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ABSTRACT

COLLIDER PHENOMENOLOGY OF HEAVY CHARGED GAUGE BOSONS

By

Jiang-Hao Yu

New vector resonances, such as heavyW ′ and Z′ gauge bosons, may be one of the cleanest

and most important signals of new physics that can be discovered in the early data from the

CERN Large Hadron Collider (LHC). Such new heavy gauge bosons arise in numerous gauge

extensions of the Standard Model (SM) of particle interactions. Their discovery would help

to elucidate the nature of the spontaneous symmetry breaking at the weak scale. In this

thesis, we focus on extended gauge models with these novel electroweak gauge bosons in the

framework of an effective theory. Based on breaking patterns and fermion assignments, we

classify a number of models with SU(2)1×SU(2)2×U(1)X gauge symmetry (the so-called

G(221) models) and write down the general Lagrangian and Feynman rules in a linearized

effective field theory.

The current constraints on G(221) models are studied in detail. This is done by com-

bining the indirect constraints from the precision electroweak tests (EWPT) at the Large

Electron Positron (LEP) collider with other low energy observables. Moreover, direct search

constraints from the Fermilab TeVatron and the LHC are also included. Our results indicate

that, although the light W ′ and Z′ bosons are allowed by EWPTs, direct constraints require

the masses of the W ′ and Z′ bosons in G(221) models to be at the TeV scales.

In this thesis, we also consider the prospect for discovering these bosons in the coming

data from the LHC. We focus on searches for heavy resonances in final states with a lepton

plus large amounts of missing energy. Having a lepton and large missing energy in the final



state ensures the experimental collaborations can readily identify these potential signatures

of new physics. We explore the potential for discovering the heavy charged gauge bosons in

the G(221) models in the coming data, as well as the ability to place limits on their masses

and couplings. It is shown that in some models it is more efficient to use the W ′ leptonic

decay channel for discovery or exclusion than the Z′ leptonic decay channel. Also, we note,

for various G(221) phobic models, observing a Z′ alone cannot rule out the possibility of a

non-abelian gauge extension of new physics.

To help unravel the nature of the new gauge bosons, it is necessary to study the properties

of the charge gauge bosons in the top quark channels. We show that it is possible to probe the

chiral structure of the charged gauge bosons using top quark polarization with the upcoming

data from the LHC. Furthermore, a flavor-violatingW ′ model might explain the anomalously

large forward-backward asymmetry of the top pairs. An anomalously large forward-backward

asymmetry was observed at both the CDF and DØexperiments at the TeVatron. Finally, we

explore the searches for a top-philic W ′ in the top quark pair plus a hard b-jet final states

at the LHC. This provides a sensitive test for exotically charged gauged bosons.
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Chapter 1

INTRODUCTION

1.1 Charged Gauge Bosons in the Standard Model

The standard model (SM) provides a very successful description of the properties and inter-

actions of the existing particles without serious discrepancy with almost all existing data.

The discovery of the charged gauge bosons W± and the neutral massive gauge boson Z

with expected masses is a great triumph of the model. During the development of the SM,

the charged gauge bosons W± played an important role in the discovery of the electroweak

gauge symmetry SU(2)L × U(1)Y , in which the electromagnetic and weak interaction are

unified into a renormalizable field theory. Here we briefly review the history of charged gauge

bosons in the standard model, and refer to refs. [1, 2, 3] for details.
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1.1.1 Fermi Theory of Weak Interaction and Unitarity Violation

The weak interaction among elementary particles was first discovered in the β-decay of

neutron

n → p+ e− + ν̄. (1.1)

The theory of weak interactions was originally formulated by Fermi through the charged

current-current interactions in quantum field theory

Hweak = GF [ψ̄pγµψn] [ψ̄eγ
µψν ], (1.2)

where GF is the weak coupling constant which has a much smaller value than the electro-

magnetic coupling constant e. After discovery of parity violation in the weak interaction,

the weak interaction Hamiltonian was reformulated to a more general form

Hweak =
∑
i

GF i [ψ̄pOiψn] [ψ̄eOi(1 + ciγ5)ψν ], (1.3)

where ci is taken to be −1 since the parity violation is maximum and the neutrino is left-

handed, and the index i represents the type of the Lorentz structure O with

OS = 1 (scalar),

OV = γµ (vector),

OP = γ5 (axial-scalar),

OA = γµγ5 (axial-vector),

OT = σµν (tensor).
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Later experimental evidence on the V − A Lorentz structure and universality of the

fermi constant GF in various weak processes, suggested that the Hamiltonian of the weak

interaction was described by the V −A current-current interactions

Hweak =
GF√
2
[ψ̄pγµ(1− gAγ5)ψn] [ψ̄eγ

µ(1− γ5)ψν ], (1.4)

where the Fermi constant is GF = 1.166364× 10−5 GeV−2, and gA � 1.26.

Although the Fermi theory described the low energy weak interaction processes suc-

cessfully, it encountered difficulty in explaining theory-motivated problems, i.e., unitarity

violation in the weak scattering process, and non-renormalizability beyond the lowest-order

approximation. Consider the neutrino-electron scattering process

νe + e− → νe + e−, (1.5)

where the Hamiltonian is given by

Hweak =
GF√
2
[ψ̄νeγµ(1− γ5)ψe] [ψ̄eγ

µ(1− γ5)ψνe ]. (1.6)

The differential cross section for this process is

dσ

dΩ
=

G2
F

4π2
s, (1.7)

where s is the center of mass energy squared of the system. On the other hand, the differential
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cross section can be decomposed into partial wave amplitudes

dσ

dΩ
= | 1

2
√
s

∞∑
�=0

(2�+ 1)a�P�(cos θ)|
2, (1.8)

where a� is the partial wave amplitude for angular momentum �. In the case of Fermi

interaction, only a0 contributes to the differential cross section

dσ

dΩ
=

1

s
|a0|2 ≤ 1

s
, (1.9)

where |a0| < 1 from the unitarity property in quantum mechanics. From the upper bound

of the cross section, one find that the Fermi theory violates unitarity at an energy above

E =

√
s

2
≥
√

π

2GF
� 370 GeV. (1.10)

1.1.2 Intermediate Charged Weak Boson Model

The difficulty of unitarity violation can be avoided if the analogy with the electromagnetic

interaction is extended to include a virtual intermediate charged weak boson as the mediator

of the weak processes. This is a successful phenomenological model to describe the charged

weak processes even at the high energy scale. Consider again the process νe+e− → νe+e−

as an example. Assuming the charged gauge boson exchange between two charged currents,

the matrix element describing this process is

M =

[
gW√
2
ūeγµ

1− γ5
2

uνe

] −gµν +
qµqν

M2
W

q2 −M2
W

[
gW√
2
ūνeγν

1− γ5
2

ue

]
, (1.11)
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where MW is the mass of the charged gauge bosons W , q is the four-momentum of the

W -boson, and gW is the dimensionless weak coupling constant. At low energy where q2 is

far smaller than the gauge boson mass MW , the propagator term reduces to

−gµν +
qµqν

M2
W

q2 −M2
W

→ gµν

M2
W

, (1.12)

and the above matrix element reduces to the Fermi Hamiltonian of Eq. 1.6, with

GF√
2
=

g2

8M2
W

. (1.13)

Because the range of the weak interaction is very small, this indicates the mass of the

intermediate gauge bosons is large, and can be estimated to be of the order of O(100 GeV).

In this model, the unitarity problem in the scattering process νe + e− → νe + e− is solved,

because of the existence of the weak boson mediator.

Although this immediate charged weak boson model cures the unitarity violation problem

in this particular channel, it still has problems of non-renormalizablity. Loop calculation

involving in the charge gauge boson can not be renormalized to get the finite results in this

model. Furthermore, the unitarity violation still occurs in other scattering processes like

ν + ν̄ → W+ + W−. Writing down the matrix element in this process, one can calculate

the differential cross section

dσ

dΩ
=

G2
F sin2 θ

3π2
s, (1.14)

where s and θ are the center of mass energy sqaured of the system and the polar angle in

the center of mass frame. Notice that the cross section increases with s and hence violates
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the unitarity bound at some high energy.

1.1.3 The Standard Model and Moose Diagram

Although the intermediate charged boson model describes the phenomenology relevant to

the charged-current processes successfully, it is still an effective theory, due to the non-

renormalizability and unitarity violation. A beautiful renormalizable theory was finally

formulated based on the unification of the electromagnetic and weak interactions, which

is the so-called electroweak standard model. Let us review the essential elements of the

electroweak theory following the ref. [4].

The essential ingredient of the SM is the non-abelian gauge group with SU(2)L×U(1)Y

symmetry, where the subscript L represents the weak isospin for the left-handed fermion

fields, and Y denotes the weak hyper-charge. The electroweak gauge group, SU(2)L×U(1)Y ,

implies two sets of gauge fields: a weak isovector Wµ, including two charged components

W±
µ and one neutral component W3

µ , with coupling constant g, and a weak isoscalar Bµ,

with coupling constant g′. Corresponding to these gauge fields are the field-strength tensors

Fa
µν = ∂νWa

µ − ∂µWa
ν + gεabcW

b
µWc

ν , (1.15)

for the weak-isospin symmetry, and

Bµν = ∂νBµ − ∂µBν , (1.16)

for the weak-hypercharge symmetry. From the non-abelian gauge theory, the kinematic term
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in the gauge boson sector can be written as

Lgauge = −1

4
Fa
µνF

aµν − 1

4
BµνB

µν. (1.17)

For the fermion sector, the electroweak theory takes the crucial clues from experiment:

the existence of left-handed weak-isospin doublets and massless neutrinos. To conserve the

electromagnetic interaction in the gauge group, the quantum numbers satisfy the relation

between the weak hypercharge Y and weak isospin, Q = I3+
1

2
Y . The fermions are specified

based on the quantum numbers: a left-handed weak isospin doublet

I3 Q Y = 2(Q− I3)

Ll =


 ν

e



L

1

2

−
1

2

+0

−1

−1 ,

(1.18)

and right-handed weak isospin singlets

I3 Q Y = 2(Q− I3)

Rν = νR

Re = eR

0

0

+0

−1

+0

−2

,

(1.19)

where we have induced the possibility of a right-handed neutrino. To extend our theory to

include the electroweak interactions of quarks, we observe that each generation consists of a
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left-handed doublet

I3 Q Y = 2(Q− I3)

Lq =


 u

d



L

1

2

−
1

2

+
2

3

−
1

3

1

3
,

(1.20)

and two right-handed singlets,

I3 Q Y = 2(Q− I3)

Ru = uR

Rd = dR

0

0

+
2

3

−
1

3

+
4

3

−
2

3

,

(1.21)

The fermion Lagrangian can be written as

Lfermions = R iγµ

(
∂µ + i

g′
2
AµY

)
R (1.22)

+ L iγµ

(
∂µ + i

g′
2
AµY + i

g

2
�τ ·�bµ

)
L.

The SU(2)L × U(1)Y gauge symmetry forbids a mass term for the fermions. Moreover,

the theory we have described contains four massless electroweak gauge bosons, namely Bµ,

W1
µ , W

2
µ , and W3

µ , whereas nature has but one: the photon. To give masses to the gauge

bosons and constituent fermions, we must hide the electroweak symmetry. The Higgs mecha-

nism can give masses to the gauge bosons and fermions through the spontaneous breakdown

of the gauge symmetry. Since nature has one massless photon, the following breaking pattern
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is taken

SU(2)L × U(1)Y → U(1)em. (1.23)

To fulfill this symmetry breaking, we introduce a complex doublet of scalar fields

φ ≡


 φ+

φ0


 (1.24)

with weak hyper-charge Yφ = +1. The gauge-invariant Lagrangian for the interaction and

propagation of the scalars is given by,

Lscalar = (Dµφ)†(Dµφ)− V (φ†φ), (1.25)

where the gauge-covariant derivative is

Dµ = ∂µY + i
g

2
�τ · Aµ + i

g′
2
Bµ , (1.26)

and the potential interaction has the form

V (φ†φ) = µ2(φ†φ) + |λ| (φ†φ)2, (1.27)

where µ and λ are real constant parameters. To give masses to the fermions, it is necessary

to add a Yukawa interaction between the scalar fields and the fermions,

LYukawa = −
[
R(Y �φ†L) + (LY φ)R

]
, (1.28)
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where Y are called Yukawa coupling matrices, and cannot be predicted within the model.

To summarize the above, the full Lagrangian in the electroweak standard model can be

given by

L = −1

4
FaµνF

aµν + iψ /Dψ + h.c.

+ ψ̄iyijψjφ+ h.c. + |Dµφ|2 − V (φ) ,

where we have summed over the different fermions and gauge bosons. However, the above

simple Lagrangian does not contain the information on the quantum numbers of the gauge

bosons, fermions and scalars. The Moose notation [5] is introduced to summarize the SM

Lagrangian with full information diagrammatically. In Fig. 1.1, we plot the Moose diagram

for the standard model. Each circle represents a gauge group, and the links between circles

are the Higgs doublet which is charged under two symmetry groups. The dashed lines

emerging downward and upward from the circles represent the left-handed and right-handed

leptons, respectively, and the solid lines emerging downward and the upward represent the

left-handed and right-handed quarks, respectively. The diagonal dashed green lines represent

the Yukawa couplings through the Higgs doublet.

The electroweak symmetry is spontaneously broken if the parameter µ2 < 0. The mini-

mum energy, or vacuum state, may then be chosen to correspond to the vacuum expectation

value

〈φ〉 =


 0

v/
√
2


 , (1.29)

where v =
√
−µ2/ |λ|. In the unitary gauge, the Lagrangian for the scalars and gauge boson
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SU(2) U(1)
〈φ〉 ∼ v

Figure 1.1: The Moose diagram for the standard model. For interpretation of the references
to color in this and all other figures, the reader is referred to the electronic version of this
thesis.

masses becomes,

Lscalar =
1

2
∂µH∂µH − 1

2
M2
HH2 − λvH3 − λ

4
H4

+
g2

8
(H2 + 2Hv)

[
1

cos2 θW
ZµZ

µ + 2W+
µ W−µ

]

+ M2
WW+

µ W−µ +
1

2
M2
ZZµZ

µ, (1.30)

where the new gauge bosons Z and A are admixtures of the gauge bosons W3 and B as

follows

Z = cos θWW3 − sin θWB , (1.31)

A = cos θWB + sin θWW3 , (1.32)
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and the masses of the W -boson and Z-boson are

M2
W =

v2

4

e2

sin2 θW
, (1.33)

M2
Z =

v2

4

e2

sin2 θW cos2 θW
. (1.34)

With the wave-function mixing, the charged current and neutral current are

LCC =
g√
2
(J−µ W−µ + J+µ W+µ), (1.35)

LNC = gJ3µW
3µ + g′

JYµ

2
Bµ)

= (g sin θWJ3µ + g′ cos θW
JYµ

2
)Aµ

+ (g cos θWJ3µ − g′ sin θW
JYµ

2
)Zµ, (1.36)

where the currents are

Jaµ = Lγµ
τa

2
L, (1.37)

JYµ = LγµY L+ RγµY R. (1.38)

In the standard model, the unitarity violation is recovered even at high energy scales.

Consider the charged gauge boson scattering process W+
L W−

L → W+
L W−

L [6], in which the

Feynman diagrams are the t- and s-channels of γ and Z exchanges, the 4-point vertex, and

the s- and t-channels of Higgs exchanges. At high energies, the longitudinal polarization of

the W boson can be expressed as ε
µ
L
(p) = pµ/mW + vµ(p), which is used in the equivalent

theorem [7]. Because the longitudinal polarization of the charged gauge boson dominates in
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the scattering process, the high energy behavior of individual Feynman diagram grows with

the center of mass energy squared s like

M(s, t) = A

( √
s

MW

)4
+B

( √
s

MW

)2
+ C, (1.39)

where the coefficients A,B and C are functions of the polar angle θ in the CMS frame and the

coupling constant g. On summing over diagrams except the Higgs exchange, the coefficient

A cancels, but B has contributions

B = − g2

8M2
W

(1 + cos θ) . (1.40)

Including in the Higgs contribution, there is full cancellation of the B term. Thus, the

bad energy-growing term is delicately canceled between the gauge diagrams and the Higgs

diagrams. On summing over all diagrams, the final result is

M(s, t) = −
g2M2

H

4M2
W

[
s

s−M2
H

+
t

t−M2
H

]
. (1.41)

Performing the partial wave analysis, we obtain that the dominate S-wave amplitude is

|a0|2 =
1

64π

∫ 1

−1
d cos θM

(
W+
L
W+
L

→ W+
L
W+
L

)

= −
GFM2

H
8
√
2π

[
2 +

M2
H

s−M2
H

−
M2
H
s

ln(1 +
s

M2
H

)

]
. (1.42)

If the Higgs mass is smaller than
4
√
2π

GF
� 1 TeV, the unitarity violation is avoided. However,

if the Higgs couplings to the charged gauge boson deviate from the standard model couplings
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to a fraction
√
δ of the SM value, the unitarity cancellation is only partial. In the high energy

limit, the total amplitude becomes

iMgauge + iMHiggs � i
g2

4m2
W

(u+ t) (1− δ) . (1.43)

One can then obtain [10] the cross section of WW scattering as a function of δ, as shown in

Fig.1.2.
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Figure 1.2: Scattering cross sections for W+
L W−

L → W+
L W−

L versus
√
sWW . Various values of δ

are shown, where δ denotes the size of the Higgs amplitude relative to the SM one. An angular cut
of | cos θWW | < 0.8 is applied and the light Higgs boson mass mh = 200 GeV is assumed. Figure
taken from [10].
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1.2 New Physics and Heavy Charged Gauge Bosons

1.2.1 Motivation for New Physics

With the start of the CERN Large Hadron Collider (LHC), a new era of discovery has just

begun. It will revolutionize particle physics by opening the TeV energy region to direct

experimental exploration. One of the primary motivations for LHC experiments is searching

for the Higgs boson, and understanding its role in the origin of electroweak symmetry break-

ing. Recently, the ATLAS and CMS Collaborations have reported their updated searches

for the SM Higgs boson: they find a local 3σ level excess in γγ final states at 125 GeV, and

a small excess in ZZ final states.

Although the 3σ evidence of a 125 GeV Higgs boson indicates another success of the

SM, it also guides us towards the physics beyond the standard model. If it is a non-SM

Higgs boson, which means the Higgs couplings to gauge bosons deviate from the SM value,

we showed that unitarity violation will happen in the WW scattering process at some high

energy scale. New particles are needed to remedy this problem. On the other hand, if it

is the SM Higgs, there are still some theoretic issues in the SM: the hierarchy problem and

vacuum stability.

Let us consider the hierarchy problem first, following ref. [4]. Beyond the classical ap-

proximation, gauge boson, fermion and scalar mass parameters receive quantum corrections

from loops that contain particles of spins J = 0,
1

2
, and 1. Because of gauge symmetry and

chiral symmetry, the loop corrections of the gauge boson and fermion mass parameters are

proportional to ln Λ, where Λ defines a reference scale where the SM is still valid. How-

ever, there is no symmetry to protect the Higgs mass parameters in the loop calculation.
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Symbolically we write down the loop corrections to the Higgs mass parameters

M2
H (p2) = M2

H (Λ2) + ,

where the dashed lines represent the Higgs boson, solid lines represent fermions and anti-

fermions, and wavy lines represent gauge bosons. The quantum corrections can be written,

with the divergence Λ included, as follows,

M2
H = M2

H (Λ2) + Cg2
∫ Λ2

0
dk2 + · · ·

= M2
H (Λ2) +

GFΛ
2

4π2
√
2
(6M2

W + 3M2
Z +M2

H − 12m2
t ), (1.44)

where C is a finite coefficient. The loop integrals are quadratically divergent, ∝ Λ2. In the

absence of new physics, a natural reference scale Λ is the Planck mass, Λ ∼ MPlanck =(
�c/GNewton

)1/2 ≈ 1.2 × 1019 GeV. The challenge of preserving a modest value of the

Higgs mass M2
H at about the electroweak scale through the fine-tuning cancellation between

the huge loop corrections and M2
H (Λ2) is known as the hierarchy problem. Some new

physics, a new symmetry or new dynamics, should reduce the loop correction from the

quadratic divergence to a reasonable value.

Another inconsistency comes from the vacuum stability [8]. Shown in Fig. 1.3, for a light

Higgs with about 125 GeV mass, there is a band below which the present electroweak vacuum

becomes unstable against decay into a vacuum with 〈|φ|〉 ∼ 1010 GeV. This instability is

due to the negative renormalization of λ by the top quark, which overcomes the positive

renormalization due to λ itself, and drives λ < 0. One could avoid this vacuum instability

by introducing some new physics at an energy scale < Λ to overcome the negative effects of
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renormalization of λ.

Although there are several existing theoretical problems with the SM, the experimental

measurements at the LEP, Tevatron and LHC are very consistent with the SM. Since there

are no obvious hints of new physics beyond SM, many possible theories of new physics have

been proposed to solve the hierarchy problem and to explain the electroweak symmetry

breaking mechanism, such as supersymmetry, extra dimensions, strong dynamics, and so on.
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Figure 1.3: The scale Λ at which the two-loop RGEs drive the quartic SM Higgs coupling
non-perturbative (upper curves), and the scale Λ at which the RGEs create an instability in
the electroweak vacuum (lower curves). Figure taken from [9].
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1.2.2 Phenomenology of New Charged Gauge Bosons

There are two approaches to the theoretical exploration of new physics: top-down model

building and bottom-up effective theory. The effective theory approach offers us a way

to explore the unknown physics before it is finally formulated. Like the intermediate gauge

boson model of the weak interactions, we would like to study phenomenology of new particles,

such as new gauge bosons, new fermions, new scalars, and the graviton, in the framework of

an effective field theory.

As remnants of electroweak symmetry breaking, extra gauge bosons exist in many new

physics (NP) models beyond the standard model of particle physics. Importantly, their

discovery would help to elucidate the nature of the spontaneous symmetry breaking at the

weak scale. According to their electromagnetic charges, extra gauge bosons are usually

separated into two categories: charged gauge bosons W ′ and neutral gauge bosons Z′. While

a Z′ boson could originate from an additional abelian U(1) group, the W ′ bosons are often

associated with an extra non-abelian group.

Such new heavy gauge bosons arise in numerous gauge extensions of the standard model

of particle interactions. The simplest gauge extension involves an additional U(1)X gauge

symmetry (and thus an extra gauge boson Z′). One of the next-simplest extensions is the

model with a SU(2)1 × SU(2)2 × U(1)X gauge group, obtained by adding an additional

SU(2) group to the SM. The left-right model [11, 12, 13] is perhaps the most widely-studied

example of such a model. Motivated from the unification of gauge couplings, grand unified

models are proposed by extending the gauge symmetry to the SU(5) or SO(10) group [14].

However, the above extensions of the gauge symmetry can not solve the hierarchy problem.

To resolve the hierarchy problem, new symmetries or new dynamics are needed in addition
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to the extended gauge groups. An example of a class of extended gauge models with new

global symmetries is the little Higgs scenario[15][16][17], in which the Higgs is a psuedo-

Goldstone boson. Another scenario is the extra-dimensional models with Kaluza-Klein W ′

bosons [18], such as Higgsless models [19][20], and Gauge-Higgs models [21][22]. However,

we will not address the hierarchy problem in the extended gauge models, but only focus on

the phenomenological consequences of the heavy charged gauge bosons.

In this thesis, we focus on the collider phenomenology of heavy charged gauge bosons.

The minimal extension of the standard model, which consists of heavy charge gauge bosons,

exhibits a gauge structure of SU(2)×SU(2)×U(1), named the G(221) in ref. [24]. Searches

for the heavy charged gauge bosons in the lepton final states, may yield one of the cleanest

and most important signals of new physics that can be discovered in the early data from

the LHC. On the other hand, investigating these new gauge bosons in the top quark final

states, and determining their quantum numbers would shed light on the gauge structure of

new physics.

This thesis is organized as follows. Chapter 2 introduces the G(221) models within the

framework of an effective field theory with the gauge symmetries SU(2)1×SU(2)2×U(1)X

models. We discuss the Lagrangians, the particle spectrum, and the experimental observables

in these G(221) models. The combined constraints from the electroweak precision data, and

direct searches at the Tevatron and LHC are discussed.

Chapter 3 presents the Drell-Yan production of the heavy charged gauge bosons in G(221)

models and its decay channels. We perform the next-to-leading order calculation of the Drell-

Yan production of the heavy gauge bosons. Then we analyze the signal and backgrounds in

the lepton plus missing transverse energy final states at the LHC. We show how to calculate
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the upper limits using Bayesian statistics. Finally, we discuss the discovery reach of the

heavy gauge bosons at the LHC.

Chapter 4 describes the study of the heavy charged gauge bosons in the top quark final

states. A Monte-Carlo simulation is performed on the signal and backgrounds. We show that

it is possible to probe the chiral structure of the charged gauge bosons using the top quark

polarization. We also investigate the possible origin of the forward-backward asymmetry in

the top pair final states in the flavor-violating W ′ model.

Chapter 5 discusses the discovery and identification of a possible exotic W ′, in which

W ′ only couples to the third generation quarks, in the top pair plus bottom jet final states.

We also study the chiral structure of the W ′-bosons using the final state lepton angular

distribution of the top quark.

In appendix A, we list the complete sets of Feynman rules of the G(221) models. In

appendix B, we discuss the statistics for the upper limit and significance in the Bayesian

and frequentist approaches.
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Chapter 2

MODELS OF HEAVY CHARGED

GUAGE BOSONS

2.1 Introduction

Although the Standard Model has tremendous success in describing a wide range of physical

phenomena, there are still open questions that are unanswered and motivate further model-

building. Since the electroweak gauge group SU(2)L × U(1)Y is the cornerstone of this

model, one of the most common model-building tools is to extend the gauge structure of

the Standard Model. The simplest extension involves an additional U(1)X gauge symmetry

(and thus an extra gauge boson Z′). One of the next-simplest extensions is the model with

SU(2)1×SU(2)2×U(1)X gauge group by adding an additional SU(2) group. The left-right

model [11, 12, 13] is perhaps the most widely-studied case of such models. On the other hand,

given the extended gauge group SU(2)1 × SU(2)2 ×U(1)X in the electroweak sector, there

are many other kinds of models besides the left-right model which can be constructed, and
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which may have very different collider phenomenology. Motivated by the unification of gauge

couplings, grand unified models are proposed by extending the gauge symmetry to SU(5) or

SO(10) group. To incorporate a global symmetry in which the Higgs is a psuedo-Goldstone

boson, there are various Little Higgs models with extended gauge groups. In the case that

SU(2)1 × SU(2)2 × U(1)X symmetry is the sub-group of the new physics models, one can

establish an effective theory with SU(2)1 × SU(2)2 × U(1)X symmetry by integrating out

the heavy particles in the higher scale.

Based on the effective theory framework, we present a unified, systematic study of many

such models, which are commonly called G(221) models in the literature. In this section

we briefly review the G(221) model and the masses and couplings of W ′ and Z′ bosons.

In particular we consider various G(221) models categorized as follows: left-right (LR) [11,

12, 13], lepto-phobic (LP), hadro-phobic (HP), fermio-phobic (FP) [27, 25, 26], un-unified

(UU) [28, 29], and Top-flavor (TF) [31, 30, 32]. We also considered a widely-used reference

model in the experimental searches: the sequential W ′ model (SQ). In the LR model and SQ

models, if the gauge couplings are assigned to be the same for the two SU(2) gauge groups,

the models are considered as the manifest left-right model (MLR), and manifest sequential

model (MSQ). In the MSQ, the W ′ couplings to fermions are the same as the standard

model W couplings to fermions, which served as the reference model in the experimental

searches. We focus our attention on the full Lagrangian of the extra gauge bosons in the

G(221) model.
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2.2 Model Classification by Moose Diagrams

We focus on the so-called G(221) models having a SU(2)1×SU(2)2×U(1)X gauge structure

that ultimately breaks to U(1) em. Relative to the Standard Model, these models have three

additional massive gauge bosons, and their phenomenology depends on the specific patterns

of symmetry breaking as well as the charge assignments of the SM fermions.

The SU(2)1 × SU(2)2 × U(1)X gauge symmetry can be broken through mass mixing

or/and kinetic mixing of the gauge bosons. In this note, we would like to discuss the models

with mass mixing only, which can be categorized by three patterns of symmetry breaking:

• Breaking pattern I (BP-I):

We identify SU(2)1 as SU(2)L of the SM. The first stage of symmetry breaking then

is SU(2)2×U(1)X → U(1)Y , giving rise to three heavy gauge bosons W ′± and Z′ at

the TeV-scale. The second stage is SU(2)L × U(1)Y → U(1) em at the electroweak

scale.

• Breaking pattern II (BP-II):

We identify U(1)X as U(1)Y of the SM. The first stage of symmetry breaking is

SU(2)1 × SU(2)2 → SU(2)L. The second stage is SU(2)L × U(1)Y → U(1) em at

the electroweak scale.

• Breaking pattern III (BP-III):

We assume there is a hidden SU(2) gauge symmetry, which comes from dynamical

symmetry breaking sector. There is only one stage of symmetry breaking SU(2)L ×

SU(2) hidden × U(1)Y → U(1) em at the electroweak scale.

The symmetry breaking is assumed to be induced by fundamental scalar fields, except in the
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breaking pattern III, in which the model has no Higgs, called the Higgs-less model [27]. The

quantum number of the scalar fields under the G(221) gauge group depends on the breaking

pattern. It is possible to choose several kinds of Higgs multiplets in first or second breaking

stages, as shown in Table 2.1. In the BPI, the symmetry breaking of SU(2)2 ⊗ U(1)X →

U(1)Y at the TeV scale could be induced by a scalar doublet field Φ ∼ (1, 2)1/2, or a

triplet scalar field (1, 3)1 with a vacuum expectation value (VEV) u, and the subsequent

symmetry breaking of SU(2)1 ⊗ U(1)Y → U(1)Q at the electroweak scale could be via

another scalar field H ∼ (2, 2̄)0 with two VEVs v1 and v2, which can be redefined as a VEV

v =
√
v21 + v22 and a mixing angle β = arctan(v1/v2). In the BPII, the symmetry breaking

of SU(2)1 ⊗ SU(2)2 → SU(2)L at the TeV scale is owing to a Higgs bi-doublet Φ ∼ (2, 2̄)0

with only one VEV u, and the subsequent breaking of SU(2)L ⊗ U(1)Y → U(1)Q at the

electroweak scale is generated by a Higgs doublet H ∼ (1, 2)1/2 with the VEV v. Since the

precision data constraints (including those from CERN LEP and SLAC SLC experimental

data) pushed the TeV symmetry breaking higher than 1 TeV, we shall approximate the

predictions of physical observables by taking a Taylor expansion in 1/x with x = u2/v2. We

will only focus on models with physical Higgs multiplet. Thus, the Higgsless model is not

discussed.

The G(221) models can be further classified based on the charge assignments of the SM

fermions. In the breaking patterns I and II, the SM fermions can be assigned to be the

electroweak doublets under SU(2)1 and/or SU(2)2 symmetry, such as the left-right model

(LR) in BP-I and the sequential model (SQ) in BP-II. If the SM fermions with different

flavors or generations belong to doublets in different SU(2) gauge symmetries, it is called a

flavor or generation non-universal model, such as the lepto-phobic (LP), hadro-phobic (HP),
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and fermio-phobic (FP) model in BP-I, and the top-flavor (TF), and un-unified (UU) model.

We display the moose diagrams for BP-I models and BP-II models, in Figs. 2.1 and 2.2. In

Figs. 2.1 and 2.2 Each circle represents a gauge group, and the links between circles are the

Higgs multiplets which is charged under two symmetry groups. The dashed lines emerging

downward and upward from the circles represent the left-handed and right-handed leptons,

respectively, and the solid lines emerging downward and the upward represent the left-handed

and right-handed quarks, respectively. The diagonal dashed green lines represent the Yukawa

couplings through the Higgs doublet. For LP, remove the dashed line in the middle SU(2),

and attach to U(1). For HP, remove the black line in the middle SU(2) , and attach to

U(1). For FP, remove both the black line and dashed line in the middle SU(2), and attach

to U(1). In Table 2.2, we list the possible assignments for ΨL and ΨR.

SU(2) SU(2) U(1)
〈Φ〉 ∼ v 〈Σ〉 ∼ f

Figure 2.1: The Moose diagram for the breaking pattern I (Left-Right Model).
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SU(2) SU(2) U(1)
〈Σ〉 ∼ f 〈Φ〉 ∼ v

Figure 2.2: The Moose diagram for the breaking pattern II (Sequential Model).
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First stage breaking
Rep. Multiplet and VEV

LR-D, LP-D
HP-D, FP-D

Σ ∼ (1, 2,
1

2
) Σ =

(
φ+

φ0

)
, 〈Σ〉 = 1√

2

(
0

u D

)

LR-T, LP-T
HP-T, FP-T

Σ ∼ (1, 3, 1) Σ =
1√
2

(
δ+

√
2δ++

√
2δ0 −δ+

)
, 〈Σ〉 = 1√

2

(
0 0

u T 0

)

SQ, TF, UU Σ ∼ (2, 2, 0) Σ =

(
σ0 + π0

√
2π+√

2π− σ0 − π0

)
, 〈Σ〉 = 1√

2

(
ũ 0
0 ũ

)

Second stage breaking
Rep. Multiplet and VEV

LR-D, LP-D
HP-D, FP-D

Φ ∼ (2, 2, 0) Φ =

(
φ01 φ+1
φ−2 φ02

)
, 〈Φ〉 = ṽ√

2

(
cβ 0

0 sβ

)

LR-T, LP-T
HP-T, FP-T

Φ ∼ (2, 2, 0) Φ =

(
φ01 φ+1
φ−2 φ02

)
, 〈Φ〉 = ṽ√

2

(
cβ 0

0 sβ

)

SQ, TF, UU Φ ∼ (1, 2, 12) Φ =

(
φ+

φ0

)
, 〈Φ〉 = ṽ√

2

(
0
1

)

Table 2.1: These tables display the model-specific Higgs representations and VEVs that
achieve the symmetry breaking of G(221) models.
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2.3 G(221) Lagrangian in the Gauge Basis and Physical

Basis

2.3.1 Lagrangian in the Gauge Basis

The classical gauge invariant G(221) Lagrangian can be decomposed as

L = L Higgs + L Gauge + L Fermion + L Yukawa, (2.1)

where the terms on the right hand side are identified as the Higgs scalar part, the gauge

boson part, the fermion part and the Yukawa part respectively.

2.3.1.1 The Scalar Sector

The Lagrangian for the scalar fields are written as

L Higgs = Tr
[(
DµΣ

)† (DµΣ
)]

+ Tr
[(
DµΦ

)† (DµΦ
)]

− V (Σ,Φ) , (2.2)

where Σ is the scalar multiplet in the TeV symmetry breaking stage, and Φ is the Higgs

multiplet in the electroweak symmetry breaking stage. In the Moose diagram notation, two

link fields connect the three gauge groups. One link field with double lines represents Σ in

the first stage, while another link field with single line represents Φ in the second stage. The

Higgs potential V (Σ,Φ) is introduced to break the TeV and electroweak symmetries.

2.3.1.1.1 Scalar Multiplets in the Breaking Pattern I At the TeV breaking stage,

there are two kinds of typical scalar multiplet Σ, doublet and triplet, to generate masses for
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heavy gauge bosons W ′ and Z′. In the doublet case, we assign the Higgs doublet Σ as

Σ =


 φ+

φ0


 ≡


 (φ3 + iφ4) /

√
2

(φ1 + iφ2) /
√
2


 . (2.3)

The covariant derivative in the Eq. 2.2 is defined as follows

DµΣ = ∂µΣ + igRW
aµ
R

TaRΣ + igXBµXΣ. (2.4)

To generate the neutrino mass, it is popular to assign a scalar triplet,

Σ =


δ+R/

√
2 δ++

R

δ0R −δ+
R
/
√
2


 , (2.5)

where δ =
δr + iδi√

2
. The covariant derivative in the Eq. 2.2 is defined as follows

DµΣ = ∂µΣ+ igR

[
�τ

2
�WRµ,Σ

]
+ igXXBµΣ, (2.6)

where the quantum number X is 1.

In order to generate the masses for the W and Z bosons and SM fermion at the second

breaking stage, one introduces the bi-doublet

Φ =


φ01 φ+1

φ−2 φ02


 : (2, 2, 0) , (2.7)
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with

Φ̃ = τ2Φ
∗τ2 =


 φ0∗2 −φ+2

−φ−1 φ0∗1


 (2.8)

where φi =
1
√
2

(
φia + iφib

)
. The covariant derivative in Eq. 2.2 can be written as

DµΦ = ∂µΦ + igLW
bµ
L

TbLΦ− igRW
bµ
R

ΦTbR. (2.9)

2.3.1.1.2 Scalar Multiplets in the Breaking Pattern II To generate masses for the

heavy gauge bosons W ′ and Z′ at the TeV symmetry breaking stage, one introduces the

Higgs bi-doublet with the quantum number (2, 2)0

Σ = σ + i
τ

2
· π =

1√
2




σ + iπ3√
2

π1 + iπ2√
2

−π1 − iπ2√
2

σ − iπ3√
2


 , (2.10)

where the coefficient
1√
2
comes from the normalization of the kinetic term in Eq. 2.2. The

covariant derivative in Eq. 2.2 is defined as follows

DµΣ = ∂µΣ+ igLW
µa
L TaΣ− igRW

µa
R ΣTa . (2.11)

At the electroweak breaking stage, we use the Higgs doublet

Φ =


 φ+

φ0


 . (2.12)
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The covariant derivative is written as

DµΦ = ∂µΦ+ igLW
aµ
L

TaΦ + igXBµXΦ. (2.13)

2.3.1.2 The Gauge Boson Sector

We define W
µ
1 , W

µ
2 , and Bµ as the SU(2)1, SU(2)2, and U(1)X gauge fields, respectively.

The Lagrangian of the gauge bosons with SU(2)1 × SU(2)2 × U(1)X gauge invariance is

given as

L = −1

4
W

aµν
1 Wa

1µν − 1

4
W

aµν
2 Wa

2µν − 1

4
BµνBµν, (2.14)

where

W
aµν
1 = ∂µWν

1 − ∂νW
µ
1 + fabcg1(W

bµ
1 Wcν

1 −W
cµ
1 Wbν

1 ), (2.15)

W
aµν
2 = ∂µWν

2 − ∂νW
µ
2 + fabcg2(W

bµ
2 Wcν

2 −W
cµ
2 Wbν

2 ), (2.16)

Bµν = ∂µBν − ∂νBµ. (2.17)

Notice that the gauge bosons are still massless at this stage to ensure a gauge invariant

Lagrangian.

2.3.1.3 The Fermion Sector

The generic fermion terms can be written as

L =
∑
ΨL

Ψ̄Liγ
µDµΨL +

∑
ψR

ψ̄RiγµDµψR. (2.18)
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In Table 2.2, we list the possible assignments for ΨL and ΨR.

In the breaking pattern I, the covariant derivatives are

DµΨL =
(
∂µ + ig1T

a
LW

a
1µ + igXXBµ

)
ΨL, (2.19)

DµψR =
(
∂µ + ig2T

a
RWa

1µ + igXXBµ

)
ψR. (2.20)

where ΨL can be

QL =


 u

d



L

∼ (2, 1)1

6

, LL =


 ν

e



L

∼ (2, 1)
−1

2

; (2.21)

and ψR are different in different models in breaking pattern I. If the ψR is the right-handed

doublet QR, or LR, one will obtain

QR =


 u

d



R

∼ (1, 2)1

6

, LR =


 ν

e



R

∼ (1, 2)
−1

2

. (2.22)

One the other hand, if ψR is the right-handed singlet, the possible ψR would be

uR ∼ (1, 1)2

3

, dR ∼ (1, 1)
−1

3

, eR ∼ (1, 1)
−1

2

, νR ∼ (1, 1)0. (2.23)

In the breaking pattern II, the covariant derivatives are

DµΨL =
(
∂µ + ig1T

a
l W

a
1µ + ig2T

a
hW

a
2µ + igXXBµ

)
ΨL, (2.24)

DµψR =
(
∂µ + igXXBµ

)
ψR. (2.25)
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Models
SU(2)1 (TL, Tl) SU(2)2 (TR, Th) U(1)X (X, Y )

LRD
LRT

(
uL
dL

)
,

(
νL
eL

) (
uR
dR

)
,

(
νR
eR

)
Xq = 1/6
Xl = −1/2

LPD
LPT

(
uL
dL

)
,

(
νL
eL

) (
uR
dR

)
Xq = 1/6
Xl = YSM

HPD
HPT

(
uL
dL

)
,

(
νL
eL

) (
νR
eR

)
Xq = YSM
Xl = −1/2

FPD
FPT

(
uL
dL

)
,

(
νL
eL

)
Xf = YSM

SQD

(
uL
dL

)
,

(
νL
eL

)
Xf = YSM

TFD

(
uL
dL

)
1st,2nd

,

(
νL
eL

)
1st,2nd

(
uL
dL

)
3rd

,

(
νL
eL

)
3rd

Xf = YSM

UUD

(
uL
dL

) (
νL
eL

)
Xf = YSM

Table 2.2: Assignment of SM fermions under the G(221) symmetry: (TL, TR)X in breaking
pattern I while (Tl, Th)Y in breaking pattern II. Unless otherwise specified, the fermion
doublet represents three generations of SM fermions. LRD (LRT) denotes the left-right
doublet (triplet) model, where the G(221) model is broken by a scalar doublet (triplet).
Similarly, LPD (LPT) denotes the lepto-phobic doublet (triplet) model, HPD (HPT) the
hadro-phobic doublet (triplet) model, FPD (FPT) the fermio-phobic doublet (triplet) model,
SQD the sequential doublet model, TFD the top-flavor doublet model, and UUD the un-
unified doublet model.
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where ΨL can be

QL =


 u

d



L

∼ (2, 1)1

6

, LL =


 ν

e



L

∼ (2, 1)
−1

2

; (2.26)

and ψR are the right-handed singlets, given by

uR ∼ (1, 1)2

3

, dR ∼ (1, 1)
−1

3

, eR ∼ (1, 1)
−1

2

, νR ∼ (1, 1)0. (2.27)

2.3.1.4 The Yukawa Sector

To generate the SM fermion masses, we introduce the Yukawa Lagrangian

L = −
∑
ij

L̄iL

(
Yl
ijΦ+ Y�l

ij Φ̃
)
LjR −

∑
ij

Q̄iL

(
Yq
ijΦ+ Y�q

ij Φ̃
)
QjR, (2.28)

where Φ̃ = σ2Φ
�σ2 in the breaking pattern I, and Φ̃ = σ2Φ

� in the breaking pattern II.

In the flavor universal models, the dashed lines in the Moose diagrams correspond to the

Yukawa terms in above.

Notice that in the breaking pattern I, Yl
ij and Yq

ij are defined as the matrix form

Yl
ij = Y l

ij


 1 0

0 1


 , Yq

ij = Y
q
ij


 1 0

0 1


 , (2.29)

where the Yukawa couplings Y l
ij and Y

q
ij are the same for the up- and down-type fermions.

In this case, after symmetry breaking the mass splitting of the up- and down-type fermions

comes from the different VEVs of the Φ for the up- and down-type fermions. while in the
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breaking pattern II, Yl
ij and Yq

ij are defined as the matrix form

Yl
ij =


 Y ν

ij 0

0 Y e
ij


 , Yq

ij =


 Y u

ij 0

0 Y d
ij


 , (2.30)

where the Yukawa couplings are different for the up- and down-type fermions.

In the flavor non-universal models, such as the LP and HP models in breaking pattern I,

and the TF and UU models in breaking pattern II, one Φ field is not enough to give masses

to all the SM fermions. There are two simple ways to solve this problem by adding new

particle content to the Lagrangian.

Usually, we can add heavy vector-like fermions to generate the SM fermion masses

through the see-saw mechanism, as displayed in Figs. 2.3, and 2.4. For example, in the

LP model, the Yukawa terms can be re-written as

L = −
∑
ij

Q̄iL

(
Yq
ijΦ+ Y�q

ij Φ̃
)
QjR −

∑
ij

L̄iL

(
Yl
ijΦ + Y�l

ij Φ̃
)
LjR (2.31)

−
∑
ij

L̄iLMijLjR −
∑
ij

L̄iL
(
Yl
ijΣ+ Y�l

ij Σ̃
)
LjR, (2.32)

where L is a vector-like doublet

LL,R =


 N

E



L,R

, (2.33)
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with mass matrix M and the Yukawa couplings are

Yl
ij =


 Y ν

ij 0

0 Y e
ij


 , Yq

ij = Y
q
ij


 1 0

0 1


 . (2.34)

Similarly, one can write the Yukawa Lagrangian for UU and TF models in the second breaking

pattern. If the vector-like fermions are heavy enough, they will decouple at the low energy

scale.

Alternatively, one can add another Higgs multiplet φ to generate the SM fermion masses.

In this case, the Higgs scalar Lagrangian will be modified, and the mass spectrum of gauge

bosons will be affected. In our current study, we don’t consider this case in detail.

SU(2) SU(2) U(1)
〈Φ〉 ∼ v 〈Σ〉 ∼ f

Figure 2.3: The Moose diagram for the breaking pattern I (Lepton-phobic Model with vector-
like fermions).
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SU(2) SU(2) U(1)
〈Σ〉 ∼ f 〈Φ〉 ∼ v

Figure 2.4: The Moose diagram for the breaking pattern II (Top-Flavor model with vector-
like fermions).

2.3.2 Symmetry Breaking and Mass Eigenstates

2.3.2.1 Higgs Potential and VEV

In the first breaking pattern, at the scale u, there are two kinds of Higgs multiplets. The

Higgs doublet gets the VEV

〈Σ〉 =


 0

u√
2


 . (2.35)

Another possibility is the Higgs triplet which gets the VEV

〈Σ〉 =


 0 0

u√
2

0


 . (2.36)

At the scale v, the Higgs bi-doublet gets the VEV

〈Φ〉 =


 κ1/

√
2 0

0 κ2/
√
2


 . (2.37)
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To relate these VEV parameters κ1, κ2 to the conventional parameter v, we define

v2 = κ21 + κ22 , (2.38)

tanβ =
κ2
κ1

. (2.39)

In the breaking pattern II, at the scale u, the Higgs bi-doublet gets the VEV

< Σ > =
1

2


 u 0

0 u


 . (2.40)

At the scale v, the Higgs doublet gets the VEV

〈Φ〉 =


 0

v√
2


 . (2.41)

The Higgs potential can be decomposed into three parts, VΦ, VΣ and V(Φ,Σ). If no CP

violation originates from the Higgs potential, all the coefficients in the Higgs potential will

be real. In this study, we only consider Φ and Σ as doublet, bi-doublet, or triplet scalars.

The general Higgs potential VΦ and VΣ are given by

VΦ = V(Φ), VΣ = V(Σ), (2.42)
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where V has the form as follows

V(φ) = −µ21Tr(φ
†φ)− µ22

[
Tr(φ̃φ†) + Tr(φ̃†φ)

]
+ λ1

[
Tr(φ†φ)

]2
+ λ2

{[
Tr(φ̃φ†)

]2
+
[
Tr(φ̃†φ)

]2}
+ λ3Tr(φ̃φ

†)Tr(φ̃†φ) + λ4Tr(φ
†φ)
[
Tr(φ̃φ†) + Tr(φ̃†φ)

]
. (2.43)

If φ is a scalar doublet, one can reduce V by

Tr(φ†φ) = Tr(φ̃φ†) = Tr(φ̃†φ) (2.44)

to otain

V(φ) = −µ2Tr(φ†φ) + λ
[
Tr(φ†φ)

]2
(2.45)

with µ2 = µ21 + µ22 and λ = λ1 + 2λ2 + λ3 + 2λ4.

The Higgs potential V(Φ,Σ) has the following typical form

V(φ,∆) = α1Tr(φ
†φ)Tr(∆∆†) + α2

[
Tr(φ̃†φ)Tr(∆∆†) + Tr(φ̃φ†)Tr(∆∆†)

]
+ α3Tr(φ

†φ∆∆†). (2.46)

In the breaking pattern I, the Higgs potential V(Φ,Σ) is defined as

V(Φ,Σ) = V(Φ,Σ). (2.47)
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While in the breaking pattern II, the Higgs potential V(Φ,Σ) is defined as

V(Φ,Σ) = V(Σ,Φ). (2.48)

After spontaneous symmetry breaking, a full analysis of the Higgs mass spectrum can be

performed in detail. However, we would like to do a simple analysis focusing on the Higgs

potential in which only the Higgs scalar Φ is included, through replacing the scalar Σ with

its VEV u in the Higgs potential. The reason is in the following. We know the scalar Σ

is mainly giving masses to the W ′ and Z′ bosons, but not giving masses to the SM gauge

bosons and fermions. So the scalar Σ mainly couples to W ′ and Z′, and the couplings to the

SM gauge bosons are suppressed by the order of O(v2/u2). When the VEV u is much larger

than the VEV v, the scalar Σ becomes heavy and almost decouple from the Higgs scalar Φ.

In the breaking pattern I, the Higgs potential, only involving the bi-doublet scalar Φ and

VEV u, is

VΦ = −µ21Tr(Φ
†Φ)− µ22

[
Tr(φ̃φ†) + Tr(φ̃†φ)

]
+ λ1

[
Tr(φ†φ)

]2
+ λ2

{[
Tr(φ̃φ†)

]2
+
[
Tr(φ̃†φ)

]2}
+ λ3Tr(φ̃φ

†)Tr(φ̃†φ) + λ4Tr(φ
†φ)
[
Tr(φ̃φ†) + Tr(φ̃†φ)

]
+ V(Φ, u√

2
). (2.49)

After electroweak symmetry breaking, the charged fields φ±1,2 form the Goldstone bosons

of W± and two charged Higgses. The Goldstone bosons are given by

G± = cβφ
±
1 − sβφ

±
2 . (2.50)
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The physical charged Higgs states are the linear combinations

H± = sβφ
±
1 + cβφ

±
2 . (2.51)

The mass of the lightest charged Higgs is given to a very good approximation by

MH+ =
α3u

2

c2
β
− s2

β

. (2.52)

The neutral Goldstone boson is

G0 = cβ�φ
0
1 − sβ�φ

0
2 . (2.53)

In addition there are three neutral Higgs fields in the spectrum, given by

h0 = cβ�φ
0
1 + sβ�(φ

0
2) (2.54)

H0
1 = −sβ�φ

0
1 + cβ�(φ

0
2) (2.55)

H0
2 = sβ�φ

0
1 + cβ�(φ

0
2), (2.56)

where h0 can be identified as the light Higgs with a mass of O(v), while H0
1 and H0

2 are

two new neutral Higgses with masses O(u). To leading order their masses are equal to each

other

M2
H ≡ M2

H0
1
= M2

H0
2
=

α3u
2

c2
β
− s2

β

. (2.57)

In the breaking pattern II, there is only one Higgs doublet. So after electroweak symmetry

breaking, only one light Higgs is left with three Goldstone bosons eaten by the W and Z
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gauge bosons.

2.3.2.2 Gauge Boson Mass Mixing in Breaking Pattern I

In this breaking pattern, the gauge couplings are related to the U(1)em gauge coupling by

the relation

1

e2
=

1

g2
L

+
1

g2
R

+
1

g2
X

, (2.58)

with

gL =
e

sin θ
, gR =

e

cos θ sinφ
, gX =

e

cos θ cosφ
, (2.59)

where θ is the usual weak mixing angle, and φ is the new mixing angle between W3
R and B

in this model.

To get the gauge boson mass eigenstates, there are two steps. For the charged gauge

bosons, there is no rotation. The mass matrix is

M2
W = M2

0


 1 −tan θ

sin φ
sin 2β

−tan θ

sin φ
sin 2β

tan2 θ

sin2 φ
(1 + x)


 , (2.60)

where

M2
0 =

1

4
g2Lv

2 =
v2

4

e2

sin2 θ
, (2.61)

and x =
u2

v2
for Higgs doublet, and x =

2u2

v2
for Higgs triplet.
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For the neutral gauge bosons W3
L,W

3
R,B, one rotates the gauge fields by the angle φ

and re-parametrize them by θ:

W3
H = cosφW3

R − sin φB , (2.62)

W3
Z = cos θW3

L − sin θ(sin φW3
R + cosφB) (2.63)

A = sin θW3
L + cos θ(sinφW3

R + cos φB) (2.64)

The mixing mass matrix in the (A,W3
Z,W3

H ) basis reduces to

M2
Z =

M2
0

cos2 θ




0 0 0

0 1 − sin θ

tanφ

0 − sin θ

tanφ

sin2 θ

sin2 φ cos2 φ
(x+ cos4 φ)


 , (2.65)

where x =
u2

v2
for Higgs doublet, and x =

4u2

v2
for Higgs triplet.

To get the mass eigenstates, one can further diagonalize the mass matrices M2
W andM2

Z .

Here we focus on the region x � 1. (one can impose further constraints on gR and gX , of

course.) Up to the leading order of x, the wave-function mixing is given by the ratio of the

non-diagonal term and the diagonal term. To order 1/x the eigenstates of the charged gauge

bosons are

W±
µ = W±

L µ
+

sinφ sin 2β

x tan θ
W±
R µ

, (2.66)

W ′±
µ = −sin φ sin 2β

x tan θ
W±
L µ

+W±
R µ

, (2.67)
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while for the neutral gauge bosons

Zµ = W3
Zµ +

sinφ cos3 φ

x sin θ
W3
Hµ , (2.68)

Z′µ = −sinφ cos3 φ

x sin θ
W3
Zµ +W3

Hµ . (2.69)

To the same order, the gauge boson masses are

M2
W± = M2

0 (1−
sin2 2β

x
) , (2.70)

M2
W ′± = M2

0

(
x tan2 θ

sin2 φ
+

tan2 θ

sin2 φ

)
, (2.71)

and

M2
Z =

M2
0

cos2 θ
(1− cos4 φ

x
) , (2.72)

M2
Z′ =

M2
0

cos2 φ

(
x tan2 θ

sin2 φ
+

tan2 θ cos4 φ

sin2 φ

)
. (2.73)

2.3.2.3 Gauge Boson Mass Mixing in Breaking Pattern II

In this breaking pattern, the gauge coupling relation is

gl =
e

sin θ cosφ
, gh =

e

sin θ sinφ
, gX =

e

cos θ
, (2.74)

with the relation

1

e2
=

1

g2
l

+
1

g2
h

+
1

g2Y

, (2.75)
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where θ is the usual weak mixing angle, and φ is the new mixing angle between W
µ
l

and

W
µ
h

in this model. If φ is small, the couplings of the third generation will become large.

There are two steps to get the gauge boson mass eigenstates: For the charged gauge

bosons, one can rotate the gauge fields by φ:

W±
H

= − sinφW±
l

+ cosφW±
h

, (2.76)

W±
L

= cosφW±
l

+ sinφW±
h

. (2.77)

The mass matrix reduces to

M2
W = M2

0


 1 − tanφ

− tanφ
x

sin2 φ cos2 φ
+ tan2 φ


 , (2.78)

where

M2
0 =

v2

4

e2

sin2 θ
=

1

4
g2Lv

2 . (2.79)

For the neutral gauge bosons W3
L,W

3
R,B, one rotates the gauge fields by the angle φ and

re-parametrize them by θ:

W3
H = − sinφW3

l + cos φW3
h , (2.80)

W3
L = cos θ(cosφW3

l + sinφW3
h)− sin θB (2.81)

A = cos θB + sin θ(cosφW3
l + sin φW3

h) (2.82)
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The mixing mass matrix in the (A,W3
Z,W3

H ) basis reduces to

M2
Z =

M2
0

cos2 θ




0 0 0

0 1 − cos θ tanφ

0 − cos θ tanφ cos2 θ(
x

sin2 φ cos2 φ
+ tan2 φ)


 . (2.83)

To get the mass eigenstates, one can further diagonalize the mass matrices M2
W and

M2
Z . Here we focus on the region x � 1. Up to the leading order of x, the wave-function

mixing is given by the ratio of the non-diagonal term and the diagonal term. To order 1/x

the eigenstates of the charged gauge bosons are

W±
µ = W±

L µ
+

cosφ sin3 φ

x
W±
Hµ

, (2.84)

W ′±
µ = −cos φ sin3 φ

x
W±
L µ

+W±
Hµ

, (2.85)

while for the neutral gauge bosons

Zµ = W3
Lµ +

cosφ sin3 φ

x cos θ
W3
Hµ , (2.86)

Z′µ = −cos φ sin3 φ

x cos θ
W3
Lµ +W3

Hµ . (2.87)

To the same order, the gauge boson masses are

M2
W± = M2

0 (1−
sin4 φ

x
) , (2.88)

M2
W ′± =

M2
0

cos2 φ

(
x

sin2 φ
+ sin2 φ

)
, (2.89)
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and

M2
Z =

M2
0

cos2 θ
(1− sin4 φ

x
) , (2.90)

M2
Z′ =

M2
0

cos2 φ

(
x

sin2 φ
+ sin2 φ

)
. (2.91)

2.3.3 Lagrangian in the Physical Basis

After the symmetry breaking and mass mixing, one can obtain the Lagrangian involving the

physical fields. Here we listed the Feynman rules of the Lagrangian in the physical basis in

all the models. In the Feynman rules, all particles are assumed to be outgoing, and we adopt

the conventional Feynman rule, iL.

2.3.3.1 Gauge couplings of fermions

The most general interaction of the Z and W to SM fermions is

Lf = g2Zµ f̄ γµ(gLPL + gRPR)f + g2Wµ f̄ γµ(g′LPL + g′RPR)f ′ + h.c. , (2.92)

where g2 = e/ sin θ is the weak coupling strength and PL,R = (1 ∓ γ5)/2 are the usual

chirality projectors. On the other hand, the most general interaction of the Z′ and W ′ to

SM fermions is

Lf = g2Z
′
µ f̄ γµ(gLPL + gRPR)f + g2W

′
µ f̄ γµ(g′LPL + g′RPR)f ′ + h.c. , (2.93)

For simplicity, we use gL and gR for both Z′ and W ′ bosons from now on. Detailed

expressions of gL and gR for each individual NP model are listed in Tables 2.3.3.1 and 2.3.3.1.
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Couplings gL

W ′+µf̄f ′ (BPI) − em√
2cW sφ

γρT
+
L

c2Ws2βs
2
φ

xs2
W

Z′f̄ f (BPI)
em

cW cφsφ
γρ


(T3L −Q

)
s2φ −

c4φs
2
φ

(
T3L −Qs2W

)
xs2

W




W ′±µf̄f ′ (BPII) −
emsφ√
2sW cφ

γµT±
l


1 +

s2φc
2
φ

x




W ′±µF̄F ′ (BPII)
emcφ√
2sW sφ

γµT±
h


1−

s4φ

x




Z′f̄ f (BPII) − em
sW

γµ


sφ
cφ

T3l


1 +

s2φc
2
φ

xc2W


−

sφ

cφ

s2φc
2
φ

xc2W

s2WQ




Z′F̄F (BPII)
em
sW

γµ


 cφ
sφ

T3h


1−

s4φ

xc2
W


+

cφ

sφ

s4φ

xc2
W

s2WQ




Table 2.3: The left-handed fermion couplings of the heavy gauge boson in Breaking Pattern
I and II. For the fermion couplings, the quantum numbers (TL, TR) in BP-I and (Tl, Th) in
BP-II are implied in Tab. 2.2. In BP-II, the fermion notation f means the fermions listed in
the column SU(2)1, while F means the fermions listed in the column SU(2)2 in Tab. 2.2.
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Couplings gR

W ′+µf̄f ′ (BPI)
em√
2cW sφ

γρT
+
R

Z′f̄ f (BPI)
em

cW cφsφ
γρ


(T3R −Qs2φ

)
+Q

c4φs
2
φ

x




W ′±µf̄f ′ (BPII) 0

W ′±µF̄F ′ (BPII) 0

Z′f̄ f (BPII)
em
sW

γµ


sφ

cφ

s2φc
2
φ

xc2
W

s2WQ




Z′F̄F (BPII)
em
sW

γµ


cφ

sφ

s4φ

xc2W

s2WQ




Table 2.4: The right-handed fermion couplings of the heavy gauge boson in Breaking Pattern
I and II. For the fermion couplings, the quantum numbers (TL, TR) in BP-I and (Tl, Th) in
BP-II are implied in Tab. 2.2. In BP-II, the fermion notation f means the fermions listed in
the column SU(2)1, while F means the fermions listed in the column SU(2)2 in Tab. 2.2.
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Couplings BPI

H W+
ν W−

ρ
i

2

e2m

s2
W

vgνρ


1−

2s22β

x




H Wν W ′
ρ − i

2

e2ms2β

cWsWsφ
vgνρ

[
1 +

(
c2Ws2φ − s2W

)
xs2

W

]

H Zν Zρ
i

2

e2m

s2Wc2W

vgνρ


1−

2c4φ

x




H Zν Z′ρ − i

2

e2mcφ

c2
W

sWsφ
vgνρ

[
1−

c2φ

(
c2φs

2
W − s2φ

)
xs2

W

]

W+
µ W−

ν Zρ
cW em

sW

W+
µ W ′−

ν Zρ i
ems2βsφ

xs2
W

W+
µ W−

ν Z′ρ i
emcWsφc

3
φ

xs2
W

Table 2.5: The triple boson couplings of the heavy gauge boson in Breaking Pattern I.
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Couplings BPII

H W+
ν W−

ρ
i

2

e2m

s2
W

vgνρ


1−

2s4φ

x




H Wν W ′
ρ − i

2

e2msφ

s2
W

cφ
vgνρ

[
1 +

s2φ

(
c2φ − s2φ

)
x

]

H Zν Zρ
i

2

e2m

s2Wc2W

vgνρ


1−

2s4φ

x




H Zν Z′ρ − i

2

e2msφ

cWs2
W

cφ
vgνρ

[
1−

s2φ

(
s2φc

2
W − c2φ

)
xc2
W

]

W+
µ W−

ν Zρ
cW em

sW

W+
µ W ′−

ν Zρ i
emcφs

3
φ

xsW cW

W+
µ W−

ν Z′ρ i
emcφs

3
φ

xsW

Table 2.6: The triple boson couplings of the heavy gauge boson in Breaking Pattern II.
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2.3.3.2 Couplings of Gauge Bosons and Higgs Boson

For the bosonic sector, we are only interested in the triple gauge boson couplings and gauge

boson - gauge boson -Higgs couplings. So we write down the most general Lagrangian

involving in triple couplings of gauge bosons and Higgs, as follows,

L = −gV V V fabc(∂µV
a
ν )V bµV cν + gV V HgµνHVaµVaν, (2.94)

where the coefficients gV V V and gV V H are listed in the Table. For the triple gauge boson

couplings, the Lorentz index in the Feynman rules [gµν(k1 − k2)
ρ + gνρ(k2 − k3)

µ + gρµ(k3 − k1)
ν ]

is implied. For the gauge boson - gauge boson -Higgs couplings, the Lorentz index in the

Feynman rules gµν is implied. Feynman rules of the triple gauge boson couplings and gauge

boson - gauge boson -Higgs couplings are shown in Tabs. 2.3.3.1 and 2.3.3.1.

2.4 Model Parameters and Mass Spectrum

From Tables 2.1, 2.3.3.1 and 2.3.3.1, we see that the G(221) models contain six (five) pa-

rameters for the first (second) breaking pattern: three (two) VEV’s {uD,T , v sin β, v cos β}

in Table 2.1 and three gauge couplings {g1, g2, gX} in Table IV. (For breaking pattern II,

there are only two VEV’s {u, v}.) Compared to the gauge sector of the SM, which contains

only three parameters (two gauge couplings and one VEV; gL, gY and v), there are three

(two) additional parameters. We would like to find a useful parameterization of these three

additional parameters, so as to parameterize the effects of new physics. We discuss these in

detail in turn.

52



2.4.1 Input Parameters

As stated above, the G(221) models contain six (five) parameters in the gauge sector:

{g1, g2, gX, uD(uT , or u), v2, sβ}, (2.95)

where the parameter β only exists in models with breaking pattern I. An equivalent set of

parameters is

{αe, sin θ, cosφ, x, v2, s2β}, (2.96)

where θ is the weak mixing angle, φ is the new mixing angle, and x is defined as

x ≡




u2D/v2 (for LRD, LPD, HPD, FPD)

u2T /v2 (for LRT, LPT, HPT, FPT)

u2/v2 (for SQ, TF, UU).

(2.97)

As we expect x to be large (x � 100), we work to leading order in x−1.

In addition to these parameters, the loop-level predictions will require the values of the

masses of the top quark (mt) and the Higgs boson (MH ). The bar (̄ ) over mt indicates

that we will use the top quark mass as defined in the MS-scheme.

We take as reference observables the experimental measurements of

• the fine structure constant (α−1
e (MSM

Z ) = 127.918 at the scale MZ ).

• the Fermi constant (GSM
F = 1.16637× 10−5 GeV−2), determined from the lifetime of
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the muon,

• the mass of the Z boson (MSM
Z = 91.1876 GeV), determined from the Z-line shape at

LEP-I.

Our task then is to express the model parameters, cf Eq. 2.96

{αe, sin θ, v2, x, cosφ, s2β, mt, MH},

in terms of the reference and fit parameters

{αSMe , MSM
Z , GSM

F , x, cosφ, s2β, mt, MH}. (2.98)

That is, we want the relationships

{

model parameters︷ ︸︸ ︷
αe, sin θ, v2, x, cosφ, s2β, mt, MH} ⇔ {

reference parameters︷ ︸︸ ︷
αSMe , MSM

Z , GSM
F

fit parameters︷ ︸︸ ︷
x, cosφ, s2β, mt, MH} (2.99)

Since {x, cosφ, s2β, mt, MH} appear in both the model and fit parameters (by con-

struction), we only have to solve for {αe, sin θ, v2, } in terms of the reference and fit

parameters. This can be done by analyzing how the reference parameters are related to the

model parameters.
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2.4.1.1 Electric Charge

The electric charge in the G(221) models is the gauge coupling of the unbroken U(1)em

group, which we have parameterized as e defined as

1

e2
=

1

g21

+
1

g22

+
1

g2
X

, (2.100)

and αe ≡ e2/4π. There are no tree-level modifications to the wavefunction renormalization

of the photon, so we then simply have the relationship

αe = αSMe . (2.101)

2.4.1.2 The Fermi Constant

The Fermi constant, GF , is experimentally determined from the muon lifetime as [39]

τ−1
µ =

G2
Fm5

µ

192π3

[
1 +O

(
m2
e

m2
µ

)][
1 +O

(
m2
µ

M2
W

)][
1 +O

(
1

16π2

)]
, (2.102)

where the precise forms of the higher-order corrections are given in Ref. [39]. Neglecting

these higher-order corrections, the SM contribution to the muon lifetime is

τ−1
µ =

g4L

192 · 32π3M4
W

m5
µ, (2.103)

and, using the SM relation 4M2
W = g2Lv

2, we obtain

GSM
F =

1
√
2vSM

2
. (2.104)
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In the standard model, the effective four fermion Lagrangian gives us

LSM =

(
e SM√

2 sin(θ SM)

)2
1

M2
W SM

J+
L
J−
L

=
2

v2
SM

J+
L
J−
L

= 2
√
2GFJ+

L
J−
L
. (2.105)

In the G(221) models, we have extra contributions to the four-fermion charged-current ef-

fective theory below the electroweak scale. The effective four fermion Lagrangian is

Leff = cLLJ
+
L
J−
L

+ cLRJ+
L
J−
R

+ cRLJ
+
R
J−
L

+ cRRJ+
R
J−
R

(2.106)

where the charged currents are

J
−µ
L,R

= ν̄L,RγµlL,R, J+ = (J−)† (2.107)

and the coefficients are

cLL =
g2WL

M2
W

+
g2WPL

M2
W ′

, (2.108)

cLR = cRL =
gWLgWR

M2
W

+
gWPLgWPR

M2
W ′

, (2.109)

cRR =
g2WR

M2
W

+
g2WPR

M2
W ′

. (2.110)

These contributions will modify the SM relation in Eq. 2.104. In principle, the fermionic

contributions can have both left- and right-handed components and differ among the different

generations. However, for the G(221) models we consider here, the charged currents couples

universally to the first two generations. Furthermore, the charged current is either purely

right-handed (the LR, HP, LP, FP models) or purely left-handed (the UU and TF models).
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We therefore focus on these special cases instead of performing the general analysis.

In the BP-I, the contributions to the amplitude do not interfere with one another in the

limit of neglecting the masses of electrons and neutrinos. From the lifetime to the
1

x2
order

we can obtain

8G2
F = c2LL + 2c2LR + c2RR

=
4

v4

(
1 +

sin2(2β)

x

)2
+ 2

4

v4

(
sin 2β

x

)2
+

4

v4

(
1

x

)2
+O(

1

x3
), (2.111)

in BP-I with doublet Higgs, and

GF =
1√
2v2

(
1 +

sin2 2β

2 x

)
, (2.112)

in BP-I with triplet Higgs. Though the left-right and right-right current operators do not

contribute to the total muon decay rate at the order O(x̃−1) , they do contribute at leading

order to the Michel parameters (for a detailed discussion of the Michel parameters, see the

Muon Decay Parameters article in the Particle Data Group (PDG) [39]). The expression of

GF , which depends on the details of the Higgs representation, is written in terms of model

parameters as

GF =




1√
2v2

(
1 +

sin2 2β

x

)
, (for LRD, LPD, HPD, FPD)

1√
2v2

(
1 +

sin2 2β

2x

)
, (for LRT, LPT, HPT, FPT)

(2.113)
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In the BP-II, the expression of the charged-current operators is

cLL =
g2WL

M2
W

+
g2WPL

M2
W ′

, (2.114)

cLR = cRL = 0 , (2.115)

cRR = 0 . (2.116)

From the lifetime, we can obtain, to the
1

x2
order

8G2
F = c2LL + 2c2LR + c2RR

=
4

v4
+O(

1

x3
) . (2.117)

So we are simply left with

GF =
1√
2ṽ2

(for SQ, TF, UU). (2.118)

We can rewrite our results in a more suggestive manner by defining the SM VEV through

the Fermi constant

v2 ≡ 1√
2GF

. (2.119)
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We then have

v =




v SM

(
1 +

sin2 2β

2x

)
, (for LRD, LPD, HPD, FPD)

v SM

(
1 +

sin2 2β

4x

)
, (for LRT, LPT, HPT, FPT)

v SM. (for SQ, TF, UU)

(2.120)

2.4.1.3 Z-Mass

The expression of the Z mass can be written as

M2
Z =




ev

2 sin θ cos θ

(
1− cos4 φ

2x

)
, (for LRD, LPD, HPD, FPD)

ev

2 sin θ cos θ

(
1− cos4 φ

8x

)
, (for LRT, LPT, HPT, FPT)

ev

2 sin θ cos θ

(
1− sin4 φ

2x

)
, (for UU and TF)

. (2.121)

Thus we have

M2
Z =




e SMv SM

2 sin θ cos θ

(
1 +

sin2 2β

2x
− cos4 φ

2x

)
, (for LRD, LPD, HPD, FPD)

e SMv SM

2 sin θ cos θ

(
1 +

sin2 2β

4x
− cos4 φ

8x

)
, (for LRT, LPT, HPT, FPT)

e SMv SM

2 sin θ cos θ

(
1− sin4 φ

2x

)
, (for UU and TF)

.(2.122)

While in the SM Z mass can be written as

M SM
Z =

e SMv SM

2 sin θ SM cos θ SM
. (2.123)
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Here sin θ SM is the SM weak coupling angle, and its value can be obtained by

sin2 θ SM cos2 θ SM =
πα(MZ) SM

√
2G SM

F (M SM
Z )2

, (2.124)

Using
1

α(MZ) SM
= 128.91 ± 0.02, yields sin2 θ SM = 0.23108 ± 0.00005. Since MZ is

defined in both the SM and the proposed model through the Z peak at LEP MZ = M SM
Z ,

we can solve for θ in terms of the reference and fit parameters

sin2 θ cos2 θ =




sin2 θ SM cos2 θ SM

(
1− cos4 φ

x
+

sin2 2β

x

)
,

(for LRD, LPD, HPD, FPD)

sin2 θ SM cos2 θ SM

(
1− cos4 φ

4x
+

sin2 2β

2x

)
,

(for LRT, LPT, HPT, FPT)

sin2 θ SM cos2 θ SM

(
1− sin4 φ

x

)
,

(for SQ, TF, UU).

(2.125)

Hereafter, solving for sin2 θ = 1− cos2 θ in terms of sin2 θ SM (the solutions of x(1−x) = a

are x =
1

2
(1±

√
1− 4a)), one finds that

sin2 θ = sin2 θ SM

[
1− cos2 θ SM

cos2 θ SM − sin2 θ SM
∆θ

]
,

cos2 θ = cos2 θ SM

[
1 +

sin2 θ SM

cos2 θ SM − sin2 θ SM
∆θ

]
, (2.126)
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where the correction ∆θ is

∆θ =




(
cos4 φ

x
− sin2 2β

x

)
, (for LRD, LPD, HPD, FPD)(

cos4 φ

4x
− sin2 2β

2x

)
, (for LRT, LPT, HPT, FPT)(

sin4 φ

x

)
, (for SQ, TF, UU).

(2.127)

2.4.2 Mass Spectra

With the input parameters defined as above, we can calculate the corrections to the exper-

imental observables. We take the mass spectrum as an example and collect the formula of

the masses of the W -boson, W ′-boson and Z′-boson.

2.4.2.1 Breaking Pattern I with Doublet Higgs

The mass spectrum in the Breaking Pattern I has the form of

M2
W =

e2mv2

4s2W


1−

s22β

x


 , (2.128)

M2
Z =

e2mv2

4s2Wc2W


1−

c4φ

x


 , (2.129)

and

M2
W ′ =

e2mv2x

4c2Ws2
φ

(
1 +

1

x

)
, (2.130)

M2
Z′ =

e2mv2x

4c2
W

s2
φ
c2
φ


1 +

c4φ

x


 . (2.131)
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More specifically, in terms of the input parameters, we can convert all the model parameters

to reference and fit parameters

M2
W =

e sm2
m v sm2

4s sm2
W


1 +

c sm2
W

c sm2
W − s sm2

W


c4φ

x
−

s22β

x




 , (2.132)

M2
Z =

e sm2
m v sm2

4s sm2
W

c sm2
W

= M2
Z SM, (2.133)

and

M2
W ′ =

e sm2
m v sm2x

4c sm2
W

s2
φ


1 +

1

x
+

c sm2
W s22β − s sm2

W c4φ

(c sm2
W

− s sm2
W

)x


 , (2.134)

M2
Z′ =

e sm2
m v sm2x

4c sm2
W

s2
φ
c2
φ


1 +

c4φ

x
+

c sm2
W s22β − s sm2

W c4φ

(c sm2
W

− s sm2
W

)x


 . (2.135)

2.4.2.2 Breaking Pattern I with Triplet Higgs

The mass spectrum has the form of

M2
W =

e2mv2

4s2W


1−

s22β

2x


 , (2.136)

M2
Z =

e2mv2

4s2Wc2W


1−

c4φ

4x


 , (2.137)

and

M2
W ′ =

e2mv22x

4c2Ws2
φ

(
1 +

1

2x

)
, (2.138)

M2
Z′ =

e2mv24x

4c2
W

s2
φ
c2
φ


1 +

c4φ

4x


 . (2.139)
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More specifically, in terms of the input parameters, we can convert all the model parameters

to reference and fit parameters

M2
W =

e sm2
m v sm2

4s sm2
W


1 +

c sm2
W

c sm2
W − s sm2

W


c4φ

4x
−

s22β

2x




 , (2.140)

M2
Z =

e sm2
m v sm2

4s sm2
W

c sm2
W

= M2
Z SM, (2.141)

and

M2
W ′ =

2e sm2
m v sm2x

4c sm2
W

s2
φ


1 +

1

2x
+

2c sm2
W s22β − s sm2

W c4φ

4(c sm2
W

− s sm2
W

)x


 , (2.142)

M2
Z′ =

4e sm2
m v sm2x

4c sm2
W

s2
φ
c2
φ


1 +

c4φ

4x
+

2c sm2
W s22β − s sm2

W c4φ

4(c sm2
W

− s sm2
W

)x


 . (2.143)

2.4.2.3 Breaking Pattern II

The mass spectrum in the Breaking Pattern II have

M2
W =

e2mv2

4s2W


1−

s4φ

x


 , (2.144)

M2
Z =

e2mv2

4s2Wc2W


1−

s4φ

x


 , (2.145)

and

M2
W ′ =

e2mv2x

4s2Ws2
φ
c2
φ


1 +

s4φ

x


 , (2.146)

M2
Z′ =

e2mv2x

4s2
W

s2
φ
c2
φ


1 +

s4φ

x


 . (2.147)
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More specifically, in terms of the input parameters, we can convert all the model parameters

to reference and fit parameters

M2
W =

e sm2
m v sm2

4s sm2
W


1 +

s sm2
W

c sm2
W − s sm2

W

s4φ

x


 , (2.148)

M2
Z =

e sm2
m v sm2

4s sm2
W

c sm2
W

= M2
Z SM, (2.149)

and

M2
W ′ =

e sm2
m v sm2x

4s sm2
W

s2
φ
c2
φ


1 +

(2 c sm2
W − s sm2

W )s4φ

(c sm2
W

− s sm2
W

)x


 , (2.150)

M2
Z′ =

e sm2
m v sm2x

4s sm2
W

s2
φ
c2
φ


1 +

(2 c sm2
W − s sm2

W )s4φ

(c sm2
W

− s sm2
W

)x


 . (2.151)

2.5 Indirect and Direct Constraints on Parameter Spaces

Even though the W ′ and Z′ bosons are not observed yet, they could contribute to a few

observables, which can be measured precisely at low energy, via quantum effects. In this

section we perform a global-fit analysis of 37 electroweak precision test observables (EWPTs)

to derive the allowed model parameter space of those NP models of our interests. In addition,

we also include direct search limits from the Tevatron and LHC.

Note that m
W ′ and m

Z′ are not independent in the G(221) model. In this study we

choose M
W ′ as an input parameter. In addition, other independent parameters are the

gauge mixing angle φ, and the mixing angle β in the EWSB scale between two Higgs VEVs

s2β = sin(2β) that only exists in BP-I. Our parameter scan is not sensitive to the parameter

β as it contributes to physical observables only at the order of 1/x = v/u. We then present
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our scan results in the plane of (M
W ′, cφ) or (MW ′,MZ′).

2.5.1 Indirect Constraints from Electroweak Precision Tests

For a measured observable O exp, the SM prediction can be broken down into the tree- and

loop-level components

O th
SM = O

th,tree
SM

+O
th,loop
SM

(mt,MH), (2.152)

where O th is expressed in terms of the reference parameters. Since the top quark mass (mt)

and the mass of the Higgs boson (MH ) enter into the loop-calculations in the SM, a global

analysis of precision data and direct detection data can be used to constrain MH . In the

G(221) models, we can express the theoretical prediction as

O th = O
th,tree
SM

+O
th,loop
SM

(mt,MH ) +O
th,tree
NP

(x, φ, β), (2.153)

where O
th,tree
NP

is of the order O(1/x), and we assume that

x−1 ∼ 1

16π2
∼ O

th,loop
SM

. (2.154)

That is, the Born-level new physics contributions from the G(221) models are numerically of

one-loop order, and loop corrections involving new physics are of two-loop order O
(

1

16π2x

)
,

which we discard in our analysis.

To compare with precision data (from LEP-1 and SLD) and low-energy observables,

we calculate the shifts in observables O
th,tree
NP (x, φ, β), as in the previous examples of the
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partial decay widths of the Z-boson and the mass of the W -boson, and we adapt these

corrections into a numerical package GAPP [37]. GAPP then computes O
th,tree
SM

and

O
th,loop
SM (m̄t,MH )1, together with the O

th,tree
NP (x, φ, β) to find the best-fit values of the

fit parameters and the confidence level contours using the CERN library MINUIT [38].

We perform a global fit over the following classes of observables

• LEP-I Z-pole observables: the total Z-width (ΓZ), left-right asymmetries (ALR), and

related observables,

• the mass (MW ) and decay width (ΓW ) of the W -boson,

• the tau lifetime ττ ,

• the ratios of neutral-to-charged current cross sections measured from neutrino-hadron

deep-inelastic scattering (DIS) experiments (Rν ≡ σ NC
νN /σ CC

νN and similarly defined

for ν),

• effective vector and axial-vector neutrino-electron couplings (gνeV and gνeA ),

• weak charges (QW ) of atoms and the electron measured from atomic parity experi-

ments.

Detailed information on these observables can be found in PDG [39], and here we only briefly

summarize the observables. The set of the observables included in our analysis is the same

as that used in the PDG analysis [39], with two exceptions.

• First, we do not include the anomalous magnetic moment of the muon and the decay

branching ratio b → sγ. At leading order, these observables are of one-loop order, and

1The higher order SM corrections included in our analysis are the same as those in the
default GAPP code used for the PDG analysis.
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they depend on the details of the extended flavor structure of the G(221) models. In

this work, we assume W ′ bosons only couple to fermions in the same generation.

• Second, we include the measurements of the decay width of the W -boson, which are

not included in the PDG analysis. However, because of the comparatively low precision

of these measurements, this observable turns out to be insensitive to the new physics

contributions from the G(221) models.

In total, we include a set of 37 experimental observables in our global-fit analysis.

Before we give a brief discussion on each of these classes of observables, we note that

for some low-energy observables, such as the measurements from the atomic parity violation

and neutrino-neucleus DIS experiments, we implement the shifts in the coefficients of the

relevant four-fermion interactions, and rely on GAPP to compute the theoretical predictions

based on these modified coefficients.

For the ease of typesetting in the following subsections, we introduce the abbreviation

for the various forms of the fermionic currents

(
f̄1f2

)µ
L ≡ f̄1γ

µ (1− γ5) f2,(
f̄1f2

)µ
R

≡ f̄1γ
µ (1 + γ5) f2, (2.155)

and

(
f̄1f2

)µ
V

≡ f̄1γ
µf2,(

f̄1f2
)µ
A

≡ f̄1γ
µγ5f2. (2.156)
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2.5.1.1 Precision Measurements at the Z-Pole

The precision measurements at the Z-pole (including LEP-1 and SLD experiments) fall into

two broad classes: observables that can be constructed from the partial widths and the

asymmetry. We discuss these two classes in turn.

In the first class, we consider the Z → ff partial width, which at tree-level has the

expression in the Standard Model

Γ(Z → ff) =
nc
12π

MZ

(
g2V + g2A

)
, (2.157)

where nc = 3 if f is s quark, and nc = 1 for leptons, and gV (f), and gA(f) depend on

the details of the model. In addition to the total width ΓZ , there are also the following

measurements:

σ had =
12π

M2
ZΓ2Z

· ΓZ
(
e−e+

)
ΓZ (had.) , (2.158)

R(�) =
ΓZ (had.)

ΓZ
(
��̄
) , for � = e, µ, τ, (2.159)

R(q) =
ΓZ (qq̄)

ΓZ (had.)
, for q = u, d, c, s, b, (2.160)

R(s) =
R(s)

R(u) +R(d) +R(s)
, (2.161)

where ΓZ(ff) is the partial decay width Γ(Z → ff), and

ΓZ (had.) =
∑

q=u,d,c,s,b

ΓZ(qq). (2.162)
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The left-right asymmetry ALR(f) is defined as

ALR(f) ≡

[
gZL (f)

]2
−
[
gZR(f)

]2
[
gZ
L
(f)
]2

+
[
gZ
R
(f)
]2 , (2.163)

where gZL (f) and gZR(f) are the couplings of the fermion f to the Z-boson:

L ⊃ Zµ(g
Z
L(f)f Lγ

µf L + gZR(f)f Rγµf R). (2.164)

From the quark branching ratios R(q) defined above, the hadronic left-right asymmetry QLR

can be defined as [37] [40]

QLR ≡
∑

q=d,s,b

R(q)ALR(q)−
∑

q=u,c
R(q)ALR(q). (2.165)

A second class of asymmetries, the forward-backward asymmetries AFB(f), emerges from

the convolution of the ALR(f) asymmetries with the polarization asymmetry ALR(e) of the

electron. The hadronic charge asymmetry QFB is defined accordingly [37] [40]

AFB(f) ≡ 3

4
ALR(e)ALR(f), (2.166)

QFB ≡ 3

4
ALR(e)QLR. (2.167)

2.5.1.2 The Tau Lifetime

In terms of model parameters, the expression of the tau (τ) lifetime is similar to the muon

(µ) lifetime in the G(221) models, with the obvious replacement of mµ in the µ lifetime by

mτ in the τ lifetime. This is true even in the top-flavor model, in which third generation
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fermions transform under a different gauge group compared to the first two generations. In

the four-fermion effective theory of the TF model, only interactions involving two pairs of

third-generation fermions receive new physics contributions, and the interactions involving

one pair of third-generation fermions with one pair of light-flavor fermions (those responsible

for the decay of the τ) are the same as those between two pairs of first two generations of

fermions (those responsible for the decay of µ). This is similar to the case of the un-unified

model, where only interactions involving two pairs of quarks (qq)(qq) receive new physics

contributions, while the (qq)(��) interactions are the same as the (��)(��). The lifetime ττ

can be calculated at tree level as

τ−1
τ �

G2
Fm5

τ

192π3

(
1 + 3

m2
τ

M2
W

)
, (2.168)

in the SM. The dominant new physics contribution from G(221) models can be captured in

the shift of MW .

2.5.1.3 νN Deep Inelastic Scattering

The νN deep inelastic scattering experiments probe the coefficients εL (q) and εR (q) (for q

being u or d) that parameterize the neutral current ννqq interactions below the electroweak

scale

L ⊃ −
GF√
2

(
ν̄ν
)
L,µ

∑
q=u,d

[
εL (q)

(
q̄q
)µ
L + εR (q)

(
q̄q
)µ
R

]
. (2.169)
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The DIS experiments measure the ratios of neutral-to-charged current cross sections

Rν ≡ σ NC
νN /σ CC

νN , Rν ≡ σ NC
νN /σ CC

νN , (2.170)

which can be written in terms of εL (q) and εR (q) as

Rν = (1− δ)
[
aL(u)ε

2
L (u) + aL(d)ε

2
R (d) + aR(u)ε2R (u) + aR(u)ε2R (d)

]
, (2.171)

Rν̄ =
(
1− δ̄

) [
āL(u)ε

2
R (u) + āL(d)ε

2
L (d) + āR(u)ε2R (u) + āR(u)ε2R (d)

]
. (2.172)

The coefficients δ and aL,R are related to the nuclei form factors that are experiment specific.

These coefficients are included in GAPP, and we implement only the corrections to εL (q)

and εR (q) .

2.5.1.4 νe Scattering

The most precise data on neutrino-electron scattering comes from the CHARM II [41] ex-

periment at CERN that utilized νµ and νµ. The relevant parameters εL (e) and εR (e) are

defined similarly as in the νN scattering

L ⊃ −
GF√
2

(
ν̄ν
)
L,µ

[
εL (e)

(
ēe
)µ
L
+ εR (e)

(
ēe
)µ
R

]
. (2.173)

We can further define

gνeV ≡ εR (e) + εL (e) , (2.174)

gνeA ≡ εR (e)− εL (e) , (2.175)
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which are related to the measured total cross sections σ NC
νe and σ NC

ν̄e or their ratio σ NC
νe /σ NC

ν̄e .

In the limit of large incident neutrino energies, Eν � me, the cross sections are given as

σ NC
νe =

G2
FmeEν

2π

[(
gνeV + gνeA

)2
+

1

3

(
gνeV − gνeA

)2]
, (2.176)

σ NC
ν̄e =

G2
FmeEν

2π

[(
gνeV − gνeA

)2
+

1

3

(
gνeV + gνeA

)2]
. (2.177)

We implement corrections to the couplings due to new physics in GAPP and compute the

cross sections that are used in the global-fit analysis.

2.5.1.5 Parity Violation Experiments

We consider observables from three different measurements: atomic parity violation (APV),

Møller scattering (e−e− → e−e−) [42], and eN DIS. These experiments measure the weak

charge (QW ) of the electron [42], caesium-133 [43][44] and thallium-205 nuclei [45][46]. Be-

fore defining the weak charge, it is useful to parameterize the coefficients of the (ee)(qq) and

(ee)(ee) interactions in terms of C1q, C2q, and C1e as

L ⊃ −
GF√
2

∑
q

[
C1q
(
ēe
)
A,µ
(
q̄q
)µ
A
+ C2q

(
ēe
)
A,µ
(
q̄q
)µ
A

]
−

GF√
2
C1e
(
ēe
)
A,µ
(
ēe
)µ
A
(2.178)

The weak charges of the quark and electron are defined as

QW (q) = 2C1q, QW (e) = 2C1e. (2.179)
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We can express the SM tree-level couplings of quarks to the Z-boson as L ⊃ ZµJZµ , where

JZµ =
∣∣∣gZA(q)

∣∣∣ · [QW (q)
(
q̄q
)
V ,µ ±

(
q̄q
)
A,µ

]
, (2.180)

and the ± on the axial-vector term is the opposite sign of the T
3q
L

. Hence QW (q) can be

interpreted as the ratio of the vector current to axial-vector current coupling of quark q to

the Z-boson:

QW, SM(q) =
gZV (q)∣∣∣gZA(q)

∣∣∣ . (2.181)

The weak charges of the nucleons and nuclei can be built up from those of the quarks

QW (p) = 2QW (u) +QW (d), (2.182)

QW (n) = QW (u) + 2QW (d), (2.183)

and for nucleus AZ (with atomic number Z and mass number A), which contains Z protons

and N(= A− Z) neutrons,

QW

(
AZ
)

= Z ·QW (p) +N ·QW (n) (2.184)

= 2
[
(Z + A) · C1u + (2A− Z) · C1d

]
. (2.185)

There are also measurements of certain linear combinations of the coupling coefficients

C1u and C1d from polarized electron-hadron scattering data [47]. The particular linear
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combinations, determined by the experimental data,

C1 = 9C1u + 4C1d,

C2 = −4C1u + 9C1d, (2.186)

are included in our global analysis.

2.5.2 Direct Searches at the Tevatron and LHC

Another important bound on the G(221) model originates from direct searches at the Teva-

tron and LHC. Searches for the W ′ and Z′ bosons as a s-channel resonance have been carried

out at the Tevatron and LHC in leptonic decay modes, quark decay channels and diboson

decays. For the constraints from Tevatron, we use the latest Tevatron data:

• DØ: pp̄ → Z′ → e+e− (
∫
Ldt=5.4 fb−1) [59];

• CDF: pp̄ → W ′± → eν (
∫
Ldt=5.3 fb−1) [50];

• CDF: pp̄ → W ′± → tb̄ (
∫
Ldt=1.9 fb−1) [51];

• CDF: pp̄ → Z′ → tt̄ (
∫
Ldt=955 pb−1) [53].

and LHC7 data:

• ATLAS: pp → W ′± → �ν (
∫
Ldt=1.04 fb−1) [54];

• ATLAS: pp → Z′ → l+l− (
∫
Ldt=1.1 fb−1) [55];

• CMS: pp → Z′± → tt̄ in the electron + jets channel (
∫
Ldt=4.33 fb−1) [56].

We will discuss the direct searches in the next chapter in more details.
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2.5.3 Parameter constraints

Using all the indirect and direct searches mentioned above, we scan over the parameter

space of a few G(221) models to find allowed parameter contours at the 95% confidence level

(CL). The NLO QCD corrections to new heavy gauge boson productions are included in the

approach described in Sec. III. For each individual NP model the total width is calculated

with all the possible decay channels included; see the discussion in Sec. III.

The parameter scan results are plotted in Figs. 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, and 2.11, 2.12,

2.13, 2.14, 2.15, 2.16, and 2.17, 2.18, 2.19, 2.20, 2.21, 2.22. In order to better understand the

impact of various experiment data on the parameter space of the G(221) model, we separate

the indirect and direct search constraints into three categories: the electroweak indirect

constraints (green region) and the direct search constraints from the Tevatron (red region)

and the LHC7 (blue region). In Figs. 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, we note the following

points:

• For the LRD (LRT) model, the LHC7 data gives stronger constraints on W ′ and Z′

masses than both EWPT and Tevatron data, and excludes the region where the W ′

mass is smaller than 1.7 TeV (1.8 TeV) and Z′ mass is smaller than 2.3 TeV (3.3 TeV);

• For the SQD model, although the W ′ and Z′ with degenerate masses 500 GeV can be

allowed by the EWPTs at large cφ, the limits from the Tevatron and the LHC exclude

the region where the W ′ and Z′ masses are smaller than 1.5 TeV.

• For all the models except the flavor universal models, such as LRD(T) and SQD, the

EWPT data still gives the strongest constraints on the W ′ and Z′ masses, because of

the non-universal flavor structure in these models.
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• In BP-I, with combined constraints, all the phobic models, in which the couplings of

W ′ to either quarks or leptons are suppressed, can still have relatively light W ′ around

500 GeV, but heavier Z′ (about 1.5 TeV);

• For the non-universal models, such as TFD and UUD, the electroweak indirect con-

straints are tighter than Tevatron and LHC7 direct search constraints, and push the

new gauge boson mass up to more than 2 TeV (TFD) and 3 TeV (UUD), respectively.

In Figs. 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, and 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, we also want

to point out:

• In BP-I, theM
W ′−cφ plane shows that small cφ is favored by direct search constraints

because the W ′ coupling is proportional to 1/sφ, which leads to a small W ′ production

rate. However, in theM
Z′−cφ plane, small cφ is disfavored by direct search constraints

because the mass relation M
Z′ � M

W ′/cφ, push the exclusion region of small cφ to

larger M
Z′ .

• In BP-II, the shape of the excluded bounds in the small cφ region are very similar for

all models because the production cross section of W ′ and Z′ are proportional to tanφ

in all models such as SQD, TFD, and UUD. Because quarks and leptons are un-unified

in UUD, the gauge couplings to leptons are proportional to cotφ, which implies the

large cφ region is also disfavored.

• Within the direct searches, for LRD(T) the most sensitive constraint comes from the

W ′ leptonic decay channel, while for phobic models, the tightest constraints comes

from the Z′ leptonic decay channel. This explains why the contours in the phobic

models have similar shapes, but different from those in the LRD(T) models.
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Figure 2.5: Allowed parameter space of the LRD and LRT models at 95% CL in the M
W ′ −

M
Z′ plane after including indirect and direct constraints: EWPTs (green), Tevatron (red)

and LHC7 (blue).
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Figure 2.6: Allowed parameter space of the LPD and LPT models at 95% CL in the M
W ′ −

M
Z′ plane after including indirect and direct constraints: EWPTs (green), Tevatron (red)

and LHC7 (blue).
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Figure 2.7: Allowed parameter space of the HPD and HPT models at 95% CL in the M
W ′ −

M
Z′ plane after including indirect and direct constraints: EWPTs (green), Tevatron (red)

and LHC7 (blue).
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Figure 2.8: Allowed parameter space of the FPD and FPT models at 95% CL in the M
W ′ −

M
Z′ plane after including indirect and direct constraints: EWPTs (green), Tevatron (red)

and LHC7 (blue).
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Figure 2.9: Allowed parameter space of the SQD and MSQ models at 95% CL in the M
W ′ −

M
Z′ plane after including indirect and direct constraints: EWPTs (green), Tevatron (red)

and LHC7 (blue).
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Figure 2.10: Allowed parameter space of the TFD and UUQ models at 95% CL in the
M
W ′ −M

Z′ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue).
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Figure 2.11: Allowed parameter space of the LRD and LRT models at 95% CL in the
MW ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue). The dashed black lines in LRD represent MLR models.
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Figure 2.12: Allowed parameter space of the LPD and LPT models at 95% CL in the
MW ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue).
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Figure 2.13: Allowed parameter space of the HPD and HPT models at 95% CL in the
MW ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue).
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Figure 2.14: Allowed parameter space of the FPD and FPT models at 95% CL in the
MW ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue).
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Figure 2.15: Allowed parameter space of the SQD models at 95% CL in the MW ′ −cφ plane

after including indirect and direct constraints: EWPTs (green), Tevatron (red) and LHC7
(blue). The dashed black lines represent MSQ models.
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Figure 2.16: Allowed parameter space of the TFD and UUQ models at 95% CL in the
MW ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue).
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Figure 2.17: Allowed parameter space of the LRD and LRT models at 95% CL in the
MZ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue). The dashed black lines in LRD represent MLR models.
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Figure 2.18: Allowed parameter space of the LPD and LPT models at 95% CL in the
MZ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue).
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Figure 2.19: Allowed parameter space of the HPD and HPT models at 95% CL in the
MZ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue).
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Figure 2.20: Allowed parameter space of the FPD and FPT models at 95% CL in the
MZ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue).

92



 [TeV]Z’M
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

φ
co

s

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SQD

Figure 2.21: Allowed parameter space of the SQD models at 95% CL in the MZ′ − cφ plane

after including indirect and direct constraints: EWPTs (green), Tevatron (red) and LHC7
(blue). The dashed black lines represent MSQ models.
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Figure 2.22: Allowed parameter space of the TFD and UUQ models at 95% CL in the
MZ′ − cφ plane after including indirect and direct constraints: EWPTs (green), Tevatron

(red) and LHC7 (blue).
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2.6 Summary

We classified the G(221) models (including the left-right (LR), leptophobic (LP), hadropho-

bic (HP) and fermiophobic (FP) as well as the ununified (UU) and top-flavor(TF)) models

in a unified view in terms of the patterns of symmetry breaking and the gauge couplings

of fermions. We analyzed the constraints on the masses of the heavy gauge bosons of the

G(221) models. We performed a global-fit analysis about a set of 37 electroweak observables,

including Z pole data, the mass and the width of the W± boson, and various low-energy

observables. Moreover, the direct search for the W ′ and Z′ bosons at the Fermilab Tevatron

and CERN LHC could further constrain the G(221) model parameter space. The experi-

mental precision with which these observables have been measured allows us to put strong

bounds on the parameter space of the G(221) models and to constrain the masses of the Z′

and W ′± bosons. We presented our key results in terms of 95% C.L. contours of the allowed

regions both on the MW ′-cosφ plane, as well as on the MZ′-MW ′ plane, from which we

can readily give the lower bounds on the masses of the W ′ and Z′, which can be used as a

guide for future collider searches.
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Chapter 3

DISCOVERY OF HEAVY

CHARGED GAUGE BOSONS

3.1 Introduction

At the Large Hadron Collider (LHC), it is very promising to search for the heavy Z′ and

W ′ bosons through their single production channel as an s-channel resonance with their

subsequent leptonic decays [65]. It yields the simplest event topology to discover the Z′

and/or W ′ with a large production rate and clean experimental signature. These channels

may be one of the most promising early discoveries at the LHC [48, 49, 54, 55]. There

are many theoretical studies of searching for the Z′ boson at the LHC [33, 62, 64, 63, 67].

However, the study the discovery potential of the W ′ boson at the LHC has fared somewhat

less well [66]. In many NP models with extended gauge groups, the W ′ boson emerges

together with the Z′ boson after symmetry breaking, and usually, the W ′ boson is lighter

than, or equal to, the Z′ boson. It is therefore possible to discover the W ′ prior to the Z′.
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More often, the masses of the W ′ and Z′ bosons are not generally independent, and so as

their couplings to the SM fermions. Hence, the discovery potential of the W ′ and Z′ at the

LHC could be highly correlated. In this paper we present a comprehensive study of discovery

potentials of both the W ′ and Z′ bosons in the G(221) model at the LHC.

The G(221) model is the minimal extension of the SM gauge group to include both the

W ′ and Z′ bosons. Its gauge structure is SU(2) ⊗ SU(2) ⊗ U(1) [11, 12, 13, 27, 25, 26,

28, 29, 31, 30, 32, 24]. The model can be viewed as the low energy effective theory of

many NP models with extended gauge structure when all the heavy particles other than the

W ′ and Z′ decouple. In this chapter, based on a linearized effective theory including the

SU(2) × SU(2) × U(1) gauge group, we present the collider phenomenology related to the

simplest event topology in the resonance Z′ and W ′ processes aimed at the early discovery.

In the TeV scale, different symmetry breaking patterns will induce different Z′ and

W ′ mass relations. In breaking pattern I, which has the SU(2) ⊗ U(1) breaking down to

U(1)Y , the W ′ mass is always smaller than the Z′ mass; while in breaking pattern II, the

SU(2) ⊗ SU(2) breaking down to SU(2)L requires the W ′ and Z′ have the same mass at

tree level. This feature could assist us to distinguish these two breaking patterns after the

W ′ and Z′ are discovered.
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3.2 Drell-Yan Production and Decay at Next-to-Leading

Order

At the hadron collider, the total cross section can be written as the convolution of the parton

cross section and parton distribution functions, as follows,

σ =

∫
dx1dx2

∑
i,j

fi/A(x1)fj/B(x2) · σ̂ij(x1x2s), (3.1)

with s is the Lab energy of (A,B), and the c.m. energy of (a, b) is determined by ŝ = x1x2s.

One can also keep the x2 unintegrated, with x1 =
τ

x2
. With this variable change, the

Jacobian is

∂(τ, x)

∂(x1, x2)
=

∣∣∣∣∣∣∣
x2 x1

0 1

∣∣∣∣∣∣∣ = x2. (3.2)

So the integration will be ∫ 1

τ0
dτ

∫ 1

τ

dx2
x2

. (3.3)

Taking into account the
1

ŝ
behavior of the hard-scattering processes as ŝσ̂(ŝ), the parton

luminosity L is

σ =

∫ 1

τ0

dτ

τ
· L(τ) · [ŝσ̂(ŝ)] (3.4)

with

L(τ) = τ

ŝ

1

1 + δij

∫ 1

τ

dx

x

∑
(fi(τ/x)fj(x) + fi(x)fj(τ/x)). (3.5)

where i and j denote the initial state partons and f
(a)
i (x) is the parton distribution of the

parton i inside the hadron a with a momentum fraction of x = pi/pa. The parton luminosity
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has dimensions of a cross section, is a convenient measure of the reach of a collider of given

energy and hadron-hadron luminosity.

At the LHC, the cross section of pp → V ′ → f̄f ′ (V ′ = W ′/Z′) is

σ
pp→V ′→f̄f ′ =

∑
{ij}

∫ 1

τ0

d τ

τ
· Lij(τ) · [ŝ σ̂ij→V ′→f̄f ′(ŝ)] , (3.6)

where τ ≡ ŝ/s. The lower limit of the τ variable is determined by the kinematic threshold

of the V ′ production, i.e. τ0 = M2
V ′/s. Using the narrow width approximation (NWA) one

can factorize the pp → V ′ → f̄f ′ process into the V ′ production and the V ′ decay,

σ
pp→V ′→f̄f ′ =


∑
{ij}

∫ 1

τ0

d τ

τ
· 1
s

dLij
d τ

· [ŝ σ̂
ij→V ′(ŝ)]


 × Br(V ′ → f̄ f ′), (3.7)

where the branching ratio (Br) is defined as Br(V ′ → f̄ f ′) = Γ(V ′ → f̄f ′)/Γtot. As to be

shown later, the decay widths of Z′ and W ′ bosons in most of the allowed parameter space

are much smaller than their masses, which validates the NWA adapted in this work.

3.2.1 Drell-Yan Production at the NLO

At the next-to-leading-order (NLO) the partonic cross section of the V ′ production is

σ̂
ij→V ′(ŝ) =

π

6ŝ
g22(g

2
L + g2R)Hij


M2

V ′
ŝ


 , (3.8)
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where the functions Hij(z) for different parton flavors ij = (q̄q′, qg, q̄g) are

H
q̄q′(z) = δ(1− z)

+
αs
2π

CF

[(
2π2

3
− 8

)
δ(1− z)− 2(1 + z2)

1− z
log(z)

+4(1 + z2)

(
log(1− z)

1− z

)
+

]
, (3.9)

and

Hqg(z) = Hq̄g(z) =
αs
2π

TF

[(
z2 + (1− z)2

)
log

(1 + z)2

z
+

1

2
+ 3z − 7

2
z2

]
. (3.10)

Here, CF and TF are the color factor defined as CF = 4/3 and TF = 1/2. The plus function

has the properties such as

∫ 1

z0
dzf(z)

(
log(1− z)

1− z

)
+

=

∫ 1

z0
dzf(z)

log(1− z)

1− z

−
∫ 1

z0
f(z)δ(1− z)

∫ 1

z0
dz′ log(1− z′)

1− z′
, (3.11)

where f(z) is a function including parton luminosity. In the soft limit z → 1 , the plus

function is still finite.

It is convenient to parametrize the V ′ production cross section into one model-dependent

piece CV ′
q and another model-independent piece FV ′

q (M
V ′ ,

√
s). The first piece consists of

model couplings, while the second piece, which includes all the hadronic contributions [62],

depends on m
V ′ and

√
s only. We separate the up-quark and down-quark contributions in

the Z′ production because Z′ couples quite differently to up- and down-quarks in a few NP
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models. The NLO cross sections of Z′ and W ′ production then can be expressed as

σ
pp→Z′→ff

=
π

6
[CZ′
u FZ′

u (M
V ′,

√
s) + CZ′

d FZ′
d (M

V ′ ,
√
s)],

σ
pp→W ′→ff ′ =

π

6
[CW ′
q FW ′

q (M
V ′ ,

√
s)] , (3.12)

where

CV ′
q = g22

(
f2L + f2R

)
× Br(V ′ → ff ′), (3.13)

FV ′
q (MV ′,

√
s) =

∫ 1

τ0

d τ

τ
·
[
Lqq̄(τ) ·Hq̄q′(z) + Lqg(τ) ·Hq̄g(z) + (q̄ → q)

]
, (3.14)

=

∫ 1
M2

s

d z

z
·
[
Lqq̄(

M2

zs
) ·H

q̄q′(z) + Lqg(
M2

zs
) ·Hq̄g(z)

+(q̄ → q)] (3.15)

Note that the decay branching ratio is allocated to the model-dependent piece CV ′
q . After

convoluting with PDFs, the model-independent piece FV ′
q is merely a function of mV ′ and

the collider energy
√
s.

As the model dependent couplings can be factorized out, the total cross section in the

sequential W ′ and Z′ models can be used as the reference cross section. The upper panels

of Fig. 3.1 show the LO and NLO production cross sections of the sequential W ′ (left) and

Z′ boson (right) as a function of the extra gauge boson mass at the Tevatron, the 7 TeV

and 14 TeV LHC. The lower panels display the K-factor, defined as the ratio of the NLO

and LO cross sections. In the upper panels of Fig. 3.3 we plot the cross section of Z′

production induced by uū (left) and dd̄ (right) initial state, respectively. Again, the lower

panels show the corresponding K-factors. Note that the K-factors are model independent
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once one separates the up-quark and down-quark contributions in the Z′ production. The

K-factor is defined as

Kq =
σNLO
σLO

=
FV ′
q (M

V ′ ,
√
s)NLO

F
V ′
seq

q (MV ′ ,
√
s)LO

. (3.16)

Here we adopt the CTEQ6.6M parton distribution package [68] for both the LO and NLO

calculations. Both the factorization and renormalization scales are set to be M
V ′ .

The NLO cross section of other NP models can be obtained easily from the sequential

W ′ and Z′ cross sections plotted in Figs. 3.1, 3.2 and 3.3, 3.4 by:

• scaling the model-dependent CV ′
-coefficients (CZ′

u /C
Z′seq
u , CZ′

d /C
Z′seq
d

, CW ′
q /C

W ′
seq

q ),

• including the NLO QCD correction with the inclusive K-factors (Ku, Kd and Kq).

To be more specific, the NLO cross sections of new gauge boson productions in the G(221)

model are

σ
W ′ =

CW ′
q

C
W ′
seq

q

(
FW ′
q

)
LO

×Kq,

σ
Z′ =

CZ′
u

C
Z′seq
u

(
FZ′
u

)
LO

×Ku +
CZ′
d

C
Z′seq
d

(
FZ′
d

)
LO

×Kd. (3.17)

3.2.2 V ′ Decay

In the G(221) model the W ′ and Z′ bosons can decay into SM fermions, gauge bosons, or

a pair of SM gauge boson and Higgs boson. In this subsection we give detailed formula of

partial decay widths of the extra gauge bosons.
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Figure 3.1: Upper panel: the LO and NLO cross sections of pp → W ′ process with a SM like
coupling as a function of new heavy gauge boson mass (mW ′) in hadron collisions. Lower
panel: the K-factor as a function of m

W ′ .
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Figure 3.2: Upper panel: the LO and NLO cross sections of pp → Z′ process with a SM like
coupling as a function of new heavy gauge boson mass (mZ′) in hadron collisions. Lower
panel: the K-factor as a function of m

Z′ .
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Figure 3.3: Upper panel: the LO and NLO cross sections of pp → Z′ process with a SM-like
couplings as a function of mZ′ in hadron collision: induced by up-type quark initial state
Lower panel: the K-factor as a function of m

Z′ .
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Figure 3.4: Upper panel: the LO and NLO cross sections of pp → Z′ process with a SM-like
couplings as a function of mZ′ in hadron collision: induced by down-type quark initial state.
Lower panel: the K-factor as a function of m

Z′ .
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First, consider the fermionic mode. The decay width of V ′ → f̄1f2 is

Γ
V ′→f̄1f2

=
MV ′
24π

β0

[
(g2L + g2R)β1 + 6gLgR

mf1
mf2

MV ′

]
Θ(M

V ′ −mf1
−mf2

) , (3.18)

where

β0 =

√√√√√1− 2
m2
f1

+m2
f2

M2
V ′

+
(m2

f1
−m2

f2
)2

M4
V ′

,

β1 = 1−
m2
f1

+m2
f2

2M2
V ′

−
(m2

f1
−m2

f2
)2

2M4
V ′

. (3.19)

Note that the color factor is not included in Eq. 3.18 and the third generation quark decay

channel opens only for a heavy Z′ and W ′.

Second, consider the bosonic decay mode, e.g. W ′ and Z′ decay to gauge bosons and

Higgs bosons. Such decay modes are induced by gauge interactions between the extra

gauge boson and the SM gauge boson after symmetry breaking. Even though the couplings

g
V ′V1V2

and g
V ′V1H

are suppressed by the gauge boson mixing term 1/x, the bosonic

decay channel could be the major decay channel in certain models, e.g. fermo-phobic model

in which the extra gauge boson does not couple to fermions at all.

The decay width of V ′ → V1V2 is

Γ
V ′→V1V2

=
M5
V ′

192πM2
V1

M2
V2

g2
V ′V1V2

β30β1Θ(M
V ′ −MV1

−MV2
) , (3.20)
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where

β0 =

√√√√√1− 2
M2
V1

+M2
V2

M2
V ′

+
(M2

V1
−M2

V2
)2

M4
V ′

,

β1 = 1 + 10
M2
V 1 +M2

V 2

2M2
V ′

+
M4
V1

+ 10M2
V 2M

2
V2

+M4
V1

M4
V ′

. (3.21)

The width of V ′ → V1H (where V1 = W or Z boson and H is the lightest Higgs boson) is

Γ
V ′→V1H

=
MV ′
192π

g2
V ′V1H
M2
V1

β0β1Θ(M
V ′ −MV1

−MV2
) , (3.22)

where

β0 =

√√√√√1− 2
M2
V1

+m2
H

M2
V ′

+
(M2

V1
−m2

H )2

M4
V ′

,

β1 = 1 +
10M2

V1
− 2m2

H

2M2
V ′

+
(M2

V1
−m2

H )2

M4
V ′

. (3.23)

The couplings g
V ′V1V2

and g
V ′V1H

for various models are listed in Table II for reference.

In this study only left-handed neutrinos are considered while the possible right-handed neu-

trinos are assumed to be very heavy. In addition we also assume all the heavy Higgs bosons,

except the SM-like Higgs boson, decouple from the TeV scale. As a result, the total decay

width of the W ′ boson is

Γ
W ′,tot = 3Γ

W ′→ēν
+2NCΓ

W ′→ūd
+NCΓ

W ′→t̄b
+Γ

W ′→WZ
++Γ

W ′→WH
, (3.24)
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while the width of the Z′ boson is

Γ
Z′,tot = 3Γ

Z′→ēe
+ 3Γ

Z′→ν̄ν
+ 2NCΓ

Z′→ūu
+ 3NCΓ

Z′→d̄d

+ NCΓ
Z′→t̄t

+ Γ
Z′→WW

+ Γ
Z′→ZH

, (3.25)

where NC = 3 originates from summation of all possible color quantum number.

3.3 Event Simulation and Search Limits

3.3.1 Signal and Backgrounds

At hadron colliders, searches for a heavy resonance decaying to a charged lepton and missing

transverse energy are always a primary task because of their simple final states. In the final

states, the charged lepton can be electron or muon. The tau lepton is not considered here,

because of the complicated hadronic decays of the tau lepton. The neutrino in the final

states results in missing transverse energy in the detector.

One can not reconstruct the invariant mass of the final states, due to the missing trans-

verse energy in the final states. The kinematic variable reconstructed instead is the transverse

mass

MT =
√

(E�
T
+ Emiss

T
)2 − (p�

T
+ pmis

T
)2 =

√
2pTEmiss

T
(1− cosϕlν), (3.26)

where pT is the lepton transverse momentum, Emiss
T is the magnitude of the missing trans-

verse momentum (Emiss
T ), and ϕlν is the angle between the pT and Emiss

T vectors. The

transverse mass distribution displays a Jacobian peak that falls sharply above the resonance
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mass, as can be seen by the differential cross section

dσ

dMT
=

dσ

d cos θ

d cos θ

dMT
=

dσ

d cos θ

MT

2M
W ′
√
M2
W ′ −M2

T

, (3.27)

where θ is the polar decay angle in the center of mass (COM) frame of the system. The

Jacobian peak will become broad when the width of the W ′ boson and the effect of detector

smearing are taken into account. Since there is a relation between p�T and the polar angle θ

in the COM frame with COM energy ŝ,

p�T =

√
ŝ

2
sin θ (3.28)

a similar Jacobian peak will show up in the transverse momentum distribution of the final

state lepton, as can be seen by the differential cross section

dσ

dp�
T

=
dσ

d cos θ

d cos θ

dp�
T

=
dσ

d cos θ

2p�T

M
W ′

√
M2
W ′
4

− p�2
T

, (3.29)

where the peak position is at p�T =
M
W ′
2

. Measuring the Jacobian peak is complicated

when the width of the W ′ boson and the effect of detector smearing are taken into account.

From the above kinematic consideration, one would like to consider three variables, p�T,MT ,

and Emiss
T , to describe the characteristic feature of this process.

We choose the benchmark point as 1500 GeV mass, and coupling fL =
e√

2 sin θW
and

fR = 0. The total decay width is Γ
W ′ = 51 GeV. Other couplings can be scaled using the

scaling formula discussed in above. The CTEQ6L1 parton distribution functions are used in
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our calculation with the renormalization and factorization scales chosen as m
W ′ . The final

state of this channel is

pp → W ′ → �ν. (3.30)

For the signal, we choose the renormalization and factorization scales as the W ′ mass M
W ′ .

The following SM backgrounds are considered:

p p → W → �ν, main background (3.31)

p p → Z/γ∗ → ��̄, (3.32)

p p → V V → �X, (3.33)

p p → tt̄ → �X, (3.34)

and, of course, the QCD background estimated from experimental data. The main back-

ground comes from the high energy tail of the SM W decays to the same lepton and missing

energy. After basic event selection, other backgrounds than W decays are only estimated

to be less than 10%. The p�T, and Emiss
T distributions for the signal are shown in Figs. 3.5

and 3.6. The MT distribution for the signal is shown in the left panel of the Fig. 3.7.

For the purpose of our study, we will only simulate the signal process using the benchmark

point as a template to justify the simulation procedure. Then we will adopt the event

simulations at the Tevatron and LHC for both signal and backgrounds to reproduce the

search limits on the W ′ resonance. To illustrate the procedure, we summarize the results at

the LHC with the energy 7 TeV and the luminosity 1 fb−1 using the ATLAS detector. We

refer to the ATLAS paper in ref. [54] for all the details.
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Figure 3.5: The p�T distribution for 1500 GeV W ′ in the charged lepton and missing trans-
verse energy final states.
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Figure 3.6: The Emiss
T distribution for 1500 GeV W ′ in the charged lepton and missing

transverse energy final states.
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Figure 3.7: The MT distribution for 1500 GeV W ′ in the charged lepton and missing trans-
verse energy final states is shown.
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3.3.2 Object Reconstructions and Event Selections at the LHC

The ATLAS detector has three major components: the inner tracking detector, the calorime-

ter and the muon spectrometer. Events are required to have their primary vertex recon-

structed from at least three tracks with pT > 0.4 GeV and longitudinal distance less than

200 mm from the center of the collision region.

Events are required to have exactly one candidate electron or one candidate muon satis-

fying the requirements described below:

• Electron candidate:

– tracks with pT > 20 GeV

– electromagnetic compartment of calorimeter with ET > 25 GeV and |η| < 1.37

or 1.52 < |η| < 2.47 if matches with an inner detector track;

– The resolution of the energy measurement is 2% for ET ≈ 50 GeV and approaches

1% in the high-ET range relevant to this analysis.

– the isolation energy is measured with the calorimeter in a cone ∆R < 0.4 (∆R ≡√
(∆η)2 + (∆ϕ)2) around the electron track, and the requirement is

∑
ET < 9 GeV,

where the sum includes all calorimeter energy clusters in the cone excluding the

core energy deposited by the electron.

• Muon candidates:

– matching tracks in the muon spectrometer and inner detector with combined

pT > 22 GeV. Muon tracks can be reconstructed independently in both the

inner detector and muon spectrometer, and the muons used in this study are

required to have matching tracks in both systems. The muons are required to
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have pT > 25 GeV, where the momentum of the muon is obtained by combining

the inner detector and muon spectrometer measurements.

– approximately |η| < 1.0 and 1.3 < |η| < 2.0.

– The average momentum resolution is currently about 15% at pT = 1 TeV.

– the isolation energy is measured using inner detector tracks with ptrackT > 1 GeV

in a cone ∆R < 0.3 around the muon track. The isolation requirement is∑
ptrackT < 0.05 pT, where the muon track is excluded from the sum.

The Emiss
T in the electron channel is obtained from a vector sum over calorimeter cells

Emiss
T = Emiss

T (calo). (3.35)

Muons only deposit a small fraction of their energy in the calorimeter, and so, in the muon

channel, the Emiss
T is obtained from

Emiss
T = Emiss

T (calo)− pT(µ). (3.36)

The second term in this vector sum subtracts the muon transverse momentum. The missing

Emiss
T requirements are imposed to be Emiss

T > 25GeV in both channels. In the electron

channel, to avoid the misidentification of hadronic jets as a lepton, a tighter cut is imposed

with Emiss
T > 0.6 p�T.

After the lepton reconstruction and the basic event selections, one will notice that the

MT distributions, shown in the right panel of the Fig. 3.7, accumulate more data for the

signal than the backgrounds in the high-MT tails. To search for a W ′ with a mass of 1500
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eν µν

σBL 92.248 92.248

εsig 0.541 ± 0.026 0.347 ± 0.024

Nsig 49.6 ± 6.0 34.4 ± 4.4

W → lν 1.59 ± 0.13 1.36 ± 0.13

Z → ll 0.00010 ± 0.00004 0.095 ± 0.005

diboson 0.08 ± 0.08 0.11 ± 0.08

tt̄ 0.08 ± 0.08 0

QCD 0 +0.17
−0 0.01 +0.02

−0.01

Total Nbg 1.75 +0.24
−0.18 1.57 ± 0.15

Nobs 2 2

Table 3.1: Expected and observed numbers of events in 1.04 fb−1 in ref. [54] from the various
background sources in each decay channel for MT > 891 GeV, the region used to search for

a W ′ with a mass of 1500 GeV. In the table, the signal selection efficiency, εsig , and the
prediction for the number of signal events, Nsig, obtained with this efficiency. The last two
columns are the expected number of background events, Nbg , and the number of events

observed in data, Nobs . The uncertainties are statistical.

GeV, the hard cut on MT is required to be

MT > 891 GeV, for M
W ′ = 1500 GeV. (3.37)

The rate for signal and backgrounds are listed in the Table 3.1. We notice that after all the

cuts, the significance is large in the simulations. For the MT cut imposed for other masses

of W ′, we refer to the ATLAS paper [54] for details.
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3.3.3 Upper Limits on W ′ masses at the LHC

At the current LHC, since there is no excess on searching for the heavy resonance in the

charged lepton and missing transverse energy final states, one would like to set the limits

on this heavy resonance in this final states. Based on the expected and observed numbers

of events after all the cuts, the Beyasian or frequentist analysis is used to set the limits at

the 95% confidence level (CL). Here we will take the W ′ signal with 1500 GeV mass at the

LHC as an example to show how to calculate the upper limit. From the Table 3.1, we can

read out the signal selection efficiency εsig after all the cuts, the simulated numbers of signal

Nsig, the simulated numbers of background Nbg, and the observed numbers Nobs. Then

the expected number of events is

Nexp = εsigLintσB +Nbg, (3.38)

where σ is the production cross section, B is the decay branching ratio, and Lint is the

integrated luminosity of the data sample. Using Poisson statistics, the likelihood to observe

Nobs events is

L(Nobs|σB) =
(εsigLintσB +Nbg)

Nobs

Nobs!
e
−(εsigLintσB+Nbg). (3.39)

Taking a flat prior probability density, the posterior probability can be obtained. From the

appendix, we know that the 95% CL upper limit σ95%CL, is given by

∫ (σB)95%CL

0
P(σB|Nobs)d(σB) = 95%. (3.40)
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If one don’t take the uncertainties of signal and backgrounds into account, the upper limit

has a simple formula to calculate for a single channel,

1−
Γ(Nobs + 1, (σB)95%CLεsigLint)

Γ(Nobs + 1, Nbg)
= 95%. (3.41)

Using the numbers in the Table 3.1, we obtain the upper limit at the 95% CL is

(σB)up = 8.79184 fb in the electron channel , (3.42)

(σB)up = 12.968 fb in the muon channel , (3.43)

which are the same as the results in the ATLAS paper [54]. In principle, one can calculate

the combined limit using the equations in appendix. Here we will only use an approximate

formula in the Gaussian limit:

µ2up =
1∑N

i
1

µ2iup

. (3.44)

The combined limit is

(σB)up = 7.277 fb, (3.45)

which is still close to the results in the ATLAS paper [54].

3.4 Discovery Potential and Significance

In the early LHC7 experiment, the combined constraints from current direct searches and

indirect EWPTs play the crucial role to specify the unexplored parameter space. Given the
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allowed parameter space discussed in the previous chapter, we are able to predict the time

scale to probe the W ′ and Z′ at 5σ discovery evidence. We are able to provide the following

information:

• The integrated luminosities, with which the LHC can discover the W ′ and/or Z′ for

certain masses in different G(221) models.

• The region of the parameter space that could be accessed for different luminosities and

energies in the LHC run.

• The possibility to identify different models in our classification once the W ′ and/or Z′

are discovered.

To be specific, we consider two different scenarios: an early run with
√
s = 7 TeV and

an integrated luminosity of 5.61 fb−1; a long run with
√
s = 14 TeV and O(103) fb−1

integrated luminosity is expected finally.

To get the expected luminosity contour, one has to calculate the signal and background

cross sections at LHC7 and LHC14 for each point in the parameter space of the models.

In principle, the complete Monte Carlo simulations for the signal and background including

efficiency analysis in the G(221) models have to be used to obtain the needed luminosity

for the discovery or exclusion at 7 TeV and 14 TeV. However, in the Drell-Yan production

process, all the model-independent effects, including the kinematic cuts, can be factorized out

from the model-dependent part, which only depends on the gauge couplings and branching

ratios. Therefore, the simulation on one benchmark model, such as the sequential W ′ and Z′

model, can provide the needed luminosity information for the other models. At the LHC7,

the complete simulation on the signal and backgrounds including detection efficiency have
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been done in Refs. [54, 55]. At the LHC14, the ATLAS TDR [58] have done the detailed

studies on the discovery potentials for the sequential W ′ and Z′ model. The luminosity

needed for other new physics models can be obtained by properly scaling the luminosity

obtained for the sequential model.

Here we summarize the event analysis procedures at the current LHC and in the ATLAS

TDR. At the LHC7, we adopt the ATLAS simulation and analysis with integrated luminosity

at about 1 fb−1. Both electron and muon channels are considered in both W ′ and Z′

searches. For the W ′ searches, the missing energy in both channels are required to be above

the threshold energy of 25 GeV. Furthermore, the cut on the transverse mass of the lepton

and missing energy system varies as the W ′ mass increases. For more detailed information,

please refer to Refs. [54, 55]. In the ATLAS TDR, for the sequential W ′, the simulation on

the lepton plus missing transverse energy signal at high mass region is performed. We list

the event selection and cut-based analysis as follows:

• Events are required to have exactly one reconstructed lepton with pT > 50 GeV within

|η| < 0.25, and isolated from jets with ∆R�j = 0.5;

• The lepton reconstruction is smeared by σ(1/pT ) = 0.011/pT ⊗ 0.00017, while the jet

resolution is taken as σ(ET ) = 0.45×
√

ET ⊗ 5%;

• Missing transverse energy Emis
T > 50 GeV;

• To reduce the di-jet and tt̄ backgrounds, a lepton fraction is required to be

∑
pT /

(∑
pT +

∑
ET

)
> 0.5 (3.46)

;

121



• Transverse mass mT =
√

2pTE
mis
T

(1− cos∆φ) > 0.7×M
W ′ , where ∆φ is the angle

between the momentum of the lepton and the missing momentum.

For the sequential Z′, we list the event selection and analysis on the di-lepton final states as

follows:

• Events are required to have exactly two reconstructed same-flavor opposite-charged

leptons with at least one lepton pT > 30 GeV, within |η| < 0.25;

• Di-lepton invariant mass window |m�� −M
Z′ | < 4× Γ

Z′ .

Next we explore the LHC sensitivity toW ′ and Z′ bosons. We can quantify the sensitivity

to new physics discovery or set exclusion limits on it based on statistics. Specifically, for the

case of discovery we would like to know the statistical significance (S) for discovery, which

characterizes the inconsistency of the experiment data with a background-only hypothesis.

If there is no discovery at a given luminosity, we set exclusion limits on new physics. In the

counting experiments, suppose one has an experiment that counts n events, modeled as a

Poisson distribution with mean s+ b, where s is the expected signal rate, b is the expected

background rate. The probability of measuring n events is therefore

P (n|s, b) = (s+ b)n

n!
e−(s+b) . (3.47)

Using a profile likelihood ratio as the test statistic, the expected significance is obtained as

follows [117]

S =
√
2 ((s+ b) ln(1 + s/b)− s) . (3.48)
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For sufficiently large b we can expand the logarithm in s/b and obtain the widely-used

significance formula

S =
s√
b
(1 +O(s/b)) . (3.49)

In addition to establishing discovery by rejecting the background hypothesis, we can consider

the signal hypothesis as well. It is common to use confidence level (CL) α and the related

p-value to quantify the level of incompatibility of data with a signal hypothesis. The profile

likelihood ratio qµ is used as the test statistic [117]. For a sufficiently large data sample the

probability density of qµ takes on a well defined χ2 distribution with mean µ̂ and variance

σ̂ for one degree of freedom. Given the p-value for each number of signal events s, we can

obtain the upper limit sup on the number of signal events,

sup = µ̂+ σ̂Φ−1(1− α) , (3.50)

where the mean and variance of the χ2 distribution are µ̂ = n − b, and σ̂ =
√
b for large

data sample, and Φ is the cumulative distribution of the standard Gaussian with zero mean

and unit variance. For the expected upper limit, in which the data count is taken as the

background sum, the upper limit at confidence level α = 95% is

sup = Φ−1(0.05) ·
√
b = 1.64×

√
b . (3.51)

So for a sufficiently large data sample the equivalent significance Z for excluding a signal

hypothesis is given by

Z =
sup√

b
= 1.64. (3.52)
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For instance, when expressing the significance for 5σ discovery with the exclusion upper limit

at the 95% CL, a factor S/Z = 5/1.64 � 3 needs to be applied.

Denoting by σs (σb) the inclusive cross section of the signal (background), εs (εb) the

cut acceptance of the signal (background), and L the integrated luminosity, the number of

signal (background) events can be written as

s = σs εs L , (3.53)

b = σb εb L . (3.54)

For a sufficiently large data sample, both S and Z have a scaling behavior on the integrated

luminosity,

S � Z � s√
b
=

σs εs√
σb εb

×
√
L. (3.55)

Figures 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 displays the 5σ discovery potential (fb−1) for

LHC7 via W ′ leptonic decay channel, and current combined constraints are within solid

black contour. The LRD(T) and MLR models can be further constrained when the inte-

grated luminosity for LHC7 reaches its maximum 5.6 fb−1. However, the other models

need much more luminosity, which even exceeds the total integrated luminosity (5.6 fb−1)

at LHC7. Therefore, the W ′ leptonic decay channel cannot make further contributions

to discovering these G(221) models, except in some small region in LRD(T) and MLR. In

Figs. 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, it shows that the EWPTs constraints are stronger than those

from the Tevatron and the LHC7, except LRD(T) and MLR. This means that compared to

EWPTs, the LHC7 direct search via the W ′ leptonic decay channel for the new physics

models with G(221) gauge group structure can put further constraint only on LRD(T) and
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Figure 3.8: 5σ Discovery potential (fb−1) in the LRD and LRT models for different lumi-
nosity at LHC7 via W ′ leptonic decay channel. The current combined constraints are within
solid black contour. The dashed black lines in LRD represent MLR models.
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Figure 3.9: 5σ Discovery potential (fb−1) in the LPD and LPT models for different lumi-
nosity at LHC7 via W ′ leptonic decay channel. The current combined constraints are within
solid black contour.
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Figure 3.10: 5σ Discovery potential (fb−1) in the HPD and HPT models for different lumi-
nosity at LHC7 via W ′ leptonic decay channel. The current combined constraints are within
solid black contour.
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Figure 3.11: 5σ Discovery potential (fb−1) in the FPD and FPT models for different lumi-
nosity at LHC7 via W ′ leptonic decay channel. The current combined constraints are within
solid black contour.

128



-110

1

10

210

310

410

 [TeV]W’M
1 2 3 4 5

φ
co

s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SQD

Figure 3.12: 5σ Discovery potential (fb−1) in the SQD models for different luminosity at
LHC7 via W ′ leptonic decay channel. The current combined constraints are within solid
black contour. The dashed black lines in SQD represent MSQ models.
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Figure 3.13: 5σ Discovery potential (fb−1) in the TFD and UUD models for different lumi-
nosity at LHC7 via W ′ leptonic decay channel. The current combined constraints are within
solid black contour.
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MLR. For the other models, the direct search at LHC7 for s-channel W ′ production with

leptonic decay cannot compete with seeking for deviation from SM predictions via EWPTs.

Figures 3.14, 3.15, 3.16, 3.17, 3.18, 3.19 shows the 5 σ discovery potential (fb−1) shows

the 5σ discovery potential (fb−1) at the LHC7 via the Z′ leptonic decay channel, and the

current combined constraints are within solid black contour. We can see that for LRD(T),

SQD, TFD, UUD, MLR and MSQ, further discovery via the Z′ leptonic decay channel needs

more than 100 fb−1, which is definitely far beyond the total integrated luminosity before

LHC switches away from 7 TeV. However, some corner of the parameter space of LPD(T),

HPD(T) and FPD(T) can be further tested when LHC7 reaches 5.6 fb−1. Especially, for

HPD(T) and FPD(T), there are small regions where Z′ can be discovered with a few fb−1

luminosity or these parameters can be excluded with less than one fb−1 luminosity. At

the LHC7, the Z′ leptonic decay channel is more efficient than EWPTs on constraining

the parameter regions in the LPD(T), HPD(T) and FPD(T). For LRD(T), LPD(T) and

HPD(T), EWPTs are more sensitive to the large cφ region, where LHC7 cannot compete

with EWPTs. For SQD, TFD and UUD, both W ′ and Z′ leptonic decay channel at LHC7

cannot help further, because the constraint from EWPTs for UUD is much stronger than

Tevatron or LHC7 data, as shown in Figs. 2.5, 2.6, 2.7, 2.8, 2.9, 2.10.

Figures 3.20, 3.21, 3.22, 3.23, 3.24, 3.25 presents the 5σ discovery potential (fb−1) at

the LHC14 via the W ′ leptonic decay channel, and current constraints are within the solid

black contour. After the LHC14 collects 10 fb−1, a sizable region of parameter space will

be further tested, except for all the phobic models, LPD(T), HPD(T) and FPD(T). For the

phobic models, very large integrated luminosity is needed to have 5σ discovery because of

the small total cross section in the W ′ leptonic decay channel, which is either suppressed by
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Figure 3.14: 5σ Discovery potential (fb−1) in the LRD and LRT models for different lumi-
nosity at LHC7 via Z′ leptonic decay channel. The current combined constraints are within
solid black contour. The dashed black lines in LRD represent MLR models.
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Figure 3.15: 5σ Discovery potential (fb−1) in the LPD and LPT models for different lumi-
nosity at LHC7 via Z′ leptonic decay channel. The current combined constraints are within
solid black contour.
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Figure 3.16: 5σ Discovery potential (fb−1) in the HPD and HPT models for different lumi-
nosity at LHC7 via Z′ leptonic decay channel. The current combined constraints are within
solid black contour.
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Figure 3.17: 5σ Discovery potential (fb−1) in the FPD and FPT models for different lumi-
nosity at LHC7 via Z′ leptonic decay channel. The current combined constraints are within
solid black contour.
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Figure 3.18: 5σ Discovery potential (fb−1) in the SQD models for different luminosity at
LHC7 via Z′ leptonic decay channel. The current combined constraints are within solid
black contour. The dashed black lines in SQD represent MSQ models.

136



-110

1

10

210

310

410

 [TeV]Z’M
1 2 3 4 5

φ
co

s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

TFD

-110

1

10

210

310

410

 [TeV]Z’M
1 2 3 4 5

φ
co

s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

UUD

Figure 3.19: 5σ Discovery potential (fb−1) in the TFD and UUD models for different lumi-
nosity at LHC7 via Z′ leptonic decay channel. The current combined constraints are within
solid black contour.
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Figure 3.20: 5σ Discovery potential (fb−1) in the LRD and LRT models for different lu-
minosity at LHC14 via W ′ leptonic decay channel. The current combined constraints are
within solid black contour. The dashed black lines in LRD represent MLR models.
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Figure 3.21: 5σ Discovery potential (fb−1) in the LPD and LPT models for different lu-
minosity at LHC14 via W ′ leptonic decay channel. The current combined constraints are
within solid black contour.
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Figure 3.22: 5σ Discovery potential (fb−1) in the HPD and HPT models for different lu-
minosity at LHC14 via W ′ leptonic decay channel. The current combined constraints are
within solid black contour.
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Figure 3.23: 5σ Discovery potential (fb−1) in the FPD and FPT models for different lu-
minosity at LHC14 via W ′ leptonic decay channel. The current combined constraints are
within solid black contour.
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Figure 3.24: 5σ Discovery potential (fb−1) in the SQD models for different luminosity at
LHC14 via W ′ leptonic decay channel. The current combined constraints are within solid
black contour. The dashed black lines in SQD represent MSQ models.
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Figure 3.25: 5σ Discovery potential (fb−1) in the TFD and UUD models for different lu-
minosity at LHC14 via W ′ leptonic decay channel. The current combined constraints are
within solid black contour.
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the production rate of the W ′, such as HPD(T) and FPD(T), or suppressed by the decay

branching ratio, such as LPD(T) and FPD(T). With a 10 fb−1 luminosity, for LRD(T), the

discovery potential for W ′ mass can reach more than 3 TeV, and the W ′ mass discovery for

MLR can reach more than 4 TeV. Furthermore, for the large cφ region in LRD(T), LHC14

search via W ′ leptonic decay channel can easily probe the large M
W ′ region with several

fb−1. In BP-II, the current constraints already pushed the W ′ to the large mass region.

However, with a 10 fb−1 integrated luminosity, for SQD, TFD and UUD models, most of the

allowed region below 5 TeV W ′ mass can be further tested. For relatively small cφ in SQD

and TFD, a few fb−1 luminosity can even probe W ′ boson beyond 5 TeV. When the LHC is

upgraded to 14 TeV, SQD, TFD and UUD can be further tested, exploring the region where

current constraints cannot reach. This shows that the capability of LHC14 is far beyond

LHC7. However, even LHC14 cannot test all the phobic models, such as LPD(T), HPD(T)

and FPD(T), via only W ′ leptonic decay channel.

Figures 3.26, 3.27, 3.28, 3.29, 3.30, 3.31 shows the 5 σ discovery potential (fb−1) for

the LHC14 via the Z′ leptonic decay channel, and current combined constraints are within

solid black contour. For the models other than LRD(T), UUD and MLR, the LHC14 can

already test the parameter space effectively with the integrated luminosity less than 1 fb−1.

However, for the FPD(T), SQD and TFD models, EWPTs are more sensitive to the large

cφ region. Also if the luminosity can reach 10 fb−1, we can test a large parameter space

region, where we can either discover new physics based on these models or constrain the

parameters in the relevant region. For LRD(T), UUD and MLR, when integrated luminosity

is accumulated to more than 100 fb−1, LHC14 data can have sizable parameter space further

tested up to even beyond 5 TeV MZ′ . For LRD(T) Z′ leptonic decay channel is less effective
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Figure 3.26: 5σ Discovery potential (fb−1) in the LRD and LRT models for different lu-
minosity at LHC14 via Z′ leptonic decay channel. The current combined constraints are
within solid black contour. The dashed black lines in LRD represent MLR models.

145



-310

-210

-110

1

10

210

310

410

 [TeV]Z’M
1 2 3 4 5

φ
co

s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

LPD

-310

-210

-110

1

10

210

310

410

 [TeV]Z’M
1 2 3 4 5

φ
co

s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

LPT

Figure 3.27: 5σ Discovery potential (fb−1) in the LPD and LPT models for different lu-
minosity at LHC14 via Z′ leptonic decay channel. The current combined constraints are
within solid black contour.
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Figure 3.28: 5σ Discovery potential (fb−1) in the HPD and HPT models for different lu-
minosity at LHC14 via Z′ leptonic decay channel. The current combined constraints are
within solid black contour.
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Figure 3.29: 5σ Discovery potential (fb−1) in the FPD and FPT models for different lu-
minosity at LHC14 via Z′ leptonic decay channel. The current combined constraints are
within solid black contour.
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Figure 3.30: 5σ Discovery potential (fb−1) in the SQD models for different luminosity at
LHC14 via Z′ leptonic decay channel. The current combined constraints are within solid
black contour. The dashed black lines in SQD represent MSQ models.
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Figure 3.31: 5σ Discovery potential (fb−1) in the TFD and UUD models for different lu-
minosity at LHC14 via Z′ leptonic decay channel. The current combined constraints are
within solid black contour.
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than W ′ channel. However, for the phobic models, such as LPD(T), FPD(T) and HPD(T),

there is no O(1/x) suppression on the couplings of Z′ to fermions, unlike the couplings

of W ′ to fermions. So Z′ leptonic decay channel is much more effective than W ′ for the

investigation based on the LHC14 data. Especially, for the small cφ region, a few pb−1

luminosity can probe very large M
Z′ . In the phobic models, observing a Z′ alone cannot

rule out the possibility of a non-Abelian gauge extension of new physics.

In BP-II, both Z′ and W ′ leptonic decay channel are suitable to explore the allowed

parameter space of the models. Since the mass of W ′ and Z′ are degenerate in BP-II,

discovering degenerate W ′ and Z′ in the leptonic decay channels at the same time will

be the distinct feature compared to the models in BP-I. Compared to the LHC7 discov-

ery potentials in Figs. 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14, 3.15, 3.16, 3.17, 3.18, 3.19.

Figs. 3.20, 3.21, 3.22, 3.23, 3.24, 3.25 and 3.26, 3.27, 3.28, 3.29, 3.30, 3.31 show that for LHC

the upgrade of the CM energy from 7 TeV to 14 TeV is much more efficient than accumulation

of luminosity. For instance, for FPD(T) the Z′ leptonic decay channel at LHC14 with less

than 1 fb−1 can explore some region of parameter space, while LHC7 needs more than 104

fb−1 luminosity to achieve the similar sensitivity. For all these G(221) models, LHC14 can

exceed the capability of current combined constraints and has promising discovery potential.

If the heavy gauge bosons W ′ and/or Z′ are not discovered, the potential for discovery

can be converted to the 95% CL exclusion limits on the heavy gauge bosons W ′ and/or Z′

using the relations Z = S/3 as discussed above. Equivalently, the luminosity for exclusion

limits is about one order of magnitude lower than the discovery luminosity. Therefore, as

shown in Figs. 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 supposing no signals found, via W ′ leptonic

decay channel, W ′ mass in LRD(T) can be further excluded by about 100 GeV after the
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LHC7 collects 5.61 fb−1 luminosity. Figs. 3.14, 3.15, 3.16, 3.17, 3.18, 3.19 shows that via

Z′ leptonic decay channel, one can expect slightly further exclusion on LPD(T), HPD(T)

and FPD(T) at LHC7. At the LHC14, as show in Figs. 3.20, 3.21, 3.22, 3.23, 3.24, 3.25

and 3.26, 3.27, 3.28, 3.29, 3.30, 3.31, exclusion region can extend very fast when luminosity

is accumulated. For instance, via W ′ leptonic decay channel, 1 fb−1 can exclude most of the

parameter region for LRD(T), SQD, TFD and UUD, and 10 fb−1 can completely remove the

possibility of M
Z′ less than 5 TeV in these models if there is no any sign of W ′ production.

For LPD(T), HPD(T) and FPD(T), Z′ leptonic decay channel at the LHC14 can be used to

exclude most of the parameter space region with only 1 fb−1 luminosity. Then data with 10

fb−1 luminosity at LHC14 may leave LPD(T) and HPD(T) and FPD(T) only a corner of

parameter space at large cφ to survive. The shapes of the exclusion contours are the same

as these at the discovery contours.

3.5 Summary

In this paper we have discussed the potential for discovering, or setting limits on, the extra

heavy gauge bosonsW ′ and/or Z′ using two different scenarios at the LHC: an early run with

√
s = 7 TeV and total integrated luminosity of 5.61 fb−1; a long run with

√
s = 14 TeV and

100 fb−1 integrated luminosity. The EWPTs, Tevatron and LHC data have been used to set

bounds on the allowed parameter space. We showed that direct searches give tighter bounds

than EWPTs in BP-I. Although constraints from LHC data surpasses Tevatron and EWPTs

constraints in LRD, LRT models, in other models the parameter space depends non-trivially

on the present bounds, especially during the early LHC runs. The unexplored parameter

space will become accessible for 5σ discovery at different time scales. In LRD(T) it is more
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Models Current M
W ′ Limit M

W ′ LHC14 Reach

LRD (LRT) 1.72 (1.76) TeV 3.2 - 5 TeV

LPD (LPT) 0.55 (0.55) TeV No improvement

HPD (HPT) 0.46 (0.35) TeV 0.55 TeV

FPD (FPT) 0.5 (0.4) TeV No improvement

SQD 1.25 TeV 3.5 - 5 TeV

TFD 1.7 TeV 2 - 5 TeV

UUD 3.1 TeV 4 - 5 TeV

Table 3.2: The current lowest limits and discovery reaches at the LHC14 with 100 fb−1

luminosity on W ′ masses.

Models Current M
Z′ Limit M

Z′ LHC14 Reach

LRD (LRT) 2.25 (3.2) TeV 2.8 - 5 TeV

LPD (LPT) 1.8 (1.8) TeV 3.5 - 5 TeV

HPD (HPT) 1.7 (1.7) TeV 3 - 5 TeV

FPD (FPT) 1.75 (1.75) TeV 1.75 - 5 TeV

SQD 1.25 TeV 1.5 - 5 TeV

TFD 1.7 TeV 2 - 5 TeV

UUD 3.1 TeV 3.3 - 5 TeV

Table 3.3: The current lowest limits and discovery reaches at the LHC14 with 100 fb−1

luminosity on W ′ and Z′ masses.
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efficient to use W ′ leptonic decay channel for discovery or exclusion than Z′ leptonic decay

channel. In the phobic models, it is challenging to discover aW ′ decaying into leptonic mode.

Hence, observing a Z′ alone cannot rule out the possibility of NP models with non-Abelian

gauge extension of the standard model. In BP-II models, both Z′ and W ′ leptonic decay

channel are suitable to explore the allowed parameter space. Discovering degenerate W ′ and

Z′ in the leptonic decay channels at the same time will be the distinct feature in BP-II. In

Tabs. 3.2 and 3.3, we summarize the current constraints and LHC14 reaches with 100 fb−1

luminosity on the W ′ and Z′ masses in various models. If one needs to identify new physics

models more precisely, one has to combine different discovery channels, such as top quark

pair, single top quark production for the heavy resonances, or study angular distributions,

or other properly defined asymmetries, in the most promising regions of parameter space

of the models considered. For example, the LPD(T), HPD(T), and FPD(T) models can be

further explored by examining the single-top production, the associate production of W ′

and W (or Z) bosons, and the production of weak gauge boson pairs from electroweak gauge

boson fusion processes.
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Chapter 4

PROPERTIES OF HEAVY

CHARGED GAUGE BOSONS

4.1 Introduction

The leptonic channel is the golden channel to discover heavy charged gauge bosons at hadron

colliders. The most sensitive observable to discover this heavy resonance is the transverse

invariant mass of the lepton and missing energy system. After discovery, using the smeared

peak behavior, it is possible to determine its basic properties, such as the mass and width.

At the same time, the angular distribution of the final state lepton can be used to determine

its spin, although it is difficult to do the angular analysis for the charged gauge boson due to

the missing neutrino in the final state. To study its properties in detail, it is more efficient

to look at other decay channel, such as the top quark channel.

The top quark plays a special role in the standard model, and offers a window into

possible new physics beyond the SM. In many models, because the top quark is naturally
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related to EWSB, new physics is very sensitive to the top quark observables. The observables

such as angular, spin correlations and polarization of the top quark can be used to determine

the particle properties and its chiral structures. Since t-channel single top production with

W ′ exchange are much more suppressed than s-channel single top process if W ′ masses are

larger than the top mass, one can reconstruct the invariant mass from the resonance peaks

of the final state top and bottoms. Therefore, for a lepto-phobic W ′, the single top channel

will be the best channel to do discovery and further identification. Furthermore, in the top

quark channel, because the final state lepton of the decaying top quark is sensitive to the

chiral structure of the charged gauge bosons, it is possible to probe the chiral structure of

the charged gauge bosons using the top quark polarization. We will study the heavy charged

gauge bosons in the single top final states.

The forward-backward asymmetry indicates the chiral structures in the process. Both

CDF and DØ at the FermiLab Tevatron observed the large forward-backward asymmetry of

the top quark in the top pair final states, deviated by about two standard deviation (2σ) from

the standard model expectations. Many new physics models have been proposed to explain

the enhanced asymmetry. One possible model suggests that this large asymmetry might

come from t-channel flavor-changing W ′ exchange in the top pair production. Measuring

the forward-backward asymmetry will give us the information on the chiral structure of the

W ′-boson.
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4.2 s-channel Production of W ′: Resonances in Single

Top Channel

4.2.1 New Physics Models

In the typical W ′ models, the leptonic final state will be the primary channel. However,

because the W ′ searches in the leptonic final states at the LHC are pushing to higher and

higher W ′ mass region, it is also worth to search W ′ in the quark channel, especially single

top quark channel in the low mass region. For example, in some special models in which the

W ′ is lepto-phobic, the third generation quark final state will be the best channel to look

at. We list the following possible models which prefer the single top final state,

• In some models, the top quark is involved in the electroweak breaking. The this

case, the top quark couplings of new gauge bosons will be larger than the light quark

couplings. In the top-flavor model, the W ′ prefer to couple with the third generation

quarks.

• Motivated from the Wjj anomaly at the LHC, it is possible that heavy gauge boson

can be lepto-phobic. From the di-jet final states, the resonance of di-jet can not tell

us whether it is a W ′ or neutral gauge bosons, such as Z′ or axi-gluon. In this case,

the single top process will be the discovery channel for the lepto-phobic W ′.

• Motivated from top pair forward-backward asymmetry, it is possible to have the flavor-

violating couplings between the first generation quarks and the third generation quarks,

such as t − ū − Z′, and b − d̄ − Z′. So through db̄ initial state, there is a s channel

single top by decaying to tū final state. On the other hand, through ud initial state,
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there is a t channel single top by decaying to tb final state.

In this thesis, we focus on a lepto-phobic W ′ model. To keep this analysis model inde-

pendent, the most general effective Lagrangian is written as

L = i
g2√
2

(
ū c̄ t̄

)
γµ(fLPL + fRPR)




d̄

s̄

b̄


 W ′+

µ + h.c. , (4.1)

where g2 = e/ sin θW is the weak coupling, while PL/R are the usual chirality projec-

tion operators. For simplicity, we consider only the case with a purely left-handed current

(fL = 1, and fR = 0), but our study can be extended easily to other cases. The triple

gauge interaction of the W ′ and SM gauge bosons is included although such a non-abelian

interaction is suppressed for large W ′ mass (m
W ′) by W -W ′ mixing effects, which are of

order O(m2
W/m2

W ′).

This W ′ decays to quarks with decay width

Γ
W ′→qq̄′ �

9g22mW ′
48π

(
f2L + f2R

)
. (4.2)

For f2L + f2R = 1, Γ
W ′ ∼ m

W ′/40, indicating that the W ′ is narrow.

The parameter constraints are listed here. Previous studies of W ′s decaying to tops have

focused on the LHC at center of mass energies of 14 TeV [71]. We examine the potential

of the early LHC to identify W ′s during the early LHC as well as the experimental reach.

Many natural models of new physics beyond the SM have relatively light W ′ bosons. They

are needed to cancel quadratic divergences induced by SM W bosons on the higgs potential.
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However, the closest exclusion limits come from leptophobicW ′s which decay to dijets [70, 69]

280 < m
W ′ < 1500 GeV. (4.3)

and direct searches from single top production.

4.2.2 Cross Section and Event Simulation

u

d̄

W ′

t

b̄
(a)

u d

W ′

b t
(b)

Figure 4.1: Feynman diagrams of the s-channel and t-channel single top production with
exchanging a W ′.

The s- and t-channel signal processes are

p p → t b+ h.c. p p → t q or → t q, (4.4)

Feynman diagrams are shown in the Fig. 4.1. From the current constraints on the W ′ mass

in the top quark channel, one notes that the allowed W ′ mass is larger than the threshold

energy of the top and bottom system. Therefore, the s-channel contribution will dominate,

while the t-channel contribution is small. Considering the semi-leptonic decay of the top
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Figure 4.2: Total cross section of W ′ for fL = 1, fR = 0 at the LHC.
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quark, the final state of this channel is

pp → W ′ → tb̄(t̄b) → blνb̄. (4.5)

The total cross section for W ′ production and subsequent decay to a top quark and bottom

quark at the LHC are computed with Madgraph [107], which is shown in Fig. 4.2. We

use the CTEQ6L1 set of parton distribution functions [74] and set the factorization and

renormalization scales to the W ′ mass.

Signal and background events are generated with Madgraph [107] and are normalized to

the corresponding LO cross sections. We choose the benchmark point as 1500 GeV mass,

and coupling fL =
g2√
2

and fR = 0. The total decay width is Γ
W ′ = 7.21 GeV. The

dominant backgrounds to the final state of lepton and two jets are from top quark pair

production and W boson production in association with jets. For top pair production we

include the lepton+jets final state, tt̄ → blν b̄jj. Smaller backgrounds are from single top

quark production in association with a W boson (t + W ) or with jets (t + jets, t-channel

and s-channel) and from diboson+jet (WV ) production.

We use the anti-kt algorithm in the FastJet [75] package to cluster quarks and gluons

into final state jets with parameter R = 0.4. Detector resolution effects are simulated by

smearing jet and leptonic energies according to a Gaussian:

δE

E
=

A√
E/GeV

⊕ B , (4.6)

where δE
E is the energy resolution, A is a sampling term, B is a constant term, ⊕ represents

addition in quadrature, and all energies are measured in GeV. For leptons we take A = 5%
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and B = 0.55%, while for jets we take A = 100% and B = 5%, chosen to represent the

ATLAS and CMS detector performance [76, 77]. We do not smear E/T . We model b-tagging

as a flat 60% probability to tag b-quark jets and a 0.5% probability to mistag non-b-quark

jets (including charm quarks).

At the analysis level, all the signal and background events are required to pass the basic

selection cuts listed here:

At least two jets with p
j
T

≥ 25GeV,
∣∣∣ηj∣∣∣ ≤ 2.5

Exactly one lepton with p�T ≥ 25GeV,
∣∣η�∣∣ ≤ 2.5,

Missing energy �ET > 25 GeV,

Separation with ∆Rjj,j� > 0.4, ∆R�� > 0.2. (4.7)

The kinematic distribution of the W ′ signal and the various backgrounds after these cuts

are shown in Figs. 4.3 and 4.4.

To isolate the W ′ signal and suppress the SM backgrounds, a set of final cuts is applied

on the jet PT and on HT , listed as follows,

p
j1st
T ≥ 200GeV,

p
j2st
T

≥ 80GeV,

HT ≥ 600GeV, (4.8)

where HT is the scalar sum of the system pT . These cuts effectively suppress most of the

SM backgrounds while passing much of the W ′ signal.

In order to further improve the sensitivity of the analysis, the reconstruction of the W ′
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Figure 4.3: The normalized PT distributions of the leading jet for signal and backgrounds.
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Figure 4.4: The normalized PT distributions of the subleading jet for signal and backgrounds.
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and its invariant mass is required. For this reconstruction it is necessary to first obtain the

neutrino momentum. In the top quark reconstruction, we demand m2
lν = M2

W first. The

longitudinal momentum of the neutrino is formally expressed as

pνL =
1

2 p2
eT

(
ApeL ± Ee

√
A2 − 4 p 2eTE/

2
T

)
, (4.9)

where A = M2
W +2 �peT · �E/T . If A2− 4 p 2eT E/ 2T ≥ 0. If there are two solutions, we will pick

up the solution with central rapidity. If the solution is complex, we will pick up the real part

of this solution. With the neutrino identified properly, we reconstruct the mass of the W ′ as

mrec
W ′ = m(�pν + �pl + �pjet 1 + �pjet 2) (4.10)

Figure 4.6 shows the reconstructed invariant mass. The signal peak is clearly visible above

the smoothly falling background.

To increase the local significance of this process, after all the optimized cuts one will

select certain bins of the invariant mass distributions. We then impose a window cut on the

invariant mass difference between the reconstructed invariant mass and the theory W ′ mass

under consideration,

∣∣∣mlνjj −MW ′
∣∣∣ < 400 GeV . (4.11)

Table 4.1 shows the number of events passing each set of cuts, in units of fb.
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Figure 4.6: After all the cuts, the reconstructed invariant mass distributions of the system
for W ′ signal and backgrounds.
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Figure 4.7: Before and after basic cuts, the cos θ angular distributions of the final state
leptons for left-handed W ′ and right-handed W ′.
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σ(fb) Signal t+ jets t+W tt̄ WV W + jets

no cuts 58.96 18877 2861 25840. 9888 4018600

basic cuts 33.38 4049. 833. 7206.7 2265 284516

+ smearing 33.83 4067. 815. 6878.6 2193 296371

+ hard cuts 28.65 158.5 11.1 232.56 3.67 7836.2

+ HT cuts 26.45 59.80 5.69 137.6 3.51 3782.

+ b-tagging 22.26 44.79 3.44 115.7 0.19 61.98

+ mass window 21.59 7.80 0.13 3.97 0.03 16.02

Table 4.1: Cross sections for the signal and various background processes at the 7 TeV LHC
in different cut levels are listed.

4.2.3 Lepton Angular Distribution and Chiral Structure

The charged lepton from top-quark decay is maximally correlated with top-quark spin. The

connection between top-quark spin and the charged lepton can be found from the distribution

in θhel, the angle of the lepton in the rest frame of top quark relative to the top-quark

direction of motion in the overall c.m. frame. This is usually named as “helicity” basis. The

angular correlation of the lepton �+ is given by

1

σ

dσ

d cos θhel
=

1± cos θhel
2

, (4.12)

with the (+) choice for right-handed and (−) for left-handed top-quarks; Clearly, the charged

lepton from a right-handed top-quark prefers to move along the top-quark moving direction

while the one from a left-handed top-quark is to against the top-quark moving direction. In

the top-quark rest frame, 75% (25%) of charged lepton from tR (tL) decay follows top-quark

moving direction.
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After the discovery of the W ′, one would like to know its mass, spin, and couplings.

Angular distributions of its decay products can be investigated to definitively determine the

spin and chiral structure of the W ′ to the SM fermions. The chirality of the W ′ coupling

to SM fermions is best measured from the polarization of the top quark. Among the top

quark decay products, the charged lepton from t → b+ l + ν is the best analyzer of the top

quark spin. For a left-handed top quark, the charged lepton moves preferentially against the

direction of motion of the top quark, while for a right-handed top quark the charged lepton

moves along the direction of motion of the top quark. The angular correlation of the lepton

is (1 ± cos θl)/2, with the (+) choice for right-handed and (−) for left-handed top quarks,

where θl is the angle of the lepton in the rest frame of top quark relative to the top quark

direction of motion in the center-of-mass (c.m.) frame of the incoming partons. In Fig. 4.7,

we plot the cos θl for fL = 1, fR = 0 (W ′
L) as well as fL = 0 andfR = 1 (W ′

R). We

expect a flat angular distribution for the SM background because the top quark and anti-top

quark are not polarized. Therefore, the angular distributions of the lepton can be used to

discriminate W ′ models in which the chirality of the W ′ coupling to SM fermions differs.

4.3 t-channel Production of W ′: Top Quark Forward-

backward Asymmetry

4.3.1 Forward-backward Asymmetry of Top Quark

The observed forward-backward asymmetry in rapidity AtFB of top quarks [72, 73] at the

Fermilab Tevatron deviates by about two standard deviations (2σ) from standard model

(SM) expectations [79]. After corrections for detector acceptance and resolution, AtFB in
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the center-of-mass (c.m.) frame is 15.8 ± 7.5% at CDF [72] and is 19.6 ± 6.5% at D0 [73].

In addition to AtFB , the D0 group also reports a positive forward-backward asymmetry of

charged leptons from top quark decays of A�FB = (15.2 ± 4.0)% compared with the small

value 2.1± 0.1% from simulations of the SM [73, 78]. The definition of A�FB is

A�FB =
n�F − n�B

n�
F

+ n�
B

, (4.13)

where n�F (n�B) is the number of events with q�y� > 0 (q�y� < 0), and q� and y� are the

sign and rapidity respectively of the charged lepton from the semileptonic decay of a top or

anti-top quark in the tt̄ production.

In this thesis, we investigate the kinematic and dynamic relationship between the two

asymmetries AtFB and A�FB . We study quantitatively the influence of the top-quark boost

on the kinematics of the charged lepton, showing how the distribution of leptons in the

laboratory frame is related to the polarization state of the top quark parent. We show

that current data on the ratio of the two asymmetries favor models in which more right-

handed than left-handed top quarks are produced. The fact that A�FB , AtFB , and the ratio

A�FB/AtFB are larger than the SM predictions indicates that the charged lepton strongly

prefers to move in the same direction as the top quark from which it originates. This

result can arise if right-handed top quarks [80, 81] play a significant role in AtFB or if a

non-standard mechanism produces more highly boosted top quarks at the Tevatron, as we

explain below.

Many new physics (NP) models have been proposed to explain the enhancement of AtFB ,

such as flavor-changing Z′ [82], W ′ [83] 1 , axigluon G′ [84, 85, 86] models , etc [89, 90].

1The next-to-leading order quantum chromodynamics corrections to the process of
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The first two models produce predominantly right-handed top quarks, whereas the axigluon

model generates unpolarized top quarks. It is important to validate these models at the Large

Hadron Collider (LHC) and/or at the Tevatron. For example, the heavy flavor-changing Z′

(� mt) model is disfavored because it predicts too many same-sign top quark pairs at the

LHC [91, 92]. In this thesis, we focus on how consistently the W ′ models can describe both

AtFB and A�FB .

4.3.2 Kinematics

The charged lepton in top quark decay is a powerful analyzer of the polarization of the top

quark [93]. In the rest frame of a top quark, the distribution in the polar angle θhel of a

decay lepton �+ is

1

Γ

dΓ

d cos θhel
=

1 + λt cos θhel
2

, (4.14)

where λt denotes the top quark helicity. Here, λt = + is for a right-handed top quark (tR)

while λt = − for a left-handed top quark (tL). The angle θhel is measured with respect

to the direction of motion of the top quark in the overall center-of-mass system of the tt̄

production process. The distributions are shown in Fig. 4.8(a). The charged lepton from a

right-handed top quark decay prefers to move along the top quark direction of motion, while

a lepton from a left-handed top quark moves preferentially against the top quark direction

of motion. In the rest frame of the top quark, 75% (25%) of charged leptons from tR (tL)

decay follow the top quark direction of motion, i.e. cos θhel > 0.

Once the top quark is boosted, the angular distribution of the charged lepton relative to

qq̄ → tt̄ induced by the flavor-changing Z′ and W ′ are calculated in Ref. [87] and Ref. [88],
respectively, with the result that the NP prediction at the leading order is reliable.
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Figure 4.8: (a) cos θhel distribution in the top quark rest frame for both tL and tR. (b)
cos θt� distribution in the boosted frame for a top quark with Et = 200 GeV.
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the direction of motion of the top quark is sensitive to the energy of the top quark Et (or

equivalently its velocity β). We derive

dΓ

Γd cos θt�
=

1− β cos θt� + λt
(
cos θt� − β

)
2γ2
(
1− β cos θt�

)3 , (4.15)

where β =
√
1−m2

t /E
2
t , γ = Et/mt. As an illustration, we plot in Fig. 4.8(b) the distri-

bution of cos θt� of the charged lepton for a fixed energy of the top quark Et = 200 GeV,

where θt� is the angle between the charged lepton and the moving direction of its parent top

quark in the laboratory frame. We find that about 60% of �+ follow (i.e., cos θt� > 0 ) the

top quark moving direction for a tL, and almost 100% for a tR for Et = 200 GeV.

The distribution of charged leptons in the laboratory frame depends on the top quark

kinematics, including the top quark energy and its rapidity, and the top quark polarization.

The probability for finding a positive charged lepton in the forward region when it originates

from a top quark with a velocity β, rapidity yt, and polarization λt is defined as

R
�, λt
F (β, yt) =

N�
F

N�
F

+N�
B

, (4.16)

where N�
F (N�

B) denotes the number of leptons � in the forward (backward) region in the

laboratory, and

yt ≡ ln

√
Et + ptz

Et − ptz
(4.17)

with ptz being the z-component of top quark momentum along the proton beam. After
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lengthy algebra, it can be shown that the ratio R
�,λt
F

(β, yt) is

R
�,λt
F (β, yt) =




1

2
+

1

2
(
1 + γ−2coth2yt

)1/2 +
λtcoth

2yt

4βγ2
(
1 + γ−2coth2yt

)3/2 ,
yt ∈

[
0, ymax

t
]

1

2
− 1

2
(
1 + γ−2coth2yt

)1/2 − λtcoth
2yt

4βγ2
(
1 + γ−2coth2yt

)3/2 ,
yt ∈

[
−ymax

t , 0
]

(4.18)

where

ymax
t =

1

2
ln

1 + β

1− β
. (4.19)

To illustrate the effect of the top quark boost, we plot in Fig. 4.9 the fraction RF as a

function of yt. We choose two characteristic top quark energies, Et = 200 GeV (Fig. 4.9

(a)) and 600 GeV (Fig. 4.9 (b)). The former energy represents top quarks produced around

the threshold region, while the latter pertains for highly boosted top quarks. Note that

ymax
t = 0.53 for Et = 200 GeV. When a top quark moves perpendicular to the beam line,

i.e. yt = 0, there is an equal number of leptons in the forward and backward regions, leading

to RF = 0.5, independent of Et and the polarization of the top quark.

We focus on the behavior of RF in the region of yt > 0, since the results for RF (yt < 0)

is just (1−RF (yt > 0)). For right-handed top quarks tR (black-solid lines in Fig. 4.9), RF

increases rapidly with yt in the region of yt > 0. This is because the charged lepton likes to

follow the direction of motion of the top quark as we already see in Fig. 4.8. The direction

of top quark can be used to well approximate that of the charged lepton in the laboratory
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Figure 4.9: The ratio RF as a function of yt for a top quark with fixed energy: (a) Et =
200 GeV and (b) Et = 600 GeV.
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frame, and such an approximation woks better for a highly energetic top quark. We can also

see that when Et becomes larger, i.e. the top quark is more energetic and the lepton is more

boosted, RF rapidly reaches its maximum value 1.

On the contrary, in the case of tL’s, the ratio RF does not significantly with yt compared

with tR, owing to the anti-boost effect on the charged lepton. For Et = 200 GeV, the boost

causes charged leptons to distribute nearly uniformly (as seen in Fig. 4.8(b)), as a result, RF

is around 0.5 for all the allowed range of yt, as seen in the red-dotted curve in Fig. 4.9(a).

When the energy of top quark is large enough, the large boost forces most of the charged

leptons from top quark decays to move along the top quark direction of motion, even if they

move against the top quark direction of motion in the top quark rest frame. The boost yields

a large value RF in the region of large yt, as shown by the red-dotted curve in Fig. 4.9(b).

The competing influences leave the tL curve slightly below the tR curve. One can expect

that, in the limit of Et → ∞, the direction of charged lepton is the same as its parent top

quark, independent of polarization of the top quark.

Moreover, in Figs. 4.10 and 4.11, we show how RF varies with top quark transverse

momentum ptT and yt. The distributions for right-handed top quarks tR’s do not vary

greatly with ptT due to the fact that most of the charged leptons like to follow tR. However,

the shapes of the curves for left-handed top quarks, which are the focus in the discussion

below, are very different between the low ptT and high ptT regions, as is seen in the red-dotted

lines. For the top quark away from yt = 0 with fixed ptT , the boost becomes more significant

because the energy of the top quark must be increased compared with yt = 0. Therefore,

more leptons are forced to move along the direction of the top quark in the laboratory frame.

On the other hand, when yt changes, a portion of the decay leptons which are initially in
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Figure 4.10: The ratio of the charged lepton in the forward and backward region as a function
of the top quark rapidity for top quarks with fixed transverse momentum pT = 10, 50 GeV.
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the forward/backward region (y� > 0/y� < 0) will then be in the backward/forward region.

In summary, there are two factors which affect RF : the boost and the rearrangement of the

distribution of charged leptons in the forward (y� > 0) and backward (y� < 0) region. The

former always increases RF while the latter may increase or decrease the RF depending

on how energetic the top quark is at yt = 0. Generally speaking, when the boost is not

significant (low ptT and small yt), RF decreases when yt increases from yt = 0, as we

can see in the drop in the red-dotted curves in Fig. 4.10(a) and 4.10(b). When the boost

is big enough, RF always increases with yt. The platform-like behavior around yt � 0

in Fig. 4.11(a) arises because the leptons accumulate nearly uniformly around the axis of

motion of the top quark when ptT = mt/
√
3 � 100 GeV.2 Therefore the ratio RF is rather

stable as the top quark changes its direction of motion direction around yt = 0.

4.3.3 At
FB and A�

FB

The observed positive top-quark asymmetry AtFB indicates more top quarks are produced

in the forward region than in the backward region of rapidity. Both tR and tL can generate

a positive lepton asymmetry A�FB with positive AtFB . However, as shown in Fig. 4.9, tL

would need a large boost along the proton beam line (i.e. in the large forward rapidity

region) to overcome the fact that most of the charged leptons from its decay move against it

in its rest frame. A right-handed top quark tR can yield a positive A�FB even for top quarks

near the tt̄ threshold region. Therefore, the large positive top quark and lepton asymmetries

AtFB and A�FB observed by the D0 collaboration indicate that the top quark polarization

and kinematics of top quarks, like yt and Et, may be playing a non-trivial role. In this

2The critical value, mt/
√
3 is obtained by solving

∂RF
∂yt

|yt=0 = 0
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section we present a general analysis of the correlation between AtFB and A�FB so that one

can have a better understanding about the numerical results derived from NP models to be

shown in Sec. 4.3.4.

The top quark asymmetry AtFB can be expressed as a sum of contributions from the SM

and NP as:

AtFB =
(NNP

F +NSM
F )− (NNP

B +NSM
B )

(NNP
F

+NSM
F

) + (NNP
B

+NSM
B

)

= A
t, NP
FB × RNP + A

t, SM
FB × (1− RNP), (4.20)

where

A
t, SM
FB =

NSM
F −NSM

B

NSM
F

+NSM
B

, A
t, NP
FB =

NNP
F −NNP

B

NNP
F

+NNP
B

, RNP =
NNP
tot

NSM
tot +NNP

tot

, (4.21)

with NSM
F (B)

and NNP
F (B)

being the numbers of events in which the top quark moves with

yt > 0(yt < 0) in the SM and induced by NP, respectively, and N
SM(NP)
tot is the total

number of events predicted in the SM (induced by NP). The NLO QCD contribution to the

production process qq̄ → tt̄ could generate a value A
t,SM
FB ∼ 5% at the Tevatron, which is

much less than the central value of experimental data.

To simplify the discussion of the correlation between AtFB and A�FB , we assume in this

section that AtFB is generated completely by NP, but all SM contributions (including the

NLO QCD effects) are retained in the numerical calculations we present.

The contributions to AtFB from different polarizations of top quarks can be separated
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as:

AtFB ≈
[
ρtL

A
tL, NP
FB

+ ρtR
A
tR, NP
FB

]
×RNP, (4.22)

where

A
λt, NP
FB

=


Nλt

F
−N

λt
B

N
λt
F

+N
λt
B



NP

, ρλt
=

Nλt, NP

NNP
tot

. (4.23)

Here, A
λt, NP
FB

denotes the forward-backward asymmetry of the top quark with polarization

λt generated only by NP, while ρλt
is the fraction of top quarks with polarization λt in tt̄

events induced by NP. One advantage of decomposing AtFB into contributions of different top

quark polarizations is to monitor the chirality of the couplings of NP particles to top quarks.

Another advantage is to make the connection between A�FB and AtFB more transparent.

As discussed in Sec. 4.3.2 the ratio R�
F depends on the top quark kinematics (β, yt and

λt). To compute the total probability of finding a charged lepton in the forward region, one

must convolute the top quark production cross section with R�
F on an event-by-event basis,

i.e.

1

Ntot
Ntt̄ ⊗ R

�,λt
F

=
1

Ntot

∫
Ntt̄(β, yt, λt)R

�,λt
F

(β, yt), (4.24)

where Ntt̄ labels the tt̄ production rate for a top quark with specific kinematics (β, yt, λt)

and Ntot stands for total number of events. The lepton asymmetry A�FB generated by a

top quark with polarization λt can be therefore expressed as
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A
�,λt
FB

∣∣∣∣
NP

=
(N

λt
F ⊗ R

�,λt
F +N

λt
B ⊗ R

�,λt
F )− (N

λt
F ⊗ R

�,λt
B +N

λt
B ⊗R

�,λt
B )

N
λt
F +N

λt
B

∣∣∣∣∣∣
NP

=

N
λt
F

⊗
(
2R

�,λt
F

− 1

)
+N

λt
B

⊗
(
2R

�,λt
F

− 1

)
N
λt
F

+N
λt
B

∣∣∣∣∣∣∣∣
NP

=

(N
λt
F

−N
λt
B

)⊗
(
2R

�,λt
F

− 1

)
N
λt
F

+N
λt
B

∣∣∣∣∣∣∣∣
NP

. (4.25)

Here,

R
�,λt
B

(β, yt) ≡
N�
B

N�
F

+N�
B

= 1−R
�,λt
F

(β, yt), (4.26)

and we use the following relation between R
�,λt
F

and R
�,λt
B

in our derivation,

R
�,λt
B

(yt) = R
�,λt
F

(−yt) . (4.27)

The quantities N
λt
F

and N
λt
B

in the convolutions in Eq. (4.25) should be understood as the

distributions Ntt̄(β, yt, λt)Θ (yt) and Ntt̄(β, yt, λt)Θ (−yt), respectively, where Θ (x) is the

Heaviside step function. The quantity N
λt
F

−N
λt
B

should be understood as

[
Ntt̄(β, yt, λt)−Ntt̄(β,−yt, λt)

]
Θ (yt) . (4.28)

Because R
�,λt
F

in Eq. (4.25) cannot exceed 1, we have A�FB � AtFB . When R
�,λt
F

is close

to a constant RC , e.g. RC ∼ 1/2 around the tt̄ threshold (Et ∼ 200GeV) for left-handed
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top quark or RC ∼ 1 for a highly boosted top quark, Eq. (4.25) can be simplified as

A
�,λt
FB

∣∣∣∣
NP

=


Nλt

F
−N

λt
B

N
λt
F

+N
λt
B



NP

×
(
2RC − 1

)
= A

λt, NP
FB ×

(
2RC − 1

)
. (4.29)

Equation (4.29) and Fig. 4.9 show that:

• A
�,tL
FB

∼ 0 when the tt̄ pair is produced around the threshold region;

• A
�,tL
FB � A

�,tR
FB ≈ AtFB in the large mtt̄ region.

Although Eq. (4.29) is approximate, it helps in understanding the NP prediction obtained

from a complete numerical calculation.

4.3.4 Flavor-changing W ′ Model

In this subsection we focus on a flavor-changing W ′ model [83]. We examine how this models

can accommodate the values of both AtFB and A�FB measured by the D0 collaboration.

A different class of NP models to explain the tt̄ forward-backward asymmetry is based on

t-channel kinematics. Such models involve large flavor-changing interactions. A model with

a non-universal massive neutral vector boson Z′ [82] is one of the possibilities. However, it

is disfavored because it implies a large rate for same-sign top quark production at the 7 TeV

LHC [91], not supported by data [92].

We consider a flavor-changing W ′ which couples an incident d-quark to the produced

t-quark [83],

L = g2gRd̄γµPRtW ′
µ + h.c. , (4.30)

where g2 is the weak coupling. In the W ′ model, in addition to the SM process qq̄ → g → tt̄,
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Figure 4.13: The statistics for the ratio of predicted A�FB to AtFB in the W ′ models.
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the tt̄ pair can also be produced via a t-channel process with a W ′ mediator. Apart from a

common factor
g22g

2
Rŝδacδbd

4
(
t̂−m2

W ′
) , the helicity amplitude Mt

W ′(λq, λq̄, λt, λt̄) is

Mt
W ′(+−−−) =

[
2 + r2W

]√
1− β2 sin θ,

Mt
W ′(+−−+) =

[
2(1− β) + r2W (1 + β)

]
(1− cos θ),

Mt
W ′(+−+−) = −

[
2(1 + β) + r2W (1− β)

]
(1 + cos θ),

Mt
W ′(+−++) = −

[
2 + r2W

]√
1− β2 sin θ , (4.31)

where rW = mt/mW ′ .

4.3.5 Correlations on A�
FB and At

FB

In the region β � 1, the nonzero helicity amplitudes are

Mt
W ′(+−−+) ∼ 2r2W (1− cos θ),

Mt
W ′(+−+−) ∼ 4(1 + cos θ) . (4.32)

In order to produce top quarks in the forward region, one needs 2r2W < 4, which is always

true for the region of W ′ masses (heavier than the top quark) considered in this paper. At

the Tevatron the β distribution of the top quark in tt̄ production peaks around 0.6, and

therefore most of the top quarks are not significantly boosted. We can also easily see that

more right-handed top quarks are produced compared to left-handed ones in the W ′ model,

ρtR
> ρtL

. Since the t-channel propagator contributes a minus sign, the total forward-

backward asymmetry results from a competition between the square of the purely NP term
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and the interference term of NP with the SM. The former is proportional to g4R and the latter

to g2R. We plot the correlation between AtFB and A�FB for the W ′ model in Fig. 4.13. The

strong correlation is fit well by

A�FB � 0.75×AtFB − 2.1% . (4.33)

Moreover, for a relatively light W ′ (� 600) GeV, both AtFB and A�FB can be consistent

with the D0 data within 1 σ.

For the W ′ model, Fig. 4.13 shows the statistics for the ratio of the predicted A�FB to

AtFB , based on the scattered points in Fig. 4.12. The total number of events is normalized to

1. he data from D0 shows A�FB/AtFB about 78±33%. The ratio in the SM is close to 40%.

The comparison to the D0 point shown in Fig. 4.12 indicates that top quark events with

a large proportion of right-handed top quarks are favored. Constraints on flavor-changing

currents in the W ′ model allow only right-handed couplings to the top quark, consistent with

the D0 A�FB results. Improved statistics would help, as well as a measurement of A�FB by

the CDF collaboration. For W ′ model, since the events that contribute to AtFB are almost

locate region of 2RF − 1 > 0, it is very transparent from Eq. (4.25) that A�FB/AtFB can be

as large as 0.75, see Eq. (4.33). For SM, one may expect that A�FB/AtFB > 0.5. However,

the predicted values are about and 0.4 for SM, respectively. Therefore, one should be more

careful to take in to account the boost effect due to different frames, i.e.

A�FB(lab)

At
FB

(c.m.)
=

A�FB(lab)

At
FB

(lab)

AtFB(lab)

At
FB

(c.m.)
. (4.34)

It is known that the boost effect will reduce AtFB in laboratory frame related to the c.m.
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frame [95]. For SM, the reduction is about 30%. One can then easily understand that

the predicted values A�FB(lab)/AtFB(c.m.) < 0.5 even A�FB(lab)/AtFB(lab) > 0.5. We

therefore encourage D0 collaboration to measure the AtFB in the laboratory frame as well,

in order to have a more transparent comparison with NP prediction, and we expect the

value of A�FB/AtFB in the laboratory frame will be larger than 78% which is the result

of current data measured from two different frame. Combined with the results from CDF

measurements, if large A�FB and A�FB/AtFB are confirmed, it would be a strong evidence

for the new physics signal and the chirality of coupling between new particle(s) with SM

particles.

4.4 Summary

The deviation of the top quark forward-backward asymmetry AtFB from its SM prediction

may indicate the presence of new physics. Based simply on the large value of AtFB , the

charged lepton forward-backward asymmetry A�FB should also be expected to be larger

than the SM expectation. Indeed, the D0 collaboration reports A�FB = 15.2%, about 3σ

away above the SM value. In this paper, we study the kinematic and dynamic aspects of

the relationship between the asymmetries AtFB and A�FB based on the spin correlation

between charged leptons and the top quark with different polarization states. Owing to the

spin correlation in top quark decay, A�FB and AtFB are strongly positively correlated for

right-handed top quarks. However, for left-handed top quarks, the nature of the correlation

depends on how boosted the top quark is. For large enough top quark energy, left-handed

top quarks will also generate a large charged-lepton asymmetry, similar to that for right-

handed quarks. However, if the top quark is not boosted (Et � 200 GeV), A�FB from

189



left-handed top quarks will be less than AtFB/2 for a positive AtFB . Since most of the

tt̄ events are produced in the threshold region, one may use the large positive values of

AtFB and A�FB measured at D0 to conclude that production of left-handed top quarks is

disfavored. Confirmation of the D0 result and greater statistics are desirable. There is great

value in making measurements of both AtFB and A�FB because their correlation can be

related through top quark polarization to the underlying dynamics of top quark production.

We focused on a flavor-changing W ′ model which produced dominantly right-handed top

quarks. To determine free parameters, we required that these new physics models fit AtFB

as well as the tt̄ total cross section at the Tevatron at 1σ level of accuracy. As we have

shown, there is a strong correlation between AtFB and A�FB in both models. The best fit

to the relationship is A�FB � 0.75× AtFB − 2.1%, within 2σ of the D0 result. To generate

A�FB satisfying the data to better than 1σ accuracy, a light W ′ (lighter than 600 GeV) is

favored.
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Chapter 5

EXOTIC HEAVY CHARGED

GAUGE BOSONS

5.1 Introduction

In this chapter we study a different W ′ model, named a “top-philic” model, in which the

W ′ couples only to third-generation quarks (top and bottom quarks) and is produced only

in association with a top quark. It decays only into a top quark and a bottom quark pair.

The collider signature of the events is a tt̄ pair plus one b-jet. We explore the discovery

potential of the top-philic W ′ boson at the LHC at a center of mass energy of 14 TeV with

an integrated luminosity of 100 fb−1. We compute the inclusive cross section, simulate the

signal and backgrounds, and investigate a set of optimal cuts. Our study shows that the

prospects are promising to discover the top-philic W ′ in tW ′ associated production despite

the presence of SM backgrounds that exceed our signal by three or four orders of magnitude.

The key is to identify as a b jet the extra jet produced in association with tt̄. A 1 TeV W ′
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with the same coupling strength as the SM W -t-b interaction could be discovered with a

statistical significance of 5 standard deviations at the LHC at 14 TeV.

Motivated by the observation of large parity violation in top quark pair-production at

the Tevatron [72], several authors have recently proposed a W ′ boson with a flavor changing

d-t-W ′ interaction [109, 110, 86, 111, 112]. This W ′ boson is also produced in association

with a top quark, but it differs from the top-philic W ′ we discuss in that it decays into a

top quark and a non-b quark, yielding a final state of tt̄ plus a non-b jet [113]. This final

state suffers from a huge tt̄j background that cannot be mitigated by b-tagging on the jet

produced in association with the top quark pair. As a result, a large coupling strength would

be needed for discovery of the flavor changing W ′ at the LHC.

5.2 The model

A top-philic W ′ can arise from a new non-abelian gauge symmetry which breaks generation

universality [30, 31, 32]. A summary may be found in Ref. [24]. In this study we adopt an

effective Lagrangian approach rather than focusing on specific NP models. The effective,

renormalizable interaction of the W ′ to the SM third generation fermions is

L = i
g2√
2
t̄γµ(fLPL + fRPR)b W ′+

µ + h.c. , (5.1)

where g2 = e/ sin θW is the weak coupling, while PL/R are the usual chirality projection

operators. For simplicity, we consider only the case with a purely left-handed current (fL =

1, and fR = 0), but our study can be extended easily to other cases. The triple gauge

interaction of the W ′ and SM gauge bosons is not included because such a non-abelian
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interaction is suppressed for large W ′ mass (m
W ′) by W -W ′ mixing effects, which are of

order O(m2
W/m2

W ′).

The W ′ decays entirely to a top quark and bottom quark pair with decay width

Γ
W ′→tb̄

�
3g22mW ′

48π

(
f2L + f2R

)
. (5.2)

For f2L + f2R = 1, Γ
W ′ ∼ m

W ′/100, indicating that the W ′ is quite narrow.

The top-philicW ′ boson is produced predominately through a gluon-bottom-quark fusion

process, as depicted in Fig. 5.1. The W ′ decays into a top and bottom quark pair, and the

overall final state is then tt̄b. Since this final state has not been used to search for a W ′

at the Tevatron and LHC, none of the current collider limits constrain our top-philic W ′

model. It is possible the top-philic W ′ boson could be as light as a few hundred GeV.

The recent CDF measurement of the ratio of the cross sections for tt̄+0 jets to tt̄+n jets

is consistent with the SM expectation [114]. Top-philic W ′ production will contribute to the

tt̄+ n jets rate. However, our numerical calculation shows that tW ′ production is too small

to be of concern, e.g. σ(tW ′− + t̄W ′+) ∼ 3 fb for m
W ′ = 200 GeV, fL = 1, and fR = 0.

Moreover, the cross section drops rapidly with m
W ′. We conclude that the top-philic W ′

model is consistent with tt̄ current measurements at the Tevatron.

In Fig. 5.2, we display the leading-order inclusive cross section for tW ′− and t̄W ′+

production, σ(tW ′−+ t̄W ′+), as a function of the W ′ mass (m
W ′) at 14 TeV with a purely

left-handed W ′-t-b coupling, i.e. fL = 1 and fR = 0. Note that σ(t̄W ′+) = σ(tW ′−)

owing to equality of the parton distribution functions for initial state b- and b̄-quarks. The

CTEQ6L parton distribution functions are used in our calculation with the renormalization

and factorization scales chosen asmW ′ . The production cross section is at the picobarn level
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Figure 5.1: Feynman diagrams for the associated production of a W ′ and a top quark: (a,
b) W ′−t, and (c, d) W ′+t̄.

for a W ′ with a few hundred GeV mass and at the femtobarn level for a multiple TeV-scale

W ′.
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Figure 5.2: The inclusive cross section of the tW ′− and t̄W ′+ associated production at a
14 TeV LHC with fL = 1 and fR = 0.
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5.3 Collider phenomenology

Our signal consists of both tW ′− and t̄W ′+ production channels because the two channels

give rise to the same tt̄ plus one b-jet collider signature after the W ′ decay. The b-jet could

originate from a b or a b̄ as one cannot now distinguish b- and b̄-jets experimentally. At

the event reconstruction level the b-jet together with one top quark would yield a heavy W ′

resonance. The main SM background is from production of a tt̄ pair plus one b jet. We

also take into account the possibility that a light quark jet fakes a b jet. The signal and

background events are generated with MadGraph5/MadEvent [107].

In order to trigger on the signal event, we demand a leptonic decay of the top quark

t → b�+ν� and hadronic decay of the antitop t̄ → b̄jj. The signal processes are

pp → tW ′− → tt̄b → bW+b̄W−b → bbb̄�+jjν,

pp → t̄W ′+ → tt̄b̄ → bW+b̄W−b̄ → bb̄b̄�+jjν. (5.3)

The topology of our signal is characterized by one isolated positive charged lepton, five high

energy jets, and a large missing transverse momentum (Emiss
T ) from the missing neutrino.

Both electrons and muons are used in our analysis.

We separate the SM backgrounds according to the flavor of the jet produced in association

with the tt̄ pair:

tt̄j : pp → tt̄j → bW+b̄W−j → bb̄jjj�+ν, (5.4)

tt̄b : pp → tt̄b → bW+b̄W−b → bb̄bjj�+ν. (5.5)
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m
W ′ No cut basic optimal b-tagging ∆M cut εcut

400 32920 6929 5240 3018 2166 6.6 %

tt̄b 1.9×105 23849 2712 1537 297 0.15 %

tt̄j 3.13×107 3×106 306062 6984 967 3.1×10−3%
500 15115 3324 2621 1513 1120 7.4 %

tt̄b 1.9×105 23849 2709 1529 449 0.23 %

tt̄j 3.13×107 3×106 306057 6895 577 1.8 ×10−3%
600 7361 1666 1300 754 565 7.7 %

tt̄b 1.9×105 23849 2524 1429 437 0.23 %

tt̄j 3.13×107 3×106 288098 6214 385 1.2 ×10−3%
700 3843 874 638 369 282 7.4 %

tt̄b 1.9×105 23849 1781 1026 303 0.16 %

tt̄j 3.13×107 3×106 212153 4441 304 9.7 ×10−4%
800 2110 490 405 197 154 7.3 %

tt̄b 1.9×105 23849 1060 620 189 0.10 %

tt̄j 3.13×107 3×106 130122 2346 214 6.8 ×10−4%
900 1215 290 187 107 85 6.9 %

tt̄b 1.9×105 23849 594 353 110 0.058 %

tt̄j 3.13×107 3×106 74342 1052 62 2.0 ×10−4%
1000 720 172 106 62 50 7.0 %

tt̄b 1.9×105 23849 337 199 64 0.034 %

tt̄j 3.13×107 3×106 42423 505 35 5.4 ×10−5%

Table 5.1: The numbers of signal and background events at 14 TeV with an integrated
luminosity of 100 fb−1 before and after cuts, with fL = 1, for seven values of m

W ′ (GeV).

The top quark decay branching ratio 2/27 is included in the “no cut” column, and the b
tagging efficiency is included in the fifth column. The cut acceptances εcut are also listed.
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The “extra” jet in association with the tt̄ originates from a light-flavor quark or gluon in the

first case and from a b or b̄ in the second case. As shown below, the two backgrounds are

suppressed by different kinematic cuts. In the generation of background events, we demand

the transverse momentum (pT ) of the extra jet to be harder than 10 GeV to avoid soft

and collinear divergences from QCD radiation. After kinematic cuts, the contributions from

other SM backgrounds, e.g. W+W−jjj, are quite small and are not included in our analysis.

For an integrated luminosity of 100 fb−1, the numbers of signal and background events

at the event generator level are shown in the second column of Table 5.1. The top quark

decay branching ratio Br(tt̄ → bb̄�+νjj) = 2/27 is included in the numbers. We choose six

benchmark points for the mass m
W ′. We set the W ′-t-b couplings at fL = 1 and fR = 0.

The rates for other values of fL can be obtained from simple scaling

σ = f2L × σ(fL = 1). (5.6)

5.3.1 Selection cuts

At the analysis level, all the signal and background events are required to pass the basic

selection cuts listed here:

p
j
T

≥ 25GeV,
∣∣∣ηj∣∣∣ ≤ 2.5

p�T ≥ 25GeV,
∣∣η�∣∣ ≤ 2.5,

∆Rjj,j�,�� > 0.4, �ET > 25 GeV (5.7)
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where pT denotes the transverse momentum, �ET is the missing transverse momentum from

the invisible neutrino in the final state, and ∆R is the separation in the azimuthal angle

(φ)-pseudorapidity (η) plane between the objects k and l

∆Rkl ≡
√(

ηk − ηl
)2 +

(
φk − φl

)2. (5.8)

We smear the final state hadronic and leptonic energy according to a fairly standard Gaussian-

type detector resolution given by

δE

E
=

A√
E/GeV

⊕ B, (5.9)

where A = 5(100)% and B = 0.55(5)% for leptons (jets).

As shown in the third column of Table 5.1, roughly 1/3 of the signal events pass the

basic analysis cuts. At this stage, the SM backgrounds are dominant over the signal. A set

of optimized cuts, based on the kinematic differences between the signal and backgrounds,

is needed to extract the small signal.

There are five jets in the final state. Jets from a heavy W ′ boson decay tend to have a

harder pT than jets in the backgrounds. We order the jets by their values of pT . Jet charge

would also be a possibility for labeling jets, but the charge of jets is not well measured

experimentally. Figure 5.3(a) displays the normalized pT distribution of the jet with largest

pT for a 1 TeV W ′. The signal and background curves are normalized by their individual

cross sections. The signal distribution (black solid curve) peaks around 450 GeV while the

backgrounds peak around 60-80 GeV. The leading jet in the signal is mainly the b-jet from

W ′ → tb decay. It shares energy with its top quark partner; therefore its pT is about
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Figure 5.3: Normalized pT distribution of (a) the leading jet, (b) the second leading jet
distributions. The black-solid curves represent the signal (m

W ′ = 1 TeV), the red-dashed

curves the tt̄b background, while the blue-dotted curves the tt̄j background.
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Figure 5.4: Normalized pT distribution of (a) the third leading jet, as well as (b) the nor-
malized HT distribution. The black-solid curves represent the signal (m

W ′ = 1 TeV), the

red-dashed curves the tt̄b background, while the blue-dotted curves the tt̄j background.
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m
W ′/2. On the other hand, the leading jet in the backgrounds is predominately from top

quark decay. Its pT spectrum peaks around mt/3 ∼ 60 GeV. These distinct pT spectra

motivate a hard cut on the leading jet pT .

The pT spectrum of the background is independent of mW ′ whereas the pT spectrum

of the leading jet in the signal is sensitive to m
W ′ . Absent prior knowledge of m

W ′ , a first

step in a search might be to introduce a mass independent cut to suppress backgrounds,

such as to require pT > 120 GeV. This cut could then be increased or decreased to probe

for a signal, as we expect experimental collaborations will do to search for heavy resonances.

Since the signal strength is much smaller than the background, we perform Monte Carlo

simulations to find the best cut for each m
W ′. This best cut is provided by the simple

parameterization

p1stT ≥
(
50.0 +

m
W ′
5

)
GeV, (5.10)

which works well for 400 GeV < m
W ′ < 1.0 TeV. We think of these m

W ′ dependent cuts

as different cut thresholds. Our mW ′ dependent cuts are optimized for discovery, and the

numbers shown in the fourth column (labeled “optimal”) in Table 5.1 should be viewed as

optimized results for each m
W ′ .

Figures 5.3(b) and 5.4(c) show the pT spectra of the second and the third leading pT

jets. Similar to the leading jet, the 2nd and 3rd leading jets in the signal are harder than

those in the backgrounds. We impose kinematic cuts on the 2nd and 3rd jets as follows:

p2ndT ≥
(
20.0 +

m
W ′
10

)
GeV,

p3rdT ≥
(
20.0 +

m
W ′
50

)
GeV. (5.11)
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Another useful variable is HT , the scalar sum of the pT ’s of all the visible particles in

the final state,

HT = p�
+
T +

∑
j

p
j
T . (5.12)

Figure 5.4(d) shows the HT distributions for the signal and backgrounds. Involving a mas-

sive W ′ in the final state, the signal distribution peaks above 1 TeV while the background

distributions peak near the mass threshold of a tt̄ pair (∼ 400 GeV). This difference enables

us to impose a hard cut on HT to further suppress the SM background:

HT >

(
m
W ′ −

m
W ′
10

)
GeV, (5.13)

The fourth column of Table 5.1 shows the number of signal and background events after

the optimized cuts listed in Eqs. (5.10-5.13). The tt̄b background is suppressed significantly,

but the tt̄j background still overwhelms the signal. However, as we now show, if b-tagging

can be applied to the extra jet (the jet produced in association with the tt̄ pair), the tt̄j

background can be suppressed efficiently. This improvement arises because the extra jet

in the signal originates from the b quark in the W ′ decay while the extra jet in the tt̄j

background is from a non-b quark.

5.3.2 χ2-template and extra-jet tagging

Superficially, the only difference one sees among the final states in Eqs. (5.3-5.5) is that the

signal and the tt̄b background produce final states with 3 b jets, whereas the tt̄j background

has only 2 b jets. The key to suppressing the tt̄j background is to identify the extra b jet in

the final state. To do this, we first exploit the difference in pT between the extra jet and
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the other jets, and then we require b tagging to identify it as a b jet.

The extra jet in the signal comes from the heavy W ′ decay and tends to have large pT .

The extra jet in the SM backgrounds, mainly from QCD radiation, tends to have a much

softer pT . However, a complication is that top quarks in the signal events are boosted and

jets from top quark decay have large pT . One of the jets from top quark decay could play

the role of the leading jet. Our simulation shows that the extra jet (from heavy W ′ decay)

serves as the leading pT jet in 62% to 84 % of the cases for m
W ′ ranging from 400 GeV to

1000 GeV. In view of small signal rate for a heavy W ′, a more efficient method is needed to

identify the extra-jet.

In this study we use a χ2-template method based on the W boson and top quark masses

to select the extra jet. For each event we pick the combination which minimizes the following

χ2:

χ2 =
(mW −mjj)

2

∆m2
W

+
(mt −mjlν )

2

∆m2
t

+
(mt −mjjj)

2

∆m2
t

. (5.14)

There is two-fold ambiguity in the reconstruction of the longitudinal momentum of the

neutrino from top quark decay. Making use of the W -boson on-shell condition, m2
lν = m2

W ,

we can determine the longitudinal momentum of the neutrino (pνL) as

pνL =
1

2p2eT

(
ApeL ± Ee

√
A2 − 4 p 2

eT
�E2
T

)
, (5.15)

where A = m2
W + 2 �peT · ��ET . If A2 − 4p2eT �E2T ≥ 0, the value of pνL that best yields the

known top mass is selected via m2
lνb = m2

t . Once detector resolution is taken into account,

this ideal situation need not hold. In this case, the value of pνL is chosen which yields the
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minimum χ2. The reconstruction efficiencies (ε) for a 1 TeV W ′ compared with Monte Carlo

truth are found to be:

εextra = 99.8%,

εtlep
= 98.9%,

εthad
= 92.3%. (5.16)

Such high efficiencies at the parton level arise mainly from the fact that the jets are highly

boosted. Since there are combinatorial ambiguities in the final state, the efficiency for

reconstruction of a top quark decaying leptonically (tlep) is higher than for a top quark

decaying hadronically (thad).

Once the extra jet is identified by this kinematic method, one can require it to be a b-jet,

reducing the tt̄j background by about a half, as is shown in the fifth column of Table 5.1. To

retain as many signal events as possible, we require only one jet to be b-tagged. A tagging

efficiency of 60% is used in our analysis. We take into account a mistag rate for a light non-b

quark (including the charm quark) to mimic a b jet, with mistag efficiency εj→b = 0.5%.

For the Monte-Carlo truth events of the signal and backgrounds, we expect that 60% of the

signal and tt̄b background events pass the b-tagging, while 0.5% of the tt̄j background events

pass the b-tagging. Recall that the tt̄b background is suppressed by the hard pT and HT

cuts. The b-tagging will further suppress the tt̄j background events with an efficiency 0.5%,

if one can perfectly identify the extra-jet out of the five jets in the final state. However, the

extra-jet identification with the χ2 template method is not perfect. The jet identified as

the extra-jet has three sources: the true extra-jet, b-quarks from top (antitop) quark decay,

and the light-non-b quark from W−-boson decay. Multiplying the extra-jet fraction with
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the corresponding jet-tagging efficiency, we show below that one obtains a net jet-tagging

efficiency of 1.2 % for the tt̄j background, cf. Eq. (5.20), about twice as large as the case of

perfect extra-jet identification (0.5 %).

In Table 5.2 we show the tagging efficiency εb−tag of the extra jet after the χ2-template

fit. It depends on the reconstruction efficiencies for the extra jet: εcorrect denotes the correct

fraction from the χ2-fit, εwrong−b is the fraction of b jets from top quark decay that fake

the extra jet, while εwrong−light is the fraction of light jets from top quark decay that fake

the extra jet. As an example, consider the b-tagging efficiency in the signal process with

1 TeV W ′ mass. Since there are five jets in the final state, it is possible that after event

reconstruction the extra jet is a b-jet from the top quark or anti-top quark decay (which

we label “wrong−b”), or a light-flavor jet from hadronic top quark decay (which we label

“wrong − light”), or a b-jet from the W ′ decay (which we label “correct”). Note that the

b-tagging is applied to the extra jet (which we call “extra-j-tagging”, to avoid confusion

with the original b-tagging), but not to the truth b-jet from the W ′ decay. Taking the

reconstruction efficiencies into account, we evaluate the net b-tagging efficiency of the extra

jet εextra−j−tag as

εextra−j−tag = (εcorrect + εwrong−b)× 0.6 + εwrong−light × 0.005 , (5.17)

for the signal process. A similar analysis gives us the same formula for the tt̄b background.

For a 1 TeV W ′ with hard cuts, we find the extra jet is a b-jet with 99.9% probability, and

a light jet with 0.4% probability. Therefore, the b-tagging efficiency for the signal is

0.999× 0.6 + 0.004× 0.005 = 0.60. (5.18)
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For the tt̄j background, the correct jet is a light-flavor jet from the real radiation associated

with top pair production. The formula changes to

εextra−j−tag = (εcorrect + εwrong−light)× 0.005 + εwrong−b × 0.6 (5.19)

for the tt̄j background. For the tt̄j background, in the case of a 1 TeV W ′ with hard cuts,

we find extra jet is a light jet with 98.8% probability, and a b-jet with 1.18% probability.

Therefore, the b-tagging efficiency for the tt̄j background is

0.988× 0.005 + 0.012× 0.6 = 0.012. (5.20)

We use Eqs. (5.17-5.20) to explain the numbers in the b-tagging column in Table 5.2. Ta-

ble 5.2 shows that about 60% of the signal and tt̄b background events pass b-tagging even

with the imperfect reconstruction of the extra jet. However, the extra-jet tagging efficiency

for the tt̄j background is always larger than the b-tagging efficiency of 0.005 because it always

is possible to mistag a b-jet when the extra-jet tagging is done.

5.3.3 Mass window ∆M cut

After full event reconstruction, one can compute the W ′ mass formed from the extra jet and

the reconstructed t- or t̄-quark. Since our signal events consist of both tW ′− and t̄W ′+, one

half of the signal events exhibit a peak in the invariant mass spectrum of the extra jet and t

quark (denoted as mtj) while the other half have a peak in the invariant mass of the extra jet

and t̄ quark (denoted as mt̄j). Figure 5.5 shows the reconstructed mtj andmt̄j distributions

for the signal (red), tt̄j (blue) and tt̄b (green) backgrounds. The signal distribution shows
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m
W ′ εcorrect εwrong−b εwrong−light εextra−j−tag

400 98.15 % 1.63 % 0.22 % 59.9 %
tt̄b 98.34 % 1.5 % 0.15 % 59.9 %
tt̄j 96.67 % 2.96 % 0.37 % 2.26 %
500 98.53 % 1.35 % 0.12 % 59.9 %
tt̄b 98.34 % 1.5 % 0.16 % 59.9 %
tt̄j 96.7 % 2.92 % 0.37 % 2.23 %
600 99.32 % 0.59 % 0.08 % 59.9 %
tt̄b 98.34 % 1.48 % 0.15 % 59.9 %
tt̄j 96.75 % 2.88 % 0.36 % 2.22 %
700 99.4 % 0.51 % 0.09 % 59.9 %
tt̄b 98.6 % 1.27 % 0.12 % 59.9 %
tt̄j 97.15 % 2.55 % 0.29 % 2.02 %
800 99.66 % 0.31 % 0.03 % 60 %
tt̄b 98.93 % 1.0 % 0.07 % 60 %
tt̄j 97.6 % 2.17 % 0.23 % 1.79 %
900 99.87 % 0.12 % 0.01% 60 %
tt̄b 99.24 % 0.69 % 0.06 % 60 %
tt̄j 98.17 % 1.63 % 0.2 % 1.46 %
1000 99.79 % 0.14 % 0.06 % 60 %
tt̄b 99.5 % 0.43 % 0.07 % 60 %
tt̄j 98.65 % 1.18 % 0.17 % 1.2 %

Table 5.2: The efficiency for extra jet reconstruction with the χ2-template method. The net
b-tagging efficiencies (εextra−j−tag), calculated with Eqs. (5.17) and (5.19), are shown in
the last column.
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Figure 5.5: (a) Reconstructed invariant mass distribution of the leptonic decaying top and
extra jet; (b) reconstructed hadronic decaying top and extra jet invariant mass distribution.
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a sharp peak at the input value of m
W ′ . The pin shape reflects the narrow width of the

top-philic W ′ boson, e.g. the W ′ width is about 8 GeV for a 1 TeV W ′. The long tail

into the small mass region comes from the one-half wrong combination. The peaks of the

background distributions around 800 GeV are caused by the combination of hard kinematic

cuts and jet identification (with combinatorial factors included).

Once mW ′ is known, we can impose cuts onmtj or mt̄j to further suppress backgrounds.

We first demand large invariant masses for both tj and t̄j,

mtj > 250 +
mW ′
4

, mt̄j > 250 +
mW ′
4

, (5.21)

and that one of the following two mass window cuts be satisfied,

∣∣∣mtj −m
W ′
∣∣∣ < mW ′

10
, or

∣∣∣mt̄j −m
W ′
∣∣∣ < mW ′

10
. (5.22)

The mass window suppress both SM backgrounds by a factor of 10 while it keeps most of

the signal.

5.3.4 Discovery potential

The SM backgrounds are suppressed efficiently such that less than 1 background event sur-

vives after cuts with an integrated luminosity of 100 fb−1. For a 1 TeV W ′ with the same

coupling strength as the SM W -t-b interaction, we obtain a 5 standard deviations (σ) sta-

tistical significance, defined as S/
√
B where S and B denotes the number of signal and

background events, respectively. For a lighter W ′, the significance is larger for fixed cou-

pling strength. The 3 σ and 5 σ discovery curves are plotted in Fig. 5.6. The region above
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the 5 σ curve is good for discovery.

211



 [GeV]W’M
400 600 800 1000

   
  

Lf

0
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

σS > 5 

-1 with 100 fbσ5 
-1 with 100 fbσ3 

Figure 5.6: The discovery potential for the top-philic W ′ 14 TeV with an integrated lumi-
nosity of 100 fb−1.

212



5.4 W ′-t-b coupling and t-polarization

After the discovery of this W ′ boson, one would like to know its mass, spin, and couplings.

The invariant mass or transverse momentum distributions of its decay products can be used

to determine its mass. Angular distributions of its decay products can be investigated to

confirm its spin and the chiral structure of the W ′ couplings to SM fermions. The

chirality of the W ′ coupling to SM fermions is best measured from the polarization of the

top quark [71, 94]. Among the top quark decay products, the charged lepton from t → blν

is the best analyzer of the top quark spin. For a left-handed top quark, the charged lepton

moves preferentially against the direction of motion of the top quark, while for a right-handed

top quark the charged lepton moves along the direction of motion of the top quark. The

angular correlation of the lepton is
1

2
(1 ± cos θl), with the (+) choice for right-handed and

(−) for left-handed top quarks, where θl is the angle of the lepton in the rest frame of top

quark relative to the top quark direction of motion in the center-of-mass (cm) frame of the

incoming partons. In Figs. 5.7 and 5.8 we plot the cos θl distribution for fL = 1, fR = 0

and fL = 0, fR = 1 couplings. The curves clearly show the main characteristic features of

the
1

2
(1 ± cos θl) behaviors for purely right- and left-handed polarized top quarks from W ′

decay, even after kinematic cuts are imposed. We note that due to the pT and ∆R cuts, the

distributions are distorted and drop significantly in the region cos θl ∼ −1 for fL = 1 and

fR = 0, and cos θl ∼ 1 for fR = 1 and fL = 0. We expect a flat angular distribution for

the SM background because the top quark and anti-top quark are not polarized. Therefore,

the angular distributions of the lepton can be used to discriminate top-philic W ′ models in

which the chirality of the W ′ coupling to SM fermions differs.
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Figure 5.8: The angular distributions of the final lepton cos θl for the SM background.
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5.5 Summary

In this chapter we examined the LHC phenomenology of a top-philicW ′ model. In the model

the W ′ boson is produced in association with a top-quark and it decays into a top quark and

bottom quark pair, yielding a collider signature of tt̄ plus one b-jet. We exploited the different

kinematic features of the signal and backgrounds to suppress the large standard model

backgrounds from tt̄j and tt̄b production. Examining the distributions of the signal and

backgrounds, we found that hard pT cuts and cuts on HT can suppress the tt̄b background.

After full event reconstruction, we showed that tagging the extra b-jet can further suppress

the tt̄j background. We showed that discovery of a top-philic W ′ with SM-like coupling

strengths is promising at 14 TeV with L = 100 fb−1. A resonance peak in the top quark

and b-jet invariant mass distribution is a distinct signature of W ′ discovery. Top quark

polarization can be used to measure the chiral structure of the W ′-t-b coupling. Top quark

pair and hard b-jet final states are worth examining even in a model-independent way. This

final state is a new unexploited channel at the LHC.
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Chapter 6

CONCLUSION

This thesis presents a study of the phenomenology of heavy charged gauge bosons. We

studied the heavy gauge bosons within the framework of an effective field theory with the

gauge symmetries SU(2)1×SU(2)2×U(1)X models (the so-called G(221) models). Such a

formalism provides a unified view of the possible symmetry breaking patterns to recover the

standard model as well as the gauge couplings of the fermions. The G(221) models can be

separated into two classes of breaking patterns: breaking pattern I (BP-I), and the breaking

pattern II (BP-II). Examples of models in BP-I are the left-right (LR), leptophobic (LP),

hadrophobic (HP) and fermiophobic (FP), while examples in BP-II are the sequential (SQ),

the ununified (UU) and non-universal (NU) models.

We studied the parameter constraints on the G(221) models and placed bounds on the

masses of the heavy gauge bosons. For the electroweak precision constraints, we performed

a global-fit analysis on a set of 37 electroweak observables, including Z pole data, the mass

and the width of the W± boson, and various low-energy observables. Moreover, the direct

searches of the W ′ and Z′ bosons at the Fermilab Tevatron and CERN LHC further con-
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strained the G(221) model parameter space. We summarized here the most important results

from the indirect and direct constraints. For the left-right model, the direct search data at

the LHC with 7 TeV energy gives a stronger constraint on W ′ and Z′ masses than both the

electroweak and Tevatron constraints. It excludes the region where the W ′ mass is smaller

than 1.7 TeV, and where the Z′ mass is smaller than 2.3 TeV. For the sequential model,

although W ′ and Z′ with degenerate masses below 500 GeV are allowed by the EWPTs at

large cφ, the limits from Tevatron and LHC exclude the region where W ′ and Z′ masses

are smaller than 1.5 TeV. For all other models, the electroweak precision data still gives the

strongest constraint on the W ′ and Z′ masses, because of the non-universal flavor structure

in these models. In breaking pattern I, with all combined constraints, all the phobic models

can still have relatively light W ′ with a mass of 500 GeV mass, but with a heavier Z′ of

mass 1.5 TeV. For the non-universal models, such as top-flavor and un-unified models, the

electroweak indirect constraints are tighter than Tevatron and LHC7 direct constraints, and

push the new gauge boson mass up to more than 2 TeV in top-flavor model and 3 TeV in

un-unified model.

The Drell-Yan production, which has the simplest topology and very clean leptonic final

states, is the most promising channel for early discovery of W ′ and Z′ bosons. In the general

SU(2)1 × SU(2)2 ×U(1)X models, we calculated the Drell-Yan production cross section at

the next-to-leading order. Our study revealed that the discovery potential of W ′ and Z′

bosons is highly limited by the indirect constraints. With a full scan of the parameter space,

we are able to predict the time scale to probe/exclude the W ′ and Z′ by accessing more

parameter region as the luminosity goes up at the LHC. In the left-right model it is more

efficient to use the W ′ leptonic decay channel for discovery or exclusion than the Z′ leptonic
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decay channel. In the phobic models, observing a Z′ alone cannot rule out the possibility

of a non-abelian gauge extension of new physics. In BP-II models, both the Z′ and the W ′

leptonic decay channel are suitable to explore the allowed parameter space. Discovering a

degenerate W ′ and Z′ in the leptonic decay channels at the same time will be the distinct

feature in BP-II.

The top quark plays a special role in the standard model, and offers a window into

possible new physics beyond the SM. In many models, because the top quark is naturally

related to EWSB, new physics is very sensitive to the top quark observables. The observables

such as angular, spin correlations and polarization of the top quark can be used to determine

the particle properties and its chiral structures. We studied the heavy charged gauge bosons

in the single top final states. We showed that it is possible to probe the chiral structure of

the charged gauge bosons using the top quark polarization. As another example, since both

CDF and D0 confirmed a large forward-backward asymmetry in the top pair production,

we studied how a flavor-violating W ′ model might explain this asymmetry. We investigated

the correlation between the top quark AtFB and the final-state lepton AlFB in the flavor-

violating W ′ models. We studied the kinematic and dynamic aspects of the relationship

between AtFB and AlFB , arising from the spin correlation between the charged lepton and

the top quark with different polarization states. Our study revealed a strong correlation

between these two asymmetries, and we conclude that a model which produces more right-

handed than left-handed top quarks is favored by the present data.

We also looked for unexpected new signatures for the exotic W ′ discovery. We studied a

”top-philic” model, in which the W ′ couples only to third-generation quarks and is produced

only in association with a top quark. The final state, top quark pair plus a hard b-jet, is
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a new unexploited channel at the LHC. We performed a detailed study on the top quark

pair plus a hard b-jet final states, and expect that our analysis can be used in a model-

independent study. To discriminate signal from the large background tt̄j, we studied the

distributions of the signal and backgrounds and found that several kinematic features, such

as HT and b-tagging, can be used to suppress the large tt̄j backgrounds. We showed that

discovery of a top-philic W ′ with SM-like coupling strengths is promising at 14 TeV with

L = 100 fb−1. A resonance peak in the top quark plus b-jet invariant mass distribution is

a distinct signature of W ′ discovery. Furthermore, top quark polarization can be used to

measure the chiral structure of the W ′-t-b coupling. The Top quark pair plus hard b-jet final

state is a new unexploited channel at the LHC, which is worth continued examination in a

model-independent way.

As a final outlook, we would like to mention several theoretical considerations left for

future investigation. At the LHC, if there is enough luminosity, the vector boson pair pro-

duction, and the vector boson and Higgs associated production channel will be the primary

channels to study. The reason is that the vector boson channel is essential to explore the

spontaneous symmetry breaking at the TeV scale. The vector boson channels will probe a

different part of the theory about resonances, whether the resonance is a gauge boson or

just a vector boson, whether the resonance is relevant to spontaneous symmetry breaking

or not. In addition, there are also other kinds of W ′-bosons, such as T-parity odd W ′, and

Kaluza-Klein W ′ resonances which can be studied in future.

With the start of the LHC, a new era of discovery in particle physics has just begun. It

is the time to study the collider phenomenology of new physics beyond the standard model.

Although in this thesis we focus on the charged gauge boson resonances, similar strategies can
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be performed to study the collider phenomenologies for other kinds of new heavy particles.

We look forward to how the LHC will revolutionize particle physics by opening the TeV

energy region to direct experimental exploration.
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Appendix A

Statistics for Upper limit and

Significance

In the high energy experiments, a very important aim is to search for new physics beyond

the standard model. Statistical data analysis will be used either to set limits on new physics

or to claim a new discovery. To distinguish a possible new physics signal s from the existing

standard model background b, hypothesis testing in statistical method plays an important

role. When setting limits, the model with signal plus background plays the role of null

hypothesis, which is tested against the background-only hypothesis H1. When discovering

a new signal process, one defines the null hypothesis as background, which is tested against

the alternative signal hypothesis.

The Bayesian and the classical frequentist, are the two statistical approaches commonly

used in high energy physics to do hypothesis testing. The difference between frequentist and

Bayesian is:

• in frequentist statistics, data are repeatable random sample, while underlying param-
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eters remains constant during this random process (parameters are fixed);

• in Bayesian statistics, parameters are unknown random variables, while data are ob-

served from the realistic experiments (data are fixed).

They are different points of view: the frequentist statistician does many repeated trials given

an underlying true theory, while the Bayesian tries to get the degree of belief of an incomplete

theory given the existing measurements. For more details, we refer readers to refs. [115]. In

the following, we will apply the hypothesis testing in the counting experiments to illustrate

the two approaches. Suppose one has an experiment that counts n events, modeled as a

Poisson distribution with mean s+ b, where s is the expected signal rate, b is the expected

background rate. The probability of measuring n events is therefore

P (n|s, b) = (s+ b)n

n!
e−(s+b). (A.1)

A.1 Upper Limit

Both Bayesian and the classical frequentist methods use confidence level (CL) to quantify

the level of incompatibility of data with a signal hypothesis. Usually one requires a 95% CL

for excluding a signal hypothesis.

A.1.1 Bayesian Approach

In the signal hypothesis, one would like to set limit on the expected cross section σ of a

signal process. Consider there are N channels (or bins), and for channel i, one observes ni

events, assuming the expected background rate is bi, and the acceptance is εi with integrated
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luminosity Li.

In the absence of systematic errors from subsidiary measurements, the joint likelihood

for combined N channels can be written as the product of individual likelihood

L(�n|σ,�b,�ε) =
N∏
i=1

(σLiεi + bi)
n!

n!
e−(σLiεi+bi), (A.2)

where the vectors indicate the variables are arrays carrying index i.

To quantify the degree of belief on this signal hypothesis, the posterior probability is de-

fined to be related with the confidence level. Using Bayes’ theorem, the posterior probability

density can be obtained, given the likelihood and the prior probability density π(σ) for the

signal cross section. The posterior probability density is

P(σ|�n,�b,�ε) = 1

N L(�n|σ,�b,�ε)π(σ), (A.3)

where the normalization factor N integrated all the possible σ. Typically the function P(σ)

is commonly taken to be flat for σ ≥ 0 and zero otherwise.

The limit is now obtained by integrating this posterior probability density for σ until we

achieve the 95% of the total integral from zero to infinity. The 95% CL upper limit σ95%CL,

is given by ∫ σ95%CL

0
P(σ′|�n,�b,�ε)dσ′ = 95%. (A.4)

In the case of single channel with constant prior probability density, the final expression is

1−
Γ(n + 1, σσ95%CL

εL)

Γ(n+ 1, b)
= 95%. (A.5)
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To include the systematic errors (nuisance parameters), one would consider the prior

probability density from the subsidiary measurements π(σ,�b,�ε). Then one marginalizes the

nuisance parameters by integrating over them. The posterior probability density can be

rewritten as

P(σ|�n) = 1

N

∫ ∫
L(�n|σ,�b,�ε)π(σ,�b,�ε)d�bd�ε. (A.6)

The 95% CL upper limit σ95%CL, is given by

∫ σ95%CL

0
P(σ′|�n)dσ′ = 95%. (A.7)

To get the expected limit, one would treat �n as �b in above integration.

If the number of observed events is large, the Poisson likelihood asymptotically tends to

a Gaussian with mean n and standard deviation
√
n:

P (n|s, b) = (s+ b)n

n!
e−(s+b) → e

−(s+ b− n)2

2n . (A.8)

In practice, the approximation is already good for n ≥ 10. The integration

∫ s95%CL

0
P(s|n, b) =

∫ s95%CL
0 P (n|s, b)ds∫∞

0 P (n|s, b)ds
(A.9)

can be calculated analytically

ERF
[
(s95%CL + b− n)/

√
2n
]
+ ERF[(n− b)/

√
2n]

1 + ERF[(n− b)/
√
2n]

= 95%. (A.10)
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The expected limit can be obtained through

ERF
[
(s95%CL)/

√
2b
]
= 95%. (A.11)

The final result is

s95%CL = 1.96×
√
b → σ95%CL = 1.96×

√
b

εL
, (A.12)

where one can infer a scaling behavior

σ95%CL ∼ 1√
L
. (A.13)

For the combined upper limits of N channels, the combined likelihood can be written as

P (n|s, b) =
N∏
i=1

(σεiLi + bi)
n
i

ni!
e−(σεiLi+bi) →

N∏
i=1

e
−(σεiLi + bi − ni)

2

2ni .

(A.14)

From the properties of product of Gaussian distribution, the Gaussian likelihood can be

rewritten as

P (n|σ, ε, b) =
N∏
i=1

e
−

(
σ − ni − bi

εiLi

)2
2ni/(εiLi)

2
= e

−(σ − µ)2

2κ2 . (A.15)
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where

µ =

∑N
i

ni − bi
2ni/(εiLi)∑N

i
1

2ni/(εiLi)
2

, (A.16)

κ2 =
1∑N

i
(εiLi)

2

ni

. (A.17)

we can get the combined upper limit

s95%CL = 1.96× κ. (A.18)

From the above, we can obtain the following relation

σ295%CL =
1∑N

i
1

σ2
95%CL i

. (A.19)

A.1.2 Frequentist Approach

The frequentist approach requires the selection of a test statistic q as measure of discrepancy

between the data and the hypothesis, with higher values of q corresponding to increasing

disagreement. As a signal-vs-background discriminator, there are many kinds of choices of

the test statistic:

• a simple choice will be the possible observed number of events n during the trial

measurement;

• By the Neyman-Pearson lemma, the likelihood ratio Q is the most powerful discrimi-
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nator, defined as

qµ = −2 ln
L(n|µs+ b)

L(n|b) , (A.20)

where µ is a strength parameter defined such that µ = 0 is the background-only

hypothesis and µ = 1 is the hypothesis of background plus signal. This test statistic

was used by LEP and the Tevatron. In references, there are various modifications of

this method: Feldman-Cousins, CLs, Power-Constrained Limits, etc.

• At the LHC, the profile-likelihood test statistic qµ is used. The profile likelihood ratio

is defined as

λ(µ) =
L(µ, ˆ̂b)
L(µ̂, b̂)

. (A.21)

Here L(µ, ˆ̂b) is the likelihood maximized
ˆ̂
b for the specified µ i.e., it is the conditional

maximum-likelihood (ML) estimator of b (and thus is a function of µ). L(µ̂, b̂) is the

maximized (unconditional) likelihood function, i.e., µ̂ and b̂ are their ML estimators.

The profile likelihood ratio is thus

tµ = −2 lnλ(µ). (A.22)

In the absence of systematic errors, for the Poisson likelihood with given observable n

L(µ, b;n) = (µs+ b)n

e−(µs+b)
n!, (A.23)

the profile likelihood with given n is

tµ = −2 lnλ(µ) = 2

[
(µs+ b− n) + n ln

n

µs+ b

]
. (A.24)
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For large µs+ b, the test statistic can be expanded around x = (n− µs− b)/(µs+ b)

as

tµ =
(n− µs− b)2

µs+ b

(
1− x

3
+

x2

6
+ · · ·

)
. (A.25)

Here the distribution for n is approximately a Gaussian distribution with mean µs+ b

and variance σ0 =
√
µs+ b. So we can rewrite

tµ � (µ− µ0)
2

σ20

, (A.26)

where µ0 =
n− b

s
and σ0 =

√
µs+ b/s. For the multi-channel case, the test statistic

is

tµ = −2 lnλ(µ) =

N∑
i=1

2

[
(µs+ bi − ni) + ni ln

ni
µs+ bi

]
. (A.27)

Having defined the test statistic, next one constructs the probability density f(tµ|µ)

of the chosen test statistic qµ under the signal hypothesis through many repeated pseudo-

observations. Using the probability density f(tµ|µ) one can quantify the level of disagree-

ment by defining the p-value

pµ =

∫ ∞

tµ,obs

f(tµ|µ) dtµ , (A.28)

where tµ,obs is the value of the statistic tµ observed from the data. Such a p-value is

denoted as CLs+b, which relate to confidence level as 1−CLs+b. The probability densities

are different for different test statistics, such that in the simplest choice of test statistic n

the probability density is a simple Poisson distribution.
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At the LHC, the default test statistic is the profile likelihood ratio, because this method

has the simplest way to incorporate systematics into hypothesis, and its known asymptotic

properties. We will focus on this profile likelihood method and calculate the upper limit.

In order to find the p-value, the sampling distribution of the test statistic f(qµ|µ) need

to be obtained. We also need the distribution f(qµ|µ′) with µ′ �= µ to find how this is

distributed (the median) if the data correspond to a strength parameter different from the

one being tested. Here we present an approximate distribution for the profile likelihood

ratio, valid in the large sample limit. In the large sample limit, one can model µ̂, which is

the value of µ that maximizes the likelihood, as a Gaussian distributed variable. If µ̂ follows

a Gaussian distribution with a mean µ′ and standard deviation σ, we can approximate the

test statistic as

−2 lnλ(µ) =
(µ− µ̂)2

σ2
+O(1/

√
N) . (A.29)

and determine its distributions of the test statistics. The standard deviation σ of µ̂ is

obtained from the covariance matrix of the estimators for all the parameters,

V−1
ij = −E

[
∂2 lnL

∂θi∂θj

]
, (A.30)

where here the θi represent both µ as well as the nuisance parameters. If all nuisance

parameters are fixed, µ̂ will be the value

E[µ] = E[
n− b

s
] =

n− b

s
, (A.31)
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which maximizes the likelihood. For the variance, one can take θ0 = µ, so

V−1
00 = −E

[
∂2 lnL

∂µ∂µ

]
= E

[
nµ2

(µs+ b)2

]
=

s2

µs+ b
, (A.32)

where L is a Poisson distribution, and E[n] = µs+ b. Then we obtain

σ2 = V00 =
µs+ b

s2
. (A.33)

If µ̂ is Gaussian distributed, one can show the statistic tµ follows a non-central χ2

distribution with one degree of freedom,

f(tµ; Λ) =
1

2
√

tµ

1√
2π

[
exp

(
−1

2

(√
tµ +

√
Λ
)2)

+ exp

(
−1

2

(√
tµ −

√
Λ
)2)]

, (A.34)

where the parameter Λ is

Λ =
(µ− µ′)2

σ2
. (A.35)

For the special case µ′ = µ one has Λ = 0 and −2 lnλ(µ) approaches a chi-square distribution

for one degree of freedom.

For purposes of computing limits, we introduce a modification to the profile likelihood

ratio definition as

qµ =



−2 lnλ(µ) µ̂ ≤ µ ,

0 µ̂ > µ ,

(A.36)

The reason for setting qµ = 0 for µ̂ > µ is we want to determine the smallest µ such that

there is a fixed small p-value to find data as compatible with that value of µ or less. Similar
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to the above, the pdf f(qµ|µ′) can be written as

f(qµ|µ′) = Φ

(
µ′ − µ

σ

)
δ(qµ) +

1

2

1√
2π

1
√
qµ

exp


−1

2

(
√
qµ − µ− µ′

σ

)2 , (A.37)

In the special case µ = µ′ is a half-chi-square distribution:

f(qµ|µ) =
1

2
δ(qµ) +

1

2

1√
2π

1
√
qµ

e−qµ/2 . (A.38)

The cumulative distribution is

F (qµ|µ′) = Φ

(
√
qµ − µ− µ′

σ

)
, (A.39)

and the corresponding special case µ′ = µ

F (qµ|µ) = Φ
(√

qµ

)
. (A.40)

The p-value can be calculated as

pµ = 1− F (qµobs|µ) = 1− Φ
(√

qµobs

)
, (A.41)

and the upper limit is

µup = µ̂+ σΦ−1(1− α) . (A.42)
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where α is the upper limit of pµ. At a confidence level of 95%, p-value is 1−α = 5%, so one

has

µup = µ̂+ σΦ−1(0.05) = µ̂+ 1.64σ . (A.43)

To determine µ̂ and σ one further take the Gaussian approximation. For large µs+b, the

distribution of n is Gaussian distributed with mean µ̂ and σ. For given n, µ̂ is the maximized

value of µ, with µ̂ =
n− b

s
and σ can be approximately treated as σ =

√
µ̂s+ b

s
=

√
n

b
. For

the expected upper limit µ̂ = 0 and σ =
√
b/s, so we get

µup = 1.64

√
b

s
. (A.44)

We then derive the combined upper limit. The test statistic for N multi-channel processes

is

qµ =
N∑
i=1

(µi − µ̂i)
2

σ2i

=
N∑
i=1

χ2i , (A.45)

where µ is the is a strength parameter, or saying the ratio between Higgs cross section and

reference standard model Higgs cross section. Since the product of Gaussian distribution

has such a property:

µ̂ =

∑N
i

µ̂i

σ2i∑N
i

1

σ2i

, (A.46)

σ2 =
1∑N
i

1

σ2i

, (A.47)
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the test statistic of N multi-channel can be rewritten based on µ̂ and σ2 as

qµ =
(µ− µ̂)2

σ2
. (A.48)

At a confidence level of 95%, p-value is 1− α = 5%, so one has

µup = µ̂+ σΦ−1(0.05) = µ̂+ 1.64σ . (A.49)

For the expected upper limit µ̂ = 0 and σ =
√
b/s, so we get the combined limit

µup = 1.64

√
b

s
= 1.64× σ , (A.50)

and for each channel

µiup = 1.64

√
bi

si
= 1.64× σi . (A.51)

From Eq. A.46, one can get

µ2up =
1∑N

i
1

µ2iup

. (A.52)

The result is the same as the one using Bayesian approach.

To include the systematic errors, one can define the complete profile likelihood ratio with

background errors. When one does the maximization of the likelihood, one need to solve the

ML estimators
ˆ̂
b and b̂. There is another method to include systematic errors, in which all the

errors are included as nuisance parameters. In this case, one need to do the marginalization

for the likelihood, and then take the ratio of the profile likelihood.
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A.2 Discovery Significance

In the case of observing an excess of events, the statistical significance of an observed sig-

nal can be quantified by means of a p-value or its equivalent Gaussian significance in the

frequentist approach, and Bayes Factor in the Bayesian approach.

A.2.1 Bayesian Approach

In the Bayesian approach, the Bayesian could define a interval that reflects the degree-of-

belief for each hypothesis. The ratio of these intervals is defined as Bayes factor,

B =
likelihood with s = 0, marginalized over b

likelihood with µ = 0 marginalized over s and b
, (A.53)

which is quite similar to the definition of the profile likelihood ratio, with Bayesian marginal-

ization replacing maximization. Unlike the frequentist approach, one doesn’t need to know

the probability density of all possible outcomes of the measurement for a given hypothe-

sis. However, the disadvantages with this Bayesian approach are that one has to assume

prior distributions for each hypothesis, and one is only allowed to make relative confidence

statements about two hypotheses. Due to the above disadvantages, the Bayes factor only

has limited usage on new physics discovery in high energy physics. We will focus on the

discovery in the frequentist approach.
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A.2.2 Frequentist Approach

For the discovery, the p-value is defined as the probability of getting an observation as or

less compatible as seen in data for the background-only hypothesis, in the following

p0 =

∫ ∞

t0,obs

f(t0|b) dt0 , (A.54)

where t0,obs is the value of the statistic t0 observed from the data. The p-value can be

converted into an equivalent significance Z, defined such that a Gaussian distributed variable

via

Z = Φ−1(1− p) . (A.55)

For a signal process, one commonly regards the rejection of the background hypothesis with

a significance of at least Z = 5 as an appropriate level to constitute a discovery. This

corresponds to p = 2.87× 10−7. For purposes of excluding a signal hypothesis, a threshold

p-value of 0.05 (i.e., 95% confidence level) is often used, which corresponds to Z = 1.64.

We will focus on the test statistic q0 used at the LHC [116]. From the modified definition

of q0, we therefore have

q0 =



µ̂2/σ2 µ̂ ≥ 0 ,

0 µ̂ < 0 ,

(A.56)

where µ̂ follows a Gaussian distribution with mean µ′ and standard deviation σ. One will

get a similar probability density with µ = 0. For the special case of µ′ = 0, the probability

density reduces to

f(q0|0) =
1

2
δ(q0) +

1

2

1√
2π

1
√
q0

e−q0/2 , (A.57)
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which is a mixture of a delta function at zero and a chi-square distribution for one degree of

freedom. The corresponding cumulative distribution is

F (q0|µ′) = Φ

(
√
q0 − µ′

σ

)
. (A.58)

and the special case µ′ = 0

F (q0|0) = Φ
(√

q0

)
. (A.59)

The p-value of the µ = 0 hypothesis is

p0 = 1− F (q0|0) , (A.60)

and therefore the significance is

Z0 = Φ−1(1− p0) =
√
q0 . (A.61)

In the counting experiment, if we regard b as known, the data consist only of n and thus

the likelihood function is

L(µ) =
(µs+ b)n

n!
e−(µs+b) , (A.62)

The test statistic for discovery q0 can be written

q0 =



−2 ln

L(0)

L(µ̂)
µ̂ ≥ 0,

0 µ̂ < 0 ,

(A.63)

where µ̂ = n − b. For sufficiently large b we can use the asymptotic formula (A.61) for the
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significance,

Z0 =
√
q0 =




√
2
(
n ln

n

b
+ b− n

)
µ̂ ≥ 0,

0 µ̂ < 0.

(A.64)

To approximate the expected (median) significance assuming the nominal signal hypothesis

(µ = 1) we replace n by the Asimov value s+ b to obtain

med[Z0|s+ b] =
√

q0,A =
√

2 ((s+ b) ln(1 + s/b)− s) . (A.65)

For large b, the test statistic can be expanded around x = (n− b)/(b) as

q0 � (n− b)2

b
. (A.66)

Here the distribution for n is approximately a Gaussian distribution with mean b and variance

σ0 =
√
b. So we can rewrite

Z0 =
√
q0 ∼




n− b√
b

µ̂ ≥ 0,

0 µ̂ < 0.

(A.67)

Expanding the logarithm in s/b one finds the expected (median) significance assuming signal

rate

med[Z0|s+ b] =
s√
b
(1 +O(s/b)) . (A.68)

Although Z0 ≈ s/
√
b has been widely used for cases where s+ b is large, one sees here that

this final approximation is strictly valid only for s � b.
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[71] S. Gopalakrishna, T. Han, I. Lewis, Z. -g. Si and Y. -F. Zhou, Phys. Rev. D 82, 115020
(2010).

[72] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 83, 112003 (2011)

[73] V. M. Abazov et al. [D0 Collaboration], arXiv:1107.4995 [hep-ex].

245



[74] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung,
JHEP 0207, 012 (2002) [hep-ph/0201195].

[75] M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C 72, 1896 (2012).

[76] ATLAS Collaboration, JINST 3, S08003 (2008).

[77] CMS Collaboration, J. Phys. G G 34, 995 (2007).

[78] W. Bernreuther and Z. -G. Si, Nucl. Phys. B 837, 90 (2010).
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