WUTOMATIC CALCULATION OF
 DISTHLATION TOWER DRGIGN

Thasis fat the Degroe of Ni. S
MGiGAN STATE COHECG
Kannoth Lency Turbin
1851

By

A TESIS
Submitted to the School of Graduate Studies of Lichigan
State College of Agriculture and hpplied Science
in partial fulfillment of the requirements
for the degree of
hister of Scilnce

Department of Chemical Ingineering
1951

aitlo agn 1
Cable of contants 2
ichnorledgoments 3
Intrunuction 4
Iferivition of Iquations 8
Romarciatine 24
Calculiaion lethod 15
Cparationcl irincirion of the IN Calculating Fianch, Type 602ad 27
Adeptation of tho Calcilations to the Galcilatieg liaching 23
Setailod Prooolure for forforger; the culenation 32
f.ppendix: Samio problem 43
ifst of interctiro citol 55

auTVMLDCEMEN

The author is dooply indebted to Professor J.5. Torrell for his constren advico and oncour agament. Si:cors thuyb ary also due mentors of the Lanivieg orsice of the liu' Corporation for ilteratire and assistance, and to Oldonobile IVis:on Genersl :otore Corporatinn and Fohlert Corporation for the use of IM machines.

I. INRODCTIOH

Because the caloulations required in the design of distillation colums for mitioomponent mixtures are todious and tise consuming, it would be to the edvantage of the chomiosl engineer to have available a eystem for automatioally perforning these oalculations. The development of cuch a system was undertaken, and the results are herewith presented.

It was desired to use a computational method that could be carried out without the exeroise of engineering judgment after a preliminary table or data had been propared.

There were tro alternative methods of approach to this problems the first was to adapt one of the calculation methods presented by other authore to autometic caloulating machineas the escond was to develop, if possible, a calculation method particularly suited to automatio calouletion.

Of the former, probubly the most viliely used is the lewis und IIStheson method (1). It was believod that if this mothod were used, considerable trouble would arise in attempting to perform automatiouly the matohing of compositions above and below the feed tray, particulariy If ther were several distributod components.

Opler and Heits (2) have made use of the IB:i 602 Caloulating Punch for performing the tray to tray caloulations of the Lewis and liatheson mothod. They report the solution of four corponent eysteme with mole fractions calculated to four decimal places.

To aroid the trouklesome matohing of concentrations at the feed tray, It was deoided to use the method of determining the eoparation that would be obtained from a given number of trays, feed coaposition and oondition, feed tray location, and reflux ratio. This method might asen to be less flexdble than the determination of the number of trays required to effect a efven eeparation with given refluse This objection 13 not valid, homever, if thia rigorous calculation is nond in conjunction with quick, approximate method for dotermining the relation betwoen the number of platos and the reflux ratio. Such a correlation has been given in a seoent article by Lonnell and Cooper (3) In which they make use of Underwood's (4) mothod for obtaining minimin reflux.

By fixing the number of tray and the food tray location, it is also posaible to make cellable dotermination of the best feed trey position by making a sories of calculations with the foed entering on different trays.

Among the calculation methods based on 8 fixed number of plates, and a fixed reflux ratio are those that have been presented by Thiole and Coddes (5), Elumel (6), and Edralstar (7).

Of these, the Hummel method employ a Eraphical presentation of X of a reference component plottod afrainat the numicr of plates as a basis for computations. This would obviously be uhcuitakle for autoratic caloulation.

In the Iniele and Gedies mothod, tray by tray ociculatione are based on an assumed temperature for each tray. The results from the enriching and axhausting eections are meshod at the foed tray, and the composition is found for each tray. Using these conpositions, tio assumed temperatures are checked and reassumed if in error.

The method proposed by Edmister makes use of overall equations for both seetions of a column. These equations are based on the use of absorptien and atripping factors, $L / K Y$ and $K V / h_{0}$ Aftar these equations axe evalmated the results must bo meshod at the food tray.

The major dramback to the use of either the Thisle and Gedies method or the Edmister method are that both require feed tray meshing after the initial ealculations, and that both fail to provide a simple, systametie proendure to follow for the solution of the probleme

It was decided to use method by which automatio oulculation could more easily be performed.

The assumptions of constant molal overfiow and neglicible heat lose to the aurroundings are aado.

The first part of the darivation which follows is similar to that given by Edmistor in the reference citod, excopt that in this case a total oondenser is used instead of partial condenser. The outstanding festure of the derivation is equation (42) which relates the composition of the distiliate to the quantity of distillate, the number of trays in the colnam the equilibrium conditions on each tray in the column, the position of the feed tray, the feed conposition and tharmul condition, and the reflux ratio.

Whan the distillate coryosi fion has buen obtained, tray by tray calculations are made dom the torer to the still.

The coloulating machins closen for this work wes the Lis Calculating Punoh, Type 602-A. 'ahis machine wis chosen becuaco it is one of the machines, along with the lype 62 machine, comoily found in accounting depurim
mants. It has graater atorage capacity than the 602 machine, and its programine is more flexible.

Pith the present wiring of the control panels, a problem having up to twelve components can be oiloulated, whth nole fractione corputed to Ife decimals. It is planned to alter the ririrg to give mole rrections to eoven or eight decimal places since this procodure recuires an accusate value for the concontration of vanishing comporionts in the distillate and bottoms procuct.

```
II. DELIVATLOM OF EQUTIUN:S
```

Iy a material belance for any componerit ait the top of the tower

$$
\begin{equation*}
\nabla_{1} y_{1}=\Sigma_{x} x_{d}+D x_{d} \tag{1}
\end{equation*}
$$

Hearranging and introducing π_{2}

$$
\begin{align*}
& y_{1}=\frac{L_{1} x_{d}}{V_{2}}+\frac{D x_{d}}{\nabla_{2}} \tag{2}\\
& x_{1}=x_{d}\left(\frac{I_{p}+D}{V_{2} V_{2}}\right) \tag{3}
\end{align*}
$$

Ey a material bulance around the top of the tover and betweon the first and second trays

$$
\begin{equation*}
\nabla_{2 y_{2}}=L_{2} x_{1}+i x_{d} \tag{4}
\end{equation*}
$$

Rearranying and introducing K_{2}

$$
\begin{gather*}
y_{2}=\frac{L_{1} x_{1}}{V_{2}}+\frac{D x_{1}}{V_{2}} \tag{5}\\
x_{1}=\frac{\nabla_{2} z_{2}}{I_{2}}\left(x_{2}-\frac{D_{x_{1}}}{\nabla_{2} \dot{V}_{2}}\right) \tag{6}
\end{gather*}
$$

Combining equations (3) and (6)

$$
\begin{gather*}
\frac{V_{2} V_{1} x_{2}}{L_{1}}-\frac{D x_{d}}{I_{2}}=x_{d}\left(\frac{L_{0}+D}{V_{1} K_{2}}\right) \tag{7}\\
x_{2}=\frac{D_{x_{1}}}{V_{2} K_{2}}+x_{d}\left(\frac{I_{1} L_{1}}{V_{1} K_{1} V_{2}^{\prime} V_{2}}+\frac{D L_{1}}{V_{1} K_{2} V_{2} K_{2}}\right) \tag{2}
\end{gather*}
$$

is a matorial bulanco around tio top of the torrer and botroen the soco:d and third trays and introduing R_{3}

$$
\begin{equation*}
V_{3} J_{3}=L_{2} x_{2}+D x_{d} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
x_{2}=\frac{V_{3} K_{3} x_{3}}{I_{2}}-\frac{D x_{1}}{I_{2}} \tag{10}
\end{equation*}
$$

Combining equations (8) and (10)

$$
\begin{gather*}
\frac{V_{3} K_{3} x_{3}}{I_{2}}=\frac{D_{1}}{I_{2}}+\frac{D_{1}}{V_{2} K_{2}}+x_{d} \frac{L_{2} J_{2}}{\nabla_{2} K_{1} V_{2} K_{2}}+\frac{D I_{2}}{V_{1} K_{2} V_{2} K_{2}} \tag{22}\\
\frac{x_{3}}{x_{4}}=\frac{D}{V_{3} K_{3}}+\left(\frac{L_{2}}{V_{2} K_{2}}\right)\left(\frac{D}{V_{3} K_{3}}\right)+\left(\frac{L_{1}}{V_{1} K_{2}}\right)\left(\frac{L_{2}}{V_{2} K_{2}}\right)\left(\frac{L_{2}}{V_{3} K_{3}}\right)+\left(\frac{L_{2}}{V_{1} K_{1}}\right)\left(\frac{I_{2}}{V_{2} K_{2}}\right)\left(\frac{D}{V_{3} K_{3}}\right) \tag{22}
\end{gather*}
$$

Rearranging and substituting A for $L / K V$ and y for $K_{3} X_{3}$

$$
\begin{equation*}
y_{3} V_{3}=x_{d}\left[D\left(A_{1} A_{2}+A_{2}+1\right)+I_{1} A_{1} A_{2}\right] \tag{13}
\end{equation*}
$$

Rowriting in general form

$$
\left(V_{y}\right)_{n+1}=x_{d}\left[D\left(A_{1} A_{2} \cdots \cdot A_{n}+A_{2} A_{3} \cdot \cdots A_{n}+\cdots \cdot+A_{n}+1\right)+I_{r}\left(A_{1} A_{2} \cdot \cdots A_{n}\right)\right]
$$

Fior convenience, these two functions of A are designated as followss

$$
\begin{align*}
& I_{2}(A)=A_{2} A_{2} \cdot \cdot A_{n}+A_{2} A_{3} \cdot \cdots A_{n}+\cdots \cdot+A_{n}+1 \tag{15}\\
& \mathbf{I}_{2}(A)=A_{1} A_{2} \cdot A_{n} \tag{16}
\end{align*}
$$

Equation (14) is then written

$$
\begin{equation*}
\left(V_{y}\right)_{n+2}=x_{d}\left[D f_{1}(A)+L_{r} f_{2}(A)\right] \tag{17}
\end{equation*}
$$

By a material balance for any component at the bottom of the tower

$$
\begin{align*}
& L_{1} x_{1}=\nabla_{8} y_{0}+B x_{0} \tag{28}\\
& x_{1}=\frac{\nabla_{g} y_{8}}{L_{1}}+\frac{B x_{8}}{L_{1}} \tag{29}
\end{align*}
$$

By a material balance around the bottom of the column and between the first and second trays

$$
\begin{equation*}
\nabla_{1} y_{1}=L_{2} x_{2}-B x_{8} \tag{20}
\end{equation*}
$$

Introducing K_{2}

$$
\begin{equation*}
x_{1}=\frac{L_{2} x_{2}}{V_{1} K_{1}}-\frac{B x_{9}}{V_{1} K_{1}} \tag{21}
\end{equation*}
$$

Combining equations (19) and (21)

$$
\begin{align*}
& \frac{L_{2} x_{2}}{V_{1} K_{1}}=\frac{B x_{8}}{V_{2} K_{1}}+\frac{\nabla_{5} V_{8}}{L_{1}}+\frac{B x_{1}}{L_{1}} \tag{22}\\
& x_{2}=\frac{B x_{s}}{L_{2}}+\frac{V_{1} K_{2} V_{2} J_{8}}{L_{1} L_{2}}+\frac{\nabla_{1} K_{1} B x_{8}}{L_{1} L_{2}} \tag{23}
\end{align*}
$$

By a material balance around the bottom of the column and between the second and third trays

$$
\begin{equation*}
I_{3} x_{3}=V_{2} y_{2}+B x_{8} \tag{24}
\end{equation*}
$$

Rearranging and introducing K_{2}

$$
\begin{equation*}
x_{2}=\frac{L_{3} x_{3}}{\nabla_{2} K_{2}}-\frac{B x_{n}}{\nabla_{2} K_{2}} \tag{25}
\end{equation*}
$$

Combining equations (23) and (25)

$$
\begin{equation*}
\frac{L_{3} x_{3}}{\nabla_{2} K_{2}}=\frac{B x_{9}}{V_{2} K_{2}}+\frac{B x_{8}}{L_{2}}+\frac{V_{1} K_{1} V_{8} Y_{9}}{L_{2} L_{2}}+\frac{V_{2} K_{1} B x_{1}}{L_{1} I_{2}} \tag{26}
\end{equation*}
$$

Multiplying by $\nabla_{2} R_{2}$ and substituting $K_{g} x_{s}$ for J_{s}

$$
\begin{equation*}
L_{3} x_{3}=B x_{8}+\left(\frac{V_{2} K_{2}}{I_{2}}\right) B x_{3}+\left(\frac{V_{1} K_{2}}{I_{1}}\right)\left(\frac{V_{2} K_{2}}{I_{2}}\right) \nabla_{8} K_{8} x_{8}+\left(\frac{V_{1} K_{1}}{L_{1}}\right)\left(\frac{V_{2} K_{2}}{L_{2}}\right) B x_{8} \tag{27}
\end{equation*}
$$

Rearranging and substituting S for $V K / L$

$$
\begin{equation*}
L_{3} x_{3}=x_{3}\left[B\left(S_{1} S_{2}+S_{2}+1\right)+v_{s} K_{s}\left(S_{1} S_{2}\right)\right] \tag{28}
\end{equation*}
$$

Rewritten in general form
$(L x)_{m+1}=x_{a}\left[B\left(S_{1} S_{2} \ldots S_{m}+S_{2} S_{3} \ldots S_{m}+\ldots .+S_{m}+1\right)+V_{s} K_{s}\left(S_{1} S_{2} \ldots S_{m}\right)\right]$

The two funotions of S are designated as follows:

$$
\begin{align*}
& f_{1}(s)=s_{1} S_{2} \cdot \cdots s_{m}+s_{2} S_{3} \cdot \cdots s_{m}+\cdots \cdot+s_{m}+1 \tag{30}\\
& f_{2}(s)=s_{1} S_{2} \cdot s_{m} \tag{31}
\end{align*}
$$

Equation (29) can then be written

$$
\begin{equation*}
(I x)_{m+I}=x_{a}\left[B I_{1}(s)+\nabla_{s} K_{a} I_{2}(s)\right] \tag{32}
\end{equation*}
$$

Since $\mathrm{Lx}=\mathrm{Vy} / \mathrm{S}$, equation (32) can be rewritten

$$
\begin{equation*}
\left(\nabla_{y}\right)_{m+1}=S_{m+1} x_{s}\left[B f_{1}(S)+\nabla_{s} K_{s} f_{2}(S)\right] \tag{33}
\end{equation*}
$$

If the nth tray is immediately above the feed trey, and the eth tray is immadiately below the feed tray, the expressions $n+1$ and $m+1$ will both designate the feed trey, and equations (17) and (33) may be equated.

$$
\begin{equation*}
x_{d}\left[D f_{1}(A)+L_{1} f_{2}(A)\right]=S_{f} x_{A}\left[B f_{1}(S)+\nabla_{s} X_{g} f_{2}(S)\right] \tag{34}
\end{equation*}
$$

The number of variables in equation (34) can be reduced by use of the following identitiess

$$
\begin{align*}
& I_{n} / V_{n}=R / R+1 \tag{35}\\
& I_{r}=I_{n}=R D \tag{36}\\
& V_{n}=D(R+1) \tag{37}\\
& B=1-D \tag{38}\\
& \nabla_{m}=C \nabla_{n} \tag{39}
\end{align*}
$$

Equation (34) may now be writton

$$
\begin{equation*}
x_{1}\left[D f_{1}(A)+R D f_{2}(A)\right]=S_{f} x_{3}\left[(1-D) f_{1}(S)+C D(R+1) R_{B} f_{2}(S)\right] \tag{40}
\end{equation*}
$$

Substituting for x_{a} by the use of the equation

$$
\begin{equation*}
x_{s}=\frac{F x_{p}-D x_{d}}{1-D} \tag{41}
\end{equation*}
$$

and solving for x_{d}, equation (40) beoomes

To simplify equation (42) substitute the following termss

$$
\begin{align*}
& a=f_{1}(A) \tag{43}\\
& b=R f_{2}(A) \tag{44}\\
& c=S_{f} f_{1}(S) \tag{45}\\
& d=(R+1) C X_{a} \quad S_{f} f_{2}(S) \tag{46}
\end{align*}
$$

For this caloulation take as a basis $Y=1$.
Equation (42) becomes

$$
\begin{equation*}
x_{d}=\frac{x_{p} a+x_{f}(d-c) D}{(a+b+c) D+[d-(a+b+a)] D^{2}} \tag{47}
\end{equation*}
$$

For furtber simplification make the following substitutionss

$$
\begin{align*}
& e=x_{f} e \tag{48}\\
& f=x_{f}(d-c) \tag{49}\\
& g=a+b+c \tag{50}\\
& b=d-(a+b+c) \tag{51}
\end{align*}
$$

Equation (47) can now be written

$$
\begin{equation*}
x_{d}=\frac{e+\varepsilon D}{E D+b D^{2}} \tag{52}
\end{equation*}
$$

Por the more volatile components the determination of x_{s} by equation (41) is not advisable due to the small difference betwoen $F x_{F}$ and D x_{d}. For thie reason an equation derived from equation (40) is used.

$$
\begin{equation*}
x_{B}=\frac{x_{d} D(a+b)}{a+D(d-c)} \tag{53}
\end{equation*}
$$

The following series of equations obtsined from miterial balances give the quantity of any component in the liquid stream leaving a plate In the upper seation, the feed plate, and a plate in the lower section respectively.

Upper sections

$$
\begin{align*}
& (L x)_{1}=A_{1} D x_{d}(R+1) \tag{54}\\
& (L x)_{2}=A_{2}\left[(L x)_{1}+D x_{d}\right] \tag{55}\\
& (L x)_{3}=A_{3}\left[(L x)_{2}+D x_{d}\right] \tag{55a}\\
& (L x)_{n}=A_{n}\left[(L x)_{n-1}+D x_{d}\right] \tag{55b}
\end{align*}
$$

Feed plates

$$
\begin{equation*}
(L x)_{L}=L / s_{\rho}\left[(L x)_{n}+D x_{d}\right] \tag{56}
\end{equation*}
$$

where a is the plate above the foed plate.
Lower section:

$$
\begin{align*}
& (L x)_{m}=2 / s_{m}\left[(L x)_{2}-B x_{8}\right] \tag{57}\\
& (L x)_{2}=1 / s_{2}\left[(L x)_{3}-B x_{8}\right] \tag{57a}\\
& (L x)_{1}=1 / s_{1}\left[(L x)_{2}-B x_{8}\right] \tag{57b}
\end{align*}
$$

The composition of the liquid leaving each plate can be readily obtained when the quantity of each component present has been obtained. For a component "a" on the nth tray

$$
\begin{equation*}
x_{a, n}=\frac{(L x)_{a, n}}{\sum(L x)_{n}} \tag{58}
\end{equation*}
$$

Liomenclature

$L=$ mols of liquid loaving a pleto
V = mole of vacor leaving a plate
$F=$ mols of foed
$D=$ siols of distillate
$B=m o l s$ of bottom product
$x=m o l$ iraction of any component in ilquid phase
$y=$ mol fraction of ary component in vapor phase
n = Reilux ratio L / D
$K=y / x$
$A=1 / \pi \%$
$S=1 / A=K V / L$
$C=V_{m} V_{n} \quad C$ is defined by the themen condition of the feede
Subscriptsi $C=1$ when food is a liquid at its boiling point.
$r=r e f l u x$
$\mathbf{d}=$ distillato
$0=$ atill
$n=$ tray numbor in enriching section numbored from conderser to feed tray
$m=$ tray number in exhacting eoction numbered from still to foed trey
$F=$ foed
$\mathbf{I}=$ feed tray

III. CALCulation method

Briefly, this calculation is based on a series of successive approximations of conditions in the tower, with the results of one calculation being used as the basis for the succeeding calculation. In any trial, if the assumed conditions are correot, they will be identical to the conditions calculated in that trial.

The first stop is to make a preliminary estimato of the quantity and analysis of distillate and residue by assuming that nothing heavier than the heavy key (specified permissible percentage of high boiling compound allowed in distillate) will be contained in the distillate or nothing iighter than the light key will exiat in the residue.

When an estimate of top and bottom compositions has been made, the approximate temperatures of the top and botton of the column are obtained as the dew and boiling points. 'the first estimate of tray temperatures is then obtained by assuming an even temperature gradient from tray to tray.

Having previously set the reflux ratio, the ratio of liquid to vapor above the feed tray is given by equation (35); below the feed tray by the equatica

$$
\begin{equation*}
L_{m} / V_{m}=\frac{1+(R C+C-1) D}{C D(R+1)} \tag{59}
\end{equation*}
$$

From X data for the pressure of the tower, the values of K are found for each component, for the various tray temperatures. The absorption factors are then caloulated for each component on each tray in the upper
seotion of the tower, and the stripping factors are calculated for each component on each tray in the lover section. The functions of A and S are calculated for each component and the constants θ, I, g, and h are determined for each component.

A value of D is found which, when substituted in equation (52) will give

$$
\begin{equation*}
\Sigma x_{d}=1 \tag{60}
\end{equation*}
$$

The composition of the residue is calculated by equation (53).
The quantity of each component in the liquid stream leaving each plate is calculated using equations (54) to (57b), and the composition of the liquid on each tray is obtained from equation (58).

Since the 1 iquid on each tray is at its boiling point, a new estimate of tray temperatures is obtained by determining the boiling points of mixtures of the calculated compositions. A rew $\begin{aligned} & \text { galue for } L_{m} / \nabla_{m} \text { is }\end{aligned}$ calculated using the new value for D in equation (59).

The ontire calculation is repeated, using the new tray temperatures and the new value of L_{m} / σ_{m}, until in any trial the tray temperatires and the value of D that are cilculated are identical to those assumed.

IV. GPERTIOHL PRI:CIPLS OF TEE IUTMNATIONAL BUSLESS KiCHIIES C:LLCULATING PUNCH, TYPE 602-4 (8)

The IBM Calculating Punch, Type 602-A, performa the fundamental arithmetic computations, addition, subtraction, miltiplication and division, either aingly or in any combination selected by the operator. The factors are read into the machine from punched cards and the results are punched in the cards by the machine.

The standard machine has six storage unitas the first will accommodate ten digits and the remaining five will each hold twelve, Vhen a number is entered in a storage unit, any number already in the unit will automatically be cleared.

The machine also hes six counters which also hold numbers. Counters differ from storage units in that a number which is read into a counter may be added to or subtracted from a number previously entered in the counter. Products and quotients from multiplications and divisions are also developed in the counters.

The operation of the machine is determined by a control panel which must be wired for each specific problem. Before the control panel is wired the problem is set up on a planning chart which shows in which atorage unit each factor is to be entered, in which counters the results are obtained, and the sequence of the individual operations.

Each problem is performed by the machine in ateps or programs, each program being represented by a line in the planning chart. The first
atep is always the read cycle, in which the factors are read from the cards into the machine. In each subsequent step a calculation is made, or numbers are transferred from ons unit to another.

Electrical impulses are available at the program exit terminals, or hubs, as they are called, on each procram cycle. These impulses control the operation of the units to which they are wired. If, for example, on program 3, it is desired to transfer a number from storage unit 6 to counter 2, Fires from two of the progran 3 exits would be run to readmout storage 6 and to plus counter 1. The numbers transfer from one unit to another as electrical impulses. Circuits between the units involvod in euch a transfer must be completed on the contral panel. The major porm tion of the mube on the right side of the panel are for this purpose.

The cards used in the IDA system contain eighty colums, each coluan having trelve positions in any of which a hole may be punched. Tan of the twelve positions correspond to zero and the wine digits and the other two positions are called I and I. The X punch is usod to actuate controlss the Is not used in this problem. The numbers are read from the cards as they feed into the machine by a bank of reading brushes, one for each colum, and are transmitted to the reading hubs on the contral panel. The reading hubs are wired either through counter entry to a counter, or through storage ontry to a storage unit, where the numbers will be available when needed.

The electrical impulses which control the operation of the machine may be wired through the pilot selector hubs in the upper left portion of the control panel. The pilot selectors are actually double throw relays.

Then an impuise is wired to tio comon hub it is available at tho nomal hub whon tho pilot seloctor is in ita normilyobition. iho ampulse is availuble et the tranafermed hub when the pilot neloctor has been "picked up."

If thore are control implisos wired throurh pilot solectors the ope erations nerformed by the machine will be different for the cards which piok up tha pilot eolectors timn for tho rominder of the earde The pilot solectors are pickod up by an smulso to one of the followina hubsi X or balance pick up, aidit pick up, or immodiate piok up. The last of these transfers the pilot colactor only for the duration of tive cycle in which it is picked up, wislo the firct two ceviso the pilot selector to latoh in the transforred position w:cil it is droppod out by en inpulse to the drop-out hub, If the dromout hub is wirod from punch drop-out Lepuloe, the wilot selector will bo dropped out aftor the card 18 punched. If dropoout is wirod from read dropmout impulso, tho pilot solector will be dropped out aftor tho follooing curd is road.

There are trenty control brushos in tha machine locetod ahoad of the -ignty reading brushos. They are placed to road in any trionty of the eighty columa in the eard. inn X punchod in one of these colume will be read by a control brush, and will bo availablo at tho corrosponding control rearing hub If a pilot belecior is to be used to control impuleas iron read cyales, it should bo picied up from contral reading brushos. If it is to be used to control impulsos from program exits, the pilot selector 10 picked up from the readine brushos.

If, in porforming a aories of ouloulations, ono of tho factors reo mains conatant for ach calculation, tiat fact may bo enverod from the
first card only, into one of the storace units. The number will remain In the storage unit and can be read out repeatedly until the storage unit 1a cleared by an impulse from read cycles to the storage read in hub. To prevant the impulse from reaching atorage read in for all cards in a series except the first one, wire is zun from read cycles to the common hub of a pilot selector, and from the transferred hub of the seame pilot selector to the read in hub of the storage unit. The pilot selector is ploked up by an X read from the card by one of the control reading brushe8. The first card in the series is therefore punched with an X which will pick up the pilot selector, and cause the group factor to be read into the storage unit. Since X^{\prime} s are not punched in subsequent cards in the series the group factor will remain in the storage unit until the first eard in the next series is read in. In this type of calculation the first card is called the I card and the remainder are called IXX cards.

Comeslectors are similar to the pilot selectors and may be used in conjunotion with then or independently. Thes are pioked up by an impulse to the eo-selector pick up. If this impulse comes from a pilot selector couple exit, the comelector will be transferred for the same length of time as the pilot molector. If the impulse comes from a program exit the comelector will be transferred only through that program.

The cirouits through which the number pass in moving from one unit to another in a certain program may introduce back circuita in another program. If this occurs the circuits are wired through the transferred side of a comelector which is picked up for that program only.
che dotilis of wiring a control pancl for a spocific calculation - 111 bo exqlained by tira use of an example - cortrol panel number 2 for this proilem.

Using this board the aachine will porform any of the following culculations

$$
\begin{aligned}
& (A+B) C=A^{\prime} \\
& (A+B) / C=A^{\prime} \\
& (A-B) C=A^{\prime} \\
& (A-B) / C=A^{\prime}
\end{aligned}
$$

The result obtained in each of these ociculations my, if dosircd, bo loft in the machine ard usod as the torm A of the folloring calculation. Tho selection of addition or aubtraction, and multiplication or division is mado by control punches in the ourd. This will be explained In datail labar.

The desoription of tils control penel will be fith roference to the planilng chart and tha wirine diagram. The explanation will take the procran steps in the ordor they appear on the chart and explain the wirn Ing assooiated with each. The ercircled numbors on the wiring disgram Indieate the programs in which numbers are trangaitiod through the dealenated wires.

X Card

Sond oyclon i $1 s$ road from column 31 - 39 of the X card into storate unit 6.

The first control reading hub is wired to tho X or balance pick up for pilot selector 1, which is picked up by an X punched in the X card in the first control macing positinn.

FIGURE 2

Tine firat read cycles mb is wired throurh tion transorrod side of pilot solector 1 to storago control road in.

On the right side of the board mading huba 31 to 39 are eired to storage ontry 6.

The belance of the prostus are skippod by viring from the second read aycles hub throu;h the transferrod side of pilot selecter 1 to prom gram skip 10.

Bregren 11. Program 10 is the noxt one thion, but sinoe none of the program 10 exdte are vired notiling will hapren mitil tho next prorame Progrem 11 exdts are vired to funch 6, and to read. in impulse to one of the punch hubs causes the fisures in the corresponcing atorage unit to be punchod in the carde Etorace punch exit 6 is wired to punching bubs 61 - 69, the columes that will be punched in the carde The extrene righthand poaition of a punch unit muat bo wired mhon punching from that unit.

Skip is always wired to the panch hub immoidetoly following the last hub wired from storace punch exit.

I.I Card

Fead excle B is read fron oclunn 4- 49 and C from column 21 - 28 oi the IX asd into atorage units 2 and 1 respectively. The third read ojcies mub is mired to atorage control read in 1 and 2.
lieading hube $41-49$ are wired to atorn 0 entry 2 , and reading hubs $21-28$ are sifred to storage entry 1.

Brompan A is transferrod fron etorag unit 6 to countors 4. 5, and 6 whioh are coupled to ethor. Program 1 exita are mired to atorage contral read-out 6 and to counter corivrol plus 4, 5, and 6. Etorage tranafer axit 6 is rired to counter entry 5 and 6 .

Procram 20 B is cither acdud to or abbractod from A, do eniling upon the control punching in tho card. If subtraction is desired, an X is pinched in the first column of the ourt; for addition it ia not punched. The first readirg position 13 wired to X or bulunce pici up for pilot seloctor 3, which is, therefore, normil for adation and plekod up for aubtraction.

Tho performince of adsition and sutitraction are al:11art with the first nonber in a counter, tho second is entered in the gane counter. If tin countor control plus is wiped from tho exit for tint program, the numbers will be addod. If the countor control minus is wired, tio oocond number will be subtracted from the first.

Pro ram 2 exits are pired to etorace control read-out 2, and through the normel sice of pilot selector 3 to opunter control plua 4, 5, and 6, or throuch the transfirred side of pilot selector 3 to courtor control winus 4, 5, and 6.
rtorago transfer exdt 2 is wired to counter entry 5 and 6.
Exorsm 3. Is the problom culls for division, an X is puncted in the second colum of the card. The second readirg hub is yired to X or balar:0 pick up for pilot seloctor 5, which is pickod up for diviaion.

Tho prograns associat d with multiplication are 4, 5, and 6. If multrlication is boing pornmod, prorran 6 is tho last one tukene Prom Eram 7 throuch 11 are associetud with divisiong and whon division is being poiformed programs a thouth 6 are ski pod.

In this procrem the quantity $A 士 B$ is transferrod from countors 5 and 6 to atorare unit 3. Frocran 3 exits are wirod to countrir control road
out and resot 4,5 , and i, storacs control read in 3, wad throne the trursforred side of pilot aelector 5 to proven sitip 7. itse inpulae from tio procten exit vill not recch tho gip hub unlees division 13 to bo perfomed and pilot selector 5 has been pickod up.

Countor exits 5 and 6 are wired to atoirige ertry 3.
iromen $h \pm B$ is road into countors 1, 2, and 3 whore the procuct ($A \pm B) C$ is developed.

If there ia number in the atorace unit 12 and another nunier is read into cne of the countors in any program, the proinct of tho two numbers will to devaloped in the counter, providing one of tice militiply hubs 18 wired from an oxit hub of tise same program. The position of the doofmal in the product will be the aum of the decimil placos in the multipilOr and the sultipilisand.

Frocran 4 exits are wired to borace control reat out 3, counter control plus 1, 2, ard, and to miliply.

Etcrage trangfer oxit 3 1a wired through ila nomal alle of com aslectors 2 and 2 to one set of huos of atcreso tranafer exit 1 . Since storage tranafor exit 1 is wired to counter ontries 2 and 3 for a lator program, tho cirouit is complated between the normal hubs of the com selectors and counter ontries 2 and 3.

Then a altipliond is ontored into countar, its position is to the extreme richt in the countor.

Promese 5. The product ($A \pm B$) C is road out of counters 1 and 2 and Into storage unit 6. Each of the factors has four decimsl places. The product will therefore have eight placos, but since oniy four are desired, the first four places to tho right are not mirod from counter exit.

Prorran 5 exits are wired to oounter ocr.trol reed out and reat 1, 2, and 3, and to atomace conitrol read in 6.

Counter exite 1 ond 2 are wired to atorago entry 6.
3rosen ($A \pm B$) C is punched from atora unit 6 into the card. einco the caloulation is completod the next card is fed to the machine by an impulise to road.

Procram 6 exts are wird to punch 6 and to read.
etorag punch oxit, 6 is vired to punching hubs 61-69, as proviously statad.

Eroman. is proviously explained, program 7 will be taken noxt aftor program 3 if division 13 to be periomed.
$A \pm B$ is transferred from storace unit 3 to counters 1,2 , and 3. Then division is binc performed, the divisor is always entered in atorage wit 1 , and the dividend in countors 1, 2, and 3. The dividend is on tered in tho counters so thet the sum of the decimil places in the difesor and the decimal places desired in the quotient mill equal the number of poaitions to the right of the decimal in the counters.

Procan 7 cxits aro wirod to storage control read out 3 and to countor control plus 1,2, and 3 .

Ctomage tranofer exit 3 is wimed throuth the trensforred sillo of com selectors 1 and 2 to countor entries 1 and 2. Tho com lectors aro piciod up on division by wire to tho comselector pick up hubs from tho couple oxit ror pilct selector 5, which is picked ap for division.

Prospan. The division of $A \pm B$ by C is porformed in this program. Progran 8 oxits are wired to divide, to storage control read out 12 , and to counter controls ainus 1, 2, and 3, and plus 4, 5, and 6.

Etorage trarisfer axit 1 1a wired to cotintor entries 2 and 3. Ono of tine quotiarit bubs is wirgd to the extreme richt poaition of countor entry 6 throuri the oonnon huta of the stome transfer exit 2 position that was previousiy wired to that eounter entry pobition che quotient is enterd into the counter throuich this single wire.

Froitan 9, Countors 2,2 , and 3 are reset and the quotiont 13 tranom forred from countors 5 and 6 to storage unit S. $^{\text {a }}$

Program 9 oxita ars wirod to countar controls reset 1,2 , and 3, read-out and reset 4,5 , and 6 , and to atorage control raad in 6 . Counter exits 5 and 6 are wired to storage entry 6.

Eromen 10. Lio: of the procram 10 exits are wirod. on X cardes homever, when prograns 1 tirousis 9 are skipped, the skip hub of procram 10 is wimad from read cycles.

Bromaniln The quotient in atorage unit 6 is punchod in the card as previounly described for procran 11 in the X Card explanation.

 Crinulaticg MCNITE

A sories of co:trol pinels for the INM Gu2-A Culculating Punch were wired to entivie the mechine to perform the calculetiona as outlined in Calaulation incthod. Sons of the equations wore rearrarged to make them more easily adoptod to cachino computation.

In addition to being punched with a value of K, each card in the per manent file of I data wes also punched with the reciprocal of that F. The determination of A and S are then olnilar and can be carricd out with the amme board.

$$
\begin{aligned}
& A=(L / V)(L / K) \\
& S=(V / L)(K)
\end{aligned}
$$

The functions of A and S are also obtainod with this bourd using the rearranced form of ecuations (15) and (30)

$$
\begin{aligned}
& r_{1}(A)=\left\{\left[\left(A_{1}+1\right) A_{2}+1\right] \cdots A_{n}+1\right\} \\
& r_{1}(\Omega)=\left\{\left[\left(S_{1}+1\right) S_{I I}+1\right] \cdots S_{m}+1\right\}
\end{aligned}
$$

If the constants f and h aro almays takon as positive, equation (52) beoomos

$$
x_{d}=\frac{e^{ \pm} \cdot D}{G^{D} \pm h D^{2}}
$$

and the cards are punchod witi x 's to cortrol the machine to add or subw trect.

Equation (53) is altared in form with d - a always talen as positive.

$$
x_{B}=\frac{x d(a+b)}{d / D \pm(d-c)}
$$

Control punohing is agsin usod to difforontiato bst een plus and cinus.

Table I lists the oquations tiat are solvod and the control panel used in each stop of the calculation the stops roforrod to are the sace as usod lator in the detriled procodire.

TABLE I

Stop No.	Panel No.	Equation Solved
1		Preliminary details
2	1	$\begin{aligned} & A=(L / V)(I / L) \\ & f_{2}(A)=\left\{\left[\left(A_{1}+1\right) A_{2}+L\right] \cdot \cdot A_{n}+1\right\} \\ & I_{2}(A)=A_{1} A_{2} \cdot \cdot A_{n} \\ & S=(\nabla / L)(K) \\ & I_{1}(S)=\left\{\left[\left(S_{2}+I\right) s_{2}+1\right] \cdot \cdot s_{m}+I\right\} \\ & f_{2}(S)=S_{1} S_{2} \cdot \cdot S_{m} \end{aligned}$
3	2	$\begin{aligned} & b=R \mathcal{I}_{2}(A) \\ & c=S_{f} \mathcal{I}_{2}(S) \\ & d=(R+1) C K_{B} S_{f} f_{2}(S) \end{aligned}$
4	3	$\begin{gathered} g=a+b+c \\ h=d-(a+b+c) \\ d-c \end{gathered}$
5	1	$\begin{aligned} & \theta=x_{f} c \\ & I=x_{f}(d-c) \end{aligned}$
6	4	$\begin{aligned} & x_{d}=\frac{Q \pm D D}{g^{D} \pm h D^{2}} \\ & \sum x_{d}=1 \end{aligned}$
7	5	$x_{s}=\frac{x_{d}(a+b)}{c / D \pm(d-c)}$
8	2	$\begin{aligned} & (L x)_{1}=A_{1}(R+I) D x_{d} \\ & (L x)_{2}=A_{2}\left[(L x)_{1}+D x_{d}\right] \end{aligned}$

THLLE I conti:uod

Tin Cabldeton

Ctop 1: Preliminary letails
Suyply the information required in Table II. This is the only portion of the proilem that requires the judgmont of a chenicil ongineor. Faike the neoobsary calculations and fill in column 1 of Table III. fiter each corplete calculation entor the dita obtined in the ext urused columa

Count out the decks of cards, and write the identifying symbol on the top oard of each deok as spocified in Takle IV.

Colect from the files the K carda for the specifiod prossuie. liun the K cards through the eortar, reroving the cercs for ecrpaner.ts not present in tho feod. Tho rumalilis caris constitute the woringe file of K cards for this proilem.
ienove the $:$ caids for the temperitures listod in Table III and divide theat into two groupss one for tive trays above the foed tray, ard one for the feed tray and the trays below it. Set aside the K cards for the tomperature of tho reboiler for later use.
frrang the first group with tomporaturos decreasine from top to bottom, and the second ercip vith tomperatures increasirg from top to bottom.

Resort the tro stacks, grouping the carls by conmononts.

PaLiminary data

TABLE III
ROULTS OF CALCULATIO:S
$\left.\begin{array}{l|l|l|l|l|l|l}\hline \hline & & \begin{array}{l}\text { Based on } \\ \text { Table II }\end{array} & \begin{array}{l}\text { First } \\ \text { Trial }\end{array} & \begin{array}{l}\text { Second } \\ \text { Trial }\end{array} & \begin{array}{l}\text { Third } \\ \text { Trial }\end{array} & \begin{array}{l}\text { Fourth } \\ \text { Trial }\end{array} \\ \text { Fifth } \\ \text { Trial }\end{array}\right]$

TALLE III co.ticued

THBIE IV
DEGRS OF GARDS REQUIPED FOR OAE CO::PLETE CELCULATION

Identifying Symbol	calor of Cards	No. of Carde per Dack Vhen Not qual to Number of Componente	No. of Deaks
$A_{2}, A_{2}, A_{3} \cdots$	white		No. of trays above food tray
I(A)	white	No. af components times No. of trays ebove feed tiry	1
$\begin{aligned} & \mathbf{S}_{\text {I }}, S_{\text {III }} \\ & \text { SIII } . \end{aligned}$	white		No. of trays below feod tray plue ene
I(S)	white	No. of eompenente timen io. of trayy below feed trat	2
IN	pink		1
V/5	pink		2
b 1	plat		1
c 1	pink		1
d 1	pink		1
b	white		1
0	white		1
d	white		1
d 2	pink		1
d 3	pink		1
d 4	pink		1
6	white		1
d - c	white		1

TABLE IV continued

Identifying Symbol	Color of Cards	No. of Cards per Deck Fhen Not Equal to Number of Components	No. of Decke
-	white		1
e 2	pink		1
x_{d}	white		19
x^{3}	white		1
B 1	pink		1
B	white		1
D 1	pink		1
D	white		1
D 2	pink		1
$L x_{1}, L x_{2}, .$.	whito		No. of trays above feed tray
L	white		1
Lxp	white		1
LxI, LxII, . .	white		No. of tray below feed tray
x_{1}, x_{2}, \cdots.	White		No. of trays above feed tray
x_{p}	white		1
	white		No. of trays below feed tray
T	white	No. of trays plus one	1

$\because \operatorname{top} 2$

Cortrol panel number 1, sup bar ingort at colinn 52.
Fionroiuce the dota fron colurn 12 and colinns 29 - 33 of the first atack of K cards, in columi 12 and colums $46-50$ of the A decis in numer1onl order.

Feproduce the data from colunn 12 and colums $19-23$ of the socond stack of X cards, in colum 12 ard colurmes 40 of tho S docks in numer ical order, followod by S_{f} deck. tonove the cride for the tomierutue of the feed tray from the stack of K card3, and reproduce tise oarie data in deck $f(s)$.

8 punch column 3 in all cards in decks a and S.
Take one card from dock L / V and punch as followas
X in first cortrol reacing position
1 in columan 25
1 in column 35
L_{n} / N_{n} in colunns $42-44$
Uaing this as mater card, duplicite the punching in oach of the Other ornis. Etack the A dicics togetiver, place one of the i/V caris on tcp, ard run them throuth the machino. Secuvo the pink card and put the remainder asido for a lator caicuiation.

Cort the decic $I(A)$ by componente und place one of tho pink cords on top of the firgt ourd for each componont. Sun this dock through the machine. riscard all the cards oxcopt the last oard for each cumonent, 1.e., the card on top of asch pink curd plus the bottom ono. rite $f(A)$ on the top card of the chea retainod.

Talso one card from decis V/L and punch as follota:
I in first control readi s position
1 in column 25
1 in column 35
$\nabla_{\text {a }} / L_{\text {ill }}$ in columns $41-44$
Üsing this as a nastor card as berore, duplionto the punchirg in the other cunds. Etwoik the S decies togetivgr aid place one of the ∇ / L earde on top and xun then throush the machine. Rocove the pink card and put the remalindor aside for a later calculation.

Sort the deck $f(s)$ by comporionts and place one of the pink carcs on top of the first card for each componont. Pun this deok throuth the machine. Discard all the cards excopt the last card for each componente Frite $f(S)$ on the top card of tire ones retained.

Stop 3
Control panel number 2, skip bar insert at column 61.
Panch an X in the first control reading position of each aard in the bl, al, and di dooks. Foproduce the results punched in the $f(A)$ and $f(c)$ decks in these throe decks as follows:

Dacic and colums	Deck and colums
fron which ciata	in which data
are taken	are reproluced
$f(3) 52-60$	al $31-39$
$f(\approx)$	di $31-39$
$f(A) 61-69$	bl $31-39$

Docic and colume
from which ciata are taken

$$
f(3) \quad 52-60
$$

$$
f(\approx) \quad 61-69
$$

$$
f(A) \quad 61-69
$$

Deok and colums in which data are roproduced
cl 31-39
d1 31-39
b1 $31-39$

The information entered in decks $b, c, d, d 2, d 3$, and $d 4$ is punchod In columns 21-28, with the decimal bot:een colums 24 and 25. I 13
punohed in each oard in dack $b, R+1$ is punchod in each ard in dack $d 2$, and C is punched in caci card in deck $d_{+\infty}$ If C is equal to one, this deck Is onittac. ${ }^{2}$ in information in colunn 61 - 69 of tise firet card for each component in tho S dack is reproduced in decics C and d. The information In colurns $19-23$ of the K cords for the temperature of the reboiler is reproduced in dock d3.

Mave the firat b curd under the sirst bl card, the socond b card under the escond hl cerd, and so on through both decke.

Fereat tilis procodure for the e and al docks.
place in the followi:n ordor the first ourd from oach of the decks involyedr $\mathrm{di}, \mathrm{d} 2, \mathrm{~d} 3, \mathrm{~d} 4$, and d . These are followed by the second eard from each deck, in the samo order, and so on until the oards are in one atack. The tiree stacics of carcls are run through the machine, after which the pinis ciris are discariod.

Ctop 4
Control panel number 3, sifp bar insort at column 61.
Punch docks g and d - as follows

Dack and colume	Colunns in which irom wifch data
data are taken	reproduced
f(A) $52-60$	$21-29$
b $61-69$	$31-39$
- $61-69$	$41-49$
d $61-69$	$51-59$

I punch the first colurn of each cird in the $d \propto c$ dock, iun both decks tirrough the maciane.

Ctos 5

Caitrol junel nator 1, ship har ingert at colum 52.
Punch an X in the first colurn of a blank curd and run it through tie amciine.
deproduce the funching from time coluns 61-69 and 70-75 of the d - o deck in colums $21-29$ and 31 - 39 respoctivoly of the ol deck. Aloo punch an X in each of those cords in tho first control reading position.

Fricer tio food composition in deck e, in colurss 47-50. Purich the mole fraction of the first comporart in the first card, the nole Eraction of the second compont in tho second card, and go an. Flace the first e card under the first el curd, tho socond o card under the second el card, and so on witil both decks are merged. tun the deak throuch the machine and discard the pink cards.

Funch an X in the second coluth of a blarik card and run it throuch the machine.

$$
\operatorname{ctop} 6
$$

Control panol numtor 4, aif bar insert at coluen 70.
Beproduce the results punched in decks and E in one of the x_{d} dacks an followas

iock and coluns	Colunans in which
from which data	data are
are talon	roproduced
- $52-60$	$31-39$
- $61-69$	$41-49$
$861-69$	$51-59$
$87-78$	$61-69$

Examine each card in tho $d-c$ and g cocis. If thore is an X punched In column 73 of a cerd in the $d=0$ dect, punch an X in colunn 1 of the corresponding onfd in x_{d} deck. If thare is an X punched in colurn 79 of a card in the \mathcal{E} deck, punch an X in colunn 2 of tho corrosponding ard in x_{d} dock.

Fonroduce ef chtaen duplicatos of tie x_{d} dock. A value of D is to be obtained, which rill, whon uxed in this calculationg givo an anow equal to 1. A veries of olloulations iv made unfig differort vilues of D until the one is found that will eivo the mesult nearoct to unity, sach value of D tried is punched in colums $26-28$ of each crurd in one of the x_{d} deck.s. The relection of the valuen of D to use is bost exiluined by an 1llustration. If D was estinated to be equal to .56 , six docks of cerds are punchad with D ecual to $.45, .50, .55, .60, .65$, and .70 . The carde are sun throush tho machine, arid columas 75 - 80 of the last ourd in each doak (the whita cord) are inspectod. Nhese colunns represent a aix digit number, with the decimal aftor the firet position.

If tion anower obtainod with D equil to .55 is exector than one, and the answer obtained with D equal to 60 1s lass than ore, the next four docis are punched with D oqual to $.56, .57, .58$, and .59. Again the recults are exsinired and the rance within wisich tise correct value or D Lies is dotermined. If .58 was too kish ard .57 wan too low, the remainIng nine decks are punched with D equal to $.571, .572, .573, .574, .575$, .576. .577,.578, and .579. Those are man through the wachine, and the one which givas the answor closest to uity is taien as the correct value of D. Liscris all the x_{d} docks excopt the one in which the correct value of D is purched.

Stap 7

woitrol parel numer 5, sictj bur inecert at colurn 76.
Punct deck x_{s} us follozas

Sock and oulums	
from which data	Culuna in witch data are are tailen
reproducod	

Funch an X in column 1 of each card whose ourresporiding card in the $\mathrm{d}-\mathrm{c}$ dock has an X puncied in column 79.
nun tho x_{a} deck tirough tiso wehine.

Etop 8
Control panel nurber 2, skip bar insert at column 61.
X innch the first control roadiaz position of each ourd in El deake Ferpoduce tin information in colums $76-77$ of x_{3} deck in colums $36-39$.
cubtract D (obteined in atop 6) from one, and punch tho romander in columna $25-27$ of each ourd in B deck. Insort each B card undor the correaponing bi curd and run the combined dock through the aachireo. Discard tive rink cards.

I punch the firat control roading pocition of each card in Lil dock. Ropromoe tino information in colurna $70-73$ of x_{d} deck in colurns $36-39$ -

Funch D (obtsined in stop 6) in coluns 25-27 in each curd in D deck.
runch $a+1$ in eacir card in 22 lecik in colvens $21-28$, with tho docimil bot:onn colwins 24 and 25.
ioprotice tha i:forintion from colunn 12 and colums $62-69$ of A_{1} deck, in ccl:ury 12 aid colums $21-28$ of isy decis. iluce in the follown Ing orior tio firit curd from eacil of tis ducia involvode D, D, L2, and
 u:til aif tha curds aro in ore atracke in the atacis throurch tise machine and discurd tho pinis caris. Ceparata the rominile ourcis into limeir two

opecuco the sollowing Lifornation as apecisiodz
.eck a:d colun:
from which data are tition
L_{1} 61-69
$A_{2} \quad 12$
$\ln \quad 62-69$
D 61-69
$A_{3} \quad 12$
$A_{3} \quad 62-69$
D 61-69
ieck and culuma
in which data
are xiprociuced
L $\quad 31-39$
$L x_{2} \quad 12$
$\begin{array}{ll}\mathrm{Lx}_{2} & 21-28\end{array}$
$L_{2} 41-49$
$\mathrm{Lr}_{3} \quad 12$
$L x_{3} 21-28$
$L_{x} 41-49$
(A deck similar to the above is punched for each tray above the food tray.)

S_{f}	12
S_{f}	$62-69$
D	$61-69$

Lx $\quad 12$
$L_{x_{2}} 21-28$
$L x_{1} 41-49$
(A dock similar to the following is punched for each tray below the fod tray.)

$S_{I I}$	12	$I x_{I I}$	12
$S_{I I}$	$62-69$	$L_{x_{I I}}$	$21-23$
D	$6 I-69$	$L x_{I I}$	$41-49$
S_{I}	12	$L x_{I}$	12
S_{I}	$6^{2-6}-69$	$L x_{I}$	$21-28$
B	$61-69$	$L x_{I}$	$41-49$

Punch an X in the first cortrol reacing poition of each cari in the I deak. Purch an X in the second column of each card in the $L x_{2}$ deck. Funch an X in the first and seco:d columg of each card in the Lx docks With the ionan subacripts.

Etack the decks in the following ordor fron top to tottons $\mathrm{L}, \mathrm{Lx} 2$, $L x_{3}, \ldots L x_{1}, \ldots L x_{I I}, I_{x_{I}}$.

In columns 9 and 10 , punch each card with the number of the position of its deck in the stacke Sort the cirds i:ito erouns of common conponente, and run thom through the machine.

Fesort the orrds into the oricinal decis.

Step 9
Control panel number 6, sifip bar insort at oclumes 41 and 50.
ieproluce the 1 niformition from colunis $65-69$ of decis Ix_{2}, Lx_{2}, $L x_{3}$, . . $L x_{f}$, . . $L x_{I I}$, and $L x_{I}$, in columns $21-25$ of jocks x_{1}, x_{2}, x_{3}. . . x_{I}, \ldots. $x_{I I}$ and x_{I} rearectively. Punch an X in the first control raading position in the iast card of enck dacis. hun all the x
dooks tworish tho muchine. Furch en X i: tho firgt colunt of a blank ourd, and marn it troncin tig monirce.
 disck. an tio decis tirough tite machino a socend tino. Funch an X in the seco d column of a blank cord and run it timourh the nachino.

Step 10
Control panel n mber 7, skip bar insert at colium 7he
Punch X 's in colums ono and tro, and in the first control reading position of each cerd in deck T. The infomation pumehed in columns 51 - 54 os all the ocris in eaoh of the x decis is transforred to each of the cards in the I cieck. Nore specificilly, the dats in colums $51-54$ of the firgt card in x_{2} dock is punched in columns $25-28$ of the first card in I dock. The data from tho sare columns in the seoond cosd in x_{2} dock are punchod in colums $29-32$ of the same ourd, and ao on until the data from all the ourdz in x_{1} deck are punchod in tho firgt and in T deck. The samo procehura is rewatud for ell the succooing x ducks. The data from colums 76 - 7 of tise curis in tive x_{0} duck are oimilarly punched in the firal arrd in T dock.

The objoct of stop 10 is to detomine the tomportura of each tray In the colume is group of K ards for severil adjecent terporatires are withdrawn from tire z curd file for tho top tray tomprature doterninatione The tomperatires noloctod should range for geveral dorrocs on both sides of the estivated tonnerrture for the tray. X yunch in oalum 8 a blank
 gort oice of those carda bolow tho last x cird in eac: torperature eroup.

The machine will periom a gorios of ociculatios, oro for ench tempera-
 T1uce the firot curd from tie T dock on ton of the F corde and run thea through timo mehine. then the correct tomoratiare is pascod, the manine rill stope ixumise tio just two reaits punched. ino last ane will be a numbur ereater tian ore, and the proceoding one will be a number less than one. The torperatime corrogponil:g to time result nearm est to a:ie is the tomportias of the tray.

Fenove tive curda from tim feod hoper and atricier, diacurd all but the K cards, and roplace them in the K filo.

Fopeat this procedare with each succoding card in T dock, each tims taking a new bet of K cards.

Finter the results of this onloilation in the second colurn of Table III. The entire alculation must be repoatod until iderticil dita are obtained for two consecutive trials.

AMELDIX: S. MFLE PROELEA

4 natural gasoline of composicion given below is to be separated into an everhead product containing propane, isobutane, normal butane, and not over 3% isopentane, and a bottom product containing isopentane and heavier, and not over 5% normal butane. The column is to operate at $100 \mathrm{lbs} . / \mathrm{eq}$. in. absolute with a reflux ratio, L / D, of 3 , and the feed is to enter in such a condition that no net vaporization or cone densation occurs on the feed plate $\left(\nabla_{n}=\nabla_{m}\right)$

Feed composition (mole \%)

$$
\text { Propane } \quad 15
$$

Isobutane 15
Normal butane 25
Isopentane 10
Normal pentane 15
Heavier (hexanes) 20

Try a column having five plates, with the feed entering at the middle plate.

This problem illustrates this calculating method. It nas morked on a desk oaloulator, however, not on an IBK machine.

TAELE II

PRELIAINARY DATA

Pressure	$100 \mathrm{PS} /$	
Heflux ratio (R)	3	
No. of trays above feed tray	2	
No. of tray below feed trey	2	
Feed composition	Component	Hole fraction
	Propane Iso B_{a} trne N Butzne Iso Pentone N Pentrane Hex ines	.15 .15 .25 .10 .15 .20
Estimates		
Fraction of feed removed as distillate (D)	.5435	
Temperature of reboller	242	
Temperature of top plate	133	

TABLE III
RESULTS OF Ci.Lullitions

TABLE III continued

	Based on Table II	$\begin{aligned} & \text { Firat } \\ & \text { Trial } \end{aligned}$	$\begin{aligned} & \text { Second } \\ & \text { Trial } \end{aligned}$	Third Trial	Fourth Trial	$\begin{aligned} & \text { Firth } \\ & \text { Trial } \end{aligned}$
Compositions (last trial only)						
Distillate						
IC_{4}					. 2640	
					4087	
N					. 4087	
IC_{5}					1.0322	
$N C_{5}$						
C					.0169	
					. 0015	
Bottom						
C_{3}						
					.000383	
IC_{4}					1.0156	
NC_{4}						
IC5					. 0628	
$N C_{5}$.1801	
${ }^{1} 5$. 3058	
C_{6}					$43 フ 7$	

K

	Tray ${ }^{2} 0$, and Temperature ${ }^{\circ} \mathrm{F}$.					
	1	2	f	II	I	Still
Component	137	157	177	197	218	238
C_{3}	2.60	3.14	3.71	4.32	5. 0	5.8
IC_{4}	1.07	1.34	1.64	1.96	2.33	2.75
NC_{4}	. 83	1.07	1.34	1.64	1.99	$2 \cdot 37$
IC C_{5}	.37	.50	. 65	. 83	1.04	1.26
${ }_{N} C_{5}$. 28	. 37	. 50	. .63	$.86$	1.08
c_{6}	. 14	.19	.26	. 35	.45	. 58
A or S						
C_{3}	. 288	239	3.061	3.564	4.125	
IC_{4}	. 701	.560	1.353	1.617	1.922	
NC44	. 904	. 701	1.106	1.353	1.642	
IC_{5}	0	1.	.536	. 685	. 858	
NC_{5}						
NC_{5}	2.679	2.027	. 413	. 545	710	
C_{6}	5.357	3.947	. 215	. 289	. 371	

	$f_{1}(A)$	$f_{2}(A)$	$f_{1}(S)$	$f_{2}(S)$
C_{3}	1.308	.0688	19.266	14.702
$I C_{4}$	1.953	.393	5.725	3.108
$N C_{4}$	2.335	.634	4.575	2.222
$I C_{5}$	5.541	3.041	2.273	.588
$N C_{5}$	8.457	5.430	1.932	.387
C_{6}	26.091	21.144	1.396	.107

	a	b	c	d
C_{3}	1.308	.2064	58.973	1044.065
$I C_{4}$	1.953	1.179	7.746	46.256
$N C_{4}$	2.335	1.902	5.060	23.297
$I C_{5}$	5.541	9.123	1.218	1.588
$N C_{5}$	8.457	16.290	.798	.690
C_{6}	26.091	63.432	.300	.0533

	e	f	g	h
C_{3}	8.850	147.764	60.487	983.578
$I C_{4}$	1.162	5.777	10.878	35.378
$N C_{4}$	1.265	4.559	9.297	14.000
$I C_{5}$.1218	.0370	15.882	-14.294
$N C_{5}$.1197	-.0162	25.545	-24.855
C_{6}	.0600	-.0494	89.823	-89.770

	x_{d}	$D x_{d}$	x_{s}	$B x_{s}$
C_{3}	.2769	.1498	.000383	.0001767
$I C_{4}$.2640	.1428	.0156	.00716
$N C_{4}$.4087	.2211	.0628	.0288
$I C_{5}$.0322	.01742	.1801	.0826
$N C_{5}$.0169	.009143	.3058	.1403
C_{6}	.0015	.0008115	.4377	.2009

	1	2	f	$I I$	I	
C_{3}	.1725	.0770	.07409	.0207	.0049	
$I C_{4}$.4004	.3042	.3303	.1998	.1002	
$N C_{4}$.7994	.7154	.8467	.6045	.3506	
$I C_{5}$.1412	.2379	.4763	.5747	.5735	
$N C_{5}$.0977	.2168	.5469	.7460	.8640	
C_{6}	.01739	.0718	.3376	.4730	.7334	
$t_{0} t_{2} 1$	1.6288	1.6231	2.6119	2.6187	2.6266	

x						
	1	2	f	$I I$	I	
C_{3}	.1059	.0474	.0283	.0079	.0018	
I_{4}	.2458	.1874	.1264	.0762	.0381	
NC 4	.4907	.4407	.3241	.2308	.1334	
$I C_{5}$.0866	.1465	.1823	.2194	.2183	
$N C_{5}$.0601	.1335	.2093	.2848	.3289	
C_{6}	.01067	.0442	.1292	.1806	.2792	

Temperature Check

Tray No.	1	2	f	II	I	S
	137	157	177	197	$2 / 8$	238

LIST OF LITERATUSE CITED

(1) Lewis, \%.K. and Latheson, G.L. Industrial and Encineexina Chemistry: 2h, 494, (1932)
(2) Opler, A. and Heits, R.G. Feper presented at the Seminar on Industrial Computation held at Endicott, Now York, September 25-29, 1950, by the International Business Machines Corporation.
(3) Donmell, J.W. and Cooper, C.IM. Chemical Encineering. 57, 121, (1950)
(4) Underwood, A.J.V. Chemical Engineering Prosress. 4h, 603, (1948)
(5) Thiele, E.F. and Geddes, B. L. Industrial and Enjineering Chemistry. 25, 289, (1933)
(6) Hummel, H. H . Trangactions of American Institute of Chemical Engineere. 40, 445, (1944)
(7) Edmister, W.C. Transactions of American Institute of Chemical Encineor. $12,15,(1946)$
(8) IBM Iiterature. Princioles of Operation of Calculating Punch Type 602 A

