WIXCD VE, UNMIXPD LISTS IN

Thesis for the Degree of M. A. RICAICAN STATE UNIVERSITY Phyllis G. Peters

1961

AHD RETROAOTIUN

By

Fhyllis G. Peters

a THESIS

Bubritted to the Dollege of irts ard Soiences of richigan State University of sgriculture and tippliea Science in partial fulfillment of
the requirenents for the degree of
上ing er CF बRF.う
Departiuent of Paychology

ABETRGE

by Phyllis G. Peters

The purpose of the present study was to sully transfer and retroaction as a function of nixed and unmixed list design, using a pare associate verbal task, varying response similarity alone the dimensions used by Os food (1945) while holding stimuli constant. Osjood (1946), using a mixer list design , reported that varying response similarity resulted in negative transfer and retroactive interference which increased as response similarity decreased. Eujelski ana Cad:allader (1950), using an unmixed list design, and using the sane response similarity dimension, reported that this response variation resulted in retroaction mich decreases as similarity decreases. Recently, Treat and Under mood (195シ) found no sigrificent differences in amount of transfer between mixed and unmixed list procedures, But failed to fully check all the response similarity variations of osgood.
rinety-six $\underline{\text { S }}$ in six experimental fou s learned an original list and a transfer list, an were given one recall trial on the orijinal list. The transfer task for the mixed list groups contained all three
response variations - similar, neutral ant owoseu. The trensfer list for each unmaed list jrous representur only one response varietion.

The performance intasures user were namber of trials to criterion on the II tass, number of coneect responses durinj the first six II irials, Eni the rumber of words recalled durinj the recall trial. Statistical analyses were performed on the results for mixed and unixed lists together, ans on each septrately.

No significant differences vere found detween the various experinental jrous on rumber of tri:al: to criterion during the IL Uask or number of words recslled on bie recall trial.

 Achjen Sit be T̈niversity subuent cuived Eunat only
 ble that be contrejictory resulb: an abe io riluce bo dodequtely control neswore it il rity.

Phe differerce in unganer readibs y aldo be
 aedined by our sy wo reet cuiterion conix re？to those of Csjogd ard Bucusid．

The aixes ent urnixed proce ures were not
signifcanty bifferut－conpirasng the resulth op Tredt and Unjervood．

Rurererines：

 aal of bie tranefer and retroboton wurace．d．

 2？－シ01．
 5，ミ11ー115．

Me aubhor wishes bo chaess her rubitube
 ansistarce in the minnime ank exedution of this
 jr. Abrum ... Exrm, chainen of her womithee. In adsibion, die uishez to corvey propond thans io Dre Eaul Sunar int Jre Zerneme illes for
 bex ration of this thesis.

Thele de gogmada

FAざ
INTEOGODIOR 1
$\because-200$ 10
REULIS 10
Mr：ロルーf 17
 80
りますごいました。 32
NGing 23
Nuganuads 41
AFELRDIE 43
Insusuctions 43

ッコ土

$$
\text { Fi } 2=
$$

E．Particular biocks of didj三ctiver exilovel in ujxel Iist心 jn tera of ful relutions between original exil inter－ DOL $1, \in \mathcal{A}$ ，Uterials． 13
3．Wesn numben of tri：jls to IJ criterion Por ．jxed frid u．uixed Iists for esch block of four adjectives ant blucas rithin si i－ İitur rejationis conbjned • • • • • • 18

4．nean munber of wonds conectly antici－ outed in first sir II trials for rixed and un ixad liste for eaci block of iour． dijectives ans blocss uithin si ilenity welatints cyined20
5．Anelyeis of variance of trials to cri－terion on Il task for mixei lists • • • 23
6．Andiysís of variance of muber compecuGurire تiret six In trials for axed lists 23
7．Anslẏic of variance of tuials to cir－terion uf ii tosr ion unixeỉ liste．• • 25
3．́ rectorisl andlysjs of vrriance of the numben of vords correctly anticipated in the iinet dix IL trials for uraixeủ lists． 25
－．e an number of words correctly recelied in the one mecall trial or inixes and unhixed 1istis 27
10．Analysis of variance of number of worls recallei for mixea lists． 30
1l．A factorial analysis of varience of wordsrecallej for unaixed lists．30

ILGT On ZIGUKL

EIMTE きばき
1．Recall scores after inter．olstodleaming • • • • • • ．．．． 5
2．Nean number of words corvectyanticipated in inest six IL trialsfor mixed and unixed liots．．．．． 21
3．Wumber of voriz correctly recalled

$$
\text { fon mixeú and unixed lisbe } 28
$$

Aïller and Pilzecker (1900) bezan the work on retroactive interference when they discovered that learning new material durine the interval between orieinal learning and the recall trial ajade the amount of material recalled less than the amount retained when siuple rest fillea the interval.

The topic became a popular one for study in the field of learring. Cne of the factors found to be particularly sienificant in affecting the anount of interference or facilitation is the aiount of similarity between the interpolated and orieinal learninz.

Robinson (1927) was the first to clearly specify the effects of similarity in retroaction studies. He proposed the following relationship: " ${ }^{2}$ s similarity between interpolation and orieinal memorization is reduced from near identity, retention falls away to a minimum and then rises adiin, but with decreasing similarity it never reaches the level obtained with \#iaximum similarity. " (pp. 298-299). This relationship gives the well-known Skazgs-Robingon curve of retroactive inhibition.
wcGeoch and iwcDonald (1931) and weGeoch and EcGeoch (1937) failed to support the Skages-Robinson hypothesis and stated that the greater the similarity
in meaning, the とreater the interference. Both the incGeoch studies used judged similarity as the definition of the f eaningful relationship, whereas Robinson used identical elements. The method of identical elements defines the similarity dimension by the proportion of elements common to both initial and transfer tasks. (For example, cef and def share two elements for the first degree of similarity; cef and deh share one element for the second degree of similarity; cef and doh share no elements for the third or most remote degree of similarity.) In the method of judged similarity, the judges must rate on some scale the extent of similarity of various words to the reference word. (For example, when "free" is the reference word and direct synonymity is excluded, "open" is julged to have the first degree of similarity, "odd" to have the second degree of similarity, and "closed" to be the most remote.) Gibson (1940) in a theoretical article on verbal learning distinguished between the similarity of the response in transfer studies. This suggested a reconsideration of Robinson's hypothesized curve in that he failed to distinguish between the similarity of the various parts of the task.

The distinction between stimulus similarity and response similarity found experimental validation in experiments by Gibson (1941) and Hamilton (1943) varying stimulus similarity. Both studied the effect of varying stimulus similarity in a paired-associate task with geometric forms as stimuli and verbal material as responses. They obtained opposite results. Gibson reported that retroactive interference increased with increasing similarity of stimuli. Hamilton reported that retroactive interference decreased with increasing similarity of stimuli. However, Gibson used different and neutral responses while Hamilton used identical responses. Thus, Gibson varied both stimuli and responses while Hamilton varied only stimuli which further stressed the necessity for the distinction between similarity of parts of the task.

Osgood (1946) varied the similarity of the response, holding the stimulus constant. He reported retroactive interference increased as response similarity decreased.

In 1949, Osgood proposed a resolution of the similarity paradox in his transfer and retroactive surface. In this surface, he relates the effect of varying stimulus similarity, response simi-
larity and both types of similarity simultaneously to transfer and retroaction effects. He did not feel it was necessary to distinguish between the methods of identical elements and judged similarity in their effects on transfer and retroaction.

The significant features of the surface can be stated in three empirical laws, based on then available experimental evidence. Of particular interest for this study is the second law which deals with response variation: "Where stimuli are functionally identical, and responses are varied, negative transfer and retroactive interference are obtained, the magnitude of both decreasing as similarity between the responses increases. " (Osgood, 1949, p. 135) (See Figure l). His 1946 experiment was a major experimental support for this law. Osgood regards the contrary results of the McGeoch studies, previously cited, to be due to the simultaneous variation of both stimulus and response similarity.

Bugelski and Cadwallader (1956) made a comprehensive attempt to test all of Osgood's surface in a single experiment. Their results confirmed two of Osgood's empirical laws: (a) Law One, dealing with stimulus similarity, and (b) Law

Figure 1. Recall scores after interpolated learning. A comparison of Osgool's theoretical values with empirical data. The theoretical points were plotted on the basis of a control eroup perforuance for the zero effect level and a possible peak score of 13. Recall of original learnine waterial is shown after learring interpolated material consisting of identical stinuli and identical, similar, neutral and opposed responses. (Bucelski and Cadwallader, 1956)

Three, dealing with stimulus similarity and response similarity simultaneous variation. Contrary to the second law, Bugelski and Cadwallader found that when stimuli are identical, negative transfer is greatest with the most siinilar responses and least with opposed responses, (See Figure l). Their results approximated very closely the Skacgs-Robinson hypothesis.

Several differences in procedure might be responsible for the obtained differences. (1) Os天ood used letter pairs (such as c.m.) as his stimuli; Bueelski and Cadwallader used geometric figures from Gibson (1941).
(2) Osgood used a four-second presentation rate for his stimuli; Bugelski and Cadwallader used a two-second rate.
(3) Osgood used mixed lists; Bugelski and Cadwallader used unmixed lists.

Of the three differences, the one involving mixed and unmixed lists seemed the most likely to explain the results. The difference in stimuli was rot considered responsible for the difference in results because of the marked agreement between Osgood and Bugelski \& Cadwallader on Osgood's first and third laws, both of which involved stimulus
similarity variation. Also, since Osgood used a weighted response measure which involved giving extra credit for correctly anticipatine within the first two seconds of the stimulus presentation, the importance of the tining difference is less than would appear at first inspection. In the unmixed list design each interpolated list represents only one similarity variation. Thus, one group of is has an interpolated list in which all the items are similar to the orieinal; another group has an interpolated list in which all the iters are neutral in relation to the items of the orieinal; a third group has an interpolated list in which all the iters are opposed in meaning or feeliras tone. Since the same relation holds throughout the whole interoolated list, \underline{S} might discern the relation, thus contributine to positive transfer and confounding the experiment. (Slailecka and Ceraso, 1960)

The mixed list procedure attempts to avoil or reduce the possibility of \underline{S} developine such a special set for the transfer list by incorporating more than one similarity relation into the interpolated list. (Oscood, 1946). Thus, one-third of the Items in the interpolated list are sinilar to the
original responses, one-thiri are neutral and one-third opposed.
iixed list designs are also preferred because:
(1) Fewer suiojects are needed since it is rot necessary to have a separate group of subjects for each conjition in the experiment.
(2) Aash subject serves as his own control, thus making for more sensitive statistical tests.

Fecently, Twedt and Underwood (1959) reported no significant differences in transfer effects as a function of mixed vs. uninixed list design. They compared uixed and unifed lists in three conditions: (a) identical stimuli - neutral resporses, (b) identical stimuli - ijentical but re-paired responses, (c) neutral stimuli - identical responses. However, the point of zreatest disazreement in the results of Osgood and Bugelski occurred in the variation with identical stimuli - similar responses. This variation vas omitted in the Twedt and Underwood study. The condition of identical stinuli - opposed responses was also oinitted.

Thus, it was still feasible to hypothesiza that the differences in the results of oseood's
work and the Zugelski and Cadrallader experiment wight be due to tinis difference in experimental desian.

The purpose of the presert experiment is to stuay transfer and retroaction as a function of mixed and unrixed list design, using a pairodassociate verbal task, which varies response similarity alorig the dimensions usei by Cszood, (1946) while holing stimuli constant.

SIIHOD

Ixperimental Desinn. This study followed the traditional retroactive interference desion ($\boldsymbol{A}-\mathrm{B}, \boldsymbol{A}-\mathrm{K}, \boldsymbol{A}-\mathrm{B}$) in which the experimentil variable is the meanineful relation of B and K responses in paired-associate learning. I'hree devrees of meaninaful relations were used: sim11ar, (S), neutril, (i), and opposed (0).
sil eroups had the sane list for orieinal learaind and for the recall trial.

For the unwixei list design, three croup: had an interpolated list with only one desree of similarity - all twelve responses beinc either similar, neutral or opposed to the responses of the origiral list.

For the mixed list desien, three eroups of subjects leamed a twelve jten interpolated list with a block of four responses similar, four neutral and four opposed to the responses of the oricinal list.

There were a total of six experimentil groups.

Lists. The lists were tiken from Cssood (1946) ard consisted of letter pairs as stimuli, and meanineful adgectives as responses. Table l

Table 1. Adjectives employed in the experiment in terms of the meaningful relations between original and interpolatedmaterials.

OL	Sinilar	IL neutral	Opposed
f.s. - tense	hard	basic	soft
g.1. - free	open	odd	closed
h.v. - dainty	clean	curious	dirty
j.y. - robust	solid	Iong	flimsy
k.t. - neat	clear	numb	hazy
d.m. - skillful	quick	sour	slov
q.r. - slender	airy	daily	solid
r.h. - noisy	excited	equal	calm
t.g. - drowsy	dead	necessary	alive
w.p. - boorish	rough	near	smooth
x.n. - rounded	graceful	lucky	clumsy
y.b. - pale	sickly	similar	healthy

presents the adjectives used in the experiment in terms of their meaningful relations. Three of Osgood's stimulus-response pairs were removed from each list to reduce the time required to conplete the experinent. Table 2 presents the particular combination of adjectives used in the three mixed lists.

Three mixed lists were used so that each response adjective used in the three unmixed lists would appear in the same meaninful relation in a mixed list. Thus, the three sets of four sinilar adjectives in the unmixed similar list were used each once, the first set in the first mixed list, the second set in the second, etc. This was also true for the neutral and opposed conditions. The order of presentation of the $S-R$ pairs of the mixed lists during interpolated learning was arranged to minimize runs of responses of the same degree of similarity.

Apparatus. For each list learred, three different orders of the $S-R$ pairs were shown on a Lafayette memory drum, with a two-second presertation rate, and a two-second inter-iteri tirce. Inter-trial time was four seconds. The oricinal list was shown in window one (left side when facing

Table 2. Particular blocks of adjectives ewployed in mixed lists in terms of the meaningful relations between orieinal and interpolated iaterials.

OL	IL		
	nixed		
	1	2	3
	Similar	Neutral	Op:osed
f.s. - tense	hard	basic	soft
E.1. - free	open	odd	closed
j.y. - robust	solid	long	flimsy
w.p. - boorish	rough	near	smooth
	Neutral	Opposed	Similar
q.r. - slender	dally	solid	airy
t.e. - drowsy	necessary	alive	dead
x.n. - rounded	lucky	clumsy	graceful
y.b. - pale	siuilar	nealthy	sickly
	Oncosed	Similar	Neutril
h.v. - dainty	dirty	solid	curious
k.t. - neat	hazy	clear	numb
d.m. - skillful	slow	quick	sour
r.n. - noisy	calin	excited	equal

machine) for all groups. The unaixed lists similar, neutral and opposed - were in windows two, three and four respectively. The three uixed lists were shown in windows two, three and four respectively. Two memory drums were used; lists were interchanged daily to control for variation due to machines.

Procedure. The general procedure was as follows:
(1) The \underline{S} was given instructions (presented in sppendix A). The anticipation rethod was used for all lists.
(2) Ss learred the original list to a criterion of two successive correct repetitions.
(3) A two-minute rest was given in which the \underline{S} left the machine, and was engaced in conversation by I.
(4) The interpolated list was learned to a crierion of two successiva correct repetitions.
(5) A two-minute rest was 区iven as in (2) above.
(6) The \underline{S} was given one recall trial on the orieinal list. The recall trial was not begun until the $\underline{\underline{S}}$ understood that he should anticipate the first time through the list.

Three female experimenters ran all Ss. The
author ran one-half of the subjects kept in the analysis.

Subjects. Subjects were volunteers from the introductory psychology course, who were given research credit for participating in the experiment. A total of 124 subjects were run. Twentyeight were not used in the analysis, leaving a total of 96 Ss.

Ss were eliminated for the following reasons: one \underline{S} for not following instructions, fifteen $\underline{\text { S }}$ for not reaciing criterion on the original list in 50 trials, twelve \underline{S}^{s} for not reacining criterion on the interpolated learnirs at the erd of their experimertal session.

There were eight females and eight males in each of the six groups. An order of conditions was prepared before the experi:nent bean viith euch of the six conditions represented once in each block of six \underline{s}, and the order counter-balanced from block to block. Ss were assigned in order of their appearance at the laboratory.

All Ss were naive in verbal learning experiments.

riesults

This section is divided into two parts：the first part presents the analyses of the transfer task，the second preserts the analyses of the retroactive effects．

Buعelski and Cadwallader（19j6）reported a high neeative correlation（rho $=-.85$ ）between the trials taken to learn the interpolated list，and the number of items of the original inst recalled in the one recall trial．Therefore，he presented only the results of the recall trial in his analyses．Osgood（1946）reported the results of both his transfer and retroaction measures．

In the present study，$r=-.62$ for the three unmixed lists，－． 48 for the three mixed lists，and －．j4 for all lists combined for trials to criterion and items recalled．ill correlations were sig－ nificartly different from zero，（p＜．0う），but somewhat less than expected．Therefore，analyses are presented below for both interpolated learnine and the recall trial．

Orieinal learning was fairly uniform and an aralysis of variance revealed no sienificant differences between groups．（ $F=1.0 う, \underline{2} \times .0 う$ ）．

17

Transfer

Three measures of interpolated learning were used to ascertain the arfount and kind of transfer. (1) Number of trials to the criterion of two successive correct repetitions of the twelve items. (2) Number of trials to the criterion of two successive correct repetitions of blocks of four adjectives common to the mixed and unaixed lista. (3) iumber of correct responses in the first six trials of the interpolated list for blocks of four adjectives. (All I_{s} had at least six trials of interpolated learning.)
a. Aixed vs. Unixed Lists

Table 3 gives the mean numior of trials to criterion for each block of four adjectives for each of the similarity conditions in the rixed and unmixez lists. Each block of ajoctives contains the four ajoctives thit are found in the mixed lists and that are in the corresponains unilixed list.

The difference between the rixed and unaixed list design was tested for each block of four adjectives by means of t tests. Only one of the rine values of t reached the .05 level of sigrif-

Table 3. wear rumiver of triais to IL criterion for mixed and unimed lists for each block of four adjectives and blocks wit! in sinilurity pelutions colibined.
Siiililar Relation

	Block 1	Elock 2	Bloch3	Blocks Coubined
nixed	13.1	13.7	14.7	14.5
ininixei	13.2	16.1	12.5	14.0

ieutral Relation

	Block 1	Elock 2	Block 3	Blocks Concined
Hixed	12.1	13.6	17.4	14.4
unnixed	17.4	13.9	13.7	13.0

Opposed Zelation

	Elock 1	310 ck 2	Slock 3	Elocks Cowbined
1.ixed	12.2	15.6	17.6	15.1
Unッix ${ }^{\text {c }}$	12.2	13.4	12.6	13.4

icance: 3lock 1 of the neutral condition, ($t=2.21$, 2 (.05).

The difference between aixed and unaixed Iists
vas also tested for ejch condition with blocks combined. The triree tests were not sienificant.
rable 4 gives the mean rumber of words correctly anticipated in the first six trials of intercolated learrins for mixed and unisixed lists for each block of shared adjectives. Figure 2 presents the condition means for mixed and uniixed lists graphically.
iine t tests vere calculated on the nine blocks testind for differences between wixed and unaixed design with tiis measure. Only one value of t approached the . OJ level of sichificunce: Block 1 of the neutral coniition had a t of 3.71 , (2<.01).

Three t tests were performed on the means of the conditions vith blocks combined. done were sienificant.
b. iixed Lists
\dot{A} simple analysis of variance was performed comparing trials to criterion on the transfer task for the three mixed lists. Lists were not significant, ($\mathrm{F}=1.0 \varepsilon, \mathrm{p}$ >.0う).

Table 4. Kean number of worls correctly anticipated in first six IL trials for mixed and unmixed lists for each block of four ajjectives and blocks vithin siailarity relations combined.

Similar Relation

	Block 1	Block 2	Block 3	3locks Cowbined
Mixed	8.9	10.8	9.5	9.7
Lnmixed	10.6	9.7	11.8	10.7

ieutral Relation

	Block 1	3lock 2	2lock 3	Blocks Combined
Ined	10.8	7.7	7.7	8.7
Unmixed	5.7	6.1	7.8	6.5

Opposed Relation

	Block 1	Block 2	Block 3	Blocks Combined
Mixed	11.4	10.0	8.0	9.8
Unmixed	11.8	9.6	10.1	10.5

Figure 2. Wiean number of words correctly anticipated in first six trials for mixed and unmixed lists.

This was an over-all check of the equivalence of the three mixed lists. No difference was expected as the only difference in the construction of the three lists were the particular words used for the similarity condition.

The similar condition was compared with the neutral (S / N) and with the opposed ($S / 0$), and the neutral condition with the opposed (N/C). Three matched t tests were completed on the number of trials to criterion for the three blocks of four adjectives with the combined totals for a condition from all three lists. No value of t approached the .Oう level. Osgood also performed these tests in his analysis, and found the same results for the S/N and N/O comparisons. However, he found the opposed condition took significantly more trials to reach criterion than the sinilar condition.

Since the number of men and women were equal in rumber in each group, a factorial analysis of variance was used to increase the precision of the statistical tests and to compare the results of men and women.

A "Iype 1 " analysis after Lindquist (19j3) was used. Analysis of variance of trials to criterion is shown in Table 5. While the three conditions of similarity were not significantly different from

Table 5. Analysis of variance of trials to criterion on Il task for mixed lists.

Source	df	rin.	F
Jetween-Subjects	47		
Sex	1	529.00	$4.73 *$
error (b)	46	111.83	
Within-Jubjects	96		.47
Similarity (Sim)	2	8.50	1.33
Sexx Sim	2	27.91	
error (w)	92	18.17	
Total	143		

Table 6. iralysis of variance of number correct during first six IL trials for mixed lists.

Source	df	w.S.	F
Between-Subjects	47		
Sex	1	100.55	2.96
error (b)	46	33.97	
Within-Subjects	96		
Similarity (Sim)	2	17.06	1.23
Sexx Sim	2	76.29	5.71^{*}
error (w)	90	13.36	
Total	143		

* . 05 level of siznificance
** . Ol level of significance
each other, females took sianificantly fewer trials to criterion then males.

Table 6 gives the aralvais comparing the number of words correctly antioipated in the first six IL trials. Neither sex differerces nor similarity conditions were significant. However, their interaction was found significant. Individual comparisons revealed that men and women were significantly different only with the coniation of "opposed" similarity.
c. Unmixed Lists

The mean number of IL trials to ariterion for the similar, neutral and onposed lists are 18.2, 19.8 and 18.3 respectively.

Analysis of variance of rumber of trials to criterion for men and wowen for each of the siailarity conditions yielded nonsignificant results for the similarity variation. The women took significantly fewer trials than the men. The interaction was not significant. (See Table 7)

However, no significant difference in trials to criterion was found. The substantial correlation ($r=.67$) between original learning and IL sugeested the use of analysis of covariance.

Analysis of variance of the number of words correctly anticipated in the first six IL trials for men and women for each of the similarity conditions,

Table 7. Analysis of variance of trials to criterion of IL task for unmixed lists.

Source	df	M.S.	F
Between	5		
Similarity (Sim)	2	11.52	.21
Sex	1	744.18	$14.72^{* *}$
Sim x Sex	2	64.18	1.27
Within	42	50.54	
Total	47		

Table 8. A factorial analysis of variance of the number of words correctly anticipat:d in the first six IL trials for unmixed lists.

Source	df	M.S.	F
Between	5		
Similarity (Sim)	2	793.75	$5.46 *$
Sex	1	1564.08	$10.76 * *$
Sim x Sex	2	66.06	.46
Within	42	145.32	
Total	47		

* . 05 level of significance
** . Ol level of significance
shown in Table 6, revealed both similarity and sex differences to be significant. The interaction was not significant. Indivijual comparisons showed the neutral lists required significantly more trials to reach criterion than the similar or opposed lists. The similar and opposed lists did not differ significantly. Women learned the lists faster than the men.

Retroactive Effects

The retroactive measure used is the number of woris correctly recalled in the one recall trial. The reader will remember that all eroups have the same recall trial, but will be labelled with the relation nawe they had during interpolated learning. a. Kixed vs. Unmixed List Desien

Table 9 gives the mean number of words correctly recalled for mixed and unmixad lists for each sinilarity coniition for each block of four ajjectives. Figure 3 presents the mean of the totals for each similarity condition eraphically.

The difference between mixed and unmixed list design was tested for each block of four adjectives by means of tests. Block l of the neutral condition again was the only comparison to reach the .05 level. AĢin, no significant differences were found between

Table 9. ..ear number of words correctly recalled in the one recall trial for mixed and unaixed lists for each block of four adjectives and blocks within siuilarity relations conined.

Sinilsr Reletion

	Block 1	Elock 2	Block 3	$\begin{aligned} & \text { Elocies } \\ & \text { Conbined } \end{aligned}$
-ixed	1.3	1.0	1.6	1.7
Unitxed	1.7	I. 3	1.7	1.7

Feutral Relation

	Block 1	Block 2	Dlock 3	Blocks Combined
Gixed	2.3	1.5	1.3	1.9
Trmixed	1.2	1.7	1.6	1.5

Orosed Relation

	3lock 1	Block 2	Elock 3	Blocks Compined
ined	1.8	1.9	1.5	1.8
naixed	1.9	2.3	2.3	2.2

Figure 3. Number of words correctly recalled for nixed end uninxed liclis.

Sinilarity Relation
mixed and uncixed lists when tested for each condition with blocks combined.
b. Nixed Lists
in analysis of variance of the number of iteris recalled in the recall list revealed no sienificant differences between lists. This test was a rouch čeck of the equivalence of the ixped lists.

An analysis of variance using the number of words recalled tested the effects o? the interpolated similarity conditions and found no sienificant differences. (See Table 10)

To check the possibility that the type of aralysis used by Csaod might eive iifferent results, matched t tests were applied, cowparine each similarity condition with the other two. No value of t approached the .05 level of sienificance. This confiried Oseood's failure to fird significant differences on the first recall trial.
c. Unmixed Lists

The mean number of works correctiy recallad of the similar, neutral and opposed eroups are 5.0, 4.7 and 6.6 respectively.

An analysis of covariance, adjusting for differences in the original learning, revealed no differences

Table lo. Analysis of varjence of number of woris recalled for mixed lists.

Source	df	!. 3.	F
Between-Siojects	47		
Sex	1	2.01	.67
error (b)	45	2.98	
Titrın-Suすうecls	95		
Similarity (Siu)	2	. 44	. 25
Sux x Sim	2	1.05	.6I
error (N)	92	1.71	
Potal	3.43		

 recallé fur unmaxd lists.

Source	df	.S.	F
Eetueen	5		
Sinilurity (5in)	2	16.14	2.58
Sex	1	70.09	$11.21^{* *}$
Sex x Sin	2	10.40	1.60
atuin	42	5.25	
Rotal	$4 ?$		

* .05 level of sicinifance
** .Ol level of sỉnificance
in number of words recalled. This is cutury to Bucelthi and Cadwallader's results, whicia found si frificent differences between eac: comition. Analysis of varjance (Taule ll) of words recalled found fenales recalling sierificartly are words tian males, but not sigaifican differences between the siuilarity cunditions.

DESUUSSIUS．

Osjuoa revoted in his l：45 study，and also stated in his second empiricsi law，that weo stinulj are identical and resconses varied，ne ative trensfer and retroactive interference decrease as similarity between resumses increasts．Bugelski and Cadwallaver homever，aseerted that the law should be modiried to read，＂．．．the wachitude of botrincreasing and tren decreasing as similarity vetween the reswonses increases．＂（エラララ，y•350）

The results of tise present stud，did not confir．． the effect of res：onse sinilarity variation reworted by either Osjooi or Eucelski．Our recall measure showed no si，nificant differences．If one ．．rerely inspects the recall data for trends，once ayain there is a lack of asreement．The mixed list grous suegest tise least retroactive interference at tiee reatral condition，and no difference between similar and op－ posed conditions while the unimed list prouss süjest the most retroactive interference at reutral and the least at orosed．Eujelski found the nost retroactive interference at the similar point mile orjood found the least interference at this point．

Bueelski obtained sionificant differences in lis first recall urial and lsed these exclusively for his analysis．Zsyool analyzed both his recall measknes
and his IL measures. Ee found no sigificant aifferences on his first recall tidul and only a weak trend using the conbined results of the \bar{j} RI trials. Therefore, it is worth inspeciing Os oud's transfer results for aceement with ours. Cevood dia find a sienificent difference at the 005 level, usinj brials to tre II criterion between tie similar and opposed itens. Eut, the results for the first ard first two II trials vere far wore sersitive indicstors of transfer. . Te also found numuer of correct res,onses early in $I L$ to ve a more sersitive measure of transfer than number of irials to ti:e IL criterion. Tinus, we are in acreenent with Csedoud as to where transfer can be best measured. However, he founa the sinilar condition to h_{a} ave t is least negative transfer, and neutral and opposed to show about the sarie amount. We fourd similar and oposed to show about the same amourt and neutral to show the most nesative transfer.

The failure to replicate either the results of Oscood or Bueelski may be due to procedurel differences. Oscool ond Bugelski both used trie nethod of adjusted or equated learning. This procedure attents to equate the amount of learnine on any given word, by removing words fron the list that have met a criterion of anticipation. The present study kept lists intact until the criterion was reached.

Generally , results obtained fron adjusted learning procedures have been silfilar in kind to those obtained witi unadjusted procedures. However, the particular criterion oí learning we chose nay have accentuated the difference between adjusted and unadjusted procedures. Both Oscood and Bucelski hed used a criterion of two successive correct anticigations for each stimulus-resporse pair. In attemptins to replicate their studies as possible we used the sane criterion of two successive correct anticipations, but aplied this requirement to the entire list ratier than to indiviaual stimulus-response pairs. The mean nunter of trials to criterion revorted by both 0 gyou and Bucelski is far less than the mean number of irials to criterion in our siudy. The mean number of trials to the IL criterion for Os jood's most difricult conition was 4.8. The mean for our most difficult nixed IL coridition was 15.1 trials. The mean for Bugelski's nost difficult IL task was 6.9 trials. Tie mean for our inost difficult unnixed IL tasis was 19.8 trials. It is possible that such a difference in learrin: rate may be due to population differerces in verbal ability. The size of the difference seers to poin more direction to the interacion betwen type of leary i, arocedure (adjusbed or unadusted) ard the criterion of learmine used. If this interpretation is correct, ore choice
or criberios iscreased the erout or OL and II
pradioe. miere is sue reas n to jeideve bhet transfer gnd retroation vare as ite anount or OL and II Mriovice is increased. Gousoch and Irion,
 complebe to indicete tie unner in which unis variaule would interact with a winilerity dimension.

The failure to obtain sinifjcerit differeraces wher response si ilurity mas varied suçested tiat the si ilarjty relation itselr shoula be cisecked. Nore than fiftecn years have elay sed since os jodi scaled his words and his Yale sophomes juuets probably were drawn fro: a population with more verbal ability than our Ess.

Therefore, a eroup of 20 (..ichigan State University under,raduate) judges, similer to our learaing Sis, was iriven a ljst of the response wordis for tile oI list and a list of all of Csood's si illar words. They were asced to pair each of the original resanse words Mitin the word most sinilar to it from the list of sinilar words. Tie same proceulure was fullumej with anotien jroun of 20 juages for tie opused mords with instructions to match up in terns of an oposed relation. This proceiure is closer to t:e actuel leamine rrocedure than Os jood's own techrigue of jưeine sinilarity, since it allows tire $\underline{S} s$ to see all the words in
relationshi', to each other, whereas Cs jood's S mode similarity juugutais with reference to only one key word at a tise.

Only four words in eitner tiee similar or the op,osed lists were paired up by at ieceut ter or our judjes in asreée t vitn Csuood's relations. This lack of agreement was not due to the uneliability of ti:e judgents since at least sixteen judyes ajeed on puibine trree worús which were not paired by Ostrood.

The extert of disacreenent between the two methods of juding sinilarjuy relations (nlus ossible population differences) would seem to areue trat stadies on transfer ard retroaction with verbal asterial must first make certain that the methods for judung similarity are defensible and that they are in fact cross-situational. Otherwise, stuaies reportine to vary siailarity relations may not be varying this diaension, or varying it in a marner quite different fron taat interided.

One possible way of avoiding the uncertainties of the judged sinilarity approach would be a procedure for building up different levels of strerfoth between pairs of words in tie laboratory prior to tie test for transfer. His could be done by varyina the number of joint ex osures of pairs of words or by setility levels of anticipation or recall of a word in the lair wien the other was preserted.

It was hypothesized that the difference between the Csgood and Eugelski stuides migut be a function of tie mixed ama unixed lisus desion. Instedd, the results of this study support wae finiing of T..edt and Underwood (1959) that there is no difference between mixed lists desicn. The single siorificant difference that occurred in one block of four words of tiee neutral relation seens due to an interaction between list desio cin tie nature of the particular four words involved. This interaction could not le tested directly due to the lack of an a moprate statistical test.

It is still possivle tiat the use of tire two designs wieft affect trausfer and retroaction if different meanir jful relations are lised, such as hijhly similar responses (smonyms) and antaconistic or oposite res onses.

An inleresting finding in tine present siudy in the sex differences occurring on each of the varialles. Wonen $\dot{i} i a^{a}$ consistently significanuly better than men in all analyses of unaixed lists and in irials to criterion of mixed lists.

This variable hos been ne;lected in previous studies on verbal iransfer and retroaction with adult subjects.

SUZ：ARY

The purpose of the fresent study was to study trarsfer and retroaction as a function of mixed and unimed list design，usinj a pared associate verbal task，varyine res，onse sinilarjty alonj the dimersions used by Os， 0 od（1945）wilile holdinj stinuli constant． Osuood（19：40），usiņ a inixed list design，reported that varying response similarity resulted in neeative trans－ fer and retroactive interference wich jncreased as response similurity decreased．Bugelski and Cadwallader （ユッラ゙），using an unaixed list design，and usins the sane respunse sinilarity dinsmion，rejortei that this resonse variation resulted in retroaction whicin decreases as similarity decreases．Recently，Twedt and Underwood （1950）found no sionificant differences in anount of transfer between mixed and unnixed list procedures， but failed to fully chech．all the response siuilarity variations of Oscood．

Ninety－six IS in six experinental groups learned an orijinal list and a transfer list，and were given one recall trial on the orieinal list．The transier task for the mixed list grous contained all three responses variations－sinilar，neutral and oposed． The transfer list for eaci unaixed list group remesen－ ted unly one res，onse variation．

The nerformance neasures used were mumber of trials to crilerion on the II task, number of correct responses during tie first six IL triais, and the number of words recalled durinf tie recall trial. Statistical analyses were performed on the results for mixed and unixed listis twetrer, and on each séarately.

No sionificant differerces were fumb vetween the varions exserimental groups on nuber of trisis to criberion arime tie II task or nurer af words recslled on the recall trial.

Eivificant $\dot{\text { Gifererces were fouk w en comaring }}$

 res, onse similurity decuetses, he revabive ararer increases, then becreases, then incresses to about the sant level as bue sivilar conition.

A checr on tire adequacu of tie scole vaiues of Os eood's resuonse si ilarity dinesion witn 40 …icivan Sbate Unversibe sturent iures Fume only slif t
 un at the contradictory results may be due to a farure to abrumbely control ressonse similazaz.

The difference in transer resild na, alsu be sttributable to the seater numer of OI and IL trials
required by our 2 e to neet criterjon corered to

Trs nixed and moixed srocedures were not sie-
rifjcarti jurferest - confiruju tie realibs of Tweat ard Tnder.rod.

 aqpaisel of he trancrep and retrode a sur-

3. Gibson, $2 . J$. A sutematic a lication of tioe concerts of enexalization and bifferendiabion
 15-28.
4. Inchilion, r.u. Eevioucbive facilitabion at; a Euncion of depre of enereliation vetaten

 сј,

 $1900, ~ \mathrm{LOL} 1,1-200$.
10. Gsjood, ©.c. edniagful si ilerity and inter-
 27.-301.
11. Oscood, C.E. The sinilarity vamadox in maman leening. Egychol. Rev., 1v43, 23, 132-143.
12. Robinson, D.s. The similarity factor in retro-

13．Slanecka，f．u．ard Seraso，J．Setuoactive and proactive inhibition of verial learnjug．Eruchol．

14．Tuedt，H．．．．and ündernood，B．J．．．．ixed vs．unuixed Iisus in transfer stusies．U．exn• psenol．， コンラジ，23，111－11ロ。

SFEDIX A

Orivinel Leurrin．

Mis exporinent is desicred to test how rajiuly Vou can learn tuelve pairea itens．She first iteus are too letteas such as l．u．，and they will apees here in the wirion．（FOLNi IN IN）Ge obler itens are words，and they will apear tere in tae wiadow． （「OIS思 II）

 letter：tion t．ee aciare iin nove，and you wil see the letuers a juin with the word iney dre puired aithon tie right．The firet ti ne thron hene list，
 words when you first see the．．Men you see these sters ajain，you will be goinj theujh the list for
 rest of lhe lists，the to anticipste oui loud，wen you $\equiv e t$ the lettere，the norg it is puirei witio， berore it arers in the wina．＂ou have tro sec－ oris to anticipate．If you say tice mohy norí，or
 when it apeure．rive lists are not in bry soecial order，so don＇t try to menoriae that，jusit the pairs． It is all rijht to ひUEss．Any questions？

Intervoteted Iewning
\therefore are going to lean a different list non,
in the sane a, so lifefirst bine throujh the list, sau the puias out loud, and then start anticisotiry.

Recall

Now we will have one trial on the list you
leamed first. Please try to anticipate as aany as you can this one tine through the list.

Rum dee ox y
NOV man
\square

