
APPLICATION OF THE LAW OF LAPLACE IN

[STIMATION OF LEFT VENTRICULAR HYPERTROPHY

IN RATS WITH EXPERIMENTAL HIGH BLOOD PRESSURE

Thesis for tho Deana 69 M. S.

MICHIGAN STA‘I‘E UNIVERSITY

Esmaifi Koushanpour

I961



 

LIBRARY

Michigan State

University

 



APPLICATION OF THE LAW OF LAPLACE IN

ESTIMATION OF LEFT VENTRICULAR HYPERTROPHY IN RATS WITH

EXPERIMENTAL HIGH BLOOD PRESSURE

BY

Esmail Koushanpour

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Physiology and Pharmacology

1961



ABSTRACT

APPLICATION OF THE LAW OF LAPLACE IN

ESTIMATION OF LEFT VENTRICULAR HYPERTROPHY IN RATS WITH

EXPERIMENTAL HIGH BLOOD PRESSURE

by Esmail Koushanpour

It is postulated that a sustained change in pressure

within the cardiovascular system results in an alteration of

the physical dimensions of the heart. The heart is considered

anatomically to be a specialized vessel with modified geometry.

It is further assumed that, geometrically, the heart is com-

posed of a cylindrical body and conical apex. This assumption

allows us to assign elliptical geometry to the ventricular

compartments. The ventricles are, thus, composed of two general

curvatures: the major curvature (long axis) as part of an

ellipse, and the minor curvature (short axis) as part of a

circle. Data were obtained from normal and hypertensive rats.

Tail systolic blood pressures were determined by a pulse

pressure sensitive transducer. Arcs and chords of major and

minor curvatures were measured and thickness of the ventricular

wall at the point of intersection of the arcs was determined.

Measurements were made on excised hearts (slightly inflated

to approximate ventricular volume in isometric contraction).

Radii of major and minor curvatures were determined from the

ratio arc/chord of each curvature. The values for the radius
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of the major curvatures were multiplied by a constant (1.31)

to obtain the radius of the major curvature by elliptical

approximation. The constant (1.31) was obtained by con-

structing an ellipse having a major semi-axis twice as great

as the minor semi-axis. Using Laplace's equation, P = T

(l/Rl + l/R2), tension developed at the point of measurement

of wall thickness was calculated. Assuming that tension

developed is proportional to wall thickness, the prOportionality

constant (k) is a measure of the contractile behavior of the

ventricular wall. Data obtained for values of tension, (k),

mean radii, and radial force (F) showed a definite left ventri-

cular hypertrophy. Wet weight and dry weight determinations on

the ventricles confirmed the estimated hypertrophy.
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I. INTRODUCTION

In recent years, much interest has been directed

toward a better understanding of cardiac function and its

active role in the hemodynamics of circulation. The mechanism

of myocardial adaptation to variations of blood pressure has

not been explored fully. . However, there are indications that

a change in pressure within the cardiovascular system would

have a definite effect on the physical dimensions of the

heart.

The function of smooth muscle within the vessel wall

has been referred to as maintenance of "active tension" (Burton,

1951). A change in the pressure of circulating blood from a

high value in the aorta to a low value in the capillaries is

accompanied by an alteration in anatomical constituents and

physical dimensions of blood vessels. Therefore, study of the

physics of various constituents of the cardiovascular system

is necessary in order to gain a fuller understanding of their

physiological significance.

The heart may be considered anatomically as a specialized

vessel with a modified geometry. Similarity between the

heart and the blood vessels has been the basis for applying to

the heart physical laws governing the blood vessels.

The purpose of this study is to apply the Law of Laplace

to the heart to determine changes produced in cardiac muscle

by experimental high blood pressure.



II. SURVEY OF LITERATURE

A. Heart and the Hemodynamics of Circulation

The function of the heart in the cardiovascular system

has been compared to a pump in a hydraulic system. However,

there are three unique features possessed by the cardiac pump

which distinguish it from reciprocating pumps employed in

engineering. They are: (l) the force that must be supported

by ventricles during cardiac action does not increase but

decreases as systole progresses, (2) the muscle fibers need

to exert a force of contraction only one-fourth of that of

the distending force of blood pressure, and (3) ventricular

filling in diastole indicates a "suction" action by the cardiac

pump. The first feature of the cardiac pump was suggested

by Gladstone (1929). He explained that cardiac systole

involves two types of contractions: an early isometric

period, and a later isotonic phase. The length of isometric

period, other things being constant, depends upon the size of

the force to be supported by the heart. Gladstone pointed

out that the ia3tonic contraction phase begins only when the

intraventicular pressure is sufficiently high to open the

semi-lunar valves and eject blood. This indicates that the

force supported by the heart actually declines as ventricular

systole advances. The last two features (2 and 3 above) of



the cardiac pump were proposed by Burch, Ray, and Cronvich

(1952). These investigators,assuming the heart to be spherical,

and using calculations from theoretical conditions, found that

the total radial force, (FR), upon the internal walls of

ventricles is equal to the product of the intraventricular

pressure, (P), and the internal surface area, 4W R2. However,

longitudinal force developed within the cardiac muscle is

equal to the product of the internal pressure and the cross-

sectional area, or FL = W R2 x P. This is the total force

tending to separate the spherical ventricles into two hemispheres.

Thus, the tensile force (longitudinal force) developed by

cardiac muscle fibers necessary to maintain the radial force

is one-fourth of any opposing blood pressure. Burch and

co-workers contended that such a relationship between the

tensile force and the distending force of blood pressure

holds even if the heart is not assumed to be spherical in

geometry.

Catton (1957) attributes the peculiarity of the heart

as a pump to the elastic nature of cardiac tissue and its

contractile ability. Contraction of the heart is dependent

on and adjustable to variations in flow and pressure of cir-

culating blood. The energy required to maintain flow of blood

in the circulation is provided by contraction of cardiac muscle.

This mechanical energy, as expressed in Bernoulli's Theorem



(Stacy, gt al., 1955), has three components:
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In this equation, the first term, (Z), represents gravitational

potential energy or the energy required to raise blood to a

height above the initial cardiac level. The second term (P/pg),

where (P) is pressure in mass units per unit area, (p) is

the mass unit volume, and (g) is the force of gravity,

2

represents the flow work. The last term (v /2g), where (v)
 

is the velocity of blood, represents kinetic energy. Blood

in the left ventricle possesses a form of potential energy

during isometric contraction, whereas, blood in any of the

arterial branches possesses all three energy components.

When the body is at rest, all energy required for

maintenance of circulation is provided by myocardial contraction.

Only in the active state is the heart aided by the "thoracic

pump" or "muscle pump,‘ and gravity. The contributions of

these three mechanisms are small compared to cardiac contraction

(Catton, 1957).

Ability of cardiac muscle fibers to adjust to changing

conditions in the circulatory system was considered in a

series of experiments by Starling and Visscher (1927). They

concluded that energy of cardiac muscle fiber contraction

increases to an optimum value as the diastolic volume increases.



This process of compensation by the heart was called, by

Starling, the law of the heart. Validity of this law with

regard to the heart in the unopened chest has been questioned

recently (Rushmer, 1959). However, its applicability to the

isolated heart is based on a fundamental property of the

muscle discovered by Hill (1913). He showed that tension

produced by the muscle is greater under isometric contraction

than under isotonic contraction, and that a greater amount of

energy is liberated when the muscle is stretched to a certain

limit prior to contraction.

The question whether a rise in arterial blood pressure

will result in a corresponding increase in cardiac output

has been investigated by two separate experiments on dogs.

Evans and Matsuoka (1915) studied the effects of various

mechanical conditions on cardiac efficiency in an isolated

heart-lung preparation. They observed that a sustained

alteration of blood pressure ranging from 40 to 170 mm. Hg,

for a period of 15 minutes, did not significantly change the

total cardiac output from a value of about 31 liters per hour.

It was shown that a rise in blood pressure with constant

cardiac output, or vice versa, results in a proportional

increase of both oxygen uptake and mechanical efficiency of the

heart followed by a subsequent decline. Maximal mechanical

efficiency of about 20% was obtained by moderate increase of



both blood pressure and cardiac output. Gollwitzer-Meier

and co-workers (1938) studied oxygen consumption and cardiac

output in an intact heart-lung preparation. They found that

the intact heart is capable of performing the same amount of

work as compared to the isolated heart, but with less oxygen

uptake. The interplay of heart rate and arterial blood

pressure was found to influence the total cardiac output.

It was noted that a rise in arterial blood pressure from

103 to 165 mm. Hg was accompanied by a decrease in heart rate

from 95 to 56 per minute. Cardiac output was increased by

less than 3%, cardiac work was increased from 1.24 to 1.35

m. kg., and oxygen consumption was decreased from 3.0 to 2.2

’ml. per minute. A fall in arterial blood pressure to about

62 mm. Hg resulted in an elevation of heart rate to 114 per

minute, and an increase in oxygen uptake to a value of 4.3

ml. per minute. The general conclusion from these two

experiments was that only one feature was common to both

isolated and intact hearts, namely, that a sustained rise in

arterial blood pressure will not result in an elevation of

cardiac output.

Efficiency of the heart as a pump has been studied

from two aspects: as a mechanical pump, and as a converter of

chemical energy into mechanical work (Evans and Matsuoka, 1915).

In the first instance, efficiency depends upon physical



structure of the heart and possible defects due to disease.

In contrast, efficiency of the heart while converting chemical

energy into mechanical work depends upon its ability to consume

oxygen and metabolites.

Experiments performed by Starling and Visscher (1927)

have shown that over-all cardiac efficiency varies in accordance

with conditions confronting the heart, and that cardiac

muscle fibers have an unexplained ability to increase their

oxygen consumption and energy output when a certain degree of

stretching is imposed preliminary to contraction.

B. Cardiac Compensation

A fundamental property of cardiac muscle is the ability

to adapt to changing demands of both central and peripheral

circulations. In general, cardiac compensation occurs by

means of three mechanisms: (1) an increase in the diastolic

volume by an increase in the diastolic fiber length, (2) an

increase in the force of contraction of the myocardial fibers,

and (3) cardiac hypertrophy (Freis, 1960). The first two

mechaniSms were briefly considered in the previous section.

Cardiac hypertrophy has long been considered as the

most important phase of cardiac compensation. However, there

is no agreement on the nature of this hypertrophy. Enlarge-

ment of the heart in animals with glomerulonephritis was



observed by Richard Bright as early as 1845 (Braun-Menendez,

1946). This observation was pursued by Passler and Heinecke

(1905) who found that when removal of one kidney and one-half

of the other in dogs is followed, at certain intervals, by

excising portions of the remaining hypertrophkad kidney

tissue, the animals invariably develop high blood pressure.

They noted that only 7 of the 18 operated dogs showed a

definite cardiac hypertrophy. The degree of hypertrophy was

determined by comparing the weights of right and left

ventricles. The ratio of the weight of the right ventricle

to that of the left was 1:2.26 in seven experimental dogs and

1:1.76 in the normal dog. The average increase in the blood

pressure, determined by femoral cannulation, was about 21.5

mm. Hg. There was no mention of whether hypertrophy was due

to hyperplasia of the cardiac muscle fibers or simply a result

of enlargement of muscle fibers.

Karsner, Saphir, and Todd (1925) made histological

sections of three human hearts. One heart was hypertrophied

as a result of chronic glomerulonephritis. The other two

hearts, one normal and one atrophied, were from patients

with pulmonary tuberculosis. Fibers and nuclei of various

sections were counted and their findings confirmed the

contention of Edens (1913) that in hypertrophied and normal

cardiac muscle ratio of area of nucleus to that of cytoplasm



is nearly the same. However, the hypertrophied heart has

larger fibers as compared with that of the normal heart.

Cardiac hypertrophy was found to be due to an increase in the

dimensions of the muscle fibers as compared with that of the

normal heart. Their observations revealed that the degree

of variability in size of the muscle fibers is very much less

in the hypertrophied and atrophied hearts as compared to that

of the normal heart. On this basis, they believed that the

phenomenon of variability is characteristic of normal tissues,

and that such a condition in the normal tissue allows for

greater degree of adaptability in the case of emergency.

When cardiac hypertrophy occurs due to excess work by the

heart, muscle fibers increase in size, and consequently a

greater fiber uniformity prevails. These investigators

concluded that the cardiac enlargement is due primarily to

hypertrophy of the muscle fibers. Hyperplasia was not

considered as the cause of cardiac hypertrophy. They further

indicated that the limit of the reserve capacity of the

hypertrophied heart is due to the fact that cardiac muscle

fibers have reached, then, their maximum growth and functional

strength.

Harrison, Ashman, and Larson (1932) found a definite

and interesting relationship between heart rate and thickness

of cardiac muscle fibers. They noted that the slower the
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heart rate, the thicker the cardiac muscle fiber, and vice

versa. However, they observed that the hypertrophied heart

has a much faster rate than normal. The authors contend that

the physiological significance of this relationship is: a

slower heart rate allows more time for diffusion of oxygen

and metabolites to thicker fibers.

Chanutin and co-workers (1932 and 1933) made an

extensive study of the development of cardiac hypertrophy in

rats with high blood pressure induced by partial nephrectomy.

Results suggested that both cardiac hypertrophy and high

blood pressure are the direct result of renal insufficiency,

and that elevation of blood pressure in animals with renal

insufficiency is necessary to excrete a high volume of less

concentrated metabolites. The degree of compensation, in

cardiac tissue and in blood pressure, depends upon the amount

of renal tissue present. Too much removal of renal tissue

was found to cause failure of these compensatory mechanisms.

The index for the degree of cardiac hypertrophy was the ratio

of heart weight to the body surface area. They found a high

positive correlation between the ratio, heart weight/body

surface area, and blood pressure.

Hermann, Dechard, and Erhard (1941) attempted to produce

cardiac hypertrophy in several ways. They found that wrapping

the left kidney with gauze soaked in collodion and removing
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the contralateral kidney about 4—7 days after the first

operation was the most successful method for producing

hypertrophy of the heart. The greatest amount of hypertrophy

was found to occur about 50 days after nephrectomy. The

average hypertrophy after 50 days was about 92%, whereas the

average hypertrophy after 20 days was about 46%. In general,

30 days post-nephrectomy the maximum amount of cardiac

hypertrophy occurred.

Other experiments have shown that cardiac hypertrophy

will result from any disturbance in the body function that

leads to the elevation of blood pressure. Cardiac hypertrophy

was found to be directly related to changes in pressure and

flow of blood. Benzak (1958) studied cardiac output, reserve

force of the heart, total peripheral resistance, and weights

of the heart and other organs in normal rats and in rats with

aortic coarctation below the diaphragm. She found that

cardiac output dropped from a normal value of about 48 I 4

ml./min. to a value of about 31 I 5 ml./min. after the

production of coarctation. Simultaneously, an increase in

total peripheral resistance from a normal value of about

210,000 to 320,000 dynes second per cm._5 was observed.

Cardiac hypertrophy was confined mostly to the left ventricle

which showed an increase of about 45%.above the control weight

three weeks following coarctation.
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C. Myocardial Force in Relation to Blood Pressure

Physical laws governing flow of fluid by a reciprocating

pump demand a definite relationship between the capability

of the pump to develop a driving force, and the pressure with

which the fluid is compelled to flow. In the cardiac pump,

which forces blood with a given pressure through vessels, such

a fundamental relationship must also exist. Starling's law

of the heart, which states that a change in the length of the

ventricular muscle fibers influences their force of contraction,

contributes little to our understanding of relationship

between the force developed by the ventricular muscle during

systole and the generated pressure. However, this is the

essence of a recent paper by Burton (1957) in which he suggests

that the Law of Laplace, previously applied to blood vessels,

can provide pertinent information with regard to this vital

relationship.

Burton (1951), applying the Law of Laplace, showed

that the diameter of a blood vessel is determined by a

balance between two forces: a distending force (blood pressure),

and a closing force (wall tension). A smaller vessel radius

means a lesser tension required to oppose the distending

force of blood pressure. Burton (1954) explained that the

shape of pressure-flow curves in living vessels is a
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reflection of anatomical structure of arteriolar walls. Smooth

muscle has a viscoelastic property that is responsible for

development of a greater tension when it is subjected to a

sudden stretch. Local adjustment to low pressure variations

is done by elastic tissue and to high pressure variations

through collagen tissue. Smooth muscle is responsible for

"active tension" which adjusts the response of both elastic

and collagen tissues.

As early as 1892 the importance of the role of shape

and size of the heart in its pumping function was recognized.

In that year, Woods applied the Law of Laplace to post-mortem

human hearts. However, the scope of usefulness of this law

was not fully described. Recent investigations in connection

with the dilated heart and hypertensive cardiac hypertrophy

(see Sections A and B) have renewed interest in application of

the Law of Laplace to the heart. Burton (1957) suggested that

the dilation of the heart, as predicted by this law, results

in an increase in the principle radii of the curvature of

ventricles. The Law of Laplace applied to ventricles has the

formula, P = T (1/Rl + 1/R2), where (P) is pressure in dynes

per square cm., (T) is tension in dynes per cm., and (R1) and

(R2) are principle radii of ventricular curvatures in cm.

Since the amount of tension developed by ventricular walls

is proportional to thickness, Burton (1957) pointed out that
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the Law of Laplace explained the great variations of the

ventricular wall thickness. In the sharply curved region of

the ventricle, such as the apex, the wall can be thin and

still produce sufficient tension to develop the required

pressure. In contrast, the Law explains that, at the region

where the wall is nearly "flat,' such as midway up the ventricle,

the wall must be thicker and the tension developed must be

greater in order to produce the necessary pressure. This

variation in wall thickness in accordance with developed

tension explains the thinner right ventricular wall. It is

in the Law of Laplace, Burtan believes, that reasons for

phenomena of 'mechanical advantage" in the normal heart, and

”mechanical disadvantage" in the dilated heart should be

sought.

There are numerous experiments which demonstrate the

significance of tension developed by cardiac muscle and its

deviation from normal in cardiac decompensation during myo-

cardial disease. Burch (1955) showed that the dilated heart

must work harder and produce greater tension, as compared to

normal heart, in order to maintain the same volume of output

as systole progresses. The extent of this increase in external

work and developed tension is determined by the magnitude of

the cardiac enlargement. The amount of cardiac hypertrophy

is reflected by the sum of the reciprocal of the principle
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radii of curvature (l/Rl + l/R2), the "shape" factor, in the

Law of Laplace. Experiments by Hartree and Hill (1921) on

isolated skeletal muscle showed that oxygen consumption and

heat liberation in the muscle is proportional to the product

of tension and the time it is maintained. Therefore,

oxygen consumption of cardiac muscle depends upon the sum of

two factors: the mechanical work, ( P x A V), and the product

of tension and time, (T x t). The expression, (J[P x A V),

for the mechanical or external work of the heart was developed

by Katz (1931) who made simultaneous pressure-volume curves

recording by optical means on isolated perfused turtle heart

preparation.

Starling and Visscher (1927) showed that the total

oxygen consumption of both normal and failing hearts depends

upon diastolic volume and is relatively independent of the

external work (JfP x A V) that the heart has to do. Burton

(1957) pointed out that the Law of Laplace explains why

diastolic volume can change the energy turnover of the heart,

namely, by increasing the value of the product of tension and

time. Therefore, the factor (T x t) should be given serious

consideration when ascertaining cardiac performance. In

this respect, both Burton (1957) and Rushmer (1959) believe

that cardiac rate can be used as a better index of the total

cardiac load. There is also evidence that in the early stages
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of hypertension, minute volume output is increased, and

that elevation of blood pressure causes an increase in the

cardiac work. This increase is due primarily to rise of

systolic blood pressure (Freis, 1960). Thus, when high

blood pressure is present, the product of tension and time,

as well as mechanical work, will be increased. If high blood

pressure persists for a long period, ventricular hypertrophy

is expected-
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III. MATERIALS AND METHODS

Albino rats of Hoppert (M.S.U.) strain, ranging in age

from two to three months, and weighing from 138 to 245 grams

with a standard deviation of i 5.65 grams (Table 2) were used

in this experiment. All rats, and food jars were weighed

weekly so that an assessment of gain or loss in weight and

food consumption could be obtained during the course of

experiment. All weighings were done on a 500 gram capacity

Toledo Balance.

Rats were divided into three groups. Group I was

subjected to a surgical procedure introduced by Soskin and

Saphir (1932). A flank incision was made on the left side and

the kidney was brought to the surface. The adrenal gland was

separated from its attachment to the kidney, and all fatty

tissues surrounding the kidney were severed. No attempt was

made to remove them from the surface of the kidney capsule.

Then, all manipulations were stopped for 10 minutes, so that

the kidney could resume its normal functional distension.

Cotton gauze was cut into small rectangular pieces and placed

in a petri dish. Collodion Merck (U.S.P. alcohol 24%) was

poured over the gauze, and rectangular pieces were pasted

around the kidney so as to form a snug capsule. Care was

taken to keep the renal pedicle completely free from the

wrapping material. After a lapse of two minutes, to allow
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for the wrapping material to dry, the kidney was returned to

its original position. The incision was closed by two

layers of sutures. Lock stitches were used for peritoneum

and muscle, and interrupted sutures for skin to prevent injury

from chewing by the rat. After seven days, the rats were

nephrectomized. The same process of manipulation of the kidney

and a waiting period of 10 minutes was observed during the

course of nephrectomy. Group II was subjected to a surgical

procedure described by Grollman (1944). A flank incision

was made on the left side and the kidney exposed as described

above. Then, a small piece of No. 8 cotton thread was

wrapped around the poles of the kidney in the form of a

figure—eight and knotted tightly. The kidney was returned

to its position and after closure of the left incision, the

contralateral kidney removed with the same procedure described

previously for Group I. The third group was sham—operated at

random, with respect to right and left side, and used as

controls.

Anesthesia in the above operations was by intra-

peritoneal injection of 3% sodium pentobarbital solution.

The dose required was 30 mg. per kilogram body weight for

females and 40 mg. per kilogram body weight for males. After

recovery from anesthesia, the animals were returned to their

. . . . . . . . o

indiVidual steel ere cages in an air—conditioned room at 70



l9

Fahrenheit. Feed consisted of a special ration prepared by

the Department of Animal Husbandry, Michigan State University,

containing 22% protein, 7.5% crude fat, 4% crude fiber,

0.78% calcium, 0.45% chloride, 0.76% potassium, 0.35% sodium,

and 0.67% phosphorous, with a T.D.N. of about 86.1%. Tap

water was given ad libitum.

Systemic hematocrit on tail blood was determined

before operation and prior to sacrificing each animal. Blood

samples were drawn, in duplicate, into microhematocrit tubes,

sealed, and spun in an International Hemacrit Centrifuge for

five minutes.

Blood pressure of unanesthetized rats was determined

before the experiment, and on the 7th. 10th, and 14th (final)

days by a simple method devised especially for this study.

The rat was led into a cone-shaped restraining cage made of

mesh steel wire. The restrained rat was then placed on a

large foam-rubber pad inside a 50 x 25 x 25 cm. wood box

with sliding doors and glass top. Temperature of the box

was maintained between 37-390 Centigrade with two 25 watt

electric bulbs. The rat's tail was passed through a 16 mm.

diameter pressure cuff made of surgical rubber, lining a

rigid outside metal sleeve. The cuff was connected to a

hand bulb from one side, and attached to a pressure transducer

from the other side. The transducer was connected from one



20

end to a mercury manometer, and from the other to a Sanborn

carrier amplifier and recorder. The pick-up of a pulse pressure

detecting device, called "Infraton" (Beckman, Spinco Division,

Palo Alto, California), was attached firmly by means of

adhesive tape to the ventral side of the tail immediately

distal to the cuff, and the leads of the pick-up were connected

to one of the D.C. amplifiers of Sanborn polygraph. The

apparatus can be visualized from the accompanying photograph

(Figure l).

Rats were placed in the warmed box for 10 minutes

before each blood pressure measurement. The pressure cuff

was inflated by means of a hand bulb until pulsations disappeared

from the record. As the pressure was released, pulsations

reappeared at the point where cuff pressure, read from the

recording paper, was slightly less than that of the caudal

artery. This pressure was designated as systolic blood

pressure. Diastolic blood pressure cannot be determined with

this apparatus. Systolic blood pressure was measured in

triplicate for each animal at various times during experimental

observation. Before and after each series of blood pressure

readings the transducer was calibrated with a mercury manometer

to ascertain the degree of fluctuation of the recording

stylus during each day's run. No significant change in

calibration occurred. A calibration record of the kind used
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FIGURE 1

Photograph of apparatus used to measure

indirect blood pressure.
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to read systolic blood pressure, and a typical blood pressure

recording are shown (Figures 2 and 3).

The indirect blood pressure recording method was

comparedvfijfl1direct, simultaneous arterial pressure measure-

ment from a cannula in the carotid artery. The direct reading

apparatus consisted of a cannula attached to a pressure

transducer which was connected to a calibrated Brush recorder.

No significant difference could be observed between the two

methods. This agrees with observations of Dodson and

Mackaness (1957).

The method used in this experiment for determining

blood pressure of rat can be adapted, with some modification

of the cuff, to measure blood pressure of other animals, both

large and small.

On the fourteenth day of observation, rats were

anesthetized and the abdominal cavity was exposed. Sodium

heparin (2 mg. per kilogram body weight) was injected into

the inferior vena cava. The chest cavity was opened and the

heart, with all its connecting vessels, was removed immediately.

The heart was dissected free of adventitious tissues and

emptied of blood by flushing with distilled water instead of

saline to compensate for dehydration in the next step. Left

ventricle, through aorta, was placed under a 20 cm. pressure

I

head of 95% ethyl alcohol for hypertensive rats, and a 10 cm.
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FIGURE 2

Typical calibration graph of the

kind used to read systolic blood

pressure.
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FIGURE 3

Top- Typical blood pressure recording.

Middle— Normal pulse wave record.

Bottom- Typical calibration record.
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pressure head for normal rats for 20 minutes. This was done

to harden the cardiac muscle for subsequent measurements

with the heart approximating ventricular volume during iso-

metric (isovolumic) contraction of the systole.

Major (long axis) and minor (short axis) arcs and

chords, and heart wall thickness at the intersection of the

two arcs, were measured, on the left ventricle in the following

manner (Figure 4). A cotton thread was placed on the major

left ventricular surface parallel to the interventricular

septum and from a point just below atrioventricular valve

ring to the apex. The linear distance of the thread was the

arc length, and the distance between the two points was the

chord length. The same procedure was followed for measuring

the minor arc and chord at a site approximately midway between

the base and the apex of the left ventricle. The method is

roughly similar to that of E. W. Hawthorne (1961) who used

a variable resistance strain gauge. Wall thickness was

determined atthe intersection of the two arcs. Principle

radii of the left ventricular curvatures were estimated

by methods described in Part IV.

After being measured, ventricles were separated from

auricles and other non-ventricular tissues. Isolated

ventricles were weighed and dried for 48 hours in an oven at

a constant temperature of 970Centigrade, cooled in a dessicator,
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FIGURE 4

Diagram showing sites of major

and minor arcs and chords, and

wall thickness measurements.
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and dry weight determined. Previous experiments showed that

heart tissues dried to constant weight in 48 hours at the

above temperature. All heart weights were determined by a

Voland and Sons chain-o-matic balance capable of measuring

to the nearest 0.1 mg.
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IV. CALCULATIONS AND DATA

In this experiment, two types of calculations were

employed for evaluation of raw data. The first type involved

the use of the relationship found experimentally by Lee (1929)

for determination of rat surface area, which is as follows:

Surface Area (cm.2) = 12.54 x WO°6O

where (W) is the rat body weight in grams.

In order to obtain more uniform heart-weight data

from animals with different body weights, the ratios of both

wet and dry weights of the ventricles to the surface area

were used in determining the degree of ventricular hypertrophy.

The second type of calculation was used to determine

the principle radii of the left ventricular curvatures so

that the degree of hypertrophy could be estimated by application

of the Law of Laplace. In this operation, two assumptions

were made: (1) left ventricle has elliptical geometry; and

(2) ventricular wall thickness is negligible as compared to

the mean radius. The first assumption is a modification of

Rushmer's observation (1951) that the ventricles are composed

geometrically of a cylindrical body and conical apex. The

second assumption is justified if it is accepted that the

tension developed in the ventricular wall is proportional to

the thickness. This latter relation is considered reasonable

by Burton (1957).
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Mathematically, four families of curves could fit the

curvatures of the left ventricle. They are: (l) catenary,

a curve in which a perfectly flexible chain hangs when

suspended between two points, with a general equation of y =

a cosh x/a, (2) circle with an equation of (x-a)2 + (y-b)2 =

r2, (3) ellipse with a general equation of (x-h)2/a2 + (y-k)2/b

2

l, and (4) parabola with an equation of (x—a)2 =.i 2 p (y-b).

In accordance with Rushmer's observation, any curve that can

describe the left ventricular curvature must have a first

derivative equal to zero at points of the ventricle with

cylindrical geometry. An ellipse is the only one of the above

four curves that can fulfill this requirement, and adequately

describe the major (long axis) curvature of the left

ventricle. Therefore, principle radii of the ventricular

curvatures were estimated by assuming that the major (long

axis) curvature is part of an ellipse and that the minor

(short axis) curvature is part of a circle.

The equation for estimating the radius of the minor

curvature was derived from the following considerations. The

radius of the circle as a function of the arc and the chord

of a particular segment of the circle follows the equations:

8 = ——-, L = 2 R Sin (9/2)

Then, L = 2 R Sin (S/2R) (l)

where (S) is the arc length, (L) is the chord length, (6) is
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the central angle describing the arc, and (R) is the radius

of the circle.

In order to determine the radius of a circular curvature

for any arc and chord, a general graph was constructed from

the following manipulation of equation (1).

If the radius is allowed to have a numerical value of

(1/2), the equation (1) takes the form,

L = 2 (1/2) Sin (s/2 (1/2) ) = Sin 5. (2)

A similar equation can be obtained by substituting other

numerical values for radius. Numerical value (1/2) was

chosen for simplicity.

Dividing both sides of the equation (2) into (S) and

(R) respectively, the following two equations will be obtained:

S/L = 5/ Sin 3 (3)'

and R/L 1/2/ Sin S. (4)

From the table of Natural Functions for Angles in Radians,

the values of (Sin S) for any value of (S) from S = .00 to

S = 2.00 radians were compiled (Table 1). Then, the ratios

S/Sin S and l/2/Sin S were calculated and the values of the

ratio (l/2/Sin S = R/L) were plotted against the values of the

ratio (S/Sin S = S/L) on an ordinary graph paper. A glance

at this graph (Figure 5) indicates that, from the ratio

(S/L), the ratio (R/L) can be determined. When the latter

ratio is multiplied by the value for chord length, (L), the



Table 1

Numerical Values of Parameters S,

Sin S, S/Sin S, and l/2/Sin S

 

 

 

s (radian) Sin s S/Sin s = S/L l/2/Sin s = R/L

0.10 0.09983 1.002 5.009

0.20 0.19867 1.007 2.517

0.30 0.29552 1.015 1.692

0.40 0.38942 1.027 1.284

0.50 0.47943 1.043 1.043

0.60 0.56464 1.063 0.866

0.70 0.64422 1.087 0.776

0.80 0.71736 1.115* 0.697*

0.90 0.78333 1.116* 0.638*

1.00 0.84147 1.188* 0.594*

1.10 0.89121 1.234* 0.561*

1.20 0.93204 1.287* 0.537*

1.30 0.96356 1.349* 0.519*

1.40 0.98545 1.420* 0.507*

1.50 0.99745 1.503* 0.501*

1.60 0.99957 1.600* 0.500*

1.70 0.99166 1.714* 0.504*

1.80 0.97385 1.848* 0.513*

1.90 0.94630 2.008* 0.528*

2.00 0.90930 2.200* 0.550*

 

F'1' cure R.

“The sign (*) indicates the points plotted in
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FIGURE 5

Standard curve for determination of

radius of the curvature.
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result is the value of the radius for the particular arc and

chord values. -

Major curvature of the left ventricle is considered to

approximate elliptical geometry. By definition, the absolute

value of the reciprocal of the curVature (K) is called the

radius of curvature, R. In mathematical expression,

1
 

In rectangular coordinates, the radius of curvature

is given by the equation,

2 3/2
R = ( l + (dy/dx) ) . (6)

. 2 2

(d y/dx )

In order to find the radius of an ellipse with an

. 2 2 2 2 .
equation of ( x /a + y /b = l ), one must determine the

first and second derivatives of the equation describing the

ellipse. The equation of an ellipse can be rearranged and

written as follows:

Y2 = b2 ( l - X2/a2)

or y2 = b2/a2 (a2 - x2)

2 2

or y = b/a (a - x 1/2. (7)

The first derivative of the equation (7) is,

dy/dx .= b/a (1/2) (a2 — x2)'1/2(-2x) = —bx/a

(a2 -x2)-l/2. (8)
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The second derivative of the equation (7) is,

d2y/dx2 = - ab (a2 - x2)-3/2. (9)

Substituting :h1 equation (6) for the first and second

derivatives, equations (8) and (9), rearranging and simplifying,

we obtain an equation for the radius of an elliptical curvature:

2 2 2 3/2

R = _ (a — (a4 - b ) x ) . (10)

a b

Since we are dealing with the absolute value of equation (10),

the negative sign before the expression can be ignored in

calculating the numerical value of the radius.

In order to evaluate the radius of the major curvature

of the left ventricle by elliptical approximation and compare

it with the value for radius by circular approximation, the

following procedure was adopted.

An ellipse was constructed with the major semi-axis

(a) twice as great as the minor semi-axis (b). Specifically,

When (b = l), by substituting numerical values for (a) and

(b) in equation (10), a more simplified expression for the

radius of the elliptical curvature was obtained:

( l6 — 3 X2 )

16

3/2

R = (11)

The radii of the elliptical curvature at points A, D. E, F,

G, H, and B (Figure 6), by substituting for (x) in the equation

(11) values zero, : 1/2, : 1,.1 3/2, and i 2, were found to



35

FIGURE 6

Diagram of elliptical model used

in estimating the radius of the

major curvature of left ventricle.
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be 2.929, 3.394, 4.000, 3.394, 2.929, 1.758, and 0.500

respectively. The mean radius of the curvature having the

above radii at the corresponding points can be calculated from

the relationship,

Mean Radius = (a/2 + b(; E :)°°° + n/2) . (12)

Using the above values for the various radii, the value of

the mean radius from the equation (12) will be:

Mean Radius (0.500/2 + 1.758 + 2.929 + 3.394

+ 4.000 + 3.394 + 2.929/2) / 6.

Mean Radius 2.865.

The value for the mean radius by circular approximatidn can

be found if the values for arc AB and chord AB were known.

The value for arc length can be calculated from the perimeter

of the ellipse. The equation for perimeter of an ellipse is:

P = 2 ( 4 + 1.1m + 1.2m2) (13)

where ( m = b/a). Substituting for (m) in the equation (13),

the perimeter will be equal to,

P = 2 ( 4 + 1.1 (1/2) + 1.2 (1/2)2 ) = 9.70

The value of P/4 will be,

P/4 = 2.425.

This value is equal to the distance BE of the arc. The distance

AE of the arc was found by direct measurement to be 1.012.

Thus, from these two values, the total length of the arc AB

will be,

Length of Arc AB = 2.425 + 1.012 = 3,437,
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The length of the chord AB can be determined by using the

Pythagoras Theorem on the triangle ABC.

Length of Chord AB = ( 32 + 0.8662 ) 1/2
= 3.122.

The ratio S/L (arch length to chord length) is about

1.101. From the graph (Figure 5), the mean radius by circular

approximation was found to be about 2.22. Thus, the ratio of

mean radius of curvature by elliptical evaluation to the mean

radius by circular approximation is about 1.31. This indicates

that the mean radius of the major curvature of the left

ventricle is 1.31 times that of the mean radius calculated

by circular approximation. Consequently, to obtain the true

value for the mean radius of the major curvature of the left

ventricle, the calculated mean radius for the major curvature

by circular approximation was multiplied by the constant 1.31.

This procedure is considered justified, since the average

ratio S/L, in the hypertensive animals was about 1.345, and

in the normal animals about 1.300. These values do not seem

to be very different from the value 1.101 obtained in the

ideal condition. Secondly, the procedure used results in a

greater numerical difference between the mean radius and the

wall thickness, as indicated by their ratio. The ratio

(mean radius/ wall thickness) was increased by about 19.2%

in the hypertensive animals, and by about 19.9% in normal

animals, when elliptical approximation was used instead of
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spherical approximation. The significance of this difference

will be discussed in Part V.

In calculating the volume and surface area of the left

ventricle, a spherical geometry was assumed. The radius for

this sphere was the mean radius of the major and minor

curvature's radii. The formulae employed were, (4/3n R3),

for the volume, and (41rR2), for the surface area. No

attempt was made to calculate the volume and the surface area

of the left ventricle by assuming an elliptical geometry.

This would have involved the process of integration of a

series of measurements. The experimental procedure for making

such an evaluation is under consideration.

The values for radial force(Ffi) were calculated from

the formula (FR.= P.A ), where (P) is pressure and (A) is

area.

The calculated values for volume and surface area

refer to the total volume and outer surface area of the left

ventricle. Since the thickness of the left ventricular wall

varies from one point to another, calculated values do not

indicate the internal change. It would be interesting to

find a mathematical relationship between the inner and outer

volumes and surface areas. This might indicate the manner in

which the various ventricular parts respond to the changes in

the blood pressure. It would further show the over-all



dimensional changes of the heart, and relative changes in

the ventricular dimensions and their relation to each

other in response to alteration of blood pressure.

39
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Table 2

Comparison of Body Weight and Food Consumption

 

 

Initial 7th-day Final Weight Food

Rat No. Sex Weight Weight Weight Change Consump.

gm. gm. gm. gm. gm.

 

Group I - Hypertensive

1 F 138 138 105 -33 92

2 F 163 166 142 -21 94

3 F 140 145 132 -8 126

4 M 157 174 131 -26 129

5 M 166 162 106 -60 102

6 M 180 178 150 -30 87

Group II - Hypertensive

   
 

1 M 213 195 195 -18 137

2 F 160 170 175 15 167

3 M 200 220 245 45 221

4 M 195 205 233 38 208

5 M 245 260 292 47 246

6 M 220 224 170 —50 134

7 M 205 195 225 20 178

8 M 225 215 230 5 165

9 M 225 230 252 27 214

10 M 220 250 280 60 242

Mean: 190.8 195.4 191.4 0.69 158.9

Standard

Deviation: ‘: 8.35 'i 9.01 .115.23 '1 9.18 .i 13.6]

 

Group III - Normotensive

   
  

1 F 190 195 208 18 258

2 F 195 195 200 5 217

3 F 185 185 185 O 148

4 F 215 208 215 0 165

5 F 220 218 220 0 146

6 F 192 190 192 0 144

7 F 195 195 196 l 176

8 F 212 212 215 3 150

9 F 242 243 245 3 214

10 F 203 208 212 9 166

Mean: 204.9 204.9 208.8 6.5 178.4

Standard

Deviation: i_12.01 “i 3.60 .i 3.61 .i 1.25 .i 8.40
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Table 3

Comparison of Blood Pressures and Hematocrits

 

 

Initial 7th—day 10th-day Final Initial Final

Rat No. B.P. B.P. B.P. B.P. Hct. Hct.

mm. Hg mm. Hg mm. Hg mm. Hg % %

 

Group I - Hypertensive

l 108 153 192 195 44 41

2 148 140 195 176 43 22

3 135 149 170 198 37 33

4 135 140 170 214 36 32

5 130 165 190 135 35 26

6 104 178 210 210 40 44

Group II- Hypertensive

    

1 110 158 195 175 43 37

2 90 150 165 205 45 44

3 110 145 160 165 41 41

4 130 145 140 170 43 43

5 112 120 135 160 42 41

6 122 128 158 170 39 40

7 124 154 172 208 43 43

8 120 120 120 140 42 40

9 120 130 155 190 43 41

10 114 134 145 208 43 39

Mean: 119.5 144.3 167.0 182.4 41.2 37.9

Standard

Deviation: i3'57 :_3.97 i_6.24 .i 6.23 :_0.74 .i 1.62

 

Group III - Normotensive

 
   

1 125 115 130 130 42 41

2 135 145 130 120 40 41

3 130 110 130 125 44" 43

4 110 110 120 125 40 41

5 110 115 120 120 40 41

6 115 125 130 135 40 40

7 125 125 120 125 41 42

8 130 125 128 125 42 43

9 120 120 122 120 42 44

10 135 130 128 130 42 41

Mean: 123.5 122.0 125.8 125.5 41.3 41.7

Standard

Deviation:: 2.05 i.2-3l ‘: 1.01 .i 1.09 .i 0.29 .i 0.27
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Table 4

Comparison of Wet and Dry Weights of Ventricles

 

 

  

 

 

 

 

 

Wet Dry Wet Wt. x 100 Dry Wt. x 100

Rat No. Weight Weight Surface Area Surface Agea

mg. mg. gm./cm.2 gm./cm.

Group I - Hypertensive f

1 460.0 116.2 0.2248 0.0568

2 603.2 132.2 0.2457 0.0538

3 548.6 111.6 0.2336 0.0475

4 591.7 167.1 0.2532 0.0715

5 383.5 99.5 0.1864 0.0484

6 667.6 141.3 0.2634 0.0557

Group II - Hypertensive

1 646.4 144.5 0.2179 0.0487

2 508.9 135.0 0.1830 0.0486

3 597.5 160.6 0.1756 0.0472

4 554.7 133.2 0.1680 0.0404

5 861.0 204.2 0.2278 0.0540

6 698.7 138.7 0.2557 0.0508

7 609.0 143.3 0.1884 0.0443

8 610.4 143.1 0.1864 0.0437

9 756.5 168.6 0.2186 0.0458

10 823.0 182.3 0.2233 0.0495

Mean: 620.0 145.09 0.2157 0.0504

Standard

Deviation: :31.13 .i 6.68 _ 0.0077 ‘: 0.0057

Group III - Normotensive

1 450.1 133.4 0.1460 0.0433

2 458.0 139.1 0.1520 0.0462

3 399.0 125.1 0.1388 0.0435

4 429.5 133.5 0.1365 0.0424

5 452.6 136.0 0.1419 0.0426

6 416.3 124.2 0.1418 0.0423

7 445.9 125.6 0.1498 0.0422

8 356.6 113.4 0.1134 0.0361

9 483.0 142.8 0.1420 0.0420

10 515.6 143.6 0.1653 0.0460

Mean: 440.7 131.67 0.1428 0.0427

Standard

Deviation: : 9.59 .1 1.94 .1 0.0029 .: 0.0019

 

 



Table 5

Comparison of Water Content and Dry Matter of Ventricles

 

 

Water Dry

Rat No. Content Matter

% %,

 

Group I — Hypertensive
O
N
L
D
D
U
J
N
H

G
)

H O C

[
—
1

Standard Deviation:

o
m
m
q
m
m
w
a
I
—
i

 

Mean:

74.73

78.10

79.67

71.76

74.03

78.85

p II - Hypertensive

77.65

73.44

73.12

75.95

76.29

80.13

76.49

76.56

79.04

77.83

76.48

i 0.63

Group III - Normotensive
 

.
—
l

Standard Deviation:

o
o
m
q
m
m
w
a
i
—
a

Mean:

70.37

69.62

68.65

68.92

69.96

70.08

71.83

68.21

70.45

72.15

70.02

i 0.28

25.27

21.90

20.33

28.24

25.97

21.15

22.35

26.56

26.88

24.05

23.71

19.87

23.51

23.44

20.96

22.17

23.52

i 0.63

29.63

30.38

31.35

31.08

30.04

29.92

28.17

31.79

29.55

27.85

29.98

i 0.28



Table 6

Comparison of Left Ventricular Measurements
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Major Major Minor Minor Wall

Rat No. Arc Chord Arc Chord Thickness

mm. mm. mm. mm. mm.

Group I - Hypertensive

1 16.0 11.7 10.5 7.5 2.4

2 16.4 12.7 11.5 7.4 2.4

3 16.1 11.7 10.4 7.2 2.5

4 16.3 12.1 10.2 6.9 2.4

5 14.5 11.0 10.2 7.2 2.6

6 15.4 10.7 11.2 8.0 1.8

Group II - Hypertensive

1 17.2 11.6 10.7 7.1 2.5

2 13.9 10.9 10.4 6.9 2.7

3 15.4 12.4 10.2 7.2 2.4

4 14.0 11.2 10.4 6.7 2.6

5 18.5 14.3 12.8 8.8 2.7

6 14.4 11.2 11.3 7.7 2.8

7 13.2 10.0 9.3 6.7 2.6

8 15.7 10.6 10.5 7.1 2.5

9 15.1 11.6 10.5 7.4 2.6

10 18.2 13.0 12.5 8.2 2.8

Mean: 15.64 11.67 10.79 7.4 2.52

Standard

Deviation: i 0.36 i_0.27 :_0.22 fl: 0.14 + 0.06

Group III — Normotensive

1 15.5 10.4 11.5 6.7 2.1

2 15.2 12.1 11.2 7.3 1.8

3 15.9 13.2 11.7 7.4 2.0

4 19.1 15.2 13.3 9.2 1.8

5 16.0 12.0 12.3 7.8 1.9

6 15.5 11.8 10.9 7.4 2.1

7 14.3 11.3 10.7 7.4 2.0

8 14.6 12.7 11.1 7.8 1.8

9 19.5 14.8 10.2 7.9 2.0

10 15.6 10.9 11.7 8.1 2.2

Mean: 16.12 12.44 11.46 7.7 1.97

Standard

Deviation: i 0.38 .i 0.33 .1 0.19 .i 0.14 .i 0.03



Table 7

Comparison of Ratios of Major Arc to Major Chord and Minor

Arc to Minor Chord

 

 

Minor Arc

Minor Chord

Major Arc

Major Chord

 

Rat No.

 

Group I - Hypertensive

 

 

1 1.37 1.40

2 1.29 1.55

3 1.38 1.44

4 1.35 1.48

5 1.32 1.42

6 1.44 1.40

Group II - Hypertensive

1 1.48 1.51

2 1.28 1.51

3 1.24 1.42

4 1.25 1.55

5 1.29 1.46

6 1.29 1.47

7 1.32 1.39

8 1.48 1.48

9 1.30 1.42

10 1.40 1.52

Mean: 1.34 1.46

Standard

Deviation: .i 0.019 .1 0.013

Group III - Normotensive

l 1.49 1.72

2 1.26 1.53

3 1.21 1.58

4 1.26 1.45

5 1.33 1.58

6 1.31 1.47

7 1.27 1.45

8 1.15 1.42

9 1.32 1.30

10 1.43 1.44

Mean: 1.30 1.50

Standard

Deviation : 0.022 .i 0.025
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Table 8

Comparison of Values for Product of Wall Thickness, t, and

Sum of the Reciprocal of Principle Radii of Curvature

 

 

  

 

 

 

Elliptical Spherical

Rat No. Approximation Approximation

+

t (1/Rl 1/R2)

Group I - Hypertensive

1 0.9314 1.0255

2 0.9192 1.0030

3 1.0055 1.1043

4 0.9838 1.0742

5 1.0561 1.1625

6 0.6955 0.7742

Group II - Hypertensive

1 1.0300 1.1315

2 1.1310 1.2396

3 0.9223 1.0046

4 1.0967 1.1960

5 0.8778 0.9612

6 1.0744 1.1894

7 1.1365 1.2537

8 1.0583 1.1690

9 1.0145 1.1144

10 1.0041 1.1038

Mean: 0.9961 1.0944

Standard

Deviation: i_0.0276 i 0.0303

Group III — Normotensive

1 0.9288 1.0242

2 0.7839 0.7636

3 0.7406 0.8028

4 0.5526 0.6035

5 0.7182 0.7898

6 0.8209 0.9097

7 0.7440 0.8612

8 0.6260 0.6790

9 0.6720 0.7328

10 0.8406 0.9350

Mean: 0.7428 0.8102

Standard

Deviation: + 0.0238 .i 0.0274
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Table 9

Comparison of Left Ventricular Radii and Calculated

Tension and (k), Assuming Spherical Geometry

 

 

 

 

 

 

Major Minor 4 4

Rat No. Radius Radius Tension x 10 (k) x 10

cm. cm. dynes/cm. dynes/cm.

Group I - Hypertensive

1 0.6025 0.3825 6.084 25.352

2 0.6776 0.3700 5.615 23.395

3 0.6002 0.3636 5.977 23.905

4 0.6268 0.3471 6.374 26.560

5 0.5775 0.3650 4.026 15.483

6 0.5404 0.4080 6.510 36.164

Group II - Hypertensive

1 0.5834 0.3557 5.155 20.620

2 0.5886 0.3457 5.953 22.048

3 0.6919 0.3650 5.255 21.897

4 0.6194 0.3350 4.927 18.951

5 0.7665 0.4435 5.992 22.193

6 0.6003 0.3873 5.336 19.056

7 0.5260 0.3424 5.751 22.119

8 0.5332 0.3571 3.992 15.967

9 0.6171 0.3752 5.910 22.731

10 0.6630 0.4108 7.035 25.123

Mean: 0.6127 0.3723 5.618 22.598

Standard

DeviatiOn:i 0.0157 .i 0.0072 .i 0.205 ‘1 1.191

Group III — Normotensive

1 0.5221 0.3377 3.554 16.923

2 0.6631 0.3657 3.772 20.952

3 0.7630 0.3700 4.152 20.759

4 0.8330 0.4646 4.970 27.614

5 0.6276 0.3900 3.849 20.257

6 0.6242 0.3722 4.155 19.785

7 0.6136 0.3737 3.870 19.351

8 0.8040 0.3955 4.418 24.544

9 0.7785 0.4203 4.367 21.833

10 0.5526 0.4099 4.078 18.537

Mean: 0.6782 0.3900 4.119 21.056

Standard

Deviation:: 0.0237 .i 0.0077 .i 0.087 .: 0.667
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Table 10

Comparison of Left Ventricular Radii and Calculated

Tension and (k), Assuming Elliptical Geometry

 

 

 

 

 

Major Minor 4 4

Rat No. Radius Radius Tension X 10 (k) X 10

cm. cm. dynes/cm. dynes/cm.2

Group I - Hypertensive

1 0.7894 0.3825 6.699 27.913

2 0.8876 0.3700 6.127 25.528

3 0.7863 0.3636 6.563 26.254

4 0.8211 0.3471 6.961 29.001

5 0.7565 0.3650 4.431 17.043

6 0.7079 0.4080 7.246 40.256

Group II - Hypertensive

1 0.7644 0.3557 5.663 22.652

2 0.7711 0.3457 6.525 24.165

3 0.9064 0.3650 5.724 23.851

4 0.8114 0.3350 5.373 20.667

5 1.0041 0.4435 6.562 24.302

6 0.7964 0.3873 5.907 21.096

7 0.6891 0.3424 6.344 24.400

8 0.6985 0.3571 4.410 17.637

9 0.8084 0.3752 6.492 24.969

10 0.8685 0.4108 7.733 27.618

Mean: 0.8011 0.3723 6.173 24.835

Standard

Deviation::_0.0205 i 0.0072 :_0.227 .: 1.330

Group III - Normotensive

1 0.6840 0.3377 3.919 18.661

2 0.8687 0.3657 3.674 20.410

3 0.9995 0.3700 4.500 22.502

4 1.0912 0.4646 5.428 30.157

5 0.8222 0.3900 4.233 22.277

6 0.8177 0.3722 4.604 21.925

7 0.8038 0.373/ 4.480 22.399

8 1.0532 0.3955 4.792 26.621

9 1.0198 0.4203 4.762 23.808

10 0.7239 0.4099 4.536 20.619

Mean: 0.8884 0.3900 4.493 22.938

Standard

Deviation:: 0.0311 .i 0.0077 .i 0.105 .i 0.600

 

 



Comparison of Values for Mean Radius,

Assuming Spherical GeometryArea, and Volume.

Table 11

Surface

49

 

 

 

 

 

Mean

Rat No. Radius Surface Area Volum

cm. cm.2 cm.

Group I - Hypertensive

1 0.4925 3.0485 0.5005

2 0.5238 3.4481 0.6019

3 0.4819 2.9178 0.4687

4 0.4869 2.9794 0.4834

5 0.4712 2.7897 0.4381

6 0.4742 2.8261 0.4465

Group II - Hypertensive

1 0.4695 2.7695 0.4335

2 0.4671 2.7420 0.4268

3 0.5284 3.5084 0.6178

4 0.4772 2.8613 0.4553

5 0.6050 2.5992 0.8515

6 0.4938 3.0636 0.5043

7 0.4342 2.3687 0.3426

8 0.4451 2.4893 0.3694

9 0.4961 3.0925 0.5114

10 0.5369 3.6228 0.6484

Mean: 0.4927 3.0567 0.5030

Standard

Deviation: .i 0.0102 : 0.1325 ‘1 0.0310

Group III - Normotensive

1 0.4299 2.3222 0.3330

2 0.5144 3.3250 0.5701

3 0.5665 4.0324 0.7615

4 0.6488 5.2890 1.1439

5 0.5088 3.2533 0.5516

6 0.4982 3.1189 0.5181

7 0.4937 3.0623 0.5039

8 0.5998 4.5212 0.9039

9 0.5994 4.5150 0.9022

10 0.4813 2.9115 0.4670

Mean: 0.5341 3.6351 0.6655

Standard

Deviation: i 0.0146 .1 0.1990 'i 0.0548



Comparison of Values for Mean Radius,

Area, and Volume, Assuming Elliptical Geometry

Table 12

Surface

50

 

 

 

 

 

Mean

Rat No. Radius Surface grea Volume

cm. cm. cm.

Group I - Hypertensive

1 0.5859 4.3140 0.8423

2 0.6288 4.9686 1.0413

3 0.5749 7.4581 0.7958

4 0.5841 4.2875 0.8348

5 0.5608 3.9520 0.7389

6 0.5579 3.9118 0.7276

‘EESEE_EI - Hypertensive

1 0.5600 3.9407 0.7355

2 0.5584 3.9181 0.7292

3 0.6357 5.0779 1.0761

4 0.5732 4.1292 0.7891

5 0.7238 6.5833 1.5883

6 0.5918 4.4006 0.8681

7 0.5158 3.3438 0.5751

8 0.5278 3.5009 0.6161

9 0.5918 4.4006 0.8681

10 0.6396 5.1408 1.0962

Mean: 0.5881 4.5830 0.8702

Standard

Deviation: : 0.0125 :_0.2723 i 0.0605

Group III - Normotensive

1 0.5109 3.2797 0.5588

2 0.6172 4.7864 0.9847

3 0.6848 5.8935 1.3454

4 0.7779 7.6037 1.9716

5 0.6061 4.6168 0.9328

6 0.5950 4.4484 0.8821

7 0.5888 4.3566 0.8549

8 0.7244 6.5946 1.5925

9 0.7201 6.5155 1.5640

10 0.5669 4.0387 0.7632

Mean: 0.6392 5.2134 1.1450

Standard

Deviation : 0.0182 i_0.2969 .: 0.0977



Table 13

Comparison of Radial Force Calculated from both

Spherical and Elliptical Approximations of the

Principle Radii

 

 

 

 

 

 

 

Spherical Elliptical

Rat No. Approximation Approximatign

dynes x 10 dynes x 10

Group I - Hypertensive

1 79.2549 112.1554

2 80.9097 116.5882

3 77.0241 196.8789

4 85.0053 122.3267

5 50.2118 71.1321

6 79.1252 109.5226

Group II - Hypertensive

1 64.6152 91.9405

2 74.9416 107.0856

3 77.1778 111.7036

4 64.8514 93.5883

5 98.1101 140.4350

6 69.4365 99.7396

7 65.6843 92.7269_

8 46.4628 65.3443

9 78.3361 111.4716

10 100.4639 142.5595

Mean: m 111.5750

Standard Deviation: i. 0.7234 7.6950

Group III - Normotensive

1 40.2484 56.8438

2 53.1967 76.5776

3 67.2000 98.2152

4 88.1412 126.7157

5 52.0496 73.8642

6 56.1340 80.0623

7 51.0332 72.6027

8 75.3458 109.8990

9 72.2355 104.2415

10 50.4621 69.9988

Mean: 61.5046 86.9021

Standard Deviation: .: 2.7800 1i 3.3700
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V. RESULTS AND DISCUSSION

Data are presented in two parts. The first part is

composed of determinations of body weight, food intake, blood

pressure, hematocrit, and wet weight and dry weight of

ventricles. The secondpart of the data, measurements of

left ventricular arcs and chords, and calculation of mean

radius, tension, proportionality constant (k), and radial

force, was obtained after making several assumptions as

mentioned above.in discussion of calculations. In order to

facilitate discussion, data in Tables 2—13 are summarized

in Table 14 where mean values are tabulated.

Comparison of mean final blood pressures of control

and experimental animals indicates an increase of about 45.3%

in the blood pressure of rats in Groups I and II (Table 3)

at the termination of the experiment. Graphic comparison

of blood pressure measurements at the four designated intervals

is presented in Figure 7. Results are in full agreement with

those obtained by Chanutin and co-workers (1932 and 1933) and

Hermann and associates (1941). However, it should be noted

that these investigators measured blood pressures only at

the termination of experiment by means of direct carotid

cannulation. There can be little doubt that the hypertension-

inducing methods employed here, especially the one proposed

by Grollman (1944), successfully produced high blood pressure.
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A further indication that animals in Groups I and II developed

high blood pressure was the decrease of about 8.5% in the mean

value of final hematocrit of experimental animals as compared

to controls. This accords with observations made on rats by

Beckwith and Chanutin (1941). They found an increase in

plasma volume and a subsequent decrease in red cell volume

in hypertensive rats which were attributed to development of

anemia. Since no blood or urine analyses were made in this

study, the presence or absence of anemia in rats of Groups

I and II cannot be confirmed.

Wet weight of ventricles showed a 40.7% increase in

hypertensive rats as compared to normotensive animals, suggesting

a definite ventricular hypertrophy. Reliability of the wet

weight determinations and their significance can be debated

on the basis that ventricles were weighed after removal from

alcohol following the ventricular measurements step. Data

listed in Table 4 indicate that such an argument is not well-

founded and can be discarded on the basis of the uniformity

of wet weight determinations for both hypertensive and control

animals, and the fact that the standard deviation in both

groups was low. Furthermore, since the same procedure was

employed in wet weight determinations of all three groups,

any objection will be applicable to both normotensive and

hypertensive rats. It should be noted also that the results
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show, in a comparative sense, relative hypertrophy of ventricles

of animals in Groups I and II as compared to those in Group

III. There is no doubt that the degree of ventricular hypertro-

phy as demonstratediby wet weight determinations is highly

significant (Table 14).

It is equally important to note that dry weight

determinations indicate about 10.2% increase in mass of

ventricles of hypertensive rats as compared to controls (Table

14). This difference suggests possible cardiac hyperplasia.

In order to ascertain the degree of correlation of

both wet and dry weights of ventricles with blood pressures,

Figures 8 and 9 were prepared. Figure 8 shows that there

exists a definite relationship between blood pressure and the

ratio of wet weight to surface area. This correlation is in

agreement with that suggested by Chanutin and co-workers

(1932 and 1933). However, no conclusion as to the significance

of the degree of correlation between ratio of dry weight to

surface area and blood pressure (Figure 9) can be made from

this graphic presentation.

Left ventricular wall thickness measurements indicated

that there was an increase of about 27.9% in hypertensive rats

as compared to normotensives (Table 14). This is highly

significant (p < .01) and agrees with the ventricular wet

weight data.
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The second portion of the data was obtained from

application of the Law of Laplace, P = T (l/Rl + 1/R2), to

the left ventricle. Tail systolic pressure of rats was

determined in mm. Hg and converted to dynes per square cm.,

using the equality 1 mm. Hg = 1.3333 x 103 dynes per square

cm. Values for radii were obtained on excised and slightly

inflated hearts whose volumes approximated the isometric

(isovolumic) contraction phase of systole. This procedure

was used for convenience in obtaining a fixed heart size.

However, it should be admitted that tail systolic blood

pressure is greater than the pressure generated by the left

ventricle during the isometric (isovolumic) contraction phase

to which the volume of excised hearts was presumably adjusted.

This discrepancy could be avoided in future experiments by

direct and simultaneous recording of cardiac pressure and

dimensions. Refined techniques for this procedure have

recently been described (Hawthorne, 1961).

In the course of inflation, normotensive hearts were

subjected to a pressure head approximately one-half of that

of hypertensive hearts. The reason for this difference in

pressure head was that intact, normotensive hearts were under

a lower presSure load than the hypertensive hearts. The

quantity, one-half, was selected by comparing the lowest blood

pressure with the highest. It was found that the latter was
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twice as great as the former.

Calculated results of the Laplace data were obtained

from initial measurements of four parameters, namely, blood

pressure, wall thickness, arcs, and chords of both major and

minor curvatures. Coupled with these four parameters were

four major assumptions: (1) that the left ventricle has an

elliptical geometry; (2) that major curvature is part of an

ellipse, and minor curvature is part of a circle, (3) that

the ellipse, in general, has a major semi-axis twice as great

as the minor, and (4) that the tension developed is proportional

to the ventricular wall thickness. Accuracy of initial

measurements can be questioned only in the case of determinations

of wall thickness, arcs, and chords of both major and minor

curvatures. Blood pressure measurements have been carried

out with an apparatus which is considered relatively free

from error. However, values of the other three parameters

cannot be so considered. On the other hand, it is more pertinent

here to look for the relative difference between normotensive

and hypertensive animals.

With respect to the application of the Law of Laplace

to the heart, Freis (1960) suggests that, "if there is cardiac

dilatation.the principle radii of curvature of the ventricle

will increase. Because of the Laplace equation, P = T

(l/Rl + 1/R2), greater myocardial tension will be required
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to produce a given intraventricular pressure." He points out

further that, "this interpretation of Laplace's law must be

accepted with some reservations, however, as the law applies

primarily to situations in which the thickness of the wall

is negligible in comparison to the radius of curvature."

In the present study, calculation of the principle radii of

curvatures show that there is a definite decrease in the mean

radius of ventricular curvature at the point of intersection

of major and minor arcs. This decrease is about 8.0% in

the case of elliptical approximation and 7.8% by Spherical

approximation (Table 14). It should be noted that a decrease

in mean radius of curvature indicates that there should have

been a definite increase in the surface area at this point.

However, as calculated here, both surface area and volume

decreased (Table 14). These results are not in contradiction

with expected findings because values for the mean radius of

curvature refer only to one point and not the entire surface

area or volume of the ventricle. Furthermore, values for

surface area and volume, as mentioned above in discussion of

calculations, were obtained by assigning a spherical geometry

to the left ventricle with the value of the calculated mean

radius as its radius. Therefore, obviously, the reduction

in the ventricular surface area and volume is due to the

calculated decrease in mean radius. However, it should be



63

pointed out that this decrease in mean radius indicates that

there has been a change in the ventricular curvature and

suggests a possible geometrical interpretation of the nature

of cardiac hypertrophy in response to pressure load. The

interpretation suggested here is, if we assume the normal left

ventricle has elliptical geometry, it will tend to assume

spherical geometry in the hypertrophied state. The advantage

of the spherical shape is obvious, as seen from the Law of

Laplace. The pressure load is uniformly distributed through-

out the ventricle and the required developed tension is

produced equally by all parts. Since the tension developed is

proportional to the wall thickness, this geometrical inter-

pretation also accounts for the increase in ventricular wall

thickness in hypertension and, hence, cardiac hypertrophy.

Tables 9 and 10 list the principle radii of left

ventricular curvatures by spherical and elliptical approximations,

respectively. Both methods show a reduction of less than 10%

in the major, and less than 5% in the minor, radii of the left

ventricular curvatures. These results are not in accord with

the predicted increase from the Laplace equation. The dis-

crepancy lies in the fact that in accordance with the Law of

Laplace, the principle radii of ventricular curvature should

increase if there is cardiac dilatation. No application of

Laplace's equation has been made to cardiac hypertrophy. It
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is further suggested here that a distinction should be made

between Cardiac dilatation and hypertrophy. This distinction,

as Rushmer (1961) suggests, is based on the reSponse of the

heart to two entirely different changes within the cardio-

vascular system. Myocardial hypertrophy occurs in response

to a chronic pressure load, as in arterial hypertension;

whereas, cardiac dilatation results in response to an increased

volume load. However, both conditions can be present at the

same time. Rushmer (1961) remarks that, "the usual response

to a chronic pressure load is myocardial hypertrophy with

various degrees of ventricular dilatation unless heart failure

should supervene. The thickened ventricular walls probably

have diminished distensibility, requiring a greater effective

filling pressure to attain a particular diastolic volume. In

other words, the myocardial hypertrophy tends to permit

utilization of the systolic reserve capacity with some

sacrifice of distensibility. On the other hand, ventricular

dilatation involves an encroachment on the diastolic reserve

capacity, apparently with some sacrifice of the contractility,

since these distended ventricles fail to empty as completely

during systole as the normal." Therefore, it is suggested

that ventricles in the present study have merely hypertrophied

without any accompanying dilatation.

Comparison of tension developed (Table 14) shows an
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increase of 37.4% by elliptical and 36.4% by spherical

approximations in hypertension. Also, elliptical approximation

of radial force shows about 28.4% increase in hypertension as

compared to controls; whereas, spherical approximation shows

an increase of 21.1% (Table 14). These results substantiate

theoretical considerations of Burch and co-workers (1952),

Burch (1955), and Burton (1957). Values of proportionality

constant (k) which are indicative of contractile behavior of

ventricular wall at the point of measurements show an increase

of about 10.7% in hypertensive as compared to normotensive

animals as calculated by assuming elliptical geometry and about

9.7% increase when the spherical method was used (Table 14).

Figure 10 shows the relationship between blood pressure

and calculated values for tension in hypertensive and control

rats. Figure 11 shows the relationship between calculated

tension and radial force in hypertensive and normal animals.

These graphs indicate that elliptical approximation provides

a better picture of changes undergone by the ventricle in

hypertension than spherical approximation.

Another parameter which showed a slight difference

between spherical and elliptical assumptions was the quantity

t(l/Rl + 1/R2) or the "shape" factor (Table 14). This

parameter refers to the over-all shape and size of the ventricle

subjected to a given intraventricular pressure. It should be
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recalled that the justification for the application of the

Law of Laplace, as mentioned above in discussion of calculations,

was based upon an assumption that the ventricular wall thickness

is negligible as compared to the radius of curvature. It

was then mentioned that the ratio of the mean radius to wall

thickness was increased by 19.2% for hypertensive and 19.9%

for normotensive rats when elliptical approximation was used.

These considerations, and data obtained, suggest that probably

assigning elliptical geometry to the left ventricle is a

better and closer approximation of its normal shape than the

spherical geometry.

This writer realizes that results presented are

incomplete. Further methods should be devised to improve the

quality and accuracy of initial ventricular measurements.

It is believed that progress in such direction will result in

much improvement of final data capable of shedding some light

upon the nature of cardiac compensation in response to

sustained high blood pressure.
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VI. SUMMARY AND CONCLUSIONS

This study was designed to compare estimation of

cardiac hypertrophy in hypertension by means of two methods:

application of the Law of Laplace, and wet weight dry weight

determinations. In using the first method, data were obtained

by assuming both spherical and elliptical geometry for the

left ventricle. Results are encouraging and indicative of the

applicability with some limitations, of the Law of Laplace in

determining changes in physical dimensions of the left

ventricle in response to variation in blood pressure. For

an average increase of 45.3% in blood pressure, there were

a 40.7% increase in wet weight and a 37.4% increase in tension.

The usefulness of the Law of Laplace in estimating cardiac

hypertrophy is affirmed. Precision and accuracy of the

application of the Law of Laplace will naturally increase as

new methods are devised to obtain more refined initial ventricu-

lar measurements.

Estimation of cardiac hypertrophy by application of

the Law of Laplace provides more clues to the nature of hyper-

trophy and effects of high blood pressure than the simple

method of wet weight dry weight determinations. There was a

definite change in curvatures of ventricular surface. Both

wall tension and radial force increased in proportion to the
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rise in blood pressure. Ventricular wet weight determination

also showed a fairly good correlation with rise in blood

pressure. Application of the Law of Laplace showed further

that there was a definite change in contractile behavior of

cardiac muscle wall, as indicated by the value of constant (k),

in the equation, T = k.t, where (T) is wall tension, and (t)

is wall thickness, and (k) is proportionality constant.

Quantity (k) is the force that must be exerted per square cm.

of cross-section of ventricular wall in order to generate

required systolic pressure. Increase in value of constant (k)

was paralleled by an increase of 10.2% in ventricular mass as

shown by dry weight determinations. Data indicated that a

better understanding of changes undergone by the heart during

a sustained high blood pressure may result if the heart is

assumed to be elliptical in geometry.

It is concluded that when the heart is subjected to a

sustained elevation of blood pressure, as in the case of renal

hypertension, there will be a definite change in both physical

dimensions and contractile behavior of the heart. The change

in physical dimension is reflected by an alteration of

curvatures of cardiac surface. Contractile ability of the heart

is impaired due to hypertrophy accompanied by hyperplasia of

cardiac muscle fibers. However, it is hypertrophy of muscle

fibers that is primarily responsible for alteration in the

contractile ability of cardiac muscle fibers.
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VIII. APPENDIX

Statistical analyses were carried out as follows:

 

- 2

Z.(X. --X)
1 1
 

Standard Deviation =W/

n - 1

Where Xi = Individual of sample population

i = Mean of sample population

n = Size of sample population

The Unpaired Rank Analysis of "t" test of significance

between two samples population means was performed using the

following formula:

 

 

  

X1 - X2

t = - 2 - 2
.. + .—

21 (X1 X1) 2 (X21 X2) (1 + 1 )

+ -n1 n2 2 n1 n2

Where Xi = Individual of sample population 1

X2i = Individual of sample population 2

i1 = Mean of sample population 1

i2 = Mean of sample population 2

nl = Size of sample population 1

n2 = Size of sample population 2

With (nl + n2 - 2) degrees of freedom.
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