L z”,0";M :‘I’ .“l 6‘»- ‘ I JV"? ”‘13 U o' 3:1:5‘ "+§¢s, I ' ..‘I 3%.” f. , . - RL ."2 n‘lk'?‘$ A“ I " ' ' . $5,». 42665" ' . . . _, ., . 6:46“ - . ‘ I {5 \ I. I- . \ulA ,‘. 21%” I. . '.‘ ‘ _ . .- . , 2 6- -;. .. 2,2» 6.66 .... 83". ‘ . “3H M 6‘ ")6” L; 3' I'g?‘ {fitfig‘ ‘3‘. o ' ' V -- A': 1'.(b"">‘-'~'1 2,38 {26326 :85}; £51812, " ". ' ?b\0‘$'? ' II '1'. 1 "1):? '-'2‘: Al“, ‘3“, "‘3 2%!22', I .fl “in ‘73 " ' ' J g 'N‘K’ "III‘.6;.§”.6I$"6'6167666665564" ~“ 62,13: "1"‘3‘666‘1‘ 6‘ i2," #3, Iv”, 22 8:.“ WAN {v.2 I2I' . ,u ‘6 v "5:“; H II mIk' '{IA ' 2656'666' ,6‘-‘f.6,, “V ’65:,3' 2,36 "' «'6 :2.’ "5‘66“ ‘6 f‘é'fi, "Vi" «‘2"? 531' ’_\2:}. 'I‘rIvr. E: 2;?” z,‘ 2d» ‘ . (I... ‘ ;}26}:’13-§5.E3 ‘1‘”, #1.}? fig}? "IA" 2 . 3253.3: Af‘A‘A‘ .I‘: ‘h’fl' R6“;Z.‘I '21'{:*'y1‘i¥fu 0 5:! I. ‘6 A :‘gv'J if" I"I'(:‘:,"I.J ' “#3364" a“ “wk {SKI ~I 1§‘3‘;;5‘?' zsfcq MA, '\ I, fiI'K'V H2 V"M3.££\';» . 'toi' ($0; ‘ 'IQ ' \ 3“ A! Q - M ‘, -M6II.-,I,6,I, 23:6};2621. ._ fax? ”‘2' "."‘é 6‘. ”79b?“ '- A.\"' ." .62 «6 f6» A. 6 ' .é'O?‘ '0 3%5536‘ "-‘.“-_' 6" IvII h . ('0’ 25,0" kg??? 6"“ ' . I2 2;»,_._ 3:66.66 12.6”?“ " I. .~‘ \‘fl‘ \\"‘\¢" 5% 166' Nd“ M. I‘I'.‘ 6'30 {:2} \ 2 . .,.. ' 6?. {$5152 9,2,"? - $322 2%... 4A .... O $722, 6'.‘ ., ‘36. 22:5 [¢' -as "1‘ Qt” ‘ “4.61% ’6'." .56“? I 6‘I_‘4 .2. \ Afi‘t; I \v ‘1' “5 I211? ”ii?“ ' 2‘»: 3'.) :“.I 1" li;‘.‘?‘\ m.~‘.§:‘v‘:I~12&Ig}'.Ia’;Nt b 5% 9‘ r” ”i“ 'jfll'; ,J: " ‘a‘fixtxgi‘ r ‘?A'\. If)?" 1" I6: "I! 117:! n ' ‘5".I ‘ 2N ... ”('6 ' .'.¥.-'- '4'} ,fi 1'61" '3::.;~.A (“:1 -‘- a a 'C' 1" '1" 'I'Ii: LNNL‘H: '6‘ ’ 2 fififififi 61-"? . ..6 .6 . .6 . . _ . . I»?! ,. .6 .6636" 6666666.. .. 6.666662666266626 . T ”6 I'. ,6 2 ,I “,a‘ , III,2 rII' . 2 2 a? ...“ 2‘, II.) ,I6,_ a w . (“fitnushffixfg (”v-,7" l".."'._'6..":7;".'",‘ ,r‘;"";‘,‘~;;§‘:,,‘t "‘ : é" ;.-I6.". If . . 6 . .' - ' ' 6 - r . . .' ,. .44 _, Asa-66'3”», V’s" , .WI _ ,. 22" .62‘ . I- . ,6?! “.I'" 2' 3%}? II} ""?“‘X *{\w“v‘ . {flirt ”’02" L. '- ’." - J ' f A _ St ...- l - ‘ , . . - .e - ' I J my; .‘I RA" J2: 1'1"; ‘3'. ." . «f. ,. .,2;‘,»'_'¢ , » ‘é-I‘h int; 1"." _ .I’}; .391: “'23:, ..., ' ,.'.,I., _ , ,_ 2 ‘ ‘33”. '6 ; 2, 6.6, -6~..66.6*I6.;:66I' > 12:;563‘34‘2',‘ ,, 1,21,”??? :1: 2,66 . 2...“ 66,666” -"~ .‘J’I‘E". " ‘-". ..6‘.I.-~,,..2 w; 1. fag-3% ”k '5," 3». ' ' ' V‘ . " ' “'" .I' "h. A I .‘n ’I. '0': 6 a ' ' 'I y I ' " ‘ ' I ' A I. I... ”‘IIIIx’ I'll‘flé'".l"l‘l“. 6, ‘."V ' I f".‘0I U- .a,-§‘§$:'?A;‘ q ~ '. l 'r, l 6. .'. , - ‘ ’6 3603 O 5 o o ,- o ' ' r.‘ ' . I 1'. I" '.' . '6 73'3”?" . 3"(‘6'6‘ ' ' J . I 3% -Z. ‘ o ~7".-— . \ . - 6. - r ., A _ n I l~ ; I - ‘3'. _- | I 2}" f‘» .2. h . - 662'»: ~3"'6‘*¢6:""'67’6.*‘.'6"6 6‘666“"--.6 '4 666:6 Liv-5666‘» . ..., .. .- .. .. ,,..,6-6. f: :- ,. 6'. .:-.. ,, ' ' ' ' ,’\' ,II .’ é "'. "AI-1“.» . 3:;be “Io"? {1.1...‘ 7:7“. ;‘,,U:~2" Lt". l"“v‘0 10’5““ .W" I. ."'?I'»“,". " I 'I‘V‘fih‘.‘ f‘ . ,' fl 'A6',"| 6;,‘621: I J.I'I,' '5‘. I"? ,‘"I' :w '2 -‘ '6 A ' 'K'. ' "6‘“ .' 'I66' ‘ ' " ' ,.". 6,' ‘ '."-' ' . ‘6". ”a" H ’66 V. ,l . 'I ' Wu," ‘1'. L’S‘H‘tf'u :I” :64": J?‘ 'I is“. 6. ‘f ‘(o ‘. -‘;'”‘ ""',".6~",""'26II~|'~:_ “1“:5‘ flu" “" "‘ I ... ' ' ' " ' '1 " I' ' ' ‘ u' A-Ifi‘TA "... "Afi 2,...“ 9‘1")": 1.- 'H 1"“ .I‘! 5' :1“\.':uW’A.'..I.TI:l" 'U "‘i ‘ ‘ l". . -' 'I K .36 .-"'. ‘ ' '.>. ‘6 " 6.3" I'A‘ ." I --" " ' ”Al't' "5 '2'3 66 I ' -' I‘ll". "- ~ l'_' "6 If. 62.x 6.I~. 251'?” -.'° ,.6.,v,/. , .. \, ,,II' .., , ,A .,.En~/.LI.." fi .I‘-J 0:3 I. :'.-, ‘é A.Ap“ t»? ‘1‘”). 91.26.25;‘.'Ii:;":0' :9 +z' ' ‘i 0“ ‘ H. II A k '<-' ‘ .‘Ihil‘t‘ ‘ ”h t :1], .. . I .I. I . _ ."t .5. . . I ' I M. ’-‘l""{ .w;' '2'; .~6'6-",.I6 ‘ ' .' H I i' a" I'd'r, " "flfflv'J," 'l".' ”1' '.'A.6‘.‘6_:'IA\-, «A v."Iv'~\“ .' -‘I "'6'... (-q.‘~' ‘ .", . ' A‘. "_ 'I'L. o p ' .'-, .I'-I 0', ., DO|.." 2-,": i _.J ' .‘ ‘6‘ H. ,': .. . _ .2... .ffl. .6 p I , 6223”,)?2: .0‘ I :36”! 6‘2“. ('7’: ( .:'.‘( J’. ’ ..I ”"12””:- . At "t -I I _.".' A ”‘ ".1'.» . ',I'~,‘¢. 6;. , . 6.“ ,6,v"‘6, ‘ "6- , , ' Il‘éfil-y: Vi' M" "A? ' ..‘tji’fi‘u \{6' .I'. I :6" p ' ,f'.‘ , 'A", 1f:- .6 ”Mg ' a_' ""0" - s. I 6".' 6'. ' 6 J! nrj o 51.1,. ' ”6,“ng ""5 ‘. AJIH-I‘” ." If . - I .’ I I4" -A'I'.6I‘°I..6..‘,,’2'i ,‘:,‘/:ifw 63M Ar'rllll .' .f';""'":|" 5'." K‘- II.','I' I' I" II), ’6' ..." 16:: " 3";an oak-’0" “I I.6 4",." "l("'" I A} ,, l-l.’ ' I ' . A'u, ""'." ”’7'" '0; aufi'A' l,- 63;, a "' I" ”J z. 63- ,I ‘ " .5' .6" 'A . {"- nb: A5.” 6' {W ’r‘ "A h " ’4 I '.. .1’! . 'I - 6. ~ .6‘ 66‘. ." ‘: -'-I 6:6 666 6'. .6.“ '36 6‘r "’5' ’6'. 2.62, .-66'6,6 6' '6 ..I: J .66 In“). .6 h 5,: 6V '- -‘.6' " at -. a: .. ”I 8" "', 1 )M’ I; ‘.£}’...6'6‘C"63"'.‘.‘ "r I?” '°~,--,."/V/I 5""6- ‘ ’6" 6"I" *‘ 6“” ' ’ 162:0”! ' 67' 63" ;c'66’ 5”:sz ,£".‘I‘.‘""1 “-26%," r4.“ “, , "inf!" .... ,, v . .|‘ . . 2:", 2'2‘I'. I'I..“,;IAQ.{'I ."//utlv"" '."" ’o I . V .'4‘ - "DJ" "6 1;.) .4 ..I . ,._'I ' - . 6 .- . "- "65. 4"“- - - 66" ‘..6.I {AA/3f "- I" 6'1'1’66‘6-6... ’l' ’IJI. Q'JII: [1,16 .' 6‘.c . 6 ' .~ ' 3666f?” '6. 6’66'6 .. 2‘ 6’6? ~’6‘“»-6.‘~'6-‘I2-"~“-"'?-." ”Vi-3.6.666” £6,"i 'I "6'6 ,.;..6..I 6:621- .466: ?' ,5, ’6-1‘ .‘ “:66 ' 6,6... "6 ;-='?.- 666"?""A' 6 I, ". F '. ..- ., ,, ,'I-,,..',. -'-.“1-‘,6'6'.‘.. ,' '6‘ .AIIJ'LCI , ‘. ,'.1“I,__ , 2 I," 'f'3'.‘ ';"'.' 'Z‘I'6C'A’: "4%", AV" .'#":. ' ’2 1"!" \' :" h’fi.lhn.:‘f:"\."]' ’I". .I ’.' .‘p' ' W05 ' 31-61%”, lfA 9"" :IhrJC whiff,” I ’4’ 4‘ ..15";':.'A'T"’}" {Ir-2"” , .__ ~.-.- 661mm. 6:. ‘..;,~ . ,‘aé... 'I.I,:6,.666..: 66 666/ 6, -6 -J666,’6:'I'-..‘66..,6 '6': 'f’.)’h!,:’.‘6" 14,.6a.6,;6-.-6 . .46. 6»'.,,IVJ~6' ,. .~ "Wt’d-W , 5'5" f (‘3'.I,:/"‘~‘I.',:,’.’ ’2 1' :43"- I?” Afa‘?‘ I "/Ifilr'll’lh .0' I’lJ’lx,(’:)I!‘,{.",."-) . {NA-{I ... I" 1.0—;2” ""-D"."?l’. ’2 ...{r'uq "1;?l': .9: ..'I-";.‘6' .I’" "I” .z- ‘ {1.r.',:i:’ 4-2! :é’ 7’2),- '51:. H .l It. ' . ‘ I. ' I. , : I 7", I . .h V I’ I ,.,r ..I ’69." .(yunt‘t' .3 ‘ L ‘--I \ol- .1 5’ I'm ll: /""d"" 355' (5115;: 0 3'2); [‘6‘ ,IIII'IIj;o~ ...{IJJ‘I’O'I-l '. , II I" '/ 2.3.1.! , ”10",!" ‘~'3.I/: 4,9..6 6.7IF 51:, .I";I"A.I‘~:-A , A 1.6‘6 . i 6: 66:?66'.’(..".'I‘I‘,,6 6176"}""6"I”‘- ,4. I"v'6I,.6 If"? 616,6:6 " :23, '6II666' 6 ’2‘.” ’6J‘ :‘6 ,x ‘.'6,66'6'6' 1,6 :1" 666'-”~66"/-76~".I‘ ;6 66 . I) " ’A'L”: ” ’A' ’0’ 'L t 4.! "A": I" A; y {’6 ':(-“ 2;”; -"I 1"; . {‘T‘LIIIU I I if":" "i {3" ,IL ‘I,’ I ...' 6 ' I ' . ......66 . . . . ",6 66:626.. 2..- .. ,,,. '.,I "If’ 4”,: ,'I‘6 1'“?- . ‘ TWIN, ~61I,.ac2‘i;¢6'.,I '4')" " ,lfy’ {.2 3;: . J I . :1 ‘. J . :'Al l-’.",‘““; ,‘J'{ . Kg! “'4': J. ') I ' 1""? ulq'r 'IA“ ' ’5”? ...-1;:5'1‘" L , ./¢-b ‘“ ‘r'l’fzy; 1"! .I’/K .'--I ' (O “'I' 0' 'r“ "A" 'l A -.'°0‘.I ' 01 ‘A l'. .312?» I ' ' q". l ' H ' ' "2 "'I A‘ 'p‘ '0 ... 'IIé2Iji’l} I‘II I'OI.I’,6/I}I,V»I'-; I‘LL?" _ .‘l 13.; "',’J){. J/f,’ ($0: ".I’; 0M 6"? Afr/I.” 6"}?' .I'". '6; if“ {a [J‘- rftfi‘fiy!‘ AJ..'}'; i... 31.4" f ?" (49‘ . . ., ' II6 ”VJ II” ’II u) 'l ‘ .I' 57 . 4 ' ." £655“; ”2'- ‘ ‘ ...”? '5 r I'.'.“'- I. 7"" ’5'; :1". '1'!” 3% f i/(I'. ? I AM”'/}' 1" ' ;‘ gain”, 0" . 6 1:6,, ,2I'fi.,‘:6.,.6'6. ."‘6. bifkgfga'ux .1366 16.1,...16'32516532 .I'VS.’ WA" Igw~r666I6‘-.'6',I- ,6/6 w 2 6,7 , , 1 . .- ”66"" "'66n66 16 I. , 'IIII?,'I-. . . ‘L‘.’ J .“ .1 ” 1.. I . .I‘ ”'1'" “J, I ' 1' ’ ['l I) ' J . 5"." ‘f”'.'1%od6$ 6' .6,6I '76:! )2"? " III". I:, 'fl’hr'" 2A" ' A, ’1“fix/A/II/{AIVW’WJ‘KW'f’ #9:?!) 5" J/’ "#1 4;”??? g" M": ”'3'.“ £2.73“ “R?! ,ri'. 1 ,.6,-, 6,, 3, ,56 .v ,y.» 6:85., ,I‘«i2*‘£;? “61.26 325$ .. 6",}: 'm ”‘H‘Huh - 1"“): "1"! AV 4) find I.- '45” . \. I...fl'. .- “dl|l' leg- 3: . ......ur .15.... “A The Design of a Concrete - Three Hinged - Arch Aeroplane Hangar A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE M G. William Eremer Candidate for the Degree of Bachelor of Science June 1937 THESIS Appreciation is due to Professor C. A. Miller for his kind assistance in the preparation .I of this Thesis. 108317 Bibliography "Reinforced Concrete Structures" Vol. 111 - Heel "Reinforced Concrete Structures" Peabody "Graphic Statics" Malcolm ui‘hrnt Itl .m 4" I" .V‘ll!’ III"! Pr 3 "Us. . Preface The last few years has seen some of the greatest strides in the deveIOpment of the aerOplane industry. Heavier-than-air travel has been extended to nearly all parts or the civilized world. With the building of hundreds of new planes there arises the problem of adequate hangar facilities, thus, new and original designs for aerOplane hangars are always in demand. Up to the present time most hangars have been of steel construction. It has been the conviction of the writer that reinforced concrete could be used to good advantage in this field. There are certain advantages in this form of construction over the old steel type. Generally speaking, it is more fire- proof. It has considerably more clearance. Finally, it is more economical to build where cement and aggregate is cheapu This hangar is designed with a span of one hundred and fifty that, and a length of two hundred and sixty-four feet, with a clear distance at center of span of fifty-three and a half feet. The main doors at either end are;thirty- five feet high and Innety feet wide. They are in three thirty—foot sections of the rolling-metal type. The roof span is thirty-two feet and O-T Joists are used. ll is designed so that the bottom of the Joist is on the same elevation as the bottom of the arch rib. This last ....-.J ill ‘ file so constructed that with a bottom cord extension, metal lsth.may be fastened to the bottom of the Joist and ‘pdastered, giving a smooth ceiling. Sixteen and a half Iinches of the arch rib will project on the outside of the roof slab, which, with the pillars will give a pleasing and.modsrnistis appearance. Windows will cover the area between the pillars from four feet above the ground to the roof, and also at each end beside and above the doors. ‘ 4 The floor slab is of the usual reinforced concrete type. Inasmuch as this hangar will probably be located in a large airport, the heating plant, office facilities, and aecomedations would be situated in another building. -1- Design of Roof Slab. Snow load - 25#/ sq. ft. of horizontal projection. Assume live load - 25#/ sq. ft. of roof. Assume slab - t : 3%". dsswme - f'e ; 2000#/ sq. in. Wt,/ sq. ft. ;.2fg x 111x150 -__43.8#/ sq. ft. of roof - dead load live load ‘W ; 68.8#/ sq. ft. of roof. [7 d /-'z// Om/ooraf/w—c S/CC/ /2N '1 Cross section through slab unit. Maximum Positive bending moment Mp Maximum negative bending moment Mn 2, u I: a +A+JH+A m rmam Will design for positive bending moment. Having selected O-T Joist maximum distance between Joist is 30". Assume clear span as 30". up ;_68.6x é2¥522 2.35.7ft.# ;_429 in. #. With fc ; b.4x2,ooo ; 800#/ Sq. in. fs ; 20,000 #/ sq. in. (from 5.0.x. 306-307 k - 1 1 ' 1 fs ; 17"2o""ooo _-_ 3/8 nfc 15x800 J z. 1" k z 7/8 '3 2 2 Mp - fc kad 3 800 x 7 B x 3 8 x 12x d ; 429 .. .7 T / / d ;.( 429x2x818 % 800171311 d ; e273 ine Estimate bars 2 it" round 1%" covering. h;ay1g/1/8_._.27/1%/1/s; .27/1.5/ .125 h _-. 1.875" Must assume at least a 3%" slab. Commercial slab ; 3%" a 2 3.5 — 1.625 ; 1.875 Steel required. 3 .2. z. 429 - .01335 sq. in./ft. of slab. A1' 2 - fst 20,000x .875x 1.875 Use i in. bar spaced at 12 in. 0-0. The maximum negative bending moment Mn at the support is also numerically ;.429"#. The tension side is new on tap of the slab and the protecting covering need be only one inch. The positive will be bent up to be served as negative steel. The commercial «1 :_ 3.5-1-425 ;_ 2.375" The minimum are An will be less than Ap but due to efficiency and size, (smallest size that is easily handled) the same steel will be used over the support. Points of Inflection. Mp for positive steel 9% % elear span ;.2.85" Mn for negative steel 21% % clear span ;_6.45" . . - 1‘ l A e ‘- . . — a I I k _ ' t . i ' _ a o l . I N u l ..‘ ‘v-‘ . " s n e . ' - > I O I ‘ I . ‘ h D I . ‘I‘ I“ . . - . . U - . ~ ‘ . 0- L \ I J ‘ l r . " I . r , . - l - ,A V . _ Temperature Steel. p ; .002 for slabs with deformed bars. As ;_pbdi;_.002 x 12 x 1.875 ; .045 sq. in./ lin. ft. Use i" round bars spaced at 10" C-C. Selection of Joists. Truscon "O-T" Open truss Steel Joist. Clear Span - 32 ft. Joist type - 167. Total safe load pounds - 5860 Total safe loads in pounds per sq. ft. for Joist spacing 0f 30" :_ 73# / sq. f. . O.K. have only 68.8#/ sq. ft. Design of Arch. Wt. transmitted to the arch by one Joist. It. of Joist - 2% x 9.6 ;_l53.6# It. of roof slab 32 x 25 x 43.8 : 1752.0 “—5 Total wt. 1905,5#/ each end of Joist It. of snow ; lOOO#/ each Joist end Find size of Arch” Assume span 150' rise 40' 1600 l 5625 80 122.5 80 - .. Ii R ; 90.3125‘ radius of arch axis. Size of Arch. Assume width 1' depth 3‘ Wt. of arch / Joist connection (every 2.5') Stress Diagram. Wt. per Joist eennection (every 2.5') Dead Lead ¢0' 75' 150 ; 1125#/ 2a' of arch. -5- Roof and joist 2 x 1905.6 1 3811.2 Arch %%§%f%K/pt. ape. Snow Load 1000 x 2 :_ 2,000#/pt.. app. Wind Load Duchemin's Formulae Pn : P 2 sin. A I ? sin2 A Assume P; 30 sin A :_ 40/85 P ; pressure / sq. ft. of vertical projection. Pn ;_30 2 x 40(85 ; 30 .442 '1 27.6 #/ sq.ft. of roof. 1 O 5) I.§2 27.6 x 32 x 2.5 ; 22: Q#/ pt. app. A segment ef a circle was such that funicular polygon was about one foot from the arch axis which would call for a 6' arch to have funicular polygon within the middle 1/3. A parabolic curve was used as the shape of the arch which gave a depth of 3'. Test the size of the arch. The arch was divided into ten equal parts and the bending moment is computed for each section. - Sketch shows horizontal distances to points from crown and vertical distances from pillar. 3%! 311413117 75670562235605 494) 4/45 33.25 25.25 17.35 I.) 0 Bending moment at any section is equal to the summation of moments to either side of the section. Reactions at Pillar. Summation of V ; 0 V ; 35 x.6936.2 v ;,242,767.0# Summation of M - _0 - 40 H / 2, 427, 6701x 75 6956.2 ( 1.25 / 5. 75 / 6. 25 / 8.75 / 11. 20 16.10/ 55 5 21.00 / 25.40 / 25 75 / 28.1 / 50.4 / 52. 65 54.90 / 57.10 / 59.50 / 41.45 / 45.60 / 45. 70 / / 55.85 / 55. 85 / 57. 80 / 59.70 / 61. 60 /$ 65 25 / 67 05 / 68.80 / 70. 50 / 72. 20 / 75.85) - 40 / / / 47. so / 49.85 / 51.85 5/ H :,9,726,285.4 - l8, 207,525.0 H ; 8,481,239 50 H ;,212,050.9# Bending moment at the different sections. First section from left - All moments te left. Bu1|1 6956.2 (.25 / 1.95 / 5.65 / 5.50) / 212,050.9 x 6.6 - 2429767 X 5095 ,_ 6956.2 (11.15) / 212,050.9 x 6.6 - 242,767 x 5.95/ 8M1 2 32:27809.# 5M2 ;_ 6956.2 (1.2 / 5.0 / 4.8 / 6.55 / 8.25 / 995 E -7- / 11.60) /212030.9 x 12.5 - 242,767 x 12.27. 3M2 8M2 342 BM5 8M3 5M5 EMS 8M5 BM6 8M6 336 Ens- BM7- ;_6956.2 (45.55) / 212050.9 x 12.5 - 242767 x 12.27. ;_ 314.556.6 / 2,650,386.0 - 2,978,751.0. l3,808'# ;, 6936. 2 ( 3 / 2. 25 / 4.15 /6 .05 11.50 / 15. 25 / 14.95 / 16.65 / 182,-242767...Ox1895 90 9 70 (1’43); * 8 30 212, 030.9 x ;, 6956.2 (105.00 / 212050.9 x 18.2 - 242,767 x 18.95. 728,501 / 5,858,962.58 - 4,600,456.6 - 15,177 # 6936..2§l35/ 55.95/555/755/ / 14. 95 / 16.75 / 18. 55 / 20 .5 / 22.0 212,030 9 x 23. 4 - 242767 x 26. 9.50 / 11.20 / 15.10 0/ 23- 7 / 25.35)-% ; 1.555.912 / 4.961.525 - 6,511,942 ;_14,507‘# ;, 6936 2 (0.5 / 2. 45 / 4. 55 / 6. 65 / 8. 70 / 10.70 12.70 *azzgéazéaéhza 7mg? éagaédfiha29°* 212, 767 x 33 35 ; 6956.2 (509.45) / 212,050.9 x 28.1 - 242,767 x 55.55. ; 2.146.407 / 5,958,068.29 - 8,096, 279.4. 1 7919509'# ; 6936.2 ( 1. 45 / 5. 65 / 5. 8 / 8.00 / 10.15 / 12.25 / 14.55 / 16.40 / 18.40 / 20. 40 / 22. 40 f 24. 55 / 26.25 / 28.15 / 50.0 / 51. 80 / 55.60 / 55 55 / 57.05 / 58 75 / 40 40) / 212,030. 9 x 32. 2 - 242,757. x 41. 05- ;_6956.2 (459.00 / 212,050.9 x 52.2 - 242,767 x 41.05. ; 5,185,715.8 / 6,827,594.98 - 9.965.585.5 — 45, 525.4'# - 6956. 2 (.55 / 2. 70 / 5.00 / 7. 25 / 9 50 / 11.70 / 15.90 / 16.05 / 18.20 / 20.50 / 22.40 / 24.45 / 26.45 / 28.45 / 50.45 / 52.40 / 54.50 / 56.20 / 58.05 / 59.85 / 41.65 / 45.40 / 45.10 -/ 46.80 / 48.45 / 212,050.9 x 55.4 - 242.767 x 49.15. -8- B117 _-_ 69552 (655.55) / 212,050.9 x 55.4 - 242,767 x 49.15. 8117 ; 4.415.042.5 ,1 7,505,895.8 - 11.951.998.05. BM7 ; 15,0619»? 1388 _—_ 6936.2 (1.6 ,1 4.05 / 6.45 / 8.80 ,l 11.15 / 15.45 ,4 15.70 / 17.95 / 20.15 / 22.55 ,1 24.50 / 26.65 ,1 28.75 ,1 39.85 / 52-90 ,4 54.90 ,1 56.90 ,1 58.90 ,I 40.85 ,1 42.75 ,1 44.65 ,1 46.50 ,1 48.50 ,1 50.10 ,1 51.85 / 55.55 / 55.25 / 55 90) / 2120399 1: 37.9 - 242767 x 57.65. 8118 :_ 5935.2 (866.69) ,1 212050.9 x 37.9 - 242,767 x 57.65- 81118 ;_ 5001,5552 ,1 8,015,971 - 15,995,517.5 3M8 ; 21.988.7'# BM9 :. 6936.2 (.55 / 5.00 ,1 5.45 / 7.90 ,1 10.55 / 12.80 / 15.20 ,4 17.55 / 19.90 / 22.20 ,1 24.45 ,1 26.70 / 28.90 ,1 51.10,! 55.25 / 55.40 / 57.50 / 59.60 ,1 41.65 / 45.65 / 54.65/ 47.65 / 49.60 ,1 51.50 / 55.40 / 55.25 ,1 57.05 / 58.85 / 60.60 ,1 62.50 / 64.00 -/ 65.65) ,4 212050.9 x 59.4 - 242.76? x 66.3 BMg :. 69352 (1,128.60) ,1 212050.9 x 59.4 - 242,767 x 66.5. Bi"”9 ; 7,808.195.5 / 8514017.4 - 150954551. B1119 :36.76O.68'# Reinforcing Stool. Assume 4-8." x 4" x l" angles. Test for unit stress 3A46" 3’0"» IBM I ”’1 I: _J "—21 h- 5 Moxnsrit 0f Inertia 5f Lra1af5rned area of angles about xx. 2 I ;_4 x 15 (1/12 x 11 x 13 f 11 x 13.55 ) _._ 119.451"4 f. :Z/EQ, A I 12 x 18 2. 451525 14,2 7‘ £5 f 2 x 36’Z’119451 1.0 171 36 x 12*} E’x I x 15 l—‘N ; 502 / 59.4 ;_ 561.4 or 442.6 71/" “0 mall. A'Iumo 4-8" x 4" x 5" angloc. Moment of inertia of transformed area of angles of axilxx 2) I .1 4 x 15 (1/12 x 5.75 x 13/ 5.75 x ““2‘12. ) -10- 4 I :_ 13,402" . f6 -- 4§§2§ x J2 7‘ 45:25 I 12 x 15 f " 1/12 x 12 {5‘6 / 15.402 36x12x515.75x15 ft :_ 714 I 164 F0 _-—__ 878 or 550#/Iq." 5'. ; 15 x 12.2 x 8.78 18 F. 8.928#/Iq." Design of tap and bottom lacing. Compulsion S _-_-_ 15000 - 50 %, Lacking stress. 50 l. r :4".- 1 \ arf _ 373:1 ‘2‘ J.” 1" T w—v . Lacing Load ; .025 x 45.525 3 1138# Use single lucin; 0t 60°w1th length of angle. Straps - 1%" x g" 3 K1]? :. (Wfi -11- 2 ,4 2 / 1 :_ 5" x ; 5 1 ton 30° :_ 5 (.57735) 3.2.8865 Specificationl. Cantor 3/4" rivet. hol- not. less than 1%" from sheared edge. Laoing Length 5; 2X :_ 5.77" / 1%" at. each and ; 7%" L - “V— “ £472: 3 34.7 0K. allowable :_ 170 11382? for ouch single bar. 1138 _-_ 1311)? for each linglo lacing. .133 S ; 13h 3. 175W .q" liar-3|. .5 x 1.5 Allombl. - s _-_ 15000 - 5013? 15000 - 50 (34.7) _—_ 13,26569/ Iq." Design of 3110 Latins. xfi‘m‘ igr‘fl. /‘f " -____ ________}>_ _ _ -2450 3 2‘ 3 ; 20" X ; 2013.11 30. 1 20 X .57735 2. 11.54" -12.. Losing length ; 2x :1 23.09, lay 23.1, Overall length 23.1 / 1% at. each end _-_ 25.5" 1 1 23.1 165. O.K. Allowable :_ 170 #- 01;; _1;_1=_3__§_ :_ 1311} for each lacing. .866 3 1311 175017 sq." Itreu. :- 3773775- Allowable s ; 15000 - 50 (165) :_ 675014/ Iq. 1n. Denim of plate to hold bearing anfl... ’T—r-"T-zz. ----- —_I AM 'o cad; 6° :— L {-3- 213.41 _ __- 1 _’ ’3 Aunme Plate. 2%" X 26" x 1%" Shear 1n rivets . -1}- 3 -_-_ 1752 ,1 153.6 ,1 1000 :_ 2905.6 O.K. for sheer. Allowable 4420#/ 3/4" rivets. The rivets shoald be 2-3/4" both bottom and top. Tension in bottom rivets due to the bending moment. 290§ .6 £2.5J if 1% j 3/4L 1 1340# Stress in rivets. 10.86 1340 - 1462 #/ sq." Allowable tension ; 16,000#/sq.' . 1 x 2 Design bearing Angle. Test fer shear in rivets. ‘ - 8 U rivets. No. of rivets _-_ 3%230-6- - 65 '93 r... 1 tr;— 0 O iL— o . L cg Tout fer tension in tsp rivets. $05.6 12.51 1} 1%: 1 3/5; _-_ 3738:? 3.89 3738 :. 4230F/ sq. in. Allewable :_ 16,00Cxfi‘/d \ '4418112 ‘ ' Test fer bending moment. 8 .1 g; 3'; 2905.6 x 2 3/4 x i: _-_ 76,700#/ sq. in. 2. 5 - 1/12 x 5 x )5 Net safe. -14- “same 8" x 4" x 1" angle. :IaCt S ;_l6000 and solve for length of angle. 16000 ;_ 2905.6 x 2 3/4 x i l- x ~13 - x :_ 2.99" (Jae 3 " Length of angle. Bearing Angle — 8"x 4" x l" x 3". New size of bearing olate 26" x %" x 3". DOsagn 0: Pillar - ‘ Use approximate dimensions on first trials. 24:, 76 7” 2/2; 030. 7" VT .20' 1 . ' ll |EI| 21':’ team:- pillar 1' thick. BM... ,_._ 2120303 1: 20 ,1 242,767 x 7% ,l 18 x 1 x 150 20x3x150x7.5/2x22x150x5/2x x 8/3 B.M. :. - ‘11312236600 / 1.820.752 / 25.650 ,1 67,000 / 33,000 / x 9.5 / 22 x 150 -15- 8.11. o :_ _ 2,275,598'#. Very unsafe. .244767“ < 2/2/030‘?‘ \\_ '0 N Y L._ o ' 4r 7 3, fl, Assume thickness of pillar as 3' 3.31.. f; __ 212030 1 20 / 242767 x 12 ,1 1 x 18.5 x 3 x 150 x 13.5 / 3 x 3 x 20.5 x 11.5 x 150 / 4 x 3 x 22.5 x 8 x 150 / 3 x 22.5 x 150 x 3 x 4. BLM.. ; - 4,240,600 ,1 2,913,204 / 112,387 / 318,300 ,1 324,000 / 121,500. B.M.° _._ 451,209'# Unsafe. Make base 2’ longer on outside. B.M.° _._ 212030 J: 20 ,1 242767 x 14/ 18.5x3 x 150 2115.5 / 3x3x20.5xl3.5x150/4x3x22.5x10x150 /3x22.5x150x3x51/3. 13- 11.. ; 4,240,600 / 3,398,738 / 129,037 / 373.650 / 236.250 / 162,000. 13-14., ; /59,075'# P°1nt Applications of vertical forces. V't. ef pillar. 150 x 3 (1 x 18.5 / 20.5 ,1 4 x 27.5 / 3 x 22.5) _-_ 106,875}? 129,037 / 373,650 / 236,250 1 162,000 / 3,398,738 106,875 7242.767 4 2 9 675 ; 12.31 ft. from too 349.642 -15- From similar triangle . 30 342642 " 214mb x 3. 20 m 359.852 x ; , 212030 J: 20 1 4240600 3438747 3219642” x :_ 12.15' Where resultant force hits base. Way outside middle 1/3. Assume new design. Have section of floor slab as part of pillar. Bottom ef pillar 5' below surface of ground. fihhgzaV 2/2Q30 Q in ‘\ V6 8’ f’ 3’ ’ JL Lt. — 4. 4.4 6 4. H3 Wt. of Pillar. 3 x .50 (4 x 22.5 / 4 x 22.5 f 3 x 20.5 / 1 x 18.5) / 8 x 5 x 9 x 150 ;_ 180,000# Pt. asp. V forces. -17- x from toe _-_ 544000 x 20} 8,325 x 15.5 1‘ 27,675 x 13.51 EOfiOO X 10 4227 67 2‘ 5.0.300 x 1613 / 24276: x 14. - 422,767 x - 1,080,000: 29,000} 373,600 1 405,000 / 216,500 ,5 3 398. 738 422,767 X ;_ 5782338 - 13.66' from too 5557757 " From similar triangles. r 20 42% 74/ X 2/2030 X- 2'2‘3‘1 0 0 " 422767 x r. 29 1: 212030 :_ 10.05' 2 ; 13.66 - 10.5 ; 3.61 c 1 12 — 3.6 _-_ 8.39' Middle 1/3 _-_ 2' I ID 0 Assume toe section 8' longer on bottom. Pt. App. of V. Forces. x : 63,000 x 28,5 8325 x 2%. 27,675 x 21.5 f 40500 x 18 32 7 2 x 40500 x 3 2 / 242767 x 22 ” 453264; X ; 8488483 ;_l8.35' from the toe 32 7 -18.. From similar triangles. 2” «an; X 2/3030 x ; 20 1: 212030 463,267 . 1 9.16' ; 18e35 " 9.16. z 9919 x z c 16- 9.19 :_ 6.81‘ Middle 1/3 :_ 5.33' Assume Pillar, 4' wide other dimensions the same. L AV' .L 4LL334; '6’ 1.114 f 'Tw 'r'rrT Wt. of Pillar. 9 i .5. 4% 1023.559: {5858,258‘,12§ g g pg {530.5 x 3 x 4 x 150 ; 60,000 / 11.100 7‘ 40.800 / 54.240 / 108,000 1 274,140,} -19- Pt. App. V. Forces. X 3, 60,000 x 28 / 11,100 x 23.5_/ 40800 x 21.5 / 55,240 x 18 516900 / 108000 x 312/3 5 242767 x 22 5169000 x ; 10,291,874 ;, 19.9' 5167900 From similar triangles. ‘90 376,700 X ' 2A2030 x ; 20 x 212030 ;_ 8.22 516,900 N I 19.9 " 8e22 1 11e68 c ; 16— 11.68 _-_ 4.32' mule 1/3 _-_ 5.33' Within middle 1/3 Final Design. fiuuuMI 1 Zia 0.90 ‘90 6 .1 L: .211 \‘o \ :7 “n .11 /Z' ‘4' 2'/’ .3' | 1’| -20- Wt. of Pillar. 8 x 5 x 10 x 150 / 4 x 24 x 5 x 150 / 1 x 13.5 x 4 x 150 f 3 x 15.5 x 4 x 150 / 4 x 17.5 x 4 x 150 f 8 x 17.5 x 4 x 1 W 2.. 50,000 / 72,000 / 8,100 / 27,900 7‘ 42,000 / 84,000. 294,000 W 1 294000 50. W Pt. App. V Forces. x 2 60,000 x 28_/ 72,000 x 12 g 8,100 x 23.5 1,27,900 x 21.5 £_42,000 x 18 535757 / aQQQQ_x5§B24%7£_242161_x_22_ 'x ;_ l 680 000 , 864 000 190 000 6 000 7 6 000 8211992 53 67 67 '/ 5,340,874 536767 X ; 10,327,874 ;_ 19.3' from toe. 536767 From similar triangles. 53g 767 242,036 x ;_ 20 x 212030 ; 7.9' 335,767 19e3 " 7e9' :— lleh’ c ; 16 - 11.4 2 4.6' Middle 1/3 ;,5.33' with in middle 1/3. -21- Sliding. F :_ 536767 X .4 1 1.015 N01) 1300 safe 212030 Use key to increase F. Passive earth pressure. 1 G's 1 Cos. 0 (Ice. 9 ,1 (Cos? o - Cos? ‘ CEB.G*(Cos.2 0’— cs. 5 P, - Ce' 11213 1 3.7 x 100 :5 169 x 4 1 125,000# I 3.7 x 100 x 25 x 4 14,625# 2 Passive earth pressure on key - 120,375#/4' Sliding. F ; 536767 J: .4 .5 120.375 _—_ 1.6 212030 Pt. app. of forces on key. .___.y. 1 ‘—_ aw 4J' 125 000 X 13 X 2 - mt ’ 3 “ “525 1‘ 2.3L?- / 120,000 . x BeMe. - -22- x 1 1,014,600 1 8.9' 120375 Active pressure on stem. 126000# of concrete. 126000 ;_ 13.1 ft. of concrete. 16 x 4 x 150 X 150 X 1 150 x 13.1 :1 19.71 equivelent height of dirt. 100 2 P27 :_ 311031;:27 2. 1.055% 2 2 Active pressure on stem :_ 5690#/' . 22,760#/4' Pt. of App. 10550 x 27 x 2/3 ;_ 4860 x 19 2/3 / 5690 . x . I ..- 22e9. B.M. (max.) 1 g1203754- 227691 3.9 1 69149.6'# - M 1" "' T d 1 69149.6 1 12 1 20.5 say 21" D 1 24" 164 1112 Shear. V ; 120.375 - 22760 1 24615 4 Y ;, _X__ 1;, 24 1 1 111.5 too large. bjd 12 x 7 8 x 21 Make 1. 1 47" -23- - 4 _ D" h v - 12%;}3 x 47 - 49'9” O.K. Allowable 1 50 Steel 1 ‘3 1_ pbd 1’ .0094 x 12 x 47 1' 5.3sq." Use 1%" sq. rods @ 3%. 0-6 Area 1_ 5.36D' Bond U _._ .1... 1 24615 1 54.9 O.K. 2°“ 5 x 12/3.5""x"7"78_x‘1f7' . Allowable 1 100 125 Soll‘Pressure. P:_E_ 1 .< 52> F1 53 67 {l/6;4.631 134122 (1£.86) ...}?— P :_ 7,80%) 588#/ 5:10. Allowable on good clay and gravel. 6 tons / sq' ‘1 12,000#/ sq.‘ Test of heel slabs which composes part of interior floor. 73. 7’13, ' .5296“ 23&?‘ 588 / ( 11833 - 5&8 1 2388# 3.11.» — ~750x8x4 588x8x4 238828x8 .. / I‘T /3 -24- B.M.ab 1 24000 ,1 18,816 ,1 25,472 ~ B.M.ab 1 20,288'# a 1 20288 x 12 4 - ( 123.5)% 164 x 12 - d 1' 11.1 say 12" Steel. A8 :. pbd .0094 x 12 x 12 1.354 sq." Use 7/8" round @ 5" area 1 1.44 sq." Shear. V 1 750 x 8 / 588 x 8 / 2388 x 8 2 1 ~6000 / 4704 / 9552 ;,8256# V 2.;!_. :. 8255. 13.8#/ sq." Allowable ; 50. del 12 x 778 x 57 . Bond. a :. V ;. ..8256 1 111.5 Allowable 1 zon 2.75 1: 12/5 1: 7/8 x 12 125 Deformed bars. Design of Hinge and Pin at Pillar. Angle resultant makes with horizontal at pillar. -25- .3zaJMC> 2fi2z6/ 6 1. .EZZCJBO Tan-0 ; 242761 1, 1.14497 12030 0 1 48° 52' cos. 9 :- 065781 Assume a 6" pin. Total bearing pressure 1. 322,300# Allowing bearing stress in a cast steel pin 1_99,600#/sq." Bearing surface 1_ 2 surfaces @ 2” Bearing area 1 6 x 2 x 2 1 24 sq." 322 00 - 13,420# sq. " O.K. .512..- / Shear. 322300 1_1l,390#/ sq." Allowable 44,000,81n51e shear. 31" 32 Allowable 88,000, double shear. Hinge in pillar. Allowable bearing stress in. Concrete 1 350#/ sq." Size of Base. 322 00 :_ 922 sq." 350 Select 3' x 3' base. Area 1 1296 sq." -25- Design of Hinge and Pin at crown. Assume a 4" pin. Bearing area 1_4 x 4 1 16 sq." Force on pin 1’ 212,030# 2120 0 1 13,260 #/ sq." 0.1:. 16 Shear. 212030 ;_ 16850#/ sq.” O.K. 'TTx 2 Hinge connection to the structural steel at the crown and pillar. Use 2-8" x 4 x 3/4 angles to 50 vertical between structural steel. The hinge will be held in place by the angles but will also hear directly on the structural steel. _l 1.5 =.::_.= g :1 wm_mh_mmw>_23 mpdhw 240.10.: L ”'Wflifilflujluj