

of the centre of gravity or motion of mass may occur.

(1) Due to variations in Speed of revolution of

crankshaft.

(2) By the distortion of the members of a mechanism

due to elastic properties of the material of

which they are made.

There is distortion of crankshaft due to the forces

acting upon them: The first are serious because of their ef-

fects on other parts, while the second are serious because

of heir effects upon themselves.

Torsional vibration in an engine may likewise be

due either to the change of Speed of rotating parts or to

the elastic distortion of those parts. The force impulses

on the pistons cause varying torque mpulses on the crank-

shaft and flywheel. The Speeding up and slowing down of

these parts within a cycle are due mainly to the forces with-

in the engine and, therefore, the engine as a whole supplies

the reacting torque. If it is not rigidly mounted, its

inertia may be small enough to permit a noticeable rocking

vibration. The elastic distortion of crankshaft is the most-

important, however, in that at certain speeds, the rate of

application of the torque impulses may coincide with the

natural frequency of the cranzs4aft or with some small mul-

tiple of fraction of this frequency in which the impulse



adds additional energy to vibrating member causing it to

oscillate with an increasing amplitude. This may continue

until the part fails.

Forces stin latiny torsional vibration are due

(1) Pressure forces in workin: cylinder.

(2) Inertia forces of reciprocating parts.

(3) Gravity forces of reciprocating and unbalanced

rotating parts.

(4) Uneven absorption of power at the driven

machinery.

The damning forces are due:

(1) Elastic hysteresis.

(2) Driven machinery,

(3) Slight slippage at the union of the two

shafts line-up,

(4) Surface friction between the moving and

stationary parts,

(5) Energy absorbed by oil film around bearings,

(6) Energy transmitted by the side thrust of

crankshaft,

Since vibration cannot arise under the action of

constant forces only, the force creating and sustaining a

vibration is always a fluctuating one. Fluctuating forces

may vary in magnitude only, and are then usually called re-

ciprocating forces, or they may vary in direction only and



are then usually called rotatin: forces. Fluctuating

force that causes vibration is called an exciting force, a

disturbing force or a shaking force. Spring stiffness or.

spring constant K is given as the force necessarr to

stretch or compress the spring one unit of length.

Free Vibration: When displaced from position W

[ll/Illa

? es down and force upward becomes greater,

so goes up, due to momentum it continu s to(
I
)

30 up from center, and then due to downward

 

 

force motion slows down and comes back.

  

This is free vibration because there is no

external fluctuating force.

Restoring Force: Th force which tries to take

W back to its original nositio :
3

Friction force, which5 t
‘
1

.
4

‘
4

0
‘

e of complex form is

'called damping.

Eumber of cycles completed in one unit of time is

called frequency. Frequency of free vibration is indepen-

dent of amplitude but it will increase with incr (
D

asina
\d

(
“
F

spring stiffness and with decreasing weith
g“.

of vibrating

ma 8. This frequency of free vibration of a system is

called its natural frequency and it increases as sq. root

of spring stiffness K and inversely as sq. root of we :ht W.

Suppose now that weight is shaken by external

force. In this case, freouency of forced vibration denerds-

only on that shaking force. Amplitude depends both upon
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fluctuating force and on the ratio of its frequency to the

natural frequency of the system, and wten this ratio becomes

unity, the amplitude of vibration may build up to a danger-

ous value. This condition is called resonance, and the pur-

pose of moss vibration investigation is to avoid its occur-

ence. The above mentioned vibrating system is of simplest

type in-so-far as only one co-ordinate is necessary to

Specify the motion of mass. This is called system of one

degree of freedom.

Inertia is merely a body possessinr a mass moment.‘ D

of inertia J about a particular axis, and torsional stiffness,

'C', of the shaft takes place of sprin constant, 'K'.

A rigid body restrained to move in two directions

or to rotate about two axis is said to have two degrees of

freedom.

4;
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Two degrees freedom system.
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Four degrees of freedom
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Any irregular motion of a particl about some

fixed position of equilibrium may be called a vibration.

If the hemmer blows occur when the vibrating rod

is at C and moving in direction m, vibration will obvious-

ly be da.n1:ed, but if the blows are timed to

 

 

 

A

j ,5 occur at n', the force of blows will aid in

/ 1’4” 1n

<{;‘JG m continuin3 and amplifying the vibration.

I ‘ “'D

I

x
1

Such a case is called synchronous vibration

or resonance.

Every elastic oody has a naturmd.rtriodofziona;cmn

i.e. time per cycle of movement which depends upon its mass,

moment of inertia, and stiffness. Crankshaft is more complex

of vibration are$
3
.
:

0
)

than simple rod, and its natural erio

’
d

f
»
)
:

U
]

harder to predict, but the basic i ea 1 be same.

Excessive torsional vibrations in an engine csuse

noise or wear on gears and auxiliary drives, and in worst

cases result in a broken crankshaft. Just as a pendulum has

a natural period of swinj, so the moving parts of an engine

mounted on the cranksraft, i.e. pistons, connecting rods,

flywheel, have a natural period of torsional oscillation.

The irre3ular turning effort dia3ram of an e1g_ine is made

up of a lar5e number of sine curves knoxn as harmonics,

havin5 varying magnitude and frequencies. Should the period

of the main forcin3 torque or of the various harmonic orders

synchronize with the natural period of oscillation of the

s12aft sys ten, excessive vibration of shaft will occur. Tris

state is called resonance, and is avoided wherever possible.
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Where a state 0 resonance occurs in the running Speed,

the amplittdes of twist are kept down to a safe limit by

stiffenin3 of parts where possible, and sometimes by vibra—

tion damper, but the damper cannot be used suécessfully to

enable the en3ine to run under the load at criticals. Its

function is to take the e1" ne throufn criticals.

.
’
.

A Crankshaft with a flywheel at one end forms a com-

pound torsional pendulum and vibrates as such. Torsional vi-

bration may be of two kinds, forced and free. When subject

deflected from normal position and is then released, it exe-

cutes what is known as free vibration. If the pendulum is

dealt with a rapid succession of blows, it is forced to vibrate

called forced vi-(
J
)

s i[
-
3
0

at the rate of these impulses, and th

bration. Such forced vibration occurs in crankshafts, but

their amplitudes are small and therefore they cause trouble.
P
o

First order of vibration when th (
0

re s a single

nodal point between flywheel and crank unit nearest to it.

The Modal point does not vibrate but rotates at uniform Speed.

All parts of crarkshafts ahead of the nodal point are then

diSplaced in the same direction, while parts to the rear, to-

gether with flywheel, are displaced in an Opposite direction.

I

  
 

First order torsional vibration of six hrow

crarzshaft.
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In case of vibration of second order, two

 

Fourier s Series: Any periodic or recurrent

f‘nction of this kind can be accurately represented by a

constant mean value and a series 0; harmonics (sine curve

the basic(
1
)

function) of which he first has same period a

function, and tle following save the periods equal to 1/2,

1/3, 1/4, etc., that of basic function. Amplitudes of suc-

‘

ceedinf harmonics ( vicient of suceeding terms) de-

crease in a 5eneral way, although each re is not smaller

than the precedin3 one.

From this explanation we see that the gas pressure

torque impresses upon or nhszaft not only a succession of

harmonic forces of the same frequency as its own, but also

a series of harmonic forces twice, thrice, four times, etc.,

this frequency. The method of resolving an irrefiular periodic

function nto its con:onent harnor-ics is known as harmonic

analysis. Torsional vibration will depend upon the firin

order of the en3ine. Frequency is between 12000 and 15000

cycles per misute. Sixth harmonic is the lowest which can

cause torsional vibration of the first order in a six cylin-

der engine. Such vibration in crank, havin3 frequency of

free vibration of LXXK>ner minute occurs at

2x 13000/5 : 5000 T ‘ ”Lgl Q‘s.
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O
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Tris s beyOnd oneratin, Svfieu. ine rext harmonic

that may give trouble is 9th, wiicz is in resonance at an

engine speed of

2 K 15000/9 = 3333 r.:.m.

Resonance occurs when q = n;

This vibration can be supnressed by the c;

firing ordel.

The next in;ortent Laraonic is 12th

resonance at 2500 r.p.m. The tlird harmonics are the lowest

’
J
:

i
t

causin3 torwioial v ration o the first order, and since their

*
‘

’3

*
4
.

amplitude is only about 1/16 that of “rat harmonics, inertia

torque is not a very im;ort:n factor in causing torsional

Hibrtion in sulti-cylinder ersines. In aircraft en ine, since

—. n - -. s v”. . ‘ b 4n M ,
a useful spee' ran;c is nucn less tnan in an automos

usually possible to avoid tbe mosttroublesone critica

a natural p riod of severe vibration w thin the desired operat-

ing range.

The simylest form C

orie, i.e. sine or cosine function. And most vibrating

systems have motions that are nearly Harmonic and may Le Iu'ritten

9.
)

t
:

x = Kcos wt. a = amplitude.

wt - anyle in ra-iisns
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fix is the inertia force that resists acceleration

g .

x (+ to right) nd therefore‘is -ive. for —ive. value of X.

This becomes +, and acts to rijht:

E 3": + i}: = O

S

x = A cos (“ht ~I)

From which acceleration found and w»: “3

W

he system is given by:L

If the spring snown in figure were stretched by a force equal

to the weight W of vibrating mass, resulting deflection would

_ W

7?

I
‘ —-

8 g” {n i ‘ 1 n o

5 S= cellection

This is easy, since deflecti n an be found or

estimated. T

TJ‘ a C9!

9

3J5

  
Because of twist of the shaft, a counter-clockwise torque

c is exerted, and because of angular see. there will be

a resisting inertia torque (actir: in -ive. direction) of J
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for dynamic equilibruim

J9+C9=O

from which

fn : _ _c_: T.' = 2”\l£ ---- (a)

2H J “ c

By measuring natural period of oscil H $
3

C
9
’

P
a

O ,
5

0
)

w

C
+

i
3
‘

C
D

value of g of the moment of iner ia asout the suspension axis

. :: ta, CJ 437-, .

After free vibration has died out, there remains

nly forced vibration, which is called steady state vibration.

Stead state forced vibration is harmonic, and has the same

frequency as the shaking force. Free vibration is the sum of

n

several harmonic motions 0: different frequencies.
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Torsional vibration of crankshaft produces vibra-

tion of the reciprocm n3 par 3, and the polar inertia of

crankshaft itself is very s:all compared with tzle inertia

at each cylin;er due to the motion of these reciprocating

parts.

Torsional analysis

Ste,s: (l) alculate the amnional ri3idity o

the ft between each rotatin

member.

(2) Calculate the moments of inertia of

all the reciprocatinc and rotating
V

masses in the system.

(3) Calculate the natLral frequencies of

torsional oscillation of the system.

(4) Calculate amplitude of vibration and

the resulting stresses due to resonance,

("’1

Torsional Ric‘dityL 1*

0

l
l

torsional rigidity of actual shaft.

G = modulus of ri3idity,

In: polar moment of inertia or second moment or area,

L = actual len3th of shaft,

D = actual dia. of shaft.

Ce: torsional rigidity of eqvivalen sshaft,

Le: equi. length of shaft,

De: " dia. of shaft,
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I

c- G”: = 3:11 4

l L 32

,4 a

and Ce = I} X 7’98 But u 2 Ce

:e 32

4 ‘4

gym) 9, _C_I~_:;”De

L 32 Le “2

° ._ 1+
. . Le - 4.4 (PS-’3.)

D

Le, then, is tie le ggth of smft of dia. D9 which when sub-

jected to a certain torque,will twist through an angle equal

to that rro'duced by sarne torque on a s1alt 0; length L and

diameter D.

Cranl Shef Stiffness:

Reduce cranksnaft to an quiv lent lCP”tn of parallel

sha:tin3 diameter of crankshaft journal.

A u

=aiS + .4J + 1. o;s LPG) 4-(1 4), 1.28422 (D ---:1 Zr)

(3132:1135) 211v

Having found he equivalent len;th of crank through, it is

necessary to f'nd the len3th from the flywheel end cylinder

to the flywheel. Total equivale _tlength from end cylinder

to the last iron flywieel

=i§g + L (De)Zr+ 2 (De) A4 £L(D€) %ZL(D4)4311:8

2 <11 5? 6.3

The shaft is considered free to twist to a length of a

quarter the dianeter of the bore, and is then co.°idered as

integral with the boss, which is taken to twist to half the



depth of the flange. ‘\

FE 1-19

«m g d- — '§ E

o ' ‘

‘g 3

T Jith

 

       
     

 

 
  

3
q

"" “ l 6:
- a;

For solid crank pin and journal

L = (L +.8w) +7129, 4 +l"RD4
e .i2_LL_

S i D wt)
p

By Carter's formula

Le - D (11.5 + 5811 4 .sze .. L523?)

1% Th WT

Torsional rigidity one crank depends upon the con-

dition of constraint at the bearin3. Assuming that the clear-

ances in the bearings are such hat free diaplacements of

the cross section m-m and n—n during twist are possible, the

angle of twist produced by torque moment M can be easily ob-

tained. This angle consists of three parts:

(1) Twist of journal

(2) Twist of crash pin

(3) Bending of web.

Let Clbe - D54G torsional rigidity of journal,

32

Cl = D246 .torsional rigidity of crank pin,

32 .

s = w T3 ‘E torsional rigidity of web,

1

In order to take into account local deformation

in the web in the regions shaded in the figure due to twist,

\
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the lengths of the journal and of the pin are taken equal

to:

L5 = L, + .92!

and

LP ‘ “P + .9v reSpy.

The angle of twist O of the crank produced by a

torquermoment I will then be

e 3 L5 :21: + LL21- 4 gQRJ-r

Cl 02 :2

In calculati-q the torsional vibration of a crank-

shaft, every crank can be replaced by an equivalent shaft of

uniform cross section of a torsional rigidity C. The lenrth
I
;

of equivalent shaft will be found from

I l = 6 6 as calculated above,
_6— .

0

Then length of equivalen shaft be

I
r

A

F
J

I 5
3

I I I I

A

L
U
V

L =0 t; +Lg(l-§)+g?

in which

 

 

- -. 2 '7 "

I. = 1‘04» + *0 +3132 + LP) + 3?. + 1.2 (L: + a.)
4 03 2 c2 24 Bl 3 3 s 2 F Fl

2
LER +.3_

2 c2 2 B

in which again

c3 - cBwBG 2 O

o ( c + WA) which is the torsional rigidity

of the web as a bar of rectangular

cross section with sides W and T.



Bl :ITDE IE flexible rigidity of crankpin

F and Fl cross sectional areas of crank pin and of the web

reSpectively.

By taking LP: L5 and c1 = 02, the complete con-

straint as it is seen from above equation dmiuishes the equi-

P!

f shaft in the ra

,2

2 v‘\

an.

c
f

’
J
O

0valent length 0

1

T1—

0
i
n

Another suestion to se considered is the calculatiqn

D _ J. 4-" ~—. - . f“

oi inertia of novinn masses‘
L 4

Lbss m of connecting rod is replaced in two masses

ml : ( %% at crank pin and m2 : m - ( %% at cross head,

where I denotes homent of Inertia of connecting rod ebou+ the

centre of cross head. All other moving masses are concentra-

ted in the same two points, so that finally only two masses,

M and M1 are taken.

For torsional considerations, all reciprocating

motion must be reduced to equival-nt rotating motion. Half

the weight of reciprocating parts may be considered as act-

ing at crank pin.

Piston = weisht of it is added to reciprocating

part,

Rod = partly 2/3 revolving and partly recipro-

czting,

H - l/2 weight of reciprocating parts of

connecting rod and piston + weight of

revolving parts of rod,



, 2 2

 

N = W R

k t .

v 2 = ‘ £2 r s lidJournal JK HUD or o

q o é
= w D.“ 4 d; for hollow

5

Crank pin WK2 = d ( D22 + “2) for solid

Q
U

D52 +'R2) for hollowI
I

L
.

U .
o
f
U

+

2 + d2) for solid

 

 

  
:3

Balance weight symmetrical about Y-Y.

I = Ix-X + Iy-y

I = rotational moment of inertia,

IV " Iy v are found by constructins the first and
...-4’*. “'“I "

second derived figures about both axis and finding radius

of gyration for each.

 

  
 

J Iatural frequency: J3

a : J

7 a T

_ e. a '

 
Three mass system

J1, J2, J3, M. of I. of 3 masses,

ll: 12 lengths of connecting shafts.



x be the

y be the

 

distance of node

distance of node

w
.L.

1

TV

.L‘. 2

l7

4"

erm J

1.

from J7

J

 

 

 

The node is the point of reversal of twist. The

period torsional oscillation of J1 about its node is gi"en

by the expression:

T 2 2! J1 C = torsional rifidity of X lenrth

C

Frequency F of mass J is

F = l -_-_ Id? but C = G I} where G is modulus

T +2” J1 L

of riéiiity which

will take as

11.8 1-: 10° #-/ square

inch

IP is polar moment of inertia of the sLaft in

inches and L is the len th of the shaft in inches.

If Jl is expressed in Lb. in.2

6 ,
Fl = Sq§§11.8 x lO X4383 x Ip

2n Jl X

- I: I I‘! O

- o4AOOEIIg VlOPTelOE per minute -— (1)

J1 X

and

32 = 644000323

J2 (l + l.

11-x 12- y) -- (2)

F- = 644OOOJIE
D r

u3y -- (3)

since Fl = F2 2 F3 equating the three expression give as

1 _

13% E——1 + “—1 )Ul-A 02 ll'fl‘ 12 - Y)

 



1

CCVG
"- ‘ . l- . ‘1' .'

«rn~e~r n- Y in terns of a, me

by substitutin:

for Z in equation (2) and equatinj (2) and (l)

we get two values of I.

Substituting it in (l) we get two frequencies,

ficult, but the system can be reduced to three mass system

and results can be obtained. In a multi- cylinder enine

with flywheel, total inertia of the cylinder masses is con-

sidered to act at the centre of the engine for clo.s e approx-

imation. Frequency is obtained by multiplyiit the total

( W R“) Of tie CyliLiW mas 883 by .55 and considering this

at centre.

Exam:le:

l
l

\
)

1

H 5 i
.
J
.

I'
)‘

0 U
)

(
D

O

m

Inertias - each cylinder

’5 - -, o r)

:lywneel = 32.? # in sec.‘

First reduce to equivalent three mass system

Consider the inertia as actiné at the centre i.e. between

cylinder 5 and 4. Aoplv correction factor .85. Effective

inertia of the cylinder masses:

l
I

O

(
I
)

U
1

0
\

i‘ U 1.
..

:

C I 2.54 #,in. sec.2

1020 # in.2



: l x 11 + ( 2 x 10.23) + 8.84 = 34.80 in.

2 0J' .12 J3

  
#34 ‘ 141%

Let X be the distance of one node from the effective

cylinder mass and Y the distance of the other node fron gen--l

 

 

 

 

erator.

hnfifl ° . 's-L

[.15 Io-z‘s ll 19.2.3 “‘23 8’44 ‘7"; J“ 4'

Single node normal elastic C&%RM#).pWGE 5

n " T ", :: __,, " VTncn 01 a x J) u i

. . Y a Jl x . 2.34 x . 0.1993x say .2x.

3; 13.23

Also

i = l_ ( l + l )

Jlx 52 33.3’_ 3 ,.s5 - y)

Substituting for X

1 = l ( l 4 71 )

2.53x 32.7 31.8-x 9.05 - .2x)

from which x . 23.75 in. or 47.45 in.

I‘Iatural frequency . 644000 ‘ILQ

JlK

where J1 is tre

f.n,_),.,1..' r "732 .0 .3 j Ee -eccite a“ oi the cylinier masses #. in. sec.
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one node F . 644000 J10.9

1020: 47.45

= 9560 Iv'.l: .1':.

Two nodes normal elastic curve. (SF-E TR“ 7)

Two node F = 544000 {To‘b

1020 x 23.75

13050 V04. 01:.

The arpr 'nate figures for the two frequencies

having been obtained, the exact figure must now be found by

the torque summation method.

“0ethod for calculation of natural frequencies of

torsional vibrations.

IL the engine with a small number of cylinders and

slow speed, the torsional vibration can be avoided by making

shaft diameter large.

(1) One type of equivalent s‘aft arrangement is ob-

tained by considering each cylinder, flywheel, and alternator

as concentrated masses connected by elastic shafts having no

(2) n tber type of equivalent shaft arrangement is

\_- \J

Obtained by averaginr the various masses distributed along

|>the shafting of insta113tion into a number of connected uni-

form scafts, having both mass and elasticiy.

Eeavy flywheel may be considered concentrated at

certain points of uniform shafts. here are three masses and
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two shafts as compared with the eight masses and seven

shafts when a concentrated mass system is used. The masses

may be reduced from the beginning to the end, or backward

from end to beginning, or from both ends up to some section.

A natural frequency is obtained when the sum of the masses

reduced from both ends up to any section added to mass at

that section is zero.

C 03 TA The effect of A, acting upon
I .

B, through elastic shaft C
 

 

  
1 L c i can be obtained at B by add-

ing fraction of A to B.

This sun can again be considered as the first

mass, the effect of which is reduced to next concentrated

mass. At this frequency the elastic forces in the shafts

and the inertia forces of masses are in a state of equili-

brium, so that the system when once set into motion at this

frequency, will continue to vibrate indefinitely (assuming

no existence of damping influence).

Example:

Consider six cylinder, two cycle connected to a

flywheel and the alternator.

   

 

”
D

  

lo

1
1
0

1          
 

 

  
'

34- J
Ia

—



Weight of

and oil =

Weight of

Center of

line length

22

piston and pin, complete including cooling gear

1000 pounds.

connecting rod 2 500 pounds

gravity of rod occurs at 0.38 times the centre

of the rod from the crank pin center line.

cerll: : "I l

Correcting rod 5

I 2 factor of journals is that of a solid cylinder

about its own center line

4 9 '
Ld #.In.“ L = lensth
:7“

h ‘
30

d a diameter.

weight of steel = . 28300#/s re inch,

I = factor for crank pin is thet of solid cylinder

about an axis at a is ance r, from its own

center line, thus

'r 2 ~
’L d (g3 r2) #. in.2

3.5 8

L = length of pin.

d - diameter.

r crank radius,

A close annloxiition for inertia factor for webs,

 

considering each as rectangularparLllelon iped, having the

same width and thickness and height to give same cross

section area is given by:

b d h {(b2 + h2 + (r 2) # in 2

3.533 12 Y‘ " °

b = breadth. h = height of equi.

d = thickness, rectangular section.

r = crank radius.
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. . I a factor are

 

 

 

journal = 12 (3:35)4 = 4080 #. in.2

’ 3° 2 2 2 ,,
pin = 10 (11) (ll) 4 (11) = 33000

4.5 '5.

Two webs 2xl4x6x22.5 .{ (_fi)2 4L22[§)2 4 (5.5)2}= 94950

3.555 12

Piston and connecting rod

112 .62 x 600 4 .5050 (.38 x 600 4 1000)}: 120,050
‘__—#,,,

Total 255,480

# in.2

J ' gégflgg = 7544 # 13.2 per inch

3+

Considering the crank hree percent stiffer than a uniform

1.. 9

8118.; t having the same section as the journal, the value of

C L, may be calculated from equation.

115000 (11)4 1.03CL

Q

= 17470 x 10 #. in.2

In the same way inertia factor for crank was calculated. The

total inertia factor for the scavenge pump, including the shaft

up to center line of the first bearing
1"

v

is 70000 #. in.

. . 0000 1 . ' . .
%ggg- - 9.9 in. correSponds to tne increase in

length of main cranks due to scavenging

pump.
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L 20 l

A 67‘.“ H 45-2 ‘-<———- 34 ——->

L24 L, 3Y5" /LL 01 39’. Shlfltk
‘5,

.. ’7 4O

' //Z/// 375 GCWHNKS
toW 57!}, a s 204

SPOKES I i . : , ' .

(5,3745 71 I‘ 4 575,0 ”01 6 3595 to. k

02 : 11 58500 (11)

28.85

588,000,000 #. in.

L1 - 259.5 in.

258.5 x 7544 = 1,950,000 #. 1n.2

cl . 17470 x 105/258.5 = 67,580,000 #. in.

0 = 18.325 J1 = 3.113

CI

Resulting equi. system.

588x106 #. in.O

(
0 l
l

0.09221

L
“ n1 258.5 in. .

31 - 1950.000 #. in.2

67580000C
)

H

l
l

0 = 30113
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All present day trends in the application and

design of these engines have been corducive to torsional

vibration difficulties. Tendencies are totard highe“speeds

and a greater number of cylinders. he higher speeds have

increased the possibility of torsional vibrat ion by raising

the running speeds up into the re:ion of critical Speeds.

Increase in mass or fle:(ibility will lower the natural fre-

quency.

The holzer method is based on the principle that

the sum of the inertia torques, develOped in a system because

‘ ‘V‘

tze viarations, must equal zero if the vibration is zero.H
:

0

Example:

A 4 c;lil*.ler engine with a flywheel runs at 1200

r.p.m. and is connected with a "enerator 0y a flexiole coupl-

ing. The mass moments of inertia in in. # 860.2 are as

Cylinder 31 - J2 a J3 - J4 - .55

Flywheel J5 = 25.6

Coupling hub J5 = 0.5

Generator J7 = 8.75

The equivalent lenjths referred to a 3 inch diameter steel

shaft in inches are the following:

U
1

U
1Cranks Lei

Le . 05 L = L a '-2 e3 Qe 3

Flexible Coupling L85 : 45.5

Hub to generator 2%. 41

To determine the lowest natural freeuency with the aid of

Eolzer method.



Before setting up the table, it is desirable to convert

equivalent length to snrins scale.
‘ '—J

. 2 . 4 _ _

slnce Kt = f, a; and dc - 3 in.

3 be

’3 ___I

= 12 O) 47’ )‘T
 

The values of the spring scales, then are

= Kt, = 19.12 (10)°
l e

\
_
,
\
l

(10)9
A

.1 (10)b

V
:

F
,

m

I
I

l
_
_
l

D
.
)

‘
4

L
)
!

.
Q

:5
1.

f
7

0
1

n

(10)0 in. #. per radianp
:

\ n m {.
1

D
J

Notes on calculation procedure:

How to assume freouencv:

A fai trial value can be obtained by grouping

tosether the masses that have a short equi. shaft len th or

scale between them (neglect coupling mass as

Then J; - J1 4 J2 4 J3 4 J4 4 J5

= 27.8

f-

J2 "’ J7 = 8073

and L - L
e

5

= 1.105 (10)5

(
D + 1%, = 85.5 in.

H
-

 

+
5

3 29 Kt: ll 4 la )

2”' J1 J2

. so 1.10511015 (27.8 + 8.75)

2H 27.8 x 8.75

 

-{}5€90 x 6.28) 2- 155000 - 0.155 (10)‘D

assumed.



 

 

 

. o . '7 ,, : : — 3 1’ 3 ’ : 0

Item 23 25245-7105 : 4 9721313105) J':‘-§(1083.k.(17103): 533,23

;_ L : v? : : : : 15}

l .55 0.0900 1.000 C .0300 0.C§00 19 12 0.0047

2 .55 0.0905 .9953 0.0905 0.1013 17. 0.0104

3 .55 0.0908 .9849 0.0394 0.2707 19.12 0.0142

4 .55 0.0908 .,707 0.0081 0.3500 l'.l2 0.0188

5 25.30 4.2240 .9519 4.0208 4.: 96 2.10 2.0835

6 .50 0.002: -l.1345 -0.0977 4.2079 .33 1.8394

7 8.75 1.4433 ~2.9740 ~4.2939 -0.0030

filef r to above table:

Second column, ine ltia as given.

Seventh column, Spring cales (calculated)

The value of W52 = .165 (10).5 will be asssuumed as

the natural frequency. Then fill up the table. The amplitude

of the f rat di1sk (?l)3 always assumed to be one radian

By dividing 6 column/ 7 column, we get angle of

twist #3732 Radians - 0.0047

752 : 731 -0782 .-. 1 - .0047

= 0.9953

which is placed in second line of column 4.

In this example torque enainder in column (6) is -0.0080 in.

fi. If the correct frequency i-d b- n chosen, thi emainder

would be zero.



The deflexion curve may be plotted along he shaft

by using the values of P in column 4, for the various disks

as 81101;!an 92 T3 9‘ 95 V T6 T7

 

 

      J. J. J. $\
0.9953 0-9707 ‘4434‘ 1

It will be seen that there is only one node (located

 L—2.974o

between disks 5 and 6). Hence the value of 0%? = .155 (lO)6

and f“ = 5880 c.p.m. is very close to the first -atural fre-

quency. For torsional vibration the mode of the vibration is

the same as the number of nodes, i.e. the first critical has

one node, the 2nd - tw , and so on.

Calculations:

Holzer tabulation procedure is a widely accepted

method for calculation of torsional vibration characteristics.

This method can be simplified by application of the distributed

mass_concept to some parts of the equivalent mass elastic

system.

Since with present equipment it is impractical to

measure all the amplitudes and torques in entire system under

all Operating conditions. Calculation, laboratory eating,

and engine measurement should therefore be considered as

mutually dependent techniques for guiding development.
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Fundamental calculation

Torsional vibration

'mechanical network'

ties, to a series of

at several points and

and dry' method is used.

5‘!

1

A. —A-Gene

(A)

a methods:

Fundamental simpli

(1)

lumped into e

(b)

Exciting(2)

torque vibra

diagrams

card.

(b) .LIC-Lthem

torque

(3) Damping is

able

involves the

coupled by

periodic excitinv

Equivalent system

torque:

tion

r1onic

Vibration,

uOl‘S.'

29

not?ods:

response of a

J.

Shae

Q

Q.

.5. lCCLuiOIlS

Distributed factors

quiva ent concentrated

.1

‘By norma Mlcxlat ions,

cal inte3rator, or test.

Actual -in31e cylinder

6'

0curves expressed a

ana is of gas torque
i"

Y0

constructed from indicator

tical Ipression for inertia

verycomplex and vari-

and ring friction,

electrical eddy9
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currents, prepeller, etc. TLe best

guide is previous experience on compar-

able ensi
\J

fi
—
S

U
]

K?

Calculations aids: Techniques and methods

(1) Use of Eolzer table

(2) Disregard of damping to avoid out of '
3
:
4
:

2
] U
]

(
D

components.

(5) Judicious reduction of comple: systems by the

use of the distributed mass with tables and

curves, showing performance of simplified

systems.

(4) Formation of algebraic equations for balanc-

ing Eolzer tables

10

t

a.o the stand rd calculating machines

I?

of special-;.;.R. slide rule calculatingA
A U
]

\
I

C
‘
.

U
]

(
D

0
\

V

C
:

(
:
1

C
D

board

(7) Lbchanical vibrating models

(8) Electrical oscillating network

(9) Specialized calculating machines

(10) The vectorscope

(ll) Harmonic analyzer
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ethods of calculatinr torsional vibr.tion:
'1

(
Dr

'A*
4

First, it requires he determination of a suitable

mass elastic system expressed in numerical terms, having ap-

proximately equivalent torsional vibration characteristics.

This is called 'Equivalent system', 'mass elastic system',

etc.

It requires numerical evaluation of the inertia

factors and stiffness fact rs for all the moving parts of

he installation. After that, it requires the calculations

for:

(1) natural frequency

(2) peak amplitudes or stresses at synchronism

between natural frequency and stimulating

impulses

(3) forced vibration amplitudes or stresses at

various frequencies of stimulating impulses

Equilibrium system is obtained by considering

the moving masses at each cylinder, flywheel, alternator

and other Huge compact parts as concentrated masses connected

.by elastic shafts having no mass. This is called 'concentra-

ted mass system'. Another is obtained by averaging various

masses distributed along the shtfting of the installation

into a number of connected uniform shafts, having both nass

and elasticity. This is called 'uniform shaft system'. A

third type uses any combination of concentrated masses,

elastic shafts without mass and elastic with mass called

'combination equivalent system'.



K
)
!

R
)

A natural frequency is defined as the frequency

at which a sustained vibration of the system may occur if

no damping exists, and stimulating impulses are removed.

In using this Eolzer table for natural frequency calcula-

tion, he initial value of unity is assumed for e for mass

# l, and the rest of the values are completed. The require-

ment for natural frequency is $1 P2 6 = O . Various

values of P2 are tried until this condition is realized.

Columns 3 and 5 hive the relat_ve amplitudes and moments of

vibration at natural frequency when this occurs, 1nd the re-

lative stresses due to vibration at this frequency can be

calculated.

Then if the actual amplitude of natural vibration

at any mass is known accurately by test or calculation, the

actual vibration stresses m y be computed.

Calculation for peak amplitudes due to several

impulses acting at various masses may be made by equating

energy input = energy absorbed by damping. If the impulses

are m5 cos (pt — 43) acting at the masses indicated by s,

and the amplitude at the first mass is 81 sin (pt - 4d. The

energy input equation is

E = "91 stés

where @513 the relative amplitude at the various

masses given in column 3.

£31555 -8{m5é-Ssin ‘92 + (£111.595 cos 4;)2

tan? = (msészll V’s

émses cos a,

 



If the magnitude of impulses are all the same

srch that m s m. The energy equation is

E =mfl6f8flh

_ _ o

where 265 = ((65 sing)“ 1' (iés COS 93)2

tan ¢ = (Elsin.%5

£95 C08 9'15

Using 0, 42 - “1, 4e - 41 ..... in place of 41, 42, 4a, the
J J

phase angles all refer to the instant at which the maximum

value of the first impulses occurs in this case,

if = ‘01 § tan -1 (é; sin (“'5- 4’1)

33, cos (4;— 41)

 

Numerical values of m are.obtained by harmonic

analysis of the applied torque curves or torque / AR curves,

where A is piston area and R is crank radius. If m the mag-

nitude of harmonic curve

ml torque / A R curve

Then m = Ale

Curves for ml due to :as pressure are appended.

The energy loss due to a marine prOpeller may be stated as:

T _ -—2
r2 ~17pfe, ef'

where e, 18 the relative amplitude of vibra-

tion at the propeller as given by holzer.

Average value of f is

F =35 a
r.p.m. Q = mean shaft torqueet the



D
J

.
p
-

at which the variation occurs r.p.m. of shaft speed at which

vibration occurs. Assuming torque varies with the square of

r.p.m.

f 3 33 20.73.31
 

where Q, and r.p.m‘Y

full Speed.

An empirical formula for the damping along the steel

shafts, due to internal absorption of energy and other unknown

effects is

-' . . .msa 2.3
19 (did-3 - d.4;J) EQW: 6h
 

 

K =

1010 (d; _ (1‘4 )2,3

23 46

= 70 (M B,

1010 d 4.9

where L is the leng h of shaft.

d2 and dl outer and inner dia.

I
r
—
a

:
3

(
+
-

w (
D

(
Q

vibration twisting moment iI
P
J

“daft correSpondini to

the relative amplitude in Eolzer table.

If E. - input energy for e1 - 1

KO = damping energy alon3 the shafts for 91 = l

The amplitude is obtained by equating the input and damping

energy as follows: .

E 91 = K, 912°3

1-3 E.

K, f K prepeller damping

9
1

energy for e = l

Amplitude we get by

E 91 = hr 912 + KO 912‘3

71" " " lo



from which value of e1 may be determined. In this

case K is taken as zero. e = E./K
. o 1 p

holzer table can be used to compute undamped

forced vibrations at any frequency by using two tables, one

for sine components, and one for cosine components-of im-

pulses. At a atural frequency the amplitude of vibration

along the system for a unit amplitude at some designed sec-

tion are called the relative amplitude of natural vibration.

Column 3 gives relative amplitude when 21 P2 e = O.

The solution for uniform shaft equivalent system

may be carried out graphically by using Lewis polar diagram.

In this case if calculations at resonance are made, the

energy equation for equal impulses along the uniform shaft

is the same as previously stated. Where 61 is the amplitude

at the beginning of the system and és are the amplitudes on

the relative amplitude curve at various cylinders. The

values of ésmay be measured from the polar diagram. Lewis

term 213 is the same as 265 given here. The empirical

formula for the dampilg along'steel shafts considered with

distributed mass:

I‘L:70(d2r. -d.l

 

variable lenfith along the shaft

M = is the vibration twisting moment along the

shaft corr eponding to the relative amplitude

curve



Solution for combi1-cation type equivalen syste

may be carried out by reduction method. This method reduces

the masses from one end to the other or from both ends to

some section in any manner convenient.

Solution for the combination type equivalent

system.

Reduction methor of calculation makes use of follow-

ing idea.

F760R£ Rflfif EL

A and B are the concentrated masses.

C shaft without mass.

Then at a given frequency, he effect of A acting

on B through the elastic shaft C can be ottained at B by

adding a certain fraction of A to B. This sum can again

considered as the first mass, the effect of which can be

duced to the _ext concentrated mass. Elastic shafts are

called steps of line up. Concentrated masses are placed

tween steps.

be-

C 2 stiffness factor # in/ radian of shaft twisting moment

M(;.in.) aid deflection e (radian)

I
l

k
‘
l

[
U

{
U

W c
!
-

\

L
)

(
D

O

[
O. ’3

a - in./sec‘

= 385.088 in./ sec.2

G = sheari-3 modulus of elasticity ( #/ squsre inch)

'5

J 3 ine rti {
O

lactor or weifht polar moment of inertia n.1n 2)



J 2 weight polar moment of
.1.

3333

p
: u number of typical

= length of step (in.

M = twisting moment (#.

‘v

A '-

"
d N frequency constant

H

A

¢ n) = l§g tan ¢ n

¢NW1

'I‘l (¢n ) 3 Q nntan d n

180

lensth variable forb-(J

- constant in degrees

4
.

9
~

constant in degress

J
a
m
e

H

I 350 i =

«C

Single subj-

hav n3 number of subscript.

means:

01,

01,

sectional polar moment

37

of inertia of cross section of

inertia per unit length of a step

#. in.2/in.)

step

in.)

- frequency of vibration in vib./sec.

BTTn

step (in/)

applying to step with mass.

applying to step.

amplitude of vibration in radians.

amplitude of vibration in degrees.

C.

ect means that the symbol applies to the step

Subscript made of two figure

12, 23, between steps whose numbers are included.

02, 03, beginning of step whose number is given.

Ll, L, L2, L3, end of the step whose number is given,
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°i R en

Thus 6e. - 9°: 3 Biz

= = , ]_

98x eOLK'H ek.K+| (*“epera )

See an,“ 2 eel“, (e number of end step)

A prime mark (') means that the masses are being

reduced from the beginnint. (") means masses are being

reduced from end.

, 3.

J01 = J01

ngl = J't + J

a 2.

' l n l

J , - J _ J
01; " 'r'. k'K+’

J" - J
(c - €,¢+I

Ce-u - 09 + "e—:,c

(end of'c-l) 2

HA _ H J

(K-I - 9K " k-m:



 

  

 

M
J

‘
0

Interpolation formula for natural frequency n.

n1 = assumed value of n,

1“ “3

\\\S // n2 = first approximation.

n n: : 2nd approximation.
./

1‘3.

n = n2 4- A1 A2
.9

4A1 25 1

bl a 1.1 - n2

1“

A2 : n3 - n2

‘3 “ "4

n \\ 04' / n1 8 first assumed value

“4 W\ 4' 'n2 - first approximation

\L M 5

b n3 . 2nd assumed

n4 = 2nd approximation

n = n 9 ( n - )ZS

Al 5
+ 2 ‘0 r

2 " n4 *3

Relative vibration twisting moments

(l) for steps without mass

‘1 c ( e’ e' )I"; I -

:5“:- °rkfl °.K

37.20

(2) with mass

2 w .

I": -(77) Cf ntxsin (th-f“)

100 e
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Formulas for the reduction metboa of calculation:

(1) For reducin: the inertia factors from the

beginning toward the end

(a) For steps without mass:

J I Jék 1-
 

CK . 2

l - £25_P_

CK ::

(i) If the first step has no concentrated

(ii) If first step has concentrated mass

 

 

, step

tan.Y; = %%8 Jo?

I n k

Jen = %%9_ it tanngk 4 '1A_)

(2) For reducing inertia factors from end toward

(a) For steps with mass:

(1) If the last step has no Concentrated

— O, .-

- - lcO J tan ¢¢ n - JcT (an)

 

 

(ii) If the last.step has a concentrated

mass at the end or for any other

step

I! '0

tan “kn 4 15k): - an Jag

180 QR

”’
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0k 77’ wk n

(b) For steps witnout mass:

« u l

J I JeK

°" 1 — Jig P3

(3) At natural frequency:

H
'7'

J5. K-\ + ”OK * JI-(‘l’ K = O ’

or £¥K + '%Jfli '*;&J«4 = O

which is the same as

l u f T. 'u

Jok + J0k . O, a“ 4 Je" . O,

or Egg, : J"

Jéx J51:

(a) For step withou me88:

£3 :- 4(la- 4 l )

Jwt Jen3

(b) For steps with mass Y" - X' = 0

If the first step has mass and no con-

centrated mass at tne beginning. {Tl ($1 n) z - an. p2

C if
1 (_J

(A) Relative amplitude curve:

(1) For steps without mass:

.22.: = ia-lasfi 1 - at 2-"

A node occurs in the Kth step 'herigmgis -ive.

80K

(2) For steps with mass:

9:0(cos (nX-tYk

“ k air

where GK—:_-ko(cos "if“

6&K- fipos (z¢ n. +¥K )
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A node occurs in the Kth_step when

-- 1 ‘ fl. r) .

@1141; 1 I = 9U, L70, ""-

f _ K

K

" ‘fi‘n '4'. + “F-t11qr m "‘D’Xt'

(3) f-Lur UlO-A V IL.) .1..- L to v1- 0

 

 

TT . .

is a e ( e.'K+'- OK ) I 130 K (9., K+I " 80K )

(2) :or steps wits mass:

I-I.-(7r)2 C ¢ no<sin ( nx+Y)

180 6

I
I

o

U
)

H ,
‘
3

4:
X «
b

N
.

(C) Vibration stress in any uniform circular portion of a

 

Where d2 and d1 are the outer and inner diameters

of the section ‘

(D) Peak amplitudes:

Energy input equation due to a number of equal impulses

of different phases is given by

m cos ( pt - 43) acting at various points 3_ from

beginning of a step with masses is

E - Him afl¢X-€Z3

or if the impulses are unequal in magnitude

E a £99, a? $1»?

180

whereotis the constant for relative amplitude

q 0

curve :or G" = l
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IE}? =\§ A2 + 32

A .. (.0; sin (rs

s = 24), cos *5

00': COS<¢Y1§§ +35)

6 .

The motion at the teaming; of the system is 5., cos ( P t -

90 - M

a 6' sin ( P t - 4)

0!

there 4 = tan” -A

Using 0, #2 - #1, 43 — 41 - - 4 - in place of 41, 42, 43 — —

the phase angles all refer to the instant at which the maxi-

mum value of the first impulse occurs.

In this case

.4 .

4 - #1 9 tan A
 

Where A

and 3

If the impulses having the

occur in two different step.

Faun-2m

185

. tpin.(#3 - 41)

'€Q§POS (45 ‘ 41)

same magnitude but different phases

s, U and V, both with mass,

9,, £0

 

$32!?

A

3 - g‘fgfifiscosYas 4

‘Q A2 +

2.. 9%,

32
6—1

Eflilvhs 4‘ it

“v

The energy loss hue to marine prOpeller is

- -. 2 l o

21.2(W)2 P (at) (6")2
-loOI°

Where a; is the relative amplitude at the

propeller

f’ is

O

for q" = l and averaie value of

r.p.m.
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The accuracy of the input energy calculations and

undampd forced vibration calculations degends upon the ac-

curacy of values of the stimuletint; impulses, including the.

magnitude and phase angles. The impulses are obtained by

harmonic analysis from torque curves at the various cylinders.

Lower harmonics can be obtained with fair accure»cy. The

hijhe probably have appieciablc variations even from one com-

bustion cycle to the next. harmonic series known as simplest

Fourier's series may be stated as:

H , .
f(X)-p_._,_ +1 ocosrx4p£cos

. 2 Q” ‘ ,_, 2

p x + i; a sin r x

u &

an
a‘ zlg f ( 8A) sin r4’(r: l,2,3,-- p - l)

p 5.,

ba . %:£" * ( SA) cos rA ‘(r . O,l,2,--— p)

8.

P = half the number of equi. distant ordinates

A = ”/P

r . arronic nuznber

s a ordinate number

Simplified method for torsional vibration calcula-

tion as used at the Chrysler Corpora+ion.

Torsional vibration system considered as a number of

ajxscsconnected in series through torsional Springs. All

sprin:s are equal and all discs e1ad ones are equal.
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I

k K K K K K
\I

,\

1; I; I, I Is
‘ Inn Ix 1h+c

I = .. - I" I ------- I = I /

1 2 3 N 0

n springs are equal and each Has stiffness K.

}
.
1
.

$
1
)

0All discs have equal moment of inert

f the first disc is given a sinusoidal angular

diSplacenent, a torsional disturbance will travel along the

system from left to rijht. It is legitimate to consider
(
+
-

orsional deflection, whichH
,

this disturbance as a wave 0

will travel back and forth through the system with reflection

‘

ooth ends.
L

at.

Assume that in protressing from one disc to the

:
3

(
D

>
4

c
+

‘
0 r
t
5
‘

(
D

O m a C
D

[
.
1
-

n phase of the wave is ¢. When the wave

arrives at I l , ts relative phase will be n ¢’if upon

refle f V a c h. ~ .‘ s fi ction oi n + l’ theie is a cnan e in pha e oi 2 fin 4 I.

Then when the wave arrives at I1 the relative phase will be

np+¢n*l+n¢.

If reflection at 11 causes a phase change, 201,

the relative phase after one complete transit of the system

will be:

2n¢ 4 2 9 + 2 91

n + 1

How if relative phase is equal to zero or some mul-

tiple 0+ 3300, a so called 'stationary' or 'standing' wave



'
dattern will result.

i
n

— Q A. U‘

Unier tasse seen is

\
<
,
‘

vibratinr at one of its natural frequencies and we can write

at a natural frequency.

2 n 4 2 e- 429 = c or multinle of 3500 —- (A)
q + l l -

q 4 O .,_‘

n ¢ 4 er 4 l 4 e1 : C or multiple o: 180 -- (z)

a " - sin 9. J: - l }Au pk _ {1 + ( ) gb

PFC _-; :e Hive a::r_:litu;“_e of Cisc

nuiber x

Formulas iefinin; ¢, Gland en 4 l involve the

inpedances of the system (either mechanical or electrical)

and their

parameter,

frequency

the syrin;

form can be greatly simplified by introducing the

 

 

 

F., wnicb is defined as the ratio of the driving

to the frequency of one of the equal discs on cie of

s i.e.

F - f_ F = frequency ratio

fo

f = drivinf frequency

f0- L-“ E

217 I

It can be snown that

F2

2R - l
. 1

tan - - 4 -en 4 l- . E? l

-1 ,

2 R

n + l

4)cos . l - §_ 31 = 11

a t 'I‘

R _ _

n + l ‘ *n + l
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Fi~ures show various values of R.

t may be seen that for values of R :reater than

1/2 is is ne;ative. Only absolute values are given in the

chart. Curves for ¢ all have + ive. slopes while tLe curv

The problem of finding the natural frequencies for

a given system involves suessing at a value 0:

¢, 91, en , 1’ from curves and checkin: hese values in the

equation (1). At the firs natural fr (
D

t r‘uency the rijtt hand

member of the equation (13) is zero; at the second frequency

the right bald member is lCOO; and at the third, 3300 and so

on. It is interes inf to note that F cannot ce sreater tba

4, i.e. the hi hes natural frequency of tne system is not

more than 2fo.

e
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The real difficulty in making accurate calculations

for the amplitude of vibration at a natural frequency is due

to the lack of knowledge and uncertainty of the damping

forces. Various empirical formulas have been attacked in

another way by the use of a term which K Wilson has called

the "equilibrium amplitude".

Consider reduction in the arithmetical work of

torsional vibration. Calculation for multi-cylinder engines

results from the assumption that the crankshaft and masses

attacked along ts length are a uniform shaft with mass and

elasticity. In a six cylinder engine, a concentrated mass

system can be changed to a distributed mass.
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Calculations for torsional vibration frequency of

an engine and flywheel, arranged as a uniform shaft with mass

and elasticity with a concentrated mass at its end are simple

table for

T ( ¢ n) . 180 tan ¢ n is used.

"’5 n



The writer prefers using the inertia factors in

”.in ., but this is not necessary. Th value of C is

it is not difficult to recognize. For an example, in a marine

Fl

installation, consisting o: {
‘
0

:
5

(
Dn“ine, flywheel, propeller

P
.

U
)

C
D

shaftinh, and propeller, it asy to see ha the first

natural frequency is determined for the most part by the fly-

wheel, prOpeller, and proper shafting as a simple two mass

system. It can also be seen that the second natural frequency

[
—
1
.

(
I
)

J

-etermined for the most part by the flywheel and enjine

r, .n

a uniform heavy shaft with a concentrated mass at the end.{
D

U
)

The reduction method of calculation has been develop--

ed to take advantage of this characteristic. The reduction

method used on the same equivalent system requires no more

work ban the holze method. But when the reduction method

is used on an equivalent system with a distributed mass for

the moving parts of multi-cylinjer en;ine, considerable saving

of calculations results. The reduced inertia factor from the

end to the first node is 4 ive. and is greater than he

original value. The_reduced inertia factor at a node is in-

finite. Just after passing a node, it is minus infinity and

increases throu;h zero to _ositive infinity when the next

node is reached.



The variety of complicated techn ques outlined

above for calculating and testing torsional vibration prob-

lems indicates a fundamental reason for the many uncertain-

ties and disagreements which have clouded the subject. Con—

siderable strides have been mafie in test instrumentation, and

there are a few well established neasuring techniques. Cal-

culation, however, still depends largely on the experience

and discretion of the calculator. This is so because the

more precise classical methods, by which it would be possible

to collect and correlate the masses of data available, are

extreme y laborious.



Analogies are useful for analySIs in unemplored

£13113. 3‘ means of analeies, an unfamiliar system may

be compared with one ttat is better known. Although not

generally so considered, the electrical circuit is the most

common and widely exploited vibrating system. By means of

analogies, the knowledge in electrical circuits may be

applied to the solution of problems in mechanical .nd acous—(

tical systems. In this procedvre, the mechanical or acous-

tical vibrating system is converted into the analogous elec-

tric circuit. Any mechanical system can be reduced to an

electrical ne work, and the problem may be solved by electri-

cal circuit theory.

I’ :

R a
l
e

T = applied torque,

o.) = angular velocity,

radian/sec.

r = mechanical rotational

Mechanical rectilineal internal eneray:

O

i - m g; du

h dt 7'6

I
I S
.
)

O O o H v D m./sec.2

H
.
»
p

lm1 driving forcein dyneS.

E
3

. mass in grams,

Mechanical rotational internal energy associated with moment

of inertia.

I = am. (or-n.)2
\’

M. of I. given by fa s I

C
"

(
D

D
J

(
D

I
I

angular acc.

rad./sec.2

l
5
.
.
J

(
+
-

H
:

I torque in dynes.f

CIR.
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Friction, mass, and compliance govern the move-

ments of physical bodies in the same manner that resistance,

inductance, and capacitance govern the movement oz electri-
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electrical rectilineal

I .

¢’

77:1 _ been

rotational mechanical

 

 

 
  

  

 

One degree of freedom.

Principal of the conservation of energy forms one of the

basic theorems in most sciences.

D
]

K. . in magnetic field

electrical

T -1 L12
K.E. “ 5

K.E. stored in mass mechanical rectilineal

T, a - l m x2 m - 5ms.
11.11. ‘ "'

"'

2

3': : cm./sec.

K.E. stored in moment of inertia

" 2
T, . l I ¢2 I : gm. (Cm
10R. 2

'

radi./sec.

‘
9
-

l
l

D'Alemberrt's Principal

Equation for rotational system

I 61% + r 01¢- + L = new“

cit R J»?

3. force

Fké external applied
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