THE ANALYSIS

OF THE NON-SYMMETRICAL VIERENDEEL TRUSS BY THE ITERATION METHOD OF LEAST WORK

By

Ching-Hua Tsao

A THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in the

Graduate School, Michigan State College,

Department of Civil Engineering

June, 1948

THESIS

9-

The author wishes to express his sincere gratitude to Professors C. L. Allen, C. M. Cade and C. A. Miller for their valuable aid in the preparation of this thesis.

Contents

Introduction	1
Sign convention	4
Part I. Non-symmetrical parallel-chord Vierendeel truss	
Derivation of the general formula	5
The general formula	13
Illustrative example (1)	
Solution	16
Explanation	25
Special case (1) Symmetrical loadings on even number of symmetrical panels.	
Derivation of formula	3 8
Illustrative example (2)	41
Special case (2) Symmetrical loadings on odd number of symmetrical panels.	
Derivation of formula	49
Part II. Non-symmetrical inclined-chord Vierendeel truss.	
Derivation of the general formula	52
The general formula	5 7
Illustrative example (3)	58
Special case (1) Symmetrical loadings on even number of symmetrical panels.	
Derivation of formula	64

Special case (2) Symmetrical loadings on odd number of symmetrical panels.	
Derivation of formula 6	6
Special case (3) Triangular panels.	
Derivation of formula 6	8

•

Introduction

A Vierendeel truss is a statically indeterminate rigid frame composed of a series of rectangular or trapezoidal panels without diagonal members. It can be analyzed by any of the standard methods — Least Work, Virtual Work, slope-deflection and moment distribution. However, in all except the simplest cases, the application of these methods is extremely laborious.

Various improved methods have been proposed, among which the panel method adapted by Prof. L. C. Maugh is perhaps the best. But all these methods are far from being satisfactory, especially in the analysis of the non-symmetrical Vierendeel truss.

In this thesis, the writer's original method, the Iteration method of Least Work, is used to analyze the non-symmetrical Vierendeel truss. Original formulae are derived, and several typical non-symmetrical Vierendeel trusses are analyzed by this method as illustrative examples. This original method, is, to the writer's

^{1.} Dana Young, "Analysis of Vierendeel Trusses", A.S.C.E. Transactions, 1937, p.869.

Louis Baes, "Rigid Frames Without Diagonals", A.S.C.E. Transactions, 1942, p.1215.

Rathbun and Cunningham, "Continuous Frame Analysis by Elastic Support Action", A.S.C.E. Proceedings, Apr. 1947.

^{2.} Engineering News Record, Mar. 14, 1935, p.379.

best knowledge, the best existing method in the analysis of the Vierendeel truss. A comparison between the writer's simple solution of his illustrative example (1) on page 16 and the laborious solution of the same problem appeared in the Apr. 1947 issue of the A.S.C.E. Proceedings (Example 6, "Continuous Frame Analysis by Elastic Support action", by Rathbun and Cunningham) clearly shows the former's superiority.

This new method involves no new principle. It is simply the application of the age-old principle of iteration to the solution of a set of <u>earefully formed</u> simultaneous Least-Work Equations.

In this method, the total internal work of the Vierendeel truss is first expressed in terms of the statically redundant internal moments. Then the partial derivatives of the internal work with respect to these redundant moments are each placed equal to zero to obtain the simultaneous Least-Work equations. These equations are similar in form to the equations of the Theorem of Three Moments, and a single general formula is sufficient to formulate all of them.

The actual solution of a problem consists of two steps, the formation of the simultaneous equations by

Ü

а

using the general formula, and the solution of these simultaneous equations by iteration.

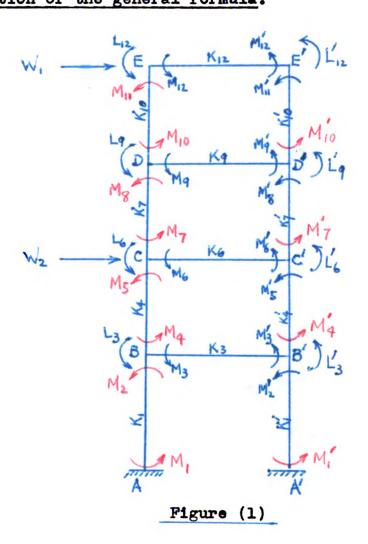
The greatest obstacle to the general acceptance of the Vierendeel truss has been its reputation for necessitating laborious methods of stress analysis. With the removal of this obstacle by his simple method presented in this thesis, the writer believes the Vierendeel truss is destined to play a prominent role in the bridges of the future.

Sign Convention

All clockwise panel shears are taken as positive.

Part I. Non-symmetrical parallel-chord Vierendeel truss.

Derivation of the general formula.



In the above figure, W_1 and W_2 are external forces acting on the Vierendeel truss. L_3 , L_6 , L_q , $L_{/2}$, L_3' , L_6' , L_q' and $L_{/2}'$ are external moments acting on the joints B, C, D, E, B, C, D and E respectively.

The problem is to find the internal moments M_1 , M_2 , M_3 , M_4 , M_5 , M_6 , M_7 , M_8 , M_9 , M_{10} , M_{11} , M_{12} , M_1' , M_2' , M_3' , M_4' , M_5' , M_6' , M_7' , M_8' , M_{10}' , M_{10}' , M_{11}' , M_{12}' , M_{11}' , M_{12}' , M_{13}' , M_{14}' , M_{15}' , M_{16}' , M_{17}' , M_{18}' , M_{11}' , and M_{12}' .

For each joint, one joint equation can be written. The joint equations of joints B, C, B and C are as follows:

$$M_1 + M_2 + M_4 = L_3 - \dots$$
 (1)

$$M_5 + M_4 + M_7 = L_6 - (2)$$

$$M_2' + M_3' + M_4' = L_3'$$
 ---- (3)

$$M_5' + M_6' + M_7' = L_6'$$
 ---- (4)

For each panel, one shear equation can be written.

The shear equation of panel BC is as follows:

$$M_4 + M_5 + M_4' + M_5' = H h ----- (5)$$

where

H = panel shear of panel BC, clockwise as positive.

h = panel length of panel BC.

Let WR, = the internal work of member BC.

 $W_{g'e'}$ = the internal work of member BC.

W_{cc'} = the internal work of member CC'.

Then
$$W_{BC} = \int_{0}^{L} \frac{M^2 dx}{2EI}$$

(The axial stress item is neglected.)

•

•

•

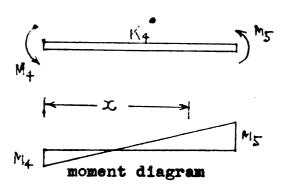


Figure (2)

From figure (2),

$$\mathbf{M} = -\mathbf{M}_{4} + (\mathbf{M}_{4} + \mathbf{M}_{5}) \frac{x}{L}$$
Hence
$$\mathbf{W}_{8c} = \int_{2}^{L} \frac{1}{2EI} \left[-\mathbf{M}_{4} + (\mathbf{M}_{4} + \mathbf{M}_{5}) \frac{x}{L} \right]^{2} dx = \frac{L}{6EI} (\mathbf{M}_{4}^{2} - \mathbf{M}_{4} \mathbf{M}_{5} + \mathbf{M}_{5}^{2})$$
or
$$\mathbf{W}_{8c} = \frac{1}{6EK_{4}} (\mathbf{M}_{4}^{2} - \mathbf{M}_{4} \mathbf{M}_{5} + \mathbf{M}_{5}^{2})$$
also
$$\frac{\partial \mathcal{W}_{8c}}{\partial \mathcal{M}_{E}} = \frac{1}{6EK_{4}} \left[(2M_{4} - M_{5}) \frac{\partial \mathcal{M}_{4}}{\partial \mathcal{M}_{5}} + (2M_{5} - M_{4}) \right]$$

similarly,

$$W_{gC} = \frac{1}{6EK_{6}} (M_{4}^{2} - M_{5}M_{5}^{2} + M_{5}^{2})$$

$$W_{CC} = \frac{1}{6EK_{6}} (M_{C}^{2} - M_{5}M_{5}^{2} + M_{5}^{2})$$

etc.
$$\frac{3W_{66}'}{3M_{5}} = \frac{1}{6EK_{4}'} \left[(2M_{4}' - M_{5}') \frac{3M_{4}'}{3M_{5}} + (2M_{5}' - M_{4}') \frac{3M_{5}'}{3M_{5}} \right]$$

$$\frac{3W_{66}'}{3M_{5}} = \frac{1}{6EK_{6}'} \left[(2M_{6} - M_{6}') \frac{3M_{6}'}{3M_{5}} + (2M_{6}' - M_{6}) \frac{3M_{6}'}{3M_{5}} \right]$$

etc.

Let W be the total internal work of the whole truss, then

$$W = W_{Bc} + W_{B'c'} + W_{ce'} + W_{cb} + ---- etc.$$

The given unsymmetrical truss is statically indeterminate to the twelfth degree. $M_1, M_1, M_4, M_5, M_7, M_8, M_{10}, M_{11}, M_4, M_7$ and M_{11} (marked red in figure 1) are chosen as the statically redundant elements.

From the principle of Least Work, the partial derivatives of W with respect to each of the above redundants should be equal to zero.

The partial derivatives of all the internal moments, except M_5, M_6, M_5' and M_6' , with respect to M_5 are equal to zero.

By definition,

$$\frac{\partial M_5}{\partial M_5} = 1$$

From equation (2),

$$\frac{3M6}{3M5} = -1$$

From equation (5),

$$\frac{3M_5}{3M_5} = -1$$

From equations (4) and (5),

$$M'_{6} + M'_{7} + H h - (M_{4} + M_{5} + M'_{4}) = L'_{6}$$
or $\frac{\partial M'_{6}}{\partial M_{7}} = 1$

•

4

.

•

•

...

•

•

Hence
$$\frac{\partial W_{0C}}{\partial W_{5}} = \frac{1}{6EK_{4}} (2M_{5} - M_{4})$$

$$\frac{\partial W_{0C}}{\partial M_{5}} = \frac{-1}{6EK_{4}} (2M_{5} - M_{4})$$

$$\frac{\partial W_{0C}}{\partial M_{5}} = \frac{\partial}{6EK_{6}} (M_{6} - M_{6})$$

$$\frac{\partial W_{0D}}{\partial M_{5}} = \frac{\partial W_{0B}}{\partial M_{5}} = ----= 0$$
and
$$\frac{\partial W}{\partial M_{5}} = \frac{1}{6EK_{4}} (2M_{5} - M_{4}) - \frac{2M_{5} - M_{4}}{6EK_{4}} + \frac{3(M_{6} - M_{6})}{6EK_{6}}$$
since
$$\frac{\partial W}{\partial M_{5}} = 0, \text{ we have}$$

$$\frac{2M_{5} - M_{4}}{K_{4}} - \frac{2M_{5} - M_{4}}{K_{4}} + \frac{3(M_{6} - M_{6})}{K_{6}} = 0 - - - - - (6)$$

similarly we have,

$$\frac{3W}{3M_4'} = 0$$
or
$$\frac{3(M_4' - M_5')}{K_4'} + \frac{2M_6' - M_6}{K_6} - \frac{2M_3' - M_3}{K_3} = 0$$
(8)

Eliminating M'_5, M_{\odot} and M'_{\odot} from equations (2), (4),

(5) and (6), we have

2 t
$$M_5 = (\frac{2}{N_4'} + \frac{3}{N_6})$$
 H h - 3 $(\frac{1}{N_4'} + \frac{1}{N_6})$ M_4'
- $(\frac{2}{N_4'} + \frac{3}{N_6} - \frac{1}{N_4})$ $M_4 + \frac{3}{N_6}$ $(M_7' - M_7 + L_6' - L_6')$ ----(9)

where
$$t = \frac{1}{K_4} + \frac{3}{K_6} + \frac{1}{K_6}$$

•

This equation of M_5 is a useful general equation. It can be used to find $M_1, M_8, M_{||}, M_2', M_5', M_8'$ and $M_{||}'$. For instance,

2 t
$$M_{5}' = (\frac{2}{\tilde{N}_{4}} + \frac{3}{\tilde{N}_{6}})$$
 H h - 3 $(\frac{1}{\tilde{N}_{4}} + \frac{1}{\tilde{N}_{6}})$ M_{4}
- $(\frac{2}{\tilde{N}_{4}} + \frac{3}{\tilde{N}_{6}} - \frac{1}{\tilde{N}_{4}})$ $M_{+}' + \frac{3}{\tilde{N}_{6}} (M_{7} - M_{7}' + L_{6}' - L_{6}')$ ----- (9)_Q
2 t₁ $M_{2} = (\frac{1}{\tilde{N}_{1}'} + \frac{3}{\tilde{N}_{3}})$ H₁ h₁ - 3 $(\frac{1}{\tilde{N}_{1}'} + \frac{1}{\tilde{N}_{3}})$ M_{1}'
- $(\frac{2}{\tilde{N}_{1}'} + \frac{3}{\tilde{N}_{3}} - \frac{1}{\tilde{N}_{1}})$ $M_{1} + \frac{3}{\tilde{N}_{3}} (M_{4}' - M_{4}' + L_{3}' - L_{5}')$ ----- (9)₆
2 t₁ $M_{2}' = (\frac{1}{\tilde{N}_{1}} + \frac{3}{\tilde{N}_{3}})$ H₁ h₁ - 3 $(\frac{1}{\tilde{N}_{1}} + \frac{1}{\tilde{N}_{3}})$ M_{1}
- $(\frac{2}{\tilde{N}_{1}} + \frac{3}{\tilde{N}_{3}} - \frac{1}{\tilde{N}_{1}'})$ $M_{1}' + \frac{3}{\tilde{N}_{3}} (M_{4} - M_{4}' + L_{3}' - L_{3}')$ ----- (9)_C

where

$$t_i = \frac{1}{K_1} + \frac{3}{K_3} + \frac{1}{K_1'}$$

 H_i - shear in panel BC, clockwise as positive.

h, = panel length of panel BC.

Substracting equation (8) from equation (7),

we have

$$\frac{2 M_4 - M_5}{K_4} - \frac{2 M_4' - M_5'}{K_{41}'} + \frac{3(M_3' - M_3)}{K_3} ----- (10)$$

Eliminating M_3 , M'_3 , M_5 and M'_5 from equations (1), (3),

(9), (9)_R, (9)_B, (9)_C and (10), we have
$$\left\{\frac{1}{K_{3}}\left(1 - \frac{3}{t_{1}K_{3}}\right) + \frac{1}{2t}\left[\frac{1}{K_{4}}\left(\frac{1}{K_{4}} + \frac{1}{K_{4}}\right) + \frac{1}{K_{6}}\left(\frac{5}{K_{4}} - \frac{1}{K_{4}}\right)\right]\right\} M_{4}$$

$$-\left\{\frac{1}{K_{3}}\left(1 - \frac{3}{t_{1}K_{3}}\right) + \frac{1}{2t}\left[\frac{1}{K_{4}}\left(\frac{1}{K_{4}} + \frac{1}{K_{4}}\right) + \frac{1}{K_{6}}\left(\frac{5}{K_{4}} - \frac{1}{K_{4}}\right)\right]\right\} M_{4}^{1}$$

$$=\left\{\frac{1}{K_{3}}\left(\frac{1}{K_{4}} - \frac{1}{K_{4}}\right)\right\} H_{1} + \left\{\frac{1}{K_{4}} - \frac{1}{K_{4}}\right\} H_{1} H_{1} + \left\{\frac{2}{K_{4}} - \frac{1}{K_{4}}\right\} M_{1}^{1}$$

$$-\left\{\frac{2}{K_{3}} - \frac{1}{K_{4}}\right\} M_{1} + \left\{\frac{1}{K_{4}} + \frac{1}{K_{4}}\right\} \left(M_{7} - M_{7}\right) + \left\{\frac{1}{K_{4}} + \frac{1}{K_{4}}\right\} \left(L_{6} - L_{6}^{2}\right)$$

$$+\frac{1}{K_{3}}\left(1 - \frac{3}{t_{1}K_{3}}\right)\left(L_{3} - L_{3}^{2}\right)$$
(11)

- - - - -

e e e e e e e e e e e e

. -

.

7

Eliminating $M_3, M_5', M_6, M_6', M_5$ and M_5' from equations (1), (2), (3), (4), (8), (9), (9), (9), and (9), we have

$$\left\{ \frac{1}{K_{3}} \left(\frac{q}{2t_{1}K_{3}} - 1 \right) + \frac{1}{2t} \left[\frac{1}{K_{6}} \left(\frac{7}{K_{4}} + \frac{3}{K_{6}} + \frac{7}{K_{4}} \right) + \frac{q}{K_{4}K_{4}} \right] \right\} M_{4}$$

$$+ \left\{ \frac{1}{K_{3}} \left(2 - \frac{q}{2t_{1}K_{3}} \right) + \frac{1}{2t} \left[\frac{1}{K_{6}} \left(\frac{4}{K_{4}} + \frac{3}{K_{6}} + \frac{22}{K_{4}} \right) + \frac{3}{K_{4}} \left(\frac{4}{K_{4}} + \frac{1}{K_{4}} \right) \right] \right\} M_{4}'$$

$$= \frac{1}{2t} \left\{ \frac{1}{K_{6}} \left(\frac{4}{K_{4}} + \frac{3}{K_{6}} + \frac{7}{K_{4}} \right) + \frac{6}{K_{4}K_{4}'} \right\} H_{1}$$

$$- \frac{1}{2t_{1}K_{3}} \left(\frac{4}{K_{1}} + \frac{3}{K_{3}} - \frac{2}{K_{1}'} \right) H_{1} H_{1}$$

$$+ \frac{1}{2t_{1}K_{3}} \left(\frac{7}{K_{1}} + \frac{3}{K_{3}} - \frac{2}{K_{1}'} \right) M_{1} + \frac{1}{2t_{1}K_{3}} \left(\frac{4}{K_{1}} + \frac{3}{K_{3}} - \frac{5}{K_{1}'} \right) M_{1}'$$

$$+ \frac{1}{2t_{1}K_{6}} \left(-\frac{2}{K_{4}} + \frac{3}{K_{6}} + \frac{7}{K_{4}'} \right) M_{7} + \frac{1}{2t_{1}K_{6}} \left(\frac{4}{K_{4}} + \frac{3}{K_{6}} - \frac{5}{K_{4}'} \right) M_{7}'$$

$$+ \frac{1}{K_{3}} \left(\frac{q}{2t_{1}K_{3}} - 1 \right) L_{3} + \frac{1}{K_{3}} \left(2 - \frac{q}{2t_{1}K_{3}} \right) L_{3}'$$

$$+ \frac{1}{K_{6}} \left(1 - \frac{q}{2t_{1}K_{4}} - \frac{q}{2t_{1}K_{6}} \right) L_{6} + \frac{1}{K_{6}} \left(\frac{q}{1t_{1}K_{4}} + \frac{q}{2t_{1}K_{6}} - 2 \right) L_{6}'$$

Interchanging all the L, M and K with the respective L', M', and K', (i.e., change M_{\uparrow} into M_{\uparrow} , M', into M_{\downarrow} , K' into K', etc.) we get a new equation, say, equation (13). Adding equation (13) and equation

. .

•

•

• 1

(12), we have,
$$\begin{cases}
\frac{1}{K_3} + \frac{1}{N_6} \left(\frac{29}{N_4} + \frac{6}{N_6} + \frac{11}{N_4} \right) + \frac{3}{N_4} \left(\frac{1}{N_4} + \frac{7}{N_4} \right) \\
+ \left\{ \frac{1}{K_3} + \frac{\frac{1}{N_6} \left(\frac{11}{K_4} + \frac{6}{N_6} + \frac{29}{N_4} \right) + \frac{3}{N_4} \left(\frac{1}{K_4} + \frac{7}{N_4} \right) \right\} M_4'$$

$$= \frac{1}{2 \pi} \left\{ \frac{1}{K_6} \left(\frac{11}{K_4} + \frac{6}{N_6} + \frac{11}{N_4} \right) + \frac{12}{N_4 N_4'} \right\} H H$$

$$- \frac{H_1 H_1}{K_3} + \frac{M_1 + M_1'}{K_3} + \frac{1}{2 \pi N_6} \left(-\frac{7}{N_4} + \frac{6}{N_6} + \frac{11}{N_4} \right) M_7$$

$$+ \frac{1}{2 \pi N_6} \left(-\frac{7}{N_4'} + \frac{6}{N_6} + \frac{11}{N_4} \right) M_7' + \frac{1}{K_3} \left(L_3 + L_3' \right)$$

$$+ \frac{1}{N_6} \left(-1 + \frac{9}{2 \pi N_4} - \frac{9}{2 \pi N_4'} \right) L_6 + \frac{1}{N_6} \left(-1 + \frac{9}{2 \pi N_4'} - \frac{9}{2 \pi N_4'} \right) L_6' - \dots (14)$$

Eliminating M_4' from equations (11) and (14), we have our general formula. (on next page)

The general formula.

$$(\mathbf{v}'\mathbf{u} + \mathbf{u}'\mathbf{v}) \quad \mathbf{M}_{4} = \mathbf{G} + \beta \hat{\mathbf{K}}_{3} (\mathbf{v} - \frac{2\beta_{1}}{\xi_{1}} \mathbf{u}) \quad \mathbf{M}_{1}$$

$$+ 3 \hat{\mathbf{K}}_{3} (\mathbf{v} + \frac{2\beta_{1}}{\xi_{1}} \mathbf{u}) \quad \mathbf{M}_{1}' + (\mathbf{E} \, \mathbf{v} - \mathbf{d} \, \mathbf{u}) \quad \mathbf{M}_{1}' + (\mathbf{E}' \, \mathbf{v} + \mathbf{d} \, \mathbf{u}) \quad \mathbf{M}_{7}'$$

$$\mathbf{w}^{\dagger} = \mathbf{L} + \mathbf{L} \hat{\mathbf{K}}_{4} + \hat{\mathbf{K}}_{4}'$$

$$\mathbf{g} = \mathbf{2} \quad (\mathbf{L} + \mathbf{3})$$

$$\mathbf{r} = \mathbf{1} \mathbf{1} \mathbf{L} + \mathbf{1} \mathbf{2} \hat{\mathbf{K}}_{4} \hat{\mathbf{K}}_{4}' + \mathbf{6}$$

$$\mathbf{A} = \hat{\mathbf{K}}_{4} - \hat{\mathbf{K}}_{4}'$$

$$\mathbf{B} = \mathbf{A} + \hat{\mathbf{K}}_{4}'$$

$$\mathbf{G} = 3 \hat{\mathbf{K}}_{4}' (7 \hat{\mathbf{K}}_{4} + \hat{\mathbf{K}}_{4}' + \frac{2\hat{\mathbf{Y}}_{3}}{3}) + \mathbf{1} \mathbf{1} \hat{\mathbf{K}}_{4}' + \mathbf{6}$$

$$\mathbf{D} = \hat{\mathbf{K}}_{4}' \quad (\mathbf{d} + \mathbf{5}) - \hat{\mathbf{K}}_{4}'$$

$$\mathbf{E} = \mathbf{1} \mathbf{1} \hat{\mathbf{K}}_{4}' - 7 \hat{\mathbf{K}}_{4} + \mathbf{6}$$

$$\mathbf{G} = (\mathbf{A}\mathbf{u} + \mathbf{V}) \quad \mathbf{H} \mathbf{h} + \beta \hat{\mathbf{K}}_{3}' (\frac{2\hat{\mathbf{A}}_{1}'}{2^{3}} \mathbf{u} - \mathbf{V}) \quad \mathbf{H}_{1} \mathbf{h}_{1}' + \mathbf{J}$$

$$\mathbf{J} = (\mathbf{V} - \mathbf{D}) \quad \mathbf{u} \quad (\mathbf{L}_{3} - \mathbf{L}_{3}') + \beta \hat{\mathbf{K}}_{3} \mathbf{v} \quad (\mathbf{L}_{3} + \mathbf{L}_{3}')$$

$$+ \mathbf{d} \quad \mathbf{u} \quad (\mathbf{L}_{6} - \mathbf{L}_{6}') - \mathbf{v} \quad (\mathbf{E} \mathbf{L}_{6}' + \mathbf{E} \mathbf{L}_{6}')$$

$$\mathbf{u} = \beta \hat{\mathbf{K}}_{3} + \mathbf{C}$$

$$\mathbf{v} = \beta \hat{\mathbf{K}}_{3} (\mathbf{1} - \frac{6}{3^{3}}) + \mathbf{D}$$

$$\hat{\mathbf{K}}_{4} = \frac{\hat{\mathbf{K}}_{6}'}{\hat{\mathbf{K}}_{4}'}$$

$$\hat{\mathbf{K}}_{4}' = \frac{\hat{\mathbf{K}}_{6}'}{\hat{\mathbf{K}}_{4}'}$$

$$\hat{\mathbf{K}}_{3}' = \frac{\hat{\mathbf{K}}_{6}'}{\hat{\mathbf{K}}_{3}'}$$

•

_ _

•

_

In the above general formula, A' is obtained by interchanging all k-values with k-values, and A, is obtained by using the k-values of the panel immediately below the panel under consideration. Thus

$$\mathbf{A}' = \mathbf{k}_4 - \mathbf{k}_4$$

$$\mathbf{A}_1 = \mathbf{k}_1 - \mathbf{k}_1'$$

The above relation holds true for all the constants.

Note that the values of λ , β , V and k_3 do not change by interchanging k-values with k-values.

Note also that k is not the stiffness, but is the stiffness ratio.

In analyzing any non-symmetrical parallel-chord Vierendeel truss, there are five steps:

First step. Calculate for each panel all the constants.

Second step. Formulate two equations for each panel

by using the general formula.

Third step. Solve these simultaneous equations by the principle of iteration.

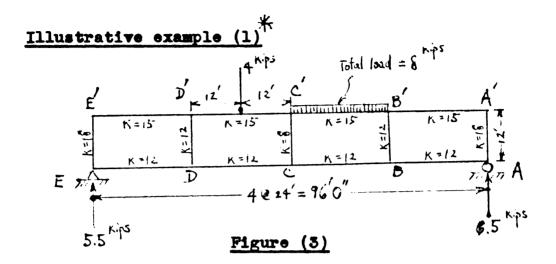
Fourth step. Solve for M_{BA} , M_{CB} , M_{DC} , M_{ED} , $M_{dA'}$, $M_{C'd'}$, $M_{D'C'}$ and $M_{E'D'}$ by using the general equation of M_5 shown below:

$$3M_5 = (2k_4' + 3)Hh - (8'+3)M_4$$

$$-3(k_4' + 1)M_4' + 3(M_7' - M_7 + L_6 - L_6')$$

-. .. •....

The above equation of M_5 is exactly the same as equation (9) on page 9, except that it is rearranged.) <u>Fifth step.</u> Solve for M_{BB} , M_{CC} , M_{BB} , M_{CC} , M_{BB} , M_{CC} , M_{BB} , and M_{CE} by the joint equations. (Four of the joint equations are shown on page 6)

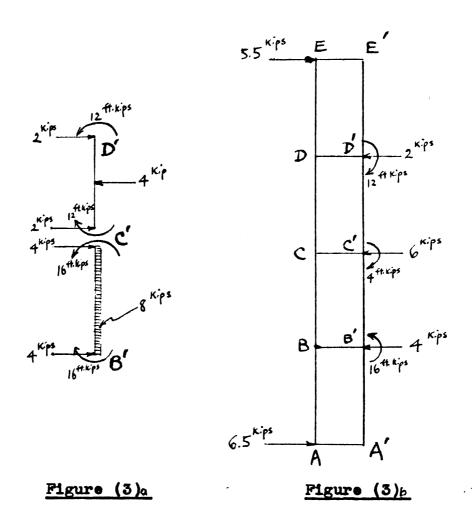


The fixed-end moment at C' and D' due to the four kips load at the middle is $\frac{P}{8}\,\ell$ or 12 ft-kips.

The fixed-end moment at C' and B' due to the distributed load of 8 kips is $\frac{W}{12} \ell$ or 16 ft-kips.

The given loading is therefore equivalent to the following two loadings:

Same problem as example 6, "Continuous Frame Analysis by Elastic Support Action" by J. Charles Rathbun and C. W. Cunningham, A.S.C.E. Proceedings, Apr. 1947.



The solution of loading A, shown in figure (3) $_{\rm q}$ gives

$$\mathbf{M}_{g'g'} =$$
 - 16 ft-kips.
 $\mathbf{M}_{g'g'} =$ 16 ft-kips.

$$\mathbf{M}_{\mathbf{C}^{\prime}\mathbf{D}^{\prime}}=$$
 - 12 ft-kips.

$$\mathbf{M}_{\mathrm{DC}'} \leftarrow 12 \text{ ft-kips.}$$

(All counterclockwise moments are taken as positive.)

All other members have zero moments.

The solution of loading B, shown in figure $(3)_{b}$ will be given in tabular form below:

Table I Computation of constants.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	L ₃	Нh	124	7	3	r	8 k3	A	В
M _{DE}	0 -12	132	1.5	2.7	11.4	57.4	17.1	0.3	1.8
R G∴ G∵M	0 - 4	84	1	1.8	9.6	35.4	14.4	0.2	1.2
M _{BC} M _{g/}	0	- 60	.667 .533	1.2	8.4	23.5	5.6	.133	0.8
M _{A'B}	0	-156	1 0.8	1.8	9.6	35.4	6.4	0.2	1.2

•

Table I (continued from the preceding page)

	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
	C	D	E	u	V	J	Coef	fcien	ts of
			E	<u>u</u>			M 4	Hh	H _i h _i
M _{DE}	99.3	7.73	8.7	116.4	14.13	6030	3710	845	-158.0
MDE'	107.2	10.30	14.1	124.3	16.70	-12950		921	-373.0
MCD	58.9	4.44	7.8	73.3	8.54	34 60	1405	317	- 89.4
# [€] Å	63.6	6.00	11.4	78.0	10.10	-2160	1405	342	-181.0
MBC	36.5	2.63	7.2	42.1	4.73	- 600	ASO	117	- 16.7
¥gć′	40.0	3.60	9.6	45.6	5.70	2040	456	127	- 42.5
M _{AB}	58.9	4.44	7.8	65.3	10.84	-3850	1566	396	
m ⊀b'	63.6	6.00	11.4	70.0	12.40	- 240	1566	425	

Table I. (continued from the preceding page)

	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	
	Coes	ffici	lents	of	G	First	Iteration Factor				
	M	M'	M-7	M' ₇	· ·	Approx	M,	M,	M 7	M.	
MDE	-256	489		_	103700	28.0	0688	.132		_	
MDE	20.5	818		·	77800	21.0	.0055	.221		_	
Med	- 77.3	2 23	-65.4	229	35400	25.2	0550	.159	0465	.163	
W°,R	38.4	360	-25.0	219	374 00	26.7	.0273	.257	0178	.156	
M _{BC}	- 32.3	56	-16.4	96	- 5020	-11.0	0707	.123	0360	.210	
M _{Bc}	056	96	0	96	1050	2.3	0001	.210	0	.210	
MAB		_	-32.5	242	-65600	-41.9			0207	.154	
MAB		_	15.0	223	-66500	-42.4			.0096	.143	

•

•

•

. . .

• 7. • • •-

MDE 0 132 0055 -. 0465 .156 .163 -.0178 5.5 0:0 27.4 28.07 8.15. MDE 3.5 29.9 -0,2 V 0.3 26.7 Meb 10 1 -.0707 .210 .210 -.0688 .221 .250 .257 .154 .0096 .157 .0096 .273 -.036 .2010 -.0688 .221 .210 4.8 1.4 25.2 MCD 717 2.3 Mac 5.3 0.5 7.0 5'8--11.07 10.9 Moc 4.0 0.1 0. Table II Iteration. -42.4 MA'B' -41.8 -43.6 -41.9 0.7 MAB 1 Iteration Factors First Approx. Iteration ota

, t

Table III. Computation of M5.

	(1)	(2)	(3)	(4)	(5)	. (6)	(7)
	Coeff:	icients M ₄	of M ₄	H h	M ₄	3 (M- M+L-L)	Final momen due to Loading B
MED	5.4	-3.9	-6.6	3.50	29.9	-	36. 5
MED	6.0	-4.8	-7.5	132	27.4		38.3
N ^{DC}	4.6	-3.6	-5.4	0.4	28.6	28.5	16.2
MRG	5.0	-4.2	-6.0	84	28.7	-28.5	10.3
MCB	4.066	-3.4	-4.6	80	- 8.3	12.3	-24.0
Mc'B'	4.333	-3.8	-5.0	- 60	- 0.5	-12.3	-27.2
™ BÅ	4.6	-3.6	-5.4	356	-41.8	-24.6	-36.9
MBK	5.0	-4.2	-6.0	-156	-43.6	24.6	-3 3.5

Table IV. To check the values of M₅ found in table III by means of the shear equation.

	H h	M ₄ + M ₄ + M ₅ + M ₅	Panel
checked	132	132.1	DE
checked	84	83.8	CD
checked	- 60	- 60.0	BC
checked	-156	-155.8	AB

Table V. To check the values of M₄ and M₅ found in table II and table III by means of equation (8) on page 9.

Panel	sum of Positive terms in equation (8)	sum of negative terms in equation (8)	
DE	15.8	-15.8	checked
CD	10.9	-10.9	checked,
ВС	9.8	- 9.8	checked
AB	17.4	- 17.3	checked

Table VI. Final solution.

	(1)	(2)	(3)	(4)
Member	Moments Loading A	due to Loading B	Final moments ft-kips	Moments by Rathbun and Cunningham
AB BC BC CD CD DE DE	-16.0 -12.0	-41.8 -43.6 - 8.3 - 0.5 28.6 28.7 29.9 27.4	-41.8 -43.6 - 8.3 -16.5 28.6 16.7 29.9 27.4	-41.8 -43.6 - 8.4 -16.5 28.6 16.6 29.9 27.3
BA BA CB CB DC DC ED ED	16.0	-36.9 -33.5 -24.0 -27.2 16.2 10.3 36.5 38.3	-36.9 -33.5 -24.0 -11.2 16.2 22.3 36.5 38.3	-37.1 -33.5 -24.0 -11.2 16.3 22.4 36.5 38.3
AA' BB' B' C'C' DD' DD EE			41.8 43.6 45.2 50.0 - 4.6 - 5.5 -46.1 -49.7 -36.5 -38.3	41.8 43.6 45.2 50.0 - 4.7 - 5.5 -46.3 -49.7 -36.5 -38.3

Explanation of Table I.

(1) The first column records the external moments applied at the lower joints of the panel under consideration.

Counterclockwise external moments are positive.

Thus for
$$M_{50}$$
, $L_3 = 0$, $L_3' = 16$.

for
$$M_{g'_{c}}$$
, $L_{3}=16$, $L'_{3}=0$.

Note that the value of L_3 for M_{BC} is also the value of L_3' for M_{BC} , and the value of L_3' for M_{BC} is also the value of L_3 for M_{BC} . Hence all values of L_3' can be found under the first column (marked L_3). Throughout this method, the above relation will be utilized in recording all the other coefficients.

(2) The second column records the product of panel shear and panel length. Clockwise panel shear is taken as positive.

Thus for panel AB,

$$H h = -6.5 \times 24 = -156$$

(3) The third column records the ratio of K_{ζ} to K_{4} . Thus for M_{AB} ,

$$k_4 = \frac{K_6}{K_4} = \frac{12}{12} = 1$$

(4) The fourth column records d.

Thus for the last panel,

$$\lambda = k_4 + k_4' = 1 + 0.8 = 1.8$$

(5) The fifth column records eta ,

Thus for the last panel,

$$\beta = 2 (\lambda + 3) = 2 (1.8+3) = 9.6$$

(6) The sixth column records (,

Thus for the last panel,

$$Y = 111 + 12k_4k_4 + 6 = 1111.8 + 12 \times 110.8 + 6 = 35.4$$

(7) The seventh column records βk_3 .

Thus for the last panel,

$$3k_3 = 9.6(\frac{6}{9}) = 6.4$$

(8) The eighth column records values of A.

Thus for MAR,

$$A = k_4 - k_4' = 1 - 0.8 = 0.2$$

(9) The ninth column records values of B.

Thus for MAB,

$$B = A + k_4 = 0.2 + 1 = 1.2$$

(10) The tenth column records values of C.

Thus for MAB,

$$C = 3k_{4}'(7k_{4} + k_{4}') + (11k_{4} + 29k_{4}' + 6)$$

$$= 3(0.8)(7x1+0.8) + (11x1 + 29x0.8 + 6)$$

$$= 58.9$$

(11) The eleventh column records values of D. Thus for $M_{A\Xi}$,

$$D = k_4(1+5) - k_4 = 0.8(1.8+5) - 1 = 4.44$$

(12) The twelfth column records values of E. Thus for $M_{\Delta D}$,

$$E = 11 k_{+}^{\prime} - 7 k_{+} + 6 = 11 \times 0.8 - 7 \times 1 + 6 = 7.8$$

(13) The thirteenth column records values of u. Thus for \mathbf{M}_{AR} ,

$$u = \ell \hat{k}_3 + C = 6.4 + 58.9 = 65.3$$

(14) The fourteenth column records values of v. Thus for M_{AR} ,

$$\nabla = 3 \frac{1}{6} (1 - \frac{6}{6}) + D = 6.4 (1 - 0) + 4.44 = 10.84$$
 for M_{BC} ,

$$\nabla = \frac{3}{2} \hat{k}_3 (1 - \frac{6}{\hat{k}_1}) + D = 5.6 (1 - \frac{6}{9.6}) + 2.63 = 4.73$$

Note that the value of β_i is taken from the value of β_i of the panel immediately below. Throughout this method, this relation will be utilized in recording other coefficients such as B_i , $H_i h_i$, etc.

Note also that all the β_i terms are omitted in the computations for M_{AB} and M_{AB} , since there is no panel below panel AB.

(15) The fifteenth column records the values of J in the general formula on page 13.

Thus for MAR.

$$J = (\mathbf{v} - \mathbf{D}) \mathbf{u} (\mathbf{L}_3 - \mathbf{L}_3') + \frac{3}{5} \hat{\mathbf{k}}_3 \mathbf{v} (\mathbf{L}_3 + \mathbf{L}_3') + \lambda \mathbf{u} (\mathbf{L}_6 - \mathbf{L}_6') - \mathbf{v} (\mathbf{E} \mathbf{L}_6 + \mathbf{E}' \mathbf{L}_6') = (\mathbf{v} - \mathbf{D}) \mathbf{u} \times \mathbf{0} + \frac{3}{5} \hat{\mathbf{k}}_3 \mathbf{v} \times \mathbf{0} + 1.8 \times 65.3 (-16) - 10.84 (11.4 \times 16) = -3850$$

Note that L_3' for panel BC, 16, is also L_6' for panel AB. This relation will be utilized in finding all values of L_6' and L_6' .

(16) The sixteenth column records the coefficient of M₄ in the general formula on page 13.

Thus for panel AB,

$$v'u+u'v=12.40x65.3+70.0x10.84=1566$$

(17) The seventeenth column records the coefficient of H h. in the equation of G on page 13.

Thus for MAB,

$$A u + r v = 0.2 \times 65.3 + 35.4 \times 10.84 = 396$$

(18) The eighteenth column records the coefficient of $H_i h_i$ in the equation of G on page 13.

Thus for MBC,

$$\beta k_3 \left(\frac{2A_1}{\beta_1} \mathbf{u} - \mathbf{v} \right) = 5.6 \left(\frac{2 \times 0.2}{9.6} \right) 42.1 - 4.73 = -16.7$$

For panel AB, the coefficient of H_ih_i needs not be computed, since there is no H_ih_i term at all.

(19) The ninteenth column records the coefficient of M_i in the general formula.

Thus for $M_{\mathfrak{h}^{\zeta}}$,

$$\beta k_3 \left(\mathbf{v} - \frac{2\beta_i}{\beta_i} \mathbf{u} \right) = 5.6 \left(4.73 - \frac{2\lambda_i^2}{9.6} \right) \times 42.1 = -32.3$$

(20) The twentieth column records the coefficient of M_i^{\prime} in the general formula.

Thus for Mac,

$$\beta_{k3}^{(k)} (\nabla + \frac{2\beta_1'}{\beta_1} u) = 5.6 (4.73 + \frac{2.40.6}{9.6} \times 42.1) = 56$$

(21) The twenty first column records the coefficient of M_7 in the general formula.

Thus for MAR,

$$E = -4 u = 7.8 \times 10.84 - 1.8 \times 65.3 = -32.5$$

(22) The twenty second column records the coefficient of \mathbb{N}_7^{\prime} in the general formula.

Thus for MAB.

$$E' \vee + \lambda u = 11.4 \times 10.84 + 1.8 \times 65.3 = 242$$

(23) The twenty third column records the value of G in the general formula.

Thus for MAB,

$$G = (A u + r v) H h + \beta k_3 (\frac{2A_1}{\beta} u - v) H_1 h_1 + J$$

$$= 396 (-156) + 0 - 3850 = -65600$$

Note that the coefficients of H h and $H_i h_j$ are taken from columns (17) and (18).

At this stage, all the coefficients of the eight simultaneous equations have been calculated. These eight equations are:

1566
$$M_{AB}$$
 = - 65600 - 32.5 M_{BC} + 242 M_{BC} / 1560 M_{AB} = - 66500 + 15.0 M_{BC} + 223 M_{BC} 456 M_{BC} = - 5020 - 32.3 M_{AB} + 56 M_{AB} - 16.4 M_{CD} + 96 M_{CD} + 1405 M_{CB} = 35400 - 77.3 M_{BC} + 223 M_{BC} - 65.4 M_{DE} + 229 M_{DE} / 1405 M_{CB} = 37400 + 38.4 M_{CC} + 360 M_{BC} - 25.0 M_{DE} / 219 M_{DE} 3710 M_{DE} = 103700 -256 M_{CD} + 489 M_{CB} 3710 M_{DE} = 77800 + 20.5 M_{CB} + 818 M_{CD}

These equations can be solved by the usual method of elimination. But a better method to solve them is the method of iteration.

We first divide each equation by the coefficient of the left hand term. The transformed equations are:

columns (24) to (28) record the coefficients of the above transformed equations. They are obtained by dividing columns (19) to (23) by column (16).

Explanation of Table II.

In the first of these transformed equations, we assume M_B and M_B are each equal to zero. Hence we get the first approximation of M_{AB} as -41.9. Similarly the first approximations of all the other moments can be found. These first approximations are taken from column (24) of Table I and recorded in the second row of Table II.

The first approximations of M_{AB} , M_{AB} , M_{CD} and M_{CD} are substituted into the third of these transformed equations to obtain the first correction of M_{BC} . Thus

First correction of
$$M_{BC} = -.0707 (-41.9) + .123 (-42.4)$$

$$-.036 (25.2) + .210x 25.2$$

$$= 3.0 - 5.2 - 0.9 + 5.6$$

$$= -8.5$$

These four correction moments are recorded in rows (3) to (6) under $M_{\rm BC}$ of table II.

The four iteration factors on row (1) under M_{CD} are recorded in such a manner that when they are multiplied by M_{CD} , they go to M_{BC} , M_{CC} , M_{DE} and M_{DE} as correction moments in the same relative position. Thus

-.036
$$\lambda$$
25.2 = -0.9 goes to M_{6C} .

.210 λ 25.2 = 5.3 goes to M_{6C} .

-.0688 λ 25.2 = -1.7 goes to M_{DE} .

.221 λ 25.2 = 5.5 goes to M_{DE}

All these iteration factors are recorded in this manner.

Note that the iteration factors are transferred from columns (25) to (28) of table I to the first row of table II in a diagonal manner. Thus the top four iteration factors of columns (25) and (26) of table I are arranged in the order of -.0707, .210, .123, -.0001 in row (1) under M_{AB} and $M_{A'B'}$ of table II. This is because $M_{A'B'}$ in the equation of $M_{A'B'}$ refers to $M_{A'B'}$ and not to $M_{A'B}$.

The iteration process is carried forward as shown in table II until the desired degree of accuracy is obtained.

Note that the iteration factors average only about 0.1, which makes the convergence very rapid. This is one of the advantages of this "Iteration Method of Least-Work."

Explanation of table III.

(1) The first column records the coefficient of H h of the general equation of M_{5} on page 14.

Thus for May,

$$2 + \frac{1}{4} + 3 = 210.8 + 3 = 4.6$$

(2) The second column records the coefficient of M_4 of the general equation of M_5 on page 14.

Thus for Maa,

$$-(B'+3) = -(0.6+3) = -3.6$$

(3) The third column records the coefficient of M'_{+} . Thus for $M_{\beta A}$,

$$-3 (k_4'+1) = -3 (0.8+1) = -5.4$$

- (4) The fourth column records the values of H h. They are taken from column (2) of table I.
- (5) The fifth column records the values of M₄. They are taken from the last row of table II.
- (6) The sixth column records the values of $3(M_{7}^{\prime} M_{7} + L_{6} L_{6}^{\prime})$ Thus for M_{BA} ,

$$3(-0.5+8.3+0-16)=-24.6$$

(7) The seventh column records the final value of M_5 as computed by the general formula of M_5 on page 14.

Thus for MBA.

$$\frac{1}{\beta} \left[(2k_{4}^{2} + 3) \text{ H h - (B' + 3) M}_{4} - 3 (k_{4}^{2} + 1) M_{4}^{2} + 3 (M_{7}^{2} - M_{7} + L_{6}^{2} - L_{6}^{2}) \right]$$

$$= \frac{1}{9.6} \left[4.6 (-156) - 3.6 (-41.8) - 5.4 (-43.6) - 24.6 \right]$$

$$= -36.9$$

Explanation of Table IV.

Equation (5) on page 6 is used as a check on the moments found in table III.

Thus for panel AB,

$$M_4 + M_4' + M_5 + M_5' = -41.8 -43.6 -36.9 - 33.5 = -155.8$$

The value of H h, taken from column (2) of table I, is -156. The check is close enough for slide-rule computations.

Explanation of Table V.

Equation (8) on page 9 is used as a check on the moments found in table II and table III.

Thus for panel AB,

$$M'_{4} = -43.6$$
 $M'_{5} = -35.5$
 $M'_{6} = 16 - (-0.5 - 33.5) = 50.0$
 $M_{6} = - (-8.3 - 36.9) = 45.2$
 $M'_{3} = 43.6$
 $M_{3} = 41.8$
 $K'_{4} = 15$
 $K'_{6} = 12$
 $K_{3} = 18$

Equation (8) is

$$\frac{3(-43.6+33.5)}{15} + \frac{100-45.2}{12} - \frac{87.2-41.8}{18}$$

or
$$-8.72+6.70+8.34-3.77-4.84+2.32$$

The sum of the positive terms is

$$6.70 + 8.34 + 2.32 = 17.4$$

The sum of the negative terms is

$$-8.72 - 3.77 - 4.84 = -17.3$$

The check is close enough for slide-rule computations.

Explanation of Table VI.

- (1) The first column records the moments due to loading
 A as found on page 17.
- (2) The second column records the moments due to loading B as found in tables II and III.
- (3) The third column records the sum of column (1) and column (2).

The final moments of members AA, AA, BB, etc., are found by solving the joint equations.

Thus for MAA',

$$M_{AA'} + M_{AB} = 0$$

or $M_{AA'} = -M_{AB} = 41.8$

• • • • • • • •

•

• •

•

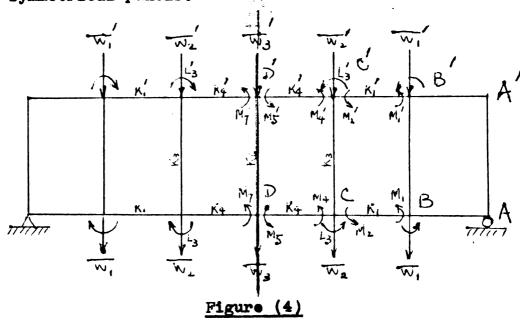
•

•

•

(4) The fourth column records the moments computed by Rathbun and Cunningham in their paper, "Continuous Frame Analysis by Elastic Support Action", A.S.C.E. Proceedings, Apr. 1947. The results agree close enough for slide-rule computations.

Special case (1). Symmetrical leadings on even number of symmetrical panels.



In figure (4), both the Vierendeel truss and the loading are symmetrical with respect to DD.

Hence for panel CD,

$$L_6 = L_6' = 0$$
 (no external moment at D or D)
 $M_5 = -M_7$
 $M_5' = -M_7'$

Substituting $M_5 = -M_7$ into the equation of M_5 on page 14, we have

$$-\beta M_{7} = (2k_{4}^{\prime} + 3) H h - 3(k_{4}^{\prime} + 1) M_{4}^{\prime} - (B+3) M_{4} + 3(M_{7}^{\prime} - M_{7}) ----- (15)$$

• - - -

similarly,

Eliminating M_7 from equations (15) and (16), we have

 $2 \text{ J} \text{ M}_7 = -2 k_4^{\prime} \text{ H h} + (2 k_4^{\prime} - k_4^{\prime}) \text{ M}_4 + 3 k_4^{\prime} \text{ M}_4^{\prime} - ---- (17)$ similarly.

 $2 L M_{7}' = -2 k_{4} H h + (2 k_{4} - k_{4}') M_{4}' + 3 k_{4} M_{4} ------ (18)$

Substituting values of M and M as found in equations (17) and (18) into equations (11) and equation (14) on pages 10 and 12 respectively, we get two new equations, say, (11) and (14).

Eliminating N' from equations (11) and (14), we have our general formula which is the same as that shown on page 15 except that there are no M₇, M'₇, L₆ and L' terms. Also four of the coefficients Y, A, each C and D take a new definition:

$$\Gamma = 12k_{4}k'_{4}(1+\frac{3}{4})$$

$$A = 0$$

$$C = 3k'_{4}(\lambda+6k_{4})(1+\frac{3}{4})$$

$$D = \frac{9k'_{4}}{2}$$

Note that A is no longer equal to $k_4 - k_4'$.

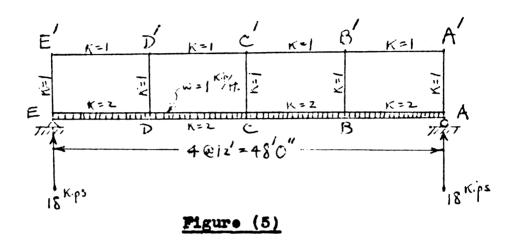
•

Substituting $M_7 = -M_5$ into equation (17), we have the new general equation of M_5 :

 $2 \lambda M_5 = 2 k'_4 H h - B' M_4 - 3 k'_4 M'_4 - (19)$

Note that these new formulae apply to panel CD only. The original general formula and the original formula of $M_{\tilde{5}}$ should be used for panels AB and BC.

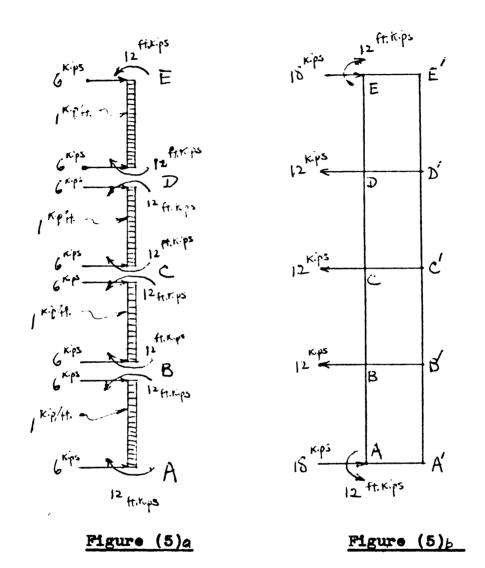
Illustrative example (2)*



The fixed-end moment at each end of the bottom chord is equal to $\frac{\overline{w}}{12}$ or 12 ft-kips.

The given loading is therefore equivalent to the following two loadings:

^{*}Same problem as example 2, p.130, "Analysis of Rigid Frames" by A. Amirikian.



The solution of loading A, shown in figure $(5)_q$, gives

$$M_{AB} = M_{BC} = M_{CD} = M_{DE} = -12 \text{ ft-kips.}$$

$$M_{BA} = M_{CB} = M_{DC} = M_{ED} = 12 \text{ ft-kips.}$$

- -• •

· 4

•

The solution of loading B, shown in figure $(5)_{b}$, will be given in tabular form below:

Table VI. Computation of constants.

	L ₃	Нh	k4	7	3	r	3/23	A	В
M _{BC}	0	- 72	0.5	1.5	9	18	9	0	0
M _{AB}	1	-216	0.5	1.5	9	28.5	9	-0.5 0.5	0

Table VI. (continued)

	С	D	E	u	v	J		efficients of		
							M ₄	Hh.	H _l h _j	
M _{BC}	40.5	4.50	13.5	49.5	7.50	0	507	135.0	117.0	
™ 9','	33.8	2.25	4.5	42.8	5.25		581	94.4	- 4.5	
MAB	54.0	6	13.5	63.0	15	8450	1494	395.5		
M A'B	42.8	2.25	4.5	51.8	11.3	-4400	1484	346.9	-	

Table VI. (continued)

	Coefficients of				G First	Iteration		factors		
	M	M	M 7	M' 7	Approx.	M	M	M ₇	M ₇	
Mec	67.5	216			15550	26.7	.116	.371		
Mg/	-81.0	47.5			- 5830	-10.0	139	.0815		
MAB			108	162	-768 50	-51.8			.0728	.109
MKR			- 27	229	-79200	-53.3			0182	.155

Table VII. Iteration.

	M	AB	M	AB	M	BC	M	රේ ්
Iteration factors	.116	.0815	.371	139	.0728	.155	.109	0182
First approx.	-5	1.8	-5	3.3	26	.77	-1	0.0
Iteration					→ - 6 → -19	0.7	1	4.2 %
	-	.1 .8		.1 *				
Total	-5	2.5	-5	3.2	נ	0	-	6.8

,

•

Table VIII. Computation of M5.

	Coef	ficien	ts of,	Нh	M	3(n-n+1-1)	Final moments due to	
	H h	N ₄	M' ₄		M 4	77766	Loading B	
McB	2	-1.5	- 3	- 7 2	1.0		-41.7	
M. 's'	1	o	-1.5	- 72	-6.8		-24.5	
M _{BA}	5	-4.5	, - 6	-216	-52.5	-23.4	-60.7	
M ^B ,V,	4	- 3	-4.5	-210	-53.2	23.4	-49.4	

Table IX. To check the values of M_5 found in table VIII by means of the shear equation.

Panel	M ₄ + M ₄ + M ₅ + M ₅	H h	
BC	- 72.0	- 72	checked
AB	-215.6	-216	checked

Table X. To check the values of M_4 and M_5 found in table VII and table VIII by means of equation (8) on

pag	e 9.			
	Panel	sum of positive terms in equation (8)	sum of negative terms in equation (8)	
	BC	133.2	-132.8	checked
	AB	325.1	-325.7	checked

• 7

g. -

Table XI. Final solution.

	Moments		Final	Moments by	
Member	Loading A	Loading B	Moments (ft-kips)	Amirikian	
AB AB' BC BC'	-12.0	-52.5 -53.2 1.0 - 6.8	-64.5 -53.2 -11.0 - 6.8	-64.7 -53.1 -11.1 - 6.9	
CB RA BA	12.0	-60.7 -49.4 -41.7 -24.5	-48.7 -49.4 -29.7 -24.5	-49.0 -49.4 -29.5 -24.5	
AA' AA BB' BB CC' C'C			64.5 53.2 59.7 56.2 0	64.6 53.1 60.0 56.3 0	

Explanation.

The calculations are similar to that to Illustrative Example (1) on page 16 with the following exceptions:

(1) For panel BC,

$$Y = 12 k_{4} k_{4} (1 + \frac{3}{4})$$

$$A = 0$$

$$C = 3 k_{4} (1 + 6 k_{4}) (1 + \frac{3}{4})$$

$$D = k_{4} (1 + 3)$$

Thus for MRC.

$$r = 12x1x0.5 (1 + \frac{3}{1.5}) = 18$$

$$A = 0$$

$$C = 3x1 (1.5 + 6x0.5) (1 + \frac{3}{1.5}) = 40.5$$

$$D = 1 (1.5 + 3) = 4.5$$

- (2) There are no M, and M, terms for panel BC.
- (5) For panel BC, the equation of M_5 is $2d M_5 = 2 k_4 H h B M_4 3 k_4 M_4'$

Thus in table VIII, the computations for M_{CB} are:

Coefficient of H h = $2 \frac{k'_{4}}{4} = 2 \times 1 = 2$ Coefficient of M₄ = -B' = -1.5

Coefficient of M'₄ = -3 k'₄ = -3 \times 1 = -3

Final M_{CB} = $\frac{1}{265} \left[2(-72) + (-1.5) \times 1 - 3(-6.8) \right] = -41.7$

.

.c

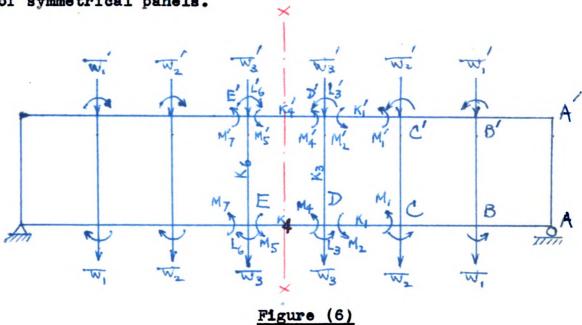
•

•

The last column of table XI gives the moments computed by A. Amirikian on page 130 of his book, "Analysis of Rigid Frames".

The check is close enough for slide-rule computations.

Special case (2). Symmetrical loadings on odd number of symmetrical panels.



In figure (6), both the Vierendeel truss and the loading are symmetrical with respect to XX.

Hence for panel DE,

$$M_5 = - M_4$$
 $M_5' = - M_4'$
 $M_5' = - M_4'$
 $M_5 = - M_5'$
 $M_6 = - M_6'$
 $M_6 = - M_6'$

•

Substituting $M_5 = -M_{\uparrow}$ into the equation of M_5 on page 14, we have

$$-\beta M_{4} = -(B+3) M_{4} -3(k_{4}+1) M_{4}+3(M_{7}-M_{7}+L_{3}-L_{3}) --- (20)$$

Substituting $M_2 = -M_7$ and $M_2' = -M_7'$ into the

shear equation of panel CD, we have

$$M_1 + M_1' - (M_7 + M_7') = H_1 h_1 ----- (21)$$

Eliminating M_{γ}^{\prime} from equations (21) and (22),

we have

$$2\mathbf{M}_{7} = (\hat{k}_{4}^{+} + 1)\mathbf{M}_{4} - (\hat{k}_{4}^{'} + 1)\mathbf{M}_{4}^{'} + (\mathbf{M}_{1} + \mathbf{M}_{1}^{'} - \mathbf{H}_{1}\mathbf{h}_{1} + \mathbf{L}_{3}^{'} - \mathbf{L}_{3}) -----(22)$$

$$2\mathbf{M}_{7}' = (\hat{k}_{4}' + 1)\mathbf{M}_{4}' - (\hat{k}_{4} + 1)\mathbf{M}_{4}' + (\mathbf{M}_{1} + \mathbf{M}_{1}' - \mathbf{H}_{1}\mathbf{h}_{1} + \mathbf{L}_{3} - \mathbf{L}_{3}') ----- (23)$$

Substituting values of M_7 and M_7 of equations (21) and (22) into equation: (11) and equation (14) on pages 10 and 12 respectively, we get two new equations, say, (11) and (14).

Eliminating $M_{\frac{1}{4}}^{f}$ from equations (11) and (14), we get the following modified general equation:

$$(\forall u + u' \forall) \mathbf{M}_{4} = \mathbf{G} + \beta (2\mathbf{v} - \frac{z B_{i}}{\beta_{i}} \mathbf{u}) \mathbf{M}_{i} + \beta (2\mathbf{v} + \frac{z B_{i}}{\beta_{i}} \mathbf{u}) \mathbf{M}_{i}'$$
where

$$G = \begin{cases} (\frac{2A_1}{\beta_1} \mathbf{u} - 2\mathbf{v}) & \mathbf{H}_1 \mathbf{h}_1 + \mathbf{J} \\ \mathbf{J} = (\mathbf{v} - \mathbf{D}) \mathbf{u} & (\mathbf{L}_1 + \mathbf{L}_3') + \beta & \mathbf{v} & (\mathbf{L}_3 + \mathbf{L}_3') \\ & 9\mathbf{A}\mathbf{v} & (\mathbf{L}_3 - \mathbf{L}_3') + \mathbf{v} & (\mathbf{E}\mathbf{L}_3 + \mathbf{E}'\mathbf{L}_3') \\ \mathbf{C} = 2k_4' & (6k_1 + 19) + 2(k_4 + 3) \end{cases}$$

All other constants and coefficients have the same definition as that of the general formula on page 13.

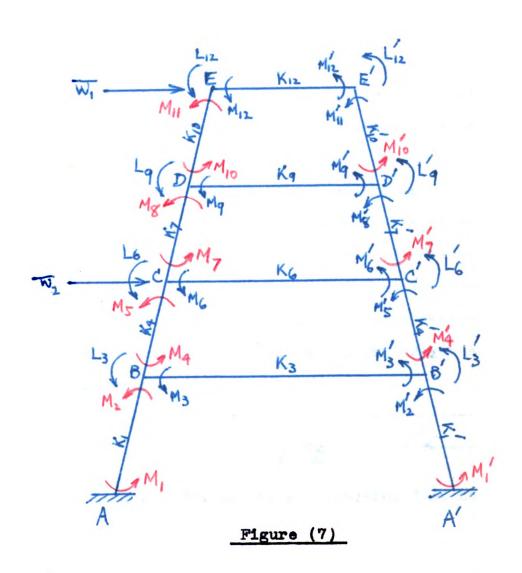
Note that there are no H h, M $_{7}$ and M $_{7}^{\prime}$ terms.

The general equation of M_5 for panel DE is, of course, $M_5 = -M_4$, which will not be needed since only half of the symmetrical truss will be analyzed.

Care should be taken to apply the modified formula to panel DE only. The original general formula should be used for panels AB, BC and CD.

Part II. Non-symmetrical inclined-chord Vierendeel truss.

Derivation of the general formula.



In the above figure, W_1 and W_2 are external forces acting on the Vierendeel truss. L_3, L_6, L_9, L_{12}

•

÷ · · ·

•

 L'_3, L'_6, L'_q and L'_{12} are external moments acting on the joints B, C, D, E, B, C, D and E respectively.

The problem is to find the internal moments M_i , M_2 , M_3 , M_4 , M_5 , M_6 , M_7 , M_8 , M_9 , M_9 , M_{10} , M_{11} , M_{12} , M_{11} , M_{12} , M_{13} , M_{24} , M_{55} , M_{10} , M_{11} , M_{11} , M_{11} , M_{11} , M_{12} , M_{11} , and M_{12} .

The derivation of the general formula is similar to that of the parallel-chord Vierendeel truss shown in Part I.

Thus we have the same joint equations:

$$M_2 + M_3 + M_4 = L_3 - (24)$$

$$M_5 + M_6 + M_7 = L_6 - (25)$$

$$M'_{\perp} + M'_{3} + M'_{+} = L'_{3}$$
 ---- (26)

$$M'_5 + M'_6 + M'_7 = L'_6 - (27)$$

The shear equation of panel BC is derived as follows: First, we have

$$Q_{+} + M_{+} + M_{+} + V l_{3} = 0$$
 ---- (28)

$$Q_{+} = Q_{7} - H h + L_{c} + L_{c}'$$
 ----- (29)

where

Q = The moment at a section just above BB, caused by all the external loads above this section, counterclockwise as positive.

7 The moment at a section just above CC, caused by all the external loads above this section, countérelockwise as positive.

· · · · ·

....-

•

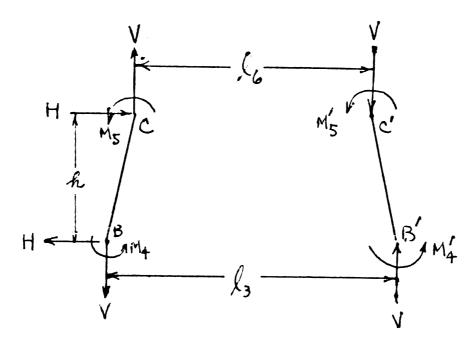
w edbiomy-countervon wise was 100°-

 l_3 - length of BB.

H = panel shear of panel BC, clockwise as positive.

h - panel length of panel BC.

V = vertical component of the axial stress in BC, tension as pesitive.



From the equilibrium of BC and BC as shown in the above figure, we have

$$M_4 + M_5 + M_4' + M_5' + V(\hat{k}_3 - \hat{k}_6') = H h$$
 ---- (30)
 $\hat{k}_6 = \text{length of CC}.$

Eliminating V and H h from equations (28), (29) and (30), we have our shear equation for panel BC:

where

where
$$n = \frac{\int_{0}^{L} \int_{0}^{L} dt}{\int_{0}^{L} \int_{0}^{L} \int_{0}^{L} dt} = Q_{1} - nQ_{1} + L_{0} + L_{0}' - ---- (31)$$

Again choosing $M_1, M_2, M_4, M_5, M_7, M_8, M_6, M_1, M_4, M_7$ and M_{11}' (marked red in figure 7) as the statically redundant elements, and noting that

$$\frac{\partial \mathbf{M}_{5}^{\prime}}{\partial \mathbf{M}_{4}} = \frac{\partial \mathbf{M}_{5}^{\prime}}{\partial \mathbf{M}_{4}^{\prime}} = -n$$

we have

$$\frac{\partial W}{\partial M_5} = 0$$
or
$$\frac{2M_5 - M_4}{K_4} - \frac{2M_5' - M_4'}{K_4'} + \frac{3(M_6' - M_6)}{K_6} = 0 \quad ---- \quad (32)$$

$$\frac{\partial W}{\partial M_4} = 0$$
or
$$\frac{2M_4 - M_5}{K_4} - \frac{2M_5 - M_4}{K_4} \eta + \frac{2N_6' - M_6}{K_6} \eta - \frac{2M_3 - M_3'}{K_3} = 0 - - (33)$$

$$\frac{\partial W}{\partial M_4^2} = 0$$

$$\frac{2M_4^2 - M_5^2}{K_4^2} - \frac{2M_5^2 - M_4^2}{K_4^2} n + \frac{2M_6^2 - M_6}{K_6} n - \frac{2M_3^2 - M_3}{K_3} = 0 - - - (34)$$

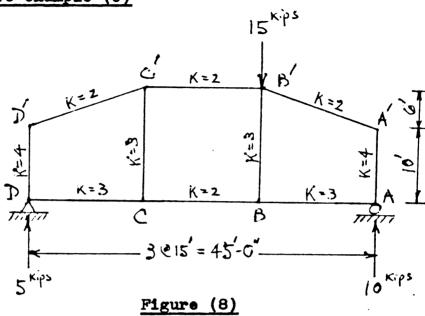
Eliminating M_5' , M_6' and M_6' from equations (25), (27),

(31) and (32), we have the general equation of M_5 :

where
$$R_4 = \frac{K_6}{K_4}$$
 $k_4' = \frac{K_6}{K_4'}$
 $3 = 2(k_4 + k_4' + 3)$

Proceeding in the same manner as in the case of the parallel-chord Vierendeel truss, we can derive the following general formula: (on next page)

The general formula.



The solution is given in tabular form below:

Table XII. Computation of constants.

	Q ₄	n	Q ₇ -n,Q ₄	·k4	2	ß	r	S	8k3	A	В
Med Mid	75	.625	46.8	1.333 2	3.333	12.67	54	20.7	16.9	667 .667	43.3 39.3
M _{8℃}	150	1	75	1.5	3	12	4 8	18	12	0	36
M [∀] ,R; W∀B	0	1.6	-150	1 1.5	2.5	11	38	13.5	8.25	-0.5 0.5	28.5 25.5

• • •

Table XII. (continued)

	С	D	E	u	٧		Coefficient of					
	0	D				M ₄	47-14	A-11, 22	M,	M		
McD	49.4	14.67	8.67	114.4	23.5	4310	1204	-397	- 86	87 7		
™ e'¤	34.6	9.76	16.7	97.1	17.8		1035	-301	-109	708		
Mesc	36.0	10.50	12.0	132.0	16.0	4220	1055	-356	250	970		
M. g.								- 4 8	-354·	365		
MAB	32.2	9.75	8.0	183.2	18.8	5740	1300	-				
MAH	22.5	6.50	14.0	168.7	14.0		1122					

Table XII. (continued)

	Coeffi	cient		First	It	eration	factors	
	M ₇	M'7	G	Approx.	M,	M,	M ₇	M ₇
\mathbf{M}_{cD}	P		26500	6.2	0200	.204		
M	•		25900	6.0	0253	.164		
M _{BC} M _{BC}	-204	588	129700 86500	30.8 20.5	.0593 0840	.230 .0865	0485	.139
MAB	- 9	671	-195 000	-34.0			0016	.117
WVR	-262	756	-168500	-29.3			0456	.132

• **1**

• • • • .

• •

•

•

Table XIII. Iteration.

		MAB .]	m _{a's'}			M BC			1	1 BC	,	M	CD		M. G
Iteration factors	.0593	.0865	.230	084	00/6	.132	-,0200	.164	.117	045	6,204	-,0253			.139	0485
First approx.	-	34.0	-2	9.3 !			30 . 8]		20	5		6.	2	•	5.0
Iteration				ļ		-	2.0 6.7 .3	17		- 2	2.9 2.5 .8 .3	*				
		2.4	04-	3.0 < 1.0 -				<u> </u>	-			->-	-4.	5) 2/5		3.71 .5/
						* *	.1 .5 .2	0.9		•	.2 .2 .5	4.0			-	
		•		.1 -		_						} -	-	1		.1
Total	-	31.6	-2	7.2			23.5	,		2	1.0		10.	0		9.3

Table XIV. Computation of M5.

	Coeff Q7-nQ4	icients M ₄	of M'4	Q7-nQ4	M ₄	3(M-M+1-1/2)	Final moments
MDO	7	-3.04	-6.37	46.0	10.0		18.8
Mode	5.67	-1.54	-4.87	46.8	9.3		15.9
Me	6	4 50	F 50	ne.	23.5	-2.1	15.4
M		-4.50	-7.50	75	21.0	2.1	15.2
M _B ,	6	-8.60	-11.1	7.50	-31.6	-7.5	-30.4
Mg		-6.50	- 9	-150	-27.2	7.5	-25.5

Table XV. To check the values of M₅ found in table XIV by means of the shear equation.

Panel	$M_s + M_s' + n(M_4 + M_4')$	Q n Q_4	
CD	46.8	46.8	checked
BC	75.1	75.0	checked
AB	-149.9	-150.0	checked

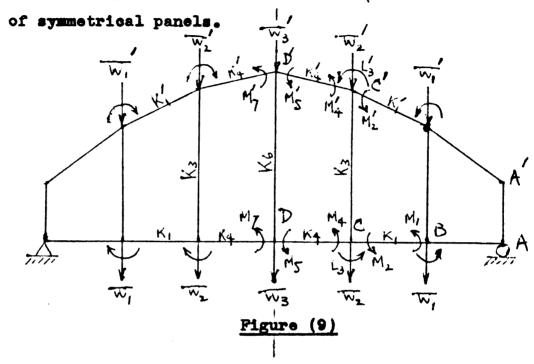
Table XVI. To check the values of M_{4} and M_{5} found in table XIII and table XIV by means of equation (34) on page 55.

Panel	sum of Positive terms in equation (34)	sum of Negative terms in equation (34)	
CD	31.4	-31.4	checked
BC	42.2	-42.1	checked
AB	6 6.3	-66.3	checked

Table XVII. Final solution.

Member	Moment (ft-kips)
AB BC BC AB	-31.6 -27.2 23.5 21.0 10.0 9.3
BA CB CB DC	-30.4 -25.5 15.4 15.2 18.8 15.9
DD CC BB BB AA AA	31.6 27.2 6.9 4.5 -25.4 -24.5 -18.8 -15.9

Special case (1). Symmetrical loadings on even number



In figure (9), both the Vierendeel truss and the loading are symmetrical with respect to DD.

Hence for panel CD,

$$\mathbf{L}_{\mathcal{G}} = \mathbf{L}_{\mathcal{G}}' = \mathbf{0}$$

$$M_5 = -M_7$$

$$M_5' = -M_7'$$

Substituting $M_5 = -M_7$ into the equation of M_5 on page 55, we have

$$-\beta \mathbf{M}_{7} = (2k_{4}^{\prime} + 3)(Q_{7} - \mathbf{n} Q_{4} + \mathbf{L}_{6}^{\prime} + \mathbf{L}_{6}^{\prime}) - \left[(2k_{4}^{\prime} + 3)\mathbf{n} - k_{4}\right]\mathbf{M}_{4}$$
$$- \left[(2k_{4}^{\prime} + 3)\mathbf{n} + k_{4}^{\prime}\right]\mathbf{M}_{4}^{\prime} + 3(\mathbf{M}_{7}^{\prime} - \mathbf{M}_{7}^{\prime}) - - - - - - - - - - - - (36)$$

Eliminating M_{7}' from equations (36) and (37), we have

$$2 \int M_{1} = -2k_{4}(Q_{1} - n Q_{4}) + (2k_{4}'n - k_{4})M_{4} + (2n+1)k_{4}M_{4} - ---- (38)$$

similarly $2 \ln_7 = -2 k_4 (Q_7 - n Q_4) + (2 k_4 n - k_4) M_4 + (2 n+1) k_4 M_4 ----- (39)$ Eliminating M_7, M_7 and M_4 in a manner similar to that of the symmetrical parallel-chord Vierendeel truss shown on page 39, we get our general formula which is the same as that shown on page 57 except that there are no M_7, M_7, L_6 and L_6' terms. Also six of the coefficients Y, S, A, B, C

and D each take a new definition:

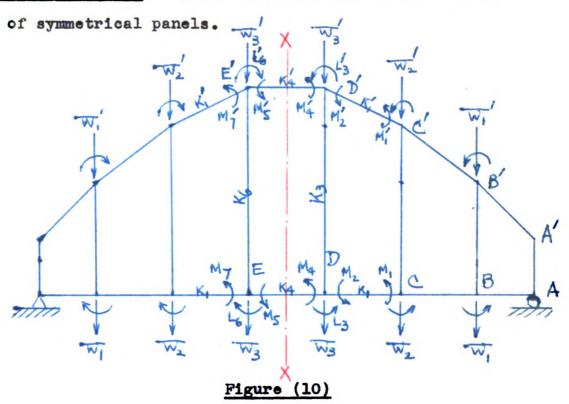
Note that A is no longer equal to $k_4 - k_4'$

The new equation of M5 is:

$$2 \, \mathbf{M}_{5} = 2 \, k_{4} (\mathbf{Q} - \mathbf{n} \, \mathbf{Q}_{4}) - (2 k_{4} \mathbf{n} - k_{4}) \mathbf{M}_{4} - (2 \mathbf{n} + 1) k_{4} \mathbf{M}_{4}$$

Note that these new formulae apply to panel CD only. The original general formula and the original fermula of M_{ς} should be used for panels AB and BC.

Special case (2). Symmetrical loadings on odd number



In figure (10), both the Vierendeel truss and the loading are symmetrical with respect to XX.

Hence for panel DE,

$$M_5 = -M_4$$
 $M_5' = -M_4'$
 $L_6 = -L_3$
 $L_6' = -L_3'$
 $H h = 0$
 $h = 1$
 $h = 0$

•

From equation (29) on page 53, we have

$$Q_7 - nQ_4 + L_6 + L_6' = H h = 0$$

Proceeding in the same manner as that of the parallelchord Vierendeel truss shown on page 50, we have the following modified general formula:

$$(\nabla' \mathbf{u} + \mathbf{u}' \nabla) \mathbf{M}_{4} = G + \beta \left[2\mathbf{n}_{1} \nabla - \frac{2\mathcal{U}}{\beta_{1}} (\mathbf{A}_{1} \mathbf{n}_{1} + \hat{\mathbf{k}}_{1}) \right] \mathbf{M}_{1}$$

$$+ \beta \left[2\mathbf{n}_{1} \nabla + \frac{2\mathcal{U}}{\beta_{1}} (\mathbf{A}_{1}' \mathbf{n}_{1} + \hat{\mathbf{k}}_{1}') \right] \mathbf{M}_{1}'$$

$$G = \beta \left(\frac{2\hat{\mathbf{A}}_{1}}{\partial \mathbf{u}} \mathbf{u} - 2\nabla \right) (\mathbf{Q} - \mathbf{n}_{1} \mathbf{Q} + \mathbf{L} + \mathbf{L}_{1}') + \mathbf{J}$$

where

$$G = \begin{cases} (\frac{2A_1}{\theta_1} \mathbf{u} - 2\mathbf{v})(Q_4 - \mathbf{n}_1 Q_1 + \mathbf{L}_3 + \mathbf{L}_3') + \mathbf{J} \\
\mathbf{J} = \begin{cases} (1 - \frac{6}{\theta_1})\mathbf{u}(\mathbf{L}_3 - \mathbf{L}_3') + \begin{cases} \mathbf{v}(\mathbf{L}_3 + \mathbf{L}_3') + 9\mathbf{A}\mathbf{v}(\mathbf{L}_3 - \mathbf{L}_3') \\
+ \mathbf{v}\left[(11k_4' - 7k_4 + 6)\mathbf{L}_3 + (11k_4 - 7k_4' + 6)\mathbf{L}_3'\right] \end{cases}$$

$$\mathbf{u} = \begin{cases} + 2k_4'(6d + 19) + 2(k_4 + 3) \\
\mathbf{v} = \begin{cases} (1 - \frac{6}{\theta_1}) + \frac{6}{\theta_1}k_4' \end{cases}$$

All other constants and coefficients have the same definition as that of the general formula on page 57.

Note that there are no M_7, M_7' and $(Q_7-nQ_4+L_c+L_c')$ terms. The general equation of M_5 for panel DE is, of course, $M_5=-M_4$, which will not be needed since only half of the symmetrical truss will be analyzed. Care should be taken to apply the above modified formula to panel DE only. The original general formula should

be used for panels AB, BC and CD.

• •

Special case (3). Triangular panels.

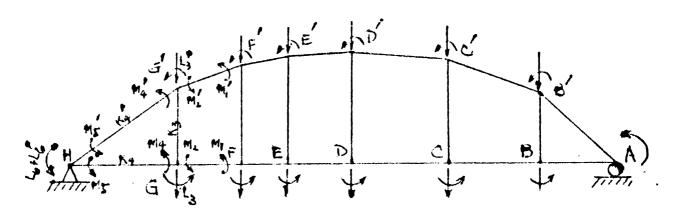


Figure (11)

(A) For panel GH, we have

$$n = 0$$

$$Q = 0$$

$$K_6 = \infty$$

$$M_5 + M_5' = L_6 + L_6'$$

Dividing equation (35) on page 55 by $K_{\mathbf{G}}$ we have

the equation of M_5 for panel GH:

$$2d N_{5} = k_{4} M_{4} - k_{4} M_{4} + 2k_{4} (L_{5} + L_{5}) ----- (40)$$
where
$$k_{4} = \frac{1}{K_{4}}$$

$$k_{4} = \frac{1}{K_{4}}$$

$$k_{4} = k_{4} + k_{4}$$

Dividing the general formula on page 57 by K_6^4 , we have the general equation for panel GH:

where

$$k_{4} = \frac{1}{k_{4}}$$

$$k_{3} = \frac{1}{k_{3}}$$

$$u = 2dk_{3} + k_{4}(3k + 2k_{4})$$

$$v = 2dk_{3}(1 - \frac{6}{k_{1}}) + 2k_{4}$$

All other coefficients have the same definition as that of the general formula on page 57. Thus

$$\lambda = k_{4} + k_{4}$$

$$A = k_{4} - k_{4}$$

$$k_{1} = \frac{k_{3}}{k_{1}}$$

$$k_{1} = \frac{k_{3}}{k_{1}}$$

$$A_{1} = k_{1} - k_{1}'$$

$$A_{2} = k_{1} - k_{1}'$$
etc.

Note that $k_1 = \frac{1}{k_3}$ and $k_1 = \frac{1/3}{k_1}$.

. • •

•

•

GH

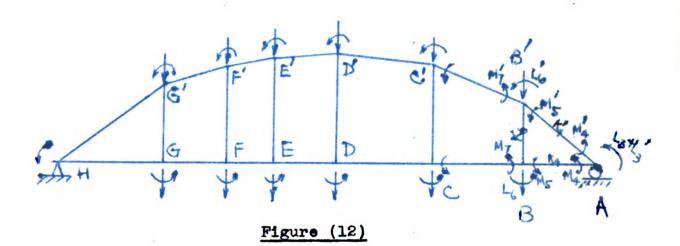
(B) Still referring to panel of figure (11), and noting n=0 and $K_0=\infty$, equation (33) on page 55 becomes: $\frac{1}{K_4} \left(2M_4 - M_5\right) = \frac{1}{K_3} \left[2\left(L_3 - M_2 - M_4\right) - \left(L_3' - M_4' - M_4'\right)\right] ----- (41)$ where $\frac{1}{K_4} = \frac{1}{K_4}$

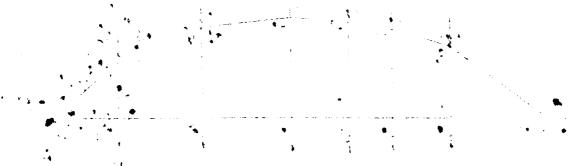
$$k_3 = \frac{1}{K_8}$$

Eliminating M_A from equations (40) and (41), we have $(\frac{1}{k_3} + 2 - \frac{1}{k_4}) M_1 = -(\frac{1}{k_4} + 2 - \frac{1}{k_3}) M_2 + 2(L_3 - M_2 + L_6 + L_6)$ $-(L_3' - M_2')$

similarly,
$$\frac{1}{4}$$
 + 2 - $\frac{1}{4}$) M_{4} = - ($\frac{1}{4}$ + 2 - $\frac{1}{4}$) M_{5} + 2(L_{3} - M_{2} + L_{6} + L_{6}) - (L_{3} - M_{2}) - - - - (43)

Comparing the notations of panel GH of figure (11) with that of panel AB of figure (12) below, we find





M₄ corresponds to M₅

 M'_{4} corresponds to M'_{5}

M₅ corresponds to M₄

M'₅ corresponds to M'₄

M, corresponds to M,

 M'_{λ} corresponds to M'_{7}

 L_{χ} corresponds to L_{6}

L' corresponds to L'

L corresponds to L3

L' corresponds to L',

Hence equation (42) can be transformed into the following equation of $M_{\rm b}$ for panel AB:

$$\left(\frac{1}{R}\right)M_{5} = -\frac{5}{R}M_{4} + \left(M_{7} - 2M_{7}\right) + \left(2L_{6} - L_{6}'\right) + 2\left(L_{3} + L_{3}'\right) - - - - (44)$$

Eliminating M_{4} , M_{4}^{\prime} from equations (40), (42) and (43), and transforming the notations of panel GH into that of panel AB, we get the following general formula for panel AB:

$$(k_4 + k_4 + 2k_4 + k_4 + k_$$

(C) The equation of M_{Σ} for panel BC in figure (13) is the same as the general equation of M_{Σ} on page 55.

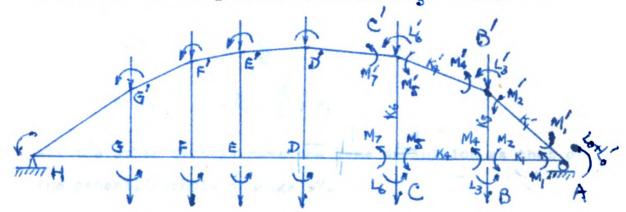


Figure (13)

Proceeding in the same manner as in the derivation of the general formula of page 57, and using the equation (44) as the equation of Mg for panel AB, we can get the following formula for panel BC:

$$\frac{1}{(\mathbf{v}'\mathbf{u} + \mathbf{u}'\mathbf{v})\mathbf{M}_{4}} = G + \beta k_{3} S_{1}(\mathbf{v} + \mathbf{u}) M_{1} + \beta k_{3} S_{1}'(\mathbf{v} - \mathbf{u}) M_{1}' + \left[(\mathbf{E}'\mathbf{n} + 3\mathbf{A}')\mathbf{v} - \mathbf{J}\mathbf{u} \right] M_{7} + \left[(\mathbf{E}\mathbf{n} + 3\mathbf{A})\mathbf{v} + \mathbf{J}\mathbf{u} \right] M_{7}'$$

where

$$G = \left[Au + (rn+\delta)v \right] (Q_7 - nQ_4 + L_6 + L_6) + J$$

$$J = 2 \rho k_3 (R_1' - R_1) m (L_6 + L_6') - 2 \beta k_3 (R_1' + R_1) v (L_6 + L_6')$$

$$+ \left[(i-2R_1 - R_1') m + (i+R_1' - 2R_1) v \right] \rho k_3 L_3$$

$$+ \left[(R_1 + 2R_1' - i) m + (i+R_1 - 2R_1') v \right] \rho k_3 L_3'$$

$$- m \rho v (L_6 + L_6') + 2 m (L_6 - L_6')$$

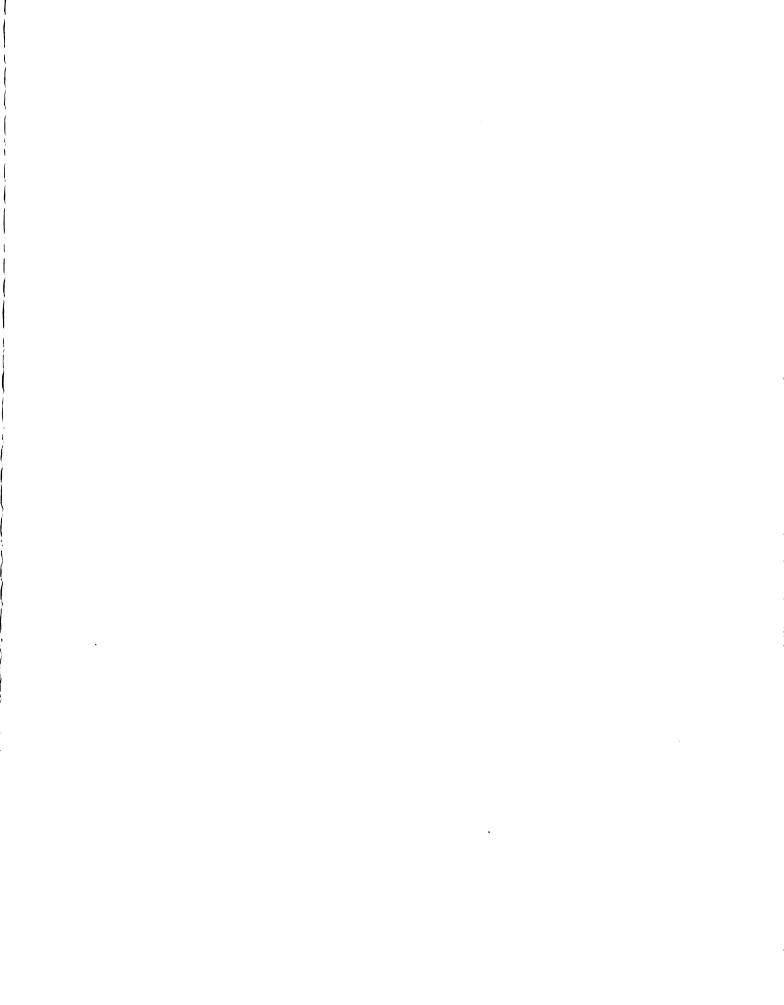
$$u = \frac{1}{2k_3}(1 + R_1 - 2R_1') + r n^2 + Bn + C$$

$$v = \frac{1}{2k_3}(1 - R_1 - 2R_1') - An + D$$

$$R_1 = \frac{1}{2(k_1 + 1) - \frac{1}{k_1}}$$

$$S_1 = \frac{1}{2(k_1 + 1) - \frac{1}{k_1}}$$

All the other symbols have the same definition as that of the general formula on page 57.



Aug 31 '48 '49

Ja 5 '52

J! 3 *5*

ROUN ESE CHLY

T624 T877 Tsao

200018

MICHIGAN STATE UNIVERSITY LIBRARIES
3 1293 03111 7884