AN ANALYSIS OF THE DESIGN Of A SINGLE SPAN MIGHWAY BRIDGE

Theris for the Degree of B. S. WCHGAN STATE COHERE Denald M. Tubbs 1948

An Analysis of the Design of a Single Span Highway Bridge

A Thesis Submitted to
The Faculty of
MICHIGAN STATE COLIEGR
OF
AGRICULIURE AND APPLIED SCIENCR
by
Donald M. Tubbs
Candidate for the Degree of
Bachelor of Science

THESIS
c. 1

Acknowledgements

I would like to express my utmost appreciation to Mr. H. R. Puffer, of the Michigan State Highway Department, for supplying the plans for this thesis. Also to Dr. Richard Pian and Proffessor Chester Allen, for their help in the preparation of this thesis.

Contents

I Introduction
II List of Abbreviations and Symbols
III Bridge Railings
A. SpecificationsB. Design
IV Post
V Sidewalks and Curbs
VI Concrete Floor Slab
A. Specificatione
B. Desigh
VII StringersA. SpecificationsB. Design

1. Section modulus
2.Fnd Shear
2. Defelection
VIII DiaphragmsA. Specifications
B. Design
IX Abutments
A. Stability
B. Design
X Conclusion

Introduction

This thesis was chosen by the author so that it would be possible to learn something about bridge design and design in general. It is also the object to give the author a little knowledge in methods used in design and to give come preatice in reading blueprints.

The bridge used in this thesis was built in 1947 in Lenawee County, located on M52(called Adrian road), five tenthe of a mile south of the willage of Jasper. This bridge was built to replace the old out dated bridge, that crossed Black Creek.

The creek was rerouted so that it would crose the road at right angles, where as before the intersection was at an angle other than ninety degrees. By this change in route, the placing of this bridge was accomplished without the use of piles for a supporting foundation.

LIST OF ABBREVIATIONS AND SYBOLS

	Abbreviations
AASHO	American Association of State Highway Officale.
AISC	American Institute of Steel Construction.
MSHD	Michigan State Highway Department.
D.L.	dead 10ad.
k	kips.
L.L.	Iive load.
N.A.	neutral axis.
WF	wide flange beam section.
	Symbols
a	distance, length, or thickness.
A	Area.
A_{8}	area of tensile reinforcement.
b	breadth or distance.
c	distance such as that to the extreme fiber.
d	effective depth of flexural members.
e	eccentricity.
E	modulus of elasticity.
1	Itber stress.
I_{c}	compressive stress (allow.)
ft	ultimate compressive strength of concrete.
f_{8}	etress in tensil reinforcement.
I	moment of inertia.
j	ratio of distance (jd) between resultants of con ressive and tensile strees to effective dep

LIST OF ABBREVIATIONS AND SYMBOLS

Symbols - continued
1,L lengthe.

M

12

Q
t
u
v shearing stress.
v
*
Σ
$\Sigma 0$ sum of perimeters of bars.

Railings

Specifications:
M.S.H.D. Spec. 25;

Substantial railings shall be provided along each side of the bridge for the protection of traffic. The top of the railing shll not be less than $3^{\prime}-0^{\prime \prime}$ above the top of the curb and when as a sidewalk, not less than $3^{\prime}-0^{\prime \prime}$ above the top of the sidewalk. Railings shall contain no openings of greater width than eight (8) inches. Ample provision shall be made be made for inequality in the rate of movement of the railing and the supporting superstructure, due to temperature or erection conditions.
M.S.H.D. Spec. 35;

Railing shall be designed to resist a horizontal force of not less than 150 pounds per lineal foot, applied at the top of the railing, and a vertical force of not less than 100 pounds per lineal foot. For railings adjacent to the roadway, the bottom rail shall be designed for a horizontal force of 300 pounds per lineal foot of rail.

Design:

Bolts $3 / 4^{\prime \prime}$ in single shear (for 10,000psi steel)
Area. . $302 \quad .302 \times 10,000=3,020$ lbs.
Load- $300 \times 8.208 / 2=1230$ Lbs.
Strap shear capacity,

$$
(13 / 4-13 / 16) 5 / 8 \times 10,000=5860 \text { lbs. }
$$

Railings (cont.)

Uaing 50 pounds per lineal foot as the dead weight of the railing, as specified in M.S.H.D. Standard Design of Railings.

Load; $304 \times 8.208 / 2=1247$ lbs.
Bolts control as they have minimum capacity.
1 (max.) $1-7 / 8^{\prime \prime} \neq 3 / 8^{\prime \prime}=2-1 / 4^{\prime \prime}$
f (horzontal) $\frac{1230 \times 2.25 \times 6}{.625 \times(1.75)}=8650 \mathrm{pai}$
$\begin{array}{ll}f \text { (vertical) } \frac{1230 \times 2.25 \times 6}{6 \times 1.75 \times(6.25)} \\ f(\text { total }) & =\frac{4050 \mathrm{pai}}{12700 \mathrm{pai}} \\ \mathrm{P} \text { (allowable) }\end{array}$
Rail: (max. case)
The lower rail will only be considered. For the computations only the two side channels are to be considered to aimplify the computations.

Railings (cont.)

$$
\begin{aligned}
& \text { Span: } 8.208-2 \times 1-5 / 8^{n}=7.34 \mathrm{ft} \text { 。 } \\
& \text { MomentuM): } \quad M=1 / 8 w 1^{2} \\
& M=\frac{1}{8} \times 300(7.94 \times 12)^{2} \\
& M=, 34,000 \text { in.-lbs. } \\
& I=I_{0}+\mathrm{Ad}^{2} \quad d=2.06 \mathrm{in} . \quad I_{0}=2 \times .25=.50 \mathrm{in}^{4} \\
& A=2 \times 1.46=2.92 \mathrm{sq} \cdot \mathrm{in} . \\
& I=.50+2.92(2.06)^{2}=12.89 \mathrm{in}^{4} \\
& F_{8}=\frac{M c}{I}=\frac{34,000 \times 2.5}{12.89}=7,070 \mathrm{psi} \quad \begin{array}{c}
(18,000 \\
\text { allow. })
\end{array}
\end{aligned}
$$

The railings are very much overdesigned but are designed more for the looks than for any given load.

Posts

> Intermediate Posts

$$
\begin{aligned}
& b=16 \mathrm{in} \\
& d=91 / 2 \mathrm{in}
\end{aligned}
$$

$A_{8}=2 \times .44=0.88 \mathrm{sq}$. in.
2 bars in compression
2 bars in tension

$$
\begin{aligned}
& K=\frac{1}{I_{S} I_{C}}+1=\frac{1}{10 \times 1200}+1 \\
& j=(1-K / 3)=1-\frac{240}{3}=.80
\end{aligned}
$$

Bending moments;

$$
\begin{aligned}
150 \times 9.54 \times 32 & =45,800 \text { in. lbs. } \\
300 \times 9.54 \times 5 & =14,300 \text { in. lbs. } \\
\text { total } & 60,100 \text { in. lbs. }
\end{aligned}
$$

Posts (cont.)
required (d)

$$
\begin{aligned}
a=\sqrt{\frac{60100}{2880 \times .667}}= & 4.92 \text { inches required } \\
& 9.50 \text { inches furnished }
\end{aligned}
$$

stress (f_{8})

$$
\begin{array}{r}
I_{s}=\frac{M}{A_{B} j d}=\frac{60100}{88 \times} .867 \times 9.5=8300 \mathrm{pai} \\
(18000 \mathrm{pai} \text { allowable) }
\end{array}
$$

The end posts will not be checked as they are of greater size, with one-half more reinforcement. They also do mot carry as much load.

The post are also very much overdesigned and there for can carry a much greater load than used in design. The posts are design as are the railings to produce a massive appearance and greater architectural beauty.
M.S.H.D. Spec. 20;

Substantial curbs shall be built on each side of the roadway and they shall have a width of not less than six(6) inches and a height of not less than nine(9) inches measured above the wearing surface at a point adjacent to the curb. M.S.H.D. Spec. 36;

Curbs shall be designed to resist a force of not less than five hundred(500) pounds per lineal foot of curb applied at the top of the curb.

The sidewalks are of much greater designed than specified by the M.S.H.D.. Abaut the only way that they could fail would be by the crushing of the concrete. Therefore the only reinforcement needed in the sidewalks is that steel which is needed for temperature reinforcement. Also some anchorage which is used to hold the sidewalks in place.

Concrete Floor Slab

Specifications:
M.S.H.D. Spec. 37;

Calculate bending moment by A.A.S.H.O. art. 3.2.2
p. 138. Main reiforcing perpendicular to center line of roadway.

Distribution of wheel leads;
(for spana 2-7 ft.)
$E=0.6 \mathrm{~s}+2.5 \mathrm{ft}$.
Bending moment(M) for freely supported spans;
$\mathbf{M}=0.25 \times \frac{\mathrm{P}}{\mathbf{L}} \times \mathrm{s} \times\left(100 \%+\mathrm{I}_{\mathrm{i}}+10 \%\right.$ for long-
Bending moment(M) for continuous spans;

Where;
E - width of slab over which wheel load is distributed
P. maximum wheel load in pounds

- = distance between flanges plus one- half width of girder flanges
$I=\frac{L+20}{6 L+20}$ in wich $L=$ span length
M.S.H.D. Spec. 38;

The forces due to traction or sudden braking of vehicles chall be consider as longitudinal forces having a magnitude of 10% of the gross live load that can be placed in one traffic lane. This load shall be assumed as acting in the

Concrete slab (cont.)
direction of traffic movement and applied at the top of the pavement.
M.S.H.D. Spec. 59;

Protective Covering: For slabs the distance from the surface to the concrete, eather top or bottom, to the center of nearest bar shall not be less than one and one-half times the diameter of the bar nor less than one and one-half inches.

Design:

$$
\begin{aligned}
& \mathrm{E}=0.68+2.5 \mathrm{~s}=5^{\prime}-103 / 4^{\mathrm{n}}=5.146 \mathrm{ft} . \\
& \mathrm{E}=0.6(5.146)+2.5=3.1+2.5=5.6 \mathrm{ft} \text {. } \\
& I=\frac{L+20}{6 L+20}=\frac{47.583+20}{285.498+20}=\frac{67583}{305.498}=.22 \text { or } 22 \% \\
& \begin{array}{r}
\text { M }-0.25 \times \frac{p}{E} \times \times(100 \%+I+10 \% \text { for longitudional } \\
\text { forces })
\end{array} \\
& M=0.25 \times \frac{16000}{5.6} \times 5.146 \times(1+.22+.1) \\
& M=4,940 \mathrm{ft.-1bs} \text {. } \\
& \text { required (d) } \\
& d=\sqrt{\frac{1}{R B}} \quad \text { where; } M=m o m e n t \text { in in.-Ibs. } \\
& R=208 \\
& b \text { width in inches } \\
& \text { (assume } 1 \text { ft. width(12") } \\
& d=\sqrt{\frac{29 \times \times 12}{208 \times 12}} \cdot 4.88 \text { inches }
\end{aligned}
$$

Total thickness $=d+1-1 / 2^{n}$ for cover
$t=4.88+1.5=6.38$ inches

Concrete slab (cont.)

thicknese required by design is 6.33 inches
actual thickness furnished is 7.00 inches min.
Amount of tension steel required laterally;

Steal at bottom for lateral distribution;
Percent of main steel required

$$
\begin{aligned}
& 100 / \sqrt{\frac{3}{}} \text { A.A.S.H.O. Art. } 3.2 .2 \mathrm{p} \cdot 140 \\
& 100 / 5.146=100 / 2.268=44.1 \% \text { of main steel } \\
& A_{8}=.685 \times .441=.320 \mathrm{sq} .1 \mathrm{~m} . / \mathrm{ft} \text {. required }
\end{aligned}
$$

Slabs designed for bending moment in accordance with the foregoing shail be considered satisfactory in bond and shear.

$$
\text { (A.A.S.H.O. art. } 3.2 .2(\mathrm{~d}) \text { p. 140) }
$$

Stringers

M.S.H.D. Spec. 76;

Main trusses and girders shall be spaced a sufficient distance apart center to center to be secure against overturning by the aswumed lateral and other forces.
M.S.H.D. Spec. 77;

For the calculation of stresses, span length shall be assumed as follows;

Beams and girders, distance between centers of bearing.
M.S.H.D. Spec. 80;

Rolled beames shall be proportioned by the moments of inertia of their not sections.
M.S.H.D. Spec. 30;

For structures with concrete slab floors, with out separate wearing surface, a minimum allowance of twenty (80) pounds per square foot of roadway shall be made, in addition to the weight of any monolithically placed concrete wearing surface, to provide for future wearing surface.
M.S.H.D. Spec. 43;

Longitudional beams-stringers
The bending moment carried by each interior beams or stringers chall be taken not less than that determined by the following formulas
\square

Stringers (cont.)

M = C M
I = bending moment for one traffic lane
N : Width of one traffic lane (not to exceed 20')
spacing of stringers or beams
C - coffficient based on type of floor
(equals 1.0 for reinforced slabs)
M' bending moment on one beam or etringer
M.B.H.D. Spec

Deck plate girders with compression flange continuousiy stayed in a concrete slab may have a depth of mot less than $1 / 20$ of the span.

Designs

Dead lead;

Dead load moment
$M=\frac{w^{2}}{8} \quad \nabla=683 \# / \mathrm{ft} . \quad L=47.583 \mathrm{ft}$.
$M=\frac{12 \quad 683 \times(47.583)^{2}}{8}$
$M=2,315,000$ in.-1bs.
-
-
$-$

Stringers (cont.)

Live load;
Assuming one traffic lane as width of unity. The lane will be assumed as a beam with a span of 47.583 ft . The maximum moment will then occur under the load wich c causes maximum center moment when the loads are so placed that the center ofnthe beam lies midway between the load and the resultant of all the loads on the span.

Location of resultant of wheel loads;

Ⓜc

$$
\begin{aligned}
\Sigma R(x) & =b \times 143 \\
72(x) & =32 \times 14^{\prime}+8 \times 28^{\prime}
\end{aligned}
$$

$$
x=\frac{448+204}{72}
$$

$$
x=9.333 \mathrm{ft} .
$$

Live load moment;
Find reactiond
$\Sigma \mathrm{K}_{\mathrm{R} 2}=0$
RI $\times 47.583-72000 \times(9.33+12.12)$
$R 1=72000 \times 21.45$ 47.583

RI = 32,450 Ibs.

Stringers (cont.)

Beam loading for maximum moment;

bending moment(M) for one traffic lane
$M=32,450 \times(14+7.46)-8,000 \times 14$
$M=696,000-112,000$
$M=584,000 \mathrm{ft} .-1 \mathrm{lbs}$.
$M=584,000 \times 12=7,008,000$ in. -lbs.
bending moment for each stringer
$M^{\prime}=\frac{M}{\bar{N}}$
$M^{\prime}=\frac{7,008,000 \times 5.146}{10}$
$M^{\prime}=3,600,000$ in. -lbs.
Total moment equals deadload moment plus live food moment.
$M=3,600,000+2,315,000=5,915,000$ in.-Ibs.
Section modulus required;
$Q=\frac{M}{8}=\frac{5,915,000}{18,000}=329$ in. ${ }^{3}$
Section modulus by $33^{\prime \prime}$ WF 130\# beam $=408.8$ in. 3

$$
\begin{aligned}
& i \\
& i
\end{aligned}
$$

\square

Stringers (cont.)

Find shear;

Shear due to a dead load of 683 libe./ft.
Dead load shear $=683 \times 47.583=16,200$ lbs.
Live load shear;

- R $_{1} \times 47.583+16^{k} \times 47.583+16^{k} \times 33.583+4^{k} \times 19.583=0$
$R_{1}=\frac{16^{\kappa} \times 47.583+16^{\kappa} \times 33.583+4^{k} \times 19.583}{47.583}$
RI $=28.9$ kips
Live load shear $=R_{1}+$ Impact
I - .22(28.9) - 6.36 kips
Total live load shear

$$
=28,000+6,360=35,260 \text { lbs. }
$$

Total shear;
$S=$ deadload shear + live load shear $+I$
$S=16,200$ * $35,260 \mathrm{~s} / 51,460$ Lbs.
. \.
.
-

$=$

$$
\leftarrow
$$

Stringers (cont.)

By taking each load and finding the deflection for it and adding them all together the total live load defflection can be found.

If point (x) is to the left of the load considered we use;

$$
\Delta=\frac{p_{0}}{6 \operatorname{EII}}\left(1^{2}-x^{2}-b^{2}\right)
$$

If point (x) is to the right of the load considered we use; $\Delta=\frac{\mathrm{Pb}}{6 \operatorname{EII}}\left[\begin{array}{c}\frac{1}{b}(x-a)+\left(12-b^{2}\right) x-x^{3} \\ p\end{array}\right]$

Load A;

$$
\begin{array}{ll}
a=89.5 \text { in. } & b=481.5 \mathrm{in} . \\
1=571.0 \text { in. } & x=285.0 \mathrm{in.}
\end{array}
$$

$\Delta A=\frac{4,000}{}=\frac{481.5}{6 x 30 \times 10^{-} \times 6699 \times 571}\left[\frac{571 \$ 286-89.5)^{3}+(5712-481.52) 285-(286)^{3}}{481.5}\right]$
$\Delta_{A}=.0346$ inches
Load B;

$$
a=258.0 \text { in. } \quad b=313.0 \mathrm{in}
$$

$1=571.0$ in. $\quad x=285.0$ in.
$\Delta_{B}=\frac{16,000 \times 313}{6 \times 30 \times 100 \times 6699 \times 571}\left[\frac{571}{313}(285-258)^{3}+\left(57 I^{2}-313^{2}\right) 285-(285)^{3}\right]$
$\Delta_{B}=.304$ inches

Stringers (cont.)

$$
\begin{aligned}
& \text { Load C; } \quad b=145.5 \mathrm{in} . \quad 1=571.0 \mathrm{in} . \\
& x=285.0 \text { in. } \\
& \Delta c=\frac{16,000 \times 145.5 \times 285}{6 \times 30 \times 10^{0} \times 6699 \times 571}\left((5712)-(285)^{2}-(145.5)^{2}\right) \\
& \Delta c=.216 \text { inches } \\
& \text { Total }=\Delta_{A}+\Delta_{B}+\Delta_{C}=.0346+.304+.216 \\
& \Delta=.5546 \text { inches } \\
& \text { plus } 22 \% \text { for Impact } \\
& \Delta=.5546+(.5546 \times .22)=.5546+.182=.6766 \text { inches } \\
& \text { Allowable deflection equals } \frac{1}{800} \text { of the japan as given } \\
& \text { as specifications on plans. } \\
& \frac{1}{800} \times 571 \text { in. }=\frac{571}{800}=.714 \text { inches } \\
& \text { A 33" WF 130\# beam io the smallest beam aha will give } \\
& \text { a deflection that will not exceed the specifications. }
\end{aligned}
$$

Diaphragms

Specifications:
M.S.H.D. Spec. 38;

The forces due to wind and lateral vibrations shall consiat of a horisontal moving lead equal to 30 pounde per equare foot on one and one-half times the area of the etructure as aeen in elevation, including the floor system and railings and on one-half the area of all trusses and girders in excess of two in the apan.
M.S.H.D. Spec. 92;
(a) Size of rivets; Rivets shall be of the size specified but generally shall be $3 / 4$ inch or $7 / 8$ inch in diameter.
(b) Pitch of rivets; The minimun distance betweencenters of rivets shall be three times the diameter of the rivets but preferably shall be not less than the followings

For 3/4 inch diameter rivets -- 2-1/2 inches
M.S.H.D. Spec. 124;

Diaphragms shall be provided at the third points of all I beans span of forty feet or more.
M.S.H.D. Spec. 123;

Lateral, longitudinal and transverse bracing shall be composed of angles or other shapes and shall have riveted connectiond.

Diaphragme (cont.)
M.S.H.D. Spec. 126;

The end connections angles of floorbeams and stringers shall be not less than $3 / 8$ inch in finished thickness.

Designs

Area of structure as seen in elevation;

7.916×50	$=395$ sq. ft.
1.5×395	$=594$ sq. ft.
$.5 \times 7 \times 2.75 \times 48.4$	$=466$ sq.ft.
tetal effective area	1060 sq. ft.

Moving lead;

30 Ibs. $x 1060$ sq. ft. $=31,800$ Ibs.

Area required (end diapiram);
$\frac{31,800}{18,000}=1.77$ sq. inches.
Area furnished;
Area of $2<3^{n} \times 3^{n} \times 3 / 8^{n}=4.228 q$. inches

The intermediate diaphragms will not be checked as they will meet all of the nessary specifleations provided by the M.S.H.D. for depth of web, size of angles, pitch of rivets, depth of hitch angles, and muber of stiffeners, because the design is the same and the Ioad will be less.

Abutments

Case I -- No superstructure load or surcharde;

Earth $w_{e}=100$ lbs per cu. ft.

$$
\begin{aligned}
& 0=33^{\circ} 40^{\prime}=\tan ^{-1} 2 / 3 \text { (earth on earth) } \\
& \delta=22^{\circ} 00^{\prime}=(\text { earth on concrete) }
\end{aligned}
$$

Foundation pressure

$$
\mathrm{p}=.4,100 \mathrm{psf}(\max)
$$

$w t$. of concrete $w_{c}=150$ lbs. per cu. ft.

$$
\begin{array}{ll}
f_{c}^{\prime}=3000 \mathrm{psi} & f_{c}=1350 \mathrm{psi} \\
v_{c}=40 \mathrm{psi} & R=248 \\
f_{s}=18000 \mathrm{psi} &
\end{array}
$$

1

$$
\because 1
$$

Abutments (cont.)

$$
\begin{aligned}
& p=w h \times \frac{1-\sin 0}{1+\sin 0}=100 \mathrm{~h} \times \frac{1-0.554}{1+0.554}=28.7 \mathrm{~h} \\
& p_{1}=28.7 \times 15.73=452 \mathrm{psf} \\
& P=\left(\frac{452}{2}\right) \times 15.73=3560 \mathrm{lbs} . \\
& \times=\frac{15.73}{2}=5.24 \mathrm{ft} . \\
& M_{O T}=3560 \times 5.24=18680 \mathrm{ft} .-\mathrm{bls} .
\end{aligned}
$$

Base pressures; moments about toe;
$W_{1}=2.5 \times 9.75 \times 150=3660 \mathrm{lbs} ; \quad x \frac{9.75}{2} \quad=17820 \mathrm{ft} .-1 \mathrm{bs}$.
$W_{2}=2.33 \times 13.23 \times 150=4630 \mathrm{lbs} ; x\left(3.5-\frac{2.33}{2}\right)=20350 \mathrm{ft} .-1 \mathrm{bs}$.
$W_{3}=3.917 \times 13.23 \times 100=5170$ lbs; $x\left(5.834-\frac{3.917}{2}\right)=40300 \mathrm{ft},-1 \mathrm{bs}$.

$$
\sum W=13460 \text { lbs. } \quad \mathbf{M}_{R}=78470 \text { ft.-Ibs. }
$$

Location of resultant;

$$
\begin{aligned}
& x=\frac{M_{R}-M_{0 T}}{\sum W}=\frac{78470-18680}{13460}=4.44 \mathrm{ft} . \text { from toe } \\
& -\frac{9.75}{2}-4.44=.43 \text { to left of center }
\end{aligned}
$$

Toe and heel pressures;

$$
\begin{aligned}
& p=\frac{W}{A} \pm \frac{W}{1}=\frac{T}{A}\left(1 \pm \frac{6 e}{d}\right)=\frac{13460}{9.75}\left(1 \pm \frac{6 \times, 43}{9.75}\right) \\
& p=\left\{\begin{array}{l}
1380+366=1746 \text { pap toe } \\
1380-366=1014 \mathrm{pef} \text { heel }
\end{array}\right.
\end{aligned}
$$

Saftey factors;

$$
\begin{aligned}
& \text { overturning s.f. }=\frac{M_{R}}{M_{o r}}=\frac{28470}{18680}=4.20 . k . \\
& \text { sliding } \\
& \text { s.f. }=\frac{\tan \delta}{P_{h}}=\frac{13460 \times 0.40}{3560}=1.520 . k .
\end{aligned}
$$

Abutments (cont.)

Check design of heel section;

$\frac{732}{9.75}=\frac{x}{3.916}$
$x=293 \mathrm{psf}$
$1914+293=1307 \mathrm{psf}$
$F=3.916 \frac{(932+639)}{2}=3090 \mathrm{lbs}$.
$y=\frac{3.916}{3} \frac{(932+2 \times 639)}{932+639}=1.835 \mathrm{ft}$.
Max Shear and Moment on Section AA;
$\mathrm{W}_{3}=-5170 \mathrm{lbs} ; x 1.958=-10,100 \mathrm{ft},-1 \mathrm{bs}$.

$d=\frac{v}{v j b}=\frac{2080}{40 \times 7 / 8 \times 12}=4.95$ inches.
$d=\sqrt{\frac{M}{\mathrm{Rb}}}=\sqrt{\frac{4250}{248}}=4.14$ inches
d furnished $=27.0$ inches
$R=\frac{M^{2}}{b d^{2}}=\frac{4250 \times 12}{1 \times(27)^{2}}=5.9<248 \therefore \mathrm{f}_{\mathrm{c}}<1350 \mathrm{psi}$
$A_{s}=\frac{M}{f_{s j d}}=\frac{4250 \times 12}{18000 \times 7 / 8 \times 27}=.12 \mathrm{sq} . \mathrm{inl} / \mathrm{ft}$.
$A_{s}=$ furnished $=.44 \mathrm{sq}$. in. $/ \mathrm{ft}$.

Abutments (cont.)

Check design of toe section;
$\frac{732}{9.75}=\frac{x}{3.5}$
x - 263 psf
$F=3.5 \frac{(1108+1371)}{2}=4330 \mathrm{lbs}$.
$y=\frac{3.5}{3} \frac{(1108+2 \times 1371)}{1108+1371}=1.855 \mathrm{ft}$.
Max Shear and Moment on Section DD;

$$
V=4330 \mathrm{lbs} .
$$

$\mathbf{M}=4330 \times 18.55=8050 \mathrm{ft} .-1 \mathrm{lbs}$.
$d=\frac{v}{\nabla j d}=\frac{4330}{40 \times 7 / 8 \times 12}=10.3$ inches
$d=\sqrt{\frac{\mathrm{M}}{\mathrm{Rb}}}=\sqrt{\frac{8050}{248}}=5.92$ inches
d furnished $=27.0$ inches

$$
\begin{aligned}
& R=\frac{M}{b d^{2}}=\frac{8050}{1 \times(27)^{2}}=11.2<248 \therefore \mathrm{I}_{\mathrm{c}}<1350 \mathrm{pal} \\
& A_{\mathrm{s}}=\frac{8050 \times 12}{18000 \times 7 / 8 \times 27}=.245 \mathrm{sq} . \text { in. } / \mathrm{ft} .
\end{aligned}
$$

A_{s} furnished $=.60$ eq. in./ft.

Abutments (cont.)
Check design of stem;

$\frac{458}{151728}=\frac{000}{13.24}$
$p_{D O}=381$ psf
$\mathrm{y}=\frac{13.24}{3}=4.41 \mathrm{ft}$.
Max Shear and Moment on Section DD;

$$
\begin{aligned}
& \mathrm{V}=\frac{13.24}{2}(381)=2530 \mathrm{lbs} \\
& \mathrm{~d}=\frac{2530}{12 \times 7 / 8 \times 40}=8.7 \text { inches } \\
& \mathrm{M}=2530 \times 4.41=11,200 \mathrm{ft} .-1 \mathrm{bs} . \\
& \mathrm{d}=\sqrt{\frac{M}{R b}}=\sqrt{\frac{11200}{248}}=6.72 \text { inches }
\end{aligned}
$$

$$
\mathrm{d} \text { furnished }=25.0 \text { inches }
$$

$$
R=\frac{M}{\mathrm{bd}^{2}}=\frac{11200}{1 \times(25)^{2}}=17.9<248 .: \mathrm{f}_{\mathrm{c}}<1350 \mathrm{psi}
$$

$$
A_{s}=\frac{M}{f_{s j d}}=\frac{11200 \times 12}{18000 \times 7 / 8 \times 25}=.317 \mathrm{sq} \mathrm{in./ft.}
$$

$A_{s}=$ furnished $=.79 \mathrm{sq}$. in./ft.

Abutments (cont.)

Case II -- Superstructure dead load and live load surcharge;

Superstructure dead load
steel $=63,380$ lbs slab $=188,000$ lbs railing and post $=12,990$ lbs total $=264,370$ lbs.
per abutment $=132,185$ lbs per ft. $=3,010$ lbs/ft.
L.I. surcharge $=\frac{32,000}{14 \times 6 \times 100}+.15\left(\frac{32,000}{14 \times 6 \times 100}\right)=4.38 \mathrm{ft}$.

Abutments(cont.)

$$
\begin{aligned}
& p=28.7 \mathrm{~h} \\
& \mathrm{P}_{1}=28.7 \times 23.88=686 \mathrm{psf} \\
& \mathrm{P}_{2}=28.7 \times 8.15=234 \mathrm{psf} \\
& \mathrm{P}=\frac{\left(\frac{686+234}{}\right) 15.73=7240 \mathrm{Ibs}}{2} \\
& x=\frac{15.73\left(\frac{686+2 \times 234}{3}\right.}{686+234}=6.56 \mathrm{ft} \\
& \mathrm{Mor}=7240 \times 6.56=47,500 \mathrm{ft.-1bs} .
\end{aligned}
$$

Base pressures; moments about toe;
$W_{1}=2.5 x 9.75 \times 150=3660$ lbs; x 9.75 s 17820 ft. 1 lbs .
$W_{2}=2.33 \times 13.23 \times 150=4630$ lbs; $x(3.5+2.33)=20350$ ft. $-1 b s$. $W_{3}=3.92 \times 23.88 \times 100=9360$ lbs; $x\left(5.834+\frac{3.977}{2}\right)=72900 \mathrm{ft}$. -1 bs .

$$
\sum \begin{aligned}
& W=30101 \mathrm{bs} ; \\
&=206601 \mathrm{bs} ;
\end{aligned} \quad x(3.5+1.17)=14050 \mathrm{ft}_{2}-1 \mathrm{bs}
$$

Location of Resultant;

$$
\begin{aligned}
& x=\frac{M_{R}-M_{e I}}{\Sigma W}=\frac{125120-47500}{20660}=3.76 \mathrm{ft} \text {. from toe } \\
& e=4.87-3.76=1.11 \text { to left of center }
\end{aligned}
$$

toe and hell pressures;

$$
\begin{aligned}
& p=\frac{1}{A}\left(1 \pm \frac{6 e}{d}=\frac{20660}{9.75}\left(1 \pm \frac{6 \times 1.11)}{9.75}\right.\right. \\
& p=\left\{\begin{array}{l}
2120+1450=3570 \text { psf toe } \\
2120-1450=670 \text { psi heel }
\end{array}\right.
\end{aligned}
$$

Saftey factors;
overturning seE. $=\frac{\mathrm{M}_{\mathrm{R}}}{\mathrm{H}_{0 T}}=\frac{125120}{47500}=2.64$
siding s.I. $=\frac{\text { D } \tan \phi}{P_{h}}=\frac{20660 \times 0.40}{7240}=1.14$

Abutments (cont.)

Check deaign of heel section;

Max Shear and Moment on section AA;

$$
\begin{aligned}
& \nabla_{3}=-9360 \mathrm{lbs} ; x 1.958=-18310 \mathrm{ft} .-1 \mathrm{bs} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { d } \frac{v}{v j b}=\frac{5940}{40 \times 7 / 8 \times 12}=14.1 \text { inches } \\
& d=\sqrt{\frac{M}{R b}}=\sqrt{\frac{13100}{248}}=7.26 \text { inches } \\
& \text { d furnished -. } 27.0 \text { inches } \\
& R=\frac{M}{\mathrm{Bd}^{2}}=\frac{13100}{1 \times(27)^{2}}=18<248 \therefore \mathrm{f}_{\mathrm{c}}<1350 \mathrm{psi} \\
& A_{E}=\frac{M}{f_{8} j d}=\frac{13100 \times 12}{19000 \times 7 / 8 \times 27}=.37 \mathrm{sq} . \text { in. } / f t \text {. }
\end{aligned}
$$

A_{E} furnished $=.44$ sq. in./ft.
;
-
$\cdot \cdot$ \square
\square -

Abutments (cont.)

Check design of toe section

Max Shear and moment on Section BB;
$V=9380$ lbs.
M $=9380 \times 2.065=19350$ ft.-Ibs.
$d=\frac{v}{v j b}=\frac{9380}{40 \times 7 / 8 \times 12}=22.3$ inches
$d=\sqrt{\frac{R}{R D}}=\sqrt{\frac{19350}{248}}=8.84$ inches
d furnished e 27.0 inches
$R=\frac{1}{b d^{2}}=\frac{19350}{1 \times(27)^{2}}$
$A_{8}=\frac{1}{\text { Ind }^{2}}=\frac{19350 \times 12}{18000 \times 7 / 8 \times 27}=.547 \mathrm{sq} \cdot \mathrm{in} . / \mathrm{ft}$.
A_{8} furnished $=.60 \mathrm{sq}$. in./ft.

Abutments (cont.)

Check design of stem;

$\frac{686}{23.88}=\frac{p_{00}}{21.44}$
Pop $=614$ psf
$y=\frac{13.24}{3} \frac{(614+2 \times 234)}{614+234}=5.64 \mathrm{ft}$.
Mas Shear and Moment on Section DD;

$$
\begin{aligned}
& \mathrm{V}=\frac{13.24}{2}(234+614)=5610 \text { lbs. } \\
& \mathrm{d}=\frac{5610}{12 \times 7 / 8 \times 40}=13.4 \text { inches } \\
& \mathrm{M}=5610 \times 5.64=31600 \text { ft. }-1 \mathrm{bs} . \\
& \mathrm{d}=\sqrt{\frac{\mathrm{M}}{\mathrm{RD}}}=\sqrt{\frac{31600}{248}=11.3 \text { inches }}
\end{aligned}
$$

$$
\text { d furnished }=25.0 \text { inches }
$$

$$
R=\frac{31600}{1 x(25)^{2}}=50.5<248 \therefore f_{c}<1350 \mathrm{psi}
$$

$$
A_{8}=\frac{M}{f_{8} j d}=\frac{31600 \times 12}{18000 \times 7 / 8 \times 25}=.89 \mathrm{sq} . \mathrm{in} . / \mathrm{ft} .
$$

A_{8} furnished $=.79$ sq. in. $/ f t$.

Abutments (cont.)

Case III -- Superstructure and live load - No surcharge;

Superstructure dead load
D.L. = 3010 lbs./ft.

Max L.L. per stringer = 29200 lbs 29200×9 stringers 263000 lbs L.L. $=\frac{263000}{44}=5990 \mathrm{lbs} . / \mathrm{ft} . \mathrm{I}(22 \$)=1,320 \mathrm{lbs} / \mathrm{ft}$.

Abutments (cont.)

$$
\begin{aligned}
& \mathrm{p}=28.7 \mathrm{~h} \\
& \mathrm{p}_{1}=28.7 \times 19.5=559 \mathrm{psi} \\
& \mathrm{p}_{2}=28.7 \times 3.77=108 \mathrm{paf} \\
& \mathrm{P}=\frac{(559+108) 15.73=5010 \mathrm{lbs}}{2} \\
& x=\frac{15.73}{3} \frac{(559+2 \times 108)}{559+108}=6.1 \mathrm{ft}
\end{aligned}
$$

$$
\mathrm{m}=5010 \times 6.1=30550 \mathrm{ft} .-1 \mathrm{bs} .
$$

Base pressures; Moments about toe;

Location of Resultant;

$$
x=\frac{M_{R}-M_{o T}}{\Sigma W}=\frac{145770-30550}{26260}=4.39 \mathrm{ft} \text {. from toe }
$$

$$
\text { e }=4.87-4.39=.48 \mathrm{ft} \text {. to left of center }
$$

Toe and hell pressures;

$$
\begin{array}{r}
p=\frac{W}{A}\left(1 \pm \frac{60}{d}=\frac{26260}{9.75}\left(1 \pm \frac{6 \times .48)}{9.75}\right)\right. \\
p=2700+796=3496 \text { par toe } \\
2700-796=1904 \text { pst heel }
\end{array}
$$

Saftey factors;

$$
\begin{array}{ll}
\text { overturning } & \text { s.f. }=\frac{M_{R}}{M o r}=\frac{145770}{30550}=4.870 . k . \\
\text { sliding } & \text { s.f. }=\frac{\text { tang }}{M_{h}}=\frac{26260 \times 0.40}{5010}=2.090 . k .
\end{array}
$$

Abutmente (cont.)
Check design of hell section; ${ }^{1.968}{ }^{-} W_{3}=7650 *$

x - 639 psf
$1904+639=2543 \mathrm{psf}$
$F=3.916 \frac{2168+1529)}{2}=74201 \mathrm{bs}$.
$y=\frac{3.816}{3} \frac{(2168+8 \times 1529)}{2168+1529}=1.845 \mathrm{ft}$.
Max Shear and Moment on Section A A;
W3 = -7650 Ibs; $x 1.958=-15000$ ft.-Ibs.
earth $P=+7420$ 1bs; $x 1.845=+13700 \mathrm{ft}_{\mathrm{t}}-1 \mathrm{bs}$.
$V=230$ Lbss M $=1300 \mathrm{ft}$.-Ibs.
The shear and moment is so small there will be no med to check for (d) and A_{8} in this case for the heel section.

Abutments (cont.)
Check design of toe section;

$3496+572=2924$ psf
$P=3.5 \frac{(3121+2549)}{2}=10100 \mathrm{lbs}$.
$y=\frac{3.5}{3} \frac{(2549+2 \times 3121)}{2549+3121}=1.840 \mathrm{ft}$.
Max Shear and Moment on Section BB;
V $=10100 \mathrm{lbs}$
M. $10100 \times 1.840=18600 \mathrm{ft} .-1 \mathrm{bs}$.

- $\frac{v}{\nabla j b}=\frac{10100}{40 \times 778 \times 12}=24.1$ inches
$d=\sqrt{\frac{Y}{R D}}=\sqrt{\frac{18600}{248}}=8.67$ inches
d furnished 27.0 inches
$R=\frac{18600}{1 \times(27)^{2}}=.526 \mathrm{sq} \cdot \mathrm{in} . / \mathrm{ft}$
$A_{B}=\frac{M}{\mathrm{I}_{2} \mathrm{Md}^{2}}=\frac{18600 \times 12}{18000 \times 7 / 8 \times 27}=.526 \mathrm{sq} .1 \mathrm{n} . / \mathrm{ft}$.
A_{E} furnished -. 60 eq. in./ft.
\square
-

-

- . .
-
-

;

- -
-

Abutments (cont.)

Check design of stem;

$\frac{559}{19.5}=\frac{100}{17.06}$
$P_{D D}=489$ psI
$y=\frac{13.24}{3} \frac{(489+2 \times 108)}{189+108}=5.23 \mathrm{ft}$.
Max Shear and Moment on Section D D;

$$
\begin{aligned}
& v=\frac{13,24}{2}(108+489)=39301 \mathrm{bs} . \\
& \text { d } \frac{3930}{12 \times 7 / 8 \times 40}=9.36 \text { inches } \\
& \text { M - } 3930 \times 5.23=20,500 \mathrm{ft.-1bs1} \\
& \text { d. } \sqrt{\frac{M}{K D}}=\sqrt{\frac{20500}{248}}=9.1 \text { inches } \\
& \text { d furnished }=25.0 \text { inches } \\
& R=\frac{1}{b_{\alpha}}=\frac{20500}{1 X(25)^{2}}=32.8<248 \therefore I_{c}<1350 \mathrm{psi} \\
& A_{6}=\frac{1}{\mathrm{I}_{8} j d}=\frac{20500 \times 12}{18000 \times 7 / 8 \times 25}=.626 \mathrm{sq} \cdot \mathrm{in} . / \mathrm{ft} \text {. }
\end{aligned}
$$

As furnished = . 79 sq. in./ft.

Abutments (cont.)

Cane IV -- Superatructure dead load - Ho aurcharge L.L. or backwall friction.

Superstructure dead load;
3,010 lbe./ft. of wall
With no backwall friction will asaum no horizontal
force therefore there will be no moment cause overturning.

Abutments (cont.)

Base presaures; moments about toe;

$\nabla_{1}=2.5 \times 9.75 \times 150$	- 3660 Ibs 3	$\times 9.75$	= 17820 ft .-lbs.
$\mathrm{w}_{2}=2.33 \times 13.23 \times 150$	= 4630 Ibs;	$x(3.5-2.33)$	=20350 ft.-lbs.
$W_{\text {\% }}=3.92 x$ 13.23x 100	= 5170 lbss	$x(5.834-3.81$) 40300 ft.-Ibs.
-	e 3010 2bs;	$x(3.5-1.1$	$=14050 \mathrm{ft}$ - -Ibe.
	z16470 lbs.		92520

Location of Resultant;

$$
\begin{aligned}
& x=\frac{M-M}{w}=\frac{78470-0}{13460}=5.82 \mathrm{ft} \text { from toe } \\
& e=5.82-4.87=.95 \mathrm{ft} \text { to right of center }
\end{aligned}
$$

Toe and heel pressure;

$$
\begin{aligned}
p & =\frac{1}{A}\left(1=\frac{6 e}{d}\right. \\
p & =\frac{13460}{9.75}\left(1=\frac{6 x, 96}{9.75}\right) \\
1380 & =786=2166 \text { pet heel } \\
1380 & =786=594 \text { pef toe }
\end{aligned}
$$

As there is no horizional force there will be no silidng or overturning, therefore there will be no eafety factors to considered.

The toe and heel section will not twe checked because this is not a maximum case as can be seen. Also as there is no horizonal force there will be no action on the vertieal stem.
-

Conclusion

It has been found that the design of the bridge in this thesis will meet all the specifications and standards that are required by the Michigan State Highway Department.

The analysis of this bridge shows that in all parts the bridge is overdesigned. This is true in some parts more than in others. The bridge railings and posts show this, as they are designed by standard methods, which are more for looks than for any true loading. This is to present a more appealing appearance to the public using the bridge. Also, thesavings in theuse of the standard design, rather than separate designs for each bridge, are far greater than the savings in material and labor. In the other parts the tendency is to go to a larger section to a certain percent, rather than to a smaller section, which would only be underdesigned by one or two percent. This is because with the advancement in machines, the bridge may be called upon to sometimes withstand greater loads than for which they are designed.

