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ABSTRACT

ON THE EVOLUTION OF MUTATION BIAS IN

DIGITAL ORGANISMS

By

Matthew Rupp

Mutation is one of the primary drivers of genetic change. In this work I study mutation

biases, which are sets of different genetic-state inflow probabilities. Mutation biases have

the potential to change the composition of genomes over time, leading to divergent short-

and long-term evolutionary outcomes. I use digital organisms, self-replicating computer

programs, to explore whether or not mutation biases are capable of altering the long-term

adaptive behavior of populations; whether mutation biases can be competitive traits; and

whether mutation biases can evolve.

I find that mutation biases can alter the long-term adaptive behavior of mutation bias-

obligate populations in terms of both mean fitness and complex trait evolution. I also

find that mutation biases can compete against one another under a variety of conditions,

meaning mutation bias can selectable over relatively-short periods of time. The competitive

success of a mutation bias does not always depend upon the presence of beneficial mutations,

implicating an increase in the probability of neutral mutations as a sufficient mechanism for

bias selection. Finally, I demonstrate that by giving organisms a mutable mutation bias

allele, populations preferentially evolve to possess specific biases over others.

Overall, this work shows that mutation bias can act as a selectable trait, influencing the

evolution of populations with regard to both their internal-genetic and external environ-

ments.
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CHAPTER 1

An Introduction to Mutation Biases

Mutation is one of the primary drivers of genetic change. Along with recombination and

gene transfer, it creates genetic variation that selection can act upon. As the variation in

genomes affects how species adapt to their environment, an understanding of the effects of

mutation is crucial in understanding how organisms evolve.

1.1 What is a mutation bias?

I define a mutation bias to be a distribution of inflow probabilities for each possible genetic

state (a nucleotide, amino acid, or Avidian instruction) per mutation event. In this work, I

focus on two mutation events, insertions and substitutions. During each of these events, a

specific site in the genome (a new site for an insertion or an existing site for a substitution)

adopts a particular state with a fixed, unconditional probability. The set of probabilities for

all possible states is a mutation bias.

This is a simple model for mutation rates with a few important features that I want

to highlight. First, for substitution events, I assume that the probability for each new

state is independent of the original state. Second, I do not include any mechanism to

repair mutations. Third, in my substitution model, it is possible for the resulting state of

a substituted site to be the same as before the mutation event. Finally, I have deliberately

separated mutation rate from mutation bias. The rate that mutations occur is independent

of the probability distribution for the new state. In nature, mutation bias, mutation rate,

and how individual nucleotides mutate to one another are inherently tied together. However,
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this simple model allows me to isolate and clearly illustrate the effects of mutation bias.

1.2 Is mutation bias an adaptation for evolvability?

Because mutation can produce selectable variation, mutation bias may be a selectable trait

that confers evolvability, the ability to leverage or mitigate the effects of genetic change.

This dissertation examines whether mutation bias meets the criteria to be an adaptation for

evolvability.

In order for mutation bias to serve as an adaptation for evolvability, it must be heritable,

variable, and selectable. In this dissertation, I make mutation bias a fully heritable trait in

my organisms. This is partially supported in the natural world. For example, mutation bias

(along with rate) is partially heritable by virtue of the DNA replication and repair machinery

encoded in any organism’s genome. Of course, mutation bias is affected by other elements

such as the inherent mutability of the genetic substrate and the particular environment the

organism exists in. In this work, I make mutation bias variable by creating a limited number

of different mutation biases an organism can have.

This leaves selectability. Determining the selectability of mutation bias is the primary

focus of this dissertation. It is not entirely clear that mutation bias can be selectable. Cer-

tainly, a particular bias might create beneficial mutants that will allow the bias to hitchhike

to fixation in a population; however, the benefit conferred by a mutation bias (e.g. the set

of genetic changes) might be so uncoupled from its consequence (the discovery of a novel,

adaptive trait that selection can act directly upon) as to have the fate of the mutation bias

left to chance. This observation implies that mutation bias is something that can only in-

fluence long-term evolution and is not something that competition at the individual level

would be able to distinguish.
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Selectionist Neutralist

Amino acid composition is driven by GC con-
tent [1, 37, 43].

GC content correlates positively with “am-
bivalent” amino acids [15].

Protein-coding regions are positively corre-
lated with GC content [27].

Third codon sites are most correlated with ge-
nomic GC [27].

GC content might help with DNA thermosta-
bility in hostile environments [3].

Only structural RNA GC content is correlated
with temperature [17].

Strong mutation bias can lead to the selection
of non-optimal novelty [45].

Mutation is a weak pressure in mutation-
selection balance [37, 45].

GC:AT content differences might be due to a
competition for resources [33].

GC:AT content differences are the result of
neutral processes [44].

Table 1.1. Selectionist and neutralist hypotheses for GC:AT biases. Broadly, there
are two different ideas about the importance of composition biases: selectionist and neu-
tralist. Selectionists argue that composition biases of genomes serve an adaptive purpose.
Neutralists believe that composition differences are the consequence of selectively-neutral
processes.

1.3 Previous work on mutation bias

Previous work on mutation bias falls into three primary categories: the observation of com-

positional biases in organisms, the causes of compositional biases in organisms, and the

consequences of compositional biases in organisms. The majority of work focuses on the

observation and causes of compositional biases in bacterial chromosomes. The work on con-

sequences of compositional bias covers a broader range of species. Table 1.1 highlights some

potential hypotheses of variable GC:AT biases.

Genetic differences of GC:AT content in bacteria were observed as early as the late

1950s. While looking for correlations between DNA and RNA in bacteria, Belozersky and

Spirinfound found there to be a variety of GC:AT ratios from the 19 bacterial species they

examined, ranging from ratios of 0.45 ± 0.02 to 2.73 ± 0.02 [2]. Other ratios, purine to

pyrimidine (AG:CT) and GT:AC showed no major deviation from 1.0 for all examined
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species, owing to Watson-Crick pairings.

To explain this difference in GC:AT content, two researchers independently theorized that

the composition bias is the result of a varying mutation bias operating under equilibrium

(selectively-neutral) conditions [13, 39]. There is evidence to support this hypothesis as

GC:AT biases are especially noticeable in relatively neutral parts of the genome (e.g. spacers

and third-position sites in codons relative to chromosomal regions producing structural RNA

[27]). Consequently, mutation bias is potentially important for neutral evolution [40].

There are many causes of mutation bias in nature, due to both inherent DNA instability

and the capability of replication and repair enzymes. One of the most cited reasons for a

GC:AT bias is the inherent instability of cytosine, which creates an asymmetric pressure

away from GC to AT pairs. In its methylated form, cytosine mutates via deamination to

thiamine, creating a transition mutation. When it is not methylated, it deaminates into

uracil, a correctable state provided appropriate repair enzymes are available. As such, DNA

has a natural propensity to mutate toward a higher AT content.

However, repair mechanisms are not always available nor is there a unidirectional pref-

erence for higher AT content, as is the case with the mutT E. coli strain. mutT mutants

were created through X-ray induced mutation and discovered to have a three-fold higher

mutation rate than the wildtype [41]. The higher mutation rate produced an increase in the

number of mutations from AT→GC, increasing the genomic concentration of GC [6]. The

mutT enzyme, knocked out in mutT strains, provides protection from mutation by degrad-

ing a potential mutagen, 8-oxodGTP, an oxidized form of the nucleotide guanine [24]. In

the absence of the mutT enzyme, as caused for example by an insertion element-induced

knockout in the original mutT strain [4], 8-oxodoGTP can pair with either cytosine or ade-

nine, potentially leading to a transversion during subsequent replication if not detected and

repaired by additional enzymes [10].

There are other potential causes of mutation bias. Because mutation is more likely in

single-stranded than double stranded DNA (at least for cytosine and adenine) [12, 23, 19],
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the location of a nucleotide relative to the origin and terminus of replication [26, 25], the

strand the nucleotide occupies [26, 22], and the frequency it is transcribed [11] are all factors

in determining both the rate and direction of mutation.

I now consider prior work that studies the consequences of GC:AT biases. Several papers

have examined how GC:AT content affects protein encoding. Even before the discovery of

codon mapping, researchers observed a correlation between genome GC content and protein

amino acid content [38]. Using the often degenerate third position of a codon as a metric

for directional mutation pressure between GC and AT nucleotide content, many authors

have found that a strong positive correlation between genomes with high third position GC

content and the amino acids glycine, alanine, arginine, and sometimes proline (GAR[P]) and

negative correlation with phenylalanine, tyrosine, isoleucine, lysine, and sometimes methio-

nine (FY[M]INK) [38, 18, 15, 35, 1]. Providing more direct evidence for a causal role for

mutation, research has found a strong substitution asymmetry favoring GARP to FYMINK

in GC-rich and GC-poor homologs between two divergent species [43]. The extent to which

changes in amino acids are driven by mutation bias under neutral evolution [35, 43, 15] or

selection for protein function [1] is not completely known.

There have been suggestions that GC content is directly selected and not just the byprod-

uct of mutation bias. One possible reason for GC content being directly selected is that GC

rich regions of chromosomes tend to be more thermally stable than AT rich regions. This is

because a GC pair has three hydrogen bonds where as AT only has two [42]. This hypothesis

is supported by the observation that “warm-blooded” vertebrates tend to have more GC-rich

regions (isochores) than “cold-blooded” vertebrates [3]. There is also a link between optimal

growth temperatures for eubacteria and archaea with the GC content of their structural

RNAs (but not the GC content of their genomes) [17]. Alternately, there is a hypothesis for

direct selection of higher AT content genomes to reduce the energy needed to replicate [33].

Finally, there has been little direct evidence from previous work that mutation bias can

cause change in evolutionary outcomes. There is no work from natural systems because of
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the difficulty in manipulating mutation bias in natural systems. The only previous work I

am aware of are two relatively simple computational model studies. In the first study, with

an extremely simple model, the authors show that extraordinarily biased mutation rates

can lead to non-optimal selective outcomes in small populations [45]. Several years later,

one of the authors further explored this topic using an NK model [37]1. He showed that a

model with an alphabet of four “nucleotide” states and a translation step to map codons

into “amino acids” could lead to an evolved bias in amino acid composition. However, it

is important to note that the only meaning for nucleotides and amino acids is captured by

the codon encoding and associated random fitness values. In particular, the result seems to

follow directly from the codon encoding used in the study.

1.4 Can mutation biases confer evolvability?

In order for mutation bias to have an evolutionary affect, it must be shown that applying

a mutation bias can change the outcome of evolution in obligate populations. For it to be

evolvable, it must both be something that selection can distinguish and be itself heritable

and mutable.

As discussed above, there is evidence to suggest that mutation bias in nature fits these

criteria. Mutation bias has been implicated in altering protein composition. It has also been

shown to be modulated (along with mutation rate) by the presence of different replication

and repair enzymes and cytosine methylation. Consequently, mutation bias in nature can be

derived in part from the product of genes which are themselves evolving. What is missing

from the studies discussed above is direct evidence that mutation bias, in a non-trivial

system, can meet these three criteria.

In this body of work, I directly test whether or not mutation bias can be a selectable trait

for evolvability. To do so, I show that applying a mutation bias can lead to different rates

1In an NK model, fitness is determined from the combined contribution of N sites with
each site having K interactions with other sites [20].
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and scope of environmental adaptation. I also show that the effects of different mutation

bias can be distinguished by selection. Finally, I show that mutation bias, given a mutable,

heritable representation, can be consistently selected by individuals in a population.
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CHAPTER 2

Avida: A Digital Life Model

Studying evolution under experimental conditions is a challenge. The timescale over which

evolution occurs is typically orders of magnitude more than the length of a graduate pro-

gram. Consider an extreme example: suppose one wants to examine how a herd of elephants

evolves some novel adaptation to an environmental change. Elephants are not capable of re-

production until they reach about thirteen years of age, and their gestation time is 22 months.

Considering it generally takes many generations for a phenotype to fix in a population, using

elephants to study novel trait evolution is clearly infeasible. To test any evolvability claim

would require finding (or producing) a reliable control herd that lives without the environ-

mental change doubling these problems, albeit in parallel; even then the statistical power

from such an experiment would be quite low.

It is for these reason researchers choose to study evolution in laboratory model sys-

tems with much shorter gestation times: fruit flies, microorganisms, and the like. However

these systems are also fraught with their own idiosyncratic problems. Organic systems re-

quire careful maintenance of their support equipment, routine checks for contamination, and

multiple physical resources to test experimental hypotheses. Added all up, a single set of

evolution experiments could easily create many years worth of work in up-keep alone, to say

nothing of the time and resources it takes to collect and analyze data. The dividends of such

experiments may well be worth the costs; but broad examinations of evolutionary theories

over multiple dimensions become cumbersome. Digital life helps mitigate these problems by

providing a more tractable and less resource-intensive platform to explore a wide variety of

evolutionary hypotheses.
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Digital life is largely defined by the self-replicating computer program. Such programs

contain machine code capable of instructing the hardware they are instantiated upon to repli-

cate. They may also be evolved to solve problems by introducing mutations and providing

fitness benefits for demonstrating good solutions. A number of different software packages

enable such programs to “live” inside a computer. Perhaps the most famous early digital life

package is Tierra [32]. Organisms in Tierra are machine code programs that share a common

memory space “soup”. Tierra itself acts like an operating system, allocating CPU time for

each organism to replicate and “reaping” old organisms to keep space available for offspring.

Digital organisms in the simplest Tierra environment evolved to optimize their replication

algorithm and to exploit other organisms to reproduce faster.

For my experiments, I chose to use the digital evolution platform Avida [29]. Avida

follows in the footsteps of Tierra. Unlike Tierra’s “soup”, Avida enforces a strict separation

of each organism’s memory space. This helps keep asexual lineages identifiable and fosters

an easier understanding of the causes of adaptive change. This chapter will be devoted

to a description of the terms used throughout this work, Avida, and the methods used to

implement the experiments in the following chapters.

2.1 Avida

Avida is a software package that allows researchers to explore evolution through experimen-

tation using digital organisms. Digital organisms in Avida experience competition for limited

resources, inheritance, and genetic mutation; therefore they are capable of evolving adap-

tations to their environment. Avida allows the researcher to tightly control environmental

conditions and easily observe resulting population responses, allowing for hypotheses that

are difficult to study in natural systems to be readily explored.

An Avida experiment can be thought of as a digital analogue of a microbial experiment.

An Avidian is a digital organism. It is comprised of two parts: a sequence of virtual CPU
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instructions (its genome) and a virtual CPU (its biological equipment). Everything outside of

an organism is its environment. The organism’s environment provides an essential metabolic

resource called SIPs (Single Instruction Processing units [21]), which give the organisms

the ability to process their genome. How many SIPs an organism receives depends upon

how it interacts with the environment to produce products or behaviors established by the

researcher. The composite of these products and behaviors defines an organism’s phenotype.

The genome is the heritable substrate in Avida. It is comprised of 26 different virtual

CPU instructions. Like a bacterial chromosome, it is circular, so that the first instruction

in the genome follows the last. These instructions are capable of changing the internal

state of the virtual CPU and are Turing-complete. Roughly, these instructions are split

into four different classes: no-operation/behavior modification, genome-processing control,

reproduction, and numerical operation. Appendix A provides a detailed description of the

function of each of these twenty-six instructions.

The concepts of gene and locus in Avida are less clear than in microorganisms. To

avoid ambiguity, I will use the word site when discussing a particular location in an Avidian

genome. The length of a genome is simply be the number of instructions it contains.

2.1.1 Avidians: genomes and life-cycles

Figure 2.1 depicts an Avidian genome and how it is processed in one generation. The virtual

CPU (not shown) that processes the genome contains three different registers, two stacks

(currently capped at ten elements), four specialty pointers that identify different locations

in the genome, and a special purpose register that traces the most recent sequence of nop

instructions read during replication.

Execution of an organism begins with the virtual CPU being reset so that all four special-

purpose heads (the instruction pointer, the read, write, and flow heads) point to the first

site in the genome, labeled with a star in Figure 2.1. All registers are set to the value

zero and the stacks are empty. When the organism receives a SIP, a quantum of metabolic
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energy in Avida, it processes the instruction at the site pointed to by the instruction pointer.

Depending on the identity of the instruction, mathematical operations may be carried out,

the environment may provide input or receive output, or the state of the virtual CPU’s

stacks, registers, or heads may be altered. Unless the instruction explicitly alters the state

of the instruction pointer, the instruction pointer moves to the next site after processing.

When the instruction pointer reaches the end of the organism’s genome, it is moved to the

start. This makes an Avidian genome circular.

The organism depicted in Figure 2.1 is the ancestor used to seed many of the experiments

in this work. It consists of two functional components: an initialization module at the start

of the genome that prepares the organism for replication; and a copy-loop at the end of the

genome that copies the individual instructions in the genome to the offspring’s memory. A

long “backbone” of the virtual CPU instruction nop-C occupies the space in the genome

between these two sections. The nop-C backbone provides blank space for adaptations to

evolve.

The h-alloc instruction at the start of the organism’s initialization module causes the

virtual CPU to append nop-A instructions to an organism’s genome, tripling the genome’s

length. The first part of the genome also uncouples the read and write-head, the former still

pointing to the first instruction in the genome and the latter moved to the first site to receive

an instruction copied from the parent genome. The action is accomplished by the h-search

instruction using nop templating, wherein a specific pattern of nops, complements of the

nops located after the h-search instruction, are located within the genome. The h-search

instruction places the flow-head (the final of the four genome pointers) after that pattern.

The mov-head instruction then places the write-head at the location of the flow-head. This

prepares the genome for copying, since the read-head is at the start of the genome and the

write-head is now at the start of the newly allocated space for the offspring.

In the default organism in Figure 2.1, all copying from the parent genome to what will

become the offspring occurs in the copy-loop at the end of the parent genome. The copy-loop
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contains the h-copy instruction, which copies the instruction at the site pointed to by the

read-head to the site pointed to by the write-head. As nop instructions are copied, their

identities are noted and stored in a special purpose label register. This register is used by

the instruction if-label to change the behavior of the instruction pointer to conditionally

process pieces of code. When a non-nop instruction is copied, the label register is cleared.

The copy-loop of the genome depicted in Figure 2.1 terminates when the instructions

at the end of the genome are copied because the h-divide instruction gets processed when

the complement of the nops located after the if-label instruction in the copy-loop gets

copied to the offspring’s genome. Although h-divide can be processed at any time, it will

not be successful unless specific conditions, set in the experiment’s configuration, are met.

These conditions include the number of instructions processed and the number of instructions

copied. Processing h-divide before these conditions are met consumes SIPs but performs

no work.

Once h-divide is successfully processed, the offspring’s memory is cleaved from the

parent’s genome by using the position of the read and write-heads to define the beginning

and end of the offspring genome. Any excess instructions allocated by h-alloc are removed.

Avida then provides the offspring genome its own piece of virtual hardware and places the

organism into the population. Since the offspring has not processed its genome, it initially

receives the same number of SIPs as its parent.

2.1.2 The Avida population, environment, and organism fitness

The world that the Avidians occupy may be thought of as a virtual Petri dish. Typically

this world contains a matrix of cells that only a single Avidian may inhabit at a time. These

cells are linked together to form a torus – a borderless two-dimensional shape. This world

can be further subdivided into isolated subunits called demes. Chapter 5 will make use of

demes to select mutation biases.

A population is the collection of organisms occupying the world at a particular time.
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As organisms reproduce, their offspring are placed in the virtual Petri dish, many times

displacing and killing an existing organism. The specific placement of an organism upon

its birth depends on settings established by the researcher. Typically, offspring are either

placed randomly in the world to produce unstructured populations or in one of the cells

immediately adjacent to the parent (without concern for the properties of the organism the

offspring may be replacing) producing structured populations.

Organisms that reproduce faster will occupy an ever increasing amount of the digital

Petri dish, and eventually drive all other clades extinct unless frequency dependent selection

is possible, such as when there are multiple limited resources. For this work, it is the

competition for space that drives selection.

The duration of an Avida experiment as well as the timing of researcher-specified events

is often measured in a unit called an update. Updates may be thought as the time it takes

a population to exhaust a fixed supply of SIPs. Typically, when an organism receives a SIP,

it is able to process the next instruction in its genome on its virtual CPU. The number of

SIPs available in any update is dependent on the population size. For experiments in this

work, the total number of SIPs available per update is 30 times the number of organisms in

the population. How the total number of SIPs in a given update is allocated to individual

organisms creates relative processing speed differences within the population.

An organism-specific value called merit determines how many SIPs the organism is given

in per update. Going back to the bacterial experiment analogy, merit may be thought of

as the “metabolic” rate of the organism. The higher its value compared to its peers, the

“faster” an organism processes its genome. Merit is initially set to be proportional to the

minimum of either the number of instructions the organism processes in order to divide or

the number of instructions it copied into the genome of its last offspring. In practice, this

prevents organisms from being penalized for having longer genomes. Additional merit may

be gained by environmental adaptation.
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Merit is thus defined as:

M = M0

T∏
Bt (2.1)

where M0 is proportional to number of SIPs processed prior to replication or offspring length,

T is the set of observed adaptations that are rewarded with an associated multiplicative

increase of magnitude Bt.

The environment in Avida is everything “outside” of an organism. In its simplest form,

the environment supplies organisms with SIPs and requested pseudo-random bit strings.

This simple environment also examines the bit strings that an organism produces when it

processes an instruction that outputs a bit-string. Since the environment keeps track of both

the inputs an organism receives and the output it sends, it is possible to treat the organism as

a black box that maps inputs into outputs. By adjusting merit based on observed mappings,

organisms receive a different number of SIPs, effectively changing the relative speed at which

they operate.

Researcher-defined mappings are called tasks. Typically tasks are either simple mathe-

matic or Boolean logic operations, but they can also be complex behaviors or interactions.

The set of tasks and their associated merit adjustments define the reward structure of the en-

vironment. The most common reward structure used in an Avida experiment is the Logic-9,

shown in Table 3.1. In the Logic-9, performing any of nine Boolean logic tasks provide merit

rewards. The size of the reward roughly is based on the complexity of the individual tasks,

as defined by the number of NAND operations required to perform each operation. Merit

rewards are applied multiplicatively to the merit of an organism. There is a maximum of

one reward per task per organism and no limit on the number of organisms that can be

rewarded for performing the task. Consequently, organisms which perform a large number

of complex tasks are selectively advantageous in the Logic-9 environment.

The absolute fitness (ω) of an organism is the ratio of its merit to its replication efficiency:

ω =
M

τ
=
M0

∏T Bt

τ
(2.2)
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where M is the merit of the organism as defined in Equation 2.1, and τ is the number of

SIPs needed for replication. Unlike a genetic algorithm, which typically use explicit fitness

functions to determine which genomes get propagated to the next generation fitness in Avida

is implicit, with the environment providing metabolic rewards to organisms for performing

tasks. In Avida, high absolute fitness does not guarantee survival; Avida is fitness-agnostic

when it comes to replacing organisms with newly created offspring. Consequently, organisms

with high absolute fitness may be replaced by less fit organisms.

2.1.3 Instructions, mutations, and mutation biases

Mutations occur during replication in the form of substitutions, insertions, and deletions.

The rates of these mutations are established by the researcher at the start of the experiment

and may be modified mid-experiment.

Unlike the four nucleobases in DNA or the standard 20 amino acids in proteins, Avida

typically uses a 26-letter genetic alphabet with the symbols a-z mapped to each instruction.

Further different from natural systems, there is no translation step between genome and

function in Avida; instruction identity is atomic, although the behavior of an instruction

may be modified by other instructions (particularly no-operation or nops) anywhere in the

genome. For example, the presence of a nop-A immediately following an add instruction will

change which virtual register receives the summation. Appendix A defines the behavior of

each instruction as well as how its behavior is modified by the presence of nop instructions

at various places in the genome.

A collection of virtual CPU instructions and any metabolic or mutagenic properties asso-

ciated with each instruction defines an instruction set. For the purposes of the experiments

in this work, all mutation biases are represented by predefined instruction sets. I use the

term “mutation bias” to refer to a single instruction set with a distinct set of mutagenic

properties for each instruction. A mutation bias skews the probability of substitution to or

insertion of each instruction from parent to offspring.
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Although mutations may occur to an offspring’s genome either during replication or after

dividing from the parent, the experiments in this work apply substitutions during instruction

copying and insertion and deletions (indels) occurring during division.

When a substitution or insertion occurs, a new instruction is drawn at random from the

instruction set. By default, every instruction has the same chance being selected. However,

the mutation probability for each individual instruction may be altered by changing its

redundancy in the instruction set. An instruction’s redundancy is simply its abundance in

the instruction set. The higher an instruction’s relative redundancy (abundance), the more

likely it is to be drawn from a random sample of the collection.

Another difference between Avida and natural systems is that there is the possibility of a

substitution occurring and not altering the offspring’s genome. Since mutation outcomes are

based on relative abundance of instructions in the instruction set, there is a possibility that

a mutation occurs but produces no change in the genome. This decouples the researcher-

specified mutation rate and the actual mutation rate. Consequently, the mutability of a

particular site depends on the instruction at that site and its redundancy. For a particular

site with instruction i, its rate of mutation is (1−pi)µ, where pi is the relative probability of

picking the instruction and µ is the substitution rate. The difference between the specified

and actual mutation rate will become important when I discuss the reason for the selection

of a mutation bias in Chapters 4 and 5.

The manner in which instruction sets with different redundancies (mutation biases) are

inherited and mutate differ between experiments. In Chapter 3, a single mutation bias

will be applied to populations as a whole to find the differences in evolutionary behavior

of obligate populations under different mutation biases. In Chapter 4, multiple mutation

biases are present in the population and are inherited perfectly from parent to offspring.

Both inheritance of multiple mutation biases and the mutation between biases is allowed in

the experiments in Chapter 5 by specifying an additional mutation parameter, µb, which is

the probability that the bias will be altered during transmission from parent to offspring.
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2.2 An Avida experiment

Each Avida experiment is an instance of evolution [31]. During the course of an experiment,

a researcher can capture a variety of information. Some examples include the average fitness

of the population, the kinds of adaptations present, and the evolutionary history of each

organism in the population. Figure 2.2 contains plotted data from one of the experiments

in Chapter 3. This experiment will serve as a case-study of a typical Avida experiment.

Each Avida experiment is an independent instance of digital organism evolution. In order

to test the effects of different treatments, experiments are often repeated multiple times

with identical configurations. A single integer value, called a seed, differentiates replicates

by initializing a random number generator to produce different values when stochasticity is

required. For example, the placement of an organism in the population or which sites in

the genome get mutated depend on the values produced by the random number generator.

Since all of the stochasticity in each experiment depends only upon a single random number

seed, an experiment may be repeated multiple times with the same outcome.

As all organisms in the initial population are of the same fitness, Avida gives each or-

ganism the same probability of receiving a SIP. As the clones process their code, they will

begin to copy their genome. It takes the default ancestor 189 SIPs to create a copy of itself

(τ in Equation 2.2). As described above, this process involves four steps: (1) allocation of

offspring memory, (2) configuration of the virtual CPU to begin copying, (3) copying each

instruction from parent to offspring, and (4) termination of the copy process when the in-

struction h-divide is processed. During the copying of an instruction, it may be mutated

prior to being written to the offspring’s genome. During division, additional instructions may

be inserted or deleted from the offspring genome. These substitutions and indels provide

heritable variation for selection to act upon. Following replication and division, the parent

and offspring CPUs are reset to their initial state with merit updated based on the tasks the

parent has completed.
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At the end of the first few updates of an Avida experiment, some organisms will have

gained more SIPs than others due to chance. This set of organisms will have a greater chance

of propagating to the next generation. As the experiment proceeds, mutations accumulate

in the genome and may influence either the efficiency of replication or the merit (τ and M

in Equation 2.2). If these organisms are not overwritten, they will sweep the population by

replacing all organisms with their relatively more fit descendants.

Avida experiments proceed until a researcher-specified condition is met. Typically this

is a limit on the update time or average generation count of the population. In Chapter

4, experiments are set to terminate when one of two subpopulations drives the other to

extinction. By the end of an Avida experiment, the handwritten ancestor will have adapted

to the environment. These adaptations may not be optimal or exploit the environment

completely; the maximum population fitness at the end of each experiment will vary for the

same experimental setup.

When examining the historic path of a population, the primary line of descent (PLoD) is

often used. This line of descent begins with the default ancestor and contains each ancestral

genotype produced throughout time until the final dominant genotype in the population at

the end of the experiment is reached. Each step along this line of descent is at a different

genetic depth: the number of distinct genotypes beginning with the handwritten ancestor at

depth 0. The PLoD is stored during the course of the experiment and may be analyzed after-

ward. Figure 2.2-A shows the relationship of the PLoD to the rest of the Avida population

over the course of an experiment.

Each genotype in the PLoD may be examined at the end of an experiment for historic be-

havior; they may also be re-examined in a virtual test environment. Many times the behavior

of a genotype may be more complicated than its history suggests. For example, phenotypic

stochasticity, the random ability for a phenotypes to emerge, is possible. Phenotypic stochas-

ticity can alter an organism’s fitness because of genome-environment interactions altering

gestation time or task demonstration. To test for phenotypic stochasticity, I loaded genomes
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Figure 2.2. Evolutionary trajectory of an Avida experiment. A. A flame graph
showing the abundance of organisms at different phylogenetic depths over time. Abundances
increase from black through red to yellow. The trajectory of the PLoD is plotted as a cyan
color line. B. The fitness trajectory of the PLoD over time. The color of the markers indicate
the stochasticity of phenotypes as measured in the test environment.

on the PLoD into a virtual test environment and fully-processed them 1000 times. Pheno-

types are marked unique if they have a different set tasks, a different number of times tasks

performed, or if gestation time is different among all tests. I classify genotypes as being

stochastic if they posses more than one phenotype after analysis; otherwise I declare them

to be static. Figure 2.2-B shows the fitness behavior of our case-study experiment with

the color of colored markers indicating phenotypically stochastic genotypes and annotations

showing which tasks are being performed.
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2.3 Experiment-specific features

Additional features that will be used in the experiments in this work will be introduced when

they are used. These include the ability to switch mutation biases for the entire population

in Chapter 3, the ability to have multiple mutation biases in a population in Chapter 4, and

the ability for individual organisms to possess and mutate between different mutation biases

using both multiple demes and single population setups.
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CHAPTER 3

The Adaptive Consequences of

Mutation Bias

Adaptive evolution requires mutation, inheritance, and selection. Altering the outcome of

any of these three processes has the potential to change the evolutionary trajectory of a

population in a non-trivial manner. Consequently, biasing the ability of a population to

sample its genetic landscape has the potential to alter evolutionary adaptation. In order for

a mutation bias to evolve as an adaptation, a bias must (1) alter evolutionary adaptation in

a beneficial manner, (2) be visible to selection, and (3) be subject to heritable variation. In

this chapter, I explore the first of these three requirements.

To begin, I created a pair of potentially advantageous and disadvantageous mutation

biases using information from evolving populations. I then examined the ability of these

mutation biases to alter fitnesses, evolve complex tasks, and transform genetic compositions

of obligate populations. Taken as a whole, these experiments demonstrate that there exist

mutation biases that are able to beneficially alter the evolutionary trajectory of populations

of digital organisms.

3.1 Creating a favorable mutation bias

Given that most changes in a genome are deleterious, deriving a mutation bias that will

allow populations to adapt to their environment better than chance requires information

about the environment and its effects on the population’s genetic composition. There is no
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a priori expectation that a random mutation bias will serve any adaptive effect. As such, I

used information about successful mutations to identify a beneficial mutation bias.

In order to find a potentially beneficial bias, I began by employing the methodology

used to create the Dayhoff PAM matrix (an amino acid substitution matrix) using the

virtual instructions in Avida. I then removed some of the restrictions of the PAM-matrix

methodology and derived a single vector of mutation inflow rates probabilities. From this

vector, I created the two mutation biases used in this chapter: the positive (POS) and negative

(NEG) biases.

3.1.1 Dayhoff PAM-like matrix

The inspiration for using a mutation bias to improve evolution came from earlier work to

create a Dayhoff PAM-like matrix for Avida [7]. The PAM-matrix is hand-created amino

acid substitution matrix for protein residues a particular PAM distance apart. PAM distance

is defined by the number of “accepted” amino acid substitutions per 100 residues between

two proteins1. Consequently a PAM-N matrix defines the likelihood of some amino acid

i being substituted by amino acid j in proteins a PAM distance N apart. Because the

history any two residues are not rooted in the creation of the PAM matrix, the PAM-N

matrix is bidirectionally tabulated. That is, the count of substitutions from i→ j = j → i.

Traditionally, the PAM-250 is used in maximum likelihood estimations; though to some

extent newer bioinformatic applications substitute the PAM matrix with another type of

transition matrix, the BLOSUM-62 [16].

One of the nice summary statistics from the Dayhoff PAM matrix is its asymptotic

“steady state” at large PAM distances. By applying the PAM matrix many times (or taking

its first eigenvector), the distribution of final states of transition becomes uncoupled from

initial conditions. This vector is the theoretical distribution of amino acid states between

1“Accepted” is not a well-defined term. Dayhoff and Schwartz define it to be when a
mutation becomes the “new predominant form” for a species.
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well-separated residues. I exploited this property to create the mutation biases I will use in

later experiments.

Using Avidian genomes instead of protein sequences, I repeated Dayhoff’s method to

create a transition matrix, albeit with slight modifications. To begin, I evolved a set of

20 replicates populations under the Logic-9 reward structure. I list those few non-default

configuration settings in Appendix B.2, though it doesn’t vary much from the default Avida

setup. To get an equivalent to a PAM-1 matrix, I collected whole populations and their

evolutionary history from each replicate every 100 updates. At the end of the experiment, I

combined these populations and their evolutionary history into a single genetic tree, which is

a sample of the entire evolutionary history of the population. Depending on how I tabulated

the substitutions, I was able to get different types of transition matrices.

Unlike Dayhoff’s amino acid substitutions, the evolutionary history of each genotype in

Avida is perfectly encoded. Consequently, two assumptions could be relaxed in creating

an Avidian PAM-like matrix: bidirectionally (so i → j 6= j → i) and the assumption of a

PAM-distance (since the distance between any two genotypes need not be inferred). These

simplifying assumptions made the tabulation of transition matrices easier and provided a

clearer means of interpreting the resulting matrix. Instead of the resulting matrix repre-

senting distances 1 PAM apart, the individual transition probabilities the possibility of a

non-lethal mutation from instruction i to instruction j within a single generation.

From the historical information contained in the population samples, I created two dif-

ferent matrices Mbi and Muni, where I used bidirectional and unidirectional tabulations,

respectively. For either matrix Mi,j is the probability of an instruction i mutating to instruc-

tion j during replication. I created the bidirectional Mbi by equating transitions between

instructions i and j. The bidirectional matrix is not a symmetrical matrix (Mi,j 6= Mj,i)

because each row i is normalized by the total number of i→ j transitions observed. I created

a second matrix Muni by keeping the tabulations unidirectional.

Both methods have some merit: bidirectional assumes some degree of neutrality for
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substitutions (as assumed in the PAM matrix [7]) and unidirectional captures the exact

evolutionary trajectory of the population. I chose to use the bidirectional matrix as a basis

for the remainder of my work. The chief reason for this was incidental: the “steady state”

value of Mbi deviated from a uniform distribution more so than Muni. As I will show later,

this decision did allow me to produce a Logic-9 friendly mutation bias, albeit using a more

simplified version of the bias than the original Mbi would produce.

Figure 3.1 shows Mbi and its near “steady-state” condition. As mentioned before, one of

the advantages of the “steady state” is that the original identity of an instruction no longer

plays a determining factor in the outcome of a substitution. That is, any instruction i has

an equal probability of mutating to a particular instruction j. Put another way, an infinitly-

sized population of genotypes under a random walk can expect to have a composition b̂ equal

to one row of the matrix shown in 3.1-B after a sufficient amount of time has elapsed.

Although in the short term, mutations between states in the genome may be dependent

on the initial identity of each site, the long-term consequences of a mutation bias should

drive populations to a similar genetic composition outcome, barring strong selection. Con-

sequently, a major assumption of my work is that a mutation bias can be represented by a

single vector ŝ where each element is the relative abundance of one genetic state as compared

to another. Selection, of course, disrupts this assumption because the context of one genetic

state over another has the potential to be adaptively meaningful; but the overall direction

of genetic change is adequately captured by ŝ.

3.1.2 Further simplifications of biases

Although the mutation bias generated from Mbi above is well-specified, some of the pa-

rameters used to generate it were chosen more arbitrarily. For instance, the sampling of

populations every 100-updates might give a good approximation for the complete evolution-

ary history of the population but was chosen more for observational completeness of the

transition matrix rather than capturing evolutionarily meaningful artifacts. Further, I had
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Figure 3.1. Transition matrices. Letters along the axes correspond to virtual-CPU in-
structions in Appendix A. A. A Markov transition matrix generated from point and insertion
mutations accumulated during the course of evolution in the Logic-9 reward structure. B.
The near-saturation state of this matrix.

some question as to whether each sample replicate should be equally weighted when tab-

ulating the values for any resulting transition matrix. After all, some replicates will have

populations more adapted to the environment than others due to chance alone. Finally, there

was the distribution of the bias: how meaningful are the many different relative probabilities?

In order to simplify ŝ and remove variation in ŝ due to arbitrary decisions to the concerns

above, I decided to use only three different instruction probabilities: low, medium, and high.

These three probabilities were loosely fit to the original eigenvector (b̂) of Mbi as follows:

medium is 31
3 more likely than low; and high is 5 times more likely than low.

Once the relative ratios were established, the question became how to apply them across

the 26 instructions of the default Avida instruction set. As shown in Figure 3.2 there are
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clearly some instructions that are more represented in ŝ than others, especially those dealing

with logical task IO {nand, io} NOP modification {nop-A, nop-C} , or replication

{h-copy} . Since other work has shown there to be an antagonistic relationship between

task acquisition (and therefore higher fitness) and replication efficiency [34], I decided to

place {h-copy} in the low category.
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Figure 3.2. A comparison of the saturation values of the transition matrix and
corresponding simplified values used in the INST-3 mutation bias spectrum.

3.1.3 The INST-3 spectrum

For the remainder of this work, I will refer to the potentially advantageous mutation bias as

POS; NEG will be an “anti-bias” made by swapping instructions with high and low probability

in POS. UNB will be a bias where each instruction is equally probable. Figure 3.2 compares

the original Dayhoff-like versions of these biases to their simplified derivatives.
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In order to simplify terminology later on as I add more mutation biases, I refer to the

set of mutation biases identified as UNB, POS, and NEG in Figure 3.2 as the INST-3 mutation

bias spectrum. Although transitions between the different biases are prohibited in the work

presented in this chapter (unless explicitly stated), it will be helpful to think of the mutation

biases as being states in an evolvable system. This will become more important for the

evolution of mutation biases in Chapter 5.

3.2 Mutation biases can change the evolutionary tra-

jectory of obligate populations.

All experiments in this chapter will be in one of the two environment reward structures

listed in Table 3.1. The Logic-9 reward structure is well studied in Avida. It rewards

fitness based upon the complexity of binary logic tasks on received bit-strings. The most

complicated task in the Logic-9 is EQU. Previous work shows that EQU requires simpler

rewarded tasks to evolve [21]. EQU also tends to evolve largely through expatiation: EQU

co-opts sites in the genome from other tasks [28].

As a test of the ability of a mutation bias to influence the effects of adaption, I repeat the

experiments of Lenski et al. [21] to determine whether or not a presumed beneficial mutation

bias can modulate the rate and number of replications acquiring the complex task EQU, its

effect on fitness, and its ability to evolve EQU in an environment that does not reward for

simpler tasks.

My experiments in this chapter examine three different questions: (1) can mutation

bias alter the outcome of evolution if it is applied at the start of an experiment (Section

3.2.1)?; (2) can a change in mutation bias alter the outcome of evolution in already adapted

populations (Section 3.2.2)?; and (3) can mutation bias alone evolve the complex task EQU

(Sections 3.2.3)? I will also examine how bias changes the genetic composition of populations

(Section 3.3).
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Task

NOT NAND AND ORN OR ANDN NOR XOR EQU

Logic-9 21 21 22 22 23 23 24 24 25

EQU-only 0 0 0 0 0 0 0 0 225

Table 3.1. Environment reward structures used in this chapter. Rewards are applied
multiplicatively when an organism divides and is contingent on successful demonstration of
the displayed Boolean logic operations on bit-strings provided by the environment.

3.2.1 The effects of mutation bias on task adaptation

A natural place to begin exploring the effects of mutation bias on evolution is to examine

the influence of biases on a set of replicate treatments, all beginning with a common set of

initial conditions. I used differences in the speed of adaptation (task acquisition or fitness

gain per update), frequency of complex task evolution, and final average population fitness

as measures of environmental adaptation.

The first set of experiments to test the effect of mutation bias on adaptation begins with

three treatments: POS, UNB, and NEG-only variants. Each treatment had 300 replicates with

evolution beginning with a fully-seeded population of the default length-50 ancestor genome

(see Figure 2.1) under the Logic-9 reward structure. Each replicate ran for 105 updates.

At the end of each experiment, I identified the PLoD (primary line of descent) for each

replicate, and evaluated its genotypes for fitness, task performance, and stochasticity. I

tabulated a population as performing a task if any genotype along the PLoD deterministically

demonstrated the task. I used the behavior of genotypes along the PLoD as a proxy for the

historical behavior of the population since reproduction is asexual and metabolic rewards

for tasks are inexhaustible. This combination of factors makes it unlikely for more than

one deeply-rooted clade to persist for long periods of time. Consequently, the PLoD should

reflect the predominant historical state of the population over time. I used the number of

steps from the common ancestor to the first genotype performing each task as a measure of

task acquisition speed. I also collected the average final fitness of each population and the
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Figure 3.3. The evolution of tasks under different mutation biases and environ-
ment reward structures. A. The number of replicates acquiring each task under mutation
biases: yellow, POS; blue, UNB; red, NEG. B. The distribution of the number of genetic steps
from the ancestor genotype to the first acquisition of EQU along the PLoD. Colored boxes
show the the inner quartiles; the median is shown by a gray line. The upper and lower range
of the distribution is shown by dotted lines.

genetic composition of the population over time.

Since I based the POS upon successful mutations in the Logic-9 reward structure, I

hypothesized that the POS treatment will adapt better to the environment (both in terms

of adaptive speed and overall ability), and end with final populations that have a higher

average final fitness. Likewise, the NEG treatment should be less adapted to the environment

than both UNB and, especially, POS.

Figures 3.3 and 3.4 show the results of these three treatments. The results are as expected:

the POS replicates showed significantly higher final fitnesses than the UNB replicates (Figure

3.4, median=14.93 [log2] versus 14.35 [log2], p = 0.002, Mann-Whitney U-Test). In terms of

30



tasks, the POS replicates demonstrated complex tasks in significantly more replicates than

UNB replicates. Specifically, the tasks NOR, XOR, and EQU had significantly more replicates

demonstrating them along the PLoD (p < 0.05, 1-tailed Fisher’s Exact Test, Bonferroni

corrected). The speed of task acquisition also significantly improved for all tasks (p < 0.05,

Mann-Whitney U-Test Bonferroni corrected) except xor, which failed to fall within the

Bonferroni corrected confidence interval (p = 0.010, uncorrected Mann-Whitney U-Test). A

good example of this change in acquisition speed is for the most complex tasks in the Logic-9

reward structure, EQU. EQU acquisition depth of populations under POS decreased relative to

UNB populations, with a median EQU acquisition depth of 160 genomes in UNB populations as

compared to 90 genomes in POS replicates (p < 0.001, uncorrected Mann-Whitney U-Test).

Also as expected, the replicates under the NEG bias did not fair as well as the UNB or POS

replicates. Final average population fitness was significantly lower than UNB (median=12.94

[log2], p < 0.001, Mann-Whitney U-Test). Likewise, fewer replicates obtained the three most

complicated tasks (p� 0.001, Bonferroni corrected) under the Logic-9 reward structure.

Overall, performance on all adaptive metrics was lowest in the NEG replicate populations

and highest in the POS populations. These results demonstrate mutation bias is sufficient to

change the evolutionary trajectory of populations, both helping and hindering adaptation.

However, the extent to which the two biases explored above can influence adaptation has

not been fully demonstrated. The experiments above all began with the same, hand-written

ancestor; whether adapted populations can utilize a mutation bias to adapt more so than

mutationally unbiased peers has not been shown. Further, how well the Logic-9 reward

structure is captured by the POS bias is also not known.

3.2.2 Mutation bias can alter evolutionary trajectory of adapted

populations

In order to test whether or not mutation bias can influence already adapted populations,

I repeated the experiments above but added five more treatments. All populations began
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Figure 3.4. The distribution of final population average fitnesses under different
treatments in the Logic-9 environment reward structure. Asterix markers show
distributions significantly different from the UNB treatment using a 2-tailed Mann-Whitney
U-Test. POS, NEG, and UNB are treatments where populations are forced to use one mutation
bias; the remaining treatments switch biases from UNB to POS en masse at the times indicated.

as before with the same default hand-written ancestor and configuration. Each population

began under UNB conditions. Each treatment switched from all organisms being unbiased to

using the POS mutational bias at either 5, 10, 20, 40, and 80 ×103 updates. Also as before,

each treatment was repeated 300 times.

The fitness comparisons of these treatments are shown in Figure 3.4. Populations that

switched to POS at 5, 20, and 40 ×103 had average final population fitnesses higher than

UNB populations (p < 0.05, Mann-Whitney U-Test, Bonferroni corrected). Likewise, those

same treatments showed significant improvement in EQU acquisition, displayed in Figure 3.5.

Specifically, those treatments showed individual improvements in the number of replicates

that evolved EQU after the switch from UNB to POS (p < 0.05, 1-tailed Fisher’s Exact Test,
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uncorrected) relative to replicates continuing in UNB to the end of the experiment.

The two anomalous populations at 10 and 80× 103 updates did not see improved fitness

or EQU acquisition. The latter can be explained by a lack of time to evolve EQU2. I believe the

difference at 10× 103 is an anomaly or potentially the result of a non-uniform probability of

getting EQU with some transition around 10× 103 as points immediately before and after it

show improved ability to acquire EQU.

Although the results from this set of experiments are not as strong as previous compar-

isons between treatments that were either always under UNB or POS, there is evidence that

the effect still exists. In the next chapter I will explore these ideas more when I compete

mutation biases against each other using genotypes evolved under different biases. I do,

however, find these are results enough to support the claim that environmentally-adapted

genotypes can adapt to the Logic-9 reward structure better under the POS bias than under

unbiased conditions.

3.2.3 Mutation bias can allow for the evolution of complex tasks

de novo

The POS bias was generated using information from successful substitutions in the Logic-9

reward structure; consequently, it contains some information about it. Replaying these

mutations in the form of a bias as shown above demonstrates an ability to move populations

to better adapt to the Logic-9 reward structure. One plausible reason for this behavior is

that POS mutational bias creates a pressure to emulate the genetic-composition of simple

tasks. If this is the case, then these simple tasks should appear in greater propensity under

POS than under UNB even in the absence of selective pressure. In other words, chance alone

could allow for simple tasks to occur. Fixation would not occur without selection (except

perhaps through unlikely drift). However, if this mutational pressure is strong enough,

2Using a sliding window of 20× 103 updates and examining UNB-only replicates, there is
diminishing ability of replicates to obtain EQU over the course of the runs. Data not shown.
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Figure 3.5. The acquisition frequency of EQU. Colored horizontal lines show the
fraction of replicates that evolved EQU in populations that experienced only one mutation
bias (yellow=POS, blue=UNB, red=NEG). Dashed colored lines show the fraction of replicates
that have evolved EQU over time. Green horizontal bars show the fraction of replicates
that have demonstrated EQU at each of the five updates during which a switch from POS to
UNB occurred. Vertical green bars show the additional fraction of treatment replicates that
acquired EQU after the swap from UNB to the POS. Treatments that swapped from UNB to POS

where significantly more replicates acquired EQU after the swap than the UNB-only treatment
are indicated with an asterisk.

there is a possibility for complex tasks to evolve “spontaneously” through a manipulation of

mutation probabilities alone. Adding strong selection for complex tasks then allows for the

possibility of fixation and maintenance in the population.

In order to test the possibility that mutation bias alone can allow for the spontaneous

generation of complex tasks, I repeated the first set of experiments in this chapter in the

EQU-only reward structure. As the name suggests, this reward structure only provides merit

increases for the task EQU. In Lenski et al. [21], this reward structure was used as a control to

test whether or not simpler tasks were required to act as building blocks for the evolution of
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the task EQU. The authors of the study found that simpler rewarded tasks allow for, and are

required for, the evolution of EQU. Here, I repeat their experiment with minor modifications

(as before, see Appendix B.1), to test whether or not a mutation bias is capable of evolving

EQU in a reward structure absent these necessary building blocks.

Under each mutation bias in INST-3, I evolved 300 replicates for 105 updates under the

EQU-only reward structure, beginning with fully seeded populations of the default length-

50 handwritten ancestor. As before, I examined the PLoD for task acquisition. Although

the simpler 8 tasks of the Logic-9 were not rewarded, chance does allow for spontaneous

generation of these tasks (see Figure 3.3).

EQU evolved in 18 out of the 300 replicates under the POS bias. EQU was not demonstrated

by any replicate under either the UNB (repeating the results of Lenski et al.) or NEG biases.

Replicates under the POS bias also showed spontaneous evolution of significantly more simple

tasks (see Figure 3.3) than the other two biases, despite the fact that they were not rewarded.

These results indicate that the POS bias is capable of emulating some of the selective behavior

of the Logic-9 reward structure, allowing for otherwise unlikely tasks to evolve.

One interesting observation is that, despite the fact that these populations were only

rewarded for EQU, simpler building blocks may have contributed to the evolution of EQU.

Specifically 13 of the 18 replicates showed evidence of phenotypic stochasticity for EQU im-

mediately prior to EQU being correctly implemented. Stochasticity, as discussed in Chapter

2, is measured by repeatedly testing genomes with different sets of pseudo-random numbers

as inputs. An example of an input-dependent version of EQU performed by one of the POS

replicates is this implementation:

EQU ≈ 1 + I1 + I2 (3.1)

where, I1 and I2 are two inputs given to the organism via an IO instruction execution.

It so happens that this has an approximately 10−3 probability of correctly calculating EQU

because of the length of the bit-strings randomly generated by the environment. Specifically,
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each organism receives one of three different bit-strings whenever it executes an IO. Each

bit-string received is 32-bits in length, with the upper 8-bits being deterministic to assure

that all bit-wise combinations are present for any pair of the three inputs. The lower 24-bits

of each bit-string are randomly generated.

Genotypes that implemented the simple function in Equation 3.1 exploited the fact that

there is a (34)24 (≈ 10−3) chance that at least one of the first 24-bits in each pair of inputs

contains a one. For each of the first 24-bits, adding 1 will do one of three things: (1) in the

case 0+0+1, 1 will be the result; (2) 1+0+1 = 0+1+1 = 0 carry 1; or (3) 1+1+1 = 1 carry

1. In the last two cases, the resulting value is identical to that of EQU. Only in the first case

would the function return an incorrect value. Consequently, as long as there is not a position

in the first 24 bits of the two input bit-strings that contains a zero, then the genotype will

be successful at demonstrating EQU. (The upper 8-bits are set by Avida; only the highest

bit contains zero in both bit-strings, not affecting the resulting calculation.) Although the

probability is low, such combinations do occur, and selection is strong enough under the

EQU-only reward structure to cause the implementation to persist.

Overall, 42 of 300 replicates under the POS bias demonstrated EQU statically or stochas-

tically (24 only stochastically) along the PLoD compared to two replicates under UNB that

demonstrated EQU only stochastically. Although phenotypic stochasticity appears to be im-

portant for the evolution of EQU in the EQU-only owing to its presence in the majority (13

of 18) of replicates immediately before they achieved EQU statically, the exact role that phe-

notypic stochasticity plays in evolution has not been completely explored and may prove a

fruitful avenue of investigation, especially with regard to difficult to evolve tasks or when

the relative cost of developing a task is high.
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3.3 Other effects of mutation bias

One of the key assumptions about my implementation of mutation bias is that the bias

reflects a type of “compositional optimum” for evolved genomes. I do not claim that the POS

is the most optimum, but I believe it likely better than UNB.

In Dorn et al. [9], the authors present a hypothesis that a “monomer abundance distribu-

tion biosignature” (MADB) exists to distinguish biotic and abiotic conditions. In addition

to using amino acid and carboxylic acid concentrations from both biotic and abiotic sam-

ples, the authors used Avida to detect the presence of a MADB biosignature. In this case,

they examined the effect of selection on two different implementations of a handwritten

ancestor evolving under UNB conditions over seven different mutation rates. The expected

distribution of instructions under abiotic conditions would be, on average, equal for each

instruction. The authors find, however, that irrespective of ancestor and (except at lethal

levels) mutation rates, a common biosignature emerges for all treatments. The authors con-

cede that there is some variation between the distributions caused by the ancestors because

of historical contingency dealing with replication method (the two ancestors had extremely

different means of replicating themselves), but for the most part instructions that were over

or under-represented by one ancestor were also favored or disfavored by the other.

As a consequence of their work, Dorn et al. provide a convincing argument that evolu-

tion with unbiased mutations (as the authors used) will result in a common compositional

outcome regardless of ancestor or mutation rate. Additional work by Dorn [8] also provides

evidence that the mutation bias does not contribute much to the final compositional sig-

nature. This leaves the environment and its selective pressures as the drivers of genome

composition.

The overall consequence of selection being the deciding factor in composition is that it

implies some kind of environment-specific compositional optimality. The POS bias seeks to

emulate this composition. In order to see how genetic compositions of POS and UNB popu-
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lations replicates change over time, I measure the average Kullback-Leibler (KL)-divergence

of the replicate populations from sections 3.2.1 and 3.2.2.

KL-divergence is defined as:

DKL(P‖Q) =
∑
i

P (i)log
P (i)

Q(i)
(3.2)

where P is the distribution of instructions at a particular update for a single replicate’s

entire population and Q is the expected distribution of instructions of the POS or UNB. For

cases where P (i) = 0, I assigned P (i)log
P (i)
Q(i)

to be 0.

All values here are reported in bits, which means the KL-divergence of the two distri-

butions can be thought of as the average number of extra bits needed to convey a message

composed from states using a distribution of P when optimally encoded for the distribu-

tion Q. For our purposes, this value can be thought of as the average number of bits of

information genomes under selection differ from the mutation bias. Figure 3.6 shows the

KL-divergence from populations in sections 3.2.1 and 3.2.2.

In general, the average composition of all populations are closer to POS than UNB over

time. All treatments had an average KL-distance of less than 1.5 bits under POS. In contrast,

all treatments were at least 1.9 and as high as 2.2 bits different from NEG. Interestingly,

switching from UNB to POS can visibly change the composition of the population. After

these treatments became POS biased, their average composition began to deviate from their

UNB-only counterpart, asymptotically approaching the average composition of POS relative to

UNB. Despite this observation, there appears to be a gradual accumulation of artifacts in all

populations, as the average composition distance of all replicates has a slight upward trend

away from POS over time.

3.4 Summary

In this chapter, I created a mutation bias (POS) and demonstrated it can (1) improve adapta-

tion under the Logic-9 reward structure; (2) allow for already adapted populations to better
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adapt to their environment than under UNB; (3) emulate some of the genome-composition

pressure under the Logic-9 reward structure to spontaneously produce both simple and

complex tasks. I also showed that an “anti-bias” created by inverting the redundancies of

POS, called NEG, can retard adaptation in the Logic-9 reward structure. Further, I found

that mutation bias can affect population-level genetic composition but that selection does

drive divergence from expected compositions.

Overall, the results from this study meet the first of the three components needed for

the evolution of a beneficial mutation bias: the potential to improve adaptation in a given

environment. In the next chapter, I will study if selection can distinguish between two

mutation biases. I will also explore how genotypes evolved under one mutation bias are

affected by their history with regard to the selective advantage of a mutation bias.
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CHAPTER 4

Selecting a Mutation Bias

I demonstrated the ability of mutation bias to affect the outcome of evolution but can evolu-

tion select for an optimal mutation bias? Many processes that confer long-term evolvability

are at odds with short-term selective pressures experienced by individuals. Alternatively, the

effects of mutation bias might not even be visible to selection, affecting only the long-term

adaptive behavior of the population.

Mutation bias is not alone in having a potential disparity between short and long-term

selective behavior. In terms of the disparate behavior between short and long-term selective

differences, perhaps one of the most examined evolvability-conferring processes is the evolu-

tion of mutation rates. There is a tradeoff between short and long-term outcomes (reviewed

by [36]). In the short-term there is an increase in the number of deleterious mutations being

accumulated; over time with a sufficiently smooth fitness landscape ([5]) or a high number

of accessible beneficial mutations (for example [14]), high-mutation mutants can outcompete

their wildtype peers. The key to whether or not a high-mutation strain goes to fixation

depends on its short-term advantage. If novel beneficial adaptations are a number of mu-

tational steps away, a higher mutation rate may not be selectively favorable. In particular,

if the selective advantage is not high enough at the individual rather than per capita level,

high mutation populations with small initial abundance may be lost to drift.

Mutation biases may have a similar difficulty. Even though there is a tendency for

populations to adapt better as a whole under the POS than the UNB bias, the short-term

effects of the POS bias might not be beneficial. The short-term consequence of mutation

biases described in the previous chapter are not known. In the preceding experiments, I
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applied mutation biases on a population as a whole. As a result, the selective effect of one

bias relative to another in the short-term cannot be gauged.

Fortunately, there is reason to suspect that the POS bias from the previous chapter is

at least slightly beneficial relative to the UNB bias in the short-term. This is based on two

observations. The first is from the the KL-distances in Section 3.3 with averages shown

in Figure 3.6. Comparing the the KL-distance using POS as a basis (Q in Equation 3.2)

against UNB, the POS bias is closer to the composition of all experimental averages over all

sampled times than the unbiased distribution. As such, the POS bias is consistently closer

to the actual composition of organisms in the Logic-9 reward structure than UNB. Next is

the observation made in Chapter 2 that researcher-specified and actual mutation rates vary

because of the way mutation is implemented in Avida: sites might mutate but not change

identity. If a mutation bias closely matches the genetic composition of a population, as in

the case with POS relative to UNB, than the probability that an instruction will mutate to

itself is maximized. Consequently, overall mutational load decreases as more synonymous

mutations occur.

Despite these observations, the advantage of a beneficial bias such as POS might not be

visible to selection. Small decreases in mutational load might not be large enough (especially

in small populations with high levels of drift) to have any noticeable selective benefit in the

short-term. Further, the long-term benefits of a mutation bias might be so decoupled from

the cause – a better mutation bias relative to peers– as to be a trait that is difficult to

hitchhike upon, leaving its fate to chance.

In this chapter, I will explore whether the mutation biases from the previous chapter are

visible to selection by competing mutation biases against one another.
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4.1 Mutation bias may be visible to selection

In order to compete different mutation biases in head to head competitions, I needed to

modify Avida to handle multiple instruction sets within a single experiment and monitor

which instruction sets are in use by organisms in the population.

I began mutation bias competitions with the population being fully-seeded using either

the default length-50 nop-C ancestor (used to begin experiments in the preceding chapter)

or the final dominant organism from 30 of the 900 experiments in Section 3.2.1, with 10

genotypes from each mutation bias.

I measured the competitive advantage of each mutation bias against the UNB bias by

competing two subpopulations against each other. I seeded the test subpopulation to be a

fraction, πt, of the population. It used one of the three mutation biases used in Chapter

3: the POS, UNB, or NEG. This subpopulation competed against the remaining 1 − πt of

the population that I assigned to be mutationally unbiased (UNB). Mutation biases did not

change over the course of the experiments and were inherited from parent to offspring. The

experiments proceeded until the offspring of one of the subpopulations drove the other to

extinction.

I repeated each competition a number of times and tabulated the frequency competitions

drove UNB to extinction, denoted Ωt. By looking at how Ωt differed between treatments

relative to their initial abundance, I was able to determine how selectable mutation biases

were relative to UNB and how different parameters affect outcome. Treatments that drove

UNB to extinction better than chance “won” competitions and were selectively advantageous.

Those treatments that were driven to extinction by a UNB subpopulation worse than chance

“lost”. Treatments where outcome was indistinguishable from chance were “tied”, where

neither bias had an advantage over the other.

Figure 4.1 displays the full range of πt and Ωt are along the x and y-axes, respectively.

The neutral expectation, where πt = Ωt, is displayed with caricatured error bars. Outcomes
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with Ωt above the neutral expectation show better-than-chance outcome relative to its com-

petitor, indicating its mutation bias is selectively-advantageous compared to its an unbiased

competitor. Outcomes below the neutral expectation indicate relatively negative selection.

Every set of treatments includes a control where UNB is competed against itself. Any sig-

nificant variation from the neutral expectation in these controls would indicate something

is amiss with the implementation of the experiment. I found no significant deviation in the

control experiments outside of chance.

For the remainder of this chapter, I will use the experimental design above to examine

whether or not mutation bias is opaque to selection relative to another bias using both the

default ancestor and organisms evolved under the three mutation biases from the previous

chapter. I will also examine what the effects of population size are on outcome (Section 4.1.2);

the effects of population structure on outcome (Section 4.1.3); and if there are any differences

in the success of mutation biases between evolved and unevolved organisms (Section 4.2).

Finally, I will begin to explore why mutation biases are selected (Section 4.3), a topic that

will be continued in Chapter 5.

4.1.1 Baseline competition results

In this section I describe baseline competition results. This baseline will be used to contrast

how changes in population size and structure affect the selective advantage of mutation

biases. For the baseline parameters, I used an unstructured (mass action) population size

with a maximum size of of 3600 organisms. Later I will increase the population size to

10,000 and introduce structure in the population by restricting offspring placement. Other

experimental parameters were identical to those of experiments performed in Section 3.2.1.

In order to see if the two non-uniform biases in the previous chapter (POS and NEG) are

subject to selection, I competed them against mutationally-unbiased (UNB) organisms. Each

competition began with a fully-seeded population of the default nop-C ancestor. I assigned a

fraction of the population, πt, to be either POS, NEG, or UNB (the latter serving as a control).
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Figure 4.1. Baseline competition results. In the absence of selective pressure, compe-
tition outcome will be based solely upon the initial frequency that a particular bias has in
the population. Results that fall above the diagonal line show evidence of positive selec-
tion (“wins”) relative to a peer subpopulation; outcomes below the line show evidence for a
selective disadvantage (“losses”) relative to a peer subpopulation.
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Figure 4.2. Competition against UNB in an unstructured population. Initial com-
petitor abundances (πt) are shown against competitive success (Ωt). Yellow, blue, and red
lines indicate competitions between UNB and POS, UNB, and NEG, respectively. Treatments
significantly different than chance (p < 0.05, 2-tailed Binomial Test) are shown by trian-
gle markers; competitions not different than chance are shown by crosses. Dashed lines
connecting treatments are shown to contrast outcome against the neutral expectation.

I assigned the remaining (1 − πt) of the population to be mutationally unbiased (UNB). For

this set of experiments, I tested πt at 0.05, 0.10, 0.20, 0.40, 0.50, 0.60, 0.80, and 0.95.

The location of an organism in its toroidal world determined whether it was assigned

to have either the test bias or be part of the UNB competitor. Both subpopulations were

grouped together. I repeated each competition 200 times, with experiments ending when

the offspring of only one of the the two competitors remain in the population.

In general, POS won competitions under all initial abundances (πt) and NEG tied with

UNB (Figure 4.2). Of the assayed values of πt, all POS had significantly more populations

outcompeting their UNB peers than chance (p < 0.05, 2-tailed Binomial Test, Bonferroni
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corrected). All NEG and UNB versus UNB competitions had outcomes not significantly different

than chance for all values of πt. These results show that the experimental design is valid (as

UNB versus UNB tied) and, more importantly, selection cannot distinguish between NEG and

UNB.

The observation that POS won against UNB with initial population sizes as small as 180 of

3600 is encouraging, as anytime a new mutation bias-producing phenotype arises, it will be

extraordinarily rare and subject to the effects of drift in finite populations. In the following

chapter I explore the ability of mutation bias to arise at low frequency and come to dominate

the population.

The fact that NEG is indistinguishable from UNB despite their divergent long-term behavior

is surprising. There are at least a couple of reasons why this might be so: UNB and NEG might

have similar inflow rates and magnitudes of beneficial mutations under these experimental

conditions; it could also be that the rates of beneficial mutations differ, but are both so low

that selection cannot distinguish between them at the population size being evaluated.

4.1.2 The effect of population size on the relative selectability of

mutation bias

An increase in the population size relative to the baseline competitions should decrease the

effects of genetic drift and increase the absolute number of genotypes evaluated, leading to

the discovery of more beneficial mutations. Further, increased population sizes also allow

for a finer distinction between genotypes with close fitness values. As mentioned above, if

NEG and UNB have different rates or distributions of beneficial mutations, but both are really

low, the difference would be indistinguishable at small population sizes. So, if competition

outcomes differ between differently-sized populations, it would provide evidence that inflow

rates or distributions of beneficial mutations differ between NEG and UNB populations.

The dashed-lines in Figure 4.3 shows POS and NEG competitions against UNB under un-

structured (mass action) conditions. The darker lines come from treatments with a pop-
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ulation size of 10,000; the lighter lines are simply the outcome of the experiments in the

previous section. Significant differences in outcome between 10,000 and 3600 population

sizes are shown by triangle markers (p < 0.05, 1-tailed Fisher’s Exact Test); crosses show

differences where population size had no significant difference on competition outcome.

Increasing the population size did not allow selection to distinguish NEG from UNB. For all

values of πt, NEG and UNB tied, making the results no different from the smaller population

baseline. These results again suggest that NEG and UNB biases are similar in competitive

ability.

The larger population sizes did allow POS to win more often for intermediate values of

πt (=0.20, 0.40, 0.60) relative to the baseline. For ranges of πt closer to either extreme, POS

organisms did not win significantly more often. The lack of improvement at small values of

πt suggests that the effects of drift were negligible on the experiments from the preceding

section. If drift were a significant factor in outcome, higher initial abundances in the larger

population size should allow for significant increase in success (Ωt).

The lack of significant differences for high values of πt under POS could be due to the

effects of saturation, especially with the large values of πt where Ωt exceeds 0.90 for both

population sizes when πt ≥ 0.80. These treatments had little room for improvement, so

significant differences were difficult to obtain. For example, for the POS treatment with

πt = 0.80 at a population size of 3600, Ωt was 0.925 (185/200 treatments). In order for

there to have been a significant improvement, Ωt would have to have reached 0.970 (194/200

treatments), so almost complete success of POS over UNB. Mid-range values of πt, which

competed POS against UNB on a more even footing (since neither POS or UNB had an advantage

due to initial abundance), showed significant difference as one would expect.
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Figure 4.3. Mutation bias competitions with different population sizes. Initial competition seed frequency (πt) is
plotted against the fraction of competitors that drove UNB competitors to extinction (Ωt). POS competitions are in yellow; NEG
are in red. Lighter colored lines competed in a population of size 3600 whereas darker colored lines competed in a population of
size 10, 000. Unstructured (mass action) and structured (local replacement) populations are distinguished by dashed and solid
lines, respectively. Competition results that significantly differ from chance (p < 0.05, 2-tailed Fisher’s Exact Test) between
population sizes for the same replication method are shown by a triangle; insignificant results are shown by a circle.
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4.1.3 Population structure is an important factor in the selection

of mutation biases.

In this section, I vary the placement of offspring to provide structure to populations. In

the baseline competitions above, offspring were placed randomly in the population creating

a structureless world. In the experiments below, I require offsprings to be placed in the

local neighborhood of cells around their parent. This change creates a structured population

as colonies can only expand at their edges. If bias requires mutations to interact, then

structured populations will give competing populations time to accumulate them.

If a rare or highly beneficial mutation arises in an offspring in a population without

structure, it will spread at an exponential rate. Consequently, it is difficult for multiple

deeply-divergent clades to co-exist for relatively long periods of time in unstructured pop-

ulations when sparse or uncommon highly-beneficial mutations predominate and sweep to

fixation at exponential rates. This lack of structure makes the genotypes in the population

relatively homogenous as the recent common ancestor of the population isn’t very distant

from extant genotypes.

Under local replacement offspring are placed in the cells adjacent to their parents, creating

a structured population. This type of population structure reduces the rate at which a

beneficial mutation sweeps the population as a sweeping clade can grow only at the boundary

between it and its peers. This change in replication method should allow for more mutations

to accumulate in each competing clade, creating the possibility for mutations to interact

more so than under random offspring placement. Consequently, if local placement improves

outcome, then the increase of success for POS over UNB or UNB over NEG might be the result

of an increase in epistasis between mutations. If there is no change, then it is possible that

there is simply a set of independent beneficial mutations that cause POS to win over UNB and

NEG to be selectively identical to POS.

Figure 4.4 compares the outcomes of competition in 3600-sized populations under both
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structured (dashed lines) and unstructured (solid lines) populations. I repeated each compe-

tition treatment 200 times and used the default nop-c ancestor under the same experimental

conditions as in the previous section. With the exception of the treatment where πt = 0.95

(due to saturation, both structured and unstructured treatments had Ωt = 1.0), structured

population significantly improved the competition outcome in favor of POS relative to UNB

(p < 0.05, 1-tailed Fisher’s Exact Test, Bonferroni corrected).

NEG treatments, on the other hand, performed significantly worse in structured rather

than unstructured populations relative to UNB. With the exception of the case where πt =

0.95, all other treatments show significantly lower Ωt (p < 0.05, 1-tailed Fisher’s Exact Test,

uncorrected) relative to their population-wide placement counterparts. NEG now performed

significantly worse than chance for the first time over all but the smallest initial abundance

assessed. Like POS, I believe it is likely that UNB also had a relative advantage to its NEG

competitor because of better increased ability to accumulate multiple mutations to create a

selectively-beneficial effect in a structured population.

These results suggest that population structure plays an important role in how selectable

a mutation bias is by virtue of allowing mutations to accumulate. Well-mixed populations

experience faster selective sweeps when a beneficial mutation arises; structured populations

slow the progress of the sweep. By allowing mutations to accumulate in a structured popula-

tion, the effects of mutation biases are more pronounced and, therefore, more distinguishable.

Relatively speaking, the effects of roughly tripling the population size from 3600 to 10,000

organisms has less of an influence on Ωt than changing the structure of the population. Figure

4.3 shows the difference in competitive outcome for all four replication method × population

size treatments for POS and NEG versus UNB competitions. Neighborhood replication improves

competitive outcome for POS by making it almost a certainty that POS will outcompete UNB

for initial abundances greater than 0.40. Switching to a larger population size improves

outcome significantly for treatments with lower values of πt (p � 0.05, 1-tailed Fisher’s

Exact Test, Bonferroni corrected). At the lowest initial abundance examined (πt = 0.05),
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Figure 4.4. Competitions with different population structure. Each line above shows
the outcome a series of competition experiments over initial abundance (πt) of mutation
biases with yellow, blue, and red coloring showing competition between POS, UNB, and NEG

biases against UNB, respectively. Experiments with outcomes significantly different between
structured (local replacement) and unstructured (mass action) populations (p < 0.05, 2-
tailed Fisher’s Exact Test) are shown by square markers; insignificant results are shown by
crosses.

there is improvement to be gained by increasing the population size when using a structured

populations but not when using unstructured populations. This difference suggests that

structured populations are capable of amplifying the effects of a particular mutation bias

even at low initial abundances, an effect not shown by simply increasing the population size

alone.
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4.2 Does adaptation influence the selection of a muta-

tion bias?

The length-50 nop-C-backbone ancestor genotype used to seed all of the previous experi-

ments allows for selection to distinguish between mutation biases, especially in structured

populations that use a local offspring placement policy. However, the default ancestor’s

nop-c backbone has a lot like a “blank tape” for mutations to accumulate upon without

significantly hurting fitness of the organism. Evolved genotypes, in contrast, may have their

fitnesses more affected by mutation than this unevolved genotype. Consequently, mutation

bias may not be as subject to selection with evolved genotypes as additional restraints such

as increased epistasis are present in evolved organisms relative to the default ancestor.

It is important that mutation biases be distinguishable in well-adapted genotypes. Nat-

ural systems are inherently well-adapted to their environment, so a mutation bias must be

selectable in combination with evolved genotypes for it to be evolutionarily meaningful in

nature.

In this section, I will compete 30 of the final dominant genotypes from experiments

in Section 3.2.1 with 10 from each of the mutation biases used in that experiment. The

genotypes selected all were from runs that obtained EQU along the PLoD. I examined whether

(1) mutation biases were still visible to selection if evolved ancestors were used to seed

competitions; (2) if there were any changes in outcome relative to competitions with the

ancestor genotype; and (3) if the mutational history of the evolved genotypes influenced

competition outcome.

4.2.1 Mutation bias is still selectable with an evolved genotype.

Figure 4.5 shows competitive outcome of a single evolved genotype taken from the end of one

of the replicates with an unbiased mutational background to the default ancestor baseline
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Figure 4.5. Unevolved and evolved genotype bias competition results. Colored lines show the results of competition
of POS, NEG (yellow and red, respectively) against UNB. Darker colored lines show competitions using a genotype evolved under
UNB. Lighter colored lines show results from competitions using the default ancestor. Solid lines show competitions that were
structured; dashed lines show competitions which were unstructured. Triangle markers show competitions where population
structure significantly altered outcome (p < 0.05, 2-tailed Fisher’s Exact Test); square markers show competitions where
population structure did not change outcome.
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competitions from Section 3.2.1. As with previous competitions, I competed POS, NEG, and

UNB subpopulations of this genotype against UNB over a range of initial abundances in both

structured (local replacement) and unstructured (mass action) populations.

In general, the POS significantly outperformed UNB in both structured and unstructured

populations, with the exception of the largest initial abundance of POS (πt = 0.95) in struc-

tured population. The unstructured treatments performed significantly better than chance

for all values of πt examined (p < 0.05, 2-tailed Binomial Test, Bonferroni corrected). How-

ever, outcomes from the structured “neighborhood” population are less clear. Only the

smallest initial abundances (πt < 0.60) were still significant (p < 0.05) after correction for

multiple comparisons.

NEG competitions against UNB were even more difficult to compare under both structured

and unstructured populations. Unstructured treatments were not significantly different from

chance at πt = 0.95 and 0.80 but either marginally or significantly different from a neutral

outcome at other values of πt. It is a similar case for NEG competitions in structured popula-

tions where outcomes were not different than chance for πt = 0.90, 0.80, 0.50, and 0.05 but

either marginally or significantly different from chance for other values of πt. Clearly, the

strength of selection against NEG-biased genotypes is at best marginal against UNB at small

initial abundances with this particular evolved genotype.

Comparing the evolved and unevolved genotypes, there was little difference in outcomes

in unstructured populations for both POS and NEG competitions against UNB. There were a

couple treatments that show marginal differences between evolved and unevolved genotypes

in the POS competitions (at πt = 0.60 and 0.40) and the NEG competitions (at πt = 0.60 and

0.20) but any significance disappears after a Bonferroni correction for multiple comparisons.

Perhaps the most striking difference between competitions between evolved and un-

evolved genotypes takes place in structured populations. Earlier, I showed that population

structure created a large difference in competitive outcome using the unevolved ancestor,

likely due to an increase in mutation interactions. With this evolved genotype, POS does
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not win significantly more often in structured or unstructured populations except at the

smallest initial subpopulation size (πt = 0.05). Similarly, NEG performed no differently in

structured versus unstructured populations, tying with UNB. This would seem to indicate

that a structured population (and resulting mutation accumulation) is not sufficient to allow

these two biases to significantly alter competitive outcome relative to unstructured popula-

tions, alluding to possible differences in the local landscape between evolved and unevolved

genotypes.

4.2.2 Mutation bias is selectable using additional evolved geno-

types.

To get a more general understanding of the difference between evolved and unevolved geno-

type competitions, I competed each of the 30 final dominant genotypes using the same

configuration as previous experiments. However, instead of assessing outcome over a range

of πt, I evenly split all experiments between the test bias and UNB. As before, experiments ran

until one bias drove the other to extinction. I performed all experiments in populations with

a capacity of 3600 organisms beginning fully seeded with the test genotype. I tested both

structured (local replacement) and unstructured (mass action) populations. I replicated each

competition 100 times.

Figure 4.6 shows the outcomes of these competitions relative to a neutral expectation

and the unevolved nop-c ancestor competitions. In general, the outcomes were similar to the

ancestor: POS outcompeted UNB significantly more often than chance in both structured and

unstructured populations. Of the 30 genotypes tested, 27 outcompeted UNB using POS more

often than chance (p < 0.05, 1-tailed Binomial Test, Bonferroni corrected) in both structured

and unstructured populations. However, the non-competitive genotypes were not the same

between the structured and unstructured competitions as only one evolved genotype was not

competitive under both conditions.

The pattern for NEG competition was not as clear. Of the 30 genotypes tested, 17 of them
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Figure 4.6. Competition results using evolved genotypes as compared to neutral outcome. 30 final dominant
genotypes were taken from experiments in Section 3.2.1, with 10 from each mutation bias background. Yellow, blue, and red
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significantly differed from chance outcomes in unstructured populations (p < 0.05, 2-tailed

Binomial Test, Bonferroni corrected). Of those that were not significant under a multiple

comparison correction, 8 were never significant and the other 5 were significant prior to the

correction, with 3 almost meeting the cutoff criteria. Outcome in structured populations was

similar but slightly improved: only 8 of the 30 genotypes did not outcompete UNB significantly

better than chance, with 2 being close to the cutoff criteria after correction.

One of the key differences between structured and unstructured populations when com-

peting nop-c genotypes using different biases was the improved outcome of structured pop-

ulations relative to unstructured ones. This difference is not present for all of the evolved

genotypes and is shown in Figure 4.7. Indeed, with the POS competitions, only 1 of the 30

evolved genotypes showed significant differences between structured and unstructured pop-

ulations, after correcting for multiple comparisons (p < 0.05, 2-tailed Fisher’s Exact Test,

Bonferroni corrected). Without this correction, a total of 5 of the 30 genotypes showed out-

comes statistically different between structured and unstructured populations. The strength

of the difference in outcomes between evolved and the unevolved genotype is quite telling.

The nop-c ancestor competitions improved significantly from 75% wins (151/200) to al-

most 100% (199/200) when structured populations were used. The single evolved genotype

significantly improved from 87% (87/100) to 99% (99/100). These results clearly indicate

that for POS competitions against UNB, population structure does not play as great of a

role in determining selective outcome using evolved genotypes as it does with the unevolved

genotype.

Comparing NEG competitions against UNB in both structured and unstructured popula-

tions results in a similar difference. None of the 30 genotype competitions are significantly

different between structured and unstructured populations after Bonferroni correction. Com-

pared to the nop-C unevolved ancestor, which showed a 67% (108 to 80/200) reduction in

the ability of NEG to compete against UNB, the worst loss for evolved genotypes was only 9%

(11 to 9/100).
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Overall, the difference in outcomes between evolved and unevolved genotypes with re-

spect to population structure may explain why a particular bias outcompetes another. If

mutation accumulation is important, then one would expect a difference between structured

and unstructured populations. Evolved genotypes simply do not have the “blank tape” to

accumulate mutations that the nop-c ancestor possesses. Epistasis between sites and adap-

tations might simply disrupt the process of mutation accumulation necessary for a bias to

get a boost from slower sweep times.

4.3 Why are mutation biases selected?

It may be taken for granted that the potential benefit of a mutation bias is the product of

an increased probability or larger selective effect for beneficial mutations. However, mod-

ulation of beneficial mutations are not the only route for a mutation bias to be selectively

advantageous.

For a mutation bias to be positively selected, it must (relative to a competitor) lower the

lethal and deleterious loads by increasing either the probability that a mutation is neutral or

beneficial or by decreasing the negative effect of deleterious mutations. This reduction allows

for the possibility that an increase in the probability of neutral mutations is sufficient to allow

for selection of mutation bias. In this section, I examine whether or not mutation bias can

be selected in environments where positive mutations are disallowed. If mutation bias can

still be selected, then beneficial mutations are not the only route by which a mutation bias

can come to dominate a population.

Avida allows the researcher to “turn-off” beneficial mutations by examining the behavior

of a mutant and sterilizing any offspring that shows improvement over its parent. This has a

practical effect of increasing the lethal load experienced by a population, as offspring would

be unable to replicate if they have beneficial mutations. In order for such populations to

thrive, the number of beneficial mutations accessible to the population must be driven down
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Figure 4.7. Competition results of evolved genotypes under different population structures. Each plot shows the
outcomes of competitions for a genotypes evolved in a particular mutation bias. The color of the markers in each plot identify
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relative to neutral and deleterious mutations.

Evolved genotypes should have relatively few beneficial mutations compared to the un-

evolved ancestor. They also are more representative of the behavior of extant, well-adapted

natural systems. As these genotypes are the product of hundreds of generations of evolution,

they are well-adapted to the environment. Consequently, converting beneficial mutations ac-

cessible to these evolved genotypes into effectively lethal changes did not hurt the population

too much. This allowed me to see if mutation biases can be selected based exclusively upon

their effect on a change in neutral and deleterious mutational loads.

The use of evolved genotypes also allowed for another avenue of questioning. Genotypes

that evolved under a particular mutation bias might be adapted to that bias in addition to

their environment. If this dynamic is occurring, then genotypes competing with their native

bias should perform better than genotypes competing with a non-native bias.

4.3.1 Mutation bias can be selected in the absence of beneficial

mutation.

As before, I competed the 30 evolved genotypes from Section 3.2.1 in one of the three mu-

tation biases against UNB at an initial frequency of πt = 0.50. I performed each competition

with beneficial mutations on and off, with 250 replicates for each treatment. Figure 4.3.1

shows the results of these competitions with respect to a neutral outcome and compares the

difference between treatments where beneficials are or are not allowed for the same genotype.

In the absence of beneficial mutations, only one genotype was not able to compete against

UNB under a POS bias in a manner significantly different than chance (p < 0.05, 2-tailed Bino-

mial Test, Bonferroni corrected); only seven genotypes, all evolved in the NEG bias, competed

as well as chance when competing in the NEG versus UNB competition. This result compares

quite favorably with a repeat of competitions with beneficial mutations where one genotype

of the 30 evolved genotypes did not perform differently from chance in POS competitions

and seven genotypes performed about as well as chance competing in NEG. These results
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Each plot distinguishes competitions for genotypes evolved in a particular mutation bias background. The color of the markers
indicate the bias competed against UNB: yellow, POS; blue, UNB; red, NEG. Horizontal axes give the frequency of successful
competitions against UNB in environments with beneficial mutations present; vertical axes show results from environments
where beneficial mutants are sterilized. Points falling within the vertical and horizontal bars about the middle of the plot
are not significantly different than a chance outcome for competitions with beneficial and no beneficial mutations, respectively
(p < 0.05, 2-tailed Binomial Test, N=100). Diamond markers indicate where there is a significant difference between outcomes
when beneficial mutations are or are not present for a single genotype (p < 0.05, 2-tailed Fisher’s Exact Test, uncorrected.).
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strongly indicate that there is not much difference in the number of genotypes that perform

differently than chance when beneficial mutations are disallowed in evolved genotype com-

petitions. Therefore selection can distinguish mutation biases without beneficial mutations.

There is some suggestion that the lack of beneficial mutations does not disrupt selection

from distinguishing between biases when comparing individual genotypes between treat-

ments where beneficial mutations are either allowed or sterilized. In POS competitions, 14 of

the 30 genotypes showed significant differences in outcomes between competitions with and

without beneficial mutations (p < 0.05, 2-tailed Fisher’s Exact Test, Bonferroni corrected).

Of those 14, 6 showed significantly improved outcomes when beneficial mutations are steril-

ized (p < 0.05, 1-tailed Fisher’s Exact Test, Bonferroni corrected). NEG competitions fared

similarly. 11 of the 30 genotypes showed differences between competitions with and without

beneficial mutations, and 8 of those 11 showed significantly improved outcomes when bene-

ficial mutations are sterilized (p < 0.05, 1-tailed Fisher’s Exact Test, Bonferroni corrected),

especially in genotypes evolved in the NEG bias, which account for 5 of those 8.

The results above not only indicate that selection is able to distinguish between mutation

bias in competitions of evolved genotypes in the majority of cases, but also that competition

outcomes can be improved if beneficial mutations are not present. There are two possible

reasons this might be the case: there could be an increase in the availability of neutral

mutations or the effects and abundance of deleterious mutations could be lower. In any case,

this shows that it is not necessary for mutation biases to hitchhike on beneficial mutations

to allow selection to choose between them.

4.3.2 Mutation bias selection can be historically-contingent.

Although one mutation bias might be selected over another due to a change in the prevalence

and distribution of fitness effect for deleterious mutations, a change in the probability of

neutral mutations might be sufficient, especially given the implementation of mutations in

Avida. As mentioned previously, the declared and true mutation rate in Avida are distinct.
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During a mutation event, it is possible for a site to be substituted with the instruction

presently at that site. Consequently, high frequency instructions in the genome that have a

high probability of being mutated to would cause the rate of synonymous substitutions to

increase, lowering the effective mutation rate.

One way to observe this behavior is to see whether or not genotypes evolved in and

competed with the same mutation bias outperform peers that were evolved under another

bias in an environment absent of beneficial mutations. Figure 4.9 shows the distribution of

outcomes for competitions, separating out genotypes that evolved under the same conditions

as the competition bias from those that did not. When beneficial mutations are not present,

there is a significant difference in the distribution of outcomes between native and non-native

competitors for both POS (p < 0.001, 1-tailed Mann-Whitney U-Test) or NEG competitions

(p < 0.001). Competitions with beneficial mutations available did not show any significant

difference in outcomes of POS competitions (p = 0.052) and NEG competitions (p = 0.223)

between native and non-native genotypes.

These results suggest that genotypes that evolved in a particular mutation bias compete

better in that bias when beneficial mutations are not available. Competition results are

almost indistinguishable when beneficial mutations are available. Additionally, these results

suggest that a neutrality (in the form of a lower effective mutation rate) may play an impor-

tant role in mutation bias selection when beneficial mutations are not present, as genotypes

that are closer to the bias they compete within may perform better.

One way to examine whether or not neutrality via synonymous substitution is a factor

in determining outcome is to compare the KL distance of evolved genotypes against the bias

they compete in. If the case that genomes are closer in identity to the bias they compete in

influences outcome, there should be a correlation between KL distance and outcome. Figure

4.10 compares outcomes to KL distance (defined in Equation 3.2).

Only NEG competitions in an environment absent of beneficial mutations show a correla-

tion that would support the hypothesis that genotypes closer in identity to their competition
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bias outperform those that do not. In this case, there is a significant negative correla-

tion (r = −0.789, p < 0.001) between KL distance and competition outcome. A similar,

though weaker trend is present when beneficial mutations are present in POS competitions

(r = −0.511, p = −0.004), but the presence of beneficial mutations does not test neutrality

alone. There are no significant correlations between outcomes and KL-distance for exper-

iments where beneficial mutations are not present and POS is being competed against UNB

(r = −0.199, p = 0.291) or where beneficial mutations are present and NEG is being competed

against UNB (r = 0.163, p = 0.390).

The results above show that genotypes competing in a NEG environment have a strong

correlation with how close the genotypes are to the bias with which they are competing. For

all other cases, there is either no correlation or the effects of beneficial mutations cannot

be ruled out. One possible explanation for the strong signal with NEG competitions and

correlation is how divergent NEG is from the selective pressure of the Logic-9 environment.

Genotypes have a tendency to be closer in identity to POS than NEG (compare the range of

KL-values in Figure 4.10). It may just be the case that the closeness of all genotypes to POS

makes it impossible for selection to distinguish among small differences between genotype

composition, meaning that all genotypes from all backgrounds are virtually identical with

regard to the effects of synonymous mutation.

4.4 Summary

In this section, I examined whether or not mutation biases are visible to selection. I began

by testing if selection can distinguish between mutation biases when competed against one

another using the default nop-C ancestor and a variety of initial configurations. Of the two

non-uniform biases introduced in the previous chapter, POS and NEG, POS is almost always

selectively distinguishable from UNB. The structure of the population, whether there is local or

global placement of offspring, plays an important role in altering outcome. Local replacement
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allows for a stronger distinction of both POS and NEG relative to UNB. This difference is likely

due to an increase in the interaction of mutations made possible by slowing selective sweeps.

Population size also plays a role in the strength of distinguishing between biases; however,

it is not as strong as population structure for the values tested.

Because the unevolved ancestor had a lot of room for mutations to accumulate, it is

possible that the distinction of mutation biases is only an artifact of its lack of adaptation.

I examined whether or not genotypes evolved under the three different mutation biases (10

from each) could also have selection distinguish mutation biases. I found that mutation

biases can be distinguished by selection using evolved genotypes, but that the difference

that population structure makes is not consistent, suggesting that mutation interaction is

not as important with evolved genotypes as the unevolved ancestor.

In order to examine whether a decrease in deleterious mutations absent of beneficial

mutations is sufficient for one mutation bias to be selected over another, I repeated the

competition experiments using the 30 evolved genotypes. I found that there is virtually

no difference in the number of genotypes that compete differently from random chance in

experiments with and without beneficial mutations. Further, I found that there were some

genotypes that competed better in competitions without beneficial mutations than with

them.

This strange outcome led me to examine whether or not there is a correlation in outcome

of competition and the mutation bias in which the genotype evolved. If such a correlation

existed, it would explain why some genotypes performed better in competitions without

beneficial mutations and indicate that there is a historically-contingent effect of mutation

bias. I found that genotypes compete better when they use their native bias than when they

do not. I also found that, at least for the NEG bias, there is a correlation between genotype

composition and competition bias when beneficial mutations are not present. This obser-

vation implicates an increase in synonymous mutation as the cause of successful outcomes

in NEG competitions. No such significant correlation was observed with POS competitions
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without beneficial mutations. One reason this may be the case is that genotypes tend to be

more similar to POS than to NEG making small differences in composition have no effect on

outcome.

Although selection can distinguish between mutation biases, especially when the biases

are seeded at a relatively high abundance in the population, it is not certain that they can

evolve. In the next chapter, I will examine whether or not a mutation bias can mutate into

a population and be selected.
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CHAPTER 5

Evolving Mutation Bias

In this chapter, I explore whether mutation biases can evolve. Previous chapters have shown

that mutation bias can alter the outcome of competition and be a selectable trait. This

chapter examines whether populations can evolve a mutation bias if isolated subpopulations

and individuals are given the ability to mutate between biases.

This chapter is split into four parts: a discussion of difficulties and experimental mod-

ifications needed to investigate the evolution of mutation biases (Section 5.1); an overview

of evolving mutation bias in segregated subpopulations called “demes” (Section 5.2); a dis-

cussion of experiments to evolve mutation biases without demes (Section 5.3); and finally

a presentation of biased genetic landscapes, which helps to answer why one bias is selected

over another (Section 5.4).

5.1 How to represent a mutation bias

I say that a mutation bias evolved if populations can maintain that bias at a frequency

significantly greater than chance. In order for mutation bias to evolve it must be heritable,

selectable, and subject to variation through mutation. In the previous chapters I have

provided the first two requirements to organisms with regard to mutation bias but not the

third.

For mutation biases to vary, there must be some genetic construct that maps its state

to a set of mutation probabilities. This exercise is an instance of trying to solve the “repre-

sentation problem”, which is at the heart of evolutionary problem solving. Ideally, a good

70



representation for a mutation bias (or any phenotypic trait) would allow for smooth pheno-

typic transitions, allow genomes to sample genotype space over the course of evolution, and

allow selection to find the optimal phenotype. Before I can proceed with testing whether or

not a mutation bias can evolve, I must first come up with some way to represent the mutation

bias that adequately meets the preceding criteria and would also yield a clear signal that

genotypes in a particular environment preferentially evolve one mutation bias over another.

The simplest way to get a clear indication that selection prefers individuals to have one

bias over another is to reduce the number of possible states that the representation of a

mutation bias can have. This is not an easy task. Consider a representation that allows each

of the 26-instructions to take one of two values: low and high. For the sake of argument,

let an instruction labeled as low have an inflow 10-fold higher than low. This representation

allows for just over 76 million possibilities. For any given experiment, a population would be

able to examine only the smallest fraction of this space. This is no different from any other

evolutionary-problem solving effort: optimality is not guaranteed because a small fraction of

the overall genotype space is ever examined by the population. However, the exercise here

is not to find the optimal bias but to see whether or not individuals can evolve a bias with

particular properties that are selectively advantageous.

It turns out that obtaining a signal in this example is difficult. In one attempt (data not

shown), I found that the final mutation biases from populations evolved with just such a

two state-setup for each instruction were entropically indistinguishable from random noise.

In other words, there was no signal at all resulting from evolving a mutation bias in this

manner. There are at least a few reasons why this setup didn’t work. First, there was

no possible selective advantage using the setup for the bias. I find this unlikely. Second,

selection couldn’t find a beneficial bias because of the averaging effect of the 26 different

parameters. If instructions are split evenly between high and low probabilities, then the

relative difference between probabilities is decreased. This averaging effect might make it

difficult for selection to single out a set of instructions to be highly represented. Finally, the
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rate of change for the mutation bias might have been too high.

To simplify matters, I chose to limit the set of possible biases to three or six different

options. If the majority of individuals across populations used of one or a set of these biases

significantly more frequently than the others, then I said the populations have evolved their

mutation bias.

A “mutational spectrum” describes which mutation biases are available to an organism.

In this chapter, mutational spectra come in two varieties: a three-bias spectrum and a

six-bias spectrum. The three bias spectrum is comprised of the three biases used in the

preceding chapters: POS, UNB, and NEG. The six-bias spectrum is derived from these three

biases. I created the three additional biases by expanding the relative abundance of each

instruction in POS or NEG relative UNB by a particular factor. For example, 2×POS has the

relative difference between each instruction in POS increased by a factor of 2 relative to UNB;

1
2×POS has half the difference in abundance between POS and UNB; and 1

2×NEG has half the

difference between NEG and UNB. The six-bias spectrum transitions from NEG through 2×POS

smoothly and is shown in Figure 5.1.

Changes to mutation biases may be applied either in a structured or unstructured man-

ner. When structured, mutation bias can only change to the two nearest biases in their

spectrum. Biases at the extremes of either spectrum are able to mutate directly to each

other. Unstructured changes allow any mutation bias to mutate to any other in one step.

5.2 Mutation biases can evolve using demes.

My chief concern before starting this project was whether or not rare mutation biases would

be lost by drift before their effects could be adequately evaluated by selection. In the

competitions in Chapter 4, the rarest initial abundance of a mutation bias was 5%: 180

out of 3600 individuals. At this size, there was little effect of drift on competition outcome

(there was no major difference when increasing population size) and only a slight advantage
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Figure 5.1. The six-bias mutation spectrum. All biases are derived by modifying the
relative distance between instructions in POS or NEG relative to UNB by a particular factor,
identified in the legend.

for POS winning more often than chance against UNB. It is not clear from these results that

rare mutation biases would have much of a chance to thrive, especially since mutation bias

does not confer an immediate fitness advantage.

To determine if selection can identify a mutation bias as being advantageous relative to

another when allowed to change, I explored the evolution of mutation biases using demes

rather than individuals as the carrier of mutation bias.

5.2.1 What are demes?

Demes are segregated subpopulations that co-exist but do not interact unless action is taken

by the experimenter. For the experiments in this chapter, there was no migration of indi-

viduals between demes.
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One of the uses of demes is to examine group selection. Demes can be made to compete

against one another based on how well the individuals in each deme perform a particular

group-level behavior. For this set of experiments which demes survive and replicate were

based on the average fitness of each deme at the end of a round of competition. At that

time, demes underwent tournament selection where each deme was seeded using the deme

with the highest average fitness compared to three other demes chosen at random from the

population. The only information transmitted between competition rounds were the demes’

mutation bias. Each round began anew with all demes being fully-seeded with the default

ancestor.

One of the initial difficulties with setting up deme experiments was deciding on a set of

deme parameters. The number of demes, the size of each deme, and the length of competition

were all additional considerations not present in an Avida experiment without demes. In

order to quickly assay the outcome over a set of deme parameters, I collected average final

population fitnesses over a range of population sizes. By examining variation in final average

population fitness among experiments of different population sizes and different mutation

biases, I found which experimental conditions were likely to allow for mutation biases to

evolve in demes competitions.

Figure 5.2 summarizes the results of a set of calibration experiments I used to determine

the size of each deme and the length of each round of competition. Populations of 200, 400,

800, and 1600 evolved for a total of 16,000 updates (the entire time range is not shown)

under the same conditions demes would experience during each round of competition. Each

population evolved using one of the three mutation biases in the three-bias spectrum. By

examining when the average population fitness values differed between bias treatments for

a particular population size, I could find when deme competitions would be likely to show

competitive differences.

As a result of these calibration experiments, I selected a deme size of 400 with a total

of 50 demes in each experiment. I held tournament selection between demes every 2000
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tween each bias-treatment using a 1-tailed U-Test is shown along the vertical axis for each
population size (N). Comparisons between POS and NEG treatments are not shown.

updates, a time identified by the calibration experiments to be where there was a significant

difference between populations under the three biases. (Although assessed, Figure 5.2 does

not show the significance of fitnesses between POS and NEG over time.)

5.2.2 Mutation bias can evolve with demes.

Mutation bias was able to evolve in demes under a variety of initial conditions, mutation

methods, and with different mutational spectrums.

Figure 5.3 shows the average frequency demes possess each bias in thee three-bias spec-

trum. Experiments began with either all demes being assigned to be UNB or were given a

random mutation bias. Each of the two setups was repeated 30 times and with each bias
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Figure 5.3. Deme competitions beginning with different initial conditions. The
figures above show the average frequency of each bias in the three-bias mutational spectrum
in 30 deme competition experiments over time. Treatment minimum and maximum are
shown with dotted lines about the mean. Each experiment used 50 demes of 400 organisms
with tournament selection every 2000 updates.

having an inflow rate of one for each round of competition to prevent competitive exclusion.

When experiments began with demes being randomly assigned one of the three biases, POS

demes consistently came to dominate experiments within five rounds of competition, with

UNB and NEG populations quickly being driven to their minimum allowed frequency. When

experiments began with all demes being UNB, it took a little more time for selection to choose

POS, but by around 10 competitions into the experiment UNB, demes were driven out of the

population. NEG never made a noticeable advancement its frequency.

Using the six-bias spectrum, deme competition revealed that 2×POS dominated experi-

ments but POS was not excluded from the populations. Figure 5.4 shows how the distribution

of demes with particular mutation bias changed over the course of competition using struc-
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tured and unstructured mutations. Each of these two treatments had bias change at a rate

of 0.05 per deme, per competition and no guarantee that all biases would be present for each

round of competition.

Deme competition experiments that used structured mutation biases forced demes to

transition from UNB to 2×POS via 1
2×POS and POS. Approximately 5 rounds of tournament

selection into the experiment, UNB had, on average, the same frequency as 1
2×POS. A few

rounds later, 1
2×POS had reached its all time maximum average abundance in experiments;

from then on, it lost ground to POS and, eventually 2×POS. Interestingly, 2×POS is not shown

by these competition experiments to competitively exclude POS. Since POS is a bias created

by successful mutations, I expected 2×POS to only exaggerate the effect. However, by the

end of the experiments, POS had an average frequency of about 0.80 in experiments; 2×POS

occupied an average a little less than 0.20. This would seem to indicate that, although POS

is an overall better bias in these competitions, there is a small but reasonable chance that

2×POS will outperform POS.

Allowing demes to mutate between biases in the six-bias spectrum directly, a couple of

distinct periods are noticeable. While the average presence of UNB in experiments was driven

down, 1
2×POS, POS, and 2×POS are all increasing in abundance at about the same rate.

Approximately 5 rounds of competition into the experiments, the rate of 1
2×POS increase

slowed relative to the other two POS-based biases. It began to decline as POS and 2×POS

increased their average abundance. Just after 5 rounds of competition, POS increased at a

rate faster than 2×POS eventually having an average of 0.70 frequency. 2×POS reached an

average frequency of 0.40 and declined to about 0.20 as POS continued to increase its presence

in experiments.

The transition point at 5 rounds of competition is interesting since it shows that mutation

biases of different effect can all increase simultaneously by competing against less successful

biases; it was only when they reached a particularly high presence in the populations that

they began to frequently compete against each other in tournament selection. These results
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suggest that a variety of relatively-beneficial mutation biases can co-exist, provided there is

a competitor competitively-worse than them.

5.3 Mutation biases can evolve without demes.

The success of the POS mutation bias in deme competitions shows the potential for a mutation

bias to evolve; however, the outcome was expected due to the initial parameter assays. To

truly test whether or not populations can evolve one of the mutation biases, I allowed

individuals in a single population to evolve their mutation bias.
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Figure 5.5 shows the results of allowing 300 replicate populations to evolve a mutation

bias over 105 updates using the six-bias mutational spectrum. All populations began, fully

seeded with the default nop-C ancestor and had the UNB bias. Mutation biases changed at

a rate of 10−3 per generation. Biases were freely allowed to mutate over the entire six-bias

spectrum. Other configuration settings were identical to those used in the majority of this

work and listed in Appendix B.1.

Very quickly, populations had a strong preference for evolving to use 2×POS. By 3100

updates into the experiments, UNB lost its dominant state among all replicates, being replaced

by 2×POS. By that time, there was also an increase at a smaller rate for both 1
2×POS and POS.

By the end of the experiment, 2×POS was the dominant mutation bias in 83% of populations.

POS was the next most abundant dominant bias, dominating in less than 10% of populations.

The major difference in outcome between this experiment and the deme experiments

above is the identity of the victor. In the deme experiments, POS strongly dominated exper-

iment outcome. Here, 2×POS is clearly the dominant form in the vast majority of replicates.

To see if there was any difference in evolutionary outcome using 2×POS relative to POS

and UNB I repeated the experiment in Section 3.2.1 using 2×POS as the only bias the replicate

populations were able to use. The distribution of final average fitnesses are shown in Figure

5.6. I found no significant difference (p = 0.075, 2-tailed Mann-Whitney U-Test) in the final

fitness between 2×POS and UNB; and a significant difference between POS and 2×POS.

Combined with the previous experiment, these results indicate that evolution can evolve

a mutation bias; however, the evolve mutation bias might not be optimal for long-term

success.

5.4 Why are mutation biases selected?

In the previous chapter, I showed that mutation biases can be selected even without the

presence of beneficial mutations. I speculated that an overall reduction in the deleterious
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Figure 5.5. The evolution of a mutation bias in a population without demes. The
number of replicates refers to the number of the 300 replicates where one mutation bias is
expressed more than by half of the population. All populations began with organisms all
having the UNB bias.

mutational load, which encompasses both an increase in neutral and beneficial mutations

might be the cause of one bias outcompeting another. In this section, I expand upon my

previous work by examining the local fitness landscapes of random viable genotypes over the

course of a typical Avida experiment in this work.

From each of 100 replicate populations under conditions identical to the UNB treatment

in Section 3.2.1, I chose a random viable genotype every 5000 updates. For each genotype,

I then collected fitness information about its 1-substitution away neighbors. To get the

1-substitution neighbors, I mutated every site in the sample genome to each of the 25 in-

structions. I assigned a fitness to each mutant using the average fitness from 10 trials to

account for phenotypic stochasticity. By comparing the relative fitness of each mutant to

its original, I was able to find the probability that a substitution would be either beneficial,
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Figure 5.6. Average fitness distribution in single bias experiments. The 2×POS
and UNB treatments had statistically identical final population average fitnesses (p = 0.075,
2-tailed Mann-Whitney U-Test)

neutral, deleterious, or lethal. To account for finite population size effects, I assigned geno-

types with a relative fitness of (1.0 ± 3600−1) to be neutral. To test for differences in the

landscape due to mutation bias, I created fitness vectors where the relative abundance of

each mutant was derived from its probability of arising under POS, UNB, and NEG biases.

Figure 5.7 shows how the average distribution of beneficial, neutral, deleterious, and

lethal mutations vary in the local landscape of the random viable genotypes from 100 repli-

cate populations under three mutation biases when synonymous mutations are allowed. In

general, POS shows relatively higher probability of achieving a neutral mutation relative to

the two other biases, and a correspondingly lower average probability of deleterious and

lethal mutations.

In order to see if there is any quantitative difference between POS and UNB fitnesses, I
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Figure 5.7. Average distribution of mutation effects around random viable geno-
types. Each line in the graph above shows the average probability of a type of mutation
around random viable genotypes from 100 replicates sampled every 5000 updates. The type
of mutation is identified in the legend. Colored lines show the differences in distribution of
mutation effect under POS (yellow), UNB (blue) and NEG (red).

compared the distribution of fitness vectors under each bias, both allowing and excluding

the possibility of synonymous mutations for each sample landscape. Not accounting for

multiple comparison corrections, only a couple samples had significantly different fitness

vectors between POS and UNB (p < 0.05, 1-tailed U-Test) when synonymous substitutions

were not included in the fitness vectors. Such results were not indicative of anything short

of identical fitnesses of local neighbors regardless which of the two biases are used. Allowing

vectors with synonymous substitution, there were many more instances where POS-biased

fitness vectors have a significantly higher range of fitness values than UNB-biased counterparts;

however, significance vanishes after correcting for multiple comparisons. For each of the

20 sample time points, at least one and as many as eight of the 100 replicates have POS-

82



fitness vectors with distributions shifted significantly to the right of UNB-fitnesses (p < 0.05,

uncorrected 1-tailed U-Test). However, in both cases there was no significant indication of

major differences between the distribution of 1-mutant fitnesses when correcting for multiple

comparisons sans a single comparison made with synonymous mutations allowed at a one

time point.

There is only a small and very weak difference in the local fitness landscapes of random

viable genotypes between POS and UNB biases. How can evolution pick between biases with

such a small local fitness?

One possibility for the small differences in local landscapes is that they could be the

result of the sampling procedure. Since most mutations are at least deleterious (as shown

in Figure 5.7), any random sample in the population is likely to not be the most fit. At any

given time, all things being equal, any organism has only a N−1 (N being population size)

chance of its offspring outcompeting all other organisms. This value decreases when fitness

differences are taken into consideration. So, the samples taken from this set of experiments

could just be from those common genotypes with lineages that preferentially become extinct

over time.

Indeed, only organisms along the PLoD up to the most recent common ancestor at the end

of an experiment were truly successful. Perhaps a rare event, such as a favorable local fitness

landscape, a positive epistatic pairing, or a more fit competitor being randomly replaced

in the population allows for success. In those cases, small, but constant trait-based biases

might be amplified to the point where selection can distinguish them. Since mutation bias

consistently decreases deleterious loads, its long-term influence might be great.

Perhaps a more interesting experiment would be to compare the frequency of significant

differences of fitness distributions along the PLoD under different mutation biases relative to

those of random samples. Even if there are slightly more differences that survive the scrutiny

of strict statistical testing, there would be evidence to strengthen the argument that small,

chance increases in beneficial outcome are the driving force for the evolution of mutation
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biases as well as singling out those organisms whose offspring will have a disproportionate

chance to dominate.

Another possible reason why biases might be selected despite their statistically-identical

local fitness landscapes is that the aggregate behavior of a bias might be a driving force for

selectability over time. In other words, biases might not need to have a large local effect to be

selectable; a small but consistent advantage might be sufficient for a bias to be preferentially

selected.

5.5 Summary

In this chapter, I examined the ability for a mutation bias to evolve. With consideration

of the large possibility state for mutation biases, I chose to use small three and six-bias

mutational spectrums. I allowed both demes and individuals to evolve to use either the

three or six biases. At the end of deme experiments, regardless of whether mutation was

structured or unstructured, demes evolved to use POS preferentially over the other biases.

When individuals were allowed to evolve a mutation bias, 2×POS rose to dominance in the

in six-bias treatments, despite the fact it does not significantly improve adaptation relative

to UNB in the long-term.

Looking for why one bias might be chosen over another, I sampled random viable geno-

types periodically over the course of 100 replicate experiments. I then found the local fitness

landscape around these genotypes and classified mutants as being either beneficial, neutral,

deleterious or lethal relative to the sample. I also assigned fitnesses to each mutant. Al-

though there appeared to be small qualitative differences between the landscapes biased by

POS and UNB I found little statistical difference between the distribution of relative fitnesses

under different biases for these landscaped samples. This lack of difference led me to consider

the possibility that rare increases in the supply of non-deleterious mutations or small but

consistent benefits might be the cause for a mutation bias to be selected.
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CHAPTER 6

Discussion and Further Avenues to

Explore

In the preceding chapters, I have shown that mutation bias can significantly change the

outcome of evolution; can be visible to selection; and can evolve in a limited trait-space. One

element, why a particular bias is chosen by evolution over another, I have only speculated

about. I now discuss four possible ways to extend this work.

6.1 The role of synonymous mutations

One possible reason for the selection of a mutation bias such as POS may be the small increase

in robustness caused by synonymous mutations during substitution events. The POS bias

increases the probability of synonymous mutations relative to the UNB biased based on my

findings in Chapter 3 that the POS bias more closely matches the composition of genomes

than the UNB bias does. My findings in Chapter 5 provide some evidence that synonymous

mutations may be a reason why the POS bias allows organisms to produce better offspring

than the UNB bias. Synonymous mutation also may explain my Chapter 4 findings where I

show that the POS bias can outcompete the UNB bias even when beneficial mutations are not

allowed.

In future work, I plan to determine more precisely the role of synonymous mutations

in the selection of mutation bias. I plan to do this by making synonymous mutations a

researcher-controlled option that can be turned off. If a researcher does not allow synonymous
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mutations, the system will force a site to change to a new instruction when the site is

selected for a substitution mutation. This implies the researcher-specified mutation rate will

be identical to the effective mutation rate, something that is not quite true in the current

implementation of Avida.

I plan to use this feature as follows. First, I will conduct more competition experiments

from Chapter 4 where I disallow synonymous mutations and where I disallow both synony-

mous and beneficial mutations. With the first experiment, I can test whether beneficial

mutations and other non-synonymous neutral mutations are sufficient to allow one bias such

as POS to outcompete another bias such as UNB. With the second experiment, I can test

whether non-synonymous neutral mutations are sufficient to allow one mutation bias such

as POS to outcompete another mutation bias such as UNB.

6.2 The role of the environment

I performed all of the experiments in this work using a common set of experimental condi-

tions and some variant of the Logic-9 reward structure. The Logic-9 reward structure is

well-studied, making it an excellent test case; however, it is not known if these results are

generalizable to other reward structures or environments.

In future work, I plan to repeat the preceding experiments using the path finding en-

vironment from Avida, where an organism is rewarded for its ability to follow a trail of

resources. The path finding reward structure is fundamentally different than the Logic-9

reward structure in three ways. First, the critical instructions needed for performing a path

finding behavior, which include sensing markers, turning, and moving, are significantly dif-

ferent than the instructions used to perform a logic operation such as NAND or IO. Second,

because the rewarded behaviors are significantly different, the evolution of good solutions

may be quite different in the path finding reward structure than the Logic-9 reward struc-

ture. One piece of evidence that supports this difference is that only 6% of path finding
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replicates typically evolve to high fitness where as 35% of Logic-9 replicates typically evolve

high fitness populations.

6.3 The role of mutation bias in warping fitness land-

scapes

I’ve only examined the effect of mutation bias on the neighbors closest to viable genotypes

selected at random. I found that there is no significant difference in the distribution of

fitnesses of these mutants when weighted by biases, but an overall small qualitative difference

in the distribution of beneficial, neutral, and deleterious mutations. Even with these small

changes mutation bias may warp the fitness landscape to allow different adaptations to

emerge.

One way to test if biases produce different adaptations is to examine organisms evolved.

Looking at which instructions are used to implement adaptations might provide information

about the structure of the adaptation. If different biases produce differently structured

adaptations, then there is evidence that warping the fitness landscape using a bias leads to

different regions of the fitness landscape. Such an understanding is important because it

provides an additional means of varying selective search by pitting selection and mutation

against one another as drivers of evolution.

6.4 Allowing the evolution of arbitrary mutation biases

In this work, I created a small number of “complete” mutation biases that I let organisms

use. Some reasons for this were practical: I wanted to have clear signals when selection

chose a mutation bias, and I wanted to have a well defined set of states to analyze. However,

these biases only explore a fraction of possible biases and were created from knowledge about

evolution in the Logic-9 reward structure. Allowing mutation biases to evolve with fewer
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constraints would strengthen this work. Further, additional parameters such as mutation

rate could be varied to see if they affect the evolution of mutation bias.

One attempt to evolve mutation bias with additional degrees of freedom is shown in

Figure 6.1. Replicates in these experiments were allowed to use any of 27 mutation biases:

one of the biases was UNB; the other 26 increased the probability of mutating to a single

instruction by a factor of ten.

I repeated each experiment 300 times over four different scalings of the default substitu-

tion rate to see if there were any changes in bias evolution. In general, h-copy was greatly

preferred by populations, with the uniform bias’s dominance decaying quickly, losing its top

standing across all replicates by about 20× 103 updates in all but the lowest mutation rate

treatment. Under the mutation rate used in the majority of this work, a high h-copy bias

came to dominance in 234 of the 300 replicates (78%). At both ends of the mutation rate

assay, the preference for high h-copy weakened. At a substitution rate of 10−3 of normal,

h-copy was in the majority of only 39 replicates. At a ten-fold higher substitution rate than

usual, h-copy was only dominant in only 36 of 300 populations. IO had the most replicates

evolving it at the end of that treatment with 46 replicates predominantly using it.

It would make sense that the mutation bias would be influenced by mutation rate. It

is known that mutation rates higher than usual allow populations to better adapted to

the Logic-9 reward structure [5]. I expect populations might be able to leverage a task-

producing instruction such as IO to a greater degree at these high mutation rates for either

purposes of robustness due to a greater need for synonymous mutation or task-production.

Finally, having biases evolve to a greater degree on their own might provide additional

information about environments, leading to the possibility of greater self-adaption of genomes

to the environment.
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Figure 6.1. The evolution of mutation biases over different mutation rates. Each plot shows the number of replicates
(out of 300) where a single mutation bias dominates in the population. 27 biases were allowed: UNB and a bias where a single
instruction had an inflow rate 10 higher than the others. The legend shows the biases that a relatively high number of replicates
preferred. The title for each plot shows the scaling of the rate of substitution from the default in Appendix B.1. Insertion and
deletions were not scaled.
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APPENDIX A

Avida Virtual CPU Instructions

The virtual CPU instructions listed below were used in all Avida experiments in this work.

Instruction descriptions were adapted from the documentation from Avida v2.6 [30]. Each

instruction in an Avidian genome is represented by an alphabetic symbol.

By default, many of the instructions use the BX register and its compliment the CX register

for inputs. This behavior may be modified by a nop, causing the instruction to examine a

different register pair (listed below). The notation ?BX? will be used to denote the conditional

target pair of registers for relevant instructions below.

Instructions which move heads may have their behavior modified by nops as follows:

nop-A refers to the instruction pointer, nop-B to the read head, and nop-C to the write

head. The conditional target heads will be labeled as ?IP? below.
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Table A.1. Description of default Avida virtual CPU instructions.

Symbol Name Description

a

b

c

nop-A

nop-B

nop-C

The instructions nop-A (a), nop-B (b), and nop-C (c)
are no-operation instructions and will not do anything
when executed. They can, however, modify the behavior
of the preceding instruction or act a label that denotes
a location in the genome.

nops are often paired with their compliment when
specifying the behavior of the preceding instruction.
nop-A is complimented with nop-B; nop-B with nop-C;
and nop-C with nop-A.

d

e

if-n-equ

if-less

if-n-equ and if-less, along with if-label execute the
next instruction (possibly following a modifying nop) if
the contents of register ?BX? is not equal to or less than
?CX?, respectively. Any nop following the instruction will
specify the register compliment pair to be used in the
comparison.

f

g

pop

push

push and pop will places from the value ?BX? register
into the active stack or moves the value from the top of
the active stack to the ?BX? register.
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Table A.1 cont’d

Symbol Name Description

h swap-stk
Toggles the active stack.

i swap
Swaps the contents of register ?BX? with its compliment.

j

k

l

m

n

o

p

shift-r

shift-l

inc

dec

add

sub

nand

These instructions modify the value of register ?BX?.
shift-r and shift-l perform a bitwise shift of the con-
tents of register ?BX? either right or left, respectively,
padding with zeros. inc and dec raise or lower the value
of register ?BX? by 1. add sums register ?BX? and ?CX?;
sub subtracts ?CX? from ?BX?. NAND performs a bitwise
not-and on the contents of register ?BX? and ?CX?.

q IO
This instruction simultaneously transmits the contents of
register BX and receives a value from the environment
to place into BX.

r h-alloc

This instruction allocates additional space to store the
offspring genome at the end of the parent’s genome. The
new sites are initialized to nop-A. The size of the new
allocation can be set in the configuration file.

s h-divide

This instruction divides its offspring and (by default) re-
sets the parent. The memory from the start of the organ-
ism to the read head constitutes the parent; the memory
from the read head to the write head constitutes the off-
spring; excess sites are lost.
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Table A.1 cont’d

Symbol Name Description

t h-copy This instruction copies the instruction located at the read
head to the site located at the right head.

u h-search

This instruction will place the flow head at the first fol-
lowing occurrence of a set of nops matching the compli-
ment of the nops following it. If no nops follow h-search,
then the flow head is placed immediately after it. Regis-
ter BX and CX will receive the distance from the current
position of the instruction pointer to the compliment and
the size of the label, respectively. If no following nops are
present, the values of register BX and CX are set to 0.

v

w

x

mov-head

jmp-head

get-head

These instructions move ?IP?. mov-head jumps ?IP? to
the location of the flow head. jmp-head moves ?IP? the
number of positions forward in the organism based on
the value of register CX. get-head will copy the position
of ?IP? into the CX register.

y if-label

if-label will read the nop label following it and tests
whether or not the compliment of that label has been
recently copied. If so, the following instruction gets exe-
cuted; otherwise it gets skipped.

z set-flow This instruction moves the flow head to the position de-
noted in the ?CX? register.
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APPENDIX B

Experiment Settings

B.1 Common Settings

Many of the experiments in this work were performed using a common set of experimental

settings. Below is a truncated list of these settings.

Table B.1. Common experimental settings used in this work.

Setting Value Description

WORLD GEOMETRY Torus

The shape of the Avida world. A Torus has
no boundaries. This setting does not make
any difference in the behavior of the Avida
population when in Mass Action (global)
placement; however, it does affect the be-
havior of Neighborhood (local) offspring
placement.
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Table B.1 cont’d

Setting Value Description

HARDWARE TYPE Original CPUs

All experiments in this work uses the orig-
inal heads-based CPU. This virtual CPU
contains three numerical registers, a spe-
cial purpose register to store the last set of
nops read, two stacks, and four pointers
(instruction pointer and the read, write,
and flow heads).

BIRTH METHOD

Mass Action

or

Random in neighborhood

Depending on the experiment, this may be
one of two values. In Mass Action, off-
spring are placed randomly in the popu-
lation. In neighborhood, offspring replace
an organism in the cells surrounding the
parent.

PREFER EMPTY Yes Preferentially select empty cells when us-
ing offspring placement.

ALLOW PARENT Yes Allow the parent to be replaced by the off-
spring.

DEATH METHOD

AGE LIMIT

AGE DEVIATION

Exec = N*LIM+d

N=20

d=0

Organisms will die when the number of in-
struction executed equals the length of its
genomes * AGE LIMIT + AGE DEVIATION.
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Table B.1 cont’d

Setting Value Description

DIVIDE METHOD Reset Parent The parent’s registers and heads will be
reset after the division of the offspring.

CHILD SIZE RANGE 2.0

This setting sets the maximum difference
in length between the parent and offspring.
A value of 2.0 requires the offspring to be
at least half as long as the parent and at
most twice as long. This value also deter-
mines the number of instructions added to
the end of the genome following the first
execution of the h-alloc instruction.

MIN COPIED LINES 0.9

This sets the minimum fraction of the
number of sites in the parent genome that
must be copied before division is allowed.
h-divide instructions executed before this
criteria is met are ignored.

MIN EXE LINES 0.05

This sets the minimum fraction of instruc-
tions that must be executed by the organ-
ism before divide. h-divide instructions
executed before this criteria is met are ig-
nored.

REQUIRE ALLOCATE Yes This setting requires that h-alloc be exe-
cuted before a divide is allowed.
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Table B.1 cont’d

Setting Value Description

FAIL IMPLICIT Yes

This setting prohibits offspring that are
not identical to their parent in the ab-
sence of explicit mutations, such as the
ones listed below.

POINT MUT PROB 0.0 There are no “cosmic-ray” mutations ap-
plied per update.

COPY MUT PROB 0.0025
This is the probability of a substitution (in-
cluding synonymous) occurring during the
copying of an instruction.

INS MUT PROB

DEL MUT PROB

DIV MUT PROB

0.0

0.0

0.0

These settings are for insertion (INS), dele-
tion (DEL), or point (DIV) mutations ap-
plied per-site on divide.

DIVIDE MUT PROB

DIVIDE INS PROB

DIVIDE DEL PROB

0.0

0.05

0.05

0.0

These settings are for mutations applied
on divide over the entire genome for
point (MUT), insertion (INS) and deletion
(DEL) events.
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Table B.1 cont’d

Setting Value Description

AVE TIME SLICE

SLICING METHOD

BASE MERIT METHOD

DEFAULT BONUS

30

Probabilistic

∝ min{exec, copied}

1.0

These settings affect how merit is mapped
into SIPs. The first setting determines how
many SIPs are to be made available to the
population, in this case 30 × N , where N
is the population size. The proportional
slicing method distributes merit randomly
based on the relative merit of each individ-
ual (e.g. it is not deterministic). The base
merit method sets the initial merit (be-
fore task bonuses are applied) to be pro-
portional to the minimum of the number
of lines executed or copied by the parent.
The default bonus is the initial merit be-
fore any tasks are applied.
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B.2 Calibration Settings

The initial runs used to generate the steady state matrix differed from the common settings.

Below are the differences between the common settings and the calibration settings.

Table B.2. Deviant calibration experiment settings.

Setting Value Description

DEATH METHOD Never die In the calibration runs, organisms never
died of old age.

MIN COPIED LINES 0.50 Fewer sites needed to be copied in the cal-
ibration runs before divide is allowed.

COPY MUT PROB 0.0075 The substitution rate was three times
higher than the common settings.

FAIL IMPLICIT Off Organisms are allowed to produce different
organisms in the absence of mutation.
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