1933

THESIS

\triangle SIUDI OF THE EFFEOT OF HMATED AND UIHRATED CENTPRIFOGES ON THE

ACOURACI OF THR BLBCOCE TRST

A BTUDI OF THE MPFECT OF HMMTED AND UNHMATMD CEMPIFUGES

OI THE ACCOPACI OF THE BABCOCK TRST

Theois

Bespectinlly anbinitted to the Graduate School of Ilichican 8tate College of Agriculture and Applied Seience in partial sulililment of the requircmonte for the degree of lineter of Science.

By
Joseph Roitsel Bah
1988

ACKIOWLEDGNHSTS

The witer wishes to exprese his eincere appreciation to P. S. Licone, Associate Professor of Dairy Mannfactures, for his unceasing efforts in the direction of this experimont and for his aseistance and critician in the proparation of this manuseript.

The writer is also greatiy indebted to E. L. Anthony, Professor of Dairy Humbandry, and to G. Malcolm Trout, iseistant Professor of Dairy Mannfactures, for their help in making this work poseible.

The anthor wishes to express his gratitude to I. C. Imons, Profeaser of Mathematical Statistics, for his assistance in the interpretation of these data, to C. D. Ball, Associate Professor of Chemiotry, for his holpfal uggestions, and to the many othere whose kindly aid is much appreciated.

TABLE OF CONTENTS

Page
IATRODUCTION 1
REVIEW OF LITERATURE 4
4. The Development of Chemical Tests 7
B. Previous Studies on the Babcock Test 11

1. Studies on the Accuracy of the Babcock Test 11
2. Studies on Residual Fat 19
PURPOSE OF THE EXPFRIMENTT 22
PROCEDURE 25
3. Procodure for the Babcock Test 23
4. Official Mothod 23
5. Mothod Followed in this Study 25
B. Procedure for the Chemical (Mojonnier) Test 27
C. Procedure for Residual Fat Determination 27
6. Preparation of Babcock Teste for the Determination of Residual Fat 27
7. Rxtraction of the Residual Fat 28
8. The Check on the Procedure 29
D. The Mothod for Determining the Temperature of the Tests 29
HKPERIMHNTAL RESULTS 31
9. Comparison of Babcock and Mojonnier Results 51
B. Results of Residual Fat Determinations 54
10. Preliminary Trial: 54
11. Resulte of Residual Fat Determinations 56
C. Effect of Centrifuge Temperatures on the Teat Temparatures 59
Page
sUMARI 62
CONCLUSIONS 65
LITERATURE CITED 66

IHIRODUCTION

One of the most notable achierements in the adrancement of dairying ras the derelopment of the Babcock teat for the determination of fat in milk and milk products. It was devised by the late Dr. Stephea M. Babcook, of the Eisconsin Agricultural Irperiment Station, and was first made public in 1890. Dr. Babcock was the first of many investigators making studies at that time in the designing of a practical teat. His test has proven relatively simple, quick, acourate, and inexpensive.

In principle it conaists of the aetion of one reacent, strong sulfuric aeid, on the milk solids not fat and the separation of the fat brought about by centrifugal force suppliod by a mechanical centrifuge. De action of the acid is to break down the protective film around the fat globules, which the milk proteins form, by so-ealled dissolving of the milk solide not fat. The acid, due to its great affinity for water, on mizing vith milk conerates a considerable amount of heat vich molts the milk fat and aids in the soparation. Since the acid is auch a heary liquid, nearly twice as heary as milk, it increases the differonce in epecific gravity between the milk fat and the liquid surrounding it thereby aiding in the separation.

The Babcock teet is now used to determine the value of many million collars worth of products. Because of its adaptability it is used in many lines of dairying and has proven almost indispensible. Since the introduction of the test practically all milk is bought and sold on a fat basis. It is either bought at apecified price per pound of fat or
the milk is bought at a apecified price per hundred pounds of milk containing a cortain range of fat, ad 8.2 to 8.6 per cont, and a coduotion of a fow conts for every one-tonth of one per cont fat the milk falls below this range or a pronit added of a few conts for ovory ono-tenth of one per cent the fat content exceeds this range. Several other modified plane are also in use. The tost has bece of creat holp to butter and cheese makers in dotectinc abnormal fat losees during manufacture. It has beon of great assistance to the dairy farmer in the culling of the unprofitable cow. It has done much toward stopping the watering and skiming of milk which was so common before its invention. It has also made possible a now field in dairy research.

The Babcock test has long been accepted as the official test by the dairy induatry and is se recognised in practically all states. Thore has been much investigation in attempting to prove the reliability Of the test jet there are a fow question concerning the operation of the test which have not been definitely settled. One of such questions 1s that pertaining to the efficioncy in the soparation of fat in the sests man the contrifuces are operated at exceodingly $10 w, r 00 m$, and hich temperatures. These conditions are known to caitt in many dairy plants. Where stean contrifuges are used the temperature at which the machines eperate is about 155° to 150° F.; if electric testers or hand testers are used and no heat is supplied the temperatures may range frem about 70° to 100° F. mile extreae conditions may be oncountered during the winter months where testing is done out of doors or in unheated rooms and unheated testors as might be the case in some cow
teating work where the teste are made in hand testers during the colder months. Recently producers and producers' organisations have interested themselves in this question, having noticed the vide variations in temperatures at which the centrifuges are operated in the testing of their products. In view of the fact that no particular temperature is specified in the standard procedure for the Babcock test a etudy relating to this question was undertakon.

RHIIN OF IITERATUR

The fat of milk is comorally regardod as ite moet valuable conetituont. Man mill prodncte are sold with the price being loterminca Iy the valu of the fat in the product. State and Federal standarde have been act my regulating the minimu amomit of fat to be contained in the varione prodmote. Iat in milk varies videly and adulteration is relatively cast. For these reacome muoh cmoneis has beon put on mothode for detornining the per cont of fat in milk and milk products and chemists have beca ondeavorime to devise simple and accurate mothode for mating moh dotorminations. Ther mere onconraged greatiy by the creat etrides made in the daizy industry during the latter half of the 19th century. Of freatest inportance was the pascage of the Iatoh Let (1) in 1908 miah male poselble the establishment of atate urperimont etatione, and, ince the noed for a practicable fat test wat so imperative at that partionlar peried mang investigatore attachel that problum. Mojomier and groy (8) Mare compiled a liat of the mothode wich roculted frem the oflorts of those carly workers. som of these earis teste have morite and other are ontirely inpractioal.
A. Toste mere chemeale are not needs

1. Crean Cances.
2. Fjore'e Contrifugnl crean teet.
3. Heeron's ploscope.
4. Feser's lactoscope.
5. The chnra teot.
6. The 011 churn test.
B. Testa whore chomicals are used with or without the assistance of centrifagal force:
7. Soclet's method.
8. Short's mothod.
9. Parsons' method.
10. Pallyer and Villard's mothod.
11. Cochran's method.
12. Adane' Paper coil mothod.
13. The loese-Cottliob mothod.
14. Meilson's Kaolin method.
15. Ifebermann-8sokely'E method.
16. Weibull's desiccation method.
17. Bell's Eaceration method.
18. Iichmond's Kleselguhr method.
19. The 8torch mothod.
20. The Ferner-Sohaid methol.
21. The Iitthareon mothod.
22. The Wankly mothod.
23. The De Laval Iactorite.
24. The De Leval Batyrometor.
25. The Leftman and Boan mothod.
26. The Gerber method.
27. The Iussian Babcock mothod.
28. The Babecek mothod.
29. Sichler's Sin-leid Butyrometer test.
30. Lindstom's Butyrometer test.
31. The Kojomnier mothod.

This list indicates the imense amount of work done in the atteapts to secure satisfactory mothode. The greater part of it was done during the decade 1880-1890.

Barthel (5) also gives an interesting and complete aurrey of the useful tests for the estimation of the per cent of fat in milk and milk products. Ee classifies the tests into scientific and practical teste therely changing the above list somewhat to make the teste more understandable.

8ome of the tosts in the Onited 8tates made possible by the fuads aupplied by the Hatch Let (1) were the short test (4) devised at the Wisconsin Experiment Station in 18s8, the Cochran test (5) derised at the Ponnejlvania Imperiment Station in 1889, the Parsons' test (6) derised at the Iew Eampahire Foperiment Station in 1888, the Patrick test or "Iown 8tation Milk Fest" devised at the Iowa lixperimont Station in 1890, and the Fallyer and Willard's test (8) doviced at the Kaneas Beperiment Station in 1888. Farrington (9) in sumarising the procedure of these teste and making trials with them concluded that the Cochran and Patrick mothode were the aimplest and easiest to operate. Froar and Holtor (10) in making ecmparisone between the Short, Cochran, and gravimetric (the Babcock debestos) methode found that the shert method gave resulte averacing 0.15 per cont hicher and the Cochran 0.06 per cent lower than the srarimetric mothod.

With this coneral sumany of the carly teste a surrey of the chemical tests ahould be attempted to chow their development and to indicate the etatue of the test used in this experiment.

The Dovelopmont of Chemical Testy.

Probably the firat gravimetric test using a fat solvent for extraction of the fat was the Ldame mothod (11) reported in Fagland in 1885. By this mothod a known weight of milk was deposited on a coil of white blotting paper, and, after allowing to dry, the paper was treated with anhylrowe ethyl ether. The ethereal extract was regarded as all fat but it was later chom that the paper contained other ether soluble subetances. The procedure was later modified so that a paper free from othor soluble aubstances vas used. This mothod was long coneidored as the best of gravimetric determination methods.

In 1808 Roose (12) publighed the results of a method which ho had devised and which now bears his nane. The method was similar to that of the 1 deme' method but where the ldams' method technique required a dry extraction of the milk the Boese made use of a wet extraction method. The procedure for the Roese method is as follows (15): about 20 grams of the milk are mired with 2 c.c. of amonia, then 45 c.c. of alcohol and 180 c.e. of a mixture of equal parts of ether and light petrolom are added. The mixture is shaken in a stoppered burette of 250 c.c. eapacity. The volve of the ethereal layer is read off, and 25 c.c. of it is evaporated in a tared flask, the fat being dried by aspirating driod air thra the flask for 10 minates, while heating in a glycerol bath at $90^{\circ} \mathrm{C}$. The residue is then cooled and weighed, and the percentage of fat is caloulated. An addition of 0.016 per cent ahould be made for fat remaining in the aqueons layor.

In 1892 cottlicb (14) modified the Boese method by reducing the volume of milk to 10 grame and reducing the volume of alcohol to 10 c.e.

The amomet of each other was reduced to 25 c.c. also. Ho pronomiced the mothod satiofactory and stated that it comparod favorably with other methode. The method was apeodier than the Roese method and could be applised to other dairy products. Lans (15) in 1895 secured results vith the Roeso-Gottlieb method which compared favorably with other gravimetric mothode.

Teiball (16) and Kwhn (17) showed that the Boeso-Gottlisb mothod gave more acourate results than other mothods used by them. Popp (18) woring with siegfold obtained satiafactory results by the Roese-6ottliob mothod on both whole and ekimed milk. Thoy made a sories of tests on meole and skimed milk letting the other stand in the milk for $1,1,2$, 8 and 6 hours. By allowing this solution to stand for 6 hours they obtainol an increace of 0.07 per cont of fat for the whole milk and 0.02 por cent increase for the akimed milk. Chey variod the atrongth of the cmonis solntion need but found that this had no effeet.

In 1904 Popp (19) ampancod a revised method for the Roeso-Cottlieb test as follews Place 10 c.c. of the mill in a 100 o.c. tube graduatel to 0.5 c.c. In this order add 1 c.c. of amonia of proper concentration, 10 c.c. of othyl alcohol, 26 c.c. of ethyl and 25 c.c. of petrolemm other. deter shaking on cach addition let stand for 1 hour. After last addition, draw off the ethereal fat solution milil 1.5 c.c. of it raming in the tube. Wash the fat left in the tube with ether and add to the fat colution, evaporate the others, dry, and weigh the fat. Muitiply the weight of fat found by 10 to give direct per cont. Rohric (20) simplifiod the removing of the ethereal solution by devising a graduated atoppered eylinder which had a apigot on the eide at the 25 c.c. mark.
\square

This apicet allowed the drawing off of aliquot portions of the ethereal solution into meighed flaske.

Thomsen (21) made tests with the Roese-Gottlieb method by peptising the proteins in the milk and then testing the milk by the Boese-cottlieb and 1dang' mothod. Both methods gave eatiafactory resulte although results were somewhat lower on the mpoptised milk with the Sdang' mothol. Durz (28) carried on experimonts to find the eaponifying effeet of the amonia on the fat in the Roese-Gottlicb method. He found that thore was no such effect. He theorized that in the case of milk the chances for eaponification were much less as a considerable portion of the amonia is combined with the casein.

Cosden (28) verified the aceuracy of the Boese-Cottlifb method rosults by using the Bohris tube. Results obtained from sereral samples of cream, milk, and ekimed milk compared favorably with other methode. He explained that the ethyl-potrolew ether proportion is very important in sceuring aceurate determinations. When 10 c.e. of othyl othor and so c.e. of petrolem ether were need, resulte much too low vore obtained. The ratie according to Gordon should be nearly that recommended in the standard procodure.

The Boeso-Cottlieb method gained consilerable prominence in later jears. Blohond (2t) makes this etatement: "On the whole, the Gottlieb mothod is the beet, though those due to ldane, storch, Wernor-Sehmidt, and Heel are little, if at all inforior in accuracy." Thyr the offorts of the late C. F. Patrick, former head of the Dairy Laboratory of the Onited States Department of Agriculture, the Roese-Gottifeb mothod was piret brought to the attention of Amorican cheaists. It is now moed
guite extensively and is included as the official method by the Association of Official Agricultural Chemists and other organisations.

Realising that the Roeso-Gottlieb method required too much time to be of practical value in the dairy industry, J. J. Mojonnier (25) in 1915 vas successful in devising apparatus which materially shortened the time for manipulation of the test. By the use of the centrifuge, vacum oven, water-cooled desiccator, etc., much time could be sared without sacrifice of aceuracy.

Mojonnier and Tros (26) report work on the accuracy of the mothod in comparison with the Adams and Babcock methods. They found close agrecment betweon the Adams and Mojonnier methode when applied to freah milk bat considerable dieagreament between the Babcock and the other two mothods.

The only literature that could be found dealing precisely with the comparison of the Kojonnior and Roese-Gottlieb methods was that which vas reported by Dahlberg (27). From the avorages of six samples tested in duplicate he secured an avarage of 4.59 per cent for the official Roese-cottlieb and 4.61 per cent for the modified Roese-Gottlieb or Mojomior.

The Mojomier is a modified Roese-Gottlieb method and is so comsidered by Mojomier and Troy (28). Other writers seen to concede the same point when they make comparisons with the Mojonnier as the RoeseCottliob mothod. Phillips (29) makes no explanation but calls the Mojomaier method the Boese-Gottlieb mothod. Hoyt (50) says: wine Boese-cottlieb is an official method of the Association of Official Arricultural Cheaiste. It was run on the Mojomnier apparatus." Fiaher
and Walts (81) make this statoment:

Whe directions for carrying out the Roese-Gottlieb determinations uning the Mojonnier apparatus were followed exactly as given by Mojonnier and Proy in "Pechnical Control of Dairy Producte (page 109) in.

Dahe, Swope, and Doan (32), Chase and King (53), and Bird and Sands (54) we the Mojonnier method as atandard of comparison in their mort.

The Mojonnier mothod, then, has beon and is generally recognised as a otandard chemical teat for the determination of the per cont of fat in milk and milk prodncte.

Provious Studien on the Babcock Test.

Studies on the Accuracy of the Babcock Test. Babcook (35) first described his teet for the per ocint of fat in milk and milk products in 1890 and again (56) in 1898. Ho checked the mothod againet the Babcock asbestos gravimetric method whion at that time was the official teat of the Association of Official Agricultural Gncmists. wirty samples of milk were tested and practically ozact agreanont was found botweon the arerage values.

Imediately on the introduction of the Baboock method many experimontery took u the task of proving its morthinese. In 1891 Inyder (87) On comparing the average results from 100 samples of milk found that the gravinetric mothod wae 0.016 por cant higher than the Babcock method.

Patterson (88) in 1091 ran a series of teats by the Iabcock, Adan Paper Coil, Boimilng, and Patrick methods. He etates that the Beinilas and Patrick mothole more nearly compare rith the gravinetric mothod
while the labeock fell below. However, he attributed this as partially due to the slipping of the belt on the Babcock centrifuge.

Hite (09) in 1091 made a series of tests by the Bebcock and the Ldans Paper Coil mothode, as well as a fow others. It was noted on three analyaes of mole milk by the Babcock and ldam methode, operated according to direetions, that difficulty was oncountered in obtaining fat free frem casein and the recults varied widely from the resulte obtained by the sdane mothod.

In 1891 scme verk was reported at the Connectiout Agrioultural Irperimont 8 tation (40) showing that on 82 comparative teste the Babcock aroraced 0.10 per cont above the "standard method used in chemical laboratorien."

Bailey (41) has conveniently compiled a table of the results secured by some of the carly workers and this is roported in Fable 1. These results ehow close agrecment between gravimetric method results.

Earthel (42) in reporting some of his own inveatigations says that the Babcock method gives results 0.06 to 0.08 per cent lower than the Boescocottlieb.

Mojomier and Froy (45) roport 52 tests being made on whole milk by the Babcock and Iojomier method. Two operators made the Babcook determimations. Out of the 104 tests eompared with the 10 jonnier results they atate that 51.9 per cont of the teste vere overread and 48.8 per cont vere maderread. she same authers also report (44) the testing of 14 samples of milk by the Babcock, ldame, and Mojonnier methods. They noticed a close agrecmont between the Mojonnior and dame methods on freah milk but the labcock teste showed considerable disagrecment between these
Table 1.
Comparisons Between the Babcock and Gravimetric Iothods on Mole Milk

Authority	Truber of comparisono	Avorage of all Baboock readinge above arorage of all gravimotric resuits	Avorage of difforences betwoon Babcook roadinge and the gravimotric results	Absorbent used in cravimetric mothod
Babeock	80	0.011	$\pm{ }_{-0.089}$	Lebestos
suyder	48	-0.026	$\pm{ }_{-0.062}$	Lebestos
Farrington	12	0.050	± 0.088	Lebestos
Parrington	12	-0.075	± 0.098	Sand
Farrington	12	-0.189	± 0.149	Papor
Connecticut haperiment Station	52	Within 0.01	6 diffor over $\pm^{ \pm} .10$	
Patterson	20	-0.152	± 0.153	Papor
Sehutt	82	-0.088	± 0.105	
Hoinrich	27	-0.05		
Zohonter	34	75.5 per cont within 0.05	5 alffer over ${ }^{ \pm} 0.10$	
Sohrott-Fiecht1	100	0.001 .	± 0.076	Sand
Shivor	49	0.067	$\pm{ }^{0.095}$	Papor

other two methods. The difference was not constant in any direction.
In 1917 Bailey (45) reported that on the average of 190 comparisons made by reading the Babcock milk teat from the bottom of the lower menise ous to the extreme top of the upper meniscus, results were obtained with the Babcook method areraging 0.060 per cent higher than the Boesc-Gottlieb methol. Hortvet (46) in 1917 reports the work done by ten collaboratore making similar comparisons. meir results show the arerage of the teste by the Babeoak method to be 0.04 per cent lower than the average teste by the Roesc-cottlisb procedure.

Again in 1925 several investigators reported their work. Hoyt (47) tested samples of milk by the Babeock, Roese-cottliob (Mojonnier), Adane, and dsbestos methods. The average readings of the Babcock tests, reading from the extreme of one to the extreme of the other meniscus, was 0.079 per cent above the Roese-Gottliob (Mojomier) figures, 0.091 per cont above the Ldana figures, and 0.175 per cent above the dsbestos figares. By using glymol to flatten the meniscus on the milk test reants were obtained with the Babcock teat figures being 0.058 per cont belew those of the Roese-Gottlieb, 0.046 per cent below the Adame, and 0.056 per cent above the resalts of the Aebestos. Hoyt therefore favors changing the procedure for the reading of the Babcock teat in order that the test will mere nearly confern to the figures. obtainod by the gravimotric methods, but only if other investigatore confirm his results.

Phillipe (48) reported that from the arerage of 50 comparative teste With the Babcock tests being read from the bottom of the lowor meniscus to the extreme top of the mper meniscue, the Babcock method gave results averasiag 0.0588 per cent higher than the Roese-Gottileb (Mojonnier)
method. The Babcock test mas higher in evory case, the minimum variation being 0.005 per cont and the mariman variation 0.126 per cent. When he moed glymol on the teste the Babcock method gave results 0.087 per cent lower than the Roese-cottlieb (Mojonnier) method.

Then 32 samples of milk were run by the Babcook and Roese-Gottifeb methode, Dahlberg (49) found that the average results by the Babcock mothod was 0.10 per cent higher than the Roeso-Gottlieb method. The Babcock teats were read in the naual manner.

Ficher and Walte (50) on comparing the resulte from 16 samples of milk ran by the Babcook, Gerber, and Roese-Gottlieb (Mojonnier) methode found that for milk the average variation from the Roese-Gottlieb mothod was ± 0.137 per cent for the Babcock method and $t_{0} .122$ per cent for the Gerber method.

Dahiberg, Holm, and Mroy (51) made 925 teate of milk and crean in conjunction with workers in three different rescarch laboratorios and four different dairy control laboratories. They concluded that the Babsock and Gorber methode were juat an accurate as the cheaical test and that the Babcock test did not field higher resulte than the RoeseGottliob test.

Hunsiker (58) showed the effect of adding clymol to milk tests before reading. By destroying the meniscue with glymol the resulte were uniformly 0.2 per cent too low showinc that the moniscue must mecesarily be included to compencate for the residual fat left in the balb of the test bottle.

Doan, Fielde, and magland (55) made a study on crean tests and found that by the use of glymol the crean test by the Babcock method mes 0.28 per cont higher than the chemical test. When the Beboock
teste were read from the bottom of the lower meniscus to the bottom of the upper meniscus the Babcock teat mas 0.32 per cent higher than the chemioal test. These resulte are similar to those presented by Hmaiker, ot. al. (B4) and confimed by Spitger and Epple (55). No part of the moniscus should be included in the reading of cream tests. The use of glymol is strongly urged.

Dahe, Swope, and Doan (56) in 1980 report a modified Babcock teet for butterfat in condensed and eraporated milk. In order for the Babcock teat to conform to the resulte by the rojonnier method the test must be read fram the bottom of the lower monisens to the botton of the upper monisous.

Chase and Iinc (B7) on making a comparison of the modified Babcock mothod for batterfat in $16 e$ ercan and the Mojonnier mothod, concluded that the modified Babeok tests gave resulte averaging 0.04 per cont hicher than the Mojomnier tests.

Some explanation an to why the results of the Babcock teste are lover than the chemieal or gravimetric tests might be obtained from the rerk of phariton and Potersen (58), and others. They tudied the Babcock teet for fat in buttermilk and also the Gerber, butyl alcohol, and Mojonnier mothode for fat in buttermilk. They concludel that the Babcock teet was the most scourete of the tests considered. They based this conclusion on the fact that buttermilk has a lecithin content nearly an high ae the fat content and whon reacents are need for the extraction of the fat which also dissolve lecithin, such as ether, butyl aloohol, etc., the Iat content is creatly exaggerated. The Babsock test for iat in butterm milk jield moarly true butterfat while other extraction methode Jield
both butterfat and lecithin. similarly, in the cases of othor milk products the lecithim content might introduce an error men extraction mothods are wed. The lecithin content of various milk products are given by Ohapan (59) and are included in Table B. From this table an idea may be obtained of the probable inaccuracies occurring in methode wich wee reagente, in which lecithin is soluble, for the extraction of the fat.

Table B
Per Cont of Lecithin in Milk Produote.

Anthor	Milk	Crean	Skinmod Milk	Butternilk
Stocklasea	0.1016			
Burem	0.0538			
Koch and Woods	0.0797			
Forking and Haonsel	0.0689			
Olitin	0.0765			
Cuarman	0.0447	0.1981	0.0165	0.1502

Stadies on Hoatod and Unheated Contrifaces. Wo dotailed study has been made regarding the offect of heatol or mheatol contrifuges on the acouracy of the Babcock test. Babcock in his first descriptions of the teat did not specify whether the centrifuges should be maintained at any certain temperature. However, provision was made for a water jacket on the testers, and this to be filled with hot water in order to keep the contrifuge varim. Won the manufacturing companies began building steam turbine centrifuges it was noted by Woll (60) that due to their cono
etruotion sone acquired a rery high temperature. One type of turbine tester had an opening above the rindle which admitted cool air and reanced the temperature in the tester to about $140^{\circ} \mathrm{F}$. The other type was closed on top. No cool air being dram in, this contrifuge sometimes reached a temperature of about 200° F. Woll made teste in both types of contrifuget and compared them with teate made by the grarinetric mothod. The difference raried from 0.10 to 0.80 per cant, varyinc aceording to the richnese of the milk. Wen the teate were read direot from the teater at 200° I the reading was 0.16 per cont toe high for 5 per cent milk and 0.11 per cont too high lor 8 per cont milk. minen the teets were read frem the contrifuge at $140^{\circ} \mathrm{F}$. the resulte were eomparable to the gravimotric test. This inerease in volum of fat mar hare bean dee to the taperature at which the tests wore read and not necessarily to more efficient separation of the fat.

Farrington (61) was able to increace the oflicieney of the Baboost test for skimmed milk ly adding an ozcese of acid and by whirlime the teate longer and in a hot centriluce (about $800^{\circ} \mathrm{F}$.). Ho securod no different readinge in the ckimed milk testa whether read at $180^{\circ} \mathrm{F}$. or 200°. Hence, the higher reenite were aue to more efficient removal of the residual fat.

Bailef (62) roported the recults of 18 teste rw in an unicated teater. He coneluded that the effect of teatinc in an mheated teater dopended on the temperature of the room, the length of time the teate ase expeeed to rocm temperature after mizins, particularis in a coll room, and posaibly on the type of tester. Lt ordinayy roon temperature toste gare the cane reading ninther man in a heated factory testor or In a hand tester if they were contrifuged directiy after mizims and the
witer added vith a temperature above $180^{\circ} \mathrm{F}$. Tery little difference was noted betweon the results obtained in the heated turbine tester and the hand teater even when the room temperature was down to 60° F. It should be moted however that the temperature of the water added to the teat was vell above that recomanded by standard technique.

Helson (65) made a study of the Iabcock teat in 1926. He noticod that the temperature of the rocm in which the teste were read cauced no appreciable changes. That is, whon the tests were read with the rocm tamperature at 19° F. the resulting readinge were 0.019 per cent lower than whon read in a room at $84^{\circ} \mathrm{y}$. When the teaperature of the cemerifrge was 100° P., 82 samplea averaged 0.049 per cent hicher than the Mojomier resulte bat when the temperature of the contrifuge was $180^{\circ} \mathrm{F}$. the acmples avoraged 0.07 per cent higher than the Kojonnior resulte.

From the literature reviewel it is realily seen that a variety of results and contradictory conclusions as to the accuracy of the Baboock test are available.

Studies on Reeidual Fat. search of the literature revealed Bat little vork on residual fat determinations. Halverson (64) dovised a mothod for the determination of what he termed "residual fat" but not residual fat as mavaliy considered. His method was that of extracting the angar solution discarded from a modified ice cream test to determine the per cont of fat that would be lost thru such a procedure.

Honsiker, et al. (65) made a rather complete atudy of the residual fat in cream teste. They noticed two sources of residual fat, namely, that mich adheres to the glass and that which is contained in the liquid below the fat columa. Froan a ceries of 26 crean teste the realdual fat alhering to the glass amounted to 0.041 per cont, that in
the liquid portion amounted to 0.226 per cent, and for all tests the total residual fat amonnted to 0.280 por cont. Their procedure was as Pollows
msin test bottles were used for each determination. The nocks of the bottles were removed by scratching with a file and breaking them off at their base. The contents of the bottles were traneferred to 500 c.c. beakers. The empty bottles were rinsed with hot water and the rinsings added to the solution in the beakers. This solution was then noutralised With potassium hydrozide, care being taken to avoid excessive evolution of heat. The neutralised solution was then elightly acidified to hasten the filtration and also to convert any soluble soap that may have formed into insoluble acid. The liquid was filtered through a wotted fat-free filter paper and the residual fat maghed with distilled mator. The filter paper was dried, extracted with ether and weighod in the umal way. The resulte multiplied by $\frac{100}{18}$ represent the per cont residual fat in the 1iquid.

Whe test bottles after ringing vith hot water, were dried and rinsod with ether. The rineinge wore ovaporated and the fat weighed. The recalte multipliod by $\frac{100}{18}$ yield the por cent residual fat adhering to the class."

Bailey (c6) reported residual fat teste made on milk. His procedure and commonts are as follows:

Wo determine the residual fat the necke of four bottles were broken $0 f f$ and the liquid below the fat colum poured into a separatory franel. This liquid was extracted with two portions of ethyl ether, first 160 c.e. and then 75 c.c. the ethereal extract washed twice with vater, evaporated to dryness, the reaidue taken up vith petrolove ether (boiling point be-
low $\left.60^{\circ} \mathrm{C}.\right)$ filtered, and the weight of the fat determined. \& similar mothod has been need for the same purpose with ice crean tests (64).
minis method for determining the residual fat was checked up by subjecting some skim milk to the Babcock procedure and thon determinine all the fat as above. The fat was also determined by extracting the same amount of akim milk in a separatory fonnel by the Roeso-Gottlieb method in order to determine the actual amount present. On three comparisons in duplicate the per cont recovered by the above method ranged fron 90.5 to 98.8 with an average of 94.8.

Whe residual fat found in 58 samples of milk varied from 0.066 por cont to 0.255 per cent calculated as reading on the bottle graduation, and averaged 0.152 per cent. While this variation is large, there are very few extreme values. The variation is probably due to variation in the sise of the fat globules."

PURPOSE OF THE HKPERTMIRAT

since there is such a variation in the procedure for the operation of the Babcock test with particular reforence to the temperatures at wich the tests ahould be centrifaged and, since there is quite a deanand that this point be elarified, this experimintal werk was undertaken. The ahief object was to ascertain whether there is any material difference in the reanlts from ailk tests when contrifuged at low temperatures ($85^{\circ}-40^{\circ}$ F.), at modive or room temperatures ($70^{\circ} \mathrm{F}$.) , and at high teaperatures ($\left.185^{\circ}-150^{\circ} \mathrm{F}.\right)$. If a considerable difference be found in the officionoy of the fat soparation in heated and wheated contrifuges, then the precedure for the Babcock test chould be altered and the requirement be made that contrifuges be maintained at a prescribed temperature.

In forther pursuit of the above purpose, chemical tests were made In conjwnction with the Baboock tests in order to secure a recognised standard for comparison.

If a difference in the efficiency of separation of fat due to whirliag at various temperatures existe, this difference should be accountod for in the smount of residual fat remaining in the body of the Babcock test bottle. Consequently, it was the object of this experiment to dotesmine the residual fat remaining in the tests when centrifuged at low, medium, and high temperatures.

Lastly, it was thought to be of interest that the temperature reeulting from the heat genorated by the action of the oulfuric acid on the milk be recorded and also the drop in temperature after whirling at the various temperatures be ascertained.

PROCEDURI

Preoedure for the Babcock Teet

The procedure used in this experiment for the ostimation of fat in milk by the Babcock mothod was similar to that outlined by the Aseciation of Official Agricultural Chemiste (67) and, the American Daizy Science Association prepared by 0. P. Hunsiker and comaittee (68) and (69). The procedure outlined by these two organisations differ but elinintly. It is interesting to mote that the former etater that the contrimge chould be maintained at a temperature of at least $55^{\circ} \mathrm{C}$. ($181{ }^{\circ} \mathrm{F}$.) during the wiriling period while the latter makes no much etatement. Of couree, the final vort in the testing procedure which concerne the Babeok teet operator in the dairy plant reste in the regulations and procedures set mo by the individual atates. wnese etate regulations vary too. In order that a clearer nuderitanding might be had concerne ing etandard procedure the official procedur of the Association of Official Agricultural Chomists (67) is here giton eince it offere a more detailed Coseription.

Official Mothod.
Wionpont. Sulfuric acid -0 Specilic gravity 1.82-1.88 at $80^{\circ} \mathrm{C}$.
Meparatus. The standard contrifuge, howerer irivon, shall be conotrwoted thrwout and 00 monnted at to be capable, men filled to capace ity, of rotating at the nocessary mpeod with a minimpa of vibration and Without liability of canaing injury or accidont. It shall be heated, electrically or otherwise, to a temperature of at least $55^{\circ} \mathrm{C}$ during the procese of contrifugalising. It chall be provided with apeed indicator, permanently attached, if possible. The proper rate of rotation
may be ascertained by reforence to the table below. By Meianeter of wheel" is meant the distance between the inside bottome of opposite cups measured thra the conter of rotation of the centrifuge wheel while the cups are horisontally extended.

Diamoter of whoel, in inches: $\begin{array}{lllllllll}10 & 18 & 14 & 16 & 18 & 20 & 22 & 24\end{array}$ Io. revolutions per minate: $\quad 1074 \quad 980 \quad 909 \quad 848$
"The mater bath for test bottles shall be provided with a thermometer and a dovice for maintaining a temperature of $55^{\circ}-60^{\circ} \mathrm{C}$.
"Dotermination. Franafor 18 en. of the cample, propared as directol, to the milk-test bottle by means of the pipot. Blow out the milk remainfirg in the pipet tip after free outhow has coasod. Idd 17.5 e.c. of $\mathrm{H}_{2} \mathrm{SO}_{4}$, preforably not all at one time, pouring it cown the side of the nock of the bottle in such a as to vach any traces of the milk inte the bulb. The temperature of the acid shall be about $15^{\circ}-20^{\circ} \mathrm{C}$. shake until all traces of ourd have disappeared; thon tranefor the bottle to the contrifuce; counterbalance it; and, after the proper opeed has beon attained, whirl 6 minutes. Ad soft $\mathrm{H}_{2} \mathrm{O}$ at 60°, or above, matil the balb of the bottle is filled. Whirl 2 minutes. Ad hot $H_{2} \mathrm{O}$ until the liguid colvin approaches the top craduation of the scale. Whirl 1 minute lenger at a temperature of $55^{\circ}-60^{\circ} \mathrm{C}$. Transfer the bottle to the wara mater bath maintainod at a temperature of $85^{\circ}-60^{\circ} \mathrm{C}$., imaerse it to the level of the top of the fat colvm, and leave it there ontil the calama Is in equilibrim and the lower fat surface hat assumed a final form. Remeve the bottle from the bath; wipe it; and, with the aid of dividers or calipers, measure the fat colven, in terme of percentage by woight, from its lower aurface to the hiehest point of the epper meniscue.

Whe fat colum, at the time of measurement, should be translucent, of a gelden yellow or amber color, and free from visible suapended
particles. Reject all tests in which the fat column is milky or showe the presence of curd or of charred matter, or in which the reading is indistinct or uncertain."

Method followed in this Study.
Reagont. Regular commercial, netandardised sulfuric acid of epecific gravity 1.04 was used. On account of its atrongth only about 16 c.c. were used.

Apparatug. The test bottles vere tandard Babcock milk test bottles moeting the specifications of the State of Michigan (70), the Aspociation 01 Official Agricultural Chemists (67), and the Onited States Durean of Standards (71). However, they were re-chocked for accuracy by the mercury method and all bottles that did not exactly chock were rejected.

The pipettes weed wore standard pipettes meeting the epecifications of the state of Michigan (70).

The contrifuge ueed was an electric, twenty-four bottle tester having a diameter of 16 inches and running at a speed of 850 revolutions per minute. It vas made portable by mounting on a concrete block of relatively light weight and was fastened to the concrete block by means of long, threaded bolts placed in the conerete, thereby simplifying leveling. The tester was equipped with an olectric heater and a thermemeter for regiatering ite temperature.

The mater bath for the teat bottles was a thermostatically controlled mater bath maintained at a temperature of $188^{\circ} \mathrm{F}$.

Determination. Thirty samples of milk representing the patrons delivering milk to the college dairy wore colleoted daily on various days until over five hundred samples vere collected. Inch sample mas woll
mized by pouring back and forth from two containers eix to eight times. Bach sample was pipetted into aix Babcock test bottles which previously had beon re-checked for accuracy. The pipetted portions from the same sample were diviled into three lote of two each to be whirled with the contrifage operating at 10 w , medim, and high temperatures, the testa for each temperature being run in duplicate.

The tests to be centrifuged at a low temperature were placed in a twonty-four bottle shaker and about 15 c.c. of acid added to each. After complete shaking, the teste were immediately placed in the centrifuge which was located in the refrigerator at 35° to $40^{\circ} \mathrm{P}$. and whirled for five, two, and one minute iatervals. Hot, soft water was added to the teate in accorlance with the procedure of the Official Mothod (67). The tests were imediately placed in a constant temperature water bath and held at a temperature of $158^{\circ} \mathrm{F}$. for readinge at a later period. The came procedure was carried out with the ramaining two lots of tests except for the location of the centrifuge and the temperature at which it was san. The second lot was whirled with the aane contrifuge located in the laboratory with the temperature at the atart at $70^{\circ} \mathrm{F}$. but the temperature should rise due to the heat from the tests. The third lot was wirled with the temperature of the tester at 135° to $150^{\circ} \%$. this temperature being maintained by the use of an electric heating el cmont.

After completion of the centrifuging and after the teats had romained in the water bath for at least three minutes they were removed singly from the water bath and readings made by two persone. The resulte were determinod individually and tabulated on separate records.
i

Procedure for the Chenical (Mojonnier) Pest

The regular procedure for the Mojonnier fat determination in milk was nsed (78) except that the milk samples were accurately weighed inatead of meaoured from a Mojonnier ton-gran pipette. This modification would render the procedure practically identical to that of the official Boese-Cottliob Method.

Because of the time involred in making duplicate teats of the milk, In a mjority of cases one dotermination was made on cach uample. However, eixty eamples wore run in duplicate to oheck the acenraoy of the operator. The arerage difference betweon the duplicate tests wais ± 0.081 per cent with a variation of from 0.000 to 0.078 per cont. Therefore, the single teate were congidered very reliable.

Procedure for Residual Fat Determination
8ince there is no official procedure for the determination of that amewnt of fat which remains in the body of the Babcock test due to the minate sise of fat globule, the following procedure was devised and chooked for acouracys

Preparation of Babcock Testa for the Determination of Residual Fat. The Babeock milk teat bottle was first balanced on an analytical balance after which 17.5 c.c. of a well mixed sample of milk wae pipetted into it and the exact weight of the sample was determined to the fourth decimal. Twelve anples of milk were woighed in this maner until seventy-two teste had beon obtainod. These seventy-two teste were divided into three lote of twenty-four each and the tests completed with the contrifuge operating at 10w, mediv, and high temperatures as in the case of the regular experimental procedure. After contrifugine, the fat was floated frem the neck of the test botties by means of boiling water and the teats
miriod for another minute. Any traces of fat were again removod vith boiling water. This method of elimimating the fat from the neck of the tests was thought to be just as efficient, and much more economical, as the method used by Bailey (66) where the mecks of the bottles were broken off to oliminate the fat.

Fatraction of the Residual Fat. Mach test prepared in the above manner was emptied into 250 c.c. separatory funnels. The test bottle was refilled with water and rinsed into the separatory funnel thereby diluting the acid mixtare. The test bottle was again rinsed with a amall pertion of ethyl ether to remove all traces of fat in the bottle and the contents amptiol into the soparatory funnel. Then 50 c.c. of ethgl ether was addol to the aoid mirture, the funnel stoppered tightly and the mixture shaken vigorously for 20 seconde. 60 c.c. of petroleun ether was then added and the mixture again shaken for 80 seconde after which 20 c.e. of othyl alcohol mas added and the mixture shaken for 50 seconds. The alcohol was nocescary for the removal of the colatinous mixture which collected at the interface betwern the acid mixture and the ether solution. The teat was allowed to stand for five minutes or until complete separation of the ethereal layer after wich the acid mixture was drawn into a beaker for re-extraction. Meanwhile the remaining ethereal layor was mached twice with 100 c.c. portions of water and then filtered thra a fine, fat free filter into weighed aluanum (Kojonnier) fat dishes. For the re-extraction the acid mixture was treated with 25 c.c. of othyl ether, 25 c.c. of petrolem ether, and 10 C.c. of ethyl aloohol and the mixture was abakon for 20 second intervals after the addition of each reagont. The acid mizture was again drawn off and discarded while the remaining othereal layer was wached twice with 100 c.c. portions of
vater and the ether-fat solution filtered into the fat dish. Care was exercised to ingure that all the wash water which clung to the sides of the separatory funnel above the ethereal layer was ohaken down into the water layer before the final separation was made in both oxtractione. Frem this point on the fat dishos vere treated in the regular Mojonnier technicuo (78).

The Check on the Procedure. This method was checked for accuraey by dotermining the mount of fat that could be recovered when a weighed amount of pure butter ofl was passed thru the same procedure. Fous teste were run with the fat being weighed into vater while four other teste were run with the fat being weighed into alfuric acid. Only 15 c.c. of acid were naed for each test as in the regular Babcock tests.

The Method for Determining the Temperature of the Teste.
Since the amount of heat generated by the action of sulfaric acid co on milk, and the drop in temperature due to centrifuging at various tempero atures was thought to be of interest, this simple procedure was followed and the expensive mothod of.the calorimeter was not used for obrious reasone. Twelte charges of 17.6 c.c. of milk were pipetted into each of twelve Babcock crean teat bottles for the conrenience of the larger neck. After the addition of the acid to the milk a thermometer was lowered into the bottom of the teat bottle and the test ahaken, the highest temperature resehed being recorded. lfter these twelve temperatures were dee terminod thirty-isiz more portione of milk were pipetted into cream test bottles to be divided into lote of twelve each for the determination Of the drep in temperature when contrifuged at $10 w$, mediun, and high tomperatures. These three lote were centrifuged in exactly the same manner as in the experimental procedure for the Babcock teet for milk.

Hot soft vater at a temperature of about 160° F. was used in filling the tests. After completion of the chirling, the test bottles were removed from the tester one at a time and held over a container to catch the overflow while the thermometer was being lowered to the bottom of the test bottle. The highest temperature for the tests was again recorded.

EXXPERIMENTAL RESULTS

Comparison of Babcock and Mojonnior Reoults.

It was the purpose of this experimental work to ascertain whether a Eignificant difference in the efficiency of the fat eparation caisted Then heated and unheated centrifuges were used in the operation of the Babcock test for the estimation of fat in milk. Further, a comparison betweon the Babcock test and a standard chemioal test, euch as the Mojonnier method, was thought necessary if positive conclusions were to be drawn. The comparison was made to determine at which temperature of contrifuging, the results of the Babcock test would more nearly equal those of the Mojonnier test. Consequently, amples of milk representing the patrone delivering milk daily to the college dairy were collected unt11 515 samples were obtained. The uaples vere treatod and teated according to the procedure previously given, The resulte are reported in detail in Tables I to XVII inclusive. Bach sample of milk wes teeted in duplicate at each of the three temperatures of contrifuging, manely, 60° to $68^{\circ} \mathrm{F}$., 85° to $100^{\circ} \mathrm{F}$., 135° to $160^{\circ} \mathrm{F}$. For each temperac trure of contriluging four readinge were made of these duplicate teete due to their having becn read by two readere. In this mamar it was hoped to oliminate differences due to personal factore as mach an poseible. The arerage of these four readings at each temperature of contrifuging appear in a fifth colum under the three main headinge of "Iow, Modinn and High Temperature". Those averages are the Ifgures that were considered in the interpretation of these data. Io attempt was made to ohow differences due to individnal readers as that was borond the acope of thic problem. However, othere (41) have done this and found
that an arerage variation as high as 0.15 per cent might exiet.

In order to facilitate the interpretation of these data few mathematical calculations were necessary and the results are sumarised in Table XIX. It will be noted that the average or mean readings for the 515 samples when centrifuged at the rarious temperatures were as follows when contrifuged at 10 w temperatures $\left(60^{\circ}\right.$ to $68^{\circ} \mathrm{F}$.) the mean reading was 3.72 per cents at medium temperatures $\left(85^{\circ}\right.$ to $\left.100^{\circ} \mathrm{F}.\right)$ the mean reading was 8.75 per cent; and, at high temperatures $\left(185^{\circ}\right.$ to $\left.180^{\circ} \mathrm{F},\right)$, the mean reading was 5.76 per cent. This would make a difference in the arerage readings of 0.04 per cent between the teets contrifuged at 100 and at high temperatures, the greatest difference in means that might be attributed to the differences in temperatures of centrifuging. Howerer, the last colvan of the table shows a probable error of to. 0177 which is neariy half the difference. Therefore, one could not conclude that this difference in arerage reading is due to the variation in temperatures of centrifaging.
these differences in average readings resulting in the three lots of teste can be explained only in part. It indeed reane odd that the average readinge would progress upward as they were centrifuged at higher temperatures, jot these differences are of no ignificance mathematically. Perhaps this variable factor had its influences but not sufficiently great to attribute the differences to it. Since these differences can not be due to variations in speed of centrifuging, length of time of contrifuginc, longth of time of holding tests after mising the acid and milk, inacouracies in glassware, tce, all of which were held constant in this experiment, the differences might be due to variations in readinge by the individual readers, slight errors in pipetting, and more
ocelusion of water and sulfuric acid in the fat column in the case of gome tests. It appeared in the case of the Babcock teste centrifuged at the low temperatures that the fat colvan receded in the neck due to the lower temperature while contrifuging and it is possible that some of the fat did not rise again when the tests were imersed in a water bath but elung to the glass near the bottom of the neck. Consequently it was not included in the reading and lower averages were obtained for the tests contrifuged at low temperatures. Fren though water was added to the teats wich was higher in temperature than is recomended In standard procedures jet the coldness of the room brought the temperature of the fat colvan down during centrifuging to about the solidiAfine temperature of milk fat (88° to 96° \% $)$. The fat in the tests made in the cold room or low temperature centrifuge was manally near solidification when the test bottles were removed from the contrifuge even though mater at a temperature of $158^{\circ} \mathrm{F}$. was added to the tests. Fable DXIII showe that the average temperature of the teste after centrifuging In a tester at 60° to $68^{\circ} \mathrm{F}$. to be $94.5^{\circ} \mathrm{F}$. or very near the solidification tomperature of milk fat. In order to insure that the tests mould come from the cold contrifuge in a good condition the mater addod should be mach higher than 158° F.

8ince the Babcock test resulte were not materially altered due to temporatures of centrifuging, mean of all the test was seoured for comparison with the ahemical test. Since the means were obtained from the same number of tests in the case of cach temperature of whirling, an average of these means was secured to ropresent the mean of all Babcock teste made. The mean of all the Babcock teste was found to be 8.74 per. cont while inapeetion of Table IIX shows the man of the Mojomier tests
to be 8.67 per cent. Apparantly the Baboock mothod jielde reaults 0.07 per cent higher than the Mojonnier method. The last columa of the ame table showe probeble error in the means of ± 0.0172 mich would indicate that this difference is highly ignificant and under the same conditions of investigation imilar differences should be obtained.

An explanation as to why the Babcock method should produce higher resulte than the Mojonnier method can be obtained from the work of Bailey (41). The lossen to the fat colman tudied by Bailey ares (a) residual fat wich averaged 0.132 per cont, and (b) the amount of milk delivered by the pipette which was found to be 0.076 grams leas than should have been delivered; while the gaine to the fat colvan appeared ass (a) impurities in the fat in the neck of the bottle whioh was mostly acid and water amounting to about 0.78% of the total lat, (b) reading of tests at $130^{\circ}-145^{\circ} \mathrm{F}$. instead of $113^{\circ} \mathrm{F}$. at which temperature fat has apecific gravity of 0.8 , and (c) the inclusion of the upper meniscus in reading the test.

The explanation as to why the Babcock method yieldod higher reaults than the Mojonnier method seem to be that the grins to the fat column greatly offect the losses.

Table II Patrons' Milk samples Teated Jannary 28, 1938.

3.86

5.7

98
+1
9

4 Arer
ace
3.50
5.69
8.80
5.80
5.80
5.00

8.81
8.90

Patrome' Milk Samples Fested Fobrany 8, 1958.

L0T icmperature					Codiv traperature			Hich qumperature		Chemical mest	
sample	Patron	Header	leader	Irore	Header	Reader	IVar-	Header	Reader	drem	
1 O	H0.	1	B	ap	1	B	ase	1	B	ase	
78	2	8.80-8.36	8.50-3.35	3.85	8.50-8.36	5.35-8.50	8.88	8.80-3.36	8.40-5.85	3.86	8.286
79	4	8.70-5.75	5.60-5.65	5.68	5.70-5.70	8.70-5.70	8.70	5.70-5.70	8.70-5.70	3.70	8.685
80	5	8.80-5.80	8.80-5.85	8.81	8.85-8.90	5.85-5.85	8.86	5.80-5.80	8.85-5.85	8.85	4.015
81	6	4.65-4.70	4.65-4.70	4.68	4.70-----	4.70--m-0	4.70	4.70-4.70	4.80-4.75	4.74	4.604
88	7	$4.50-4.50$	4.25-4.25	4.28	4.25-4.80	4.20-4.80	4.24	4.25-4.80	4.25-4.50	4.28	4.249
85	8	4.50-4.60	4.40-4.40	4.46	4.80-----	4.45-----	4.48	4.45-4.50	4.50-4.50	4.49	4.818
84	9	8.50-5.85	5.35-5.85	8.84	8.35-5.40	5.56-5.40	3.88	5.40-8.40	8.50-5.50	5.46	8.204
85	10	5.80-8.80	5.50-5.50	8.50	8.50-5. 55	8.50-3.85	5.55	5.55-5.56	8.35-5.40	8.86	5.588
86	11	8.60-5.80	5.75-5.80	8.79	8.80-8.86	8.75-5.80	8.80	5.85-5.80	3.85-8.80	8.85	8.708
87	12	4.55-4.55	4.56-4.50	4.54	$4.50-4.60$	4.50-4.50	4.80	4.60-4.60	4.60-4.65	4.61	4.890
88	14	5.75-5.76	5.75-5.80	3.76	8.80-5.80	8.80-8.80	8.80	5.75-5.80	8.80-5.85	8.80	5.788
89	16	8.60-5.60	5.60-5.60	5.60	8.60-5.70	8.60-5.70	8.65	5.70-5.65	5.70-5.66	8.68	8.589
90	16	8.40-5.40	8.40-5.40	3.40	5.35-8.40	5.55-8.40	3.58	8.46-5.80	5.40-5.40	3.44	5.885
91	17	8.46-5.50	8.40-5.45	3.45	5.46-5.80	8.46-8.60	5.48	5.80-5.50	8.50-5.60	8.50	5.458
92	20	8.60-5.65	8.65-8.65	8.64	8.70-8.65	8.70-5.65	8.68	5.75-5.80	8.85-8.90	8.85	8.572
95	21	8.95-4.00	4.00-4.00	8.99	4.00-4.05	5.95-4.00	4.00	4.00-4.00	4.00-4.00	4.00	8.948
94	28	5.60-5.60	5.60-8.60	8.60	8.60-8.65	5.60-8.60	8.61	8.65-5.70	5.70-5.70	8.69	8.544
95	25	8.20-5.20	8.20-3.20	8.20	8.15-5.20	5.20-5.20	8.19	8.20-8.20	5.20-5.25	8.21	5.174
96	24	5.25-5.25	8.50-8.50	8.28	8.50-5.50	8.50-5.50	8.50	8.25-5.50	5.50-3.35	5.50	5.889
97	28	5.90-5.90	8.85-8.85	8.88	8.90-8.90	8.90-5.90	8.90	3.95-5.95	8.95-4.00	3.96	5.864
98	26	5.70-5.70	5.70-5.75	5.71	5.70-5.75	8.70-5.75	8.75	5.80-5.80	5.80-5.80	3.80	5.760
99	27	4.50-4.50	4.55-4.55	4.55	4.50-4.80	4.50-4.60	4.50	4.60-4.60	4.55-4.55	4.58	4.897
100	56	5.65-5.70	8.70-8.70	5.69	8.70-8.70	3.70-5.70	8.70	5.70-5.70	8.75-5.75	8.75	5.661
101	50	8.60-5.60	8.55-5.50	8.56	8.60-5.60	5.55-8.60	5.59	5.60-5.65	5.65-5.65	3.64	5.600
102	51	5.90-5.90	8.90-5.90	8.90	8.85-8.90	8.85-8.90	5.88	5.85-5.90	5.85-8.85	8.86	3.702
105	54.	3.50-3.55	8.40-5.40	5.36	8.55-5.40	5.55-5.40	3.88	5.40-5.40	8.55-5.55	3.58	8.815
104	59	4.55-4.56	4.40-4.40	4.88	4.85-4.40	4.56-4.40	4.38	4.50-4.35	4.80-4.40	4.34	4.087
105	61	8.60-8.60	5.60-8.60	8.60	3.55-8.60	8.55-5.60	3.55	8.60-8.60	8.60-8.60	8.60	5.474
106	68	5.20-5.20	8.10-8.05	5.14	5.20-8.20	8.10-8.10	8.15	8.10-5.10	8.10-5.15	8.11	8.246
107	66	5.25-5.80	8.20-8.25	5.25	5.20-5.20	5.20-5.20	8.20	5.20-5.20	5.20-3.25	3.21	5.206

		Low Temperature			Medium Temperature			High Temperature			Chemical Test
Sample	Patron	Reader	Reader	Aver-	Reader	Reader	Aver-	Reader	Reader	Aver-	
No.	No.	A	B	age	A	B	age	A	B	age	
108	2	$\overline{3.70-3.70}$	$\overline{\text { 3.70-3.70 }}$	3.70	$\overline{\text { 3.70-3.70 }}$	$\overline{\text { 3.70-3.70 }}$	$\overline{3.70}$	5.70-3.75	5.75-3.75	3.74	3.569
109	4	5.65-3. 65	3.65-3.65	3.65	3.70-3.70	3.70-3.70	3.70	3.65-3.70	3.60-3.65	3.65	3.556
110	5	5.90-5.95	5.95-4.00	5.95	4.00-4.00	4.00-4.00	4.00	4.00-4.05	4.05-4.05	4.04	4.009
111	7	5.90-5.90	5.90-5.85	5.89	5.95-5.90	5.90-5.90	5.91	5.95-4.00	3.95-5.95	5.96	5.840
112	8	4.20-4.20	4.20-4.20	4.20	4.20-4.25	4.20-4.25	4.25	4.25-4.25	4.20-4.25	4.24	4.160
115	9	3.50-5.55	5.50-3.50	3.51	5.60-5.60	5.60-5.60	5.60	5.60-5.65	5.55-5. 60	5.60	3.521
114	10	8.90-5.95	3.95-4.00	3.95	4.00-4.00	4.05-4.00	4.01	4.00-4.05	4.00-4.00	4.01	4.007
115	11	5.90-3.90	5.95-3.90	3.91	4.00-4.00	4.00-4.00	4.00	4.00-4.00	4.05-4.00	4.01	3.956
116	12	5.90-----	5.90-~---	5.90	5.90-3.90	5.85-5.90	5.89	3.90-5.90	3.90-3.90	5.90	5.807
117	13	5.30-3.25	5.50-5.20	3.26	3.50-5.35	3.30-5. 50	5.31	5.80-3.35	5.35-5.35	5.34	5.261
118	14	5.70-5.70	5.70-5.70	5.70	3.75-5.80	5.70-3.75	3.75	5.80-8.80	5.70-3.75	3.76	5.627
119	15	5.55-5.55	5.55-5.50	3.54	3.50-3. 65	3.45-5.70	5.58	5.60-3.60	3.65-3.65	3.65	5.555
120	16	3.15-5. 20	5.10-5.15	5.15	5.20-5.20	5.20-3. 20	5.20	3.20-3. 20	3.20-5. 20	3.20	3.148
121	17	5.75-5.70	S.70-5.70	5.71	5.75-5.80	3.80-5.80	5.79	5.70-5.70	3.80-3.75	5.74	5.722
122	20	5.40-5.45	3.40-3.40	3.41	5.45-5. 50	5.40-3.45	5.45	3.50-5.50	8.50-5.50	5.50	3.474
123	21	4.15-4.10	4.10-4.05	4.10	4.20-4.20	4.15-4.20	4.19	4.20-4.20	4.20-4.20	4.20	5.852
124	22	5.40-5.45	5.40-3.45	3.45	5.50-5. 50	5.50-5.50	5.50	8.55-5.60	3.50-3.50	3.54	5.515
125	25	5.70-5.65	5.70-3.65	5.68	5.80-5.75	5.75-5.70	5.75	3.75-3.80	3.70-3.75	3.75	3.580
126	26	5.75-8.75	5.70-3.75	5.74	5.70-5.75	8.70-3.75	5.75	3.80-3.75	3.75-5.70	8.75	3.749
127	36	5.75-5.75	5.75-3.75	5.75	3.75-8.80	5.80-5.80	5.79	5.80-5.85	5.80-5.80	5.81	5.768
128	50	5.60-5.60	5.60-5.60	5.60	5.70-5.70	5.70-8.70	5.70	3.60-3.60	3.60-3.65	3.61	5.454
129	51	5.80-5.85	5.80-5.80	5.81	3.85-5.85	5.85-5.85	3.85	5.85-5.90	3.85-5.90	5.88	5.687
130	54	3.35-5. 55	5.30-3.50	5.55	3.35-5. 40	5.30-5.30	3.34	3.35-3. 50	3.30-3.30	5.51	3.234
131	59	4.30-4.35	4.30-4.30	4.31	4.40-4.40	4.35-4.40	4.39	4.40-4.40	4.35-4.35	4.58	4.260
132	61	4.00-4.00	4.00-4.00	4.00	4.05-4.10	4.05-4.05	4.06	4.05-4.10	4.00-4.00	4.04	4.207
133	62	5.50-5.50	5.30-5.25	3.29	5.30-3.30	3.50-8. 50	5.50	3.50-3. 30	5.85-5.30	3.31	5.241
184	66	3.40-5.35	5.40-3.35	3.38	3.40-5.40	3.40-5.40	3.40	5.40-5.45	5.40-5.40	3.41	5.507

Patrons' Milk Samples Tested Febreary 15, 1985.

		Lev yemprature			Todiue Fcuperature			Hich temperature			Chamical lest
$\begin{gathered} 8 \Omega 10 \\ \text { fo. } \end{gathered}$	Patron Io.	Roader	$\begin{gathered} \text { Roader } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Arere } \\ & \text { are } \end{aligned}$	Hoader	$\begin{gathered} \text { Reader } \\ \hline \end{gathered}$	Arere	$\begin{gathered} \text { header } \\ 1 \end{gathered}$	$\begin{gathered} \text { Roader } \\ B \end{gathered}$	$\begin{aligned} & \text { Arore } \\ & 20 \end{aligned}$	
136	2	3.46-3.45	3.40-8.46	\%.4t	8.45-3.50	8.50-3.50	3.49	8.55-8.60	5.35-5.60	3.58	8.488
156	4	8.60-8.60	8.60-5.65	8.61	8.60-5.65	8.70-3.75	8.68	8.70--.--	8.70-----	5.70	8. 596
189	5	8.85-5.95	8.90-8.95	8.91	8.90-5.95	3.95-4.00	5.95	4.00-----	4.00-----	4.00	8.856
188	6	4.40-4.46	4.40-4.46	4.45	4.40-4.40	4.45-4.45	4.45	4.40-----	4.46----0	4.45	4.585
159	7	8.80-5.85	8.80-5.90	3.84	8.85-8.90	8.85-3.85	8.86	8.95-4.00	5.95-4.00	8.98	5.794
140	8	4.10-4.10	4.10-4.16	4.11	4.00-4.00	4.10-4.10	4.05	4.05-4.16	4.05-4.15	4.10	4.064
141	9	8.55-5.60	8.c0-8.65	8.60	8.60-3.60	8.60-8.60	8. 60	8.70-8.70	8.70-5.70	8.70	5.586
142	10	8.55-5.60	8.60-8.60	5.59	8.60-5.60	8.60-5.60	3.60	8.65-8.70	8.65-5.70	8.68	8.544
145	11	8.95-4.00	8.95-4.00	8.98	8.95-4.00	8.95-4.00	5.98	4.00-4.00	4.10-4.10	4.05	8.918
144	12	4.60-4.60	4.65-4.65	4.65	4.60-----	4.65----	4.65	4.60--m-	4.60-----	4.60	4.579
146	18	8.50-8.50	8.50-8.50	8.50	8.50-5.50	8.50-5.50	8.50	8.60-5.60	8.60-8.60	8.60	8.491
146	14	8.70-5.70	8.70-5.70	8.70	8.70-5.70	8.75-5.80	8.74	8.75-5.80	8.75-8.80	8.78	8.646
147	18	3.65-8.70	8.70-8.70	8.69	8.80-8.80	8.80-5.80	8.80	8.80-8.80	3.80-8.80	5.60	5.745
148	16	8.25-8.20	8.26-8.25	8.24	8.25-8.25	8.50-5.50	8.28	5.80-5.50	8.50-8.56	8.51	5.238
149	17	8.40-5.40	8.50-5.40	8.48	8.40-5.45	8.45-8.50	8.45	8.45-8.50	8.40-5.45	5.45	8.898
160	20	8.40-5.40	8.40-8.45	8.41	8.45-5.45	5.50-8.50	8.48	8.50-8.50	5.50-5.50	5.50	8.448
151	21	4.00-4.05	4.00-4.00	4.01	4.10-4.10	4.10-4.10	4.10	4.05-4.05	4.10-4.05	4.06	8.987
158	22	5.65-8.70	8.70-8.70	8.69	8.70-8.75	8.75-8.75	5.74	8.75-3.75	8.70-5.75	5.74	8.695
158	25	5.05-5.10	8.10-5.05	8.08	8.05-8.10	8.10-5.10	8.09	8.05-8.10	5.10-8.10	5.09	2.998
154	24	8.26-5.50	8.50-5.50	3.29	8.80-8.50	5.85-5. 56	8.35	8.40-8.40	5.80-5. 36	3.86	8.818
155	25	8.70-5.75	8.70-8.75	8.78	8.75-5.75	5.80-8.85	8.79	8.75-8.60	8.80-8.80	5.79	3.619
156	26	5.60-8.60	5.60-5.65	8.61	3.65-8.60	5.70-5.65	8.65	8.65-5.70	5.70-5.70	5.69	5.528
157	27	8.70-5.75	8.70-5.70	8.71	8.70-5.75	8.75-5.80	8.75	8.70-5.70	8.70-5.76	8.71	8.648
168	86	8.70-8.75	8.65-8.70	8.70	8.70-8.70	8.80-8.75	8.74	8.70-8.70	8.75-8.70	8.71	8.685
168	60	8.50-5.60	8.55-5.58	8.56	8.60-8.60	8.60-5.60	8.60	8.60-8.70	8.60-5.70	5.65	8.465
160	61	8.80-5.50	8.50-8.55	8.51	8.65-5.60	8.65-5.65	8.64	5.60-5.70	8.70-5.70	5.68	8.628
161	54	8.60-8.60	8.60-8. 56	5.56	5.60-5.65	8.60-5.60	8.61	5.60-5.60	5. $60-5.60$	3.60	8.654
162	69	4.10-4.16	4.15-4.20	4.15	4.25-4.20	4.50-4.25	4.25	4.20-4.26	4.20-4.25	4.25	4.128
165	61	8.70-8.75	8.70-5.75	8.78	8.80-3.60	8.80-8.80	8.80	5.80-5.80	8.75-5.70	8.76	8.714
164	62	8.50-5.20	5.80-5.80	8.26	8.86-5.86	8.40-5.85	8.36	8.80-8.40	8.80-8.40	8.85	8.268
165	66	5.40-8.40	5.40-5.40	8.40	8.40-5.45	5.50-5. 56	3.48	8.50-8.50	8.50-8.55	8.51	5.571

Table VII Patrone ${ }^{\circ}$ Milk Samples Tosted Fobruary 17, 1955.

		Fow tenperature			Todin temperature			Eligh Thearature			Ghencal rest
$\begin{aligned} & \text { 8ample } \\ & \text { Io. } \end{aligned}$	Patron 10.	$\begin{gathered} \text { Roader } \\ 1 \end{gathered}$	$\begin{gathered} \text { Reader } \\ \mathbf{B} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Avore } \\ & \text { age } \end{aligned}$	Reader $\boldsymbol{1}$	$\begin{gathered} \text { Reader } \\ \text { B } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	$\begin{gathered} \text { Roader } \\ i \end{gathered}$	$\begin{gathered} \text { Reader } \\ \mathbf{B} \\ \hline \end{gathered}$	Arer-	
166	2	5.50-3.50	8.50-3.55	3.61	8.36-5.60	8.65-3.36	3.36	8.35-3.60	8.60-3. 60	3.35	8.409
167	4	5.65-3.65	8.70-8.70	8.68	8.70-8.75	8.70-5.80	5.74	8.70-5.70	8.70-5.76	3.71	5.645
168	5	5.75-5.80	3.70-8.80	8.76	8.90-5.90	8.90-5.90	5.90	5.80-5.86	8.90-8.90	5.86	8.788
169	7	8.90-5.90	5.90-8.90	8.90	8.90-5.90	5.90-5.95	8.91	5.95-3.95	4.00-4.00	8.98	8.865
170	8	4.80-4.80	4.20-4.20	4.80	4.20-4.10	4.20-4.15	4.16	4.20-4.20	4.20-4.25	4.21	4.166
171	9	5.46-5.46	8.50-5.50	8.48	8.55-5.60	5.50-5. 56	8.55	8.55-8.56	5.55-5.60	8.56	8.468
178	10	5.55-5.40	5.40-5.40	3.89	5.40-5.45	8.45-5.50	8.45	8.40-5.40	8.40-5.40	8.40	5.349
178	11	8.90-5.90	8.85-5.98	8.90	8.90-8.90	5.90-5.90	8.90	8.90-8.90	8.90-5.95	8.91	5.861
174	15	5.50-5.50	5.50-5. 50	8.50	5.60-5.60	5.60-5.55	8.59	8.60-5.65	8.65-8.65	8.64	5.588
175	14	5.40-5.46	8.50-8.50	5.46	8.45-5.46	8.50-8.50	3.48	8.50-5.50	8.50-5.50	3.60	5.415
176	15	8.50-----	8.50-5.50	8.50	8.50-8. 56	8.55-5.55	8.54	8.55-5.55	8.60-5.60	5.58	8.495
177	16	8.50-5.50	5.50-5.50	8.80	8.40-8. 35	8.55-5. 55	8.56	8.40-5.40	8.85-5.40	8.59	5.515
178	17	5.55-5.40	8.85-8.40	8.88	8.50-5.50	8.50-8.50	8.50	8.50-8. 50	8.50-8.50	8.50	8.440
179	20	8.25-8.25	8.50-8.50	8.88	8.35-5.35	8.55-5.40	8.86	8.40-5.40	3.55-5.40	5.59	5.514
180	21	4.05-4.05	4.10-4.15	4.09	4.30-4.10	4.15-4.10	4.11	4.10-4.15	4.05-4.10	4.10	4.058
181	22	8.45-5.40	5.40-8.40	8.41	5.50-5.50	8.50-5.55	5.51	8.55-5. 50	5.55-5.55	3.54	3.489
182	28	8.05-8.00	5.10-5.05	8.05	5.10-8.10	5.10-8.10	8.10	8.15-5.10	8.10-5.10	3.11	5.084
185	84	8.10-5.15	5.15-5.20	8.15	8.20-5. 20	8.20-8.20	8.20	5.25-5.25	5.25-5.20	5.24	5.189
184	25	3.45-5.45	8.46-8.46	8.45	5.55-5.50	8.55-5.50	8.58	8.60-5.60	5.60-5.55	8.69	8.450
185	26	5.70-5.75	5.70-5.75	8.75	8.80-5.85	5.75-5.80	8.80	5.85-8.85	8.85-5.90	8.86	8.788
186	27	4.25-4.20	4.20-4.20	4.21	4.80-4.50	4.25-4.20	4.86	4.20-4.20	4.15-4.20	4.19	4.121
187	86	5.70-5.70	5.70-5.65	8.69	5.75-8.70	5.75-3.70	5.75	8.70-5.70	8.70-8.70	5.70	5.667
188	50	8.55-8.60	8.60-5.60	8.89	8.65-5.70	8.65-5.65	8.66	5.65-5.70	5.70-5.70	8.69	5.521
189	51	8.75-8.75	8.75-5.75	8.75	8.80-8.80	5.85-8.85	8.85	8.80-8.80	5.80-8.80	8.20	8.808
190	64	8.56-8. 80	5.55-8.50	8.55	8.55-5.55	8.60-5.60	8.58	5.56-5.60	5.55-5.56	3.66	5.491
191	69	4.50-4.50	4.36-4.35	4.35	4.40-4.40	4.40-4.40	4.40	4.40-4.40	4.40-4.40	4.40	4.289
198	61	8.80-5.90	5.85-3.85	8.85	5.90-5.90	4.00-4.00	5.95	5.90-5.90	8.95-5.95	5.95	8.810
198	62	8.46-8.46	5.46-8.45	8.45	8.50-5.50	8.55-8.55	5.55	5.45-5.65	8.45-8.50	3.49	8.448
194	66	8.80-8.50	5.50-5.50	8.50	8.80-8.50	5.35-5.35	8.35	8.40-8.40	8.40-8.40	8.40	8.282

. .

告 $\begin{array}{ll}8.80-8.75 & 5.74 \\ 8.70-8.70 & 8.70 \\ 4.00-4.05 & 4.01 \\ 8.56-8.40 & 8.58 \\ 8.40-5.40 & 5.41 \\ 8.85-.-20 & 4.85\end{array}$ 8
8
8
8
8
8 8.80-8.50 8
0
0
1
0
0
0
0 .50-8.50
 3.50-8.50 9 \% 8.50 운 in
 8.65
8.25-53.8.
 8.85-8.85 $8.80-8.40$
$8.85-5.40$
$8.40-5.46$ 8.50-8.50 8.40-5.40 8.60-5.60 8.85-8.55 8.46-8.50 8.00-8.00 8.50-8. 80 8.70-5. 70 8.50-8.55 4.20-4.25 8
$\dot{\circ}$
$\dot{\circ}$
∞
$\dot{\circ}$
$\dot{\circ}$ ----999.s $\frac{4}{3.35}$ $8.75-5.75$
$4.00-4.00$ 4.00-4. 8.40 $8.55-5.40$ 4.85--2.0. 8.80-8.86 8.50-5.85 8.40-8.46 0
0
0
0
0
0
0
0
0 8.55-5.80

88
0
0
0
0
0
0

9.

0
0
9
$\dot{0} 8$
0°
0 5.00-8.00 5. $50-8.50$
8.70-8.70 8.50-8.55 $\begin{array}{ll}80 \\ 80 \\ 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}$ 8.00-5.85 8. $40-8.40$ 98
0
\vdots
\vdots
0 8.50-5. 60 8.55-8.56 8.25-8.50 89
+9
80
80
+10
 $8.00-8.00$
$8.50-5.50$
 8.50-8.50 8
$\dot{8}$
$\dot{8}$
$\dot{0}$
$\dot{0}$
$\dot{0}$ 8.65-8. 65

 Hople Patron
Ho. 0 $+8$ $\stackrel{8}{9}$ 8 8 18
18

18 | 2 |
| :--- |
| 4 |
| 5 |
| 7 | 10 4.90-4.95 4.95

		Low Temperature			Medium Temperature			Hilgh Temperature			Chemical Test
Sample	Patron	Reader	Reader	Aver -	Reader	Reader	Aver	Reader	Reader	Aver-	
Ho.	No.	A	B	age	A	B	age	A	B	age	
218	2	3.45-3.45	3.50-3.50	3.48	3.45-3.50	3.45-3.50	3.48	3.50-3.50	3.50-3.45	3.49	3.409
219	4	3.65-3.70	3.65-5.70	3.68	5.60-3.65	3.70-3.70	3.66	3.65-3.65	3.60-3.65	3.64	3.556
220	5	5.95-4.00	4.00-4.00	5.99	5.90-5.95	5.95-5.95	5.94	5.95-4.00	5.95-4.00	5.98	5.871
221	6	4.65-4.70	4.65-4.65	4.66	4.60-4.60	4.60-4.60	4.60	4.60----	4.70-4.65	4.65	4.557
222	7	5.85-5.85	5.90-3.90	3.88	8.80-3.80	8.85-3.90	3.84	5.95-4.00	8.90-3.95	3.95	8.787
228	8	4.45-4.50	4.50-4.50	4.49	4.40-4.50	4.50-4.50	4.48	4.45-4.40	4.45-4.45	4.44	4.585
224	9	5.60-5.60	5.65-8.65	5.65	5.60-5.60	5.55-8.60	3.59	5.60-3.60	5.60-3.60	8. 60	5. 579
225	10	8.70-8.70	5.75-5.70	5.71	8.70-5.70	5.70-5.70	5.70	5.70-8.75	5.70-5.70	5.71	S. 687
226	11	5.90-5.95	5.90-5.95	8.95	5.90-5.90	5.90-5.90	5.90	5.90-8.90	5.90-3.95	3.91	5.855
227	15	5.60-8.60	5.60-5.60	5.60	5.60-5.60	5.60-5.60	8.60	8.65-8.60	5.65-8.60	5.65	5.554
228	14	3.55-5.60	3.60-5.60	3.59	3.60-5.60	3.50-5.55	3.56	3.50-8.50	5.55-5.50	3.51	5.456
229	15	3.35-5.40	3.40-8.45	5.40	5.40-3.40	3.40-3.45	8.41	3.40-5.40	8.40-3.40	3.40	3.359
250	16	8.50-8.80	\$.55-5. 50	5.51	5.30-5. 50	5.50-8.80	5. 50	5.40-5.40	5.30-5.50	5.35	5.282
281	17	8.45-5.45	8.45-5.50	3.46	3.40-8.45	3.45-3.45	3.44	5.50-5.50	5.40-5.40	5.45	3.408
232	20	5.40-8.40	3.40-8.40	5.40	3.40-8.45	8.40-8.40	8.41	5.50-5.45	8.40-8.40	3.44	5.572
235	21	4.10-4.15	4.10-4.15	4.15	4.15-4.10	4.15-4.15	4.14	4.15-4.10	4.15-4.10	4.15	4.105
234	22	3.35-5.40	5.50-5.50	5.84	5.45-5.35	5.40-8.30	5.38	8.40-5.40	5.35-5. 55	5.38	5.359
255	28	5.05-5.10	8.10-5.10	5.09	3.05-5.10	5.05-5.05	3.06	8.10-5.10	3.10-3.10	3.10	8.048
236	24	5.20-3.20	3.20-3. 20	3.20	3.20-5. 20	5.20-3.20	3.20	5.50-5.25	5.25-5.25	5.26	3.159
237	25	5.60-3.60	8. 60-8.60	5.60	5.60-8.65	5.60-8.60	5.61	5.60-5.60	5.70-5.60	5.65	3.589
238	26	5.35-5.35	5.40-8. 40	5.38	3.35-5.35	3.30-5.50	3.38	5.85-8.40	3.50-5.40	3.56	5.509
239	27	4.35-4.40	4.30-4.55	4.35	4.40-4. 55	4.40-4.35	4.38	4.40-4.55	4.35-4.35	4.56	4.288
240	56	5.70-5.70	8.70-8.70	3.70	5.80-8.75	5.70-3.70	5.74	3.75-5.75	5.70-5.70	3.75	5.732
241	50	3.60-3.65	3.65-8.70	5.65	3.70-8.70	5.65-3.65	3.68	3.70-3.70	5.70-5.70	3.70	5.529
242	51	5.80-3.75	5.80-8.70	5.76	5.80-8.80	5.75-8.80	5.79	3.75-3.80	3.75-3.80	3.78	5.692
243	54	5.20-5.25	3.25-3.25	3.24	3.30-8.30	5.20-3.20	3.25	5.25-5.30	5.25-3.30	3.28	5.205
244	59	4.30-4.25	4.50-4.30	4.29	4.40-4.35	4.30-4.30	4.34	4.30-4.55	4.50-4.35	4.35	4.007
245	61	5.60-5.60	3.65-8.60	5.61	3.65-5.60	3.70-3.65	3.65	3.60-5.60	5.60-5.60	3.60	5.576
246	66	5.55-5.50	8.50-5.50	3.51	3.55-3.55	3.50-3.50	5.53	3.60-3.60	5.60-5.55	3.59	5.511

Patrons' Milk Samples Tosted Pebramy 24, 1935.
N
Table

		Lew tererature			Modive teaperature			旦魚 teaperature			Chemical lest
$\begin{gathered} 8 \text { saplo } \\ 10 . \end{gathered}$	$\begin{gathered} \text { Patron } \\ \text { Ho. } \end{gathered}$	$\begin{gathered} \text { Roader } \\ 1 \end{gathered}$	$\begin{gathered} \text { Roader } \\ \hline \end{gathered}$	Arope	Toader	$\begin{gathered} \text { Roador } \\ B \\ \hline \end{gathered}$	$\begin{aligned} & \text { Arere } \\ & \text { ase } \end{aligned}$	Hoader 1	$\underset{B}{\text { Roader }}$	$\begin{gathered} \text { Arare } \\ \text { are } \end{gathered}$	
26	2	8.15-3.00	3.10-5.15	8.15	3.15-8.15	8.10-3.15	5.14	3.80-3.80	8.E0-8.15	3.19	5.100
48	4	8.40-5.40	5.55-8.55	8.58	8.55-8.40	3.40-8.45	8.40	8.40-5.40	8.40-5.85	5.89	8.402
849	5	8.65-5.90	8.70-5.70	8.69	8.60-5.60	8.65-5.60	8.61	5.60-5.65	8.65-8.70	5.65	8.574
250	6	4.90-4.90	4.85-4.90	4.89	4.90-4.90	4.90-4.90	4.90	4.90-4.90	4.90-4.90	4.90	4.858
1	7	8.85-3.90	8.80-5.85	8.85	8.90-5.90	8.80-8.80	5.85	8.90-5.90	8.95-5.90	8.91	8.778
252	8	4.40-4.40	4.35-4.40	4.59	4.56-4.40	4.50-4.35	4.35	4.50-4.50	4.80-4.80	4.80	4.295
255	9	8.60-5.65	8.55-5.50	8.58	8.60-5.60	3.60-5.60	5.60	5.60-5.65	3.55-8.55	8.59	8.566
254	10	8.65-5.65	3.70-8.70	5.68	8.65-5.70	5.65-5.65	8.66	8.60-5.C0	8.65-8.65	3.68	8.601
256	11	8.80-8.85	8.80-5.80	3.81	5.80-5.80	8.80-5.80	8.80	8.80-5.80	8.80-5.80	8.80	8.779
256	12	4.70-4.70	4.75-4.70	4.71	4.65-4.70	4.65-4.65	4.66	4.70-4.70	4.70-4.70	4.70	4.712
257	18	8.20-8.20	8.25-5.25	8.28	5.25-5.50	5.20-5.20	3.24	5.20-5.25	5.20-3.25	5.23	5.218
258	14	8.70-8.70	8.60-8.60	8.65	5.65-5.70	5.65-8.65	3.66	5.65-5.70	5.60-8.65	3.65	3.606
259	15	8.65-5.70	8.60-5.65	3.65	5.60-5.70	8.65-5.70	3.66	8.70-5.70	8.65-5.70	3.69	8.656
260	16	8.10-8.16	8.10-5.10	8.11	8.10-5.20	8.10-5.16	8.14	3.15-5. 20	8.10-5.10	3.14	3.085
61	17	5.70-8.70	5.65-5.70	8.69	5.65-8.70	3.65-5.65	3.66	3.70-8.75	3.65-5.70	5.70	5.651
262	20	3.60-8.60	8.60-5.60	5.60	5.65-5.65	3.65-5.65	8.65	8.75-8.75	8.65-8.60	8.69	8.605
268	21	4.00-4.05	4.00-4.00	4.01	4.00-4.00	4.00-4.05	4.01	4.00-4.05	4.05-4.05	4.04	4.014
264	22	8.40-5.40	5.50-5. 35	5.86	8.40-5.35	5.55-5.35	5.36	5.45-8.50	8.40-3.45	5.45	5.858
56	25	8.05-5.10	8.05-8.10	8.08	8.05-5.10	5.05-8.10	8.08	8.10-5.10	3.05-3.05	3.08	2.996
266	24	8.50-8.50	8.80-5.50	8.80	3.80-5.50	8.50-3.50	8.50	5.85-8.35	8.50-5.50	8.38	8.189
267	26	8.65-8.70	8.60-5.65	8.65	8.70-8.70	8.65-8.70	3.69	8.70-8.70	8.60-8.65	3.66	8.619
268	26	8.45-5.50	3.40-5.40	3.44	5.46-5.50	8.50-5.50	8.49	8.80-8.50	8.45-8.45	8.48	5.489
669	27	4.40-4.40	4.35-4.40	4.59	4.40-4.40	4.50-4.50	4.46	4.50-4.50	4.40-4.40	4.85	4.821
270	36	5.55-5.56	8.50-5.58	8.54	8.50-5. 65	8.60-8.60	3.56	3.80-3.88	8.55-8.58	5.54	8.499
27	50	5.60-8.60	8.55-5.55	8.58	3.55-5. 56	8.55-8.55	8.65	8.60-8.60	8.55-8.58	3.58	5.426
272	51	5.70-8.75	5.65-5.60	8.68	8.70-8.70	8.70-8.70	8.70	8.70-8.70	3.70-3.70	3.70	3.621
78	54	8.45-5.50	5.50-5.56	5.50	5.45-8.50	8.50-8.50	3.49	5.50-5.50	8.50-3.50	3.50	8.406
274	89	4.50-4.50	4.55-4.50	4.31	4.50-4.50	4.50-4.30	4.50	4.50-4.50	4.30-4.35	4.31	5.880
275	61	4.00-4.00	4.00-4.00	4.00	4.00-4.05	4.00-4.05	4.08	3.95-4.00	3.90-5.95	8.95	5.808
276	66	8.40-8.46	5.40-8. 46	8.45	8.45-5.45	8.45-8.40	5.44	3.50-8.50	8.45-3.45	3.48	5.575

 8.00
3.64
8.80
4.80
8.84
4.29
8.58
8.69
8.85
4.48
3.68
8.79
8.69
8.65
5.40
4.00
8.58
8.81 Ar
in
in 8.89
8.80 $\underset{+}{7}$ ค் ${ }^{\circ}$ © 8 89

 8.80-5.80 \begin{tabular}{l}
88

$8 \quad$

10

08

08

\hline-8

0

0

8

8

8

0

\hline 8
\end{tabular}

 18
0
0
0
0
0
0
0
0 89
0
0
0
0
0
0
0 8
8
0
0
0
0
0
0 08
0
0
0
0
0
0 88
0
0
0
0
0
10
 98
0
0
9
8
8
0 $8 \circ$
0
0
0
0
0
0
0

9.
0
0
9
\vdots

0
0
0
0
0
0

0 | 9 |
| :--- |
| + |
| + | 08

$\dot{8}$
$\dot{0}$
$\dot{\circ}$
$\dot{\circ}$
$\dot{\circ}$
 \circ
0
0
0
0
0
0
0 8
+
8
8
8 3
1
1
8
0 9
$\dot{8}$
$\dot{0}$
$\dot{8}$
$\dot{\circ}$
\qquad $+8$ 88
0
0
0
0
 4.00-4.00 8
0
0
0
0
0
0 9
0
0
8
0
0 9
0
0
0
0
0
í 8
0
0
0
0
0
0
 8
0
0
8
0
0
0
 8
0
1
0
0
0
i
i 0
9
18
0
0
0
4
0 9
0
0
8
8
8
0 Lrese $\begin{gathered}\text { inader } \\ \text { an } \\ 3.80-3.85\end{gathered}$ 3.80-8.80

 4.90-4.90 5.90-8.90 | 88 |
| :--- |
| +1 |
| 8 |
| 8 | 8

8
8
8

8 \begin{tabular}{l}
9

4

\hline

8

8

8

8

\hline

8

$\dot{0}$

$\dot{0}$

$\dot{1}$

8

$\dot{8}$

\hline

9

$\dot{9}$

$\dot{0}$

0

0

\hline 0
\end{tabular} 8.40-5.45 4.00-4.00 10

0
0
0
0
0

0 \begin{tabular}{l}
8

$\dot{9}$

$\dot{8}$

$\dot{8}$

\hline

0

\hline 1

0

0

0

\hline

9

\dot{p}

$\dot{0}$

0

0

\hline
\end{tabular} 10

0
0
0
0
0
0

0 8 | 0 |
| :--- |
| 1 |
| 0 |
| 0 | 5.80-8.80 9

$\dot{0}$
$\dot{0}$
0
0
0

0 | 98 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

 8.40-8.40

 $\frac{20}{40 r}$

Patrons' Milk Samples Feeted Maroh 8, 1955.
IIX
Table

		Fow remerature			Tedium remperature			High remperature			Chemical lest
$\begin{gathered} \text { Sanple } \\ 10 . \end{gathered}$	$\begin{gathered} \text { Patron } \\ \text { Ho. } \end{gathered}$	$\begin{gathered} \text { Reader } \\ 1 \end{gathered}$	$\begin{gathered} \text { Zoader } \\ B \end{gathered}$	$\begin{gathered} \text { Rrare } \\ \text { ase } \end{gathered}$	$\begin{gathered} \text { Roader } \\ 1 \end{gathered}$	$\begin{gathered} \text { Reader } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { Arer } \\ & \text { age } \end{aligned}$	Reader	$\begin{gathered} \text { Roader } \\ \hline \end{gathered}$	$\begin{gathered} \text { Irare } \\ \text { age } \end{gathered}$	
806	2	3.26-8.80		3.28	3.30-3.35	8.30-8.35	8.85	8.40-0-0	8.10-20-	8.40	5.860
507	5	8.70-8.76		8.78	5.80-5.80	8.80-8.80	8.80	8.75-5.80	5.75-8.80	6.78	8.696
508	6	4.20-4.20		4.20	4.50-4.50	4.25-4.50	4.89	4.20-4.25	4.50-4.50	4.26	4.121
509	7	8.70-8.70		8.70	8.85-5.90	8.85-8.90	8.88	5.80-8.85	8.80-5.80	5.81	8.719
810	8	4.00-4.10		4.05	6.10-4.10	4.20-4.20	4.15	4.10-4.10	4.10-4.10	4.10	4.046
811	9	5.40-8.40		5.40	8.46-8.45	5.15-5.40	5.44	5.50-5.50	3.45-5.40	8.46	5.565
512	10	5.50-5.35		5.85	5.55-5.35	8.50-5.50	8.55	5.50-5.50'	5.55-5.35	5.58	5.264
515	11	8.90-8.90		3.90	4.00-4.00	8.95-3.95	5.98	4.00-4.00	8.95-5.95	5.98	3.853
814	12	4.65-4.70		4.68	4.80-4.85	4.80-4.80	4.81	4.80-4.80	4.80-4.80	4.80	4.664
515	18	8.25-5.50		5.28	5.55-5.40	5.50-5.50	8.54	8.40-3.40	8.35-8.55	5.58	5.520
516	14	8.50-5.50		8.50	8.65-8.65	8.80-5.60	5.65	5.65-5.65	8.65-5.60	8.64	5.566
517	18	8.50-8.45		8.48	5.60-5.60	5.60-5.60	8.60	5.55-5.60	8.60-5.60	5.69	3.650
518	16	5.05-5.10		5.08	5.15-5. 20	8.15-5.15	5.16	8.20-8.80	8.10-8.15	8.16	8.107
519	17	8.70-5.70		5.70	8.75-5.75	8.70-5.70	5.78	5.80-3.85	5.75-5.75	5.79	8.719
520	80	8.50-5. 56		5.58	5.45-5. 50	8.40-5.40	5.44	5.40-5.40	8.40-5.55	5.59	5.514
521	21	4.05-4.05		4.05	4.10-4.10	4.00-4.00	4.05	4.00-4.10	4.00-4.05	4.04	4.084
528	22	8.20-5.20		8.20	5.40-5.40	5.50-5.80	5.35	5.50-5.50	8.50-5.50	5.50	5.355
325	25	5.50-5.46		5.48	5.40-3.45	5.45-5.45	5.44	5.40-5.46	5.40-5.45	5.45	3.585
824	24	5.05-8.05		3.05	3.10-5.15	5.10-3.10	5.11	8.10-3.10	5.05-5.05	8.08	5.075
825	25	8.20-5.80		8.20	5.50-5.50	5.50-3.25	5.89	5.25-5. 50	5.25-5.25	5.26	5.248
526	26	5.40-5.40		8.40	8.50-5. 50	8.50-3.50	5.60	8.50-5.50	5.50-5.46	3.49	5.451
387	27	4.00-4.00		4.00	4.05-4.10	4.10-4.10	4.09	4.05-4.10	4.00-4.00	4.04	4.018
528	56	5.45-5.40		5.45	5.60-5. 50	5.50-8.50	5.50	5.60-5.50	5.45-5.45	3.48	3.476
889	50	8.85-5.40		5.38	5.45-5.50	5.40-5.40	5.44	8.45-5.45	5.40-8. 45	8.44	5.574
550	61	5.60-5.65		5.65	8.70-5.70	5.70-8.70	5.70	8.70-5.70	5.65-8.70	8.69	8.689
551	54	5.55-5. 55		8.35	5.50-5.65	8.50-8.50	8.51	8.45-8.50	5.50-5.50	8.49	5.450
558	59	4.50-4.60		4.55	4.65-4.70	4.70-4.70	4.69	4.65-4.70	4.65-4.70	4.68	4.687
558	61	8.70-8.75		5.75	8.90-5.90	5.90-8.90	5.90	5.90----	8.90-----	3.90	5.798
534	66	8.55-8.40		5.38	5.40-5.46	3.40-5.46	5.45	8.45-8.50	5.40-8.46	3.45	5.458

Table XIII Patrons' Milk Samples Tested March 14, 1955.

cto
． 408

5in
®®

$\stackrel{\circ}{\circ}$
in
$\stackrel{+}{7}$
후ㅁㅜㅜ むి © ． 376 8藏 ． ：
蒿

1702
$4-3$
 t

		Leor Teaporature			Toditim pamparaturo			H19 ${ }^{\text {chemparature }}$			Chemion fort
$\begin{aligned} & \text { sataplo } \\ & \hline 10.0 \end{aligned}$	patron	ador	Boador	r－	dor		1	Or		${ }^{\text {dior－}}$	
	10.	$\frac{\text { ¢ }}{\text { 8．40－3．30 }}$		$\frac{280}{3.45}$	8．45－3．50		$\frac{980}{3.49}$	5．bb－3．5B	5．50－3．50		8.408
366	4	8．75－5．00	8．70－8．75	3．75	3．75－5．80	8．80－5．80	3.79	3．80－8．85	3．00－3．80	5．81	3.579
567	5	3．00－5．80	3．20－5．80	3.80	3．85－5．90	3．80－5．80	8.84	3．80－5．85	3．80－3．00		3． 509
568	6	4．10－4．16	4．10－4．16	4.18	4.20	4．20－4．20	4.20	4．20－4．	4.20		5.927
	7	5．75－5．80	8．75	76	3．80－5．	5．70	5．78	3．80－8．	5．75－3818	． 80	689
570	8	4．20－4．20	4．15－4．15	4.18	4．20－4．20	4．20－4．20	4.20	4．20－4．20	4．20－4．20	4.20	4.064
371	9	8．50－3．55	3．45－5．45	3.49	3．45－5．50	8．50－3．56	8.50	5．50－3．50	3．50－5．50	8.50	3．321
572	10	8．70－5．70	3．65－5．65	8.68	8．70－5．70	3．65－3．70	8.69	5．70－3．75	3．70－3．70		3.450
375	11	3．90－8．95	8．90－5．90	8.91	5．90－5．95	3．90－3．90	5.91	3．90－5．95	5．90－8．90	3.91	8.719
374	12	4． $35-4.35$	4．40－	4.58	4．40－4	4．40－4．40	4.40	4．40－4．40	4．40－		4.188
	13	3．30－5．50	3．50	3.29	8．40－8．	3．30－3．	3.56	3．35－5．40	3．35－	8．58	3． 291
376	14	3．50－8．50	3．40－	3.46	3．55－5．60	3．50－5．55	5.55	3．55－3．60	5．50－3．50	5.54	3．447
577	15	8．90－5．90	3．85－8．85	3．88	3．90－3．90	5．96－3．95	5.95	3．90－8．90	8．90－8．90	5.90	8．865
${ }^{878}$	16	3．50－5．50	8．30－5．30	8.50	8．30－5．35	5．50－3．50	3．51	8．40－3．40	3．50－8．50	3．35	8.198
579	17	3．50－3．66	8．50－5．50	3.61	5．50－5．50	3．50－5．50	8．50	5．60－5．60	3．50－3．50	3．55	3． 995
880	20	3．50－5．50	8．55－5．50	3.51	3．50－3．50	3．50－8． 55	3.51	3．60－5．60	3．55－8．50	5．56	3．469
581	${ }_{21}$	4．00－4．05	3．95－4．00	4.00	8．95－4．00	3．95－4．00	8.98	3．95－4．00	8．95－4．00	8．	4.164
882	22	8．50－3．50	8．30－5．50	3.50	5．50－5．80	5．50－5．50	3.50	3．36－8．40	5．30－	3.54	3．398
${ }^{388}$	25	3．30－8． 55	8．50－5．50	3.51	3．25－5．25	3．25－5．50	3.26	5．50－5．35	3．50－5． 30	8．51	3．346
584	24	3． $30-5.50$	8．50－5． 20	8.80	8．30－8．36	8．50－8． 50	3.51	8． $56-8.35$	8． $80-3.50$	5．35	8．229
${ }^{885}$	25	8．40－5．45	3．40－5．40	5.41	8．40－5．45	3．40－3．40	8.41	3．46－3．45	3．40－3．40	5.48	3．285
386	26	5．20－5．20	3．16－5．15	3.18	3．15－5．15	8．15－5．20	3.16	3．20－8．20	3．20－3．20	8.20	3．160
587	27	4．40－4．40	4．45－6．40	4.41	4．40－4．40	4．10－4．45	4.41	4．40－6．45			4.376
588	36	5．55－5．60	3．50－3．56	3．66	3．56－8．55	3．55－3．55	3．55	3．60－3．60	5．55－8．50	3．66	3.470
899	50	5．60－8．60	3．60－3．60	3． 60	3．60－5．60	3．60－3．60	3．60	3．70－5．70	3．60－3．60	3．65	3．655
590	51	5．75－5．80	8．75－5．80	8．78	5．80－5．80	8．80－5．80	5.80	5．85－5．85	8．80－3．80	3.85	8．789
591	54	5．36－5．40	3．40－5．40	3． 59	3．40－8．40	8．40－5．40	8.40	3．50－8．50	3．45－8．45	3.48	8.417
592	59	4．50－4．50	4．50－4．30	4． 50	4.5	4.25	4.50	4.55		34	4.042
898	61	4．20－4．20	4．10－4．15	4.16	4．15－4．20	4．15－4．20	4.18		4．15－4．15	4.18	4.181
594	66	3．60－5．60	8．60－8．60	3.60	5．60－5．60	3．56－5．50	3.56	3．65－8．70	3．60－8．60	3.4	3． 585

		Low yomperature			Lodim remperature			Lich romperature			Chemical yost
$\begin{gathered} \text { samplo } \\ \text { fo. } \end{gathered}$	$\begin{gathered} \text { Patron } \\ \text { Io. } \end{gathered}$	Reader	$\begin{gathered} \text { Boader } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { Iror: } \\ & \text { ase } \end{aligned}$	$\begin{gathered} \text { Header } \\ 1 \end{gathered}$	$\begin{gathered} \text { roader } \\ B \end{gathered}$	$\begin{gathered} \text { Irario } \\ \text { as } \end{gathered}$	$\begin{gathered} \text { Fioador } \\ 1 \end{gathered}$	$\begin{gathered} \text { Hoader } \\ B \end{gathered}$	$\begin{aligned} & \hline \text { Aroro } \\ & \text { age } \end{aligned}$	
358	2	8.50-5.50	3.46-8.45	3.45	5.45-3.80	8.50-3.50	8.49	3.50-8.50	3.50-3.50	3.56	5.848
596	4	4.00-4.00	4.00-4.00	4.00	8.95-8.95	8.95-5.95	5.96	8.90-5.95	8.90-5.90	5.91	5.880
897	5	8.80-5.80	8.80-8.80	8.80	8.80-8.80	5.85-5.85	8.88	8.80-8.80	8.80-5.60	8.80	8.665
598	6	4.85-4.90	4.85-4.90	4.88	4.80-----	4.90-----	4.85	4.90-----	4.85-----	4.88	4.748
899	1	8.70-5.75	5.70-3.70	8.71	8.65-5.70	8.70-5.70	3.69	8.80-5.80	5.70-8.70	8.75	8.580
400	8	4.80-4.80	4.80-4.80	4.50	4.50-4.50	4.80-4.80	4.50	4.50-4.80	4.50-4.80	4.80	4.204
401	9	8.50-5.50	8.40-5.40	8.45	5.50-8.55	8.50-5.50	8.51	5.50-5.50	3.50-5.50	5.50	8.452
408	10	8.70-5.75	3.65-5.70	5.70	8.70-5.70	8.75-8.70	8.71	8.70-5.75	8.65-8.70	5.70	8.646
405	11	4.15-4.15	4.15-4.10	4.14	4.10-4.10	4.20-4.20	4.15	4.10-4.10	4.15-4.20	4.14	4.096
404	12	4.55-4.35	4.50-4.80	4.85	4.85-4.40	4.55-4.55	4.86	4.50-4.80	4.40-4.80	4.58	4.298
405	15	8.65-5.70	5.65-5.70	5.68	8.70-8.70	8.70-5.70	3.70	8.70-8.70	8.70-5.70	5.70	5.680
406	14	8.50-5.50	8.50-5.50	8.50	8.50-8.50	8.85-8.80	5.81	8.80-5. 50	8.80-8.80	8.80	2.896
407	15	8.75-8.80	5.75-5.75	3.76	5.75-5.80	8.75-5.80	5.78	8.70-5.70	8.75-5.70	8.71	8.715
408	16	5.20-3.20	8.15-5.10	5.16	5.20-5.20	5.20-5.20	8.20	8.10-3.15	8.20-5.15	8.15	8.115
409	17	5.80-5.80	8.75-3.80	8.79	5.75-5.80	5.75-5.80	8.78	8.80-8.85	8.75-5.75	8.79	8.717
410	20	5.80-8.80	8.80-5.80	5.80	8.75-5.75	5.75-3.80	8.76	8.80-5.75	8.80-3.75	5.78	3.722
411	21	4.10-4.15	4.10-4.10	4.11	4.10-4.10	4.15-4.15	4.18	4.10-4.10	4.10-4.10	4.10	4.094
412	22	5.60-8.60	8.60-5.60	8.60	5.60-5.60	5.60-5.60	8.60	8.65-8.70	8.60-5.60	8.64	5.650
418	25	8.50-5.40	5.50-5.40	3.85	5.35-8. 35	8.85-5.50	8.84	8.85-5.85	8.35-3.30	8.84	5.141
414	24	5.50-5.50	8.50-8.50	5.50	5.25-8.50	8.25-5.50	8.28	8.80-5.50	5.50-5.50	5.80	5.285
415	25	8.50-5.50	8.50-5.50	5.60	5.50-8.50	8.50-8.50	8.50	8.50-8.50	5.55-8.55	3.55	8.495
416	26	5.25-8.80	8.80-5.50	8.89	5.25-5.25	5.25-8.25	8.25	5.50-5.50	5.80-8. 50	5.80	8.256
417	27	4.25-4.20	4.20-4.20	4.21	4.20-4.20	4.20-4.20	4.20	4.10-4.10	4.15-4.20	4.14	4.141
418	56	8.80-8.80	3.85-8.80	5.81	5.70-5.70	8.80-8.75	8.74	8.75-5.80	5.70-8.80	8.76	8.751
419	50	5.45-5.50	5.50-5.50	8.49	5.50-5.50	5.50-5.50	5.50	5.50-3.50	8.60-5.50	8.50	8.421
420	51	8.95-4.00	5.95-4.00	8.98	4.00-5.95	4.00-5.95	8.98	4.00-4.00	4.00-4.00	4.00	5.880
481	54	8.50-5.50	5.50-5.50	8.50	3.50-5.45	8.80-5.50	8.49	5.50-5.50	8.50-5.50	5.50	5.461
422	59	4.46-4.46	4.45-4.45	4.45	4.46-4.46	4.45-4.50	4.46	4.45-4.45	4.45-4.50	4.46	4.147
425	61	4.00-8.95	4.05-4.00	4.00	4.00-4.00	4.00-4.00	4.00	4.00-4.00	4.00-4.00	4.00	8.916
424	66	8.20-5.20	5.20-8.20	8.80	5.25-8.20	8.25-8.20	5.25	5.25-8.80	5.20-5.85	8.25	8.141

Table XVI Patrons' Milk Samples Tested March 28, 1935.

		Low Temperature			Modive Tomerature			High imperature			Chemeal rost
$\begin{gathered} \text { 8ample } \\ \text { Ho. } \end{gathered}$	Patron	Roader	$\begin{gathered} \text { Roador } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Irer- } \\ & \text { age } \end{aligned}$	Reader	Reader	$\begin{gathered} \text { Arer- } \\ \text { age } \end{gathered}$	$\begin{gathered} \text { Roader } \\ 1 \end{gathered}$	$\begin{gathered} \text { Reader } \\ \mathbf{B} \end{gathered}$	$\begin{gathered} \text { Avere } \\ \text { age } \end{gathered}$	
426	2	3.30-5.50	3.20-5.25	3.82	3.36-3.40	8.85-5.40	3.88	3.85-3. 40	8.40-3.40	3.6	5.258
486	4	5.60-5.60	3.60-5.60	8.60	8.65-5.66	5.65-5.70	3.66	8.65-5.68	5.70-8.70	5.68	5.508
487	5	5.80-5.60	5.75-5.80	8.79	8.85-8.85	8.80-8.80	3.85	5.80-5.90	5.85-5. 85	8.85	5.661
485	6	5.00-5.05	5.00-5.05	5.08	5.05-5.05	5.10-5.05	5.06	8.10----	5.05----0	5.08	4.850
429	7	8.85-5.90	3.00-8.85	5.85	8.90-8.90	5.85-5.90	5.89	8.90-8.90	8.90-5.90	8.90	8.744
450	8	4.35-4.40	4.40-4.40	4.59	4.40-4.46	4.40-4.50	4.44	4.40-4.40	4.45-4.40	4.41	4.284
451	9	8.50-5.45	8.40-8.40	5.41	8.50-5.50	5.46-5.50	8.49	8.50-5.80	8.50-5.50	8.50	8.578
458	10	5.70-3.70	5.70-8.66	5.69	3.70-8.70	8.70-5.70	8.70	8.75-5.60	5.75-5.75	8.76	8.608
458	11	4.35-4.40	4.35-4.35	4.86	4.35-4.40	4.40-4.40	4.89	4.40-4.40	4.40-4.40	4.40	4.288
454	12	4.60-4.50	4.50-4.60	4.50	4.55-4.55	4.56-4.56	4.55	4.85-4.60	4.80-4.65	4.85	4.458
456	18	5.80-5.80	3.80-8.80	5.80	5.80-5.80	8.80-5.80	8.80	8.80-5.90	8.85-8.86	5.85	5.788
456	14	8.70-5.70	8.75-5.70	5.71	5.70-5.75	5.70-5.70	8.71	8.75-5.75	5.75-5.70	8.74	5.591
457	15	5.70-5.66	8.70-8.65	8.68	8.70-5.75	8.70-8.75	8.78	5.75-5.80	8.75-8.80	3.78	5.689
458	16	5.50-5.50	5.50-5.25	8.80	5.40-5.40	8.40-3.40	3.40	8.40-5.40	3.40-5.85	8.89	8.256
459	17	5.00-5.60	5.85-8.80	3.81	5.85-5.85	8.85-5.85	8.85	8.90-3.90	3.85-5.80	8.86	8.781
440	20	8.70-5.75	8.65-8.70	8.70	8.75-8.80	8.75-8.75	3.76	8.85-5.85	8.80-8.80	3.85	5.725
41	21	4.15-4.10	4.20-4.10	4.14	4.80-4.20	4.20-4.20	4.20	4.20-4.25	4.20-4.25	4.25	4.187
412	28	8.10-5.10	5.10-5.10	8.10	8.10-8.15	5.20-5.20	8.16	3.15-8.20	8.15-5.20	8.18	5.042
45	24	5.40-5.40	8.40-8.40	8.40	8.40-8.40	8.40-5.45	3.41	5.50-5.50	5.45-8.40	8.46	8.588
44	25	8.80-8.50	8.85-5. 50	8.81	8.40-5.45	8.40-5.46	3.48	5.40-5.40	8.40-5.40	3.40	5.857
445	26	8.60-5.60	5.60-5.60	8.60	8.75-5.70	8.70-5.70	8.71	8.75-8.75	8.70-8.70	5.78	5.612
446	29	4.65-4.70	4.65-4.70	4.60	4.70-4.75	4.70-4.70	4.71	4.70-----	4.70-.---	4.70	4.598
447	86	5.10-5.10	8.05-5.05	5.08	8.10-5.10	5.10-5.10	8.10	8.15-5.15	5.10-5.10	5.15	8.075
448	60	5.56-5. 65	8.50-5.50	3.55	8. $60-8.60$	8.60-8.60	5.60	8.60-8.65	8.60-8.65	8.68	8.497
449	61	4.00-4.00	4.00-4.00	4.00	4.05-4.05	4.10-4.10	4.08	4.10-4.15	4.10-4.10	4.11	4.028
450	54	8.50-8.50	8.50-5.65	5.51	5.60-5.60	5.60-5.60	5.60	8.60-8.60	5.56-5.60	3.59	8.612
451	69	4.46	4.45-----	4.46	4.85-4.56	4.60-4.60	4.58	4.55-4.60	4.60-4.60	4.69	4.881
462	61	8.70-8.75	8.70-8.70	8.71	8.80-8.80	8.80-8.80	5.80	8.80-8.80	8.80-8.80	8.80	8.717
458	66	8.80-5.50	8.85-8.50	3.81	8.35-8.35	8.85-8.85	8.85	8.40-5.40	8.40-8. 36	8.89	8.848

0

		Lov	Temperatus		Medi	n Temperatu		High	Temperatur		Chemical Test
Sample	Patron	Reader	Reader	Aver-	Reader	Reader	Aver-	Reader	Reader	Aver-	
No.	No.	A	B	age	A	B	age	A	B	age	
454	2	3.40-3.40	$\overline{3.40-3.45}$	3.41	3.40-3.40	3.45-3.45	3.43	$\overline{3.50-3.50}$	$\overline{3.45-3.40}$	3.46	3.324
455	4	3.70-3.70	3.70-3.70	3.70	3.65-3.70	3.65-3.65	3.66	3.75-3.70	8.70-8.70	3.71	5. 547
456	5	3.95-5.90	5.95-8.90	5.95	5.95-4.00	8.95-4.00	5.98	4.00-4.00	$4.00-4.00$	4.00	5.808
457	6	4.55-4.60	4.50-4.60	4.56	4.60-4.60	4.60-4.60	4.60	4.70-4.70	4.60-4.60	4.65	4.412
458	7	4.00-4.00	4.00-4.00	4.00	4.05-4.10	4.00-4.00	4.04	4.05-4.10	4.00-4.05	4.05	8.902
459	8	4.45-4.45	4.45-4.45	4.45	4.40-4.45	4.40-4.45	4.48	4.50-4.45	4.40-4.40	4.44	4.521
460	9	3.50-5.50	5.45-8.45	8.48	3.45-5.50	5.45-5.50	5.48	5.50-5.55	3.45-3.50	3.50	3.380
461	10	8.65-3.65	3.65-3.65	\$. 65	8.65-8.65	8.65-8.65	5.65	8.70-8.70	8.60-5.70	8. 68	5.564
462	11	4.20-4.25	4.20-4.80	4.21	4.20-4.15	4.20-4.20	4.19	4.20-4.25	4.20-4.25	4.25	4.109
468	12	4.65-4.70	4.70-4.70	4.69	4.65-4.70	4.65-4.70	4.68	4.70-4.75	4.70-4.75	4.78	4.515
464	15	3.70-5.75	3.70-3.75	S.78	3.70-5.75	8.70-5.75	8.73	3.80-3.80	5.80-5.80	8.80	3. 689
465	14	5.50-8.55	3.45-5.50	\$.50	3.55-3.55	3.55-3.55	8.55	3.50-5.55	3.50-5.50	8.51	3.402
466	15	5.65-5.70	3.60-3.65	3. 65	3.75-3.70	3.65-3.70	3.70	3.70-3.70	3.70-3.70	3.70	3.621
467	16	8.60-8.60	5.50-8.50	3.55	3.55-3.60	3.50-3.55	3.55	3.60-3.60	3.55-3.55	3.58	3.484
468	17	3.70-3.70	8.70-8.75	3.71	8.75-8.80	3.75-3.75	5.76	3.75-3.80	3.75-8.80	5.78	3.655
469	20	8.90-3.90	3.85-8.85	5.88	3.90-8.90	5.85-3.90	3.89	3.95-4.00	3.90-3.90	5.94	3.850
470	21	4.15-4.15	4.10-4.15	4.14	4.15-4.20	4.10-4.10	4.14	4.10-4.15	4.10-4.15	4.15	4.066
471	22	8.30-3.40	3.30-3.40	3.35	3.45-8.45	3.45-3.40	3.44	3.50-3.55	3.40-3.50	3.49	3.415
472	23	3.40-3.40	3.45-3.40	3.41	3.40-3.45	3.35-3.40	3.40	5.50-3.50	3.40-3.40	3.45	3. 369
478	24	3.50-8.55	3.50-3.50	3.51	3.60-3.50	8.55-3.50	3.54	3.60-5.60	5.55-3.60	3.59	3.463
474	25	8.60-3.60	8.65-3.65	3.65	3.60-8.60	3.60-3.60	3. 60	3.60-3.65	8.60-3.60	3.61	3. 565
475	26	8.75-3.75	8.75-8.75	3.75	3.80-3.80	8.80-3.80	3.80	8.80-3.85	8.80-8.80	3.81	3.759
476	27	4.70-4.75	4.75-4.75	4.74	4.80-4.75	4.80-4.80	4.79	4.80-4.80	4.80-4.80	4.80	4.674
477	36	3.65-8.65	8.60-8.65	3. 64	3.70-3.70	3.70-3.65	3.69	3.70-3.70	3.70-3.65	3.69	3. 666
478	50	3.60-5.60	3.65-3.65	3.63	3.70-3.70	3.65-5.60	5.66	3.60-3.65	3.60-3.60	3.61	3.593
479	51	4.00-4.00	4.05-4.00	4.01	4.00-4.00	4.00-4.00	4.00	4.05-4.00	4.00-4.00	4.01	3.958
480	54	3.50-3.55	3.50-3.50	8.51	3.60-3.60	3.55-3.55	3.58	3.50-5.50	3.50-3.60	3.53	8.494
481	59	4.60-4.60	4.65-4.65	4.63	4.60-4.60	4.60-4.60	4.60	4.55-4.60	4.55-4.55	4.56	4.418
482	61	3.90-5.85	3.90-3.85	3.88	5.90-3.95	3.85-3.90	3.90	3.80-8.90	3.85-3.90	3.86	4.274
483	66	5.40-3.40	3.40-8.40	3.40	3.40-3.40	3.40-3.40	3.40	3.40-3.40	3.40-3.35	3. 39	3.371

-

Table XVIII Patrone' Milk Samples Tested March 25, 1958.

		Iow Temerature			Todiv Temperature			High \%mperature			Chemical Post
$\begin{gathered} \text { Sample } \\ \text { Io. } \end{gathered}$	$\begin{gathered} \text { Patron } \\ \text { Io. } \end{gathered}$	$\begin{gathered} \text { leader } \\ i \end{gathered}$	$\begin{gathered} \text { Feader } \\ B \end{gathered}$	$\begin{gathered} \text { Arere } \\ \text { ape } \end{gathered}$	$\begin{gathered} \text { Roader } \\ \hline \end{gathered}$	$\begin{gathered} \text { Hoader } \\ \mathbf{B} \end{gathered}$	$\begin{aligned} & \text { Arer } \\ & \text { age } \end{aligned}$	$\begin{gathered} \text { Hoader } \\ 1 \end{gathered}$	$\begin{gathered} \text { Reader } \\ B \end{gathered}$	$\begin{aligned} & \text { Arere } \\ & \text { ere } \end{aligned}$	
484	2	3.60-3.60	3.60-8.60	\%. 0	3.65-3.65	8.65-3.70	3.66	3.80-5.96	8.70-8.7\%	3.68	5.616
485	4	8.60-5.60	8.60-5.60	8.60	3.65-5.70	8.70-5.70	8.69	5.65-5.65	8.65-8.60	3.64	5.650
486	5	5.80-8.90	3.85-3.85	3.85	8.90-5.95	8.90-5.90	3.91	5.90-5.90	8.90-5.90	8.90	5.825
487	6	4.60-4.60	4.55-4.50	4.56	4.60-4.60	4.55-4.60	4.59	4.60-4.65	4.60-4.65	4.68	4.687
488	7	8.70-8.70	3.80-5.80	5.75	5.75-8.75	5.75-5.75	8.75	5.60-5.80	3.80-5.80	8.80	3.789
489	8	4.80-4.30	4.50-4.50	4.80	4.50-4.50	4.80-4.50	4.80	$4.50-4.50$	4.30-4.80	4.80	4.217
490	9	5.25-8.25	8.25-5.50	8.26	8.50-8.80	8.25-3.50	8.29	3.80-5.50	5.25-8.25	3.28	5.207
491	10	8.40-5.40	8.85-5.40	8.89	8.40-8.40	8.55-5.40	8.89	8.40-5.40	8.35-8. 35	8.88	8.512
492	11	4.20-4.25	4.20-4.20	4.21	4.20-4.25	4.20-4.20	4.21	4.25-4.25	4.25-4.20	4.24	4.210
498	12	4.50-4.50	4.85-4.40	4.44	4.40-4.45	4.40-4.46	4.45	4.40-4.45	4.35-4.40	4.40	4.458
494	18	3.50-5.40	5.50-8.35	5.84	8.35-5.40	5.85-8.55	5.56	5.40-8.40	8.40-5.40	8.40	5.890
495	14	8.50-8.50	8.45-8.45	8.48	8.50-8.50	8.50-5.56	8.61	8.50-5.55	5.50-5.50	8.81	5.462
496	16	8.70-5.70	3.75-5.75	8.78	8.70-5.75	8.70-5.76	8.78	8.75-8.75	8.70-8.70	3.78	5.608
497	16	8.40-5.40	8.45-5.45	8.45	5.50-8.45	8.50-8.45	8.48	8.50-8.45	5.50-5.50	8.49	8.408
498	17	8.75-5.75	8.80-5.76	8.76	8.75-5.75	8.75-8.75	8.75	8.75-8.75	5.76-5.75	8.75	8.697
499	20	8.65-8.65	8.65-8.65	8.65	8.65-5.70	5.60-5.60	8.64	5.70-8.65	8.65-8.70	8.68	8.640
800	21	5.90-4.00	8.95-5.90	3.94	8.95-4.00	8.90-8.90	8.94	8.95-4.00	5.95-5.95	8.96	8.899
501	22	5.60-5.65	8.60-5.60	3.61	8.56-5.60	8.60-8.60	8.89	8.55-5.60	5.60-8.60	8.59	8.550
508	28	5.40-5.40	3.85-8.50	8.36	8.50-8.50	3.85-5.80	8.51	8.30-5.50	8.50-5. 50	8.80	8.282
508	24	8.50-5. 50	8.50-5.50	8.50	8.46-5.45	8.45-8.50	8.46	3.45-5.45	8.45-8.50	8.46	8.879
804	28	3.55-5.40	8.35-5.40	3.88	8.50-5.50	8.80-8.50	8.80	8.40-5. 58	5.55-5.50	8.85	8.501
506	26	8.85-8.55	8.40-5.40	8.88	8.35-8.40	3.85-5.40	8.88	8.40-8.40	5.85-8.40	8.89	8.506
506	27	4.56-4.60	4.85-4.60	4.58	4.60-4.60	4.60-4.60	4.60	4.60----	4.55-4.60	4.58	4.444
507	86	8.70-5.65	8.65-8.60	8.65	8.65-5.65	8.60-5.65	3.64	8.65-5.60	5.65-5.65	8.64	8.608
508	60	5.50-5.46	8.55-5.50	8.50	8.45-5.50	8.50-5.55	8.50	8.50-8.50	5.45-8.50	8.49	5.480
509	51	4.00-4.00	4.00-4.00	4.00	4.00-4.05	4.00-4.05	4.05	4.10-4.10	4.10-4.10	4.10	8.988
510	54	8. $00-5.60$	8.60-5.60	3.60	8.60-5.60	8.60-8.60	8.60	5.60-8.65	8. $00-8.65$	8.65	8.548
611	59	4.00-4.05	4.00-4.05	4.05	4.15-4.20	4.20-4.20	4.19	4.20-4.20	4.20-4.20	4.20	4.087
512	61	8.80-5.75	8.80-5.70	3.76	5.80-8.80	8.80-8.80	8.80	5.75-5.80	8.75-8.00	8.78	8.780
518	66	5.55-5.55	8.55-8.55	8.88	8.60-5.60	8.60-8.60	8.60	5.60-8.65	8.60-3.60	5.61	8.

\qquad	Number of Teste	$\begin{gathered} \text { Mean } \\ \text { in } \\ \text { Per Cont } \end{gathered}$	Average Variation from Mojonnier in Per Cent	Standard Deviation in Per Cont	Probable Error of Single Determination	Probable Error of Means
Mojonnier	515	$\mathrm{M}_{1}-5.67 \pm 0.017$	0.00	. 40	0.2698	(a) $\mathrm{M}_{4}-\mathrm{M}_{1}=0.09 \pm 0.0172$ (b) $\mathrm{M}_{3}-\mathrm{M}_{1}=0.08 \pm 0.0172$ (c) $M_{2}-M_{1}=0.05 \pm 0.0172$
Babcock at:						
Low Temperature	515	$M_{2}=3.72 \pm 0.018$	0.05	. 42	0.2833	(d) $\mathrm{M}_{4}-\mathrm{M}_{3}=0.01 \pm 0.0177$
Medium Temperature	513	$\mathrm{M}_{3}=8.75 \pm 0.018$	0.08	. 42	0.2835	(e) $M_{4}-M_{2}=0.04 \pm 0.0177$
High Temperature	515	$M_{4}=5.76 \pm 0.018$	0.09	. 42	0.2833	(f) $\mathrm{M}_{3}-\mathrm{M}_{2}=0.03 \pm 0.0177$

Results of Residual Fat Determinations.

Preliminary Trials. Since there is no standard procedure for the determination of the fat that remains in the liquid portion below the fat colvm of the Babcock test a procedure was devised wich was described in the "Procedure" of this manuscript. In order to check this method, preliminary teats were ran. About 0.1000 gram portione of buttor oil were weighed into separatory funnels and extracted according to this procedure. The percentage recovery of the 8 teste ran was about 98.5 per cent. The details of these preliminary trials are ghow in Pable XX .

Table IX Results of Residual Fat Trials.

Mature	Weight of fat taken	Toight of fat recovared	Weight difference	Per Cent difference	Lose or Gain
011 in wator	. 1054 gms.	. 1052 gas.	. 0022 gms.	2.087	L0:8
011 in water	. 1016 gms.	. 1002 mm .	. 0014 gms.	1.578	Lose
011 in water	. 1052 gms .	. 1006 gms.	. 0026 gms .	2.519	Los:
011 in water	. 0979 gms.	. 0972 gme.	. 0007 gms.	0.715	Lese
Average Per Cent	Difference			$\underline{-1.675}$	
011 in acid	. 0969 gms.	. 0956 gms .	. 0015 gms .	1.541	Loss
011 in acid	. 0984 gms.	. 1008 gms.	.0024 ms.	2.459	Cain
011 in acid	. 10628 mm .	. 1046 gme.	. 0016 ene.	1.506	Lose
0 il in acid	. 0958 gms.	. 0984 gma.	. 0001 gis.	1.071	Gain
Average Per Cent	Difference			$\pm_{1.548}$	
Average Per Cent	Difference	for all Tests		士1. 811	

Results of Residual Fat Determinationg. The details of the teste made to determine the amount of residual fat contained in the Babcock teste whon contrifuged at low, medium, and high temperatures are shown in Table IXI. The tests represent 12 eamples of milk prepared accordIng to the procedure outlined and tested in duplicate for each temperature of contrifuging. Fable IXII gives the summary of the teats and it will be noticed that the arerage amount of residual fat contained in the test at the low temperatures of wirling was 0.1801 per cent; at the medium temperature it was 0.1194 per cent; while at the high temporatures it was 0.0881 per cent. These avarages would tend to indicate that the greatest amount of residual fat is present in the teste contrifuged at low temperatures wile the least amount of fat is presont in the teste centrifuged at higher temperatures. However, the teste vary considerably from their averages at the same temperature of centrifuging, hence, these averages are leas significant. In the last column of the table appears the probable error of these averages. From these it is noticed that there is a great variation in the tests in the same class and consequently there is not enough difference in these averages to conclude that there is any appreciable difforence in residual fat content of the Babcock milk teste when centrifuged at various temperatures.

Table XXI Per Cent Residual Fat in Babcock Milk Teste.

$\begin{aligned} & \text { 8ample } \\ & \text { Number } \end{aligned}$	Per Cent Fat at Low Temperature	Per Cent Fat at Medium Temperature	Per Cont Fat at High Temperature
1	0.2082	0.1549	0.1210
12	0.1759	0.1176	0.1061
2	0.1525	0.1120	0.0537
20	0.1585	0.1191	0.0710
5	0.1635	0.1162	0.0794
5.	0.1957	0.1102	0.0878
4	0.1661	0.1416	0.1092
4.	0.1602	0.1564	0.0790
5	0.1658	0.1657	0.0868
5a	0.1645	0.1584	0.0770
6	0.1428	0.1002	0.0916
68	0.1219	0.1880	0.0787
7	0.1727	0.1251	0.0751
72	0.1791	0.1001	0.0911
8	0.1692	0.1184	0.0828
8 a	0.2466	0.1096	0.1151
9	0.1128	0.1548	0.0648
92	0.1184	0.1208	0.0671
10	0.2880	0.1876	0.0981
10a	0.2868	0.1216	0.0805
11	0.2878	0.0692	0.1287
112	0.2580	0.1085	0.1218
12		0.0766	0.0867
12a		0.0996	0.0726

Statistical Swamary of Residual Fat Determinations.
2nablo x In

Temperature of Contrifuge for Babcock Teat	number of Teste	$\begin{aligned} & \text { Moan } \\ & \text { in } \\ & \text { Per Cont } \end{aligned}$	Standard Deviation	$\begin{gathered} \text { Probable Error } \\ \text { of } \\ \text { Single Doterminations } \end{gathered}$	Probable Error of Means
Low Temperature	22	$r_{1}-0.1801 \pm 0.0266$	0.186	0.125	(a) $M_{1}-M_{2}=0.0607 \pm 0.0287$
Todium Temperature	24	$\mathbf{H}_{2}=0.1194 \pm 0.0161$	0.079	0.053	(b) $\mathrm{M}_{1}-\mathrm{M}_{3}=0.0920 \pm 0.0425$
High Temperature	24	$\mathbf{M g}_{\mathbf{g}}=0.0881 \pm 0.0151$	0.074	0.050	(c) $\mathrm{H}_{2}-\mathrm{H}_{8}=0.0315 \pm 0.0221$

Effoct of Centrifuge Temperatures on the Test Temperatures.

The temperatures of the centrifuge at low, medium, and high temperature were observed at various and irregular intervals to ascertain the range in temperature at mich it operated. The common range appeared to be for the low temperature, 60° to $68^{\circ} \mathrm{F}$., for the medium temperature, 85° to $100^{\circ} \mathrm{F}$., and for the high temperature, 155° to $150^{\circ} \mathrm{F}$. ds atated in the "Procedure" the centrifuge was placed in a refrigerator at 55° 40° \%. for the $10 w$ temperature centrifuging, while the other teate were sun in the laboratory which had a temperature of about $70^{\circ} \mathrm{F}$. The temperatures of the centrifuge is markedly increased by the heat of the tests.

The temperatures of 12 samples of milk were obtained after mixinc with acid and after contrifuging at the various temperatures. The roalts are reported in Table IXIII. On mizing the acid and milk in the test bottle the average temperature was about $219^{\circ} \mathrm{F}$. After centrifuging in the heated tester at 135° to $150^{\circ} \mathrm{F}$., with the water added in all cases at 158° F., the temperature of the tests dropped to an average of $168^{\circ} \mathrm{F}$. After centrifuging at mediven temperature $\left(85^{\circ}-100^{\circ}\right.$ Y. $)$ the average temperature of the tests dropped to about $181^{\circ} \mathrm{F}$., while at low temperature $\left(60^{\circ}-68^{\circ} \mathrm{F}\right.$.) the average temperature of the tests dropped to $94.5^{\circ} \mathrm{F}$. This atudy is important in explaining many features of the Babcock test. The heat from the teste raises the temperature of the centrifuge from 25 to 85 degrees, the final temperature of the centrifuge, of course, depending on the temperature of the room in mich it is located. At ordinary room temperatures the heat from the teste maintains the temperature of the tester at about $100^{\circ} \mathrm{F}$. which is a aatisfactory temperature
and which indicates that no heater is required. Also, the conditions that exist at extreme low temperatures of centrifuging are better explained from this data. When the centrifuge is running at a temperature of about $65^{\circ} \mathrm{F}$. we would expect to remove the teste after centrifuging at about 94° F. which is near the solidifying point of milk fat. Solidification of the fat is undesirable. To improve this condition water should be added to the teste at almost boiling temperature.

Table XXIII Temperature of the Acid-Milk Mixtures in the Babcock Test Bottle.

Sample Hramer	Dogrees \mathbf{F}. at start	Degr Low Temperature	F. after contrif Kedium Temperature	ging at High Temperature
1	214	106	135	165
2	221	109	152	168
5	221	106	189	167
4	217	104	185	172
5	215	88	152	169
6	219	90	158	169
7	217	88	182	167
8	217	90	152	167
9	221	90	129	172
10	223	95	127	171
11	221	82	129	167
12	225	88	189	169
Mean	219.2	94.5	150.9	168.0

* Temperature of the milk and acid on mixing $70^{\circ} \%$
* Temperature of Water added to the tests $158^{\circ} \mathrm{F}$.

sumarai

Inaccurate technique in testing milk and milk products may cause material loss both to the producer and to the manufacturer. The wee of centrifuges operating at varying temperatures is thought by some to be such a practise.

Consequently, in this experiment samples of milk representing the patrons delivering milk daily to the college dairy were collected until 515 samples were obtained. Bach sample was tested for fat by the Kojonnier and Babcock methods. Single determinations were made by the Mojonnier method according to tandard procedure except that the samplea were weighed instead of measured. Sixty samples were run in duplicate to prove the reliability of the single tests. The average difference between the duplicates was $t_{.02} 0$ per cant.

For the Babcock determinations each sample was pipetted into rechecked and absolutely accurate Babcock test bottles. Siz teste were made on each eample, duplicatea being made according to atandard procedure with the ame centrifuge operating at low temperatures $\left(60^{\circ}\right.$ to 68° F.), at medium temperatures $\left(85^{\circ}\right.$ to $100^{\circ} \mathrm{F}$.), and at high temperatures $\left(155^{\circ}\right.$ to $150^{\circ} \mathrm{F}$.). After centrifuging, the tests were immediately placed in a constant temperature water bath at $158^{\circ} \mathrm{F}$., held at least five minates, and read by two readers. The average of the four readinge was considered the reading of the test for that particular centrifuging temperature.

The results of the Mojonnier determinations showed an average of 3.67 ± 0.017 per cent for the 513 determinations. The means of the 513 samples tested by the Babcock method were as follows: at low temperatures
of centrifuging the mean was 3.72 ± 0.018 per cent, at medium temperatures of centrifuging the mean was 5.75 ± 0.018 per cent, and at high temperatures of centrifuging the mean was 3.76 ± 0.018 per cent. This makes a difference in the means of 0.01 ± 0.0177 per cent for the medivm and high temperatures of centrifuging, 0.04 ± 0.0177 per cent for the low and high temperatures, and 0.03 ± 0.0177 per cent for the low and medium temperatures of centrifuging. These results indicate that there are no differences in readings due to the temperatures of centrifuging.

On comparison of the Mojonnier and Babcock results, a marked difference was noted. The mean of all Babcock tests (1539 in all) was 5.74士 0.018 per cent and the mean of the Mojonnier teste was 3.67 ± 0.017 per cent. The difference in means was 0.07 ± 0.0172 per cent. This figure is very aignificant and the conclusion could be drawn that the Babcock method yields higher results, by 0.07 ± 0.0172 per cent, than the Kojonnier method.

Residual fat determinations were made on 12 samples of milk run in duplicate at the above mentioned temperatures of centrifuging. At 10w temperatures of centrifuging an arerage of 0.1801 ± 0.0266 per cont of residual fat remained in the Babcock test, at medium temperatures 0.1194 ± 0.0161 per cent remained, while at high temperatures 0.0881 t 0.0151 per cent was present. The tests in each class varied videly from their means and consequently these differences in residual fat cannot be definitely attributed to the various temperatures of contrifuging.

The temperature of the milk and acid mixture after mixing was ascertained as well as the drop in temperature after centrifuging at
the varions temperatures. It was found that the heat of the teste raised the temperature of the centrifuge from 25 to 35 degrees. However, in the cold centrifuge the tests when removed after whirling were nearly at the solidifying temperature of milk fat. To overcome this condition, water should be added to the tests at near its boiling point.

The results from this experimental work indicate the following conclusions:

1. Although there appears to be slight differences in the average teste by the Baboock method due to centrifuging at various temperatures, jet this difference is not significant. No appreciable variation in readings can be attributed to centrifuging at low or moderately high temperatures.
2. There is a significant difference between the results secured by the Mojonnier and Babcock methods. The Babcock method yields results areraging 0.07 ± 0.0172 per cent higher than the rojonnior method.
3. The Babcock testa contain on an arerage of 0.129 per cent fat remaining in the liquid portion below the fat colum. Ho differences in the amounte can be attribated to temperatures of centrifuging as the tests raried widely from their means.

IITERATURE CITED

1.

1888 The Ratch Act
Ponneylvania Agr'1. Rxp. Sta. Annual Roports (1889) pp. 7-9
2. Mojonnier, T., and Troy, H. C.

1925 The Technical Control of Dairy Products
Mojomier Bros. Co., Chicago, Ill., 2nd ed., p. 86
8. Barthel, Dr. Chr.

1910 Milk and Dairy Producte
Translated by Goodwin, V., Ph. D. McMillan and Company, How York., pp. 52-56
4. Short, P. G.

1888 A Hew Mothod for Determining Fat in Milk Wisconsin Agr'l. Rxp. Sta. 5th Annual Report
5. Coohran

1889
Pennaylvania Agr ${ }^{\circ}$ l. Exp. 8ta. Annual Reports (1889) p. 185
6. Parsons, C. L.

18881 How Volumetric Mothod for the Eatimation of Fat in Milk, Skimmed Milk, Buttermilk, and Crean

Hew Hampohire Agr'1. Exp. Sta. lst Annual Report, Vol. 1, p. 69
7. Patrick, G. E.

1890 The Iowa Milk Station Test
Iowa Bry. Sta. Bul. 8
8. Failjer, G. H., and Willard, J. T.

1888 L New Method of Milk Analysis for the use of Dairymen
Kansas Agr '1. Fip. Sta. Annual Reports (1888) p. 149
9. Farrington, E. H.

1890 Investigations of Milk Teste
Illinois Agril. Eng. Sta. Bul. 10
10. Frear, Win., and Holter, G. L.

1091 8imple Mothode of Determining Milk Fat
Ponnsylvania Agr'l. Fxp. Sta. let Amual Report, p. 172
11. Richmond, H. D.

1980 Dairy Chemistry
Charles Griffin \& Co., Ltd., London, Fagland, 5rd ed. rev., p. 115
12. Roese, Bruno

1888 Analysis of Milk: Fat Determinations
Zeitechrift fur Angewandte Chemie., Tol. 1, pp. 100-107
Abst. in Jour. Cham. Soci., Yol. B4, p. 1155
15. Mojomnier, T., and Troy, H. C.

1925 The Technieal Control of Dairy Product:
Mojonnier Bros. Co., Chicago, Ill., and ed., p. 57
14. Gottlieb, E.

1898 Eatimation of the Fat in Milk
Abst. in Jour. Chem. Soci., Vol. 62, pp. 549-550
15. Lang

1893
Chem. Contr., Tol. 1, p. 960
Abst. from Review by Fieher, C. F., and Walts, C. C. (See 81)
16. Veiball

1898
Milk Ztg., Vol. 27, p. 406
Abst. from Review by Fisher, C. P., and Malte, C. C. (See Sl)
17. Kuhn

1898
Milk Ztg., Vol. 27, p. 772
Lbat. from Review by Mojonnier, F., and Troy, H. C. The Technical Control of Dairy Products, p. 88
18. Popp, M.

1905
Zeitechrift fur Untersuchung der Nahrungeund Genusemit, Vol.7, p.772 Abst. from Reviet by Fisher, C. F., and Walte, C. C. (See 5l)
19. Popp, M.

1904
Milch-Ztf., Vol. 20
Abst. from Review by Fisher, C. F., and Walts, C. C. (See Sl)
20. Rohrig

1905
Amir. Zeit. Nahr: Genusen., Vol. 9, pp. 551-533
Abst. from Review by Fisher, C. F., and Walts, C. C. (see 5l)
21. Thomsen

1905
Th. SV. Landw. Torsuchsatat., Vol. 62, Pp. 587-399
Abet. from Review by Mojonnier, T., and Troy, H. C.
The Technical Control of Dairy Products, p. 59
22. Burr, 1.

1905 Saponification of Fat by Amonia in the Roese-Gottlieb Mothod of Estimating Fat in Milk

Milchw. Zentr., Vol. 1, pp. 248-250
Abst. in Jour. Chem. Soci., Vol. 88, Part 2, pp. 559-560
23. Gordan, P.

1906 Bxperiments with Rohrig's Modification of the Gottlieb-Roese Apparatus

Milchw. Zentr., Vol. 2, pp. 224-227
Abat. in Jour. Chan. Soci., Tol. 90, Part 2, pp. 501-502
24. Richmond, H. D.

1914 Dairy Chemistry
Charles Griffin \& Co., Ltd., London, Ingland, and ed. rev. pp. 118-119
25. Mojonnier, T., and Troy, H. C.

1925 The Technical Control of Dairy Producta Mojonnier Bros. Co., Chicago, Ill., and ed., p. 44
26. Mojonnier, T., and Troy, H. C.

1925 The Technical Control of Dairy Products Mojonnier Bros. Co., Chicago, Ill., 2nd ed., p. 52
27. Dahlberg, 4. O.

1925 Comparison of the Roese-Gottlieb and Babcook Methods of Testing Jour. of Ase'n. of Off. Agr'1. Chem., Vol. 7, pp. 159-169
28. Mojonnier, T., and Troy, H. C.

1925 The Technical Control of Dairy Producte Mojonnier Bros. Co., Chicago, Ill., and ed., p. 45
29. Phillipa, C. A.

1923 A Comparison of the Babcock and the Roese-Gottlieb (Mojonnier) Mothode for Determination of Butterfat in Milk Journal of Dairy Science, Vol. 6, Ho. 6, p. 849
50. Hoyt, C. F.

1925 Reading the Fat Colvan in the Babcock Tests for Milk Jour. of the Ass'n. of Off. Agr'1. Chem., Vol. 6, pp. 354-562
sl. Fisher, R. C., and Walte, C. C.
1925 A Comparative Study of Methods for Determining the Per Cent of Fat in Dairy Products Connecticut (Storrs) Agr'l. Exp. Sta., Bul. 151
52. Dahle, C. D., Swope, W. D., and Doan, F. J.

1950 A Test for Butterfat in Condensed and Evaporated Milk Pennaylvania Agr ${ }^{\circ}$ l. Frp. Sta. Bul. 258
35. Chase, E. S., and King, F. G.

1929 A Comparison of the Modified Babcock and the Mojonnier Mothods for Butterfat in Ice Cream

Journal of Dairy Science, Vol. 12, No. 6, p. 473
54. Bird, B. Y., and Sande, G. C.

1950 The Fffect of Lipins on the Fat Test of Buttermilk Journal of Dairy Science, Tol. 15, Ho. 6, p. 453
55. Babcock, S. M.

1890 1 Hew Mothod for the Eetimation of Fat in Milk, Fopecially Ldapted to Creameries and Cheese Factories Wisconsin Agril. Bxp. Sta. Annual Reports, Vol. 6 and 7, p. 98
36. Babcock, S. M.

1892 Notes on the Use of the Babcock Test and the Lactometer Wisconsin Agril. Exp. Sta. Bul. 81
57. Snyder, Haryy

1891 Application of Dr. Babcock's Contrifugal Mothod to the Analyais of Milk, Skimilk, Buttermilk, and Butter How York (Cornell) Agr'l. Frp. Sta. Bul. 29
38. Patterson, L. G.

1891 Ccaparative Tests of Machines and Methods for the Determination of Pat in Milk

Kisaisaippi Agr ${ }^{\text {¹ }}$. Exp. 8ta. Bul. 15, p. 5
59. Hite, B. H.

1891 The Creamery Induetry
Vest Virginia Agr ${ }^{\circ} 1$. Bep. Sta. Srd Annual Report
40.

1891 The Babcock Method of Determining Fat in Milk Connecticut Agr ${ }^{\circ}$ 1. Ing. Sta. Annual Reports (1891)
41. Bailoy, D. F.

1919 Study of Babcock Test for Butterfat in Milk Journal of Dairy Science, Tol. 2, Ho. 5, p. 381
42. Barthel, Dr. Chr.

1910 Milk and Dairy Products Translated by Goodwin, T., Ph. D. MoMillan and Company, Fow York, p. 64
45. Mojonnier, T., and Troy, H. C.

1925 The Technical Control of Dairy Producta Mojonnier Bros. Co., Chicago, Ill., and ed., p. 50
44. Mojonnier, T., and Troy, H. C.

1926 The Technical Control of Dairy Products Mojonnier Bros. Co., Chicago, Ill., and ed., p. 61
45. Balley, D. F.

1918 8tudy of Babcock Test for Butterfat in Milk Journal of Dairy Scionce, Vol. 2, Ho. 6, p. 551
46. Hortvet, Julius

1917 Report on Dairy Products (Adulteration)
Jour. of Ass'n. of Off. Agr'1. Chem., Vol. 2, pp. 858-257
47. Hoyt, C. P.

1925 Reading the Fat Colwn in the Babcock Test for Milk Jour. of Ass'n. of Off. Agr'1. Chem., Vol. 6, pp. 854-562
48. Phillips, C. 1 .

1925 Comparison of the Bebcock and the Roese-Gottlieb (Yojounier)
Mothode for Determination of Butterfat in Milk
Journal of Dairy Science, Vol. 6, Ho. 6, p. 549
49. Dahlberg, 1. O.

1925 Comparison of the Boese-Gottlieb and Babcock Mothods of Testing Jour. of Aes'n. of 0ff. Agr'1. Chem., Vol. 7, pp. 159-169
50. Fisher, R. C., and Valte, C. C.

1925 A Comparative Study of Kothode for Determining the Per Cent of Fat in Dairy Producte Connecticut (Storra) Agr ${ }^{\circ}$ l. Bup. Sta. Bul. 151
51. Dahlberg, A. C., Holm, Geo. I., and Troy, H. C.

1926 Comparison of the Babcock, Gerber, and Roese-Gottlieb Mothods for Determining the Percentage of Fat in Milk and Cream Hew York (Goneva) Agril. Frp. Sta. Tech. Bul. 122
52. Eunsiker, O. F.

1918 Affeet of olymol
Purdue Agr'1. Ry. Sta. 25th Amanal Report, p. 40
55. Doan, F. J., Fiolds, J. H., and Fagl and, C. W. 1925 Comparison of Methode of Reading Crean Tests Journal of Dairy Science, Vol. 6, Ho. 6, p. 406
54. Hunziker, O. P., et al. 1910 Testing Crean for Butterfat Pusdue Agr ${ }^{\circ} 1$. Bap. Sta., Bul. 145
55. Spitser, Geo., and Rpple, T. F. 1924 Reading the Fat in Cream Fests Journal of Dairy Science, Vol. 7, Mo. 2, p. 181
56. Dahle, C. D., Swope, W. D., and Doan, F. J.

1950 \& Test for Butterfat in Condensed and Evaporated Milk Ponneylvania Agr'l. Exp. Sta., Bul. 258
57. Chase, E. S., and King, F. G.

1989 A Comparison of the Modified Babcook and the Mojonnier Methods for Butterfat in Ice Cream Joumal of Dairy Science, Vol. 12, No. 6, p. 475
58. Thurston, L. M., and Potersen, W. R.

1928 Lipine and sterols as Sources of Error in the Eatimation of Fat in Buttermilk by Fther Extraction Methode Jourmal of Dairy Scionce, Vol. 11, Yo. 4, p. 270
69. Ohapman, 0. T.

1928 The Effect of Lecithin in Dairy Products mon Butterfat Determinations

Journal of Dairy Science, Vol. 11, Ho. 6, p. 489
60. Woll, F. W.

1900 Influence of the Babcock Test
Wisconsin Agril. Fep. Sta. 7th Annual Report, p. 76
61. Farrington, R. H.

1900 Influence of the Babeock Test-II. Influence of Temperature on Teate of Skimailk by the Babcock Test Wisconsin Agril. Hep. Sta. 7th Anmal Report, p. 81
62. Bailey, D. E.

1919 Study of Babcook rest for Butterfat in Milk Journal of Dairy Science, Vol. 2, Io. 5, p. 881
65. Heleon, D. H.

1926 Baboock Teat Studiec
California Agril. Bqp. Sta. Annual Roporte (1926) pp. 65-64
64. Halverson, J. O.

1915 The Fodified Babcock Teat for Fat in Sweetonel Dairy ProducteIoe Crean

Journal of Industrial and Pagincering Chemistry, Vol. 5, p. 405
65. Eunsiker, O. P., et al.

1910 Teeting Crean for Butterfat
Purdue A.xl. Tq. Sta., Bul. 145, p. 568
66. Bailey, D. E.

1919 Studs of Babeook Fest for Butterfat in M11k Journal of Dairy Science, Vol. 2, Io. 5, D. 350
67.

1950 Official and Tentative Methods of Analysis of the Association of Official Agrioultural Cheniste

Age 'n. of Off. Agr ${ }^{\text {l }}$. Chem. at Washington, D. C., Srd ed., pp. 217-219
68. Eunziker, O. F.

1918 Specifications and Directions for Testing Milk and Crean for Butterfat

Joumal of Dairy Science, Vol. 1, No. 1, p. 38
69. Hunsiker, O. F.

1922 Specifications and Directions for Testing Milk and Cream for Butterfat

Journal of Dairy Science, Vol. 5, No. 2, p. 178
70.

1929 Lct No. 280, Public Acts, 1907
Laws Relating to the Dopartment of Agriculture (Michigan)
71.

1916 Testing of Glass Volumetric Apparatus
U. S. Bureau of Standarde Cireular 9, 8th ed.
72. Mojonnier, T., and Troy, H. C.

1925 The Technical Control of Dairy Producte Mojonnier Bros. Co., Chicago, Ill., \&nd ed., pp. 108-109

ROOM USE OMLY


```
&%24
    Hony%
```

MICHIGAN STATE UNIVERSITY LIBRARIES

