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Introduction

A Vierendeel truss is a statiecally indeterminate
rigid frame composed of a series of rectangular or
trapezoidal panels without diagonal members. It can
be analyzed by any of the standard methods ~— Least
Work, Virtual Work, slope-deflection and moment dis-
tribution. However, in all except the simplest cases,
the application of these methods is extremely laborious.

Various improved nothoda’ have been propesed,
among which the panel method?adaptod by Prof. L. C.
Maugh 1s perhaps the best. But all these methods are
far from being satisfactory, especially in the analysis
of the non-symmetrical Vierendeel truss.

In this thesis, the writer's original method, the
Iteration method of Least Work, is used to analyze the
non-symmetrical Vierendeel truss. Original formulae
are derived, and several typical non-symmetrical Vier-
endeel trusses are analyzed by this method as illustra-
tive examples. This original method, is, to the writer's

1. Dana Young, "Analysis of Vierendeel Trusses", A.S.C.E.

Transactions, 1937, p.869.
Louis Bses, "Rigid Frames Without Diagonals", A.S.C.E.
Transactions, 1942, p.1l216.
Rathbun and Cunningham, "Continuous Frame Analysis by
Elastic Suppert Action", A.S.C.E. Proceedings,
Apr. 1947,
2. Engineering News Record, Mar. 14, 1935, p.379.



best knowledge, the best existing method in the analysis
of the Vierendeel truss. A comparison between the
writer's simple solution of his illustrative example
(1) on page 16 and the laborious solution of the same
problem appeared in the Apr. 1947 issue of the A.S.C.E.
Proceedings (Example 6, "Continuous Frame Analysis by
Elastic Support action" , by Rathbun and Cunninghsm)
clearly shows the former's superiority.

This new method involves no new principle, It
is simply the application of the age-old prinéiple of
iteration to the solution of a set of earefully formed

simultaneous Least-Work Equations.

.In this method, the total internal work of the
Vierendeel truss is first expressed in terms of the
statieally redundant internal moments. Then the partial
derivatives of the internal work with respect to these
redundant moments are each placed equal to gzero to
obtain the simultaneous Least-Work equations. These
equations are similar in form to the equations of the
Theorem of Three Moments, and & single general formula
is sufficient to formulate all of them,

The actual solution of a problem consists of two

steps, the formation of the simultaneous equations by
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using the general formula, and the solution of these
simultaneous equations by iteration.

The greatest obstacle to the general acceptance
of the Vierendeel truss has been its reputation for
necessitating laborious methods of stress analysis,
With the removal of this obstacle by his simple method
presented in this thesis, the writer believes the
Vierendeel truss is destined to play a prominent role

in the bridges of the future.



Sign Convention

All counterclockwise moments are taken as positive.

All cloockwise panel shears are taken as positive,



Part I. Non-symmetrical parallel-chord Vierendeel truss.

Derivation of the general formula.
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In the above figure, W, and W, are external
forces acting on the Vierendeel truss. L3,L‘,Lq,qa,
ﬁ;,L;,ﬁ; and L, are external moments acting on the

joints B, C, D, E, B, C, I and E respectively.



The problem is to find the internal moments M, ,M, ,M;,
1ol i
My Mg, Mg My, Mg Mo M M, My, M), M W3, M MG M M0
/ /
Mo, M, ¥, and My,
For each joint, one joint equation can be written.

The joint equations of joints B, C, B and C are as

follows:
M, + M, + Mg = Lj=-------co-ooe- -=== (1)
M, + M, + M, = Lg ==sessceoccoccoo- === (2)
i ’ _ /
My, + My + M, = L} ee-cecmemmecceeae- - (3)
¢ / ? — ’
Mg + Mg + My = Lg se---ssscseceocece- (4)

For each panel, one shear equation can be written.
The shear equation of panel BC 1s as follows:
M+ Mg + Mﬁr + “Is = Hh eecccccacca- (§)
where
H = panel shear of panel BC, clockwise as
positive.

h = panel length of panel BC.

Let ch_ = the internal work of member BC.

WB:(,: = the internal work of member ﬂd.

ch = the internal work of member CC’.
etc. !
Cow da

Then wBC. = *j‘,_—_——lE I

(The axial stress item is neglected.)
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From figure (2),
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Iet W be the total internal work of the whole

truss, then
W= Wt Wyt W, T W +------ ete.

The given unsymmetrical truss is statically inde-
terminate to the twelfth degree. u',ut_,u4 ,Ms.,l7,
Mg,M,M,,M M, ,M] and M/ (marked red in figure 1)
are chosen as the statically redundant elements.

From the principle of Least Work, the partial
derivatives of W with respect to each of the above
redundants should be equal to zero.

The partial derivatives of all the internal
moments, except MS,MG,M; and HZ, with respect to M
are equal to zero,

By definition,
Mg
From equation (2),
oMs
From equation (5),
My -
QMS
From equations (4) and (§5),
/ . / - 7 - /
MO + Mv‘f Hh (!+1' M5 + M+)-— LG

;¢
or Mo _ {
oMz
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Hence

aWae _ _! -
T = R (2M-M)
PANE _ -1 / /
3Mg ~ GEKg (2 M- M)
"?V\;LQ’ - 5 /
Sy GERg (M~ M)
IW.p _ A e O
aMs T omg T -
. l ;
S _ zv\'s—M; + 5(_——-_—!\,1“’__"4%)
and LT )T ERG, G E K
oW
since Mg G, we have
Mg -M, - 2M;<M;+3(M:‘Mu)_ (6)
K Ky A%
similarly we have,
2W = 0
$s ;
or z_M MS ]'MS M"sz M IMJ'NB O"""----- (7)
'\+ ha "o "3
ow
S ) 2o |
M) 2 My 2My-D
or 3( 9 2 ‘J z (j } O .......... - s ev e oo (8)

K \4 f\‘b A%

Eliminating H;,MG and Mé from equations (2), (4),
(5) and (6), we have
_ (2 LI IR’
2t M= (gt ) ERh -3 ('\;f ) M,

2 3- | /
(&Q-F\z N)M +- (M -m.lfLG-LG)

where i 3 i
t = ol o T— + —

N Vo K

=== (9)
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This equation of M 1s a useful general equation.

It can be used to find M,,M,M, N, M, ’“x and m". For

instance,
2tm’5 (% i)ﬂh 3(—'— T'\L““r
7_ 3 ’
(&r z;"*) W+ o +L@,- L) ====-n= (9),
2 8 ¥y = (gra )n,h (-+—-)u
x 3
- (K’; f-,-\-}-"') 'n""'K}“h ¥ L. - L}) ------ - (9),
2t M= (5 g")ﬂh’5(£"ft) M,
L T ‘ ]
-GS R K}(M4- ML= L) ===--n - (9)
where , 3 ‘

t‘ cm— —f\-‘ + "K'; + —;{"r
H = shear in panel BC, clockwise as positive.
h‘ == panel length of panel BC.

Substracting equation (8) from equation (7),

we have , , '
2Mam My 2 Me- My ﬂ!zi_!:.). ....... (10)
Kq K¢ ' 3

Eliminating HS,MQ,Msand M;. from equations (1), (3),
(2), (9)g» (9){,’ () and (10),we have
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i [ /
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Eliminating M 39 MG,M; sM; and M;— from equations
(1), (2), (3), (4), (8)’ (9), (g)a: (Q)bn and (g)co we

™ (0 iR D S

PRI

T {’r&j(z—i}% Lt, : Fg{, )f_(rw K, )J}

‘_‘Q'T:IQE < Z;)f_& 2”’1

-Ltiv\,( ::. is— }:{L'{)ch{

3
1£‘r\( *; ?\b' bt fz_f‘ﬁ, _:: %C ri,)M;
% ’-?'\3— b+ g5 _12*\'3)%/
- :\ (t--f_;:<¥ —L;M) o+ ;’ (%, o )LL

Interchanging all the L, M and K with the respec-
tive L', u’, and K, (1.e., change ll,t into l"*, l'; into l‘,
K; inte Ki” K" into K» etc.) we get a new equation,

say, equation (13). Adding equation (13) and equation






(12), we have,

Y 3 I T
f e Ny TR M) T C ha "\4)
ks 2t
i, 6 29y, 3, 1
el aR) F Rl r\ﬁ}
T Y\3 lt_a
o AL é 1 "L, .
;EE'Z'K6< Ky Y AV H h
/ . .
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i 7 G (l
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9 9 _
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Eliminating u;r . from equations (11) and (14),

we have our general formula. (on next page)
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The general formula,

(VVu+ u'v) M, = Gfgfg(v --e—n) M,
\
18

+ %k3(v +-—-u) lf(E v -d u) M+(E vidu) M,
o

fy + Ky

= 2 (4 3)

= 114+ 124K, + 6

= 4, — 4,

= A + ,ﬁ

= sk (Th T, ¢+ —-—)fnﬁ + 6

= %4 .(J\ t+ 5) - k}

= 1k -7h+e

= (Aut+trv) H h+{h3(LA‘u -v) H‘h‘-i- J

= (v=D)u (L= L)+ pkv (L+L))
tdu (L= L) = v (EL¥EL)

where

S
il

“ QWY o w > =
I

u = %77{ + C

v = 4*3,(1-—9@"—)1—1)
s }{u’:

ke = R
’ Ké

‘ﬁ‘\- - R'4_

'ﬁ = K¢
3 = TR,
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In the above general formula, A’ is obtained by
interchanging all k-values with kLvaluea, and A, 1is
obtained by using the k-values of the panel immediately
below the panel under consideration. Thus

A o= 4'(; — &y
A = A&y - "y

The above relation holds true for all the constants.

Note that the values of J\,ﬁ » ¥ and~§3do not
change by interchanging k-values with k-values.

Note also that'ﬁ‘il not the stiffness, but is the
stiffness ratio.

In analyzing any non-symmetrical parallel-chord
Vierendeel truss, there are five steps:

First step. Calculate for each panel all the constants.

Second step. Formulate two equations for each panel

by using the general formula.
Third step. Solve these simultaneous equations by

the principle of iteration.,
Fourth step. Solve for uap\'"ca’ubc.’“sb’“dﬁ’"c’d ,IIM

and My by using the general equation of M. shown

below:
3h, = (2R +3)Hh = (B+3)ry
_3CQ¢4)M2+3<M;—H7+L¢‘L2)






The above equation of ls is exactly the same as
equation (9) on page 9, except that it is rearranged.)
and Myn by the joint equations. (Four of the joint

equations are shown on page 6)
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Illustrative example (lf% s
. n
N Tl foad 2§ T
’ ' P 4 f /
E' I’l""l ‘ 'L ' S_ﬂ'.m{um " Bl A1
- K=y K215 o 1y " KIS - \:‘
< K=l ‘ K=iL < n=(2 o K212 ‘I
E xir D S D 737 A
- 4@1*' 27"00 T -
| Gsk.‘fs
Kol
55" Figure (3)

The fixed-end moment at c’ and D’ due to the four
kips load at the middle is ériﬁ or 12 ft-kips.

The fixed-end moment at ¢’/ and B' due to the dis-

tributed load of 8 kips is »{ or 16 ft-kips.

I3

The given loading is therefore equivalent to the
following two loadings:

x Same problem as example 6, "Continuous Frame Analysis
by Elastic Support Action" by J. Charles Rathbun and
C. W. Cunningham, A.S.C.E. Proceedings, Apr. 1947.

16
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The solution of loading A, shown in figure (3),

gives
ug d = - 16 rt-kips.

Mg = 16 ft-kips.
M. = = 12 ft-kips.
HD'C,' _— 12 ft-kips.

(All counterclockwise moments are taken as positive.)



All other members have zero moments.

The solution of loading B, shown in figure (3),

will be given in tabular form below:
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Table I Computation of constants,
(1) (2) (3) (4) (5) (6) (7) (8) (9)
L,| Eh {2y o 3 r 3 ks A B
My 0 1.5 . 0.3 l.8
132 2,7 11.4 [57.4 | 17.1
.IJEI "12 1.2 -0.3 009
(4] 1 0.2 1.2
Yep 84 1.8 | 9.6 |35.4| 14.4 |
M| = 4 0.8 -0.2 | 0.6
Mg, 0 «867 «133 | 0,8
- 60 1.2 804 25.5 506
C.’. 16 0553 ’0133 004
Mag 1 0.2 1.2
0 |=156 l.8 9.6 [35.4 6.4
IA'B’ 0.8 =02 0.6







Table I (continued from the preceding page)
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(10) (11) (12) |(13) (14) (15) | (16) (17) (18)
Coeffcients of
Cc D E u v J M Bh T h
4 L
le | 99.3 7.73 8.7 [116.4 | 14.13 6030 845 | -158,.0
3710
lﬂé: 107.2 10,30 | 14.1 [124.3 | 16,70 |=12950 921 | =373.0
Mop 58,9 4.44 7.8 733 8.54| 3460 317 |~ 89.4
14056
'dd 63.6 6,00 |1l.4 78,0 |10.10 |=2160 342 | =-181.0
Mg 36.5 2.63 7.2 42,1 4,73 |- 600 117 |- 16.7
456
ldd 40,0 3.60 9.6 45,6 5.70 | 2040 127 |- 42,5
IAB 58,9 4,44 7.8 65.3 | 10,84 |-3860 396 _—
1566
'XH 63,6 6.00 |1l.4 70,0 | 12,40 |- 240 425 _—




Table I.

(continued from the preceding page)
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(19) (20) (21) (22) (23) (25) (26) (27) (28)
Coeff:l?ients of G Iteration Factor

M, M M7 H7 ApPprox M, M‘ M7 li‘l
Mpe =256 489 | —— | — 103700 -,0688 .132
'1)'& 20.,5|818| — | — | 77800 21.0 | .00585 |.221
Nl = 77.3 823 |-65.4 229 | 35400 25.2 L.0550 «159 |=-.0465 .163
lc,‘ﬂ 38,4 |360 |-25,0 (219 | 37400 .0273 |.257 |-,0178 |.156
Mg | - 32,3 | 56 |-16.4| 96 = 5020~11.,0 ~.0707 |.123 |-.0360 |.210
Ha:c_: -.,056 06 0 96 1050 - .0001 |.210 0 «210
Mag| — — |=32.5 |242 [=65600~41,9 | —— | — |=.,0207 |.154
"A’d v — | 15,0223 |=66500-42.4 | —— | — | 0096 |.143




1~
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Table III. Computation of Mg
(1) (2) (3) (4) (5) « (6) (7)
Coot Final moments
efficients of / due to
Eh wo|w | BB KB '4,*15%)1 Loading B
-ED 504 -309 -6.6 2909 hO—— 5‘.5
132
.Eju. 6.0 -408 -"05 27.4 _— 38.3
HDQ 4.6 =3,6 | =5.4 28.6 28.5 [16.2
84
lﬁ'k(.. 5.0 "4.2 "6.0 28.7 -2805 10.3
ICB 4.066 -5.4 -‘.6 - 8.3 12.3 '24.0
- 60
Mip/| 4.333| =3.8 |=5.0 - 0.5 -12,3 [=27.2
IBA 4,6 =3.6 | =5.4 -41.8 -24,6 [-36,9
=156
Hd,( 5.0 -4.2 "'6.0 -4306 2406 -35.5
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Table IV. To check the values of Ms-found in table III

by means of the shear equation.

Panel Mr My Mo M Hh
DE 132.1 132 checked
CD 83.8 84 checked
BC - 60.0 - 60 checked
AB -155.8 -156 checked
Table V.,

To cheek the values of My and Hs found

in table II and table III by means of équation (8)

on page 9.
sum of sum of

Panel Positive terms negative terms

in equation (8) in equation (8)
DE 15.8 -15.8 checked
CD 10.9 «10.9 checked,
BC ‘9.8 - 9,8 checked
AB 17.4 - 17.3 checked




Table VI. Final solution.

24

(1)

(2)

(3)

(4)

Moments due to Final Moments by

Member Loading A Loading B | moments | Rathbun and

ft-kips | Cunningham
AB —_— -41,.8 -41,8 -41,8
£E -43.6 -43,6 -43.6
BC - 8,3 - 8.3 - 8.4
BC -16.0 - 0.5 -16.5 -16.5
cD 28,6 28,6 28,6
co -12.0 28,7 16.7 16.6
DE 29.9 29,9 29,9
DE —_— 27.4 27.4 27.3
BA _— -36.9 -36.9 -37.1
B'A' e T -33.5 "35.5 -5305
CB -24,0 -24,0 -24,0
CE 16.0 -27.2 -11,2 -11.2
DC 16,2 16,2 16.3
D¢ 12,0 10.3 22.3 22.4
ED 36.5 36.5 36.5
ED 38.3 38.3 38.3
AKX 41.8 41.8
AA 43.6 43,6
BB 45,2 45,2
EB 50,0 50.0
cc - 4,6 - 4.7
de - 5.5 - 5.5
) -46,1 -46,3
19))) -49,7 -49,7
gg’ -36.5 ~36.5
-38,3 -38,.3
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Explanation of Table I.

(1) The first column records the external moments applied
at the lower joints of the panel under consideration.
Counterclockwise external moments are positive.

1 -
Thus for "BL’ Lj== 0, L3 16,

for M L,=16, L, = 0.

B?
Note that the value of Ly for MBtil also the value
of L& for Mdd;'and the value of Lé for Maci' also
the value of L, for M ,. Hence all values of L,
can bé found under the first column (marked Ly)e
Throughout this method, the above relation will be
utiligzed in recording all the other coefficients.
(2) 'The second column records the produet of panel
shear and panel length. Clockwise panel shear is
taken as positive.
Thus for panel AB,

Hh= -6.,5x 24 = =156
(3) The third column records the ratio of Ké to*@.

Thus for M.,



(4) The

Thus for
(5) The
Thus for
(6) The
Thus for

26

fourth column recordaoL,

the last panel,

A=&*+k;- 1+ 0.8= 1.8

fifth column records? ,

the last panel, .

$=2 (d+ 3)=12 (1.8+3) = 9.6
sixth eolumn records | ,

the last panel,

i
r = 11d+12k% +6=1181.8 +121140.8+ 6 = 35.4

(7) The seventh column recordss3 3o
\
Thus for the last panel,
3\%5=9.6(q—) = 6.4
(8) The eighth column records values of A,
Thus for M
AB" v/
A=+4 =4, = 1-0.8=0.2
(9) The ninth column records values of B,
Thus for MAB’
B=A+ hy=0.2+1= 1.2
(10) The tenth column records values of C.

Thus for HAB’

c = 3&1(741** {;) + (114, + 294, 1 6)

3 (0.8) (7x1t0.8)+ (11x1+ 29x0,81+6)

—

58,9
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(11) The eleventh column records values of D,
Thus for Mﬂs’

D = {,(4r5) = £, =0.8(1.8+5) - 1= 4,44
(12) The twelfth column records values of E.
Thus for M-,

BE = 114, - 74, T6 =1140.8 = Tx1+ 6 = 7.8
(13) The thirteenth column records values of u.
Thus for Mig o

u = 3k, + C= 6.4158,9=65.3
(14) The fourteenth column records values of v.
Thus for M,.,

v =3%(1 - f—)f-n—a 6.4 (1 - 0)+4.44= 10,84

for M., \'

v = %&3(1 -§)+n= 5.6 (1 -q%)rz.sa = 4,73
Fote that the value of 3} 1s taken from the value of §
of the panel immediately below. Throughout this method,
this relation will be utilized in recording other coef-
ficients such as B, Hh, etec.
Note also that all the e,terns are omitted in the
computations for MAB an& LIT) since there is no panel

below panel AB.
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(15) The fifteenth column records the values of J
in the general formula on page 13,
Thus for AN
J = (v-D)u (L -L) +36yv (LrEy)
+Au (L, - L’G) - v (E LJE’ lfé)
= (v =D) uxo +itﬁ3v:\0
+ 1.8465.3 (-16) = 10.84 (11l.4K16)
= = 3850
Note that L; for panel BC, 16, is also L" for panel AB.
This relation will be utilized in finding all values
of I, and L.
(16) The sixteenth column records the coefficient of
M4 in the general formula on page 13.
Thus for panel AB,
v/u+u v =12,40465.3 +70.0410,84 = 1566
(17) The seventeenth column records the coefficient
of Hh. in the equation of G on page 13,
Thus for MAB’
AutTy v = 0,2065,3 +35.44x10,84 = 396

(18) The eighteenth column records the coefficient

of H'h' in the equation of G on page 13.

Thus for My,
210

5 LA L
R 145 — - = . — K . - . —_— - .7
{{‘3(s,u v) 56((_“0:\421 4,73) 16

\



For panel AB, the coefficient of H'hl needs not be
computed, sincé there is no th‘term at all,

(19) The ninteenth column records the coefficient
of M, in the general formula.

Thus for M. .,
BC

- B" y Ll
33 (v = Fu) = 5.6 (4.73 -“(a A 42.1) = =32

«
\ .

(20) The twentieth column records the coefficient

of M{ in the general formula.
Thus for M

b2 2406
Q{'Q} (v+-€'-u)= 5.6 (4,73 + g ‘42.1)= &6

(21) The twenty first column records the coefficient

of M7 in the general formula.
Thus for MAB’ |
EV =d u= 7,8(10,84 = 1.8466,3 = =32,5
(22) The twenty second column records the coefficient
of M; in the general formula.
Thus for NKB’
Ev4Au=11.4510,84+1.8565.3 = 242
(23) The twenty third column records the value of
G in the general formula.
Thus for MAB’
G = (Autyrv) H h+§gj(-{é—?-‘u -v) H‘h"i-J
= 396 (-166) ++ O - 3850 = =65600

29

«d
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Note that the coefficients of H h and H‘h‘are taken
from columns (17) and (18).

At this stage, all the coefficients of the eight simul-
taneous equations have been calculated. These eight

equations are:

1566 M, = = 65600 32.5 My + 242 M/

1566 M= - 66500 + 15.0 M_+ 223 M
BC

B

456 = = 5020 = 32,3 M.t 56 M/; = 16.4 + 96 M .
o (o) A > (38

456 MS;(,;z 1050 - 056 MA’D’* 96 MM) + 96 Ml‘-b
1405 M .= 35400 = 77,3 M, + 223 . = 65,4 M__+ 229 ;o
¢D BL < pE £

1405 M .= 37400 + 38,4 M_ + 360 M, = 25,0 H,_‘f‘ 219 M__
(99} (1Y B pE! be

3710 BDE= 103700 =256 M.t 489 HCS
3710 M= 77800 + 20,5 M, +818 K,
These equations can be solved by the usual method of
elimination, But a better method to solve them is
the method of 1iteration.
We first divide each equation by the coefficient

of the left hand term. The transformed equations are:
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MAP, = =41,9 - .0207 HBQ t .154 Mg
}['3.;8: = =42 .4 +,0096 MB-‘C_" T 143 MB(;.
lﬂ\._: «1l1.,0 - ,0707 MAﬁ t «123 MKS;- «0360 Mc.b T +210 Mc_‘bf

=
1
I

203 - 0001 MA/‘S-"?' «210 MA13 ' T «210 MQD
MCD = 25.2 - ,0550 MgQ, T <159 Mdd- «0465 MDE* «163 MDIE/
Mig = 26.7 + L0275 My, +.257 M - L0178 M +.156 M
Mye = 28.0 = .0688 M., T .132 My

5
MyZ = 21.0 + .0055 N, T .221 M,

Columns (24) to (28) record the coefficients of the
above transformed equations. They are obtained by div-

iding columns (19) to (23) by column (16).

Explanation of Table II.

In the first of these transformed equations, we
assume MBQand Mﬂld are each equal to zero. Hence we
get the first approximation of MAB as -41.9. Similarly
the first approximations of all the other moments can
be found. These first approximations are taken from
column (24) of Table I and recorded in the second row
of Table II.
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The first approximations of MAB’M&&’MQD and
udd are substituted inte the third of these trans-
formed equations to obtain the first correction
of ISC.. Thus '
First correction of MB¢= =,0707 (=41.9)+ .123 (=-42.4)
= 3.0 - 502 - 009" 506

These four correction moments are recorded in
rows (3) to (6) under MBQ of table II.

The four iteration factors on row (1) under X.,
are recorded in such a manner that when they are mul-
tiplied by MCD’ they go to M&C,Héa,lpﬁlnd Mgs'as correc-
tion moments in the same relative position. Thus

=+036125.,2 = =0.9 goes to M,
«210425.,2 = 5.3 goes to My
-.0688425.,2= ~1,7 goes to M,
«221125.2 = 5,5 goes to Mﬂg’

All these iteration factors are recorded in this manner,



Note that the iteration factors are transferred from
columns (25) to (28) of table I to the first row of
table II in a diagonal manner. Thus the top four
iteration factors of columns(25) and (26) of table I
are arranged in the order of -.,0707, .210, .123, -.0001
in row (1) under Mpn 8nd My of table II. This is
because M, in the equation of M,/ refers to MK”fand
not to M,;3e.

The iteration process is carried forward as shown in
table II until the desired degree of accuracy is
obtained.

Note that the iteration factors averége. only about
0.1, which makes the convergence very rapid. This 1is
one of the advantages of this "Iteration Method

of Least-Work."

Explanation of table III.

(1) The first column records the coefficient of Hh

of the general equation of M_ on page 14,

5
Thus for Mg\,

2%2+ 5= 2(0.8+5= 4.6
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(2) The second column records the coefficient of M4_
of the general equation of M. on page 14.
Thus for MBA’
- (B'+ 3)= = (0.6+3)= =3.6
(3) The third column records the coefficient of MA’F.
Thus for Moo
-3 (h,t1)= = 3 (0.8+1) = = 5.4
(4) The fourth column records the values of H h., They
are taken from column (2) of table I.
(5) The rifth column records the values of M4_. They
are taken from the last row of table II.
(6) The sixth column records the values of 3(M§ - M’-fLé- L;)
Thus for My,
S (=06 +8.,310 = 16) = =24,6
(7) The seventh column records the final value of H;
as computed by the general formula of MS on page l4.
Thus for MBA’
—'é—[(z{g:s) Hh= (B +3) ¥, -3 (f+1) K
+3 (M, = ML, = L)]
= 21%[4.6 (-156) = 3.6 (-41.8) - 5.4 (-43.6) - 24.6]
= = 36,9
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Explanation of Table IV.

Equation (5) on page 6 is used as a check on the
moments found in table III.
Thus for panel AB,
Myt N, t Mot ML = <41.8 =43.6 =36.9 - 33.5 = -155.8
The value of H h, taken from column (2) of table I,
is -156, The check is close enough for slide-rule

computations,

Explanation of Table V,

Equation (8) on page 9 is used as a check on the
moments found in table II and table III.
Thus for panel AB,
/I — o
M+ 43,6

Lg. = =33.5

M/ = 16 - (-0.5 - 33.5) = 50.0
Mg, = = (= 8.3 - 36.9) = 45,2
M; = 43.6

My = 41,8

K= 16

K, = 12

18

>
W
I
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Equation (8) 1is

3(-43.6 1+ 33.5) + 100 -~ 45.2 _ 87.2 - 41.8
15 12 18

or - 8,72+ 6,701 8,34 - 3,77 - 4.841+2,32
The sum of the positive terms 1is
6.7018,341+2.32 = 17.4
The sum of the negative terms 1is
- 8,72 - 3,77 - 4.84= - 17.3
The check is close enough for slide-rule ocomputations.

Explanation of Table VI,

(1) The first column records the moments due to loading
A as found on page 17,

(2) The second column records the moments due to loading
B as found in tables II and III. .

(3) The third eolumn records the sum of column (1)

and column (2).

The final moments of members XA, AA, HB, etc., are found
by solving the joint equations,

Thus for IM"

or MM’ = -MAB= 41.8



-
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(4) The fourth columm records the moments computed by
Rathbun and Cunningham in their paper, "Continuous
Frame Analysis by Elastie Support Action", A.S.C.E.
Proceedings, Apr. 1947. The results agree close enough

for slide-rule computations,
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Special case (1) Symmetrical loadings on even number
=
of symnmetrical panels. i

e
!
4

\

W, .

YN
’ 7 ’ QI’ /
4 13 py) i
2 AIPVRE LAY PP ) T T A A/
74 SR I SR
NT ARy My "x/ M,
b A 2
M] D ~ C. Ms
K K*}Pi('r";{l\a?}& A
/'7/%77 \'V \.r{ \MS ’LR'/ Mo A 77c7
X v’ ‘ g v
N' .NJ- (;1:; -\'\—1‘1 '\Kf;
Fi o (4
In figure (4), both the Vierendeel truss and the
loading are symmetrical with respect to DD/.
Hence for panel CD,
L,= L;= (o} (no external moment at D or D )
ls = - M.,
(= -

Substituting lsz- ll7 inte the equation of l(5
on page 14, we have
/ / / /
-Qu7=(2ﬁfa) th - 3&+1) Wy - (Br3) ¥,
+ 3(M; = My) =o----oe- ——mememen - (15 )



!
.~
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similarly,
-pM7 = (2Rr3) Bn-3kr1) M - (BT 3) K,
3(117 - u’,) cememccccccccaccrencea= (16)
Eliminating lf, from equations (15) and (16),

we have
/ A o7
24 My=-2f H ht (2h,=fy) Mt SE M, —momommmeeee (17)
sinilarly,
1_ o tro ,
24 My=-2RH bt (2hg-4) W+ KMy —-moomeeee -- (18)

Substituting values of l7 and M7' as found in equations
(17) and (18) into equations (11) and equation (14) on
pages 10 and 12 respectively, we get two new equations,
say, (11) and (14).

Eliminating lli} from equations (11)/ and (14), we
have our general formula which is the same as that
shown on page 13 except that there are no lﬁ7 ,llf, ,Lé

and L{Q terms. Also four of the coefficients ¥ , A,

each
C and D , take a new definition:

A
Y
r 1244, (1+3-)

= 0

A
¢ = 34(dh+6k)1+-T)
D .=__,2§L

e/
Note that A 1s no longer equal to £4_ -'ﬁ?.



L

. -
.



Substituting H7:=- M- into equation (17), we have
the new general equation of Msx
/ / /
24 My =2RHh - B'M, - SE M —mooeeee- - (19)
Note that these new formulae apply to panel CD only.
The original general formula and the original formula of My

should be used for panels AB and BC.



Illustrative example (2)
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/ / / / /
e k=t D pe € kel D ke A
T o w2 < <
K=z K=2 K=
E‘ WSSOIV E TV rl{lllb BN SEIINEEYEIISNTVEIRISURGREIEISNINVRUIVINAI 04 A
Zﬁ? D LS ; 3 ‘??7
Y, “
4eid=4§C - >
l K.ps
3
15°f 18"

Figure (5)

The fixed-end moment at each end of the bottom

-
chord is equal to T~{ or 12 ft-kips.

The given loading is therefore equivalent to

the following two loadings:

9!eSame problem as example 2, p.130, "Analysis of Rigid

Frames"
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L . K-p>
11m&f:S K-p2 /?p. F '
K-ps — =/
6 —55 E N
"('f,‘;»f. . rg
R 3 hﬁ.?‘r"‘ p_”i X
M v v
’ é " froros
LN T
. B ™F : ,
‘ﬁﬁ $>;i;<L B < ¢
¢ 7 H 2k ps
l g.‘c.“_ N ,':‘
- ,&&P
K-pS 1 1 .gfs
x,fx B
G ¥ E_ ‘161.1;.(’3
/k-}v/ﬁ. -
. S Kp3 A
Kpa ~i o /
CTAE L A 5 —C A
):LM?a FA
Figure (5)a Figure (5)p

The solution of loading A, shown in figure (5),,

gives

cD bE

=N = 12 ft-kipl.

= M =M _= = 12 ft-kips.
g Mea= My =M,



7
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will be given in tabular form below:

The solution of loading B, shown in figure (5),

Table VI. Computation of constants.

43

/ ) r P .
L,| En /é,,r Ao Q i 3’{3 A B
0.5 0
Yool o -2 1.5| 9| 18 |9 0
.BU 1 1.5
.hB 12 005 '005 0
-l’t” O 1 005 105
)
Table VI. (continued)
Coefficients of
C D E u v J M th Th
4 '
My .| 40.5 4,50 | 13.5 [49.5 7.50 o 581 1356.0 | 117,0
'e'c" 33.8 2.25 4.5 42.8 5.25 94.4 - 4.5
Mg | 5400 6 13.5 | 63,0 15 8450 395,98 -_—
1484
Myg| 42.8 | 2.25 4,5 |51.8 11.3 |-4400 346,9| —




Table VI, (continued)
Coefficients of G First Iteration factors
r 4 1 4 ? 4 1 4
I' M M., M_7 Approx. M, M' M7 ll7
My 87.5| 216 — | — | 15650| 26.7 ¢116 | 371 _ | —
'e’cf «81,0| 47,3 — | — I 5830| =100 | =.139(,0816| — | —
M| — | — | 208 | 162-76850|-51.8 .0728 [,109
M| — | — |- 27 229[»'79200 =53¢3 -,0182 |.156
Table VII. Iteration,
M B My My - Y4
;::‘;:::“ ,116 | 0815 | o371 |=-.139 |.0728 | .155 |.109 |-.0182
First
=51,.8 «53.3 26,7 =10,0
APProx. T , ] . ]
| 1
Iteration _—— - % —_———t> = 6.0]3 - 4.2
—_——— 1 -1907 | 7. \
|
i - t+——— — —- ) !
- .8 01 -~ - — — — — — _—— --—'l
Total -52.5 -55.2 1.0 - 608




I

]
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Table VIII. Computation of M.
Final moments
- g?;?ricipnts o;! Hh N 5(lil+&;€b due to
L, " + 1 17 Loading B
lw 2 1,5 -3 1.0 — -41,7
- 72
ldﬁ, l 0 -105 -6.8 - -24.5
5 "4.5 - 6 -52.5 "23.‘ -6007
Mg , 216
"dN 4 -3 -4.,5 «53.2 23.4 -49,.4
Table IX. To check the values of Ms-found in table VIII
by means of the shear equation,
’ /
Panel M4_+ l(4+ M;ﬂls. Hh
BC - 72.0 - 72 checked
AB -215.8 =216 checked
M. found in

Table X, To check the values of 14 and

s

table VII and table VIII by means of equation (8) on

page 9.
sum of sum of
Panel positive terms negative terms
in equation (8) in equation (8)
BC 133.2 -132,.8 cheeked
AB 325.1 =325,7 checked




-

XY
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Table XI, Final solution,
Moments due to Final Moments by
Member Loading A | Loading B Moments Amirikian
(ft-kips)

AB -1200 "5205 -6405 -6407
A‘g -53.2 -5302 -53.1
BC -12,0 1.0 -11,0 -1l1l.1
BC' - 6.8 - 6.8 - 6.9
BA 12.0 "60.7 -4807 -4900
BK "49.4 -49.4 -49.4
CB 12.0 "41.7 "'29.7 -2905
c¥ -24,5 -24,5 -24,5
AX 64,5 . 64,6
AA 53.2 53.1
BB’ 59,7 60,0
BB 56,2 56,3
ccd 0 0
ct 0 0
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Explanation.

The calculations are similar to that to Illus-
trative Example (1) on page 16 with the following
exceptions:

(1) For panel BC,
s o[ 3
¥ = 12f#4, (1+7)
A 0
Y 5 :
¢ = 36,4+ 64) (1+7)
r/
D = Ry (At 8)

Thus for Mg »
r = 12X1R0,.5 (lf%) = 18
A =0
C = 3x1 (1.5+6X0.5) (1+{¢) = 40.5
D = 1 (1.54+3) = 4.5
(2) There are no ll7 and llf, terms for psanel BC.
(3) For panel BC, the equation of ls is
2d ug =2fEn - Eu, - 3{)4;

Thus in table VIII, the computations for MCB are:
Coefficient of Hh~ 2 ‘a,;_f- 2x1= 2
Coefficient of ll4_ =ap = - 1.5
Coefrictent of My = -3k, = -3x1=-3

=1 -3 (- =.
Final "c'.a _ZAISE(-?z) +(-1.5)x1 =3( 5.8)] 41,7
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The last column of table XI gives the moments
computed by A. Amirikian on page 130 of his book,
"Analysis of Rigid Frames",

The cheek is close enough for slide-rule computa-

tions,



Special case (2)., Symmetrical loadings on odd number

of symmetrical panels.
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w
'l
¢ o / ' / / /
‘W, W, Wy W Wa W
’ ’
? L Dl 14
S 1 PN
0 8 5PN N J / 7
M7 [Ms | MM M c 6
g | 3
L. N Y‘*} ( Ry K C B
777 &V. K,/‘ JL:"‘\:‘S \f\ML AN \Lﬂ 77
) Y Y ‘ v 3 Y v
: e o AR - <
Figurogigl

In figure (6), both the Vierendeel truss and the
loading are symmetriecal with respect to XX.-

Hence for panel DE,

M_= - My
M. = - M/
Hh= 0

L, =- L,
=1,
Py 5%



.87



Substituting l5_==- u% into the equation of MS.
on page 14, we have
-3M = -(B’f 3) M -362,1‘1) H’fs(MI-MfLI- ) === (20)
R + 4 1 T 3 b3
Substituting M = - M_, and M - u..' into the
shear equation of panel CD, we have
/
M tM - (u7-+u_’,) = Hh =-e--=--- - -- (21)
Eliminating m{’ from equations (21) and (22),
we have
5 o /
2!7==(f<+f1)u4-(f:‘,*r1)l;-f-(ll‘f-ll: ~H b +L -L,) --=-=- (22)

similerly
2u = (f, u)u’ ¢h, F1)M, +(u+n -Hh L -L’) —T. 3

Sub:titl_xting values of M, and ll7 of oquntions (21)
and (22) into equation: (11) and equation (14) on pages
10 and 12 respectively, we get two new equations, say,
(11) and (147

Eliminating ¥ from equations (11)' and (14), we

ﬁ.
get the following modified general equat:lon: p
2B,
(Vu+d v) ¥ ~-a +Q(2v - — u) N, +€(2v+*——u) u
Q- i

where : 24,
G =={(—-u-2v) BEh + J

(v-D)u (IS~I§)+ Qv (L+L)
9AV(L -13)1-7(31.3’*'3 L3)
c = 2f ((6d+19) + 2(k,+3)

”“‘%44
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All other constants and coefficients have the
same definition as that of the general formula on page 13.
Note that there are no H h, M.,and M/7 terms.,
The general equation of Ms-ror panel DE 1is, of course,
lsa==- Mq,'hich will not be needed since only half of
the symmetrical truss will be analyzed.
Care should be taken to apply the modified fermula
to panel DE only. The original general formula should

be used for panels AB, BC and CD,
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Part II. Non-symmetrical inclined-chord Vierendeel truss.

Derivation of the general formula.

Ke
.ﬁx
K3
/
Figure (7)

In the above figure, W, and W, are external

forces acting on the Vierendeel truss. LS,LG,L‘?,L’ )
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l- / ; .
L3,L6,Lg and L’n_ are external moments acting on the

joints B, C, D, E, Bi Cﬂ ﬁ and E{ respectively.
The problem is to find the internal moments M,
My oMy s My My M My M Mo M, BT R TR R T R O
Mg oM, M), M and M), o
The derivation of the general formula is similar
to that of the parallel-chord Vierendeel truss shown
in Part I.

Thus we have the same joint equations:

M+ M, - M, = L, ==-=e--e-eceeo-oo- (2¢)
Mg+ Mg+ Mo = L ==-=--m---o- -—--- (25)
N, + My — M, = L} =-- ---- (26)
e M) = L ==--------- -————- - (27)

The shear equation of panel BC is derived as follows:

First, we have

Q + M, + My Vi; = 0 —ecommmmecoane (28)
- = | e ————
Qq = Q,- Eh+L+ L, (29)

where
Q. = The moment at a section just above BB’,
caused by all the external loads above
this section, counterclockwise as posi-
tive.

“The moment at & section just above cc’.

7 caused by all the external loads above
this .sectidm, "scuiitérelockwise as posi-
tive.

Q
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fau-'longth of BB.
H = panel shear of panel BC, clockwise as positive.
= panel length of panel BC,

<
|

= vertical component of the axial stress
in BC, tension as pesitive.

H 4

o

A

/

A ’
" A L
> g
vV J
From the equilibrium of BC and éd as shown in

the above figure, we have

! A
M+ Mt M+ W+ V(,-4) = En (30)

where
QQ == length of CC.

Eliminating V and Hh from equations (28) (29)

and (30), we have our shear equation for panel BC:
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/ / . ] /
M54-Ms-f n(M4+-M+) = Q7 -nQ4r1&+L6 - (31)
where f;_
n = —
k3

‘ /

and ll"‘ (marked red in figure 7) as the statically
redundant elements, and noting that

/
oMy _ 3Ms _

. : -Nn

we have
oW _
IMe
/ !
or zMS»__M‘*’ _ 2Mg - M, kM-; c ——--= (32)
Ky K4 A
2w _ g
3“’\4, / W, /
2y — Mg z.Ms—M; 2. My —Mg 2M;—M;
or Mt T T TG
Kq. Y\’q, (AT K3
'Dw -
g =0 L Me  aMe=MI oM ~M 2 My — M3
or 2My-Mg  2Ms—Ta ) 26 %y m BT 2 = Qeen (34

A (V' Ke Ky

Eliminating M;,Mé and MIG from equations (25), (27),
(31) and (32), we have the general equation of M3

8 M, =(2Q;_1'3)(Q7-nQ++L6'rL2,) - [(2@}3):1 -4’“] ",

f / /
- [ +simth, [ oM ML L) ==mmmmmmee-

= 0-- (33
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- Ko
where Ry = ’j{:
‘;/ - Ko

;
3 = 2(hyth+3)
\
Proceeding in the same manner as in the case of

the parallel-chord Vierendeel truss, we can derive the

following general formula: (on next page)
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The general formula,

W o
(v’u+—1.( v) M4_.= G +$ﬁ3[n‘v - ——(A‘n,f!{, )] Ml

¢,
rﬁ?{[nvr——(Anr,ﬁ ]
+ [(E'n+3 X)) v-o(u:] lL,-r[(E nt3A) vV -roll.ﬂ
where 4 _'_{1

§=2(ck1"'3)

=8 (dthyhy) + 6

S = 3k t 4 £ka

2=y -y

B =23 (At 2&4) + eh,fa,

¢ = Ao 3k +28,r12)

Ll (d+4)

s (284 + 6

¢ = \'_Au+(rn+$)v] (Q = nQFL,rL)
+a{3(—e—u - v)(Q- n,QtLyIf) + 7

J = (%,(1 - Q )u(Ls-L ) + hv (Lt L)
+ A u(LG-L ) - [(E/nf 5K )L + (Ent 3A)L;]v

u = @k +ro+Ba+ €

v = ¢ --%) - An+D

wm O
o

_ _Ke

4 Ky
" Ké
e = W,
— Ke

Lo



.




Illustrative example (3)
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KpS
15" F
4
< K=2 B’
-1
/ (S /(kz S
P A
N M
+ o ! <+
\ 2 = " “o
& x| =
/,j// c B 7
/] /
< Q15 = 45-6"
SK.":) l’] Kips
Figure (8) , ’
The solution is given in tabular form below:
Table XII, Oomputation of constants.
S o f’ 1 .
Q| m» 4, MK, .{{+ L Q rl S é{s A B
X5 1.333 -o,667 (43,3
75 |.625| 46,8 3333 112,67 (54|20,7({16.9
| 2 «66%7 [39.3
&y
150 | 1 75 1.5 S 12 |48 18 | 12 o 36
lB’C!
0O | 1.6} =150 2,5 | 11 |38|13.5|8.25
My 1,5 0.5 |25,5




-
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Table XII. (continued)
! l' C rfi i
c D | B u l T oe c ent - f -
: : ) thT “**r il '-' i
! i —r
MCD 49.4!14.678.67(114.4:23.5 1204 -397 - 86 877
4310
ng 34.6| 9676:16,7 1035 {=301 (=109 |708
! »
1
My | -386 | 250 {970
36,0 10.50s12.0,1.32.0 16.0 {4220 9.055
Mb(\._’ - 481=354'|365
—— —_— 4
Map| S2.2| 9.75]| 8,0 (183.2 (18,8 1300| «
5740
MM« 22,5| 6.50/14.,0 (168,7 !14,0 1122
Y SRR I R N R T SR S .
Table XII. (continued)
Coefficient: First Iteration factors
of . G 7 7
M M Approx. M M M M
71" PP [ ' 7 7
Mpl — | — 26500 6.2 -,0200 | +204
MBQ 129700 30.8 <0693 | 230
=204 588 -,0485 |.139
MBU 86500 20,5 -,0840 | ,08656
Map| = ©/671 =195000[-34.0 «,0016 |.117
L__!’\lf{ =-262{756 =168500 -29 E____, I et =,0456 |.132
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Table XIII. Iteration.
%
] .
Yas | Mdd “pe e Yoo | M
Iteration
factors 0593 0865 |,230 |=.084 |~.0016 1321 . 0200 J64 | 117]|-.0456|,2044-,0253 -04851.139 J39|=0485
First
approx. -34’00 "29'05 50.8" 20.51 6.’2 6;0
! ] X ) [
Iteration L—- -——L?——-—*- - 2.0(q; - 2.9 é?} : !
. L—le = 6.7| 2,69 | .
- 3| «8 *““‘"‘l !
.8 : - .3 T——1 — e e e b
— |80 —— A - —— —— e Sl 3T
2.4 1.\‘4 -1.0 - = - o et 4.2 '? - solm
' 1
b : . ) i
""*?"’"’"'* ol 2
i a3 NS R
- 2fs R .
51| = dmtt - - -
H ‘
i
— ol € — — — - = At — — - ' — 01
B-:h .1
Total =31.6 27,2 2365 21,0 10.0 9.3
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Table XIV. Computation of ls.

Coefficients of 0, -n . Final
7 i -

,Q-,-n Q* l4_ l4_ 7 Q4 M+ 3( _7l§’+151.’£) moments
‘D(N 7 =3,04|=6,37 ° { 10,0 e 18.8

[~ 46,8
ldc,/ 5,67 -1.,54 =-4,87 93 e 15,9
M 23.5 -201 1504

6 -4,50 =7,50 75

21.0 2:4 15.2
6 -8,60 =-11,1 | - = |=31l,.6 =75 -30.4

=150
M ) “6050 et 9 "'27.2 7.5 -2505

Table XV, To check the values of lls found in table XIV

by means of the shear equation.

W . 2
Panel I‘THSTR(U4+Ml+) Q-naQq
CD 46.8 46.8 checked
BC 75e1 75.0 checked

AB -149,9 =-150.0 checked




Table XVI, To check the values of l; and M

S
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found

in table XIII and table XIV by means of equatioen

(34) on page 55,

sum of sum of
Panel Positive terms Negative terms
in equation (34) | in equation (34)
CD 3l.4 =31.4 checked
BC 42,2 -42,1 ohecked
AB 66.3 =66 03 checked




Table XVII.

Final solution.
Moment
Member (ft-kips)
=31.6
?% -27 Y 2
BC 23,5
Bd 21.0
CD 10.0
d 9.3
BA =30.4
B’A’ -2505
CB 15.4
cH 15.2
DC 18,8
od 15.9
AN 31.6
KA 27.2
BF 6.9
EB 4.5
cd -25,.4
ct -24,5
19 -18,.8
Db "15 09
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Special case (l). Symmetrical loadings on even number

Iy

of symmetrical panoll’.

My D Mg M,
Ky K@S{Ks’;{c{‘x,f}ﬁ QA
/ p : N NE .
Ji777 M - ™M Ve r
¥ v > Ry Y
w Wy Ws W, W,
a
Pigure (9)

t

In figure (9), both the Vierendeel truss and the
loading are symmetrical with respect to DD’.
Hence for panel CD,

/
1‘6"’ Lé—- 0
U == M,
= o
A | |
Substituting l5_=- M7 into the equation of lg

on page 55, we have

-8 0 = (2f(r3)(Q,~ n QrL ¢ 1) = [(2R+3im -4, ]u,

- [(2@;+ 3)n+f2q;] AL B
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similarly / p h
-3 = (2R43)(Q - n]Q4_+Lé+L6) - [tekr3)n -,éj(l*
| , - [(2ﬁ+3)n+&4m+f5(m7-u7) ----- S —
Eliminating M7 from equations (36) and (37), we have
2J M —-2&’( - + (28 n -4 )M+ (2nt1 fé; (
,7" 4_Q7 n Q+) 2 41'! - “f) 4 (: ) H4 s
similarly -

Eliminating u.,,u; and M;_ in a manner similar to that of
the symmetrical parsllel-chord Vierendeel truss shown on
page 39, we get our general formula whiech is the ‘samo as
that shown on page 57 except that there are no l7 ,ll_’, oL,
and L/é terms. Also six of the coefficients ¥ ,S, A, B, C
and D each take a new dafinition:

r = sdfiat3)

R RACTE D
A =0
B = sdfatd) = v
’
C = A (3h+24,)(1+5)
p = —2ks
2 N
Npto that A 1is no longer equal to 'ﬁ+ -é_.

The new equation of ls— is: ,
/ A . /
24 lls==2fz4(Q7- n Q4) - (2f~z4n -.[24)!4_- (2n+ 1)'£+l+

Note that these new formulae apply to panel CD only.,
The original general formuls and the original fermula
of ll; should be used for panels AB and BC.

2hu = -28Q - n q) +(2kn --(q_)léﬂznf-l)&%. -----
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Special case (2). Symmetrical loadings on odd number

of symmetrical panels, ___.. ’
3' X b
! te e
g 7L¢ A\ g
J: ’ 7 'l‘\
’W‘ f 'VL', MS Mq_ | 2_ ’
s Ed
s t
> x
M-, E Mq DML M, o
o )
Y AR Y
Vi WL W | W W,
Figure (10

In figure (10), both the Vierendeel truss and the
loading are symmetrical with respect to XX.

Hence for panel DE,

Mg = - M,
Moo= -
— L, = - L,
L, =-1L,
Hh= 0



& N
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From equation (29) on page 53, we have
/
Q,’- nQ+1-Lé+LG-= Hh=0
Proceeding in the same manner as that of the parallel-
chord Vierendeel truss shown on page 50, we have the

following modified general formula:

(vVVat+vu v) M4- G+Q[2n.v - %’(A‘ n.'f-ﬁ, )J M,
-fQ[zn|v+%‘(A’,n,~+ﬁ',_)] '

where 24, p
G = Q (-Q-'—u - 27)(Q4- n, Q‘rls-rl.s) +J

= s / / ;
J Q (1 - % )“(I‘3'I‘3) + Q v(L3fL3) + gA'I(,LS-I?)
N . I . B
+ v[@f- hrern; k- 74+ 6Ly
w=28 + 2f(edt10)+2(hits)
= .5y 4 J
v = @ (1 ) ) + Q&+
All other constants and coefficients have the same definition
as that of the general formula on page 57,
Note that there are no n7,uf, and (Q7-nQ++LG+L£’ terms.
The general squation of MS‘ for panel DE 1is, of
sourse, MS‘:- g0 which will not be needed since only
half of the symmetrical truss will be analyzed.
Care should be taken to apply the above modified formula
to panel DE only. The original general formula should

be used for panels AB, BC and CD,
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Special case (3), Triangular panels.

4 _’ 5’
! [ J \F ’L\—E——‘—"‘:—N...__
-~ L ’/
'a,%\z)h’\/
Y, o TS W
v 31 M,
n:'/M 2
LY ' i ‘ML My
) T
Frrvy 6\k: S A

Figure (11)

(A) For panel GH, we have

ne O
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