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ABSTRACT

An R-C Low- rass Fllter whose rower Insertion
Ratio approximates a prescribed function of fre-
quency 1s synthesized.

The Filter 1s in the form of a symmetrical
lattice with prescribed, but equal, terminating
resistors.

The problem of approximation is first consi-
dered.

The realization of a lattice that approximates
a trapezoidal pattern is then shown.

A few realization conditions, peculiar to this
thesis are then discussed and some avenues for

further study are made available.
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I. Introduction.

The purpose of this thesis is to
present some examples of some theorems on
Network Synthesis.
lMost of the theorems will be taken from
the book 'Network Analysis and Feedback Amplifier

Design' by Doctor Hendrik W. Bode.l

KJGenerous use has been made of two books
by Doctor Ernst A. Guillemin,z’3 particularly the
second volume of 'Communication Networks',

The amount of help derived from the last
named book is not sufficiently noted by references
alone, for the book was used to get alternate
approaches to problems presented by Dr. Bode,

After -a short discussion to explain and
define terms, the thesis will follow a standard
pattern.

® ©® 0 0 0 00 00 ® 0 00 O DO OO OO OO DO OO 000000000000 e 0o

1 Bode, H.Vi. Network Analysis and Feedback Amplifier
Design. 1945 New York: D. Van Nostrand.

2 Guillemin, Ernst A. Communication Networks
Vol. II 1935 ©New York: John VWiley

S Guillemin, Ernst A. Communication Networkxs
Vol. I 1935 New York: John Wiley



There will be presented a portion of a theorem
from Dr. Bode's book. This may or may not be
paraphrased,

Then a demonstrating example will be formed,
and the necessary work will be done to show the
mechanism of the theorem.

If a conclusion 1s deemed advisable, it too

will be presented.

2. The problem of Synthesis.

The study of circuits is most generally a
problem of analysis. This is simply; given a
circuit, find 1its behavior.

In this thesis the problem is not analysis,
but synthesis. Given a desired behavior of a
circuit, design a network that will have that
behavior characteristic.,

The latter problem may lead to clrcuits
that are not readily formed with present laboratory
equipment. The analysls problem has generally
a unique solution, while the synthesis problem

seldom leads to a single result,



3¢ The 'p!' notation.

It is necessary to find some symbolic
notation to describe the circuit that is under

study. Operational Calculus4

provides such a
handy method. In Operational Calculus the operator
d/dt 1s noted as 'p' and the operator _fdt is
written as 1/p. Thus the common expression
Ldi/dat + (l/c)jidt can be written as (Lp:l)(l/cp)i.

Since JwLi is the voltage across the induct-
ance L, it follows that p is equivalent to jw, where
w is the angular velocity 2nf, and j 1s the familiar
operator V—-E .

This gives another form of expression
(Lp+l/cp)i = joLi + =j/wci.

C-uillemino uses N instead of Pe

4, The 'p' equations.

The p equations can be easily formed in an
analysis problem. Either the mesh or the nodal
equations can be written for the network, in terms
of p. Then the problem would call for the solution
of an unknown current or voltage. This can be done

by Cramer's Rule.s’6

® © ® 0 0 00 00 00 00000 00 0 0000 0O OO O eSO OO SO e 009 e 0o

4 Carter, G.Ws The Simple Calculation of Electric
Transients, 1945 New York: MacMillan

° Ibid 2



This rule gives a result which is the quotient of

two polynomials in p. The form is %%B% .
Y

This result can lead to several continuations.

If only a steady-state solution is required
p is replaced by jw and the fraction is then evalu-
ated.

If both transient and steady-state are req-
uired, Operational Calculus, Laplace Transform, or
even classical Differential Equations can be used.

All this is the analysis problem. Now consider
the synthesls problem,

Consider the case where the clircuit is to be-

have in such a way that the driving point impedance

can be written as A%R% = Z .
Bl(p

With that as a starting point, the problem is
to syntheslize a circuit with the above driving point
impedance,

® © 0 0 6 0. 0 060 0 00 0 000 0 SO0 OO OO 000 OO OO0 OO OO0 000

5 Doherty & Keller. Mathematics of Modern Engineering.
Vol. 1 1936 p63 New York: John Wiley & Sons.

6 Pipes, Louis A. Applied lathematics for Englneers
and Physicists. p86, 152 New York: McGraw-Hill.



The problem might have arisen from a very commonplace
engineering experience; a complex circuit might have
been designed and it's driving point impedance found
to be Zl,

The circult designer wishes to find a circuit
that has the same Zl, but 1s corposed of different
elements and possibly fewer elements. Now he 1s faced

with a problem in synthesis,
5. The polynomial in 'p’'.

A few interesting facts can be learned by obser-
ving the character of the polynomial in p. Assume

the polymomial is expressing a current function. Then
there can be written: 1 = é%2%== C(p(?') (PaET%-iRHEI% .
B(p) ~ (p-p' ") (p-p~")(p-p

The primed p represent the poles of the current, and the

unprimed p represent the zeros. Each pole and zero
can be either real or complex, depending on the form
of the polynomial.

If operational calculus were to be used to
continue the solution of the current the result would
be a series of increasing and decreasing exponentials

with both real and complex powerse.



If the poles were not simple, the result might
be an extremely complicated function of time.

A mowledge of the roots of the expression
willl give some indication of thre form of the

solution.
6. Plot of 'p'.

A small plot will give a picture of p.
Assume p to be in the denominator. Note: since

P = jow, an imaginary p wlll represent a negative

real frequencye.

fig. 1
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7. Physically Realizable lietworks.

This thesis 18 concerned with only physically
realizable networis. They are defined as, 'networks
of real elements, having no modes of free vibration
that increase indefinitely with time.'® Thus the
forms e&t eJut, eJutt are not allowed.

from physical considerations, Dr. Bode has
made a list of the requirements of the zeros of

B(p) which is the same as the poles of %%E% .
p

These are the requirements for a physically real-

izable netwak,.°®
8., Network Criteria,

l. Zeros and poles are elther real or conjugate
complex palrse.

2. Real and imaginary components are respectively
even and odd functions of frequency on the real
frequency axis.

Se 0o zeros in the right half plane.

4. Zeros on the real frequency axis are all simple.

S« Real component of driving point impedance cannot

be negative at real frequency.



6e Passive power must not be more than that consumed
by generator and its conjugate.

7. A driving point impedance that meets the above
list, when 1t has no zeros on the real frequency
axis, is known as the ' minirmum susceptance type.
If the network has no poles on the real frequency
axis, the network is called the ' minimum reactance

type'. These two types are not mutually exclusive.

® 0 0 000 00 00 0 00 000 0 00O 0O OO L PO 0 OO0 O OPL OGO NLE SOOI OISOEDS

© ibid 1 p. 120
°° 1bid 1 p. 123



9. Iulti-Resonant Circuits.

The circulit designer might have designed a
circuit composed of many meshes. These meshes might
have any combination of R, L, and C. He then looks
at his networlr and asks if 1t can be reduced to a
more simple form. Economy dictates that he uses the
least number of elements.

He can easily evaluate the order of the denominator
of the driving point impedance function. The procedure

is as follows:

1. Number each mesh.

2. I'ollow the contour of each mesh and assign a value
to that mesh.,
Value is zero if there is neither L or C in the mesh.
Value is one if there is either L or C in the mesh.,
Value is two if there is both L and C in the mesh.

Ze Check off one L and C in the mesh if they appear
there. Avold checking off an element that appears
as a mutual, if this is possible.

4. Add up the total number of mesh values,
This total 1s the order of the determinant of the

driving point impedance denominator.

® 0 @ 0 0 0600 0 000 000 0 SO OO OO E L OO OO0 OO SO EROEEEONGN O Ce e

°© ibid 2 p. 187



Here is an example 1llustrating this technique:

fig. 2
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10. Multi-Resonance; Non-Dissapative Cases.

A circuit composed of only pure L and C is non-
dissapative. A plot of its reactance versus time will
show a series of alternating zeros and poles.

There are four basic cases. They are dist-

inguished by thelr behavior at zero and infinite

frequency.
(a) Zero at 0 cps----- zero at infinity.
(b) Zero at O cps----- pole at infinity.
(c) Pole at O cps==--=-- zero at infinity.
(d) Pole at O cps==---- pole at infinity.

Thelr plots appear below.
fig. 3
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11l. Canonic Formse.

The plot of reactance versus time gives the
basic character of the circuit. The original circuit
can be reduced to a canonic form. These forms will
have the same reactance curve as the original function,
and will contain the least numaber of elements., A
given circuit can be represented by a very large
number of canonic forms so economics will determine

which one to use.

12. Preparation of the Problem.

Assume that a multi-resonant circuit has been

designed. The driving point impedance can be written

Al
B(p) °

by elementary methods and 1s called Z =
Or perhaps the problem might have arisen that a
circuit 1s required to have a given distribution of
zeros and poles. These are problems in synthesis
and these problems are solved by resorting to

canonic forms.

The two most common methods will be shown,

-]



13, Foster's Reactance i'ethod.

Foster? has devised a method to draw the canonic

form.

The required information is the location of the
zeros and poles, and the reactance at any real freq-

uency.

From g(p) it is easy to write the form

2z = H(p*-of) (p?-0f) (p®-wd)p

(p?-w8) (p?-0}) (p®-0f)
The roots of the numerator are the zeros and the
roots of the denominator are the poles.

The most general forms of the solution are

| f7*?1 I**'L__, et
o—rnn ||
LﬁfJ L‘ﬂJ -—f**T\——4C:::,

as follows:

In the four basic cases mentloned before their

solutions will appear as:

® © 6 0 0 0 000 00 000 00 00O 09 00 O OO OO0 OO 00080 PO OO SO S0

7 Foster, R.M. A Reactance Theoremn. B.S.T.J.
April 1924, pPp259-267.,
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An example of the use of Foster's Theorem is given:

Problem: Design a circuit with this characteristic:

% = jonle®=02) (0%-0f) (o®-uf)

zeros at w = 3,5,7, The reactance curve:

poles at w = 2,4,6, 4//[ /// ////
| | L/
\ ] .

Evaluate H
(0®=0F) (0*-08) (0*-0f) ©=0.5

Ce

_ -(4-16)(4-36)

(+25-4)(.25-16)(.25-36)

= =JoY Lk=1/(")§ck

w® -0

= ,01625 L®=100/4(1.6) = 15.38
5(4-9)(4-25)(4-49)

=(16-4)(16-56) =.02310 L,=100/16(2.3)= 2,704
5(16-9) (16-25) (16-49)

-(56-4)(36-16 - an/ s
S50 (3625 (3e=a0) " *0%0L8 Le=100/36(3.3)= .83

The final network will look like this:

P N N
N 0 .
L—1k;¥ L—4+—J WL—M—J

Cs e Ce

=]5=



The alternative Foster solution,.

In Lsf Lg % Ly

03-[. csT Cy T

I = wﬁ(mﬁ-g)(mg-zs)(mﬁ-w)s
(op=4) (0f-16) (0ff-36) (of=wf)

(e - 9(25)(49)(5) _
LIy =(w=0) .. e =2 = 23,92

5(9)(9-25)(9-49)

' = 9-2(5-16)(9-z6) = 305

= 5(25)(25=-9)(25-49) — 5
Ls (25-4)(25-16)(25-36) 231
L, = 5(49)(49-9)(49-25) = 12.18

(49-4)(49-16)(49-36)

«16=-

= =JwZ
L = 22
W% =ty
Cx = 1/wfiL
Cp =0
03 =,00364
C5=.00173
C7 =,00167



14, Cauer's i‘ethod,

Cauer8® has a method similar to that of Foster®®, to
reduce a non-dissapative network to a canonic form.

The loop equation of the network is written.,
The driving point impedance is then written as a
fraction of two polynomials in p.

There are two possible solutions The terms can
be arrangced in either ascending or descending powers
of p.

This choice will determine the form of the
solution., The two forms are equivalent, but one may
be the wiser choice from the standpoint of economics.

After the terms are placed 1n order the method

of continued fractions is used to bring about a solution.

The two basic forms are:

- o MM __. fig. 8

L]
| L 1.

® 0 0 06 0 0 00 00 000 08 0 0000 00 000 00O 0000 OO P00 000000 PO OO PN OO 0

1)
1
—

Cauer, W. DieVerwirklichung von Wechselstronwider-
standen vorgeschriebener Freque nzahabhangigkeit.
Archiv f. Elektrotechnik, vol. 17. p.355, 1927

°© Ibid 3 p.198
°©° Tbid 7
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Cauer ilethod Example

2x10-6rqd.,

Given: Ly = 2x107%h  Cy

Lz = 5x10™°h C3 = 4x10-6fd.

T L
Ls—? 4/?‘ FIND: Canonic rforms.
1

-Lzp+1/Czp
0 (Ly+Lg)p + (1/01+1/C3)(1/P)
L.p + 1/Cxzp -Lzp + 1/Cap

-Lzp + 1/Czp (L1+Lz)p + (1/C3 + 1/C5)1/p

250k . 250k *
g1 = +5Xx1073p+” p  (2.5x107°)p+p(750k) = .5x107%p+ 3

2.5x10"%p + 750k
P

- 1x10-6p2+750+125,000x106 — 10=6p4+750p2+125x10°
2,5x10™Sp+ Zé%g 2,5x10~9p%+750x10%p

Arrange in ascending order.
7 = 125x109+750p2+1x10-6p*
750,000p+2 +5x10=3p2

Continued Fraction Expansion

+.....
750,000p = 2.5x1073p% /1755969 + 750p® + 10-6p%

1.25x109 + 416p®
Z34p® + 10-6p4

167x10° |, _334p® + 10-6pt 167x10%
p 750,000p + 245x10-°p° P

Invert the remainder and continue the expansion.



3
. . 2.25x10°/p
354p + lop / 750x105p + 2.5x10-3p ececcccscoe

750x10%p + 2,25x10~3p®
«25x103p3

Result 2.25x10% , .25x1079p3 — 2,25x10%
p 334p® + 10~6pt p

Invert remainder and continue divisione.

/___Jmm +ooooooo.oooooo
.25x107%p /77308 4 10-6p4

334p2 + 0
10‘6p
1540x10% |, _10-6p? _, 1340x10°
P .25x10-3p3 D
Invert remainder and divide,
250/p 250
10-6p% /T 25x10-3p5 — Tr

The successive results represent a series of Z,Y, in

order,

167x10% _ C1 _ ex10 rd

P
3
2;2%5&9_ = L1 = .00445x10"%h,
6
!:é%zlg_ = Cp = ,746x1076fd.

250 = 1, = ,004 h,

P
Thus the Cauer form is:
C | | Ca fig. 10
<, l;

«]9=-



The other alternative
7 = 1076p% + 750p® + 125x109
2.5x10-3p% + 750,000p

24x107%p + ==--e--
2.5x1073p3 + 750,000p /10-6p% + 750p® + 125x109

10-6p% + 300p® + 0O
450p® + 125x109
.4x10’3p=Llp

o 9 5¢55%x1076p + —=-=c=u-
450p® + 125x10° /2,5x10-9p8 + 750,000p
2,5x10"%p3 + 695,000p

55,000p 5
5.55x107°p=C1 P
841x10~%p
55,000p /450p® + 125x109
450p®
125x10 8.1x10-3p=Lop
+44x10-6p
125x109 /= 55x10%p 6
«44x10"°p=Cop
Networks » £, fig. 11
—m_I_mjl Ll = .4 mh
% e L, = 8.1 mh
]_ "r C1 = 5.55uf

Note 1in this particular problem, the second form
gives results riore easily constructed than the first

form. This is not a general rule.

-20-



15, linimum Resistance Function.
Theorem®;

A passive Immittance will continue to meet
the requirements for physical realizability in pass-
ive networiks, 1f it is diminished by any real con-
stant, as long as the real corponent of the resultant
expression does not become negative at any real
frequency.

To use this theorem it 1s necessary to be able
to convert a p expression 1Into some expression
containing w.

Talze the p expression, replace p by jw, and
then separate the real and imaginary parts. Call
the real part R'e.

From R' can be subtracted any real number, as
long as the remainder R'' 1s never negative for any
real frequency. R' will reach a minimum value at
some frequency, and as long as this value 1s subtracted
from the original R', the new eixpression R'' will
never be negative.

Illustration:

Separate function of p into real and imaginary
components. Differentiate the real part and find
the minimum value. Subtract this value from the
original expression,

° Ibid p. 172
-21-



Illustration: Minimum Resistance Function.

tiven a passive network FIND
B4 40 Iiinimum Resistance
A =.§_§R____ Function,
_____ 20 < S
2
P = j(l) ccecccse 7 = & +j0.)+2 rationalize
=502+3 jo+d

7 = =02+ Jor+2 (=502+4 -3 Jw) ceen.. 5O 4 _110%+8+ g( -209-20)
(-503+4+3 j0) (=502 +4-3 o) (4-507) 490"

Separate real from the Imaglnary. Z = R+JX

R = 50%-110® +8 X = -20% =2
(4-50%2)3+9p? (4-502)%+90®

Let X = o®

R = 5x%-11x +8 ceeu... 5x%-11x+48 _ 5x®-11x4+8
(4-5x)% +9x (4-5x)% +9x  25x%-31x+16

%% = 0 = (25x%-31x+16)(10x-11)-(5x2=11x+8)(50x~31)

0 = 120x2-240x+72 = 10x2-20%46 ceeee X = 20+ V400-240
X = 1463, 43675 20

Choose the first roote.

= = 13e3 =17,9 + 8 _ 3.4 _
X=1e63 os..R= s -50;5+l6 = 5= = 0,105

This i1s the minimum at w® = 1.63. By inspection we see

that the alternate root gives a higher valued solution.

The minimum resistance function 1s then
o) (1-.525)+p(l-.315)+2§1-.420)
5p « 3p + 4

2' = Z2-0,105 =

- +48p* + 0.69p + 1.58
S5p* + 3p + 4

=02



I1lustration: Hinimum Conductance Function
The same procedure can be followed to find min-

irmum conductance with an admittance function,

Gilven: Find:
P
Y = Sp +3p+d Minimum Conductance Function
p2 + p + 2

v = =50® + 3jo + 4 =503+3 ju+s (2-w*-jw)

-0? + Jo + 2 0t -30% + 4

_ 100?=6jor8+but -3J0® -40®+5jed+30-4je [ . __ =
wl =302 + 4
vy = 59 1102 +8  +1(20°+20)
0 —3e® o+ 2

o = 5x3-11x +8 B = 205 +20

x2=3x+4 0t -20® +4
%‘ai = 0 = (x®-3x+4)(10x-11) - (5x®-11x+8)(2x-3)

0 = =-4x® 424x-20 Root x=1
x=1 G =2-11+8 =2 =1

1 -3 +44 32

Yt =y-1 =502 +3p +4 -1
p* +p * 2

Py
Minimum Conductance Function = 2P +2p +2
pa +p +2

-3~



15, ¥inimum Reactance Function,

Theorem®

A passive will continue to meet the require-
ments of physicsl reallzability in passive networks
if it 1s diminished by the reactance or susceptance
of one of 1its real frequency poles.

This is the same type problem as the minimum

resistance problem.

Illustration:
Given: FIND:
3
7 = Z2p +p+l Minimum Reactance Expression.,
pS+p®+p+l
7 =2p% 4p 41  ,... - 2p® +p +1 roots, p=1
pd +p? +p +1 (p+1)(p241) p=+]
Ay = lim Z(p-pg) _ 1im p*-pd Z p: =-1
P DPo P Py 2P,
A. = _1lim (p®-1)(2p*+p+1) _ =2+§+1 _ 1
° 2 231{137 =2
P J 2)(p+l)(p®+1)
In an anti-resonant circuit D = 2A, L = -2ﬁ°
b
D=1 L=1 (o}
23 1 2
v = __p +(2') _ 2pZ+p+l Z' _ 2p°+p+l _
1+p (1+p) (1+p (p+1) (p2+1) i:%'
7t = 2p2+p+l-p2-p _  p2+1 1

(p+1) (p3+1) (p®+1)(p+l) - p+1

z=_1_ 4 _DPp_ T::;V“
p+l p2+1 — | Fig. 12

® 0 08 000000000 0000 0 000000 0000000000000 0000000000000 000000

® Ibitd 1 p. 175.




16, Brune's lMethod.

It may be required to find a circuit that is
represented by a p expression. As long as the ex-
pression represents a passive network, this can be
done by the method of Brune9. He has shown that any
impedance satisfying the requirements to be passive
can be represented by a physical network.

To do this, use is made of the technique
developed to find minimun resistance, conductance and
reactance functions.

The idea 1s to remove the poles of impedance
until a simple resistance is reached.

The procedure 1is:
with a p expression given, change it to a minimum
resistance function. Then remove the poles one by
one. Remove a pole, subtract it from the minimum
resistance function, and keep doing this till there
remains only a pure resistance.

The process may be laborious.

® © 00 00 00 000 00 00000 00 0O SO OO 000 0PSO S0 0 00 s0e 0e0e 00o0

9 Brune, 0. Synthesis of a Finite Two Terminal
Network Whose Driving Point Impedance
is a Prescribed Function of Frequencye.

Journal of Math. and Phys., vol. 10, pp.191-235.

-25-



Illustration: Brune i#ethod.

Given: FIND:
. :
Z = 2 +p+ 2 A Network to represent
5p” + 3p + 4 this expression.

From previous work the minimum resistance occurred
vhen ©w®=1,63, The minimum resistance function was
found to be

7 = +48p*+.69p+1.58 ®w® = 1.63 o = 1,275
5p2 + 3p + 4

= =e48(1.63)+(+691)(1275)+1s58 _ .797+4.882
=5(1.63) + j3(1.275) +4 B -4.T3&35.§5

«211/-90° a pure negative L or a pure C,

At @ = 14275 = L = .,211/1.275 = ,165h L = =,165h

Subtract from 2°7,

Z11 =e48p+.69p*1.58  __ oy - .825p3+.975p%+1.85 +1.58
5p2+3p+4

_ 2.,44(.338p+.397) (p®+1.64)
5p5 + 3p + 4

This can be factored.

Invert and consider Y'!

1" = 5pz+§p+4 _
¥ 2044( 0338p+.397 ) (pz+1.64) pOIe at P t 1.28

A = 1im p®-pdY _ 1.64(5) +3j(1.28) +4 = 1.55
° p - p, 2p, '525€§T%E§7%37CT7%§TTT3357(5.ZZ) .

1/L = 2A° L = ,323h C = 2Ao/pg = o310/1.64 = 1,89
This 1s a series resonant circuit in shunt

Fige. 13

I .72 44¥
321 4

k=. C=t(89

-26=



The admittance of this shunt element is:

3410 Subtract this from ¥Y'' and get Y''"!
T.ngpz
Y'll = SE?+5P+4 -3.10

2,244(p®+1.64)(3.38p+.397) 1,64+p

_ 5p*+3p+4-2,56p*-3p _ 1
2444(1,64+p®) (+338p+e397) 2,44 338p+,397

Z"' 0558p+0597 ® 0000000 Lp+R
L = ,338 R = 4397
liow that all these computations are finished, the

network can be drawne.

NV ___or

0.105 -.165h
«323h «338h
L ele9 fd 397




The Brune treatment of an impedance function has

been shown. The sane treatment can be used to

handle an admittance function.

Civen: FIND:

y = 5p® +3p +2
p2+p+2

Brune network.

Minimum conductance when w=1 G=1

Minimum conductance expression

= igffinfi This was shown previously.
At @=1 ==--Y! ='_;1__‘:.§J.:2 -i:?j _ 2/-90°
Treat as a negative L eee W=l eee 1/L = -2 IL==,5h
g1t = P2Hp*2 o 5p _ pR+p+2+2pS4ptip

2p*#p+1 2p® +p +1

= RRpMpHL (e (pe1)

2pRptl 2p®+p+1
yr1 = 2p2+p+l A, = 1im p?-p2 2

(p®+1) (p+1) p—p® 2p,

AO=-2+ +]1 _ 1
2(1+3)] -7

In an admittance circuit series resonance

2
1/L = 24, ¢ =t
=1 =1

Eliminate a series resonant circuilt,.

-28=



Yro =_%L:L+P"'1 “p_ - p3+1 1 1
p7+1) (p+1) (p?+1) (p®+1)(p+1) p+1 ~ p+l

This is a series R, L circuit in shunt with the rest

of the circuit,.
- .5p lp
1 _%é 1
1/p = 1p

Fige 15

The Brune method 1s niore laborious in the
impedance case. Thlis is not a general rule, but
is due to the choice of the original function,
Another function might have been chosen which would
tend to give a result most easily when the impedance

approach were chosene.

=20



17, Negative Resistance,

The concept of negative resistancelO, 11
1s iIntroduced to facilitate the change from a
passive network to an active network. The negative
resistance can be considered as a source of power,
One method used to realize this element is to
use the negative slope found on a portion of the
Tetrode Tube Characteristic,
8 From B to D the slope

i of the curve is negative,

Fig. 16

e

The use of negative resistance allows the

use of two other circuit elements., They are
negative inductance and negative capacitance.

In the general form, a T network is set upe.

The shunt element of the T is a negative resistance.
The other two elements are equal in magnitude to the
shunt element, but opposite in sign. The T is term-

inated with Z'', Thnhe input impedance is 2! --

®@ 0 0 0. 000000 00 0 00 0000000 000 00 000000 0L OO OGO 0000 0o

10 Everitt, W.Le. Communication Engineering.
Second Edition, pe. 509 licGraw-Hill Co. 1937.

11 Emery, W.L. Ultra=-High Frequency Engineering.
Pe 162 HMacmillan Co. 1942,

° Ibid p. 188,



.8 0 -R. z///

= RZ-R® -RZ -R®
-z 2z

This is the case where Z is a resistance.

In the case where Z 1s pure L.

7' = R+ _=R(R+jwL) - jwLR-R3-jwLR _ -R®juL _ =R®
joL JoL " ~ JoL

Where Z'!' i1s pure Capacitance

7zt = R+ ~R(R+1/jwC) _ R -R® - R
* APl - I & _8®

1/3jwC 1/ jwC
Thus any negative impedance, including negative
capacity and inductance, can be represented by
terminating the T in the positive inverse of the

required impedance.

-31-



An sctive network can be broken down into a combi-

nation of a passive network and a negative resistance

network.
7 = P iptt y = 4p%+2p+2
4p2+2p+2 p2+p+4

y1-1 = ¥y = 4p2+2p+2

pa+p+2
v o= Qp2+2p+2fpzﬁg+2 - SE'+52+4
pR+p+2 pR+p+2

This is an impedance in parallel with a negative

resistance.
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18. Inverse lletwork,

The inverse networki2s® is a useful tool. The
inverse is usually taken with respect to a constant
Re 'YWhen this constant is set equal to 1, the struct:‘-
Tfound 1s called the reciprocal,
The dual is often confused with the reciprocal net-
wori. The dual is just a device used so thiat a network
can be solved by means of the node equations. In this,
the sources of voltage in the original network are
replaced by sources of current. Instead of deal-
ing with the 1impedances of the elements, tiie admittances
are considered. liowever, there 1s no rearrangement
of the circuit elements.

In the reciprocal circuit thils 1s not true.
llathematically, the latrix of the impedance is
formed. Then the 1inverse of the matrix is found, by
conventional iiatrix Algebra. This inverse is then
written as the matrix of the admittance of the
circuit,

Thie inverse can be found in many cases with-
out resorting to ilatrix Algebra.,

® © 0 © 00 00 000 C 5 00 00 00T OO O OO OO OO OO OO OO L OO OO OO OSSOSO

12 Zovel, 0.J. 3eS.TeJ. January 1923, July 1928.

°© Ibid 3 p. 203,
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To find the inverse by geometric methods the

following procedure is followed:

Locate a point in the center of each mesh, and
one point outside the circuit.

Connect all the points by a series of lines.
When a line passes through an elenent, that element
wvill be replaced by its inverse.

An 1llustration follows:

Fig. 19
e
R
Ry




This method, called 'Structural Inverse'!
will not wiork for all passive networks.1® If the
required inverse is to be passive, the original
network must not have any mutual inductance, for
there is no inverse that is passive for mutual
inductance.

However if active networks are allowed,
the mathematicsl approach will always give a result.

The inverse is found, for example, for a

Brune type network. Since the product of the two
networks must equal a real number, it will be shown
that the two following networks are inversely

related to each other,

/ 2 4 p*+p+2
/ ——
T . Fig. 20
%-7 =
QN Z11 = (p°+p+2)1
- ? , 2(2p®+p+1)
/ :r'/ /

Z11 Z1 = 2§’+2+1g2’+2+221 -1
p+p+2) (2p~+p+l)2 ~ 2

® 0 0 0 0 00 000 0 00 0 000 OO0 OO0 OOD VOO OO OO OO OO SN S OE PO SO TDS PSSO

13 Foster, R.M. Geometric Circuits of Electrical
Networks. A.I.E.E. June 1932,
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19. Complementary letworks,.

A complementary network® requires that the
sun of the original network and its complerentary

network be a real constant,

Illustration.
L C = — MV
' 2 | e R
Fig. 21 - -

- LpR R/C LpR®+LR/C+LR/C+R®/Cp
z Lp+R + ﬁ4§705 = 2
- LpR+R®+L/C +R/Cp

R(LpR+L/C+L/C+R/Cp)
(LpR+R®+L/C+R/Cp)

=R

This shows the two networis to be complementary.

° Ibid 13 p. 199.
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20, Partial Fraction Expansion of a
General Impedance.
Given an impedance function of p, by the
method of partial fractions,l4 a physical network
can be drawn,

Given:

gz = 3p°-Tp+3 _  3(p-1/756)(p-.564)
p*-3p+2 (p-1)(p-2)

pOle at p=l eceovee 5('0756)(1-.564) = 1

first fraction Z' = 1/p-1 This is =R // C

Subtract this fraction from the original.

2 2
Residue at p = 2 Rese. = 1

Second fraction 1/p-2 This is a negative

R of 1/2 in // with C = 1.

The network will look like this. (See Fig. 22).
This form can be changed by distributing the 3 ohms

along the circuit. Then the circuit takes the form:

-/ -3 3 A B S
My YN
i 1 g
.’ /

G 0 © 0 0 00 0800 0 00 000 00 0 000 00O OO OO O OO OO0 OO0 000000 00

14 Esbach, 0.Wi. Handbook of Engineering Fundamentals
First Edition 1936 Ch. 2-08

°© Ibid 3 pp. 192, 206,
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Continue the analysise.
74
)4  w—

\

%

= _1 1
| —-——2 + ——p_2 =

el
J
N

Fig. 23

This expression can be represented as:

g?

Fige 24
‘-0057b
Also analyze: /
o RS
— P- p-
_JN12:1{ - p

o Filg. 26

Fige 25.

Then the ent%?e network can be written as:

_____[j;;;;t::__/vwﬂﬂci___dA/vwﬂ__/"
I 7.7 W
-.0p -p

This 1s only one out of many variations that can

be constructed,



A more conplicated network 1s solved as an exarple

of partial fraction syntnesis.

24p+2
Z = ;LEI-:?-+4 roots =¢3 +].844
P P
3
= (p7+p+2) find residue

(P+o5-0844j)(p+.3+.844j)
D = =e3-0844]
Rese

=e62+]o506=¢3=08441+2 _ 1.08-13,38
-1.688] = T -1.688]

Residue = 42+J.643

z' = 2(Cap=(Capa*Cbpb)) _ o, on_(-,06+.543))

] 2 3
p~-2pap+(pa’+pb”) P +e6p+.09+471
= 2(e2p=e483) _ ,4p-4966 _ o75(.534p-1.28)

pR+e6p+e80 P*+e6p+e80  pR4 6p+,05+475

Assume R = 75 in shunt, and remove it from the Z.

AR 0254P-1028 ToOts =e5, =el
p~+6p+.05
= ¢934p-1.28 s = - = o
%p+.5)(p+.1) residue at p=.l =1,33/4 3033

elements =3.33/p+l subtract from Z' and get:

Z" - .5341)"1.28 - - 5.33 - 1 -
(p+<5) (p*el) Prel ~ D+eb This 1is g:i
The complete network will then appear as:
—3'3 2
NV NV
ig. 28
____*L_ 44L
07y ! !
-3 /




21, 'p' Networkse

The partial fraction expansion results in
expressions that represent two element networks.
These expressions and their corresponding forms

are shown below,

R R -R -R
R R -R -R
or %oy o

[

éC lCC-p pEgCCR p+-léC
e’y 2 W e, 7.
Oy O Tt Tl

C -C C -C

g

t
=
1
=
\
{
1
t

Eég____ ! C p/C 'Efc

8 -
p+1/CL 1/CL-p p*-1/0L p+1/CL

-40-



22. Reconstruction of a Passive Impedance

From a Knowledge of Either Component,

Darlington15’° has shown that, given a resistance
function of time, or w, the reactance function of
the samne impedance can be obtalned, and visa versa.
The sum of the two functions should be a minimum
resistance function.
To illustrate:

A R(w) is given., Then a Z(w) is found,

Then the next step is to find the X(w).
©®

405 -1+ J)(0-1-J) (0+l+]) (w+l-]J)

v (- = l=(1- 1-2
ot (-3 = QA -
crr (1+3) = §52)

R(w) =

z =20' 20! 1-2j . 1-2
W= w=0'" T 4J-4(w=1+]) 4-43)(w=-1~
= =40+8-12]jwt+16 j+4wtl2jw+8-16]  16-32
(w®=23)32] 32(2+ ju?)
= (16-321)(2-Ju?) _  32-16j0*+64]-320"
32(2+jw™) (2= jm ) 32(&4 +4)
Real 32(1-0w®) Inaginary J(-160*+64)
32 (0i+d) 32(wh+a)
—4—-———1""2 Cle cks with the original R
) cks e original R(w)

@ © 0 000 0000 0 00 000 0 0000000 000000 0% 000 00002000 000

15 Darlington Synthesis of Reactance Four Poles.,
Journal of liathematics and Physics. Sept. 1930.

°© Ibid 1 p. 203,
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23e Extension of Foster's Theorem to

Dissapative Cases.,

A network containing only two types of elements
can be solved by an extension of Foster's ©,°°
form. This has been shown by Cauer,
Theorem:

The expression for the lmpedance of a ne twork
made up of only two elements can be obtzined from
the expression of an impedance of a corresponding
network of pure reactances, by replacing the multi-
plier p in the pure reactance expression by the
impedance which corresponds to a pure inductance, and
by replacing the p terms in the rest of the expression

by the ratio of the impedance corresponding to a

unit inductance and a unit capacitye.

R, L Network 2z = kp(p-p3)(p-p) .....
(p-pf) (p-p3)

R, C Network 2 = k(P’PS)(P-EZl ceecee
(p-p}) (p-p3)

® 0 0 0 0 0 0 0 © 00 00 00 O O 00O OO0 O OO OB PO OO OL OO OO 00O OO O N OGS PN

° Ibid 1 p. 214.

°° Tbid 3 p. 208,
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Here 1s an example of the extension of Foster's fornm
into the case of two element dissapative cases,
Given:

poles at p=0, -2, =5.

zeros at p=-1, -3.
Real part of the driving point impedance Z is 1
when w=0,

FIND: Two element network to have given character-

istics.
7 = H(p+1l)(p+3) _ H(p®+4p+3)
p = Jo
= H(-oP+aJor3)  _ p(-0®+4jot3) (-760*+]eB-10]0)
(-Ju-707+10jw) 4904408 -200% + 10002
= H(70%-105+10103-28103-404+4002 210+ J0® =30 jo)
02 (04+2902+100)
Real part H(3w2+19)w® eeese at w=0 real part = 1,
(0%+290%+100)w®
H = 100
19
Ck = 212% as p approaches pk, pk = =-1/RkCk
b=-p
R2n = H
= 19(2)(5 19 R4 =0
Y = ( +2 +5) CO = J-(-L)-—l = == (o]
o - pegiey e - &
Co = 19 -22§5) _ 1l4p _ 100
G £ Ks Bn 2~ To0(-1 1) ~ I00 ¢ 228
— W\
cg = 12(-3)(3) - 152 R = 800
—L 100(-4)(-2) 800 760



Continued Fraction Expansion may also be used to

get an equivalent result,
Z(p) = 100(p*+4p+3) _ 15,8+21.03p +5,26p"
p3+7p®+10p 10p+7p®+p3

1.58/p
10p+7p®+p® /I5.8 + 21.05p%5.265" 3:58/p
15,8 + 12,27p+1, 58p =,633

8076p+5.68p

l.,14
8.76p+3.68p2 / 10p+ 7p= + po

10p+ 4. op®
—
+ 2.8p +p3

2 r——jhﬂjyﬁL——- ol
248p +p5 8.76p+3, 68p 8 =5{22

8 76p+5.15p

]
=

055p
Sel 5.1 = R
.55p* /5, 8pR4po
2,8p*2
pS
«55/p «55/p
p° /‘gg;; c=1,82

A different network configuration could be obtained
by arranging the original expression in descending
powers of p.

Final Networks:

4An7§ 3-13 S57P
1 ~ | -
4 5./ &=o

w4d-



24, Transfer Impedance Functions.

The study, up to this stage, has been confined to
two terminal networks. At thls point, four terminal
networks will be considered.
Here i1s the basic synthesis problem in four
terminal netviorks:
Given a signal generator with its internal impedance
r, find a network that will transmit a required
characteristic of the signal to a load called R,
This problem requires the study of transfer

impecdance.

The transfer impedance will be noted as 24t

Ell

-&--—6-
(o]
cr

Fige 30

@ 00 00000 00 0 0 000 000000 000 ° 0000000000000 OOIOIEEOEE OSSN OIS

° Ipid 1 pe. 226.
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25+ Construction of a General Transfer

Impedance.

Masonl® has shown that the most efficient
possible transmission between R' and R'!' with
passive networks occurs if the two were matched by an
ideal transformer, and corresponds to

2t = 2 }YR'R
Everitt also shows this,

Define @ = 1lim Zt = A+ 3B

2 [/RTRTT

Zt = ﬁ = 2/RTRY e® = 2 Iﬁ'ﬁ”‘ A+JB

The most advantageous way to represent the
transfer impedance is to use the symmetrical lattice

structure with an ideal transforuer.

&

~ . (21 4 Plg. 31.
/é\g/@:d@ % e €
)

€, _Y

x

@ 0 0 0 0 0 00 00 0 9 0 00O 0 O O OO OO OO OO R OO0 OO0V OO OO OO O e e e e

16 Mason, W.Ps Electromechanical Filters and wave

Transducers. 1942 New York:
D. Van Nostrand. pe. 24.

° Ibid 9 p. 259,
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The lattice 1is chosen because it has wmany
general characteristics that are quite useful,17s°
zt = /ZxZF = image impedance
tanh 8/2 = VZ?_
vz
Choose the image impedances to be equal to R'!
by choosing ZxZ2y = (R*')®. Then the input impedance to

the lattice is R'!,

Tanh 6/2 = s/ Zx tanh © = l-e-2©
Zy —_—
v 1+e®@

tanh /2 = 1-070 _ r ZX_ = ZX

“Ive e = Zy - R
9 -1 = 2Zx Re® -R = Zxe®-2x
e® +1 TR ) e

()
ZxX = (R) e -1

e§+l

O O 0 0 0 0000 9 0 0009 000 00O OO QS QOO PO PO O OOC LSOO O OO OO ONOGOSOSTS OO

17 Campbell Physical Theory of Electric Vave
Filters. B.S.T.J. Nov. 1922

°© Ibid 3 Chapter X
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26¢ Lattice Representations,

Theoren®:

The transfer impedance of any passive
network can be represented by a symmetrical constant
resistant lattice network, with resistance terminations.,.

An elementary example follows:

A = 2ep 2/ TR =2

Zt

-5 </

vx = Rt (e® -1 _ 1+p/2-1 _ 4
e® +1 1+p/2+1 1+P§4

1/Zx = 4/p + 1

iy

Lattice 1s then:

Flge 33

°© Ibid 1 p. 233.



A more complex network is presented.

ag gl
1 .J_l/p p 1
]_ Pig. 34
1+1/p -1/p
- -1/p p+l/p+l _ p+2/p+2 3
zZt l+1/ T = 1/p = p +2p+2
-1/p 0
e _— Zt
€ = pa/2+p+l
2/ RIRV!
- e9- 2 2
Zx = 21 _ 512+p = P*2DP  Reduce in Brune
Y p2/2+p+4 P2+2p+4 form.

24+2p+4
Yx = EETEE%T p = 0, residue = 2 element 2/p = Y

2+2p+4 p
Y': - =
p(p+2) /P DFD

2x = p/2 Zy = p/2 y
e g | P
2/p 1 1
Fig. 35.
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The fact that this method is laborious
is not evident until a fairly complicated structure
is given. This structure can be converted into a
lattice, but it requires a lot of work by the

present method.

ap) 4

1 0.8p _E-O.2p 2.0p 1 Fig. 36

T-O.S/p

1+.1p+.5/p -.2p=.5/p
2t = ~.2p=. 1+2,2p + 05/p
+e2p + J5/Dp

7t = 2.2p>%3,2p+2,6+1/p+.25/p%~.04p%-.2-.25p®
+2p+ o5/p

= 2,16p%° + 3.2p2 + 2.,4p +1
.2p2 + ¢S5

e® = °1°.osp52+ 1,6p® +1.2p +45
2p + o5

zx = €8-1 | 1.08p% + 1.6p® +1.2p + .5 -2p® -.5
1,08p°  1.6p%+1.2p+.5+.2p%+.5

e%+1

— 1.,08p°+1,4p3+1,.2p
1,08p3+1.8p°+1.2p+l

Yx+ + = Le 08R3+1 0822+1 . 2p+l residue at p=0
1.08p°+1.4p3++1.2p 1/1.2

This 1s Y = 1/1.2p L of 1l.2h



yxt = 1.08p%+1.8p%+1.2p+1 1
(1.08p2+1.4p+1.2)p 1.2p

1,08p° +1,8p%+1,2p+l -,9p%-1.165p-1
(1.08p3+1.4p+1.2)p

.Zx' = 1.08p>+1,4p+1,2
(p++791) (p+.0417)

residue at p = =,0417

= o00189-,0585+1.2 = 1,14 _
75 =5 = l.%e
Element 1is 1,52
p+.0417

gx'! = 1e08p%+1l.4p+1,2 - 1,52
P+e791) (p+e.0417) (p+.0417
— 1,08p3+1,4p+1e2-1.52p=1,2
(p+.04i77(§¥;7§§7"‘
= 1.08p2-,12
(p+e0417) (p+e791)
Yyt = §p+.04l7)(§+.791) residue 0033 _ _
* 1.08p- 'y p p=0 -.I2 .275

pole of ¥Yx'! ==-,275/p L of ==-- -3.61
Yxt1t = 1.08p>+.9p+.035+43p=.035 _ 51.082+1.2§
(I.OSP".12) - 1.08p-1.
Z111 = 1,08 -ol2
T76§§¢T?§ 1.08p+1.2

R=1, L=, R= -10, C ==9
The x arm is the following. The y arm is the inverse

of this Brune network.

1.52/p 9P
i lf" "W]
¥V N} I J_
3604 -3.61p “— 1 T
1.2p -l/9p l




27. Transfer Function Changes.

A pascive transfer impedance function will
contlnue to meet the requirements of physical
realizabllity in a passive network if any of its
real poles or any pair of its conjugate comnplex
poles are replaced by its negative®. The change
is equivalent to increasing or decreasing the
transfer function by the phase shift of a correspond-

ing all-pass section.

Given e® = -2 LRiTl write e© = -2§E+1%2+2
p-1° p+2(p-2)

For the first part.
-2(p+l) -1
ix = —Y=p— = =2p=2-p=2 _ =3p-4 _ 3z+4/p
2 =2p+2+p+2 T  -p
-2(p+l) +1
p+§
This is a lattice
() %

W Fig. 38
3 by

in tandem with

+2 =1
D-< = p¥2-p+2 _ »
pt2 T p+2+p-2 /P
p-2 +1 This is a lattice
A
<YM Fig. 39
DA
Total Netwo%k. 3{

Fige. 40
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