monowtc cennarisen 05 motwhy

Thenis for the Eagroe of Ra. s.
menchat shat comern

Stantidal Ambatal Pato! 1966

THESIS
, certify that the
tussis entitled
-iso of Highway Bridge
,y to One-Hundred Foot Spans.
presented by
ntilal Ambala Patel
has been accepted towards fulfillment of the requirements for
M.S. degree in Civil Engine ring

By
Shantilal Ambalal Patel

A thesis

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science
 in partial fulfillment of the requirements for the degree of

MASTER OF SCIEMCE

Department of Civil Engineering
1954

TABLE OF CONTHMTS

Acknowledements

I. Introduction 1
II. Factors Dictatine Tyne Selection 2
A. Stream Behavior 2
B. Requirements of Navigation 3
C. Traffic Considerations 4
D. Architectural Features 4
III. Tyne Selection for 50^{\prime} to 100^{\prime} Snans 7
A. Comnosite Construction 7

1. General 7
2. Floor Slab 12
3. Composite Beam 15
B. Prestressed Construction 28
4. General 28
5. Floor Slab 31
6. Prestressed Girder 33
IV. Results 44
V. Conclusion 47
Annendix A. Comnosite Construction for 50' - 70' - 80' - 90' - 100' Spans 49
Annendix B. Prestressed Concrete Construction for 50' - 70' - 80' - 90' - 100' Spans 59
Bibliography 69

The author wishes to express his sincere thanks to Dr. Carl L. Shermer for his kind puidance and valuable help in nreparation of this thesis.

He is also greatly indebted to Dr. Richard H. J. Pian for his kind suraestions and assistance.

Grateful acknowledgment is also due to Mir. Rydjand of Michigan State Hichway Denartment for his practical advice regarding bridge design. The writer deenly appreciates the unit costs for composite construction supplied by the Michigan State Denartnent, Lansing.

He extends his sincere thanks to L. Coff, Consulting Engineer, snecializing in prestressed concrete, New York, for supplying the unit costs for prestressed construction. He also appreciates very much the unit costs for prestressed construction furnished by F. Hurlbut Comnany, Green Bay.

Last, but not the least, the author is highly obliged to Dr. Edward A. Brand, Associate Professor, General Business, in putting this thesis in the soecific form.

I. INTRODUCTION

Highway Bridge Engineering can be divided as follows:
A. Bridge location
B. Preliminary investigational work and stream study
C. Economic tyoe selection
D. Detailed design
E. Construction
F. Maintenance and operation

In general it may be said that many of the highway bridges span from 50' to 100^{\prime}. Therefore, it is the purvose of this thesis to make an economic study of highway bridge tynes for these soans including actual cost comnarison.

It is needless to say that tyne selection is the most difficult but the most important feature of Bridge Engineering. Yet, the engineers in general have not quite anyreciated the importance of correct type selection. hs a result, millions of dollars have been wasted through improper type adaption due to unwarranted first costs or unnecessary maintenance expenses.

Correct type selection is, therefore, the very corner stone of economy. A failure to evaluate correctly the factors governing this problem may frequently result in waste many times greater than any saving anticipated from refinements in stress analysis and design.
II. FACTORS DICTATING TYPE SHIDCTION

It is necessary to discuss the general factors that govern the tyne selection for any snan before discussing fifty to one-hundred-foot syans. The auestion of economy in the first cost, maintenance and renewal is naturally a major controlline consideration. It should be kent in mind that there are some factors other than economic considerations which onerate to dictate type selection. These may be grouped as follows:
A. Stream behavior
B. Reauirements of navigation
C. Traffic considerations.
D. Architectural features

This is not the place for an extended discussion of these, however, these will be introduced briefly.
A. Stream Behavior

Stream behavior in this thesis means the peculiar characteristics of the waterway during periods of hich waters as regards erosion of bed and banks, lateral shifting of channels, carriage of drift, ice and debris, etc. These characteristics have direct influence on (1) main channel structure, (2) structural approaches, (3) approach embanlment.

We know that $Q=V A$ where $Q=$ discharge of stream in ft. sec. through the main channel.
$\dot{A}=$ Waterway area of main channel ft^{2}.
$\mathrm{V}=\mathrm{Velocity}$ of flow in $\mathrm{ft} . / \mathrm{sec}$.

Construction of any structure across the stream tends to obstruct the flow of water. This, naturally, affects the velocity of flow and causes erosion or denosition of bed. is a result this characteristic puts limit on minimum sacing of piers.

Neandering of stream in flood plains many times make it necessary to carry main channel construction clear across the flood plain, where otherwise, short span anoroach construction would be entirely adequate and much more economical. In such cases, stabilization of channel by means of river training works may sonetimes be economical against long span construction over the entire flood plain.

This automatically dictates the structural apmroaches as well as the anmroach embankment.

The necessity to guard against the drift or ice dictates the vertical clearance, although extreme flood elevation alone may at times be the limiting factor. These factors often force the elimination of deck truss construction even though it is the most desirable.

Shallow truss construction, enough to provide required clearance, may sometimes be more economical than deck truss of ordinary denth which requires raising the general grade of the approaches.
B. Requirements of Navigation

The horizontal and vertical clearances required for the main channel snan to fulfill navigation needs certainly limit the type selection. Generally moveable snans are used for this nurnose, of course, the tyne of design for the moving leaves is dictated by water traffic. In many of the streams in this country even
the flanking spans are held to a certain established minimuin as regards these clearances by the United States War Department. Thus, they control the syacing of piers regardless of other considerations.
C. Traffic Considerations

In order to allow adequate sicht distance at sharp curved approaches structure such as through steel truss construction should be avoided.

The ultimate purnose of bridge structure is to facilitate traffic movernent. Hence thorough consideration should be given to (1) the direction of traffic movements over the span, (2) provision for the separation of slow and fast moving traffic.

Deck construction is much superior to any other type from a traffic standpoint as it satisfies all the above requirements. If the clearance requirements eliminate this type from consideration on pronosed grade line, then, it becones necessary to investigate the feasibility and cost of a new grade line modified so as to permit deck construction and also the feasibility of snecial shallow truss design.
D. Architectural Features

In certain cases architectural requirements play an important role in the selection of Bridge Structures. The following cun be the order from the architectural point of view.

1. Niasonry arch construction
2. Reinforced concrete deck construction
3. Deck truss or plate girder construction with a concrete deck.
4. Through truss or girder construction. If the alignment is such that the side elevation of structure is plainly visible from the approaching highway, more attention should be given to a type which gives a oleasing side elevation than if only the roadway is ordinarily visible. Natural scenic setting will also influence the tyne selection. Furthermore, the location of the bridge in reference to narks, pleasure resorts, etc. will influence the type selection.

In general, all such factors operate to place certain limits on type selection. These limits are generally in regard to the spacing of piers, tyne of anproach construction, choice between deck and through construction, grades, clearances, roadway width, etc. In final analysis when the relative economy of the different tynes is determined, the unobstructed roadway should be given a great deal of consideration and should be chosen unless cost considerations are prohibitive.

III. TYPE SELECTION FOR 50' to 100' SPANS

Assuming all the factors that dictate the tyne selection are favorable to the use of a deck structure, then the present trend is to the type of construction using steel beams with concrete floors for these span lengths. Recent develoments to provide mechanical shear developers have caused the discarding of the conventional steel construction. Hs a result state highway departments are designing composite steel bridges.

On the other hend, for 50^{\prime} to 100^{\prime} snans the conventional reinforced concrete construction cannot be used owing to its limitations in regard to span length. But recent develoment has brought about the use of prestressed concrete construction. This has increased the previous span limit. Hence, the prestressed concrete bridges can be built for these spans. How far this tyne of construction can compete with the present composite construction can now be found out by actual cost comparison. However, it is assumed that the sub-structure construction is the same in both the cases. Hence, it is now possible to determine cost differences for these two tynes of deck constructions for the 50' to $100^{\prime \prime}$ spans. Unit costs for the composite construction were supplied to the author by the Nichigan State Highway Dedartment, Lansing, Michigan. Unit costs of the prestressed construction were supplied by the specialized firms.

The order of the following discussion is:
A. Composite construction
B. Prestressed concrete construction

A. COMIOSITE CONSTRUCTIUN

1. GINERAL
a. Introduction

During the last twenty years composite construction has renlaced the conventional steel construction in the field of hirhvey bridges. This is becouse, in the conventional tyne of steel beam bridge with a reinforced concrete deck, each bean carries the entire load transmitted to it by the concrete slab. While in comnosite construction, adequate provision of shear connection between the beam and the slab has made the section composite and hence acts similar to the reinforced concrete T-beams.

The main adventages of composite construction over the conventional type of steel beam and slab construction are:
(i). Greater economy
(ii). Shallower construction
(iii). Greater stiffness
(iv). Greater live load factor of safety
b. Composite Beam

The composite beam consists of three essential parts:
(i). Steel section: this may be a rolled berm or a riveted or velded girder. Composite construction is more econoinical when the bottom flange of the steel section is larger than the top flange. This
can be accomplished in the case of a standard rolled beam by welding a cover plate at the bottom.
(ii). Concrete slab: reinforced concrete slab is designed as in conventional construction. The slab may rest on the steel beam or on concrete haunch increasing the carrying canacity of the composite section due to the increased deoth.
(iii). Shear connectors: to mrovide adecuate bond between the concrete slab and the steel beam, mechanical shear connectors are nrovided. Among the many, the suircls ere the most economical and adantable. These are nomally velded to the top flange of the steel beam and embedded in the concrete to transmit the longitudinal shear and to prevent the movement between the slab and the beam.

c. Methods of Erection

Two different methods of erection are in practice:
(i). No temporary sunnorts are used under the steel beans during the pouring and setting of concrete slab. So steel section carries the dead load while the composite section carries the live load plus any dead load applied after the slab has set e.g. wearing surface.
(ii). Effective temporary supports are used under the steel beams during the pouring and setting of the concrete slab, hence the composite section carries both the dead and live loads.

However, practice has proved the first method as more economical then the second, though the steel section required for the second method is smaller than that for the first method. This is because the cost of the intermediate supports frequently exceeds the saving in the steel.

In the following designs, all of the above main factors that bring about economy are taken into consideration.

The method of design of comrosite beams is based on the transformed section method used in the design of reinforced concrete beams. For the trial sections, the properties are used from the tables given in Reference No. 2.
d. Data

The general layout of the cross-section is as shown in the following Figure 1. The roadway is 28° wide and is flanked by two 2-ft. wide curb walks. The stringer spacing is kept 6 ft . c. to c. for all the spens. The slab is kent the same for all the soans.

Cross-section of Deck
Fig 1

Live load is H2O-44
Future wearing surface is assumed to be 20 lbs. Der square foot.

Load and design requirements adhere in general to Standard Specifications for Highway Bridges, sixth edition, 1953 adonted by AASHO.
e. Notations
kd - Distance from comnression surface of slab to neutral axis in inches.
$\mathrm{L}=$ Scan length in feet.
As $=$ Cross-sectional area of steel section.
$I^{\prime}=$ Monent of inertia of steel section about its NA.
$I=$ Moment of inertia of composite section about its NA.
$S^{\prime} s=$ Tensile section modulus of the steel section.
Ss $=$ Tensile section of modulus of the composite section.
$n=$ Ratio of modulus of elasticity of steel to that of concrete (Es/Ec).
$N D L=$ Bending moment due to dead load.
MIL = Bending moment due to live load.
Mws = Bending moment due to wearing surface.
Fsdl= Steel stress due to liJL. (Ksi).
Fsll= Steel stress due to miL (Ksi).
Fsws= Steel stress due to kws (Ksi).
VDL $=$ Vertical shear due to dead load.
VLL $=$ Vertical shear due to live load.
Vws $=$ Vertical shear due to wearing surface.
$\mathrm{H}=$ Horizontal shear per unit length.
$S=$ Pitch of spirals.

Apl - Cross-sectioncl area of plate.

Qnl $=$ Static moment of cover plate about Na of composite section with $n=10$.
$Q^{\prime} n l=$ Static moment of cover plate about $N A$ of steel section.
Q"pla Static moment of cover plate about INA of comnosite section with $n=30$.
$Q=$ Static moment of the effective concrete area about Ns of composite section.
$F_{W}=$ Shearing force transmitted per pitch (Kins).
Fsa $=$ Allowable steel stress $=18(\mathrm{Ksi})$.

2. FLOOR SLAB

a. Design

Distance between stringers c. to c. $=6 \mathrm{ft}$.
Bending lioment shall be calculated by the methods based on the Westergaard's theory of the distribution of loads and desian of concrete section.

According to AASHO snecifications, Art. 3.3.2. (c) case A, where main reinforcenent is perpendicular to traffic and spans are 2-7 ft.
distribution of wheel loads:
$E=0.68+2.5$
where $s=$ effective snan length which is the distance between edges of flanges plus $1 / 2$ of the stringer flange width for slabs sunnorted on stringers. AASHO specifications. Art. 3.3.2. (a)

Assuming $9^{\prime \prime}$ wide flange,
$s=6^{\prime}-0^{\prime \prime}-9^{\prime \prime}+4.5^{\prime \prime}=5.62^{\prime}$
$E=0.6 s+2.5$
$=0.6 \times 5.62+2.5$
$=3.37+2.5$
$=5.87^{\circ}$
Bending moment for continuous snans:

$$
M= \pm \frac{0 . ? \times P_{1} x s}{\mathbf{S}} \quad \begin{aligned}
& \text { where } P_{1}=\text { Load on one wheel of } \\
& \text { single axle. }
\end{aligned}
$$

$$
P_{1}=12,000 \mathrm{lbs} . \text { for } H 20-44 \text { loading. }
$$

$$
M= \pm(0.2 \times 12,000 \times 5.62) 5.87 \times 1000
$$

$$
= \pm 2.34 \mathrm{k} . \mathrm{ft} .
$$

$\begin{aligned} \text { Imnact factor } & =\frac{50}{L+125} \quad\left(L=s=5.52^{1}\right) \\ & =\frac{50}{5.62}-125 \\ & =38.4 \%\end{aligned}$
But max. allowed is 30\%
Design $M= \pm 3.04 \mathrm{k} . \mathrm{ft}$.
for $20,000 / 10 / 1200$, and $k i=3.04 \mathrm{k}$. ft. $d=4^{\mathrm{m}}$.
Minimum slab thickness $=4+1.5=5.5^{*}$
Use 7" thick slab.

Hence, $d=7-1.5-0.37=5.2^{\prime \prime}$.
Reinforcement:

$$
\begin{aligned}
=A s=\frac{M}{\text { fsid }} & =\frac{3.04 \times 1 ?}{20 \times \cdot 367 \times 5.2} \\
& =0.405 \mathrm{sq} \cdot \text { in. } / \mathrm{ft} .
\end{aligned}
$$

Provide 5/8" \varnothing Bars $7^{\prime \prime}$ c. to c. at bottom as well as at the ton.

Distribution Reinforceinent: reinforcement shall be placed in the bottoin of all slabs normal to main steel to provide for lateral distribution of all loads. The amount shall be the percentage of the main reinforcing steel reauired for nositive moment as given by the following formula:

$$
\%=100 \frac{1}{3} \frac{1}{2}=100 / 5 \cdot 62^{\frac{1}{2}}=42.2 \%
$$

Area of steel regd. $=.422 x .402=0.17$
Provide $1 / 2^{*} \varnothing$ Bars 10° centers.
b. Quontity:

$$
\text { concrete/sq. ft. }=\frac{7}{12} \times 1=0.583 \mathrm{cu} . \mathrm{ft}
$$

Positive steel/sq. ft. $=\frac{1.043 \times 12}{7}=1.79 \mathrm{lbs}$.
Negative steel/sq. ft. $=1.79$ lbs.
Distribution steel/sq. ft. $=\frac{.668 \times 12}{10}=0.8 \mathrm{lbs}$.
c. Cost:

Per sq. ft. of slab:
concrete $\$ 48 / \mathrm{cu} . \mathrm{yd}=\frac{0.583 \times 48}{27}=\$ 1.04$
steel reinf. $\$ 0.10 / 1 \mathrm{~b} .=(1.79-1.79-0.8) \times .10$

$$
=3.38 / .10=33.8 \text { cents }
$$

Cost of slab per sa. ft. $=\$ 1.378$
3. COMPOSITE BEAN
a. Desion

The followins examnle illustrates the detailed desion of a tyoical comnosite bean. 'The swin is 60 ' as simply supported.

Loadine H2O - 44
Stringer spacing 6'
Sleb thickness 7"
Wearing surface 20 lbs./sq. ft.
Live Load: (Lane load governs)
Distributed load/ft. of lane $=640$ lbs.
Imnact factor $=\frac{50}{60+125}=27 \%$
Impact load/ft. of lane $=174 \mathrm{lbs}$.
Total load/ft. of lane $=814$ lbs.
Per strincer, load/ft. $=\frac{6}{10} \times 814 \mathrm{lbs} .=488 \mathrm{lbs}$.
i.e. $W L L=.488 \mathrm{k}$

Concentrated load for monent/lane $=18 \mathrm{k}$
Imnact load $=4.86 \mathrm{k}$
Effective concentrated load for moment/lane $=22.86 \mathrm{k}$
Per strincer concentrated load $P=0.6 / 22.86$
Concentrated load for shear/lane $=26 \mathrm{k}$
Impact load $=7 \mathrm{k}$
Effective concentrated load for shear/lane $=33 \mathrm{k}$
Per stringer concentrated load
$=0.6 \times 33$
$=19.9 \mathrm{k}$

Live Load Moment MLI $=\frac{.488 \times 60^{2}}{8}+\frac{13.7 \times 60}{4}$

$$
=423 \mathrm{kft} .
$$

Dead load carried by steel section alone:

$$
\begin{aligned}
\text { Wt. of slab }=\frac{7}{12} \times 150 \times 6 & =525 \mathrm{lbs} \\
\text { Steel section } & =120 \mathrm{lbs} . \\
\text { Dianhrams, spirals, welds, } & =\frac{20}{} \mathrm{lbs} . \\
\text { i.s. WDL } & =665 \mathrm{lbs} . / \mathrm{ft} . \\
\text { Dead load Moment } \mathrm{inDL} & =\frac{.665 \times 60^{2}}{8}=299 \mathrm{k} . \mathrm{ft} .
\end{aligned}
$$

Dead load carried by Composite Section ($n=30$): for the loads which are sunerimnosed after the concrete has set, stresses shall be computed with $\mathrm{n}=30$ for sunerimoosed deal load and with $\mathrm{n}=10$ for live load. This higher value of n is supnosed to take care of the combined effect of dead load and plastic flow stresses in the concrete and steel.

Wit. wearing surface $=20 \times 6=120 \mathrm{lbs} . / \mathrm{ft}$.
Wearing Surface Noment wWS $=\frac{.120 \times 60^{2}}{8}$
$=54 \mathrm{k} . \mathrm{ft}$.

Trial Design:

Wherever plastic flow is considered in the design of composite beams, its effect may be neglected in the trial design because of its small influence on the required section. Therefore, loads producing nlastic flow are grouned with the live load in the trial design procedure.

Steel section modulus required for dead load

$$
=S^{\prime} \operatorname{sdl}=\frac{10 D L \times 12}{f s}=\frac{299 \times 12}{18}=200 \mathrm{in}^{3}
$$

Steel section modulus reauired for $W L L+W s s$

$$
\begin{aligned}
=\operatorname{Ssll} & =\frac{(423+54) \times 12}{18}=477 \times 12 \\
& =318 \mathrm{in}^{3}
\end{aligned}
$$

Composite Design with Cover Plate:

To select the required camposite section, try values from Trial Design Table V of Reference No. 2 for the section 27wf. © 94 .

Total Steel area rend. $=\dot{\sin }=\frac{S^{\prime} s d l}{S^{\prime} s / \mu s}+\frac{\text { Ssll }}{S S / H s}$

$$
\begin{aligned}
& =\frac{200}{8.78}+\frac{318}{13 \times 0.978} \\
& =22.8+25.0=47.8 \mathrm{sq} . \mathrm{in} .
\end{aligned}
$$

Now 27 wf. © 94 give steel area $=26.65 \mathrm{sq}$. in.
Therefore,

$$
\begin{aligned}
\text { Area of Plate }=\mathrm{Apl} & =\frac{\text { As }-27.65}{2} \\
& =\frac{47.8-27.65}{2}=10.75 \mathrm{sq} . \mathrm{in} .
\end{aligned}
$$

Use a slightly larger cover plate than determined as above, since it was assumed in the trial design that the load carried by the composite section with $n=30$ was carried by the section with $\mathrm{n}=10$.

Therefore use a 27 WF . 94 with a $12^{\prime \prime} \times 15 / 15^{\prime \prime}$ (40l $=11.25$ sọ. in.) cover plate at bottom.

Pronerties of section without cover plate (at supports).

Steel Section:

$$
\begin{aligned}
& \text { Area }=27.65 \mathrm{sq} \cdot \text { in. } \\
& \text { I'o }=3264 \mathrm{in}^{4} . \\
& \text { S'so }^{\prime}=243 \mathrm{in}^{3} .
\end{aligned}
$$

Comnosite Section ($\mathrm{n}=10$)

$$
\text { Area: } \begin{aligned}
\mathrm{A}_{1}=7.2 \times 7 & =50.4 \\
\mathrm{~A}_{2}= & \text { steel }= \\
\text { Total area } & =78.05 \text { sq. in. }
\end{aligned}
$$

Statical Moment:

$$
\begin{aligned}
A_{1} \times 3.5 & =177 \\
A_{2} \times 20.45 & =\underline{565} \\
\text { Total } & =742 \mathrm{in}^{3} . \\
\mathrm{kd}=742 / 78.05 & =9.52^{\prime \prime} \text { from top of slab. }
\end{aligned}
$$

Moment of Inertia:

$$
\begin{aligned}
& \frac{1}{12} \times 7.2 \times 7^{3}=205 \\
& 50.4 \times(6.02)^{?}=1,870 \\
& \text { WF. } 27=3,267 \\
& 27.65 \times(10.93)^{2}=3,220 \\
& \text { Total }=\text { Io }= 8,662 \mathrm{in}^{4} \\
& \text { Liodulus of Section } \quad \text { Sso }=8,662 / 24.38=355 \mathrm{in}^{3}
\end{aligned}
$$

Composite Section ($n=30$)

Area:

$$
\begin{aligned}
2.4 \times 7 & =16.8 \\
\text { WF } 27 & =27.65 \\
\text { Total area } & =44.45 \text { sq. in. }
\end{aligned}
$$

Statical Noment:

$$
\begin{aligned}
& 16.8 \times 3.5=59 \\
& 27.65 \times 20.45=\underline{565} \\
& \text { Total }=624 \mathrm{in}^{3} \\
& k d=624 \times 44.45=14^{\prime \prime} \text { from ton of slab. }
\end{aligned}
$$

Noment of Inertia:

$$
\begin{aligned}
& \frac{1}{12} \times 2.4 \times 7^{3}=68.4 \\
& 16.8 \times(11.5)^{2}=2,220.0 \\
& \text { WF } 27=3,267.0 \\
& 27.65 \times(6.45)^{2}=1,150.0 \\
& \text { Total }=I^{m} 0=6,705.4 \mathrm{in}^{4} \\
& \text { Miodulus of Section }=S^{m} 0=6705.4 / 19.9=336 \mathrm{in}^{3}
\end{aligned}
$$

Properties of Section with cover plate (at mid-span)

Change in Neutral ixis due to adding a cover plate can be determined by the following formula:

Change in lis $=$ (Area of plate) x (Distance from c.g. of plate to NA of section without plate) / (Equivalent steel area of entire section).

Steel Section:

$$
\mathrm{Ni}=\frac{11.25 \times 13.92}{38.9}=4.0^{\circ}
$$

Moment of inertia:

27 WF section	$=3,267$
2765×4^{2}	$=432$
11.25×9.92^{2}	$=1,120$
Total $=I^{\prime}$	$=4,819$ in 4

Modulus of Section $=S^{\prime} \mathbf{s}=4819 / 10.39=472 \mathrm{in}^{3}$
Comnosite Section ($n=10$)

$$
\begin{aligned}
& \text { Moment of Inertia } \\
& \begin{array}{l}
\frac{1}{12} \times 7.2 \times 7^{3}=205 \\
(50.4) \times(9.16)^{2}= \\
\text { Steel } \quad 4,230 \\
38.9 \times(11.8)^{2}=4,863 \\
\text { Total }=I=420 \\
\text { Modulus of Section Ss }=\frac{14,718 \text { in }^{4}}{22.19}=663 \mathrm{in}^{3}
\end{array} .
\end{aligned}
$$

Composite Section ($\mathrm{n}=30$)
$\mathrm{NA}\left(\right.$ By adding slab to steel section) $=\frac{16.8 \times 20.96}{55.7}=6.3^{\prime \prime}$

Motion of Inertia:
$\frac{1}{12} \times 2.4 \times(7)^{3}=68.4$
$16.8 \times(14.36)^{2}=3,480.0$
Steel I $=4,863.0$
$38.9 \times(6.3)^{2}=1,540.0$
Total $=I^{*}=9,951.4$ in 4
Modulus of Section $=S^{w} \frac{9951.4}{16.99}=585 \mathrm{in}^{3}$

Grouping together:

Unit stresses at center:

$$
\begin{array}{lll}
\text { FSDL }=\frac{299 \times 10.39 \times 12}{4819}= & 7.35 \mathrm{k} / \mathrm{in}^{2} & 13.9 \\
\text { FOL }=\frac{493 \times 12 \times 22.19}{14718}= & 7.75 \mathrm{k} / \mathrm{in}^{2} & 2.0 \\
\text { Fsws }=\frac{54 \times 12 \times 16.99}{9951.4}=\frac{1.11 \mathrm{k} / \mathrm{in}^{2}}{\text { Total }}= & 16.71 \mathrm{k} / \mathrm{in}^{2} & 16.67 \mathrm{k} / \mathrm{in}^{2}
\end{array}
$$

Tod of Concrete:
Due to L.L. $\frac{43 ? \times 12 \times 12.66}{10 \times 14718}=0.436 \mathrm{k} / \mathrm{in}^{2}$
Due to W.S. $\begin{aligned} & \frac{54 \times 12 \times 17.86}{30 \times 9951.4} \\ & \text { Total }=0.039 \mathrm{k} / \mathrm{in}^{2} \\ &=0.575 \mathrm{k} / \mathrm{in}^{2}\end{aligned}$
All stresses are within the safe allowable stresses. Hence, the section is safe.

Length of Cover Plate:

$$
\begin{aligned}
=L^{\prime} & =L \sqrt{1-\frac{\text { Ss }}{S s}} \\
& =60 \sqrt{1-\frac{355}{663}}=60 \sqrt{(1-.535)} \\
& =40.9^{\prime}
\end{aligned}
$$

Use 42' cover plate.

End weld on cover plate:

The end force in cover plate $=A n l \times$ Fsa $\times \frac{S_{s o}}{S_{S}}$

$$
\begin{aligned}
& =11.25 \times 18 \times 355 / 663 \\
& =113.5 \mathrm{kips}
\end{aligned}
$$

Required length of $5 / 16^{\prime \prime}$ weld to transmit this end force

$$
\text { only }=\frac{113.5}{2.21}=50 \mathrm{in}
$$

hields along sides of cover plate:
To find horizontal shear per inch at the end of plate:
sit 9' frow left support
$\mathrm{VDL}=0.665(30-9)=0.665 \times 21=14 \mathrm{k}$.
$\mathrm{VLL}=0.488 \times \frac{51}{60} \times \frac{51}{2}+\frac{19.8 \times 51}{60}=10.6+16.8=27.4 \mathrm{k}$.
$\mathrm{VWS}=0.120(30-9)=0.120 \times 21=2.52 \mathrm{k}$.
Then horizontal shear ver inch can be given as:

$$
\begin{aligned}
\mathrm{H} & =\frac{V D L Q^{\prime} n 1}{I^{\prime}}+\frac{V I L Q_{n} n}{I}+\frac{V i S Q^{0} \mathrm{Dl}}{I_{1}^{n}} \\
& =\frac{14(11.25 \times 9.92)}{4819}+\frac{27.4(11.25 \times 21.72)}{14718}+\frac{2.52(11.25 \times 16.52)}{9951.4} \\
& =0.324+0.456+0.047 \\
& =0.827 \mathrm{k} / \text { in or } 0.413 \mathrm{k} / \text { in per side. }
\end{aligned}
$$

Try $1 / 4^{n}$ intermittent welds, length of each being $=11 / 2^{*}$
Then strength $=1.77 \times 1.5=2.65 \mathrm{k}$.
Therefore:

$$
\text { snacing }=\frac{2.65}{0.413}=6.5^{n}
$$

By AWS syecifications the minimum weld length $=1-1 / 2^{\prime \prime}$ and the maximun clear spacing $=14 x$ thickness of thinner part joined $=14 \times 11 / 16=9.63^{\prime \prime}$

Maximum center to center smacing $=11.13^{* \prime}$. Therefore, the snacing could be increased to 11^{*}, near the center of the snan.

Spiral Shear Connectors:
Use 5/8" © bars with $4-1 / 2^{\prime \prime}$ mean coil dianeter.
This gives $7^{\prime \prime}-(4-1 / 2+5 / 8)=1-7 / 8^{(1)}$ cover over snirals.
ist end supports:
$V(D L+W S)=(0.665+0.12) \times 30=23.5 \mathrm{k}$.
VIL $=0.488 \times 30+19.8=34.4 \mathrm{k}$. Total shear 57.9 k .

Snirel nitch,

$$
S=\frac{F_{w} I}{V Q}=\frac{11.04 x-8662}{57.9(50.4)(6.02)}
$$

At 10 ft . from the support:
$V(D L+W S)=0.785(30-10) \quad=15.7 \mathrm{k}$.
VLL $\quad=0.488 \times \frac{50}{60} \times \frac{50}{2}+19.8 \times \frac{50}{60}=26.7 \mathrm{k}$. Total shear $=42.4 \mathrm{k}$.

As the cover plate exists in this zone, the properties of the section with cover plate will be used.

Spiral pitch,

$$
S=\frac{11.04 \times 14718}{42.4 \times 50.5 \times 9.16}=8.32^{\star}, \text { sey } 8^{\star \prime}
$$

At 20 ft. from support:
$V(D L+W S)=0.785 \times(30-20)=7.85 \mathrm{k}$.
VLL $\quad=0.488 \times \frac{40}{60} \times \frac{40}{2}+19.8 \times \frac{40}{60}=19.7 \mathrm{k}$.
Total shear $=27.55 \mathrm{k}$.
Spiral nitch,

$$
\begin{aligned}
S= & \frac{11.04}{27.55} \times \frac{14718}{(50.4)(9.16)} \\
= & 12.8^{\prime \prime} \\
& \text { say } 12-1 / 2^{\prime \prime}
\end{aligned}
$$

Spiral	Pitch	Sniral length	Weisht
So	5-1/2"	10' - $9^{\prime \prime}$	29.8 lbs .
S_{10}	$8^{\prime \prime}$	10' - $9^{\prime \prime}$	21.9 lbs .
S_{20}	12-1/2"	10' - ${ }^{\prime \prime}$	17.2 1 lbs .

Average weicht of sniral per foot of beam $=\frac{68.9}{30}=23 \mathrm{lbs}$. Live load deflection:

The theoretical live load deflection is computed by using $n=8$ and by considering the change in section due to adding a cover plate. However, sufficiently close results are obtained by using $n=10$ and the properties of the section at mid-sman only.

$$
\begin{aligned}
\Delta & =\frac{2 ? .5 \mathrm{wL}^{4}}{\mathrm{EI}}+\frac{36 \mathrm{PL}^{3}}{\mathrm{II}^{\prime}} \\
& =\frac{2 ? .5 \times .488 \times 60^{4}}{29,000 \times 14,718}+\frac{36 \times 13.7 \times 60^{3}}{29,000 \times 14,718} \\
& =.332+.25 \\
& =0.582 \mathrm{in} . \\
\hat{L} & =\frac{0.582}{60 \times 12}=\frac{1}{1,230}
\end{aligned}
$$

This is safe because maximum deflection is alloved up to $\frac{1}{800}$ of suan.

Factor of Safety:

Factor of sefety is given for conopite construction based on the bottom flange stresses, which poverns the design.

$$
\begin{aligned}
\text { Minimum yield point stress } & =33 \mathrm{ksi} \\
\text { Dead load stress } & =8.96 \mathrm{ksi} \\
\text { Therefore, stress available for LL } & =24.04 \mathrm{ksi} \\
\text { Factor of Safety } & =\frac{\text { stress available for LL }}{\text { LL stress }} \\
& =\frac{24.04}{775}=3.1
\end{aligned}
$$

Dianhramn:

The dianhraoms are penerally tentatively provided for the better distribution of the live load to the various girders. They also make the stmucture more ripid to withstand unknown forces such as traction or sudden braking. Hence the dianhrapm shell consist of two L.s $3^{\prime \prime} x \sigma^{\prime \prime} x 3 / 8^{\prime \prime}$ with a $3 / 8^{\prime \prime}$ plate. The depth of the dianhramm shall be such As to nrovide $4^{\prime \prime}$ clearance from the ton flanee of the section and $3^{\prime \prime}$ to $4^{\prime \prime}$ from the bottom flange. The maximum smaing shall not exceed 20 ft . Hence provide two dianhragms, each having two Ls $3^{\prime \prime} x 3^{\prime \prime} x 3 / 8^{\prime \prime}$ with $19^{\prime \prime} x$ 3/8" plate. b. Quantity:
(i) Structural steel:

6 Nos. 27" WF . © 94 ror $60 \mathrm{ft}=94 \times 6 \times 60=33,840.0 \mathrm{lbs}$.
6 Nos. $12^{n \prime} x$ 15/16" jlate 42' long $=38.3 \times 6 \times 4$? $=9,651.6$ lbs.
$4 \mathrm{Ls} 3^{\prime \prime} \mathrm{x} 3^{\prime \prime} \mathrm{x} \mathrm{3/8"-30}$ long $=7.9 \mathrm{x} 4 \times 30=864.0 \mathrm{lbs}$.

2 Nos. $19^{\prime \prime \prime} \mathrm{x} \mathrm{3/8"plate}-30^{\prime \prime}$ long $=24.2 x 2 x 30=1,452.0 \mathrm{lbs}$.
Total $=45,807.5$ tha.
(ii) Sniral shear develoners for 6 beams 60' long $=$

$$
2.3 \times 6 \times 60=828 \mathrm{lbs} .
$$

c. Cost:
(i) Structural steel (fabrication, erection, naintinc) ©

$$
\$ 0.135 \text { ner lb }=45,807.5 \times .135=\$ 6,184.03
$$

(ii) Sniral shear develoners $\$ \$ 0.50$ ner $\mathrm{lb} .=828 \times 0.50=\$ 414.00$
(iii) $7^{\prime \prime}$ sl.rb $28^{\prime \prime} \times 60^{\prime}$ © \$1.378 ner sa. ft. $=\$?, 320.00$ Thorefore, total cost of deck $=\$ 8,318.03$

B. PRESTRESSED GUNCRETE CONSTRTGTION

1. GEMERAL

a. Introduction

Conventional reinforced concrete enjoys an enviable rosition and can be used successfully under most circumstances. But it has also its limitations in regard to snan, load or height. But recent develonment has broumht the nrestressed concrete construction into nractice. This breaks domn nrevious limitations on spans and loads.

Moreover nrestressed desirns have resulted in great savings of material. The prestressing tends to cancel the tensile stresses in the concrete and so the comnressive stresses that occur over the entire cross-section tend to prevent the occurrence of cracks. The arranzenent of reinforcement is also simplified considerable, because the diagonal tension is considerably less than in the conventional desian.

All of these advantages over the conventional concrete construction have made the prestressed concrete construction economical.

With this brief introduction the prestressed decks for the same spans and road width as before will be designed.
b. Data:

The general layout of the cross-section of the deck is as shown in the following Figure No. 6. The roadway is 28 wide and flanked by tmo $\mathbf{2 l}^{\prime}$ wide curbs.

Fig. 6

The deck consists of prestressed girders spaced 3.5 ft . on centers. The cross-section of the girder is of T -shape. The conventional T-shape appears to be particularly advantageous from the viewpoint of simple form construction.

The cast in place concrete slab is 4 in. thick above the girder flanges and 7 in. thick between them. Stirrups are extended above the top surface of the flanges and are spliced in the slab concrete. This has enabled it to assume composite action between slab and girder.

The girders are post-tensioned by cables comprising a group of nontwisted wires with ends anchored mechanically. The cables are placed in metal tubing with l-1/4" outside diameter. The tubes are finally filled with grout so as to provide sufficient bond.
c. Specifications:

Load and design requirements shall adhere in general to

Standard Snecifications for Hishway Bridees, sixth edition, 1953, adonted by ASTHO. But as AASHO smecifications have not considered nrestressed concrete, these will be sumblemented by the "Design Criteria for Prestressed Concrete", mblished by the Bureau of Public Rosds, on Harch 10, 195?.

Live load is H-? $0-44$.

Concrete:

Comoressive strength $\mathrm{f}^{\prime} \mathrm{C}=4,000$ osi
Initinl allowable commession in extreme fiber $=2,000$ nsi

Initial allowable tension in extreme fiber $=160$ nsi
Final allowable compression in extreme fiber $=1,600 \mathrm{psi}$
Final allowable tension in extreine fiber $=0$ psi
Allowable tension in bottom fiber at crackinf load $=600 \mathrm{psi}$ cracking load shall be $=1.0 \mathrm{DL}+2.0 \mathrm{LL}$.

Ultimate load shall not be less than 2.25 (DL + LL) or (1.0 DL + 3.5 LL) Whichever is sreater.

Allowable principle tensile stress at design load = 160 psi
Allowable principle tensile stress at ultimate load $=300 \mathrm{psi}$ Minimum web reinforcement of $3 / 8^{n}$ diameter stirrups spaced at a distance not more than half the denth of girder shall be provided. Steel:

Tensile strenpth of the steel wire $=250,000 \mathrm{psi}$

Allowable initial prestress $=150,000 \mathrm{nsi}$
Allowable final prestress $\quad=0.85(150,000)=127,500 \mathrm{nsi}$
The size of wire shall be between and including 0.19 ? and
0.276 in diameter.

2. FLOOR SLAB

a. Design

As mentioned before, the slab thickness is tentatively provided 7 in. between the girders.

It will be noticed that clear distance between flanges is $1^{\prime} 6^{\prime \prime}$ for all spans and the width of the flange is 2 ft . for all girders.

$$
\begin{aligned}
& \text { Therefore, } s=1.5+\frac{1}{2}(2)=2.5^{\prime} \\
& \text { and } E=0.6 s+2.5=0.6 \times 2.5-2.5 \\
& =1.5+2.5=4 \mathrm{ft} \text {. } \\
& \text { Moment }= \pm 0.2 \frac{P_{1}}{E} \text { S AASHO 3.3.2. (c) Case A } \\
& = \pm \frac{0.2 \times 12,000 \times 2.5}{4} \text { (Wheel load } P_{1}=12,000 \mathrm{lb} . \text {) } \\
& = \pm 1500 \mathrm{ft} . \mathrm{lbs} .==18,000 \text { in lbs. }
\end{aligned}
$$

Main Reinforcenent $=\$ \frac{18,000}{.866 \times 5.2 \times 20,000}$

$$
= \pm 0.20 \mathrm{sq} . \mathrm{in} .
$$

This is believed to be too little reinforcenent, hence proVide $5 / 8^{\prime \prime}$ diameter bars $12^{\prime \prime}$ c. to c. at top as well as bottom arbitrarily.

Distribution reinforcenent: 50 nercent of bottom steel

$$
=\frac{1}{2} \times 0.34=0.17 \mathrm{sq} . \mathrm{in} .
$$

Hence, provide $\frac{1}{2}{ }^{n}$ diameter bars $\otimes \mathrm{c}$. to $\mathrm{c} .=12^{\mathrm{n}}$.
b. Quantity:

Per foot of 28 ft . wide roadway slab:
(i) Concrete: $28 \times \frac{4}{12}+8 \times 1.5 \times \frac{3}{12}=12.33 \mathrm{cu} . \mathrm{ft}$.
(ii) Steel:

Positive steel $=$	$28 \times 1.043=28.1 \mathrm{lbs}$.
Nerative steel $=$	$28 \times 1.043=28.1 \mathrm{lbs}$.
Distribution steel $=$	$29 \times 0.668=19.4 \mathrm{lbs}$.
	Total steel $=$

c. Cost:

Concrete © $\$ 46.00$ per cu. yd. $=12.33 \times 46=\$ 21.00$
Steel reinf. $10 \not \subset$ per lb . $=75.6 \times 0.10=\underline{7.56}$
Therefore, cost per ft. of 28 ft . wide slab $=\$ 28.56$

a. Design

The girder is simply supported with a span of 60 feet.
The section is selected with dimensions shown in the following Figure No. 7:

Properties of Gross Concrete Section:

Area
$A_{1}=16 \times 4.5=72$
$A_{2}=8 \times 36=288$
$A_{3}=3 \times 3=9$

Statical Moment
$A_{1} \times 2.25=162$
$A_{2} \times 18=5,200$
$\mathrm{A}_{3} \times 5.5=-49.5$
$A=369 \mathrm{sq}$. in. \quad Total $=5,411.5$
$Y t=5411.5 \times \frac{1}{369}=14.6 \mathrm{in}$.
$Y b=Y t-36 \quad=-21.4 \mathrm{in}$.
$e=Y b-4.5=-16.9 \mathrm{in}$.

Moment of Inertia:

$$
\text { I: } \begin{aligned}
\frac{1}{12} \times 16 \times(4.5)^{3} & =122 \\
\frac{1}{3} \times 8 \times(14.6)^{3} & =8,260 \\
\frac{1}{3} \times 8 \times(21.4)^{3} & =26,200 \\
72 \times(12.35)^{2} & =10,800 \\
9 \times(9.1)^{2} & =-746 \\
r^{2} & =I / A=46,128 / 369=125 \mathrm{in}^{2} .
\end{aligned}
$$

Girder Stresses:
Girder weight $=369 \times \frac{150}{144} \times 60=23,000 \mathrm{lbs}$.
Moment $\quad=\frac{12}{8} \times 23,000 \times 60=2,080,000$ in lbs.
Stress $\quad=\frac{2,080,000}{46,128}(+14.6)=+660$ psi.

$$
\text { and } \quad=\frac{2,308,000}{46,128}(-21.4)=-920 \text { psi. }
$$

Use 62 wires, 0.196 in diameter.

$$
\text { Steel area }=62 \times 0.03=1.86 \mathrm{in}^{2} .
$$

Therefore, initial prestress, $P=1.86 \times 150,000=278,500$ lbs.
This will produce stresses in the girder.

$$
\begin{aligned}
1 & =\frac{P}{A}\left(1+\frac{e}{r^{2}} \times y\right) \\
& =\frac{278,500}{369}\left(1+\frac{-16.9}{125} \times+14.6\right) \\
& =\frac{278,500}{369}(-0.97)=-732 \text { psi. }
\end{aligned}
$$

and at bottom

$$
\begin{aligned}
f & =\frac{278,500}{369}\left(1+\frac{-16.9}{125} \times-21.4\right) \\
& =\frac{278,500}{369}(3.88)=+2,920 \text { psi. }
\end{aligned}
$$

Allowing for creep and shrinkage of concrete, final stresses due to prestressing will be, at top $0.85(-732)=-625 \mathrm{psi}$. at bottom $0.85(2,920)=+2,480$ psi.

When prestress comes in effect, the girder deflects upward, the girder tries to deflect downward due to its own weight.

Therefore, resultant stresses will be as follows:
Prestress Girder Combined

Initial	-732	+660	-72	psi
	$+2,920$	-920	$-20,000$	psi
Final	-625			
	+660	+35	psi	
	+920	-920	$+1,560$	psi

Stresses due to slab:
After the girders are erected they will first carry the slab. Slab moment, then, will reduce the compressive stress in the bottom fiber.

Slab weight	$=\left(\frac{1}{3} \times 3.5+\frac{1}{4} \times 1.5\right) 150=231 \mathrm{lbs} . / \mathrm{ft}$.
Moment	$=\frac{12}{8} \times 231 \times 60^{2}=1,250,000 \mathrm{in} \mathrm{lbs}$.
Stress	$=\frac{1,250,000}{46,128} \times(14.6)=+401$ psi at top.
and	$=\frac{1,250,000}{46,218} \times(-21.4)=-590$ psi at bottom

Stresses in girder, now, will be as follows:

Before Slab	Due to Slab	Combined
+ 35	+ 401	+ 436 psi.
+1,560	- 590	+970 psi.

Bending stresses in Composite Section:

Properties of gross section:
Area

$$
\begin{array}{rlrl}
A_{1}=18 \times 7 & =126 & A_{1} \times 3.5 & =440.0 \\
A_{2}=16 \times 8.5 & =136 & A_{2} \times 4.25 & =577.5 \\
A_{3}=8 \times 40 & =320 & A_{3} \times 20 & =6,400.0 \\
A_{4}=3 \times 3 & =9 \quad A_{4} \times 9.5 & =85.5 \\
A_{5}=1.86 \times 7 & =\frac{13.0}{} A_{5} \times 35.5 & =\frac{462.0}{} \\
A & =\begin{array}{c}
604.0 \\
\text { sq. in. }
\end{array} & \text { Total } & =7,965.0 \mathrm{in}^{2} .
\end{array}
$$

Therefore,

$$
\begin{aligned}
Y t & =7965 / 604=+13.2 \mathrm{in} . \\
Y b & =Y t-40=-26.8 \mathrm{in} . \\
3 & =Y t-4.5=-22.3 \mathrm{in} .
\end{aligned}
$$

Moment of Inertia:
I: $\quad \frac{1}{12} \times 18 \times 7^{3}$
= 515
$\frac{1}{12} \times 16 \times(8.5)^{3}=820$
$\frac{1}{3} \times 8 \times(13.2)^{3}=6,150$
$\frac{1}{3} \times 8 \times(26.8)^{3}=51,200$
$126 \times(9.7)^{2}=11,850$
$136 \times(8.95)^{2}=10,900$
$9 \times(3.7)^{2}=123$
$13 \times(22.3)^{2}=\underline{6,440}$
I $\quad=87,998 \mathrm{in}^{4}$.
Stresses due to live load:
From Appendix 'A', AASHO specifications, 1953, page 285, for $60^{\prime} \mathrm{span}$.

Live Load Moment $=555 \mathrm{k} . \mathrm{ft} .=6,650,000$ in lbs.
27 percent imnact
$=1,800,000$ in lbs.
Therefore, total Live Load $=8,450,000$ in lbs. Moment per lane

Fraction of moment to each girder

$$
=\frac{s}{2 \times 5.0}=\frac{3.5}{10}=0.35
$$

Design L.L. moment $=0.35 \times 8,450,000$
$=2,960,000$ in lbs.
Stress at top of slab $=\frac{2,960,000}{87,998}(13.2)=+445 \mathrm{psi}$.
At top of girder $=2,960,000(9.2)=+310 \mathrm{psi}$.
At bottom of girder $=2,960,000(-26.8)=-910$ psi.

Final stress analysis:

	Before L.L. Annlied	L.L. Stress	Combined
at ton of slab	0	+ 445	+ 445 psi.
At top of girder	+ 436	+310	+ 746 psi.
it bottom of girder	+ 970	- 910	+ 60 psi .

The girder is cuite safe as no tensile stress occurs in the final analysis.

Checking of stresses at Cracking Load:
Cracking load $=1.0 \mathrm{DL}+2.0 \mathrm{LL}$
This means 100 percent over load.
Live Load Moment $=2 \times 2 \times 8,450,000=3,360,000$ in lbs.
Curb and railing $=\frac{2 \times 12}{8} \times 400 \times 60^{2}=43,320,000$ in lbs.
Surfacing $\quad=\frac{12 \times 20 \times 28 \times 60^{2}}{8}=3,020,000$ in lbs.
Total moment on 9 girders $=40,950,000$ in lbs.
Therefore, moment ner girder $=4,560,000$ in lbs.
Stress at top of slab $=\frac{4,560,000}{87,998} \times 13.2=+680$ psi.
Stress at top of girder $=\frac{4,560,000}{87,998} \times 9.2=+475$ psi.
Stress at bottom of girder $=\frac{4}{2} \frac{560,000}{87,998} x-26.8=-1,375$ psi.
Therefore, stresses due to $1.0 \mathrm{DL}+2.0 \mathrm{LL}$ will be as
follows:
Due to D.L. Due to 2.0 LL Combined

At top of slab	0	+680	+680 psi.
At top of girder	+436	+475	+911 psi.
At bottom of girder	+970	$-1,375$	-405 psi.

The tensile stress at the bottom fiber is less than vermissidle, hence design at cracking load is also safe.

Stress diagrams for different stages are shown in the following Figure No. 9:

Initial Prestress + Girder

Final Prestress

+ Girder

Prestress +Girder + Slab + D.L. +L.L. +2 L.L.

Ultimate Load
Ultimate resisting moment, $M u=A s f u \quad j d$
where As $=$ steel area
$f u=$ Ultimate Stress $=250,000$ psi.
jd is moment - arm.
Assume $\mathrm{j}=0.9$
Then $M u=(9 \times 1.86) 250,000 \times 0.9 \times 35.5=133,000,000$ in lbs.

Total girder and slab moment $=9 \times 3,330,000=29,970,000$ in lbs.
Moment due to curb, railing surfacing, $\quad=7,340,000$ in lbs.
Total D.L. Moment $=37,310,000$ in lbs.
Total L.L. Moment
$=16,900,000$ in lbs.
D.L. + LDL.
$=54,210,000$ in lbs .

Ultimate Resisting Moment, $\mathrm{Mu}=133,000,000$ in lbs.
Subtracting D.L. Moment $=-37,310,000$ in lbs.
Balance left for L.L. $\quad=95,690,000$ in lbs.
Ultimate load factors:

$$
\begin{aligned}
=\frac{133,000,000}{54, ? 10,000} \text { (D.L. + L.L.) } & =2.28 \text { (D.L. + L.L) } \\
\text { also } \frac{95,599,200}{16,900,000} \text { (L.L.) } & =5.65 \text { (L.L.) }
\end{aligned}
$$

These are within allowable limits. Hence, the design is also safe at Ultimate Loading.

Eccentricity at Support:

As moment at the sumport is zero, to make top fiber stress equal to zero,

$$
\begin{aligned}
e & =-r^{2} / y_{t} \\
& =-125 / 14.6=-8.55^{\prime \prime}
\end{aligned}
$$

The profile of the c.p. of the steel is assumed to be narabola for the beam.

Princinle stresses:
The shearing stress v in an uncracked concrete section is maximurn at the centroid. This can be given by, $V=V Q / b I$.

Referring to Figure No. 7, Q, the statical moment of section on either side of centroid taken about that point

$$
=21.4 \times 8 \times 10.7=1,830 \mathrm{in}^{3} .
$$

Now shear at the supnort $=\frac{1}{2}(w t$. of girder $+w t$. of slab)

$$
=\frac{1}{2}(23,000+231 \times 60)=18,430 \text { lbs. }
$$

Vertical component of orestress in wires,

$$
=-237,000 \times 2 \times 8.55 / 12 \times 30=-11,250 \mathrm{lbs} .
$$

Therefore, $V=18,430-11,250=7,180$ lbs.
Hence, $V=V Q / \mathrm{VI}=7,180 \times \mathrm{J}, 830 / 8 \times 46,128=35.5 \mathrm{psi}$.
From AASHO Snecifications, innendix 'A' for 60 ft , snan, maximum shear at the sunport $=45.2 \mathrm{k}$.

Therefore, shear with impact $=1.27 \times 45.2=57.5 \mathrm{k}$.
Hence, Desien shear $=.35 \times 57.5=20.1 \mathrm{k}$.
Referrine back to Figure No. B, Q will be,

$$
26.8 \times 8 \times 13.5+13 \times 22=2,860+290=3,150 \mathrm{in}^{3}
$$

Therefore, $V=20,100 \times 3,150 / 8 \times 87,998=90$ psi.
Hence, total $V=35.5+90=125.5$ psi.
The nrestress force creates a horizontal comnressive stress at the centroid of concrete.

This has intensity, $S_{X}=P / A$

$$
=0.85 \times 278,500 / 369=642 \mathrm{psi}
$$

Now, the stresses V and S_{X} pror?uce a principal tensile stress Which at the support at the centroid can be calculated by the well. known formula, $S_{t}=\frac{1}{2}\left(\sqrt{4 v^{2}+S_{x}}-S_{x}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\sqrt{4 \times 125.5^{2}+642^{2}}-642\right) \\
& =\frac{1}{2}(688-642)=23 \mathrm{nsi} .
\end{aligned}
$$

Shearing stress at ultimate load will be,
(I) $2.25(\mathrm{DL}+\mathrm{LL})=2.25 \times 125.5=287 \mathrm{psi}$.
(2) $\mathrm{DL}+3.5 \mathrm{LL}=125.5+3.5 \times 90=350.5$ psi.

Hence, nrincinle tensile stress, when $v=350.5$ will be,

$$
\begin{aligned}
& \frac{1}{2}\left(\sqrt{4 \times 350.5^{2}+642}-642^{-}\right) \\
= & \frac{1}{2}(950-642)-154 \mathrm{psi} .
\end{aligned}
$$

These are within limits, hence design is safe.

Deflection:

The deflection of nrestressed girders can be comnuted by the formula, $D=\frac{5}{48} \frac{M \max L}{E I}$, when load is uniformly distributed on the snan lenoth, L, and the moment of inertia, I, is constant throurhout the entire snan,

$$
\begin{aligned}
D & =\frac{5}{48} \frac{16,900,000 \times(60 \times 12)}{\times 3.5 \times 10 \times 87,988 \times 9} \\
& =0.33 \mathrm{in} .=1 / 2,180 \mathrm{span}
\end{aligned}
$$

This is much less than allorable live load deflection, hence safe.

Dianhracms:
These are provided tentatively as follows:
Provide 2 Nos. $24 "$ x $9^{\prime \prime}$ section with two cables each having an area of 0.40 so . in.

Quantity:

Concrete $2(2 x .75 x 24)=72 \mathrm{cu} . f t$.
Cables $4(30 \times 1.41)=169$ lbs.
Cost:

Concrete $\$ 4.00$ ner cu. yd. $=\frac{72 \times 46}{27}$	$=\$ 123$
Cobles © 60d ner lb. $=169.2 \times .6$	$=\frac{10 ?}{}$
Total	$=\$ 225$

b. Quantity for 9 prestressed beams:
(i) Concrete: $9 \times \frac{359 \times 60}{144}=1,380 \mathrm{c} . \mathrm{ft}$.
(ii) Cable: $9 \times 60 \times 6.44=3,480 \mathrm{lbs}$.
c. Cost of deck:
(i) Concrete $\$ 3.00$ per cu. ft. $=1,380 \times 3$
(ii) Cables (includes fitting, prestressing, anchoring)

$$
\text { (a) cents per lb. }=3480 \times 0.6=\$ 2,088
$$

(iii) Transportation up to 100 miles

$$
\text { © } \$ 4 \text { ner ton }=103.5 \times 4=414
$$

(iv) Erection © $\$ 10$ per ton $=103.5 \times 10=414$
(v) Slab 28' wide $\$ \$ 8.56$ ner foot $=60 \times 28.56=1,713$
(vi) Dianhragms

295

$$
\text { Totel }=\$ 9,615
$$

IV. RESULTS

The costs of the deck for the two different tyoes of construction are tabulated in the following tables with necessary details. Also, the total costs are plotted on the following praph naner for handy comparison. The cost analysis for $50^{\prime}, 70^{\prime}, 80^{\prime}, 90^{\prime}$ and 100^{\prime} spans are given in Annendix.

TABLE I
COMPOSITE CONSTRUCTION

Snan Length \qquad	' Structural Steel© \$0.135per pound						Total Cost in Dollars
	$\begin{gathered} \text { Quantity } \\ 1 \mathrm{Ibs.} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cost } \\ 1 \quad \$ \\ \hline \end{gathered}$					
50	30,946.8	4,178	780	390	1,400	1,929	6,497
60	45,807.6	6,184	828	414	1,680	2,320	8,918
70	62,955	8,499	915.6	458	1,960	2,701	11,658
80	85,548	11,549	1,041.6	521	2,240	3,087	15,157
90	115,380	15,576	1,317.6	659	2,520	3,475	19,710
100	155,276.4	20,962	1,380	690	2,800	3,859	25,511

tabie II
PRESTRESSED CONCRSTE CONSTRUCTION

Span	Prestressed Girders							$\begin{gathered} \text { Slab } \\ 281 \text { Wide } \\ \leftarrow \$ 28.56 \\ \text { per foot } \end{gathered}$	Cost 'Diaphrajms' \qquad	
ft.										
50	1,000	3,000	2,420	1,452	75.0	- 300	750	1,428	205	7,135
60	1,330	4,140	3,450	2,088	103.5	444	1,035	1,713	225	9,615
70	1,825	5,475	4,840	2,904	137.0	548	1,370	1,999	367	12,663
80	2,320	6,960	6,200	3,720	174.0	696	1,740	2,285	398	15,799
90	2,930	8,790	8,450	5,070	220.0	880	2,200	2,570	571	20,081
100	3,550	10,650	10,800	6,480	266.2	1,065	2,662	2,856	612	24,325

v. corclusion

From the granh it can be noticed that the cost of the prestressed bridge deck is only little hicher that that for comosite type for 50 ft. to 90 ft . snans and is anreciebly less for 100 ft . smen.

It is essential in comnarine costs to note that labor costs have always been reletively hich in the United States in relation to the cost of moterials. Hence, savines of meterials due to nrestressed construction has nroved it economical in Eurone but not in this country. From the cost analysis of mrestressed concrete, it can be noticer that the unit cost for concrete is relatively very high. This is because the contractors have not develoned the labor saving methors and mechinery. Therefore, to achieve economy the theoretical possibilities or new tyne or construction like this must lead to imnroved production methods. This can be achieved by making the process commerically attractive. For this there should be standard lengths, widths and bearing details for the prestressed bridge units that will meet the needs of state highway bridges. By this, develoment of mass nroduction or assembly line can be set un.

If this can be achieved, the prestressed construction will surely turn out to be more economical than the oresent connosite construction. Homever, the maintenance charges can be eliminated by orestressed construction. hlso, the relative overload canacities of the prestressed bridees is also very hich.

Looking from all these noints, it will not be out of nlace to surgest the hichway officigls to encourage the contractors to develon

the fabrication and erection methods suited to anerican conditions, to use nrestressed concrete for bridee construction.

APPETDIX A

COVPOSITE CONSTRUCTION FOR 50' - 70' - 80' - 90'
 100' SPANS

The comnosite beams for the smans 50' - 70' - 80' - 90' - 100^{\prime} are designed on the same lines as that for 60^{\prime} span. Hence, only the important proverties of the sections are mentioned hereafter.

1. FOR 50' SPAN
a. Desion

Snan length $=50^{\circ} \quad$ Truck load governs. $\quad \mathrm{MLL}=344 \mathrm{kft}$. $\mathrm{NDL}=206 \mathrm{kft} . \quad \mathrm{Mws}=37.5 \mathrm{kft}$.

Provide $24^{\prime \prime}$ WF $76+12^{\prime \prime} \times 3 / 4^{\prime \prime}$ cover plate 33^{\prime} long.
Pronerties of section without cover plate:

Section	Moment of Inertia	NA	Section Modulii
Steel	$I^{\prime} O=2096.4 \mathrm{in}^{4}$.	$\begin{aligned} & 18.96^{\prime \prime} \\ & 11.95^{\prime \prime} \end{aligned}$	S^{\prime} so $=175.4 \mathrm{in}^{3}$.
Comnosite $(n=10)$	Io $=5996.4 \mathrm{in}^{4}$.	$\begin{array}{r} 8.25^{\prime \prime} \\ 22.66^{\prime \prime} \end{array}$	Sso $=265$ in ${ }^{3}$.
Composite $(n=30)$	$I^{\oplus} 0=4449.8 \mathrm{in}^{4}$.	$\begin{aligned} & 12.30^{n} \\ & 18.61^{\prime \prime} \end{aligned}$	S^{*} so $=238.5 \mathrm{in}^{3}$

Properties of section with cover plate:

Section	Moment of Inertis	NA	Section Modulii
Steel	$I^{\prime}=3080.4 \mathrm{in}^{4}$.	$\begin{aligned} & 21.53^{\prime \prime} \\ & 10.0^{\prime \prime} \end{aligned}$	$S^{\prime} s=308 \mathrm{in}^{3}$.
Composite $(n=10)$	$I=9375.4 \mathrm{in}^{4}$.	$\begin{aligned} & 10.233^{\prime \prime} \\ & 2.1 .30^{\prime \prime} \end{aligned}$	$\mathrm{Ss} 3=440 \mathrm{in}^{3}$.
Comnosite $(n=30)$	$I^{\prime \prime}=6628.8 \mathrm{in}^{4}$.	$\begin{aligned} & 15.03^{\prime \prime} \\ & 16.50^{\prime \prime} \end{aligned}$	$S^{n \prime s}=402 \mathrm{in}^{3}$.

Unit Stresses at center of sman: (in ksi)

Stress	Bottom of Stee]	Top of Steel	Ton of Concrete
Dre to DL	8.00	11.60	0.000
Due to LL	8.85	1.35	0.427
Dre to WS	1.10	0.56	0.033
Total	17.95	13.41	0.460

Sniral shear connectors:
Using $5 / 8^{\prime \prime} \varnothing$ bar with $4-1 / \Omega^{\prime \prime}$ mean coil dianneter:

| Snirsl | Pitch | Lenuth | | lbs./ft. |
| :--- | :---: | :---: | :---: | :---: |\quad Total wt. in lbs.

Weight of sniral ner foot of beam $=2.6 \mathrm{lbs}$.
Live load deflection $=1 / 1,260$ of span
Live load factor of safety $=2.7$
Provide 2 dianhrapms, each having $2 \mathrm{Ls} 3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}$ with $16^{\prime \prime} x 3 / 8^{\prime \prime}$ olate. b. quantity
(i) Structural Steel:

$$
\begin{aligned}
& 6 \text { No.s } 24^{\prime \prime} \text { WF. (} 76 \text { for } 50^{\prime}=76 \times 50=22,800 \mathrm{lbs} \text {. } \\
& 6 \text { Nos. 19" } \times 3 / 4^{\prime \prime} \text { plate } 33^{\prime \prime} \text { long }=30.6 \times 6 \times 33=6,058.8 \mathrm{lbs} . \\
& 4 \mathrm{Ls} 3^{n} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}-30^{\prime} \text { long }=7.2 x 4 \times 30=.864 .0 \mathrm{lbs} .
\end{aligned}
$$

(ii) Spiral shear develoners for 6 beams 50' long

$$
=2.6 \times 6 \times 50=780 \mathrm{lbs}
$$

c. Cost
(i) Structural steel (fabrication, erection, painting)

$$
\text { © } \$ 0.135 \text { per } \mathrm{lb} .=30,946.8 \times .135=\$ 4,177.82
$$

(ii) Sniral shear develoners 50 d ner $1 \mathrm{~b} .=780 \mathrm{x} .50=390.00$
(iii) $7^{\prime \prime}$ slab 28' $\times 50^{\prime} \$ 1.378$ ner sq. ft. $=1,929.20$

Hence, total cost of deck $=\$ 6,497.02$
2. FOR 70' SPAN
a. Design

Snan leneth $=70^{\circ}$. Stringer snocing 6' c. to		
Slab thickness $=7^{\boldsymbol{\prime \prime}} \quad$ Lane load povern		
$\mathrm{HLL}=.483 \mathrm{k} / \mathrm{ft} . \quad$ Imnact factor $=.256$		
Conc. ${ }^{\text {ned }}$ for moment $=13.36 \mathrm{~K}$		
Conc. load for shear $=19.6 \mathrm{~K}$		
MLL $=530 \mathrm{~K} \mathrm{ft} \quad \mathrm{MDL}=.430 \mathrm{Kft} . \quad \mathrm{Mrs}=73.5 \mathrm{~K} \mathrm{ft}$.		
Provide 30" WF © 108 with 13-1/2" x l" cover olate 50' lons.		
Pronerties of section without cover plate:		
Section Noment of Inertia	NA	Section Modulii
Steel $\quad I^{\prime} 0=4,461 \mathrm{in}^{4}$.	$\begin{aligned} & 21.91^{\prime \prime} \\ & 14.91^{\prime} \end{aligned}$	S'so $=2.99 \mathrm{in}^{3}$.
Composite $(\mathrm{n}=10)$$\quad$ Io $=11,356 \mathrm{in}^{4}$.	$\begin{array}{r} 9.46^{n \prime} \\ 27.36^{\prime \prime} \end{array}$	$S_{\text {so }}=414 \mathrm{in}^{3}$.
$\begin{gathered} \text { Comnosite } \\ (n=30) \end{gathered} \quad I^{\prime \prime} 0=8,239 \text { in }^{4} .$	$\begin{aligned} & 15.20^{\prime} \\ & 21.62 \end{aligned}$	$S^{\prime \prime}$ so $=402 \mathrm{in}^{3}$.

Pronerties of section with cover plate:

Section	Woment of Inertia	NA	Section Modulii
Steel	$I^{\prime}=6,718 \mathrm{in}^{4}$.	$\begin{aligned} & 26.49^{\prime \prime} \\ & 11.33^{\prime \prime} \end{aligned}$	S's $=594 \mathrm{in}^{3}$.
Composite $(n=10)$	$\mathrm{I}=19,503 \mathrm{in}^{4}$.	$\begin{aligned} & 14.39^{\prime \prime} \\ & 23.43^{\prime \prime} \end{aligned}$	$\mathrm{Ss}=832 \mathrm{in}^{3}$.
Comnosite $(n=30)$	$I^{\prime \prime}=13,253 \mathrm{in}^{4}$.	$\begin{aligned} & 20.2 .5^{\prime \prime} \\ & 17.57^{\prime \prime} \end{aligned}$	$S^{\prime \prime} S_{S}=754 \mathrm{in}^{3}$.

Unit stresses at the center of snan (in ksi):

Stress	Bottom of Steel	Ton of Steel	Ton of Concrete
Due to DL	8.70	14.95	0.000
Due to LL	7.65	2.41	0.498
Due to WS	1.17	0.50	0.045
Total	17.52	17.86	0.543

Spear Shear Connectors:
Using 5/8" bar with 4-1/2" mean coil diameter:

Siral	Pitch	Lenoth	Lbs./ft.	Total weight in lbs.	
S_{0}	$5^{\prime \prime}$	10.75^{\prime}	2.67	28.5	
S_{10}	$8^{\prime \prime}$	10.75^{\prime}	2.12	23.0	
S_{20}	$11^{\prime \prime}$	10.75^{\prime}	1.71		18.4
S_{30}	$18^{\prime \prime}$	5.5^{\prime}	1.31	Total $\frac{6.7}{76.6}$ lbs.	

Weight of spiral ner foot of beam $=2.18$ lbs.
Live load deflection $=1 / 1,190$ of span
Live load factor of safety $=3.28$
Provide 3 dianhragns each having 2 Ls $3^{n \prime} x 3^{\prime \prime} x 3 / 8^{n}$ with $22^{\prime \prime} x 3 / 8^{n}$ plate. b. Quantity
(i) Structural steel:

6 Nos. $30^{\prime \prime}$ WF 108 for $70^{\prime}=108 \times 6 \times 70=45,360 \mathrm{lbs}$.
6 Nos. $13-1 / 2^{n} \times 1^{\prime \prime}$ cover plate 50^{\prime} long $=45.9 \times 50 \times 6=13,770$ lbs.
$6 \mathrm{Ls} 3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}-30^{\prime}$ long $=7.2 \times 6 \times 30=1,296 \mathrm{lbs}$.
3 Nos. $22^{\prime \prime} \times 3 / 8^{\prime \prime}$ plate 30^{\prime} long $=28.1 \times 3 \times 30=2,529 \mathrm{lbs}$.
Total $=62,995 \mathrm{lbs}$.
(ii) Sniral shear develovers for 6 beams 70' long

$$
=2.18 \times 6 \times 70=915.6 \mathrm{lbs} .
$$

c. Cost
(i) Structural steel (fabrication, erection, painting) © $\$ 0.135$ ner $\mathrm{lb} .=62,955 \mathrm{x} .135=\$ 3,498.95$
(ii) Soiral shear develoners $50 \not \subset$ per $\mathrm{lb} .=915.6 \mathrm{x} .50=457.80$
(iii) $7^{\prime \prime}$ slab 28' x 70' $\$ 1.378$ ver sq. ft. $=\underline{2,700.80}$

Hence, total cost of deck $=\$ 11,657.55$
3. $F O R$ 80' SPAN
a. Design

Span lencth $=80^{\circ}$	Strineer snacing 6' c. to c.
Slab thickness $=7^{*}$	Lane load poverns
WLL $=.476 \mathrm{k} / \mathrm{ft}$.	Impact factor 0.244
Conc. load for moment	k.
Conc. load for shear	0 k .
MiLL $=648.8 \mathrm{k} . \mathrm{ft}$.	$=600 \mathrm{k} . \mathrm{ft} . \quad \mathrm{Miws}=96 \mathrm{k} . \mathrm{ft}$

Provide $33^{\prime \prime}$ WF. 130 with $14-1 / 2^{\prime \prime} \times 1-1 / 8^{\prime \prime}$ cover plate 577^{\prime} long. Properties of section without cover plate:

Section	Moment of Inertia	NA	Section Modulii
Steel	$I^{\prime} 0=6,699 \mathrm{in}^{4}$.	$\begin{aligned} & 23.55^{\prime \prime} \\ & 16.55^{\prime \prime} \end{aligned}$	$S^{\prime} \mathrm{so}=404.8 \mathrm{in}^{3}$.
Comnosite $(n=10)$	Io $=15,644 \mathrm{in}^{4}$.	$\begin{aligned} & 12.10^{\prime \prime} \\ & 2.8 .0^{\prime \prime} \end{aligned}$	$S_{\text {so }}=560.0 \mathrm{in}^{3}$.
Composite $(n=30)$	I'o $=11,472 \mathrm{in}^{4}$.	17.4*	$S^{\text {s* }}$ so $=505.0 \mathrm{in}^{3}$.

Pronerties of section with cover plate:

Section	Moment	of Inertia	NA	Section Modulii
Steel	I'o	$=11,094 \mathrm{in}^{4}$.	$\begin{aligned} & 28.55^{\prime \prime} \\ & 12.68^{\prime \prime} \end{aligned}$	$S^{\prime} \mathrm{s}=875 \mathrm{in}^{3}$.
Composite $(n=10)$	I	$=27,819 \mathrm{in}^{4}$.	$\begin{aligned} & 16.55^{\prime \prime} \\ & 24.68^{\prime \prime} \end{aligned}$	Ss $=1,120 \mathrm{in}^{3}$.
Composite $(n=30)$	I"o	$=19,242 \mathrm{in}^{4}$.	$\begin{aligned} & 22.63^{\prime \prime} \\ & 18.60^{\prime \prime} \end{aligned}$	$S^{\prime \prime} \mathrm{s}=1,030 \mathrm{in}^{3}$.

Unit stresses at the center of sman (in ksi).

Stress	Bottom of Stgel	Ton of Steel	Ton of Concrete
Due to DL	8.22	13.9	0.000
Due to LL	7.10	2.98	0.482
Due to WS	1.22	0.94	0.046
Total	16.44	17.8?	0.528

Spiral shear connectors:
Using 5/8" \emptyset bar with 4-1/2" mean coil diameter:

Sniral	Pitch	Length	Lbs./ft.	Total meight in lbs.
S_{0}	$5^{\prime \prime}$	10.75^{\prime}	3.14	33.8
S_{10}	$7^{\prime \prime}$	10.75^{\prime}	2.36	25.4
S_{20}	$16^{\prime \prime}$	10.75^{\prime}	1.40	15.1
S_{30}	$25^{\prime \prime}$	10.75^{\prime}	1.15	
				Total
				$\frac{12.3}{86.6} \mathrm{lbs}$.

Weight of soiral per foot of beam $=2.17 \mathrm{lbs}$.
Live load deflection $1 / 1,130$ of snan.
Live load factor of safety $=3.34$
Provide 3 dianhragms each having 2 Ls $3^{\prime \prime} x 3^{\prime \prime} x 3 / 8^{\prime \prime}$ with $25^{\prime \prime} x 3 / 8^{\prime \prime}$ plate. b. Quantity
(i) Structural steel:

6 Nos. 33 WF. 130 for $80^{\prime}=130 \times 6 \times 80=62,400 \mathrm{lbs}$.
6 Nos. $14-1 / 2^{\prime \prime} x$ l-1/8" cover plate 57' long
$=55.5 \times 6 \times 57=18,981 \mathrm{lbs}$.
$6 \mathrm{Ls} 3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}-30^{\prime}$ long $=7.2 \times 6 \times 30=1,296 \mathrm{lbs}$.
3 Nos. $25^{\prime \prime} \times 3 / 8^{\prime \prime}$ plate 30^{\prime} long $=31.9 \times 3 \times 30=\underline{2}, 871$ lbs.
Total $=85,548 \mathrm{lbs}$.
(ii) Sniral shear develoners for 6 beams 80' long

$$
=2.17 \times 6 \times 80=1,041.6 \mathrm{lbs} .
$$

c. Cost
(i) Structural steel (fabrication, erection, painting)
(4) \$0.135 per lb . $=85,548 \mathrm{x} .135=\$ 11,548.98$
(ii) Spiral shear develoners $50 \not \subset$ per $\mathrm{lb} .=1,041.6 \mathrm{x} .50=520.80$
(iii) 7" slab $28^{\prime} \times 80^{\prime}$ © \$1.378 per sq ft.
$=3,086.72$
Hence, total cost of deck $=\$ 15,156.50$
4. FOR 90' SPAN
a. Design

Properties of section with cover plate:

Section	Noment of Inertia	NA	Section Modulid
Steel	$I^{\prime} \mathrm{O}=15,570 \mathrm{in}^{4}$.	$\begin{aligned} & 30.18^{\prime \prime} \\ & 14.23^{\prime \prime} \end{aligned}$	$S^{\prime} \mathrm{s}=1,090 \mathrm{in}^{3}$.
Comnosite $(n=10)$	Io $=36,495 \mathrm{in}^{4}$.	$\begin{aligned} & 18.18^{n} \\ & 26.23^{n} \end{aligned}$	$S_{\text {so }}=1,390 \mathrm{in}^{3}$.
Composite $(n=30)$	$\begin{gathered} I^{\prime \prime} O=25,268.4 \\ \text { in }^{4} . \end{gathered}$	$\begin{aligned} & 24.94^{\prime \prime} \\ & 19.47^{\prime \prime} \end{aligned}$	$S^{\prime \prime}$ so $=1,300 \mathrm{in}^{3}$.

Unit stresses at the center of snan (in ksi):

Stress	Bottom of Steel	Ton of Steel	
	Top of Concrete		
Due to DL	8.92	14.21	0.000
Due to LL	6.72	2.72	0.465
Due to WS	$\underline{1.11}$	$\underline{0.95}$	$\underline{0.047}$
Total	16.74	17.88	0.512

Spiral shear connectors:
Using $5 / 8^{\prime \prime} \emptyset$ bar with $4-1 / 2^{\prime \prime}$ mean coil diameter:

Spiral	Pitch	Lensth	Lbs./ft.	Total mt . in lbs.
s_{0}	5"	10.75'	3.14	33.8
S_{10}	7"	10.75'	2.36	25.4
S_{20}	10"	10.75'	1.82	19.6
S_{30}	15*	10.75'	1.44	15.5
S_{40}	237	5.5 '	1.21	6.6
				91 100.9 lbs.

Weirght of syiral ner foot of beam $=2.44 \mathrm{lbs}$.
Live load deflection $=1 / 1090$ of snan
Live loed factor of safety $=3.4$
Provide 4 dianhrarms each have 2. Ls $3^{\prime \prime} x 3^{\prime \prime} x 3 / 8^{\prime \prime}$ with $28^{\prime \prime} x 3 / 8^{\prime \prime}$ plate.
b. Wuantity
(i) Stmetural steel:

6 Nos. 36 WF. 160 for $90^{\prime}=160 \times 6 \times 90=86,400 \mathrm{lbs}$.
6 Nos. $15^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ plate 60^{\prime} loñ $=22,968$ lbs.
$8 \mathrm{Ls} 3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}-30^{\prime}$ long $=7.2 \times 8 \times 30=1,728 \mathrm{lbs}$.
4 Nos. $28^{\prime \prime} \times 3 / 8^{\prime \prime}$ nlate 30^{\prime} lonc $=35.7 \times 4 \times 30=4, ? 84$ lbs.
Total 115,380 lbs.
(ii) Stiral shear तeveoners for 6 beams 90' long

$$
=2.44 \times 6 \times 90=1,317.6 \mathrm{lbs} .
$$

c. Cost
(i) Structural ste日l (fabrication, erection, painting)

$$
\text { © } \$ 0.135 \text { ner lb. }=115,380 \times .135=\$ 15,576.30
$$

(ii) Spiral shear jeveloners \& $50 \not \subset$ ner lb. $=1317.5 \times .50=658.80$
(iii) $7^{\prime \prime}$ slab 28 ($\times 90^{\circ}$ \$1. 378 ner sq. ft.

- 3,475.00

Hence, total cost of deck $=\$ 3.710 .10$
5. FOR 100' SPAN
a. Design

Span leneth $=100$	Strincer snacine 6' c. to c.
Slab thickness $=7^{\prime \prime}$	Lane load ooverns
WLL $=0.469 \mathrm{k} / \mathrm{ft}$.	Imnact factor $=0.222$

Conc. lnad for moment $=13.2 \mathrm{k}$.
Conc. load for shear $=19.1 \mathrm{k}$.
$M L L=915 \mathrm{kft} . \quad \operatorname{MDL}=1,100 \mathrm{kft} . \quad$ Wws $=150 \mathrm{kft}$.
Provide 36" WF. © 245 with $1.8-1 / ?^{\prime \prime} \times$ l' $^{\prime \prime}$ cover plate 60' long.
Pronerties of section without cover nlate:

Properties of section with cover nlete:

Sortion	Miomen	Of Inertia	NA	Section Modulii
Steel	I'o	$=21,132 \mathrm{in}^{4}$.	$\begin{aligned} & 28.81^{\prime \prime} \\ & 15.25^{\prime \prime} \end{aligned}$	S^{\prime} so $=1,385 \mathrm{in}^{3}$.
Comnosite $(n=10)$	Io	$=42,057 \mathrm{in}^{4}$.	$\begin{aligned} & 19.76^{\prime \prime} \\ & 24.30^{\prime \prime} \end{aligned}$	Sso $=1,730 \mathrm{in}^{3}$.
Composite $(n=30)$	I'o	$=30,260 \cdot \mathrm{in}^{4}$	$\begin{aligned} & 24.85^{\prime \prime} \\ & 19.21^{\prime \prime} \end{aligned}$	$S^{\prime \prime}$ so $=1,580 \mathrm{in}^{3}$.

Unit stresses at the center of snan (in ksi).

Stress	Bottom of Steel	Ton of Steel	Ton of Concrete
Due to DL	9.51	13.60	0.000
Due to LL	6.35	3.30	0.516
Due to WS	1.14	1.03	0.048
Totel.	10.70	17.93	0.564

Sniral shear eonnectors:

Üsing 5/8" \emptyset bar with 4-1/E" mean coil diameter:

Soiral	Pitch	Lensth	Lbs./ft.	Potal wt. in libs.
S_{0}	$5{ }^{\prime \prime}$	10.75^{\prime}	3.14	33.8
S_{10}	$6^{\prime \prime}$	10.75^{\prime}	2.67	28.8
$S_{\text {? } 0}$	9"	10.75'	1.96	21.1
S_{30}	12"	10.75'	1.62	17.4
S_{40}	19"	10.75'	1.32	14.2
Total 115.3 lbs .				

Weinht of sniral ner foot of beam $=2.3 \mathrm{lbs}$.
Live load deflection $=1 / 956$ of snan.
Live lnad factor of safety $=3.51$.
Provide 4 diaphragms each having 2 Ls $3^{\prime \prime} x 3^{\prime \prime} x 3 / 8^{\prime \prime}$ with $28^{\prime \prime} x 3 / 8^{\prime \prime}$ plate.
b. Quantity
(i) 6 Nos. 36 WF. 245 for $100^{\prime}=245 \times 6 \times 100=147,000 \mathrm{lbs}$.

6 Nos. 18-1/2" x $\mathbf{l}^{\prime \prime}$ plate 60' long $=62.9 \times 6 \times 60=2,264.4$
$8 \mathrm{Ls} 3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}-30^{\prime}$ long $=7.2 \times 8 \times 30=1,728.0$
4 Nos. $28^{\prime \prime} \times 3 / 8^{\prime \prime}$ nlate 30^{\prime} lons $=35.7 \times 4 \times 30$
Total
$=4,2,84.0$
155,276.4 lbs.
(ii) Sniral shear develoners for 6 beams 100' long

$$
=2.3 \times 6 \times 100=1,380 \mathrm{lbs} .
$$

c. Cost
(i) Structural steel (fabrication, erection, nainting)
(4) 菑0.135 ner $\mathrm{lb}=155,276.4 \mathrm{x} .135=20,962.26$
(ii) Sniral shear develovers \& 50% ner $\mathrm{lb}=1380 \times 0.50=690.00$
(iii) $7^{\prime \prime}$ slab $28^{\prime} \times 100^{\prime} 0 \$ 1.378$ per sq. ft. $=3,858.40$

Hence, total cost, of deck, $\$ 25,510.66$.

APPENDIX B

PRESTRESSED CON SITE CONSTRIRTIUN FOR 50' - 70' - 80' - 90'- 100' SPAN

1. FOR 50! SPIN
a. Desicn

30" deep T section: $P 4^{\prime \prime}$ wide flonee $4-1 / \varepsilon^{\prime \prime}$ thjck. web thickness $=8$ in.
Gross nronerties: irea $=321$ so. in. s.i. $=3,811.5 \mathrm{in}^{3}$.
$Y t=11.9^{n}, \quad Y b=-18.1^{n}, \quad e=-13.6^{n}, \quad I=27,361 \mathrm{in}^{4}$.
Girder Moment $=1,250,000$ lbs. in.
Provide 52 wires 0.196" dia., area $=1.56$ sq. in.
Slab Noment $=866,000$ lbs. in.
Stress Analysis:

	Prestress	Girder	Slab	Combined
Initial	-635	-545	-	-90 psi.
	-2830	-830	-	-2000 psi.
Final	-540	-545	-376	-381 psi.
	-2410	-830	-574	-1006 psi.

Comnosite Section Pronerties: Area $=553.92$ sq. in.
S.M. $=6,045 \mathrm{in}^{3} ., \quad Y t=10.9^{\prime \prime}, \quad Y b=-23.1^{\prime \prime}, \quad I=54,283 \mathrm{in}^{4}$.

Max. L.L. Moment with 28.6 percent impact $=6,890,000$ lbs. in. per lane. Hence, design L.L. Noment $=2,410,000$ lbs. in.

Stress	Before L.L.	L.L.	Combined
Top of slab	0	-485	-485 psi.
Top of girder	-391	-306	-687 psi.
Botton of girder	$-1,006$	-1002	-4 psi.
Cracking Noment $=3,623,000$ lbs. in.			

Stresge	Before Cond	C...	Combined
Ton of slab	0	+ 726	+ 726
Ton of pirder	+ 381	+ 502	+ 883
Bottom of pirder	+1,006	-1,540	- 536
Ultimate R.k. $: \mathrm{Nu}=2.46$ ($\mathrm{DL}+\mathrm{LL}$) or D.L. + 4.96 L.L.			
L.L.	$\text { lection }=\frac{1}{2,0}$	snan.	

Provide 2 Nos. $0^{\prime \prime} \times 9^{\prime \prime}$ section with two cables each having an area of 0.40 sq . in. at the total cost of $\$ 0.5$.
b. Quantity for 9 nrestressed beams
(i) Concrete: $9 \times 50 \times 391 / 144$
$=1,000 \mathrm{cu} . f t$.
(ii) C9ble: $9 \times 50 \times 5.38$
$=2,420 \mathrm{lbs}$.
c. Cost of deck
(i) Concrete $\$ 3$ ner cu. ft. $=1,000 \times 3=\$ 3,000$
(ii) Cable (includes fitting, prestressing, anchoring) © 60 cents ner lb. $=2,420 \times 0.6=1,452$
(iii) Transnortation u is to 100 miles ψ

$$
\$ 4 \text { ner ton }=75 \times 4=300
$$

(iv) Erection $\$ 10$ ner ton $=75 \times 10=750$
(v) Slab 28' wide $0 \$ 28.56$ per ft. $=50 \times 28.56=1,423$
(vi) Dianhragns $=.205$ Hence, total cost of deck $=\$ 7,135$
2. FOR 70' SPAN
a. Desion
$42^{\prime \prime}$ deen T section: $24^{\prime \prime}$ wide flanze $4-1 / 2$ thick. Web thickness $=8 \mathrm{in}$.
Gross Pronerties: Area 417 so. in., S. In. $=7,261.5 \mathrm{in}^{3}$.
$Y t=17.4^{\prime \prime}, Y b=-24.6^{\prime \prime}, \quad e=-20.1^{\prime \prime}, \quad I=73,492 \mathrm{in}^{4}$.
Girder Moment $=3,200,000$ lbs. in.
Provide 74 wires $1.96^{\text {dia., }}$ area $=2.22 \mathrm{sq}$. in.
Slab Moment $=1,700,000$ lbs. in.
Stress Analysis:

	Prestress	Girder	Slab	Combined
Initial	- 790	+ 756	-	- 34
	+3030	-1,030	-	+2,000
Final	- 671	+ 756	+ 402	+ 487
	+ 2580	-1,030	- 570	+ 980

Comnosite Section Pronerties: Area $=656.76$ sq. in.
S.M. $=10,298 \mathrm{in}^{3} ., \mathrm{Yt}=-15.7^{\text {n }}, \mathrm{Yb}=-29.3^{\text {n }}, \mathrm{I}=135,185 \mathrm{in}^{4}$.

Mex. L.L. Noment with 25.65 percent imnact $=10,774,000 \mathrm{lbs}$. in. ner lane. Hence, desien L.L. Moment $=3,780,000$ lbs. in.

Stress	Before I. L.	L.I.	Combinat
Top of slab	0	+ 422	+ 422 nsi.
Top of girder	+ 487	+ 328	+ 815 psi.
Bottom of girder	+ 980	- 850	+ 130 nsi.
Crackine Moment $=5,920,000 \mathrm{lbs}$. in.			
Stress 0	Before C.M.	C. $\mathrm{Bi}_{\text {- }}$	Combined
Ton of slab	0	+ 690	+ 690 nsi.
Ton of girder	+ 487	+ 515	+1,00? psi.
Bottom of girder	+ 980	-1,3.30	- 350 nsi.
Ultimate R.M.: Mu. $=2.46$ (D.L. + L.L.) or D.L. + 6.12 L.L.			
$\text { L.L. Deflection }=$	$\frac{1}{, 260} \text { snen. }$		

Dianhraems:

Provide 3 Nos. $28^{\prime \prime} \times 9^{\prime \prime}$ section with two cables each having an area of 0.40 sq . in. at the total cost of $\$ 367$.
b. Quantity
(i) Concrete: $9 \times 70 \times 417 / 144=1,825$ cu. ft.
(ii) Ceble: 9x70x7.68 $=4,840$ lbs.
c. Cost of deck
(i) Concrete $\$ 3$ ner cu. ft. $=1,8 ? 5 \times 3=\$ 5,475$
(ii) Coble (includes fitting, prestressing,
anchoring) 60 cents per $1 \mathrm{lb} .=4,840 \times 0.6=\$ 2,904$
(iii) Transportation up to 100 miles
$\omega \$ 4$ ner ton $=137 \times 4 \quad=\$ 548$
(iv) Erection $\$ 10$ per ton $=137 \times 10=\$ 1,370$
(v) Slab 28' wide © $\$ 28.56$ ner foot $=70 \times 28.56=\$ 1,999$
($\nabla \mathrm{i})$ Dianhracms $=\$ 367$
Hence, total cost of deck $=\$ 12,663$

3. FOR 80^{\prime} SPAN

a. Design
$48^{\prime \prime}$ deen T section: $24^{\prime \prime}$ wide flange $4-1 / 2^{\prime \prime}$ thick. web thickness $=8$ in.
Gross nronerties: Area $=465$ sq. in., S. M. $=9,411.5 \mathrm{in}^{3}$.
$Y t=20.2^{\prime \prime}, Y b=-27.8^{\prime \prime}, e=-23.3^{\prime \prime}, I=104,162 \mathrm{in}^{4}$.
Girder Moment $=2,220,000 \mathrm{lbs}$. in.
Provide 86 wires $0.196^{\prime \prime}$ dia., Area $=2.58 \mathrm{sq}$. in.
Stress Analysis:
Prestress Girder Slab Combined

Composite Section Pronerties: Area $=705.06$ sq. in.
S.M. $=12,758$ in $^{3} ., \quad Y t=18.1^{\prime \prime}, \quad Y b=-33.9^{\prime \prime}, \quad I=190,000 \mathrm{in}^{4}$.

Max. L.L. Noment with 24.4 percent impact $=13,330,000$ lbs. in.
per lane. Hence, design L.L. Moment $=4,650,000 \mathrm{lbs}$. in.

Stress © ${ }^{(1)}$	Before L.L.	L.L.	Combined
Top of slab	0	+ 444	+ 444 osi.
Ton of girder	+ 581	+ 346	+ 927 psi.
Bottom of girder	$\mathrm{r}+92.6$	- 830	+ 96 psi.
Cracking Moment $=7,360,000$ lbs. in.			
Stress ©	Before C.M.	C. M .	Combined
Ton of slab	0	+ 702	+ 702 psi .
Top of girder	+ 581	+ 507	+1,088 psi.
Bottom of girder	r + 926	-1,330	- 404 nsi.
Ultimate R.M.: $M u=2.44$ (D.L. + L.L.) or			
L.L. Deflection	$=\frac{1}{2,240}$		

Dianhragms:

Provide 3 Fos. $32^{\prime \prime} x 9^{\prime \prime}$ section with two cables each having an area of 0.40 sq . in at the total cost of $\$ 398$.
b. Quantity for 9 prestressed beams
(i) Concrete: $9 \times 80 \times 465 / 144$
(ii) Cable: $9 \times 80 \times 8.62$
c. Cost of deck
(i) Concrete © $\$ 3$ ner cu. ft. $=2,320 \times 3=\$ 6,960$
(ii) Cable (includes fitting, prestressing, anchoring) (2 60 cents per $\mathrm{lb} .=6,200 \times 0.6=\$ 3,720$
(iii) Transportation un to 100 miles $\$ 4$ per ton $=174 \times 4=\$ 696$ (iv) Erection \$10 ner ton $=174 \times 10=\$ 1,740$
(v) Slab 28' wide $\$ 28.56$ per foot $=80 \times 28.56=\$ 2,285$
(vi) Diaphrapms $=\$ 398$

Hence, total cost of deck $=\$ 15,799$
4. FOR 90' SPAN
a. Design
$54^{\prime \prime}$ deep T section: $24^{\prime \prime}$ wide flanpe $5^{\prime \prime}$ thick. Vieb thickness $=8$ in. Gross Properties: Area $=521 \mathrm{sq}$. in., SN. $=11,450 \mathrm{in}^{3}$. $Y t=21.9^{\prime \prime}, \quad Y b=-32.1^{n}, \quad e=-25.1^{n \prime}, \quad I=141,946 \mathrm{in}^{4}$. Girder Moment = 6,600,000 lbs. in.

Provide 101 wires . $196^{\prime \prime}$ dia., area $=3.03$ sq. in.
Slab Koment $=2,810,000$ lbs. in.
Stress Analysis:

$$
\text { Prestress Girder Slab } \quad \text { Combinod }
$$

| Initial | $-r 900$ | $+1,020$ | - | +120 psi. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $+3,490$ | $-1,490$ | - | $+2,000$ psi. |
| Final | -765 | $+1,020$ | +434 | + |
| | $+2,970$ | $-1,490$ | -635 | +889 psi. |
| | +845 psi. | | | |

Composite Section Proverties: Area, 764.21 sq. in.
S.M. $=14,998 \mathrm{in}^{3} ., \quad Y t=19.6^{\mathrm{\prime} \mathrm{\prime}}, \quad Y b=-38.4^{\mathrm{n}}, \quad \mathrm{I}=270,248 \mathrm{in}^{4}$.

Max. L.L. Moment with 23.2 percent impact $=15,420,000$ lbs. in. per lane. Hence, design L.L. monent $=5,400,000$ lbs. in.

Stress (1)	Before L.L.	L.L.	Combined
Top of slab	0	+ 392	+ 392
Top of girder	+ 689	+ 312	+ 1,001
Bottom of girder	+ 845	- 768	+ 77

Cracking Moment $=8,700,000$ lbs. in.
Stress B Before C.K. C.M. Combined

Top of slab	0	+630	+630 psi.
Top of girder	+689	+500	$+1,189 \mathrm{psi}$.
Bottom of girder	+845	$-1,230$	-385 psi.

Ultimate R.N.: $M u=2.37$ (D.L. + L.L.) or D.L. + 6.85 L.L.
L.L. Deflection $=\frac{1}{2,450}$ snan

Diaphrapms:
Provide 4 Nos. $36^{\prime \prime} \times 9^{\text {" }}$ section with two cables each having an area of 0.40 sq. in. at the total cost of $\$ 571$.
b. Quentity for 9 prestressed beams
(i) Concrete: $9 \times 90 \times 521 / 144=2,930 \mathrm{cu} . \mathrm{ft}$.
(ii) Ceble: $9 \times 90 \times 10.43=8,450$ lbs.
c. Cost of deck
(i) Concrete $\$ 3$ per cu. ft. $=2,930 \times 3=\$ 8,790$
(ii) Cable (includes fitting, prestressing, anchoring) © 60 cents per $1 \mathrm{lb}=8,450 \times 0.6=\$ 5,070$
(iii) Transportation up to 100 miles $\$ 4$ per ton

$$
=220 \times 4=880
$$

(iv) Erection 0 \$10 ner ton $=220 \times 10=2,200$
(v) Slab 28' wide $\$ 28.56$ per foot $=90 \times 28.56=2,570$
(vi) Dianhragms $=571$

Hence, total cost of deck $=\$ 20,081$

Sniral shear connecturs:
Üsing 5/8" \emptyset bar with 4-1/ "" mean coil diameter:

Weisht of sniral ner foot of beam $=2.3 \mathrm{lbs}$.
Live load deflection $=1 / 956$ of snan.

Live lnad factor of safety $=3.51$.
Provide 4 diaphrapms each having 2 Ls $3^{\prime \prime} x 3^{\prime \prime} x 3 / 8^{\prime \prime}$ with $28^{\prime \prime} x 3 / 8^{n}$ plate. b. quantity
(i) 6 Nos. 36 WF . 245 for $100^{\prime}=245 \times 6 \times 100=147,000 \mathrm{lbs}$.

6 Nos. 18-1/2" $\times 1^{\text {" }}$ plate 60° long $=62.9 \times 6 \times 60=2,264.4$
$8 \operatorname{Ls} 3^{\circ} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}-30^{\circ} \operatorname{lon}=7.2 \times 8 \times 30=1,728.0$
4 Nos. $28^{\prime \prime} \mathrm{x} 3 / 8^{\prime \prime}$ nlate 30^{\prime} long $=35.7 \times 4 \times 30=\underline{4284.0}$ Total 155,275.4 lbs.
(ii) Snirol. shear develoners for 6 beams 100' long

$$
=2.3 \times 6 \times 100=1,380 \text { lbs. }
$$

c. Cost
(i) Structural stesl (fabrication, erection, nainting)
(\%) 色0.135 ner lb. $=155,276.4 \times .135=20,962.26$
(ii) Snirgl shear develovers a $50 \not f$ ner $\mathrm{lb}=1380 \times 0.50=690.00$
(iii) $7^{\text {T }} \mathrm{slab} 28^{\prime} \times 100^{\prime} 0 \$ 1.378$ ner sq. ft. $=\underline{3,858.40}$ Hence, total cost, of deck, $\$ 25,510.66$.

APPEIVIX B

PRESTRESSE" CON RETE COMSTRIRTION FOR 50' - 70' - 80' - 90' - 100'
 SPiN

1. FOR 50! SPIN
a. Desicn

30" deen T section: 94 " wide fisnire 4-1/8" thjck. web thickness $=8 \mathrm{in}$.
Gross pronerties: hre: $=321$ so. in. s.h. $=3,311.5 \mathrm{in}^{3}$.
$Y t=11.9^{n}, \quad Y b=-18.1^{n}, \quad e=-13.6^{n}, \quad I=27,361 \mathrm{in}^{4}$.
Girder Moment $=1,250,000$ lbs. in.
Provide 5? wires 0.196" dia., area $=1.56$ sq. in.
Slab Noment $=866,000$ lbs. in.
Stress Analysis:
Prestress Girder Slab Combined

Initial	-635	-545	-	-90 psi.	
	-2830	-830	-	-2000 psi.	
Final	-540	-545	-376	-381	psi.
	-2410	-830	-574	-1006 psi.	

Comnosite Section Pronerties: Area $=553.92$ sq. in.
S.M. $=6,045 \mathrm{in}^{3} ., \quad \mathrm{Yt}=10.9^{n}, \quad \mathrm{Yb}=-23.1^{n}, \quad \mathrm{I}=54,283 \mathrm{in}^{4}$.

Max. L.L. Moment vith 28.6 percent impact $=6,890,000$ lbs. in. per lane. Hence, design L.L. Noment $=2,410,000 \mathrm{lbs}$. in.

Stress © Before L.L. L.L. Combined
Top of slab 0 - 485 - 485 psi.
Top of girder - 331 - 306 - 687 psi.
Botton of girder -1,006 -1002 - 4 psi.
Cracking koment $=3,623,000$ lbs. in.

Stress ©	Before C.ind	C.	Gombinet
Ton of slab	0	+ 726	+ 726
Ton of girder	+ 381	+502	$+883$
Bottom of eirder	+1,006	-1,540	- 536
Ultimate R.N.: $M u=2.46$ ($\mathrm{DL}+\mathrm{LL}$) or D.L. + 4.96 L.L.			
L.L. Deflection $=\frac{1}{2,000}$ snan.			

Dianhraoms:
Provide 2 Nos. $20^{\prime \prime} \times 9^{\prime \prime}$ section with two cables each having an area of 0.10 sq . in. at the total cost of $\$ 05$.
b. Quantity for 9 nrestressed beans
(i) Concrete: $9 \times 50 \times 321 / 144=1,000 \mathrm{cu} . f t$.
(ii) Coble: $9 \times 50 \times 5.38=2,420$ lhs.
c. Cost of deck
(i) Concrete $\$ 3$ ner cu. ft. $=1,000 \times 3=\$ 3,000$
(ii) Cable (includes fittine, prestressine, anchor-
inc) 60 cents ner $1 \mathrm{~b} .=2,420 \mathrm{x} 0.6=1,452$
(iii) Transnortation un to 100 miles 6

$$
\$ 4 \text { ner ton }=75 \times 4=300
$$

(iv) Erection $\$ 10$ ner $t o n=75 \times 10=750$
(v) Slab 28' wide © $\$ 28.56$ per ft. $=50 \times 28.56=1,423$
(vi) Dianhraens $=.205$

Hence, total cost of deck $=\$ 7,135$

2. FOR 70' SPAN

a. Desion

42" deen T section: $24^{\prime \prime}$ wide flange 4-1/2 thick. Web thickness $=8$ in. Gross Pronerties: Area 417 sq. in., S. In. $=7,261.5 \mathrm{in}^{3}$. $Y t=17.4^{\prime \prime}, Y b=-24.6^{\prime \prime}, \quad e=-20.1^{\prime \prime}, \quad I=73,492 \mathrm{in}^{4}$. Girder moment $=3,200,000 \mathrm{lbs}$. in.

Provide 74 wires 1.96^{*} dia., area $=2.22 \mathrm{sq}$. in.
Slab Moment $=1,700,000$ lbs. in.
Stress Analysis:

	Prestress		Girier	Slab
Initial	-790	+756	-	Combined
	+3030	$-1,030$	-	+34
			$+2,000$	
Final	-671	+756	+402	+487
	+2580	$-1,030$	-570	+980

Comnosite Section Pronerties: Area $=656.76$ sq. in. S.M. $=10,298 \mathrm{in}^{3} ., \mathrm{Yt}=-15.7^{\text {¹ }}, \mathrm{Yb}=-29.3^{\text {¹ }}, \mathrm{I}=135,185 \mathrm{in}^{4}$. Mex. L.L. Noment with 25.65 percent imnact $=10,774,000 \mathrm{lbs}$. in. ner lane. Hance, desien L.L. Moment $=3,780,000$ lbs. in.

Stres9	Befnre I.L.	L.L.	Conbinod
Top of slab	0	+ 422	+ 422 nsi.
Top of girder	+ 487	+ 3 ? 8	+ 815 psi.
Bottom of pirder	+ 980	- 850	+ 130 nsi.
Crackiñ Moment $=5,920,000 \mathrm{lbs}$. in.			
Stress 0	Bnfore C.M.	C. H -	Combined
Ton of slab	0	+ 690	+ 690 nsi.
Ton of airder	+ 487	+ 515	+1,002 psi.
Bottom of girder	+ 930	-1,330	- 350 nsi .
Ultimate R.M.: Mu. $=2.46$ (D.L. + L.L.) or D.L. + 6.12 L.L.			
$\text { L.L. Deflection }=$	$\frac{1}{, 260} \text { snan. }$		

Dianhramms:

Provide 3 Nos. 28" $x 9^{\prime \prime}$ section with two cables each having an area of 0.40 sq. in. at the total cost of $\$ 367$.
b. Quantity
(i) Concrete: $9 \times 70 \times 417 / 144=1,895 \mathrm{cu} . \mathrm{ft}$.
(ii) Cable: $9 \times 70 \times 7.68=4,840 \mathrm{lbs}$.
c. Cost of deck
(1) Concrete $\$ 3$ ner cu. ft. $=1,8 ? 5 \times 3=\$ 5,475$
(ii) Cable (inclưes fitting, prestressine, anchoring) 60 cents per $1 \mathrm{lb}=4,840 \times 0.6=\$ 2,904$
(iii) Transportation up to 100 miles ($\$ 4$ ner ton $=137 \times 4=\$ 548$
(iv) Erection $\$ 10$ ner ton $=137 \times 10$
$=\$ 1,370$
(v) Slab 28' wide $\$ 28.56$ ner foot $=70 \times 28.56=\$ 1,999$
(∇ i) Dianhrarms $=\$ 367$
Hence, total cost of deck $=\$ 12,663$

3. FOR 80^{\prime} SPiN

a. Design
$48^{\prime \prime}$ deen T section: $24^{\prime \prime}$ wide flange $4-1 / 2^{\prime \prime}$ thick. web thickness $=8 \mathrm{in}$.
Gross pronerties: Area $=465$ sq. in., S. M. $=9,411.5 \mathrm{in}^{3}$.
$Y t=20.2^{\prime \prime}, Y b=-27.8^{\prime \prime}, e=-23.3^{\prime \prime}, I=104,162 \mathrm{in}^{4}$.
Girder Moment $=2,220,000$ lbs. in.
Provide 86 wires $0.196^{\prime \prime}$ dia., Area $=2.58 \mathrm{sq}$. in.
Stress Analysis:
Prestress Girder Slab Combined

Composite Section Pronerties: Area $=705.06$ sq. in.
S.M. $=12,758$ in $^{3} ., \quad Y t=18.1^{\prime \prime}, \quad Y b=-33.9^{\prime \prime}, \quad I=190,000 \mathrm{in}^{4}$.

Max. L.L. Noment with 24.4 percent imnact $=13,330,000$ lbs. in.
per lane. Hence, desisn L.L. Moment $=4,650,000 \mathrm{lbs}$. in.

Stress 0	Before L.L.	L.L.	Combined	
Top of slab	0	+444	+444 psi.	
Ton of girder	+581	+346	+927 psi.	
Bottom of girder	+926	-830	+96 psi.	

Cracking Moment $=7,360,000$ lbs. in.

Stress 0 Before C.M.	C.M.	Combined	
Ton of slab	0	+702	+702 psi.
Top of girder	+581	+507	$+1,088 \mathrm{psi}$.
Bottom of girder +926	$-1,330$	-404 nsi.	

Ultimate R.M.: Mu = 2.44 (D.L. + L.L.) or D.L. + 6.12 L.L.
L.L. Deflection $=\frac{1}{2,240}$ span

Diaphragms:
Provide 3 Nos. $32^{\prime \prime} \times 9^{\prime \prime}$ section with two cables each having an area of 0.40 sq . in at the total cost of $\$ 398$.
b. Quantity for 9 prestressed beams
(i) Concrete: $9 \times 80 \times 465 / 144=2,320 \mathrm{cu} . f t$.
(ii) Cable: $9 \times 80 \times 8.62=6,200 \mathrm{lbs}$.
c. Cost of deck
(i) Concrete © $\$ 3$ ner cu. ft. $=2,320 \times 3=\$ 6,960$
(ii) Cable (includes fitting, prestressing, anchoring) © 60 cents ner $\mathrm{lb} .=6,200 \times 0.6=\$ 3,720$
(iii) Transportation un to 100 miles $\$ 4$ per ton $=174 \times 4=\$ 696$
(iv) Erection $\$ 10$ ner ton $=174 \times 10=\$ 1,740$
(v) Slab 28' wide $\$ \$ 8.56$ per foot $=80 \times 28.56=\$ 2,285$
($\mathrm{\nabla}$) Diaphragms $=\$ 398$
Hence, total cost of deck $=\$ 15,799$
4. FOR 90' SPAN
a. Design
$54^{\prime \prime}$ deep T section: $24^{\prime \prime}$ wide flanpe $5^{\prime \prime}$ thick. Vieb thickness $=8$ in. Gross Pronerties: Area $=52.1 \mathrm{sq}$. in., S.N. $=11,450 \mathrm{in}^{3}$. $Y t=21.9^{\prime \prime}, \quad Y b=-32.1^{n \prime}, \quad e=-25.1^{n \prime}, \quad I=141,946 \mathrm{in}^{4}$. Girder Moment = 6,600,000 lbs. in.

Provide 101 wires $.196^{\prime \prime}$ dia., area $=3.03$ sq. in.
Slab Noment $=2,810,000$ lbs. in.
Stress Analysis:
Prestress Girder Slab Combined

Initial	-900	$+1,020$	-	+120 psi.
	$+3,490$	$-1,490$	-	$+2,000$ psi.
Final	-765	$+1,020$	+434	+689 psi.
	$+2,970$	$-1,490$	-635	+845 psi.

Composite Section Proverties: Area, 764.21 sq. in.
S.M. $=14,998 \mathrm{in}^{3} ., \quad Y t=19.6^{\prime \prime}, \quad Y b=-38.4^{\prime \prime}, \quad I=270,248 \mathrm{in}^{4}$.

Max. L.L. Moment with 23.2 vercent imnact $=15,420,000$ lbs. in.
per lane. Hence, design L.L. moment $=5,400,000 \mathrm{lbs}$. in.

Stress (0)	Before L.L.	L.L.	Combined	
Top of slab	0	+ 392	+ 392	psi.
Top of girder	+ 689	+ 312	+ 1,001	psi.
Bottom of girder	+ 845	- 768	+ 77	psi.

Cracking Moment = 8,700,000 lbs. in.

Stress Q Before C.K.	C.Ni.	Combined	
Top of slab	0	+630	+630 psi.
Top of girder	+689	+500	$+1,189 \mathrm{psi}$.
Bottom of girder	+845	$-1,230$	-385 psi.

Ultimate R.M.: $M u=2.37$ (D.L. + L.L.) or D.L. + 6.85 L.L. L.L. Deflection $=\frac{1}{2,450}$ snan

Diaphraems:
Provide 4 Nos. $36^{\prime \prime} \times 9^{\prime \prime}$ section with tro cables each having an area of 0.40 sq. in. at the total cost of $\$ 571$.
b. Quentity for 9 prestressed beans
(i) Concrete: $9 \times 90 \times 521 / 144=2,930 \mathrm{cu} . \mathrm{ft}$.
(ii) Cable: $9 \times 90 \times 10.43=8,450 \mathrm{lbs}$.
c. Cost of deck
(i) Concrete $\$ 3$ per cu. ft. $=2,930 \times 3=\$ 8,790$
(ii) Cable (includes fitting, nrestressing, anchoring) (0) cents per lb . $=8,450 \times 0.6=\$ 5,070$
(iii) Transportation up to 100 miles © $\$ 4$ ner ton

$$
=220 \times 4=880
$$

(iv) Erection © \$10 ner ton $=220 \times 10$ $=2,200$
(v) Slab 28' wide $\$ 28.56$ per foot $=90 \times 28.56=2,570$
(vi) Dianhrapms $=571$

Hence, total cost of deck $=\$ 20,081$

5. FOR 100' SPAN

a. Design
$60^{\prime \prime}$ deen T section: $24^{\prime \prime}$ wide flange $5^{\prime \prime}$ thick. Web thickness $=8$ in. Gross Proverties: hrea $=569 \mathrm{sq} . \operatorname{in} .$, S.M. $=14,574 \mathrm{in}^{3}$. $Y t=25.7^{\prime \prime}, Y b=-34.3^{\prime \prime}, \quad e=-29.3^{\prime \prime}, \quad I=199,846 \mathrm{in}^{4}$. Girder Moment $=8,860,000$ lbs. in. Provide 116 wires $0.196^{\prime \prime}$ dia., area $=3.48$ sq. in. Slab homent $=3,460,000$ lbs. in. Stress Analysis:

$$
\text { Prestress } \quad \underline{\text { Girder }} \quad \text { Slab } \quad \text { Combined }
$$

Initial	$-1,050$	$+1,140$	-	+
	$+3,540$	$-1,540$	-	$+2,000$
			psi.	
Final	-895	$+1,140$	+445	+700
	$+3,020$	$-1,540$	-594	+886 psi.

Composite section pronerties: Area $=815.5$ sq. in. S.M. $=19,078 \mathrm{in}^{3} ., \quad Y t=23.4^{n}, \quad Y b=-40.6^{n}, \quad I=346,462 \mathrm{in}^{4}$. Max. L.L. Moment with 22.2 percent impact $=18,330,000 \mathrm{lbs}$. in. per lane. Hence, Design L.L. moment $=6,420,000$ lbs. in.

Stress © Before L.L.	L.L.	Combined	
Top of slab	0	+447	+447 psi.
Top of girder	+700	+370	$+1,070$ psi.
Bottom of girder +886	-774	+112 psi.	

Cracking Noment $=10,413,000$ lbs. in.

Stress ©	Before C. M .	C.M.	Combined
Ton of slab	0	+ 704	+ 704 psi.
Top of girder	+ 700	+ 583	+ 1,283 psi.
Bottom of girder	+ 886	-1,220	- 334 psi.
Ultimate R.M.:	2.48 (D.L. + L.L.) or D.L. + 5.1 L.L.		
L.L. Deflection	$=1$ s		

Dianhragms:

Provide 4 Nos. $40^{\prime \prime} \times 9^{\prime \prime}$ section with two cables each having an area of 0.40 sq. in. at the total cost of $\$ 612$.
b. Quantity for 9 prestressed beams
(i) Concrete: $9 \times 100 \times 569 / 144=3,550 \mathrm{cu} . \mathrm{ft}$.
(ii) Cable: $9 \times 100 \times 12=10,800 \mathrm{lbs}$.
c. Cost of deck
(i) Concrete © $\$ 3$ ner cu. ft. $=3,550 \times 3$
$=\$ 10,650$
(ii) Cable (includes fitting, prestressing, anchoring) (3) cents per $\mathrm{lb} .=10,800 \times 0.60=\$ 6,480$
(iii) Transnortation up to 100 miles $\$ 4$ per ton $=266.2 \times 4=1,065$
(iv) Erection $=266.2 \times 10=2,662$
(v) Slab 28' wide $\$ 2.8 .56$ per foot $=100 \times 28.56=2,856$
(vi) Diaphrapms = 612 Hence, total cost of deck $=\$? 4,325$

BIBLIOGRAPHY

1. Anerican Association State Highway Officials. Standard Snecifications for Hichway Bridges. Sixth Edition, 1953.
2. Porete Nanufacturine Comnany. Alpha Comnosite Construction Fiandbook. Third Edition, 1953.
3. Siess. Composite Action. Enginecring News Record, January 13, 1944.
4. Ozanne. Composite Action. Discussion, Engineering Ivews Record, October 5, 1944.
5. Cueni. Comnosite Action. Discussion, Engineering News Record, February 2?, 1945.
6. F. L. Pavlo. Strengthening of Our Highway Bridges. Engineering News Record, February 26, 1942.
7. E. W. Wendell. Welded Girder Bridge of Composite Desien Carries Deck of Two Acres. Engineering News Record, December 26, 1946.
8. Newmark and Siess. Desinn of Slab and Strincer Hichway Eridges. Public Roads, Volume 23, No. 7.
9. Bureau of Public Roads. Desimn Criteria for Prestressed Concrete. March 10, 1952.
10. J. A. Roebling's Sons Cornoration. Roebling Strand and Fitting for Prestressed Concrete. Catalog T-9 $\overline{20}$, 1953.
11. Portland Cement Association Publication. Desion of Prestressed Concrete.
12. Professor G. Viagnel. Significant Features of Prestressed Concrete. Paper F, Canadian Conference on Prestressed Concrete, 1954, University of Toronto, Caneda.
13. Portland Cement Association Publication. Prestressed Concrete Bridse Calculations Illustrate Use of Design Criteria.
14. California Builds Its First Prestressed Concrete Bridge. Engineering News Record, November 23, 1950.
15. Simple Prestressing System for Pedestrinn Bridge. Engineering News Record, Miay 10, 1951.
16. Ivan A. Rosov. Prestressed Reinforced Concrete and Its Possibilities for Bridge Construction. A.S.C.E. Transactions, 1938.
17. Thor Germundsson. Prestressed Concrete Construction Procedure. A.C.I. Proceedings, Volume 46, June 1950.
18. Gustave Nagnel. Prototyye Prestressed Benm Justifies idenut Lane bridge Desion. A.C.I. Proceedings, Volume 47, December, 1950.
19. M. Fornerod. Factors in Prestressed Desicn. A.C.I. Proceedings, Volume 47, February, 1951.
20. Stewart Kitchell. Are Prestressed Bridces Choannr? A.C.I. Proceedings, Volume 47, June 1951.
21. Hartford. Lomer Cost Bridres and How to Get Them. Eneineering News Record, Anril 17, 1947.
22. C. B. McCullough. Economics of Hichroy Brince Trnes. Gillette Publishing Compeny, Chicago, 1929.

ROOM USE OULI

