A STUDY OF MANGANESE AVAILABILITY IN SEVERAL MICHIGAN SOILS

> Thests for the Degree of M. S. MICHIGAN STATE UNIVERSITY Govind Pailoor 1966

A STUDY OF MANGANESE AVAILABILITY

IN SEVERAL MICHIGAN SOILS

Bу

Govind Pailoor

AN ABSTRACT OF A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Soil Science

1966

ABSTRACT

A STUDY OF MANGANESE AVAILABILITY IN SEVERAL MICHIGAN SOILS

by Govind Pailoor

Greenhouse and laboratory investigations were initiated in 1964 to: (1) study the manganese availability of several Michigan soils; (2) evaluate 0.1N H₃PO₄ and 1N NH₄OAc + 0.2 per cent hydroquinone as to their effectiveness in the determination of plant available soil manganese; (3) correlate several soil chemical properties with manganese availability; (4) study the effect of lime and manganese applications on mangnaese availability, and (5) determine the manganese sufficiency level for oats, beans and radishes.

Soils containing less than 30 pp2m of 0.1<u>N</u> H₃PO₄ extractable manganese or less than 62 pp2m of 1<u>N</u> NH₄OAc + 0.2 per cent hydroquinone extractable manganese may be considered to be manganese deficient for beans. Soils containing more than 69 pp2m of easily reducible manganese or 49 pp2m of acid soluble manganese may be considered as sufficient for the bean crop. Twenty-five ppm or less manganese in the bean plant tissue may be considered as a deficient level and more than 35 ppm manganese may be considered as sufficient for normal plant growth.

On mineral soils, 0.1N H₃PO₄ was better in assessing manganese availability than 1N NH4OAc + 0.2 per cent hydroquinone. However, the latter gave better correlations with

i

plant yield and manganese uptake on organic soils. Generally, soil pH and extractable bases were negatively correlated with extractable soil manganese and plant manganese. Soil phosphorus was positively correlated with soil and plant manganese contents.

The near neutral and/or alklaine, coarse and fine textured soils and also muck soils respond well to manganese fertilization.

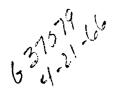
Results indicated that nutrient imbalance (Mn, Fe, Al, Cu, B) arising on coarse and medium textured acid soils (pH 4.7 and 5.5) may give rise to abnormal growth of bean plants.

A STUDY OF MANGANESE AVAILABILITY IN SEVERAL MICHIGAN SOILS

Вy

Govind Pailoor

.


A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Soil Science

1966

ACKNOWLEDGMENT

The author expresses his sincere gratitude to Dr. J. C. Shickluna for his encouragement, guidance, and support during the course of this investigation.

The author is greatly indebted to Dr. R. L. Cook who kindled the path of his humble determined career.

His sincere appreciation goes to Dr. Kirk Lawton for the help and invaluable suggestions given during the investigation.

He acknowledges the valuable opinions and criticisms given to him by Dr. R. E. Lucas, Dr. H.D. Foth and Dr. C. J. Pollard.

The author is grateful to Dr. D. J. deZeeuw who advised him during the inoculation studies on the suspected bean mosaic virus; to Dr. N. Leeling for his interest and cooperation in the gas chromatographic detection of herbicidal traces; to Dr. A. L. Kenworthy for the timely spectrographic analysis of the plant samples.

He is thankful to Mrs. Jennie Parfitt for assistance in computer programing.

The author acknowledges the cooperation given to him by his fellow graduate students.

He greatly appreciates the financial support given to this project by the Tennessee Valley Authority.

He remembers the people at home for their kind blessings and constant support.

TABLE OF CONTENTS

Chapter		Page
Ι	Introduction	1
ΙI	Review of Literature	3
	1. Chemistry of manganese	3
	2. Forms of soil manganese	4
	3. Role of manganese in plant nutrition	5
	4. Manganese deficiency symptoms	7
	5. Levels of available soil manganese	9
	6. Levels of plant manganese	10
	7. Available soil manganese as related to several factors	11
	8. Estimation of plant available soil manganese	16
	9. Manganese fertilization	19
III	Experimental Procedure	22
	I. Greenhouse Study	22
	A. Experiment l	22
	B. Experiment 2	24
	II. Laboratory Study	26
	A. Soil analysis	26
	B. Plant analysis	29
IV	Results and Discussion	30
	A. Experiment 1	30
	B. Experiment 2	71

Chapter		Page
V	General Discussion	105
VI	Summary and Conclusions	123
VII	Literature Cited	126
VIII	Appendix	132
	l. Soil types	133
	2. Data on Experiment 1	153
	3. Data on Experiment 2	159

LIST OF FIGURES

1	Relationship between 0.1 <u>N</u> H ₃ PO4 extractable and 1 <u>N</u> NH4OAc + 0.2 per cent hydroquinone extractable mangnaese on all soils	42
2	Relationship between 0.1 <u>N</u> H ₃ PO ₄ extractable manganese and manganese uptake by oats on all soils	43
3	Relationship between 0.1 <u>N</u> H ₃ PO4 extractable manganese and yield of beans on soils grouped as manganese sufficient rated by the bean crop	49
4	Relationship between soil reaction and 0.1 <u>N</u> H ₃ PO ₄ extractable manganese on all soils	55
5	Relationship between extractable phosphorus on 0.1 <u>N</u> H3PO4 extractable manganese on all soils	56
6	Relationship between 0.1 <u>N</u> H ₃ PO ₄ extractable and 1 <u>N</u> NH ₄ OAc + 0.2 per cent hydroquinone extractable soil manganese on mineral soils	73
7	Relationship between 0.1 <u>N</u> H ₃ PO ₄ extractable manganese and manganese uptake by oats on mineral soils	77
8	Relationship between 0.1 <u>N</u> H ₃ PO ₄ extractable manganese and manganese uptake by oats on organic soils	78
9	Relationship between 1 <u>N</u> NH ₄ OAc + 0.2 per cent hydroquinone extractable manganese and manganese uptake by oats on organic soils	79
10	Relationship between 0.1 <u>N</u> H ₃ PO ₄ extractable manganese and manganese uptake by oats on sandy loam soils	82
11	Relationship between soil pH and tissue manganese in oats on loam soils	92

Page

LIST OF TABLES

Table		Page
1	Soil types and chemical properties of the soils used in Experiment 1	31
2	The manganese deficiency index values, their description and number of observations in each group	32
3	Treatment, manganese deficiency index rating of beans and number of observations made on soils showing manganese deficiency	35
4	The effect of manganese and lime applications on the yield and uptake of manganese by oats and beans (figures represent mean values of three replications)	36
5	The correlation between manganese extracted with $0.1N$ H ₃ PO ₄ and $1N$ NH ₄ OAc + 0.2 per cent hydroquinone on soils showing various degrees of manganese deficiency using beans as the indicator crop	41
6	The relationship between $0.1N$ H ₃ PO ₄ and $1N$ NH ₄ OAc + 0.2 per cent hydroquinone extractable manganese for all soils and the yield, tissue manganese (ppm) and manganese uptake by oats and beans	44
7	The effect of available soil manganese determined by $0.1N H_3PO_4$ and $1N NH_4OAc + 0.2$ per cent hydroquinone on the yield, tissue manganese and manganese uptake by oats and beans on all soils when extractable phosphorus was included as a soil variable	46
8	The relationship between $0.1N$ H ₃ PO ₄ and $1N$ NH ₄ OAc + 0.2 per cent hydroquinone extractable soil manganese and the yield, tissue manganese and manganese uptake by beans on soils showing various degrees of manganese deficiency	

.

9	The effect of available soil manganese determined by 0.1 <u>N</u> H ₃ PO ₄ and 1 <u>N</u> NH ₄ OAc + 0.2 per cent hydroquinone on the yield, tissue manganese and manganese uptake by beans based on manganese deficiency index when extractable phosphorus was included as a soil Variable	52
10	Simple correlations between pH, sum of the extractable potassium, calcium and magnesium and extractable phosphorus for all soils and the 0.1 <u>N</u> H ₃ PO4 and 1 <u>N</u> NH4OAc + 0.2 per cent hydroquinone extractable soil manganese	54
11	Simple correlations between pH, sum of the extractable potassium, calcium and magnesium and extractable phosphorus and $0.1N$ H ₃ PO ₄ and $1N$ NH ₄ OAc + 0.2 per cent hydroquinone extractable manganese for soils grouped according to manganese deficiency index	57
12	The relationship between the yield of oats and beans on all soils and tissue manganese and manganese uptake by beans on all soils and on soils grouped according to manganese deficiency index	59
13	Simple correlations between the yield tissue manganese and manganese uptake by oats and beans on all soils and pH, extractable potassium, calcium and magnesium and extractable phosphorus	60
14	Simple correlations between yield, tissue manganese and manganese uptake by beans and pH, extractable potassium, calcium and magnesium and extractable phosphorus on soils grouped according to manganese deficiency index	62

15	Relationships among the yield, tissue manganese and manganese uptake by oats and beans and pH, extractable potassium, calcium, and magnesium, extractable phosphorus and manganese extracted by 0.1N H ₃ PO ₄ and 1N NH ₄ OAc + 0.2 per cent hydroquinone	5 3
16	The relationships among the yield, tissue manganese and manganese uptake by beans on soils grouped according to manganese deficiency index and pH, extractable potassium, calcium and magnesium, extractable phosphorus and manganese extracted by 0.1N H ₃ PO ₄ and 1N NH ₄ OAc + 0.2 per cent hydro- quinone	65
17	Comparison of the multiple correlations between the manganese extracted by $0.1N$ H_3PO_4 and $1N$ NH_4OAc + 0.2 per cent hydro- quinone and the pH, extractable potassium, calcium and magnesium and extractable phosphorus on all soils and when soils are grouped according to manganese deficiency index using beans as the indicator crop	67
18	Mean values and ranges of soil manganese extracted by two methods and their differences on soils grouped according to the manganese deficiency index rated by the bean crop	68
19	Mean values and ranges of several soil chemical characteristics and the studied dependent crop variables based on the manganese deficiency index of the bean crop	70
20	Soil texture, and number of observations contained in each textural group	72
- 21	The correlation between manganese extracted with $0.1N$ H ₃ PO4 and $1N$ NH4OAc + 0.2 per cent hydroquinone on mineral and organic soils 7	72
22	The correlation between manganese extracted with $0.1N$ H ₃ PO4 and $1N$ NH4OAc + 0.2 per cent hydroquione on soils grouped according to texture.	74

23	The effect of available soil manganese determined by 0.1N H ₃ PO ₄ and 1N NH ₄ OAc + 0.2 per cent hydroquinone on the yield of oats and radishes and tissue manganese and manganese uptake by oats and comparison of their effect when extractable phosphorus is included as a soil variable on mineral and organic soils	76
24	The effect of available soil manganese determined by 0.1 <u>N</u> H ₃ PO ₄ and 1 <u>N</u> NH ₄ OAc + 0.2 per cent hydroquinone on the yield of oats and radishes and tissue manganese and manganese uptake by oats and comparison of their effect when extractable phosphorus was included as a soil variable on soils grouped according to texture	81
25	The relationship between 0.1N H ₃ PO ₄ and 1N NH ₄ OAc + 0.2 per cent hydroquinone extractable soil manganese and soil pH, lime requirement, extractable potassium, calcium and magnesium and extractable phosphorus on mineral and organic soils	83
26	The relationship between 0.1 <u>N</u> H3PO ₄ and 1 <u>N</u> NH4OAc + 0.2 per cent hydroquinone extractable soil manganese and soil pH, lime requirement, extractable potassium, calcium and magnesium and extractable phosphorus on soils grouped according to texture	85
27	The relationship between oat yield and tissue manganese and manganese uptake by oats on mineral and organic soils	87
28	The relationship between oat yield and tissue manganese and manganese uptake by oats on soils grouped according to texture	87
29	The relationship between soil pH, extractable potassium, calcium and magnesium and extractable phosphorus and the yield of oats and radishes and tissue manganese and manganese uptake by oats on mineral and organic soils.	89

ļ

30	The effect of soil pH, extractable potassium and magnesium and extractable phosphorus on the yield of oats and radishes and tissue manganese and manganese uptake by oats on soils grouped according to texture	91
31	The effect of several soil chemical properties on the yield of oats and radishes and tissue manganese and manganese uptake by oats on mineral and organic soils	94
32	The effect of several soil chemical properties on the tissue manganese and manganese uptake by oats and yield of oats and radishes on soils grouped according to texture	96
33	A comparison of the multiple correlation coefficients obtained for manganese extracted by $0.1N$ H ₃ PO4 and $1N$ NH ₄ OAc + 0.2 per cent hydroquinone as a function of soil pH, extractable potassium, calcium, and magnesium, and extractable phosphorus on mineral and organic soils.	98
34	A comparison of the multiple correlation coefficients obtained for manganese extracted by $0.1N$ H ₃ PO4 and $1N$ NH ₄ OAc + 0.2 per cent hydroquinone as a function of pH, extractable potassium, calcium and magnesium and extract- able phosphorus on soils grouped according to texture	99
35	Mean values and ranges of several soil chemical characteristics and observed crop variables on mineral and organic soils	101
36	Mean values and ranges of several soil chemical characteristics and observed crop variables on coarse and fine textured soils	103
37	Total manganese, iron, aluminum, copper and boron contents of tissue in the normal bean plants and plants showing nutritional disorder symptoms	113

Τa	b	l e	
----	---	-----	--

38	Ratios of manganese to other micronutrient	
	elements in normal and abnormal plant	
	tissue	115

LIST OF PLATES

Plate		Page
1	Navy bean plant (var. Sanilac) showing manganese deficiency symptoms	34
2	Effect of nutrient imbalance in the plant as shown on navy beans (var. Sanilac)	107
3	Navy bean (var. Sanilac) plant showing well developed primary leaves and abnormal secondary leaves	108
4	Normal bean leaf (var. Sanilac) shown on the left and abnormal leaf on the right affected by nutrient imbalance	109
5	Navy bean (var. Sanilac) plant showing abnormal leaf symptoms	116

INTRODUCTION

The importance of an adequate supply of available soil manganese has long been recognized as essential for optimum crop yields. Manganese deficiency in crops is probably the most common micronutrient problem in Michigan. The mineral soils of Michigan may be deficient in this element for specific crops, particularly when the pH is above 6.5. Manganese may be needed for oats, beans, soybeans, potatoes, sudan grass, sugar beets, and spinach. In extreme cases, barley, corn, and wheat may respond to applications of manganese.

Deficiency of this element has occurred most widely on dark colored surface soils with greyish subsoils found in lake bed or glacial outwash areas. Organic soils are also often low in manganese. Manganese deficiency is most likely to occur on organic soils with a pH of 5.8 or greater and is most severe on cold wet soils.

The need for a chemical extractant that will accurately reflect the amount of manganese available to crop plants is apparent. This investigation was initiated to:

 Evaluate the manganese availability of several Michigan soils.

-1-

- Evaluate two chemical extractants as to their effectiveness in the determination of plant available soil manganese.
- 3. Correlate the following factors with available soil manganese:
 - a. soil texture
 - b. soil reaction
 - c. extractable soil phosphorus
 - d. extractable potassium, calcium, and magnesium
- Study the effect of lime and manganese applications on manganese uptake by plants.
- 5. Determine the level of sufficiency and deficiency of plant available soil manganese using oats, beans, and radishes as indicator crops.

REVIEW OF LITERATURE

Chemistry of Manganese

Manganese, like iron, is one of the most abundant heavy metals to be found in the earth's crust. The ores of manganese, chief of which is pyrolusite (MnO₂), are found almost everywhere. Metallic manganese resembles iron both physically and chemically. When pure, it is silvery white like iron, and is the softer of the two. It becomes hard and brittle and grey when it contains carbon. As an active metal it displaces hydrogen slowly from water. However, it dissolves very readily in dilute acids, forming the bivalent ion Mn⁺⁺ and liberating hydrogen.

Manganese forms compounds having valence states from +1 to +7. The most important compounds of manganese are derived from +2, +4 and +7 valence states. MnO, Mn₂O₃, MnO₂, and Mn₂O₇ are the most important of the manganese compounds. MnO and Mn₂O₃ are basic in character. MnO_2 is amphoteric and Mn₂O₇ is strongly acidic since it is derived from permanganic acid (HMnO₃), which is one of the strongest acids known. An intermediate oxide (Mn₃O₄), red in color, is also known.

The oxidation of manganese salts or the reduction of manganates or permanganates in alkaline solution will produce

-3-

a manganese dioxide hydrate. The salts of the hydrate reactions with basic oxides are known as manganites. It will also form salts with very strong acids; however, these are rather unstable because manganese tends to become bivalent in acid conditions.(34).

Forms of Soil Manganese

The following forms of soil manganese have been suggested to be in a state of dynamic equilibrium (31):

Water soluble $Mn^{++} \xrightarrow{} Exchangeable Mn^{++} \xrightarrow{}$

Colloidal hydrated $Mn0 \xrightarrow{}$ Inert $Mn0_2$

The divalent form of manganese is considered to be the most important form of available manganese. The soil may have a good reserve of total manganese, but its availability to plants is determined by the form in which it exists. Manganese exists in the soil as divalent manganese, which is present in the soil solution; or as the exchangeable ion; as trivalent manganese Mn_2O_3 ; and as tetravalent manganese MnO_2 in oxidized forms (14, 16, 32, 36).

Dion and Mann (14) proposed a manganese cycle in the soil based on the oxidation-reduction equilibrium between divalent exchangeable Mn^{++} and tetravalent manganese oxides (MnO_2 , Mn^{++++}) and the existence of a trivalent manganese oxide ($Mn_2O_3.x H_2O$, Mn^{+++}) which undergoes dismutation to give both divalent and tetravalent manganese. The trivalent and tetravalent forms are favored by a high pH and oxidizing conditions. The highly stable MnO_2 is more likely to occur in soils at pH values greater than 8.0. The trivalent form is presumably favored by pH values near neutrality while the divalent form is found in acid soils.

Fujimoto and Sherman (16) have proposed a manganese cycle based on the oxidation-reduction system and the hydrationdehydration system in soils. The oxidation-reduction system determines the relative amounts of manganous oxide (MnO), and manganese dioxide (MnO₂). When free manganous oxide, manganese dioxide and water are present in the soil, addition and hydration of the oxides will take place with the formation of a complex hydrated manganese oxide $[(MnO)x.(MnO_2)y.(H_2O)_Z]$. This form of oxide is stable when moisture is present and the temperature is low. When the soil becomes dry and the soil temperature rises, this form of the oxide breaks up into its component parts.

<u>Role of Manganese in Plant Nutrition</u>

Manganese is found in plant tissues in small quantities.

- 5 -

It is an essential constituent in the plant because of its catalytic and regulatory role in the chemical processes of the living cells. Manganese acts as a catalyst in the activities of many enzymes like peroxidase, indol acetic acid oxidase, transketolase and hydroxylamine reductase. Tanner and colleagues (62) have found that manganese is necessary for the optimal rate of production of glycollic and malic acids (glycollic oxidase to form glyoxylate) in chlorella cells. Malonate formation requires the presence of manganese as a catalyst (53).

The Hill reaction of molecular oxygen (38) and the similar peroxide formation in illuminated chloroplasts (18) are dependent on the additions of manganese. Synthesis of chlorophyll is determined by both manganese and iron (2). Manganese functions as a co-factor in the oxidative phosphorylation. Manganese acts as a regulator of the intake and the state of oxidation of iron (60). Action of manganese is primarily involved with the oxidized products of photolysis (22).

Benson (4) found that manganese is one of the structural components of the plant membrane, particularly in the quantasomes. These quantasomes are lipo-protein granular structures and are independent photosynthetic functional units of the chloroplast.

-6-

Manganese Deficiency Symptoms

Manganese is a slowly mobile nutrient element, and therefore the deficiency symptoms first occur in relatively young leaves (9).

Oats show the severest and most easily recognizable deficiency symptoms among cereals. "Grey Speck" disease or "Haloblight" in oats is a typical manganese deficiency symptom. Mulder and Gerretsen (41) have described the manganese deficiency symptoms in oats as follows: "Marginal grey-brown colored necrotic spots and streaks appear first in the third highest leaves, particularly in the basal half. The streaks tend to elongate and coalesce. At the distal end of the affected basal part, the necrotic spots may soon extend across the blades so that the upper half or two-thirds of the leaf falls over with a sharp kink on the collapsed portion. The distal ends of the leaves remain green for a considerable On older leaves, the collapse may be confined to the time. lower quarter and oval spots of necrotic tissue may appear irregularly on the leaf blade, though less frequently toward the tip end."

Manganese deficiency on soybeans appear first in leaves when they become chlorotic in their interveinal areas while the veins remain green. Whole leaves, excluding the veins, become pale green and then pale yellow; brown spots and necrotic

-7-

areas develop as the deficiency becomes more severe (43).

Early symptoms of manganese deficiency in sugar cane leaves are characterized by a fading of the normal green color between the vascular bundles, followed by the development of definite, pale yellowish-green to white longitudinal stripes. The stripes are confined to middles and tips and seldom extend the full length of the leaves as in iron deficiency. When manganese deficiency is acute, the chlorotic stripes become white. Reddish brown areas of dead tissues appear, later develop into continuous stripes and split the leaves longitudinally.

In sugar beets the deficiency symptom of manganese is called "speckled yellows" (67) because of the interveinal chlorotic mottling.

In the foliage of tomato plants, manganese deficiency manifests first as a lightening of the green color, which gradually turns to yellow starting from the top and extending towards the base, but the veins remain green. Eventually foliage may become completely yellow; necrosis may set in, appearing first on small brown pin points centering in the yellow areas from the tip. Growth is spindley, little or no blossoming takes place, and fruit does not form (50).

Manganese deficient snap beans grow normally for a short period, the first symptoms to appear being a loss of green color

-8-

in the trifoliate leaves. The yellowing does not spread to the seed leaves until later in the development of the deficiency. Progressive symptoms show up with small brown spots near and parallel to each side of the mid rib, and veins between the lateral branches may appear before the leaf becomes completely yellow (50).

Levels of available soil manganese

Piper (48) concluded that manganese exists in soil in an oxidation-reduction equilibrium and contended that the amount of manganese in the soil gives information as to the ability of the soil to provide the plant with this element.

Leeper (31) pointed out that 100 ppm of 0.2 percent hydroquinone soluble manganese would be sufficient to prevent "grey speck" in oats.

In the slightly acid to alkaline soils which Sherman and McHargue (55) studied, the trend of manganous-manganic equilibrium was stongly toward manganic manganese. They concluded that soils with less than 25 ppm of easily-reducible manganese dioxide will not supply plants with sufficient manganese for normal growth. Productive soils of this group contained 100 ppm or more of easily reducible manganese dioxide. Soils deficient in mangnaese have a high capacity to oxidize added manganese.

-9-

Boken (5) using <u>M</u> $Mg(NO_3)_2$ as the soil manganese extractant, found that 4 ppm of exchangeable manganese in the soil as the sufficiency level for spring cereals.

Henkens (27) reviewing manganese research in the Netherlands, indicated that on soils with humus contents below 2-1/2 percent, limiting value of 60 to 70 ppm reducible manganese is suggested, while on soils with higher humus contents, a reducible manganese level of 100 ppm is needed to prevent the occurrence of manganese deficiency on spring grains.

Results of Hammes and Berger (23) indicated that manganese deficiency in oats can be expected when the soil manganese extracted with EDTA is less than 50 ppm or when the soil manganese extracted with hydroquinone is less than 65 ppm or when the soil manganese extracted with either H_3PO_4 or NH_4H_2PO_4 is less than 20 ppm.

On studying the relations among crinkled leaf of cotton and manganese toxicity and soil acidity, Adams and Wear (1) noticed that the severe symptoms of crinkled leaf in cotton were associated with 11 ppm or more manganese in the soil solution.

Levels of Plant Manganese

Sherman et al (55) found that 30 ppm or more of manganese

-10-

in oat tissue was sufficient for normal growth. Less than 15 ppm resulted in manganese deficiency and a moderate deficiency was associated with concentration of 20-25 ppm of manganese.

Though 15 ppm is a reasonable dividing line between sick and healthy oat plants, sick plants have been reported with as much as 29 ppm (37) and even 36 ppm (55). Hammes and Berger (23) found that young oats containing less than 30 ppm manganese are likely to be deficient whereas mature grain having a manganese concentration of less than 12 ppm would be regarded as deficient. For many crops, the threshold values of manganese have been established (on the oven dry basis) and they range from 10 ppm in the tissue for citrus trees to 40 ppm for soybeans (61).

Available Soil Manganese as Related to Several Factors

Factors which affect manganese availability are the soil type, moisture content, texture, chemical and biological oxidation and reduction, pH, organic matter and plant used to measure the availability (66).

Exchangeable manganese is held in the soil by negative charges arising from isomorphic substitution in clays and largely from ionized carboxyl groupings in the organic fraction. But the chelated manganese is exclusively associated with organic fraction. Therefore, a wide range in organic

-11-

matter content and different pH levels should influence the relative amounts of exchangeable and chelated manganese present in the soil (66).

Reid and Miller (51) studied the forms of soil manganese in equilibrium with solution manganese using Mn⁵⁴ and their rate studies indicated that there was a rapid exchange reaction operative between solution manganese and hydroquinone soluble manganese oxides. They also found one or more slower exchange reactions operative between solution manganese complexed by organic matter.

Walker and Barber (66) found that soil pH was also significant in predicting available manganese. This is in line with the findings of Cook (11) that the soil reaction should be determined when manganese deficiency is suspected in sugar beets.

Exchangeable manganese content decreased with increasing soil pH (66). Leeper (32) suggests that biological oxidation is the cause for this decrease. He stated that reduction by organic matter is the probable cause of an increase in the bivalent exchangeable manganese content at the low pH values.

Fujimoto and Sherman (16) observed that the oxidation of the manganese ion by oxygen can take place in a basic medium and that the presence of certain finely divided substances will catalytically increase the rate of oxidation.

-12-

It has been shown that addition of organic matter with a high carbon-nitrogen ratio will increase availability of manganese in the soil (16). Organic matter with a high carbon-nitrogen ratio contains large amounts of easily oxidizable substances such as starch and sugar. When these substances are added to the soil in the form of residual plant parts, biological oxidation of the organic matter takes place with the formation of carbon dioxide.

It has been stated by Leeper (32) that biological reduction can take place at any pH value if the oxygen tension is low, when the anaerobic bacteria use the higher oxides as a source of oxygen. Reduction of the higher oxides takes place when the biological oxidation of organic matter proceeds at so rapid a rate that the air cannot supply oxygen in adequate amounts. When this occurs, reduction of the higher oxides takes place to supply the needed oxygen. This leads to an increase in the available manganese.

Growing oats in a 1 percent agar nutrient culture solution, Page (44) found that all the oxides studied were available to the plant to a greater or lesser degree, the order of availability being:

pyrolusite (MnO_2) < manganous manganite (MnO_2) < an oxide prepared as cryptomelane (MnO_2) < manganese dioxide < manganite (MnO.OH) < hausmanite (Mn_3O_4)

-13-

This presumably means that the insoluble higher oxides of manganese are brought into solution to become available to the plant. Numerous substances present in soil might cause reduction of higher oxides of manganese dioxide, but reduction is not the main path by which manganese becomes available to the plant. Manganese dissolving substances in the root secretions also play an important part. The amount of manganese available to a plant in near neutral and alkaline soils appears to be the net result of the rates of two opposing forces, the solution and fixation. To the many factors which affect the rate of solution of manganese dioxide, the nature and the amount of manganese dissolving root substances must be added (8). This is largely pH dependent. In a study of the modes of manganese retention in the soil in the absence of oxygen and biological activity, Hemstock and Low (26) contend that manganese can be retained by soil organic matter in the form of a chelated complex. Formation of this complex is controlled by pH (45). The organic matter responsible for this complex formation is not dissociated under acid conditions, but is completely dissociated under high pH. He concluded from his studies on manganese fixation by organic complexes in relation to soil pH that the formation of organic matter complexes under controlled pH is the most likely cause of nonavailability of manganese in the soil. The complexes

-14-

might be formed by the phenolic fraction of soil organic matter, although other possibilities exist.

Page (45) indicated that only 0.4 per cent of organic matter (by weight) in the soil would be enough to account for the complete removal of all the manganese (in 1 gram of soil) under conditions of high pH.

Attempting to study the relationship between soil compaction and manganese deficiency, Passioura and Leeper (47) grew oats sensitive and tolerant to "Grey Speck" on two soils, compacted and uncompacted. For the first soil, bulk density values of 0.85 and 1.0 for the uncompacted and compacted, respectively, were compared with the uncompacted and compacted bulk densities of 1.0 and 1.5 for the second soil. They found that "Grey Speck" was relatively less on the compacted soils, with an approximate 50-fold increase in grain production. Compaction generally resulted in healthier oats and three weeks advance in heading. They suggested this was due to the fact that roots act by "contact reduction" to reduce the reactive MnO₂ and that the compaction works by increasing the area of contact.

Vose and Griffiths (65) studied the relationship between the incidence of "Grey Speck" disease and manganese distribution in shoots and roots. They stated that susceptibility to the "Grey Speck" syndrome is primarily due to the lack of mobility

-15-

of manganese in the plant. In the susceptible variety of oats they found low root and high leaf manganese content as compared to a tolerant variety of oats. High concentration of manganese in the roots of tolerant variety inhibits the invasion and multiplication of ammonium forming rhizophere organisms, either directly or indirectly through the medium of a root exudate. Resistance to "Grey Speck" has been attributed by Gerretsen (65) to the root system having greater resistance to saprophytic organisms.

Vose and Randall (64) have correlated the plant resistance to aluminum and manganese toxicity and variety and root cation exchange capacity, applying the Donnan theory of low cation exchange capacity favoring monovalent to divalent cation uptake; the lower cation exchange capacity of the toxicity resistance selections may possibly be effective in increasing the uptake of monovalent cations at the expense of the polyvalent cations like aluminum and manganese.

Estimation of Plant Available Soil Manganese

Boken (5) assumed that the so-called exchangeable fraction by extraction with a neutral electrolyte, to constitute that part of the manganese content of the soil which is available to the plants at a given time and a determination of the content

-16-

of reducible manganese by treatment of the soil with a reducing agent, indicating that part which may be available to the plants over a given period.

Sherman et al (56) concluded that easily reducible manganese gave a reliable estimate of the manganese supplying power to Kentucky soils. Henkens (27) stated that exchangeable manganese is not a good index of the available manganese supply in the soil. Rich (52) obtained a highly significant correlation between exchangeable soil manganese and the manganese content of the upper leaves of the peanut crop.

Walker and Barber (66) concluded that the exchangeable manganese was the most available form of manganese. Using German millet as the test crop, they obtained the best correlation with total manganese content in the tissue and the interaction of chelated manganese times the organic matter. Page et al (45) obtained highly significant correlations with water soluble manganese of the soil and manganese uptake by oats.

Data indicate that in air dried soils both exchangeable and acid soluble manganese are present in greater amounts than in moist soils (16, 17), even up to 600 per cent (6).

The following three types of extractants are commonly employed in the United States to measure available soil

-17-

manganese: (1) neutral normal ammonium acetate with 0.2 per cent hydroqouinone is most commonly used; (2) 0.1N H₃PO₄ used in Ohio; and (3) 0.05N HCl + 0.025N H₂SO₄ in the Southeastern region of the United States (61).

During the evaluation of the extraction methods to determine the available soil manganese, Boken (5) differentiated between "sick" and "healthy" plants among spring cereals and root crops using $IM Mg (NO_3)_2$ as the soil extractant on air-dry samples. Heintze (25) used monocalcium disodium versanate solution to determine the divalent manganese present as complex organic matter of the alkaline organic soils. Hoff and Mederski (28) evaluated nine methods of extracting manganese using air dry soil samples. They found that the extraction of soil manganese with 3N $NH_4H_2PO_4$ (r = .899) and 0.1N H₃PO₄ (r = .856) yielded highest correlation coefficients and had the smallest variances with manganese absorbed by soybean plants. Other extractants they evaluated were: 50% aqueous alcolhol solution containing 0.05% by hydroquinone (r = .866), 0.1N sulfuric acid (r = .781), 0.05% hydroquinone + 1N NH₄OAc (r = .771), 0.1N nitric acid (r = .742), 1N NH₄OAc (r = .686), sodium acetate (100 gms. sodium acetate + 30 ml glacial acetic acid per litre (r = .671) and total (r = .481).

Hammes and Berger (23) studied the manganese availability of neutral to slightly alkaline lacustrine soils of eastern Wisconsin using oats as the indicator crop. They concluded that manganese extraction from air dry soils give much higher correlation coefficients than the moist samples. They correlated the manganese content of oats with available soil manganese extracted by four methods namely: 0.05 \underline{M} EDTA (r = .785), 0.1 \underline{N} H₃PO₄ (r = .705), 1.5 \underline{M} NH₄H₂PO₄ (r = .658) and 0.2 per cent hydroquinone + 1N neutral NH₄OAc (r = .702).

Conversely, in another experiment, Hammes and Berger (21) found better correlations with 0.1N H₃PO₄ (r = .848) extractable manganese determined from moist soil samples with manganese content of oats.

Manganese Fertilization

The first applications of manganese sulphate were made for rice crop in Japan in 1902 by Aso (3), and in 1903 by Nagaoka (42). Cook (11) applied manganese sulphate as a side dressing and spray in early summer to sugar beets at rates of 100 pounds and 5 pounds per acre, respectively. Marked differences in leaf color were noticeable within 10 days.

Davis (13) found that when the pH of the soil reached 6.5 or above, manganese had to be supplied as $MnSO_4$ to many crops like onions, celery, spearmint, lettuce, table beets, potatoes, carrots, peas, beans, sudan gnass and oats. Davis advocated that 4 pounds of $MnSO_4$ per 100 gallons of spray is adequate for most crops.

Gilbert and McLean (20) found that freedom from chlorosis and increased yields of onions were obtained when MnSO₄ was applied, especially in the solution form and at a rate of 8 pounds per acre. Knott (29) observed a striking increase in growth of onions when 100 pounds of MnSO₄ per acre was applied at planting time.

To correct the manganese deficiency, soil applications of elemental manganese may vary from 5 to 20 pounds per acre. The most commonly used manganese carrier is manganese sulphate. Manganese oxide is used when acid forming fertilizers are used (61).

The most efficient corrective measure for manganese deficiency is by means of foliar application. Ten to 15 pounds of manganese sulphate per acre is usually sprayed on oats and soybeans (61).

Drennan and Berrie (15) have investigated the possible usefulness of seed soaking with concentrations of manganous chloride ranging from 0.2 to 10 per cent on a W/V basis to prevent "Grey Speck" of oats under field conditions. The manganese deficiency symptoms were not obvious in plants from treated grain, while plants from untreated grain showed typical "Grey Speck" and considerably reduced growth. Tisdale and Bertramson (63) have indicated that soil applications of sulfur may be used in the correction of lime induced manganese deficiency of soybeans. They found a highly significant correlation between the soil pH and both ammonium acetate extractable soil manganese and the manganese content of the plants. They have suggested the role of sulfur as a possible reductant of MnO₂.

EXPERIMENTAL PROCEDURE

I. Greenhouse Study

A. Experiment 1

Surface soil samples from 15 different soil types were collected from various locations in Michigan. The soils were known to be either deficient or contain sufficient available manganese.

Oats (var. Garry) and navy beans (var. Sanilac) were grown in the greenhouse in one-gallon pots lined with polyethylene bags. All soils received a basic application of 100, 70, 104 and 12 pounds per acre of nitrogen, phosphorus, potassium and magnesium, respectively.

The following treatments were replicated three times on all soils: (1) basic fertilizers only; (2) 15 pounds of elemental manganese per acre applied as manganese sulphate; and (3) calcium carbonate, applied at rates that were considered sufficient to induce manganese deficiency.

The soils were moistened and allowed to incubate in the greenhouse from December 5 to December 25, 1964. The pots were arranged on tables in a completely random manner and planted to oats on December 31.

Eight seeds were planted in each pot at a depth of onefourth to one-half inch. Each pot was thinned to four plants

-22-

on January 8, 1965. The oats were observed closely and notes were taken for deviations from normal growth. The plants were harvested at their post-blossom stage (64 days) on March 3, 1965.

The plant samples from all treatments consisted of the entire above-ground portion of the plant. Tissue samples were placed in paper bags, dried for three days at approximately 70°C, weighed and ground in a Wiley mill containing a 20 mesh seive.

On June 20, 1965, soil samples were collected from each pot using a sampling tube. The treated soils were chemically analyzed for the following constituents by the University Soil Testing Laboratory: pH, lime requirement, 0.025N HCl + 0.03N NH₄F extractable phosphorus, and 1N NH₄OAc extractable potassium, calcium and magnesium. Manganese was extracted from the soils with 0.1N H₃PO₄ and 1N NH₄OAc containing 0.2 per cent hydroquinone.

On July 11, 1965, the soils were prepared for growing navy beans (var. Sanilac). The soil was removed from each pot, clods were broken up and root remains were taken out. The soils were placed in the same pots containing a fresh polyethylene liner. No additional fertilizer was added. The entire body of soil in each pot was moistened on July 14 and allowed to dry for five days.

-23-

Beans were seeded on July 19, 1965. Six seeds were planted per pot. Water was added sparingly during germination and then regularly to maintain a good moisture level for plant growth. Emergence was uniform and each pot was thinned to three plants on July 26.

Crop growth was closely observed and notes were recorded and photographs taken of the plants to show the differences that developed. Plants were harvested at their pre-blossom stage on August 18, 1965.

Total manganese determinations were made on the ovendried oat and bean tissue to investigate the relationship of the amount of manganese present in the plants and the amount available to the plants due to various soil treatments; and to determine what effect, if any, this had on the growth and yield of the plants.

B. Experiment 2

In this experiment, 179 soils, submitted from farms throughout Michigan to the University Soil Testing Laboratory were collected at random. The soils varied considerably in pH, texture, and other soil characteristics such as available phosphorus and extractable potassium, calcium and magnesium. Several organic soils were also included in the study.

-24-

One hundred and fifty grams of the mineral soils and one hundred grams of the organic soils were weighed and placed in quarter-gallon, wide-mouthed plastic containers. They were thoroughly mixed with three times their weight of inert sand to dilute the soil. The pots containing the soils were arranged on tables in the greenhouse in a completely random manner.

The soils were moistened and oats were planted on December 26, 1964 at the rate of 8 seeds per pot. Water was applied sparingly until the seeds germinated, and they were thinned to 4 seedings per pot on January 7, 1965. Regular waterings were continued. On January 11, nutrient solutions were added at the rate of 10 ml of NH_4NO_3 solution (0.2 gms dissolved in 10 ml), and 10 ml of KH_2PO_4 solution (0.2 gms dissolved in 10 ml), to each pot. Plant growth was closely observed and deficiency symptoms for manganese or other variations were noted.

A second application of nutrient solutions was made on February 3. Plants were harvestd at their post-blossom stage on February 26, 1965. Plant samples consisted of the whole above-ground portion. They were placed in paper bags, dried for three days at approximately 70°C, and the dry weights recorded. The oven dried tissue samples were ground and saved for total manganese analysis.

-25-

The soils were prepared on April 5 for planting radishes (var. Sparkler). Soil from each container was transferred to a sheet of paper, loosened, the roots removed, and placed back in the same container. The soils were moistened three days prior to planting and on April 16, 1965, six seeds were planted in each pot. Each pot was thinned to contain three plants on May 1. Growth of the radishes was closely observed and notes recorded to show the differences that developed. An application of the same nutrient solution that was used for the oats was applied on May 2. The plants were harvested on May 19 at the pre-blossom stage, and slight infestations of aphids were noted in four pots just prior to harvest (one day earlier). The entire above-ground portion of the plants were cut and placed in paper bags and dried for three days at approximately 70°C. The dry weights of tissue obtained from all pots were recorded. Since the yield values were comparatively small, it was decided not to analyze the radish tissue for manganese.

II. Laboratory Study

- A. Soil Analysis
 - Soil pH was determined by the glass electrode (Soil: water ratio 1:1 for mineral soils and 1:2 for organic soils)

-26-

- Lime requirement was determined by the Shoemaker, MacLean, Pratt buffer method (59).
- 3. Phosphorus was extracted with 0.025<u>N</u> HCl + .03<u>N</u> NH₄F (soil: extracting solution ratio 1:8) and determined colorimetrically (7). Measurements were made on the Bausch and Lomb Spectronic 20 colorimeter at a wavelength of 500 millimicrons.
- 4. Calcium, potassium and magnesium were extracted with neutral normal ammonium acetate (1:8 soil: extracting solution ratio). Potassium and calcium were determined flame photometrically on the Coleman Flame Photometer (Model 21). Magnesium was determined on the Beckman DU Spectrophotometer with a flame attachment at a wavelength of 285.2 millimicrons.

5. Available soil manganese was extracted by:

(a) 0.1N H3P04

(b) $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone Extraction and determination of manganese using <u>0.1N H₃PO4</u> (28, 68)

Place 5 grams of soil in a 125 ml Erlenmeyer flask. Add 50 ml of 0.1N H₃PO₄ and 7 drops of 0.1N silver nitrate. About a quarter teaspoonful of

purified activated carbon is added to obtain a clear filtrate. Shake for 10 minutes. Filter the solution using Whatman No. 40 Filter paper. Pipette 20 ml of filtrate into a 50 ml volumetric flask to which is added 1 ml of concentrated phosphoric acid. Add sodium metaperiodate in excess (approximately 0.1 gm). Bring to boil and heat on a hot plate for 35 minutes. Allow to cool and make to volume. The concentration of manganese in solution is measured on a Bausch and Lomb Spectronic 20 colorimeter at a wavelength of 540 millimicrons.

Extraction and determination of manganese using neutral normal NH_4OAc containing 0.2 per cent hydroquinone (55)

Place 5 gms of soil in a 125 ml Erlenmeyer flask and add 50 ml of the extracting solution. Shake for 6 hours intermittently. (To maintain uniformity, a set of 25 were shaken for one hour alternting with another set). Filter the solution (Whatman No. 40 filter paper) and pipette 25 ml of the extract in a 50 ml volumetric flask. Make to volume. The per cent absorption was determined on a Perkin-Elmer Model 303 Atomic Absorption Spectrophotometer.

B. Plant Analysis

Wet digestion method using perchloric acid (19): Place 1.000 gm ground plant tissue into a 200 ml tallform beaker (plant tissue should be dried overnight at 65-70°C.).

Slowly add 15 ml concentrated nitric acid from an acid dispenser.

Allow to digest 30 minutes without heating. Heat gently, exercising care to prevent frothing. After frothing ceases, boil gently until a light straw color is obtained. Add more nitric acid if needed to complete the predigestion.

Wash sides of beaker completely free of adhering plant tissue with nitric acid from a wash bottle. It is absolutely necessary that all organic material be completely predigested at this stage. Cool to room temperature. Add, 10 ml distilled water; 10 ml concentrated nitric acid; 10 ml concentrated perchloric acid in this order. Heat to 180°F. and boil until solution becomes clear. Remove each beaker from the hot plate as the solution becomes clear.

Place the beaker on a hot plate and slowly take to dryness at a low temperature.

Dissolve the residue in 2.0 <u>N</u> HCl; dilute to volume so that final concentration is 0.1 <u>N</u> with respect to HCl. The per cent absorption was determined on a Perkin-Elmer Model 303 Atomic Absorption Spectrophotometer.

-29-

RESULTS AND DISCUSSION

Studies were made to determine the available manganese content of several Michigan soils. The criteria used for estimating available soil manganese were the yield and manganese uptake by oats, beans and radishes. Soils were extracted with 0.1N H₃PO₄ and 1N NH₄OAc + 0.2 per cent hydro-quinone to evaluate their ability to measure plant available soil manganese.

The term "available manganese", in general, refers to the more soluble portion of the total soil manganese or that which is present in the soil exchange complex and can be absorbed by the active plant roots.

Experiment 1

This experiment was initiated in the greenhouse to study the effect of lime and manganese applications on the yield and manganese content of oats and beans. An attempt was made to determine the manganese sufficiency and deficiency levels by grouping the indicator crops, oats and beans according to the manganese deficiency symptoms developed. The soil types and chemical characteristics of the 15 soils included in this study are given in Table 1. (See Appendix for description of Soil types).

-30-

Soil			Lime		Pound	s per a	cre
No.	Soil type	рH	requirment	Р	^{··} K	Ca	Mg
1	Houghton muck	6.5	0	19	381	12200	1768
2	Houghton muck	6.9	0	18	236	12000	1898
3	Wisner sandy clay loam	7.6	0	83	137	5408	414
4	Wisner _S andy Clay loam	7.5	0	37	229	5616	589
5	Sims clay loam	6.1	2.0	35	296	5408	768
6	Montcalm Sandy 'loam	4.7	3.5	342	288	496	32
7	Karlin Sandy loam	5.2	3.5	152	221	288	8
8	Granby loamy fine sand	7.2	0	12	64	3120	237
9	Hodunk Sandy loam	6.1	1.5	72	100	832	118
10	Wisner Sandy clay loam	7.3	0	86	312	5200	530
11	Tuscola fine sandy clay loam	7.4	0	74	250	6344	586
12	Brookston sandy clay loam	6.3	1.5	16	104	4680	646
13	Newton loamy sand	7.7	0	36	184	· 9048	509
14	Houghton muck	6.8	0	57	674	10192	728

5.8 1.5 125

32

184

8

Oshtemo loamy

sand

15

Table 1. Soil types and chemical properties of the soils used in Experiment 1.

Oats did not show the typical "grey speck" so it was not possible to group the soils according to the degree of deficiency symptoms.

However, manganese deficiency symptoms were markedly shown on the bean crop in various stages. Therefore, the manganese deficiency index was established as shown in Table 2.

Index	Description	Group	Number of Observations
1	No apparent manganese deficiency	Manganese sufficiency	97
2	Very slight general yellowing of the leaf and no mottling	Manganese latent deficiency	17
3	Slight mottling between veins		
4	Severe mottling between veins	Manganese deficiency	21
5	Severe mottling and necrosis		
Total			135

Table 2. The manganese deficiency index values, their description and number of observations in each group

Index values 3, 4, and 5 have been grouped together and referred to as manganese deficiency.

The deficiency symptoms (Plate 1) observed on beans were all on lime treated soils except for three observations on control pots (pH 7.5) on Newton loamy sand, soil number 13 as seen from the data in Table 3.

The effect of manganese and lime applications on the yield and uptake of manganese by oats and beans is shown in Table 4.

The application of manganese significantly increased the yield of oats on Soils 1 and 14. It also significantly increased the uptake of manganese by oats on soils 6, 8, 10, 14 and 15 and highly significantly on soils 2, 6, and 9.

The application of manganese significantly increased the yield of beans on soil number 13 and a similar increase in manganese uptake was obtained on soils 2, 8, 13, and 15.

The application of lime significantly increased the yield of oats and beans on soil number 7. The high level of available soil manganese obtained in soil number 7 (Karlin sandy loam, pH 4.7) was apparently sufficient to cause toxic conditions. Though application of lime to this soil did not reduce the available manganese in a great extent (306 pp2m to 293 ppm) the bean tissue manganese was greatly reduced from 2085 ppm to 55 ppm (Table A, Appendix)

-33-

Plate 1. Navy bean plant (var. Sanilac) showing manganese deficiency symptoms

Soil type - Houghton Muck Soil pH 7.1 Available soil manganese 0 pp2m (acid soluble) 22 pp2m (easily reducible) Bean tissue manganese: 14 ppm

Soil Number	Treatment*	Mn Deficiency Index	Number of Observations
1	C	4	3
2	С	3	3
4	С	5	1
5	С	3	1
8	С	3	2
9	С	5	ı
10	С	5	2
11	С	5	2
13	А	5	2
13	А	4	1
13	C	4	2
13	С	5	1
Total			21

Treatment, manganese deficiency index rating of beans and number of observations made on soils Table 3. showing manganese deficiency

* A control C lime treatment

Table 4.	The effect of manganese and of manganese by oats and bea three replications)	lime appl ns (figur	ications es repres	on the yid ent mean v	eldandup valuesof	take
		Hd	Mn Upt	ake	Yiel	9
Soil No.	Treatment	Simple Average	mgm/p Oats	ot Beans	gm/po Oats	ot Beans
-	Houghton muck					
	Check (no Mn, no lime) 15 lbs. Mn/acre 10 tons lime/acre L.S.D. at 5%	6.6 6.6 7.1	0.072 0.211 0.038 0.061	0.102 0.139 0.042 0.142	9.965 11.315 3.540 1.993	4.758 4.185 3.176 0.431
2)) •) [•)) •) • •
	Check (no Mn, no lime) 15 lbs. Mn/acre 10 tons lime/acre L.S.D. at 5% 1%	6.3 6.3 7.1	0.177 0.283 0.067 0.041 0.073	0.161 0.200 0.082 0.062 0.109	11.177 11.967 6.272 1.822 3.203	5.870 5.293 4.278 0.793 1.393
т	Wisner sandy clay loam					
	Check 15 lbs. Mn/acre 10 tons lime/acre L.S.D. at 5% 1%	7.3 7.5 7.5	000	0.029 0.052 0.063 0.010 0.183	000	0.925 1.285 1.621 0.605 1.064

-36-

.

			Mn Up	take	Yie	1 d
Soil No.	Treatment	Simple Average	mgm/ Oats	pot B	gm/po Oats l	pot Beans
4	Wisner sandy clay loam					
	Check 15 lbs. Mn/acre 5 tons lime/acre L.S.D. at 5% 1%	7.5 7.4 7.4	.165 .185 .099 .158	0.099 0.128 0.070 0.053 0.094	8.990 8.203 9.387 1.667 2.930	3.232 3.357 2.998 0.980 1.723
5	Sims clay loam					
	Check 15 lbs. Mn/acre 5 tons of lime/acre L.S.D. at 5% 1%	6.4 6.4 7.3	0.299 0.281 0.065 0.138 0.235	0.136 0.130 0.066 0.065 0.114	15.023 12.253 11.700 1.628 2.862	3.943 4.345 3.210 0.763 1.341
9	Montcalm sandy loam					
	Check 15 lbs. Mn/acre 5 tons lime/acre L.S.D. at 5% 1%	5.1	5.142 10.848 1.417 1.567 2.754	3.365 5.179 0.180 2.665 4.683	10.138 10.588 8.105 1.848 3.248	1.888 2.125 2.825 1.024 3.765
7	Karlin sandy loam					
	Check 15 lbs. Mn/acre 3 tons lime/acre L.S.D. at 5% 1%	4.7 4.8 6.9	9.319 8.979 1.103 1.963 3.450	2.140 1.030 0.139 1.923 3.379	5.573 5.802 7.516 2.238 3.934	1.003 0.338 2.480 0.400 0.704

-37-

		Hd	dn nM	ta	Υie	<u>1 d</u>
Soil No.	Treatment	Simple Average	ш	pot B	IE I	a
ω	Granby loamy fine sand					
	Check 15 lbs. Mn/acre 4 tons lime/acre L.S.D. at 5% 1%	7.0 7.0 7.4	0.344 0.716 0.129 0.270 0.475	0.080 0.154 0.088 0.036 0.064	11.565 11.480 10.960 1.775 3.121	3.320 3.512 2.714 .494 .869
6	<u>Hodunk sandy loam</u>					
	Check 15 lbs. Mn/acre 5 tons lime/acre L.S.D. at 5% 1%	5.3 7.2 7.2	2.115 3.537 0.141 0.505 0.888	0.636 0.515 0.080 0.341 0.599	8.690 10.112 6.057 2.123 3.732	3.180 2.980 2.493 0.479 0.843
10	Wisner sandy clay loam					
	Check 15 lbs. Mn/acre 4 tons lime/acre L.S.D. at 5% 1%	7.3 7.4 7.4	0.148 0.218 0.111 0.005 0.009	0.142 0.145 0.044 0.077	7.482 8.118 8.810 1.609 2.828	3.148 3.022 2.537 0.247 0.434
וו	Tuscola fine sandy clay loam					
	Check 15 lbs. Mn/acre 5 tons lime/acre L.S.D. at 5% 1%	7.4 7.5 7.5	0.138 0.177 0.075 0.071 0.125	0.067 0.113 0.070 0.031 0.055	9.612 10.317 10.220 1.505 2.645	2.833 3.004 2.982 0.701 1.232

-38-

			Mn Up	take	Yie	
Soil No.	Treatment	Simple Average	E	p o t B		/pot Beans
12	Brookston sandy clay loam					
	Check 15 lbs. Mn/acre 5 tons lime/acre L.S.D. at-5% 1%	6.3 6.3 7.2	0.188 0.349 0.171 0.158 0.278	0.128 0.189 0.131 0.134 0.236	11.090 12.312 13.678 2.253 3.960	5.508 5.300 4.522 0.428 0.753
13	Newton loamy sand					
	Check 15 lbs. Mn/acre 4 tons lime/acre L.S.D. at 5% 1%	7.5 7.6	0.100 0.156 0.050 0.105 0.185	0.028 0.044 0.037 0.020 0.036	4.957 7.938 4.770 0.999 1.757	2.042 3.083 2.277 0.524 0.921
14	Houghton muck					
	Check 15 lbs. Mn/acre 10 tons lime/acre L.S.D. at 5% 1%	6.8 6.7 7.3	0.118 0.274 0.050 0.083 0.147	0.154 0.158 0.100 0.080 0.152	10.268 11.338 7.945 1.070 1.880	5.428 5.293 4.610 0.709 1.247
15	Oshtemo loamy sand					
	Check 15 lbs. Mn/acre Lime 4 tons/acre L.S.D. at 5% 1%	ວ. ວີ. ບີ	4.386 7.437 0.311 2.537 4.458	2.343 3.418 0.039 0.690 1.214	10.563 10.570 8.320 1.373 2.413	1.457 1.097 1.405 0.247 0.434

-39-

Significantly higher oat and bean yields were obtained on soils 5 and 1, respectively, on treatments receiving no manganese or lime.

These results indicate that the near neutral and/or alkaline, coarse and fine textured soils and also muck soils respond well to manganese fertilization.

Correlation analysis was performed on all soils, i.e. each representing a single treatment and its one replication was considered as one observation (15x3x3 = 135 observations) and on soils grouped according to manganese deficiency index. Simple correlations between the associated factors and multiple correlations among the factors known to be related to manganese availability were calculated.

As indicated in Table 5, highly significant correlations were obtained between 0.1N H₃PO₄ and 1N NH₄OAc + 0.2 per cent hydroquinone extractable soil manganese on all soils (Fig. 1) and when soils were grouped according to manganese deficiency index using beans as the indicator crop.

Tissue manganese and manganese uptake by oats (Fig. 2) and beans were highly significantly correlated with manganese extracted by both the methods on all soils (Table 6). Bean yield was negatively correlated with available soil manganese determined by both methods. Poor correlation was obtained

Table 5. The correlation between manganese extracted with 0.1N H₃PO₄ and 1N NH₄OAc + 0.2 per cent hydroquinone on soils showing various degrees of manganese deficiency using beans as the indicator crop

0.1 <u>N</u> H3PO4 extractable Mn vs. 1 <u>N</u> NH4OAc + 0.2 per cent hydroquinone extract- able Mn	Correlation Coefficients
All soils	.9285**
Soils considered to have an adequate supply of Mn	.9529**
Soils showing moderate to severe Mn deficiency	.8460**
Soil showing a slight yellowing on beans classified as latent Mn deficiency	.8334**

** Significant at 1% level

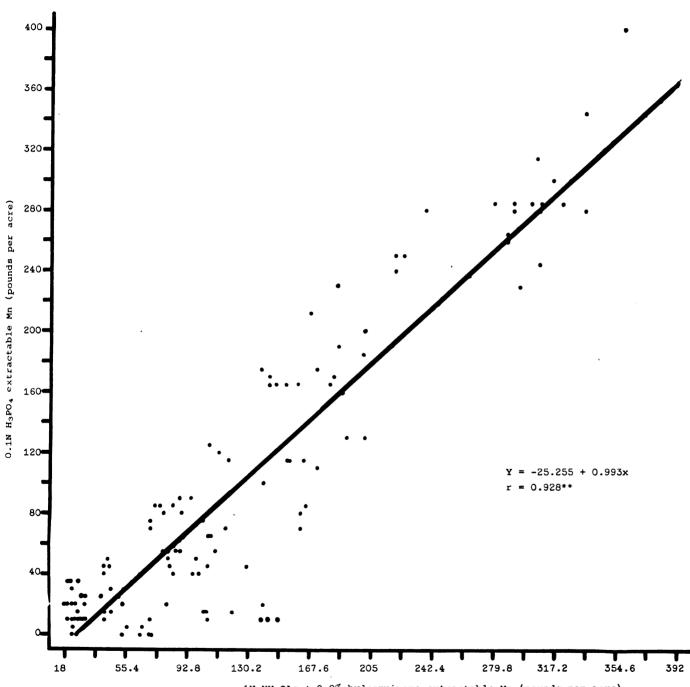
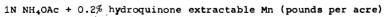



Figure 1. Relationship between 0.1N $\rm H_3PO_4$ and 1N $\rm NH_4OAc$ + 0.2% hydroquinone extractable manganese on all soils.

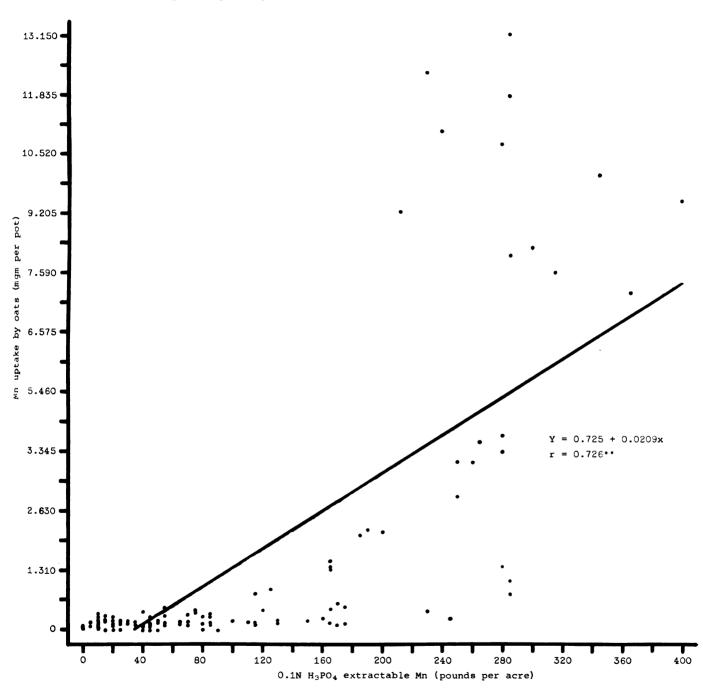


Figure 2. Relationship between 0.1N $\rm H_3PO_4$ extractable manganese and manganese uptake by oats on all soils.

Table 6. The relationship between $0.1\underline{N} + \underline{N}$ and $1\underline{N} + \underline{N}$ Act + 0.2 per cent hydroquinone extractable manganese for all soils and the yield, tissue manganese (ppm) and manganese uptake by oats and beans

	Correlatio	n Coefficients
Relationship 	<u>Soil</u> 0.1 <u>N</u> H ₃ PO4	Extractant 1 <u>N</u> NH40Ac + 0.2% hydroquinone
	<u>0a</u>	<u>ts</u>
Yield Tissue Mn Mn uptake	0557 +.7014** +.7264**	+.0202 +.6474** +.6679**
	Be	ans
Yield Tissue Mn Mn uptake	6048** +.6470** +.5483**	4834** +.6072** +.4756**

** Significant at 1% level

between oat yield and $0.1\underline{N} + H_3PO_4$ (r = .0557) and $1\underline{N} + H_4OAc$ + 0.2 per cent hydroquinone (r = .0202). In all cases, $0.1\underline{N} + H_3PO_4$ extractable manganese gave a better correlation than the $1\underline{N} + 0.2$ per cent hydroquinone extractable manganese.

The effect of available soil manganese, determined by both methods, on the yield, tissue manganese, and manganese uptake by oats and beans on all soils when extractable phosphorus was included as a soil variable is shown in Table 7. Tissue manganese and manganese uptake of oats and beans gave highly significant correlations with soil manganese extracted by both the methods and soil phosphorus. Bean yield was also highly significantly correlated with the two methods (r = .6323 and .5826, respectively). A comparison of the data in Tables 6 and 7 shows that the oat yield correlation was improved to a significant level when phosphorus was included as a variable with the manganese extracted by 1N NH40Ac + 0.2 per cent hydroquinone.

When soils were grouped according to the manganese deficiency index using beans as the indicator crop (Table 8), bean yield was poorly correlated with soil manganese for deficiency and latent deficiency groups. However, for the sufficiency group there was a highly significant negative correlation between bean yield and available soil manganese

-45-

The effect of available soil manganese determined by $0.1N + 3PO_4$ and 1N + 0Ac + 0.2 per cent hydro-quinone on the yield, tissue manganese and man-ganese uptake by oats and beans on all soils when extractable phosphorus was included as a soil Table 7. variable

		Coefficients
Deletienskin	0.1 <u>N</u> H ₃ PO4 extract-	1N NH ₄ OAc + 0.2%
Relationship	able Mn and extract- able P	hydroquinone ex- tractable Mn and
		extractable P

Oats

Yield	.1664	.2096*
Tissue Mn	.7038**	.6503**
Mn uptake	.7271**	。6845**

	Bea	ans
Yield	.6323**	。5826**
Tissue Mn	.6487**	。6234**
Mn uptake	.6047**	。5877**

Significant at 5% level Significant at 1% level *

**

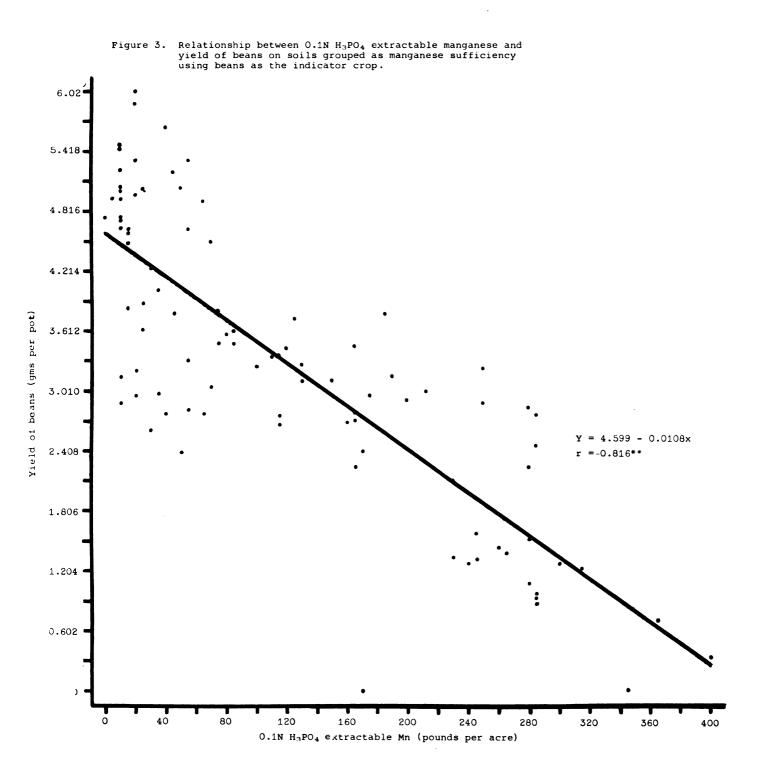
Table 8. The relationship between 0.1N H₃PO₄ and 1N NH4OAc + 0.2 per cent hydroquinone extractable soil manganese and the yield, tissue manganese and manganese uptake by beans on soils showing various degrees of manganese deficiency

		Correlation	coefficients
Mn deficiency	Relationship	0.1 <u>N</u> H ₃ PO ₄	1 <u>N</u> NH40Ac + 0.2% hydro- quinone
Deficiency	yield tissue Mn Mn uptake	3264 +.4598* +.3702	0960 +.6971** +.6711**
	·		
Latent deficiency	yield tissue Mn Mn uptake	2964 +.5807** +.2478	0896 +.6359** +.4673**
Sufficiency	yield tissue Mn Mn uptake	8166** +.6407** +.5230**	7161** +.6064** +.4430**

* Significant at 5% level

** Significant at 1% level

extracted by 0.1N H₃PO₄ (r = .8166), (Fig. 3) and 1N NH₄OAc + 0.2 per cent hydroquinone (r = .7161).


The highly signficant negative relationship between $0.1\underline{N}$ H₃PO₄ extractable soil manganese and yield of beans is shown in Figure 3.

According to the manganese deficiency index established in this study, the criterion for the sufficiency group was the negative deficiency symptoms observed on bean plants. This group included the plants grown on soils with relatively low pH (4.7 or greater) and having tissue manganese values up to 3600 ppm (Table A, Appendix). Also included in this group were plants with high levels of Fe, Al, Cu and B (Table 37).

Higher yield values at lower manganese levels in the soil as shown in Figure 3 were obtained mostly from organic soils. The average value for the acid soluble manganese on these soils was approximately 15 pp2m whereas the average value for easily reducible manganese on the same soils was about 100 pp2m.

On organic soils, 1N NH₄OAc + 0.2 per cent hydroquinone extracted more manganese than 0.1N H₃PO₄ (Table 35). On organic soils, easily reducible manganese was better correlated with oat yield than the acid soluble manganese (Table 23).

-48-

Therefore in Figure 3, where the regression line intercepts the Y axis, 0.1N H₃PO₄ extractable manganese did not give the expected relationship with bean yield values.

The correlation between bean yield and 0.1N H₃PO₄ extractable soil manganese was consistently higher than the correlation between bean yield and 1N NH40Ac + 0.2 per cent hydroquinone extractable manganese on all the three groups. For the latent deficiency and sufficieny groups, bean tissue manganese gave highly significant correlations with available soil manganese as determined by both methods. Bean tissue manganese gave a significant correlation with $0.1N H_3PO_4$ extractable manganese on the deficient group (r = .4598) and a highly significant correlation with $1N NH_4OAc + 0.2$ per cent hydroquinone (r = .6971). For the sufficieny group, bean manganese uptake was highly correlated with available soil manganese extracted by both methods. However, 0.1N H₃PO₄ extractable manganese gave a higher correlation (Table 8). For the deficiency and latent deficiency groups, 1N NH4OAc + 0.2 per cent hydroquinone extractable manganese gave highly significant correlations (r = .6711 and .4673, respectively)for bean manganese uptake, whereas comparable correlations with 0.1N H_3PO_4 extractable manganese were poor (r = .3702 and .2478, respectively).

-50-

In general, for the deficiency and latent deficiency groups, $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extractable manganese gave higher correlations than $0.1\underline{N}$ H₃PO₄ extractable manganese when correlated with tissue manganese and manganese uptake by beans.

When extractable phosphorus was included with the manganese determined by the two methods for correlations with the yield, tissue manganese and manganese uptake by beans (Table 9) highly significant correlations were obtained for all correlations on the sufficiency group. Correlations were improved to a greater extent for the $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extractable manganese. When the correlation coefficients in Tables 8 and 9 were compared, for the deficiency and latent deficiency groups, bean yield correlations with $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extractable manganese plus P were increased to highly significant levels (r = .0960to .5037 on deficiency group and .0896 to .7733 on latent deficiency group). On the latent deficiency group, bean yield correlation with $0.1\underline{N}$ H₃PO₄ extractable manganese was improved from r = .2964 to .7538, a highly significant level.

As shown in Tables 8 and 9, the inclusion of available soil phosphorus as a variable with soil manganese improved the correlations between manganese extracted by the two methods and the yield, tissue manganese and manganese uptake for deficiency index levels.

Table 9. The effect of available soil manganese determined by $0.1N H_3PO_4$ and $1N NH_4OAc + 0.2$ per cent hydroquinone on the yield, tissue manganese and manganese uptake by beans based on manganese deficiency index when extractable phosphorus was included as a soil variable

		Correlation coefficients	
Mn deficiency index	Relationship	0.1 <u>N</u> H ₃ PO4 Extractable Mn and ex- tractable P	1 <u>N</u> NH ₄ OAc + 0.2% hydroquinone ex- tractable Mn and extractable P
Mn deficiency	yield tissue Mn Mn uptake	.4138 .5229* .4173	.5037* .6975** .6867**
Latent			
deficiency	yield tissue Mn Mn uptake	.7538** .7479** .4518	.7733** .8011** .6765**
Sufficiency	yield tissue Mn Mn uptake	.8242** .6433** .5982**	.7651** .8011** .5847**

* Significant at 5% level

** Significant at 1% level

As indicated in Table 10, available soil manganese extracted by $0.1\underline{N}$ H₃PO₄ and $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone gave highly significant negative correlations with soil pH (r = .6281, (Fig. 4) and -.5721, respectively). They were positively correlated with soil phosphorus (r = .7002, (Fig. 5) and .6210, respectively) and negatively correlated with the sum of extractable bases (r = -.7792 and -.6472, respectively). By comparison, $0.1\underline{N}$ H₃PO₄ extractable soil manganese gave better correlations with all soil characteristics than $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extractable manganese.

Highly significant positive correlations were obtained between 0.1N H₃PO₄ and 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese and soil phosphorus and negative relationship with the sum of the extractable potassium, calcium and magnesium on sufficiency and deficiency groups as shown in Table 11. Soil reaction was negatively correlated at the 1 per cent level with available soil manganese as determined by both methods on the sufficiency group. The sum of the extractable potassium, calcium and magnesium and extractable phosphorus gave a highly significant correlation with 0.1NH₃PO₄ extractable soil manganese (r = -.6525) for all three groups. Correlations were similar with 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese except for low correlations on the latent deficiency group.

-53-

Table 10.	Simple correlations between pH, sum of the
	extractable potassium, calcium and magnesium and
	extractable phosphorus for all soils and the
	0.1N H ₃ PO ₄ and 1N NH ₄ OAc + 0.2 per cent hydro-
	quinone extractable soil manganese

	Correlation coefficients Soil extractant		
Soil characteristics			
	0.1 <u>N</u> H ₃ PO ₄	1 <u>N</u> NH ₄ OAc + 0.2% hydroquinone	
рН	6281**	5721**	
Extractable K, Ca and Mg	7792**	6472**	
Extractable P	+.7002**	+.6210**	

** Significant at 1% level

,

: ١ . E • g, 3X **4** 31 2 ÷, ۲-4.6

l

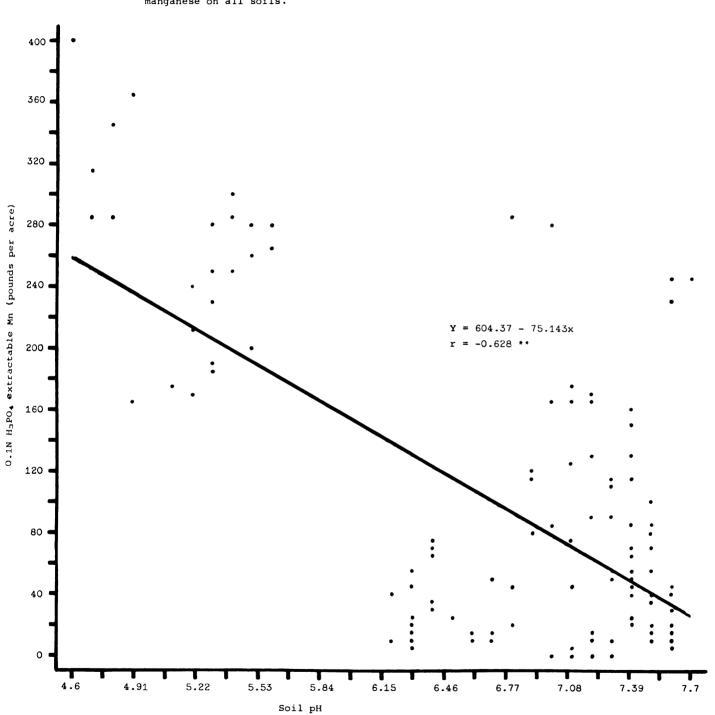


Figure 4. Relationship between soil pH and 0.1N $\rm H_{3}PO_{4}$ extractable manganese on all soils.

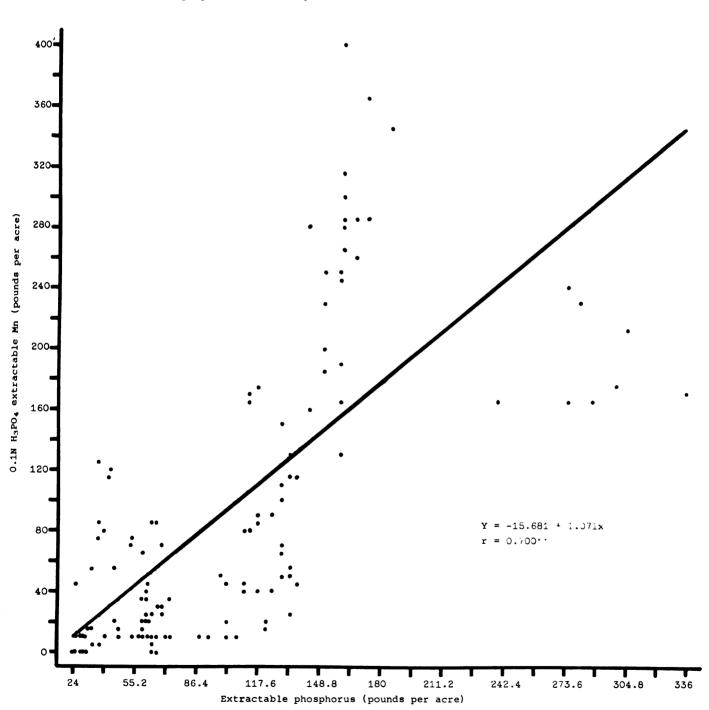


Figure 5. Relationship between extractable phosphorus and $0.1N\ H_3PO_4$ extractable manganese on all soils.

Table 11. Simple correlations between pH, sum of the extractable potassium, calcium and magnesium and extractable phosphorus and 0.1N H₃PO₄ and 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese for soils grouped according to manganese deficiency index

		Correlat	ion coefficient
Mn deficiency	Soil	Soil	
index	characteristics	0.1 <u>N</u> H ₃ PO ₄	1 <u>N</u> NH4OAc + 0.2% hydroquinone
Deficiency	рH	0232	0288
Dericiency	Extractable K, Ca	0232	0200
	and Mg	7418**	6506**
	Extractable P	+.6709**	+.7311**
Latent		,	
Deficiency	pH Extractable K, Ca	+.0570	+.2110
	and Mg	6525**	3872
	Extractable P	+.4241	+.3370
Sufficiency	рH	5865**	5257**
·	Extractable K, Ca		
	and Mg	7957**	6294**
	Extractable P	+.6841**	+.5905**

Oat yield was poorly correlated with tissue manganese (r = -.1057) and manganese uptake (r = .0035) when all soils were considered as shown in Table 12. Bean yield was negatively correlated with tissue manganese (r = -.4391) and manganese uptake (r = -.3072) on all soils. When soils were grouped according to manganese deficiency index, bean yield was negatively correlated on the sufficienty group with tissue manganese (r = -.5657) and manganese uptake (r = -.4197).

Significant correlations were also obtained between the yield and bean tissue manganese on the latent deficiency group (r = .4775) and highly significantly correlated with manganese uptake (r = .7352).

Simple correlations shown in Table 13 indicated that the tissue manganese and manganese uptake by oats and beans were highly correlated with soil pH, sum of the extractable potassium, calcium and magnesium and extractable phosphorus. The yield of beans was highly significantly correlated with the sum of the extractable potassium, calcium and magnesium (r = +.5820) and extractable phosphorus (r = -.5551). Non-significant correlations were obtained between oat yield and soil reaction (r = -.2093) sum of the extractable potassium, calcium and magnesium, calcium and magnesium (r = -.1509).

-58-

The relationship between the yield of oats and beans on all soils and tissue manganese and Table 12. manganese uptake by beans on all soils and on soils grouped according to manganese deficiency index

Manganese		Correlation	coefficients
deficiency index	Relationship	Tissue Mn	Mn uptake
		Oat	<u>s</u>
All soils	yield	1057	+.0035
		Bea	ns
All soils	yield	4391**	3072**
Deficiency	yield	+.1711	+.1135
Latent deficiency	yield	+.4775*	+.7352**
Sufficiency	yield	5657**	4197**

Significant at 5% level Significant at 1% level *

**

Table 13. Simple correlations between the yield tissue manganese and manganese uptake by oats and beans on all soils and pH, extractable potassium, calcium and magnesium and extractable phosphorus

	Co	rrelation coeff	icients
Relationship	рН	Extractable K, Ca and Mg	Extractable P
		Oats	
Yield	2093	0060	1509
Tissue Mn	7032**	4538**	+.4496**
Mn uptake	7293**	5017**	+.5322**
		Beans	
Yield	+.1402	+.5829**	5551**
Tissue Mn	6620**	4525**	4870**
Mn uptake	6460**	4327**	+.5660**

Negative relationship existed between soil pH and tissue manganese and manganese uptake by beans. This was true for the sum of the extractable potassium, calcium and magnesium. But extractable phosphorus was positively correlated with tissue manganese and manganese uptake by oats and beans and negatively correlated with their yield values. Correlation coefficients for oat and bean yields with soil pH and extractable bases indicated negative relationship for yield of oats but positive relationship for yield of beans.

The simple correlations between yield, tissue manganese and manganese uptake by beans and various soil chemical properties of soils grouped according to manganese deficiency index are shown in Table 14. On the sufficiency group of soils, all correlations were highly significant. Soil pH was negatively correlated with yield of beans on the deficiency and latent deficiency groups and was positively correlated on the sufficiency group. Sum of the extractable potassium, calcium and magnesium was positively correlated with bean yield value on all the three groups, and reverse was true with extractable phosphorus.

The multiple correlation coefficients shown in Table 15 indicated that the yield, tissue manganese and manganese uptake were highly significantly correlated when several soil chemical characteristics were considered. Comparisons were made including

-61-

Simple correlations between yield, tissue manganese Table 14. and manganese uptake by beans and pH, extractable potassium, calcium and magnesium and extractable phosphorus on soils grouped according to manganese deficiency index

elationship			
	рН	Extractable K, Ca and Mg	Extractable P
ield	5773**	+.5614**	4075
issue Mn	+.0873	5040*	+.4932
In uptake	0618	3662	+.3912
ield	- 6592**	+ 5511*	7534**
			+.6730**
In uptake	3642	+.1426	3030
ield	+ 3390**	+.7331**	6402**
		• • • • •	+.4802**
In uptake	6292**	4511**	+.5696**
	issue Mn n uptake ield issue Mn n uptake ield issue Mn	ield5773** issue Mn +.0873 n uptake0618 ield6592** issue Mn +.4192 n uptake3642 ield +.3390** issue Mn6537**	ield5773** +.5614** issue Mn +.08735040* n uptake06183662 ield6592** +.5511* issue Mn +.41925736* n uptake3642 +.1426 ield +.3390** +.7331** issue Mn6537**4789**

* Significant at 5% level
** Significant at 1% level

Table 15. Relationships among the yield, tissue manganese and manganese uptake by oats and beans and pH, extractable potassium, calcium, and magnesium, extractable phosphbrus and manganese extracted by 0.1N H₃PO₄ and 1N NH₄OAc + 0.2 per cent hydroquinone

	Correl	ation coefficien	ts
Relationships	рН+(К+Са+Мд) +Р	pH+(K+Ca+Mg) +P+Mn (0.1 <u>N</u> H ₃ PO4	pH+(K+Ca+mg) +P+Mn (1 <u>N</u> NH4OAc + 0.2% hydroquinone)
		<u>Oats</u>	
Yield Tissue Mn Mn uptake	.3505** .7294** .7743**	.3927** .7352** .7747**	.3508** .7644** .7970**
		Beans	
Yield Tissue Mn Mn úptake	.6550** .7032** .7180**	.7099** .7281** .7183**	.6687** .7241** .7191**

the available soil manganese determined by both 0.1N H₃PO₄ and 1N NH₄OAc + 0.2 per cent hydroquinone.

The correlations for all comparisons were improved when available soil manganese extracted by either method was included in the correlation. Multiple correlations with the 0.1N H₃PO₄ extractable soil manganese included as a variable gave better correlations with oat and bean yields. However, manganese uptake by oats and beans was more highly correlated with 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese than with that extracted by 0.1N H₃PO₄. A similar relationship existed for the manganese contained in the oat tissue.

When soils were grouped according to the manganese deficiency index (Table 16), the multiple correlations with bean yield and tissue manganese were highly significantly correlated on all the three groups.

As shown in Table 16, when soils were grouped according to the manganese deficiency index, the correlations were improved when manganese extracted by either of the two methods was included as a variable along with other soil chemical characteristics.

Multiple correlations in which 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese was included in the function gave better correlation with bean yield on deficiency and latent deficiency groups and bean tissue manganese and manganese uptake

-64-

Mn deficiency Relationsh index Deficiency yield tissue Mn	sq i Hq Hp	1 a t i K + C a n (0 4	ffiçients PH+(K+C +P+Mn (NH40Ac
yield tissue)+Hd +Hd+	H+(K+Ca+M P+Mn (0.1 3P04	+(K+Ca+Mg) +Mn (1 <u>N</u> 40Ac + 0.2
yield tissue	.6534*		droquinone
	. COIO.	.7039**	.7402** .727]**
ťа	.5471	58	167*
P	218*	220	506*
tissue Mn Mn uptake	.7050** .3922	.7633** .4999*	.8088** .7334**
ield	. 7757*	503*	249
tissue Mn Mn uptake	**G10/°	./282** .7124**	.7127**

* Significant at 5% level
** Significant at 1% level

-65-

on the latent deficiency and sufficiency groups than when $0.1\underline{N}$ H₃PO₄ extractable manganese was included in the function.

Bean yield and tissue manganese were highly correlated with the several chemical properties on all the three groups (Table 16). On the latent deficiency group, the uptake of manganese by beans was poorly correlated with soil pH, sum of extractable potassium, calcium and magnesium and extractable phosphorus (r = .3922).

The comparison of the multiple correlations obtained between the manganese extracted by $0.1\underline{N} + B_3PO_4$ and that extracted by $1\underline{N} + NH_4OAc + 0.2$ per cent hydroquinone and the pH, extractable potassium, calcium and magnesium and extractable phosphorus on all soils and when soils were grouped according to manganese deficiency index rated by beans, is shown in Table 17. All correlations were highly significant except for the $1\underline{N} + 0Ac + 0.2$ per cent hydroquinone extractable manganese and latent deficiency group (r = .4077).

As shown in Table 18, the soil manganese, extracted by both methods decreased in the following order:

Sufficiency > Latent deficiency > Deficiency

It was clearly seen that the average values of 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese on soils

-66-

Table 17. Comparison of the multiple correlations between the manganese extracted by 0.1N H₃PO4 and 1N NH4OAc + 0.2 per cent hydroquinone and the pH, extractable potassium, calcium and magnesium and extractable phosphorus on all soils and when soils are grouped according to manganese deficiency index using beans as the indicator crop

Mn deficiency index	Relationships	Correlation coefficients
		pH+(K+Ca+Mg)+P
All soils	0.1 <u>N</u> H ₃ PO4 extractable Mn	.8703**
	l <u>N</u> NH4OAc + O.2 per cent hydroquinone extractable Mn	.7548**
Deficiency	0.1 <u>N</u> H ₃ PO ₄ extractable Mn	.9596**
	l <u>N</u> NH ₄ OAc + 0.2 per cent hydroquinone extractable Mn	.9 382**
Latent Deficiency	0.1 <u>N</u> H ₃ PO ₄ extractable Mn	.6795**
	1 <u>N</u> NH ₄ OAc + 0.2 per cent hydroquinone extractable Mn	.4077
Sufficiency	0.1 <u>N</u> H ₃ PO ₄ extractable Mn	.8652**
	l <u>N</u> NH ₄ OAc + 0.2 per cent hydroquinone extractable Mn	.7205**

e 18.	Mean values and ranges of soil manganese extracted by two methods and their differences on soils grouped according to the manganese
	deficiency index rated by the bean crop

	Sufficiency	iency	Latent Deficiency	ent iency	Deficiency	iency
	Mean	S.D.	Mean	S.D.	Mean	S.D.
			pp2m			
Easily reducible Mn	148.18	97.3	68.55	48.7	62.04	52.90
Acid soluble Mn	122.09	107.6	49.50	44.1	29.20	41.60
Difference	26.09		16.05		32.84	

grouped according to manganese deficiency index rated by the bean crop were higher than the average values of $0.1N H_3PO_4$ extractable manganese on all groups. Although the manganese contents were lower in the deficiency group, the difference between the manganese values extracted by the two methods were greater in the deficiency group than in the sufficiency group. The difference in manganese extracted by the $.1N H_3PO_4$ and the $1N NH_4OAc + 0.2$ per cent hydroquinone may be attributed to the increase in the oxides of manganese extracted by the NH_4OAc containing 0.2 per cent hydroquinone.

The simple mean values in Table 19 indicated that the pH increased from 6.5 to 7.35 from the sufficiency group to that classified as deficiency. This is inversely related to the easily reducible manganese and acid soluble manganese and manganese uptake by beans (40).

The data presented in Tables 18 and 19 show decreasing means values for soil manganese from the sufficiency to deficiency group. Similar decrease is observed for plant tissue manganese and available soil phosphorus. These indicate a positive relationship between available soil phosphorus and plant manganese contents. It has been shown by several workers that phosphate increases the uptake of manganese by the plant (30, 35, 40, 46, 58).

-69-

	Sufficiency		Latent Deficiency	t ncy	Deficiency	ncy
pH (simple average)	mean 6.5	. u. c . 89	mean 7.2	.33 .33	меа п 7.35	.21 .21
Extractable P (pds/acre)	116.5	71.2	95.25	38.13	62.8	35.2
Extractable (K+Ca+Mg) (pds/acre)	6198.0	4891.4	8486.1	4261.4	10986.28	4784.9
Bean yield (gm/pot)	3.27	1.43	2.67	1.61	2.95	.75
Bean tissue Mn (ppm)	425.57	914.57	33.30	11.70	25.66	19.58
Bean Mn uptake (mgm/pot)	.658	1.266	.080	.041	.073	.494

-70-

An inverse relationship existed between the extractable soil bases (K+Ca+Mg) and the manganese content of soils determined by both extractants. Similarly, on comparing the sufficiency, latent and deficiency groups, the extractable soil K, Ca and Mg increased as the extractable soil manganese decreased.

Experiment 2

In this experiment, 179 soils having a wide range of chemical characteristics and texture (Table B, Appendix) were chosen at random from samples submitted to the University Soil Testing Laboratory. Oats and radishes were chosen as crops to be grown on these soils because of the difference in their growth characteristics and their sensitiveness to manganese deficiency.

The number of soils represented in each textural group are shown in Table 20.

As shown in Table 21, the correlation between 0.1<u>N</u> H₃PO₄ and 1<u>N</u> NH₄OAc + 0.2 per cent hydroquinone extractable soil manganese was highly significant for mineral soils (r = .8570), (Fig. 6). Although the correlation was high (r = .6611), this relationship was not significant for organic soils since there were only nine observations. Table 20. Soil texture, and number of observations contained

in each textural group

Soil Texture	Number of Observations
Loamy sands	36
Sandy loams	73
Loams	42
Sands	11
Clay	5
Organic soils	9.
Loamy sands with high organic matter	3
Total	179

Table 21. The correlation between manganese extracted with $0.1N H_3PO_4$ and $1N NH_4OAc + 0.2$ per cent hydroquinone on mineral and organic soils

Soils	Correlation coefficients
Mineral soils	.8570**
Organic soils	.6611

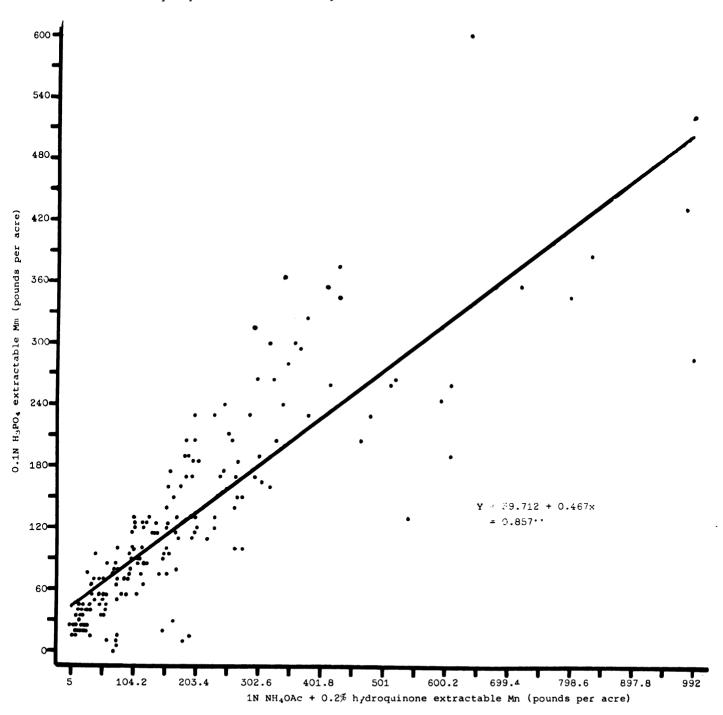


Figure 6. Relationship between 0.1N H_3PO_4 and 1N NH_4OAc + 0.2% hydroquinone extractable manganese on mineral soils.

The correlation between $0.1\underline{N} + \underline{N}PO_4$ and $1\underline{N} + \underline{N}PO_4c + 0.2$ per cent hydroquinone extractable soil manganese on mineral soils when grouped according to texture are shown in Table 22. The results indicated highly significant correlations on all textures (sands, r = .9597 to loamy sands, r = .7508), but the order of magnitude of the correlations among the textural groups could not be derived because of the wide variation in the number of observations for each textural group as shown in Table 20.

Table 22. The correlation between manganese extracted with $0.1\underline{N}$ H₃PO₄ and $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone on soils grouped according to texture

Correlation coefficients
.9597**
.9395**
.8635**
.7508**

The effect of available soil manganese, determined by $0.1\underline{N}$ H₃PO₄ and $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone, on the yield of oats and radishes and tissue manganese and manganese uptake by oats is shown in Table 23. Highly significant correlations were obtained between the extractable manganese by both the methods and tissue manganese and manganese uptake by oats on both mineral (Fig. 7 and 8) and organic soils. However, the radish yield was significantly correlated on mineral soils with $0.1\underline{N}$ H₃PO₄ extractable manganese only. Oat yield was not significantly correlated with available soil manganese as determined by either method. On organic soils, $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extractable manganese gave better correlation with manganese uptake by oats (Fig. 9).

The effect of available soil manganese determined by the two methods on the yield of oats and radishes and tissue manganese and manganese uptake by oats when extractable phosphorus was included as a soil variable on mineral and organic soils is also shown in Table 23.

These data showed that the correlation coefficients were only slightly improved when phosphorus was included. However, on organic soils the relationship between radish yield and extractable manganese by both methods was improved considerably when available soil phosphorus was considered (Table 23).

-75-

l <u>N</u> H ₃ PO4 and radishes and rison of their l variable on		1N NH40Ac + 0.2% hydro- quinone extract- able Mn and ex- tractable P	.0834 .2644** .2457** .1098	.6410 .8540** .9204** .3988
ermined by O. of oats and ats and compa uded as a soi	n Coefficients	1NNH40Ac + 0.2% hydro- quinone ex- tractable Mn	+.0470 +.2549** +.2319** 0932	+.5583 +.8371** +.9130** +.0115
manganese det on the yield e uptake by o horus is incl	Correlatio	0.1 <u>N</u> H ₃ P04 extractable Mn and ex- tractable P	.0988 .3885** .3771** .1798*	.2432 .8718** .8376** .4019
ilable soil hydroquinone and manganes ctable phosp ic soils.		0.1 <u>N</u> H ₃ P04 extractable Mn	+.0619 +.3885** +.3770** 1787*	1126 +.8696** +.8372** +.1636
effect of ava H40Ac + 0.2% ue manganese iue when extra eral and organ		Relationship	Oat yield Oat tissue Mn Mn uptake Radish yield	Oat yield Oat tissue Mn Mn uptake Radish yield
Table 23. The IN N tiss effe mine		Soil Texture	Mineral soils	Organic soils

Significant at 5% level Significant at]% level * *

-76-

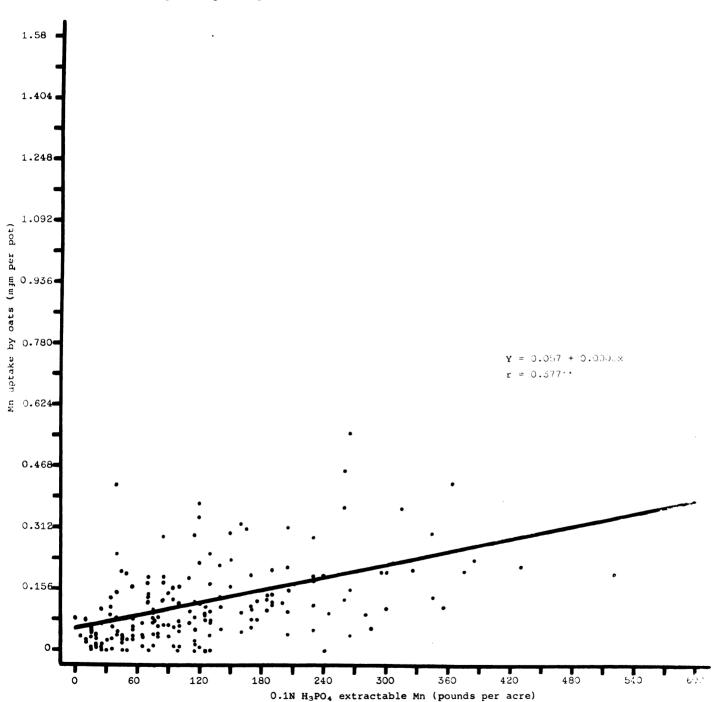


Figure 7. Relationship between 0.1N $\rm H_3PO_4$ extractable manganese and manganese uptake by oats on mineral soils.

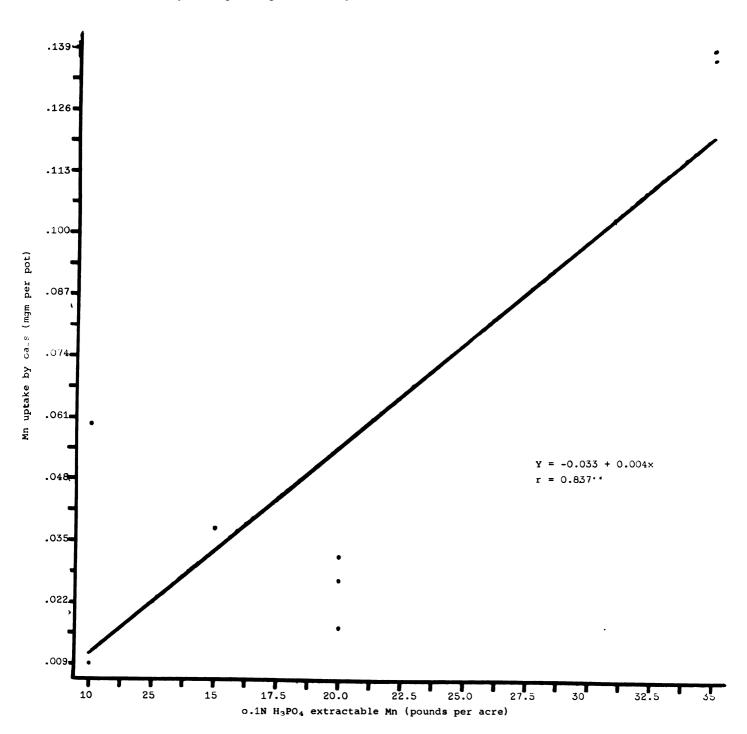


Figure 8. Relationship between 0.1N $\rm H_3PO_4$ extractable manganese and manganese uptake by oats on organic soils.

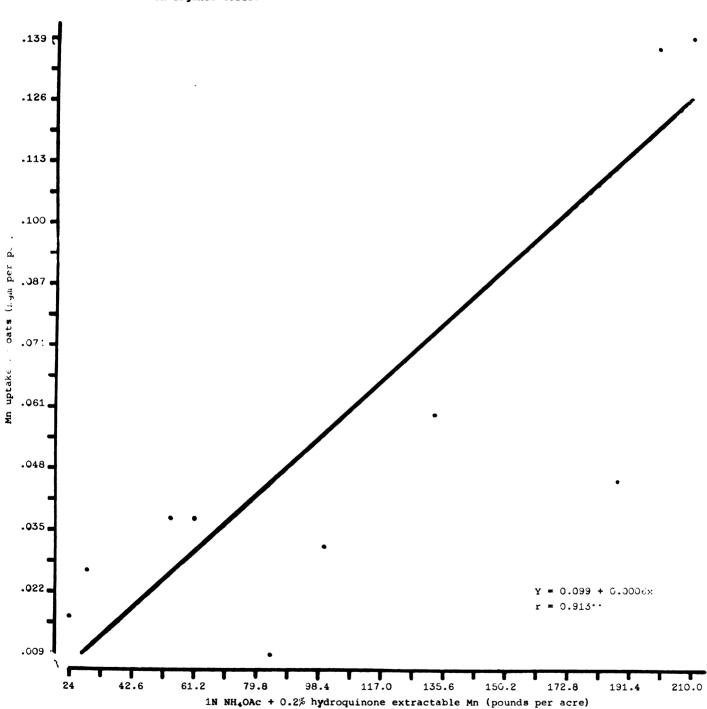


Figure 9. Relationship between 1N NH₄OAc + 0.2% hydroquinone extractable manganese and manganese uptake by oats on organic soils.

The relationship between the available soil manganese determined by two methods and the yield of oats and radishes and the tissue manganese and manganese uptake by oats when mineral soils were grouped according to texture is shown in Table 24.

Oat and radish yield correlations were generally poor for available soil manganese as determined by both methods. Sianificant correlations were obtained for radish yield on loamy sands and the oat yield on sandy loam soils (Table 24). On sands and loamy sands, tissue manganese and manganese uptake by oats was not significantly correlated with soil manganese as determined by either method. The tissue manganese and manganese uptake by oats obtained from the sandy loam soils (Fig. 10) gave highly significant correlations with soil manganese by both methods. On the loam soils, oat tissue Mn was highly correlated with 0.1N H_3PO_4 extractable manganese (r = .4125) and was significantly correlated with $1N NH_4OAc + 0.2$ per cent hydroquinone extractable manganese (r = .3581). The oat manganese uptake values obtained on the loam soils significantly correlated with 0.1N H₃PO₄ extractable manganese (r = .3812) and 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese (r = .3305).

When the simple correlations obtained for oat and radish yields and tissue manganese and manganese uptake by oats versus

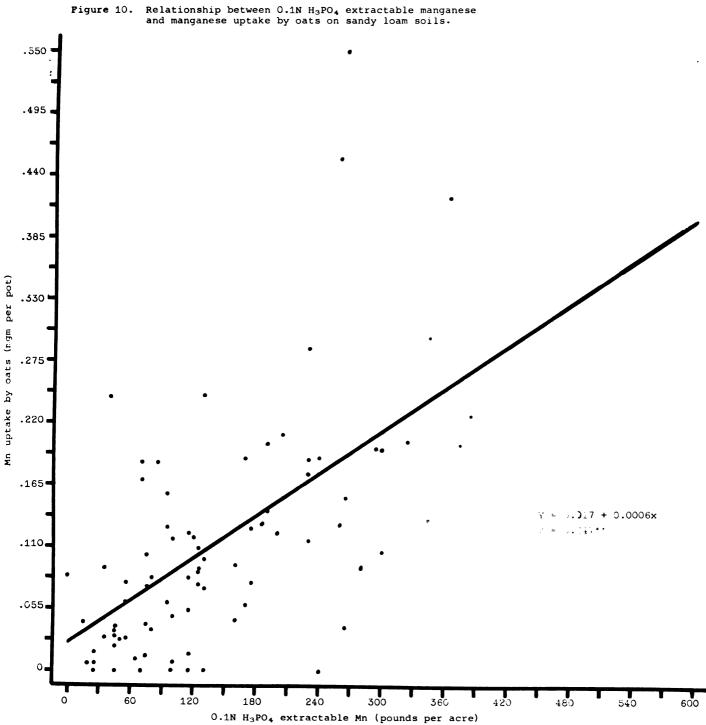

-80-

Table 24.	The effect of 1NNH40Ac + 0. tissue mangane effect when e> soils grouped	available soi .2% hydroquino ese and mangan xtractable pho according to	l manganese d ne on the yie ese uptake by sphorus was i texture	etermined by 0.1 ld of oats and r oats and compar ncluded as a soi	<u>N</u> H3P04 and adishes and ison of their l variable on
Soil Texture	Relationship	0.1 <u>N</u> H ₃ P04 extractable Mn	Co 0.1 <u>N</u> H3P04 extractable Mn and ex- tractable P	orrelation coeffi 1 <u>N</u> NH40Ac + 0.2% hydro- quinone ex tractable Mn	ricients <u>1N NH40Ac +</u> 0.2% hydro- quinone extract- able Mn and ex tractable P
Sands	Oat yield Oat tissue Mn Oat Mn uptake Radish yield	0907 +.3270 3561 0149	.2574 .4741 .4785 .3383	0522 +.4445 +.4816 0990	.2732 .5456 .5644 .3586
Loamy sands	Oat yield Oat tissue Mn Oat Mn uptake Radish yield	1982 +.2187 +.2197 3906*	.2634 .2753 .2676 .4164*	+.1870 +.0354 +.0550 1005	.3099 .2290 .2180 .2721
Sandy loams	Oat yield Oat tissue Mn Oat Mn uptake Radish yield	+.2587* +.6691** +.6479** 1290	.2692* .6691** .6580**	+.1344 +.5214** +.4920** 1393	.1754 .5282** .5027** .1344
Loams	Oat yield Oat tissue Mn Oat Mn uptake Radish yield	0047 +.4125** +.3812* 1337	.2075 .4203** .3820 .1373	0190 +.3581* +.3305* 1271	.1597 .4032** .3554* .1272

Significant at 5% level Significant at 1% level

* *

-81-

 $0.1\underline{N}$ H₃PO₄ and $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extractable manganese were compared with these two extractants where available soil phosphorus was included, the correlations were improved but not to a marked degree (Table 24).

However, on loams, the correlation of the oat tissue manganese with 1N NH₄OAc + 0.2 per cent hydroquinone was improved from r = .3581 to r = .4032, the latter value was significant at the one per cent level.

Table 25. The relationship between $0.1\underline{N}$ H₃PO₄ and $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extractable soil manganese and soil pH, lime requirement, extractable potasssium, calcium and magnesium and extractable phosphorus on mineral and organic soils

		Correlati	on coefficients
Soil Texture	Relationship	<u>Soil</u> 0.1 <u>N</u> H3P04	extractant 1 <u>N</u> NH40Ac + 0.2% hydroquinone
Mineral soils	рH	3484**	2525**
	Extractable K, Ca, and Mg	4647**	2847**
	Extractable P	+.4273**	+.3651**
Organic soils	рН	7591*	5174
	Extractable K, Ca, and Mg	7315*	6016
	Extractable P	2531	1349
 * Significant ** Significant 	at 5% level at 1% level		

-83-

Results of the correlation analysis shown in Table 25 indicated that the 0.1N H₃PO₄ and 1N NH4OAc + 0.2 percent hydroquinone extractable soil manganese for mineral soils were negatively correlated at the one per cent level with soil pH (r = -.3484 and -.2525, respectively). However, for organic soils, only the 0.1N H₃PO₄ extractable manganese was significantly related to soil pH (r = -.7591).

The sum of the extractable potassium, calcium and magnesium and the extractable phosphorus gave highly significant correlations with soil manganese by both methods on mineral soils. On organic soils, only the extractable potassium, calcium and magnesium were significantly correlated with 0.1N H₃PO₄ extractable soil manganese (r = -.7215).

The relationships between $0.1\underline{N}$ H₃PO₄ and $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extractable soil manganese and soil pH, extractable potassium, calcium and magnesium and extractable phosphorus for mineral soils grouped according to texture are shown in Table 26. Both the $0.1\underline{N}$ H₃PO₄ extractable manganese and that extracted by $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone were significantly correlated with the pH of the sandy loam soils (r = -.4429 and -.3208). For the loam soils, however, only the $0.1\underline{N}$ H₃PO₄ extractable soil manganese was significantly correlated with soil reaction (r = -.3872). There were no significant correlations for these relationships on the sands and loamy sands. The sum

-84-

Table 26. The relationship between 0.1<u>N</u> H₃PO₄ and 1<u>N</u> NH4OAc + 0.2 per cent hydroquinone extractable soil manganese and soil pH, lime requirement, extractable potassium, calcium and magnesium and extractable phosphorus on soils grouped according to texture

	Correlation	coefficients
Relationship	Soil ex	tractant
	0.1 <u>N</u> H ₃ PO ₄	1 <u>N</u> NH ₄ OAc + 0.2% hydro- quinone
рH	0834	2344
Extractable K, Ca and Mg	+.0378	1308
Extractable P	6032*	4598
рH	1839	0193
Extractable K, Ca and Mg	4470**	0903
Extractable P	+.3220	+.0991
рН	4429**	3208**
Extractable K, Ca and Mg	4871**	3899**
Extractable P	+.1847	+.0643
рH	3872*	2727
Extractable K, Ca and Mg	4471**	3367*
Extractable P	+.7780**	+.6404**
	pH Extractable K, Ca and Mg Extractable P pH Extractable K, Ca and Mg Extractable P pH Extractable K, Ca and Mg Extractable P pH Extractable K, Ca and Mg	RelationshipSoil ex $0.1N H_3PO_4$ pH 0834 Extractable K, Ca and Mg $+.0378$ Extractable P $6032*$ pH 1839 Extractable K, Ca and Mg $4470**$ Extractable P $+.3220$ pH $4429**$ Extractable K, Ca and Mg $4871**$ Extractable K, Ca and Mg $3872*$ Extractable K, Ca and Mg $4471**$

* Significant at 5% level

of the extractable potassium, calcium and magnesium was highly correlated with soil manganese extracted by $0.1\underline{N}$ H_3PO_4 on loamy sands, sandy loams and loams (Table 26). The $1\underline{N}$ NH40Ac + 0.2 per cent hydroquinone extractable manganese was significantly correlated with the sum of the extractable potassium, calcium and magnesium on loams (r = .3367), and significantly correlated at the one per cent level on sandy loams (r = -.3899).

A highly significant relationship existed between $0.1\underline{N}$ H₃PO₄ and 1<u>N</u> NH4OAc + 0.2 per cent hydroquinone extractable manganese and extractable phosphorus on loams (r = .7780 and .6404, respectively); and as shown in Table 26, a significant negative correlation was obtained on the sandy soils between $0.1\underline{N}$ H₃PO₄ extractable soil manganese and extractable phosphorus (r = -.6032). A rather poor correlation resulted on the loamy sands and sandy loam soils between soil manganese extracted by both methods and extractable phosphorus.

As indicated in Table 27, there was a significant correlation between oat yield and oat manganese uptake on mineral soils (r = .1711). A non-significant correlation for these relationships was obtained on organic soils.

On sandy loams (Table 28), oat yield was significantly correlated at the one per cent level with oat manganese uptake (r = .3067). No significant correlations were obtained on other textural groups for oat yield and tissue manganese and

Table 27. The relationship between oat yield and tissue manganese and manganese uptake by oats on mineral and organic soils

Soil Texture	Relationship	Correlation coefficients		
		Tissue Mn	Mn uptake	
Mineral soils	Oat yield	+.0893	+.1711*	
Organic soils	Oat yield	+.0753	+.2988	

* Significant at 5% level

Table 28. The relationship between oat yield and tissue manganese and manganese uptake by oats on soils grouped according to texture

Soil texture	Relationship	Correlation coefficients		
	·	Tissue Mn	Mn uptake	
Sands	Oat yield	3374	4437	
Loamy sands	Oat yield	+.0726	+.0268	
Sandy loams	Oat yield	+.2133	+.3067**	
Loams	Oat yield	+.0344	+.2227	

manganese uptake. On sandy soils, oat yield was negatively correlated with tissue manganese and manganese uptake.

As shown in Table 29, oat tissue manganese and manganese uptake were highly correlated (negatively) with soil pH on both mineral (r = -.4847 and -.4700, respectively) and organic soils (r = -.8775 and -.7447, respectively).

The relationship between the yield of oats and soil pH on mineral soils was significant only at the 5 per cent level whereas the yield of radishes was highly significantly correlated with soil pH. On organic soils, both oat and radish yields were not well correlated with soil pH (r = +.3193 and -.0950, respectively).

Highly significant correlations were obtained between extractable bases and oat tissue mangnaese and manganese uptake and radish yield on mineral soils (r = -.3843, -.3838, and +.5890, respectively). This relationship did not apply to the organic soils. Extractable soil phosphorus did not give a good correlation with oat and radish yield and oat tissue manganese and manganese uptake on either mineral or organic soils.

When the mineral soils were grouped according to texture (Table 30), a significant correlation was obtained between the manganese uptake by oats on the loam soils and extractable phosphorus (r = .3119), and oat tissue manganese and extractable phosphorus (r = .3715). It was noted, however, that the

-88-

Table 29. The relationship between soil pH, extractable potassium, calcium and magnesium and extractable phosphorus and the yield of oats and radishes and tissue manganese and manganese uptake by oats on mineral and organic soils

Soils	Relationship	Correlation coefficients		
		рН	K+Ca+Mg	P
Mineral soils	Oat yield	1689*	0403	0475
	Oat tissue Mn	4847**	3843**	+.1576
	Oat Mn uptake	4700**	3838**	+.1381
	Radish yield	+.3163**	+.5890**	0881
Organic soils	Oat yield	+.3193	1099	+.2370
	Oat tissue Mn	8775**	6017	2797
	Oat Mn uptake	7447*	5808	2386
	Radish yield	0950	+.3278	3966

Significant at 5% level Significant at 1% level *

**

correlation of extractable phosphorus with oat and radish yield and oat tissue manganese and manganese uptake was poor on sands, loamy sands, and sany loams. Also, oat yield and manganese uptake were poorly correlated with extractable phosphorus on the loam soils.

The data shown in Table 30 indicated a highly significant correlation between the sum of the extractable potassium, calcium and magnesium and the oat and radish yield on the loamy sands and sandy loam soils. The yield of radishes was significantly correlated on the loam soils with extractable bases (r = .3871). Tissue manganese and manganese uptake by oats obtained on the sandy loams and loams were highly correlated with extractable potassium, calcium and magnesium.

The effect of soil reaction on oat and radish yield and oat tissue manganse and manganese uptake, as shown in Table 30, indicated that oat tissue manganese and manganese uptake were highly correlated with soil reaction on loamy sands, sandy loams and loams (Fig. 11). Oat yield was highly significantly negatively correlated with soil pH on sandy loams (r = -.3541); and radish yield was positively correlated with soil reaction on loams (r = .2681) and sandy loams (r = .2449). On sands, loamy sands and loams, oat yield was not well correlated with soil reaction.

-90-

The effect of soil pH, extractable potassium and magnesium and extractable phosphorus on the yield of oats and radishes and tissue manganese and manganese uptake by oats on soils grouped according Table 30. to texture

Soils	Dolationchin	Correl	ation coeff	icients
	Relationship	рН	K+Ca+Mg	Р
Sands	Oat yield	+.0517	+.1251	+.2622
	Oat tissue Mn	7841*	5284	+.0766
	Oat Mn uptake	7709*	5282	+.2605
	Radish yield	+.5626	+.6247	2605
Loamy sands	Oat yield	+.0953	+.5797**	2274
	Oat tissue Mn	4744**	2796	+.2287
	Oat Mn uptake	4514**	2706	+.2154
	Radish yield	+.4230**	+.7359**	2628
Sandy loams	Oat yield	3541**	2954**	+.1211
	Oat tissue Mn	5379**	4369**	+.1183
	Oat Mn uptake	5502**	4363**	+.0164
	Radish yield	+.2449	+.3928**	+.1346
Loams	Oat yield	1190	2100	1341
	Oat tissue Mn	6256**	5106**	+.3715*
	Oat Mn uptake	6060**	5380**	+.3119*
	Radish yield	+.2686*	+.3871*	0844

* Significant at 5% level
** Significant at 1% level

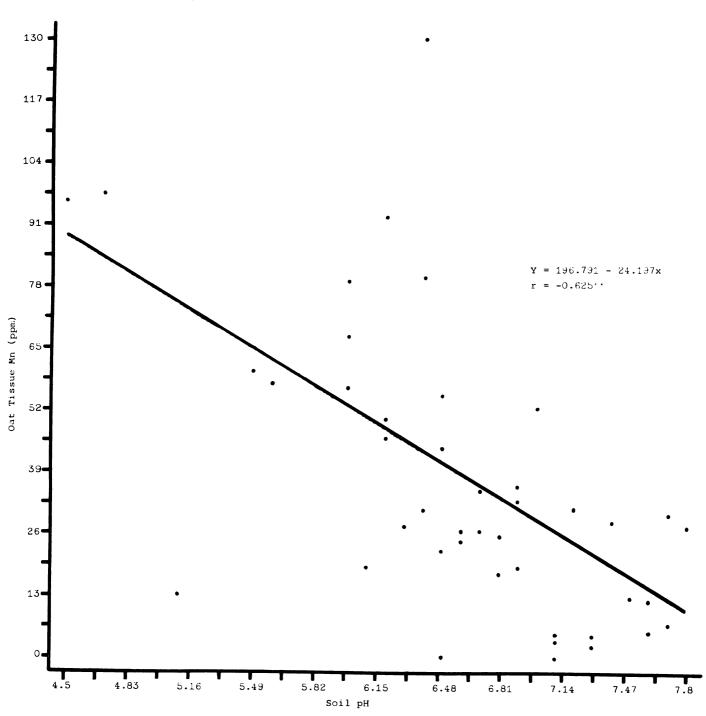


Figure 11. Relationship between soil pH and tissue manganese (ppm) of oats grown on loam soils.

As shown in Table 31, multiple correlations among soil pH, sum of the extractable potassium, calcium and magnesium and extractable phosphorus, oat and radish yield, tissue manganese, manganese uptake by oats when available soil manganese extracted by 0.1N H₃PO₄ and 1N NH₄OAc + 0.2 per cent hydroquinone were compared. Mineral soils gave highly significant correlations for all relationships. When manganese was added as a soil variable in the multiple correlations, the correlations were improved in all cases. However, multiple correlations including available soil manganese extracted by 0.1N H₃PO₄ gave consistently higher correlations as compared to multiple correlations including 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese on mineral soils.

For the organic soils, however, the multiple correlations improved only slightly, except for the radish yield, when $0.1\underline{N} + 3PO_4$ extractable manganese was included in the correlation. The correlation of radish yield with the variables shown in Table 31 was somewhat improved when $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extractable manganese was included (r = .4827 to .4970). The correlation coefficient for the yield of oats as a function of the previously described variables was improved from .4570 to .9753 when reducible manganese was substituted

-93- -

		CO	Correlation coefficients	cients
Soil texture	Kelationship	pH+(K+Ca+Mg) +P	pH+(K+Ca+Mg) +P+Mn (0.1 <u>N</u> H ₃ P04)	pH+(K+Ca+Mg) +P+Mn (1N NH40Ac + 0.2% hydroquinone)
Mineral soils	at yield	*	80 *	154*
	at tis at Mn	.5]9]** 5085**	.5543** 542**	.5314** 5100**
	yiel	* 	05*	950*
Organic soils	at yield	<u>6</u> 6		753*
	Oat tissue Mn Oat Mn uptake	.9324** .8383*	.9370** .8544*	.9913**
	adish yiel	\sim	.7490	97

* Significant at 5% level
** Significant at 1% level

-94**-**

for $0.1\underline{N} + \underline{3}PO_4$ extractable Mn. Similarly, the r values (Table 31) for tissue manganese and manganese uptake by oats were also greater when $1\underline{N} + \underline{0}Ac + 0.2$ per cent hydroquinone extractable manganese was employed in the function.

Where mineral soils were grouped according to texture, as shown in Table 32, the multiple correlation coefficients for tissue manganese and manganese uptake by oats as a function of soil pH, extractable potassium, calcium and magnesium and extractable phosphorus were highly significant. Correlations improved when either 0.1N H₃PO₄ or 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese was included as a soil variable. Oat and radish yields gave highly significant correlations with these relationships on loamy sands and sandy loam soils. The inclusion of soil manganese with the other variables on the loam soils did not significantly improve the correlation between radish yield and the previously described variables. The correlation among these variables and the yield of oats on sands and loams was not significantly related to pH, sum of the cations, phosphorus or to soil manganese extracted by either method. Multiple correlations in which $0.1\underline{N} + \underline{R}_{3}PO_{4}$ extractable manganese was included, consistently gave better correlations than the 1N NH40Ac + 0.2 per cent hydroquinone extractable manganese except for oat yields on sands and loamy sands and tissue manganese and manganese uptake by oats on the loam soils.

-95-

	2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Co	Correlation coeffic	cients
2011 LEX LUTE	кетастопуптр	рН+(К+Са+Мд) +P	pH+(K+Ca+Mg) +P+Mn (0.1 <u>N</u> H3P04	pH+(K+Ca+Mg) +P+Mn (1N NH40Ac + <u>0</u> .2% hydroquinone)
Sands	Oat yield Oat tissue Mn Oat Mn uptake Radish yield	.3693 .8856** .8904**	.4520 .8907** .8946**	.4665 .8864** .8905**
Loamy sands	Oat yield	.6531**	.6738**	。7081**
	Oat tissue Mn	.4844**	.4951**	。4846**
	Oat Mn uptake	.4618**	.4746**	。4632**
	Radish yield	.7636**	.7639**	。7636**
Sandy loams	Oat yield	.3750**	.3833**	.3750**
	Oat tissue Mn	.5569**	.7214**	.6550**
	Oat Mn uptake	.5682**	.7187**	.6478**
	Radish yield	.4042**	.4088**	.4044**
Loams	Oat yield	.2914	.3068	.2958
	Oat tissue Mn	.6528**	.6648**	.6677**
	Oat Mn uptake	.6436**	.6555**	.6581**
	Radish yield	.3905*	.3959*	.3095*

-96-

Significant at 5% level Significant at 1% level

* *

.

A comparison of the correlation coefficients obtained for $0.1\underline{N} + \underline{3}PO_4$ extractable manganese and that extracted by $1\underline{N} + \underline{3}PO_4$ extractable manganese and that extracted by extractable bases and available phosphorus is shown in Table 33. The $0.1\underline{N} + \underline{3}PO_4$ extractable manganese was highly correlated with the variables previously described on both mineral and organic soils. The $1\underline{N} + \underline{3}PO_4$ extractable to these variables on mineral soils only.

As shown in Table 34, highly significant relationships existed between $0.1\underline{N} + _{3}PO_{4}$ and $1\underline{N} + _{4}OAc + 0.2$ per cent hydroquinone extractable soil manganese and the variables previously described on sandy loams and loamy soils. The $0.1\underline{N} + _{3}PO_{4}$ extractable manganese gave a highly significant correlation with these variables on loamy sands (r = .5406) and a significant correlation on sands (r = .7861). The $1\underline{N} + _{4}OAc + 0.2$ per cent hydroquinone extractable manganese was significantly correlated with the variables shown in Table 34, on sands (r = .7359), but poorly correlated on the loamy sand soils (r = .1434). The data indicates that for all textural groups, $0.1\underline{N} + _{3}PO_{4}$ extractable manganese gave comparatively better correlations than the $1\underline{N} + _{4}OAc + 0.2$ per cent hydroquinone extractable manganese.

-97-

on coefficients obtained for 1N NH40Ac + 0.2 per cent extractable potassium, e phosphorus on mineral and	Correlation coefficients pH+(K+Ca+Mg)+P	.5655**	.9415** .7211	
A comparison of the multiple correlation coefficients obtained manganese extracted by $0.1N$ H ₃ PO ₄ and $1N$ NH40Ac + 0.2 per cent hydroquinone as a function of soil pH, extractable potassium, calcium, and magnesium, and extractable phosphorus on mineral organic soils	Relationship	0.l <u>N</u> H ₃ PO4 extractable Mn l <u>N</u> NH40Ac + 0.2 per cent hydroquinone extractable Mn	0.1 <u>N</u> H ₃ PO4 extractable Mn 1 <u>N</u> NH4OAc + 0.2 per cent hydroquinone extractable Mn	
Table 33. A company mangano hydroqi calciur organio	Soil texture	Mineral soils	Organic soils	

** Significant at 1% level

-98-

cion coefficients obtained for 1 1 <u>N</u> NH ₄ OAc+ 0.2 per cent cractable potassium, calcium orus on soils grouped according	Correlation coefficients pH+(K+Ca+Mg)+P •	.7861*	.7359*	.5406*	.1434	.5298**	.4040**	.8631**	.7125**	
comparison of the multiple correlation coefficients of iganese extracted by $0.1N$ H_3P0_4 and $1N$ NH_40Ac^+ 0.2 peroquinone as a function of pH, extractable potassium magnesium and extractable phosphorus on soils group texture	Relationship	0.1 <u>N</u> H3PO4 extractable Mn	1 <u>N</u> NH ₄ OAc + 0.2 per cent hydroqui n one extractable Mn	0.1 <u>N</u> H ₃ PO ₄ extractable Mn	1 <u>N</u> NH40Ac + 0.2 per cent hydroquinone extractable Mn	0.1 <u>N</u> H ₃ PO ₄ extractable Mn	1 <u>N</u> NH40Ac + 0.2 per cent hydroquinone extractable Mn	0.1 <u>N</u> H ₃ PO4 extractable Mn	1 <u>N</u> NH40Ac + 0.2 per cent hydroquinone extractable Mn	at 5% level at 1% level
Table 34. A com manga hydro and m to te	Soil texture	Sands		Loamy sands		Sandy loams		Loams		* Significant ** Significant

-99-

As shown in Table 35, 1N NH₄OAc + 0.2 per cent hydroquinone extracted more manganese from the soil than 0.1N H₃PO₄ on both mineral and organic soils.

The difference between $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone and $0.1\underline{N}$ H₃PO₄ extractable manganese was greater on organic soils than on mineral soils. Organic soils have been shown to tie up more manganese in the form of chelated complexes (10). Too, the reducing agent hydroquinone extracts more manganese from this form. Greater amount of extractable phosphorus, like manganese was obtained from mineral soils than from organic soils but the reverse was true for the extractable bases (potassium, calcium and magnesium).

Oat and radish yields were higher on organic soils than on mineral soils. However, manganese uptake by oats was greater on mineral soils.

The average values shown in Table 36 indicated that the difference between $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone and $0.1\underline{N}$ H₃PO₄ extractable manganese increased from the sand textured soils to clay soils indicating that $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone extracted more manganese on fine textured soils than the $0.1\underline{N}$ H₃PO₄. The bulk of the exchangeable manganese has been shown to be located in the colloidal fraction (49).

-100-

Variables	Mineral Soils	Soils	Organic Soils	oils
	Mean	S.D.	Mean	S.D.
Easily reducible Mn (pp2m)	189.52	190.76	99.4	68.8
Acid soluble Mn (pp2m)	128.91	103.4	20.0	9.3
Easily reducible Mn- acid soluble Mn	60.61		79.4	ı
pH (simple average)	6.54	0.66	6.76	0.55
Extractable P (pds/acre)	59.51	74.34	36.20	18.10
Extractable (K+Ca+Mg) (pds/acre)	3506.0	2871.5	12176.2	2196.9
Oat yield (gms/pot)	2.370	0.415	3.24	0.794
Oat tissue Mn (ppm)	53.063	59.804	16.700	14.300
Oat Mn uptake (mgm/pot)	0.127	0.149	0.055	0.049
Radish yield (gms/pot)	0.74	0.27	1.48	0.30

Mean values and ranges of several soil chemical characteristics and observed crop variables on mineral and organic soils Table 35.

Soil pH increased in the following manner:

Sands < Clays < Loamy sands < Sandy loams < Loams Extractable phosphorus increased in the following manner:

Clays < Sands < Loamy sands < Sandy loams < Loams Extractable bases increased in the following manner:

Sands < Sandy Loams < Loams < Loamy sands < Clays Oat yield decreased in the following manner:

Sands > Clays > Loamy sands > Sandy loams > Loams Radish yield decreased in the following manner:

Clays > Loams > Sandy loams > Loamy sands > Sands Oat manganese uptake decreased as follows:

Sands > Loamy sands > Sandy loams > Loams > Clays

These variations are natural to obtain as the soils included in this study were of wide range in texture and chemical properties and the management practices varied widely.

Table 36. Mean va crop va	values and variables o	ranges of s n coarse an	f several soil and fine text	chemical ured soils	characteristics	cs and observed
Variables	Sand	S	Loamy Sands	my ds	Sandy Loams	
	Mean	S.D.	Mean	S.D.	.Mean	S.D.
Easily reducible Mn (pp2m)	157.27	147.1	161.19	98.57	221.81	189.42
Acid soluble Mn (pp2m)	109.54	64.0	120.47	72.27	158.57	113.73
Easily reducible Mn-acid soluble Mn	47.73		40.72		63.24	
pH (simple average)	6.02	.87	6.48	.62	6.52	0.59
Extractable P (pds/acre)	57.81	53.16	68.02	47.79	59.3	41.7
	1551.9	1097.3	2354.8	2588.31	2155.39	2523.0
Oat yield (gms/ pots)	2.66	.278	2.58	.435	2.3	.377
Oat tissue Mn (ppm)	73.0	63.72	71.04	101.52	53.59	41.1
Oat Mn uptake (mgm/pot)	.187	.151	.180	.252	.126	111.
Radish yield (gms/ pot)	، ع	.146	.606	.273	.715	.326

Table 36, cont.

Vauiahloc			
	Mean	S.D.	Mean S.D.*
Easily reducible Mn (pp2m)	173.1	254.7	199.8
Acid soluble Mn (pp2m)	100.2	100.8	57.0
Easily reducible Mn-acid soluble Mn	72.9		142.8
pH (simple average)	6.62	.77	6.3
Extractable P (pds/acre)	62.76	130.11	30
Extractable (K+ Ca+Mg) (pds/acre)	2158.0	1217.6	9339
Oat yield (gms/ pots)	2.22	.349	2.600
Oat tissue Mn (ppm)	38.39	29.62	21.8
Oat Mn uptake (mgm/pot)	.085	.068	.056
Radish yield (gm/pot)	.827	.204	1.284
*S.D. was not calculated	d as there were only	ъ С	number of observations

GENERAL DISCUSSION

The mangnaese content varied considerably in the 179 soils included in this study. The acid soluble manganese ranged from 0 to 600 pp2m and easily reducible manganese ranged from 5 to 997 pp2m. The average manganese contents of mineral and organic soils were 129 and 20 pp2m of acid soluble manganese, and 190 and 100 pp2m of easily reducible manganese, respectively.

When soils were grouped according to manganese deficiency index rated by the bean crop for the ll soil types represented in the study, the average values for easily reducible and acid soluble manganese were as follows: 148 and 122 pp2m (sufficiency group); 68.55 and 49.5 pp2m (latent deficiency group) and 62 and 29 pp2m (deficiency group).

These values indicate that soils having less than 62 pp2m of easily reducible manganese or less than 30 pp2m of acid soluble manganese may be considered as manganese deficient using beans as the indicator crop. Soils containing more than 69 pp2m of easily reducible manganese or 49 pp2m of acid soluble manganese may be considered as sufficient for the bean crop.

-105-

Twenty-five ppm or less manganese in the bean tissue may be considered deficient and more than 35 ppm manganese can be considered as a sufficient level for normal plant growth. Naturally there is a limit for the plant manganese content for normal growth above which plants will suffer from manganese toxicity.

The subnormal shrunken characteristic symptoms of the plants grown on Soils 6, 7 and 15, are shown in Plate 2. This disorder initially appeared to be associated with manganese toxicity.

Bean plants grown on all three treatments of Soils 6, 7 and 15 (Montcalm sandy loam, Karlin sandy loam, and Osthemo loamy sand, respectively) had well-spread green primary leaves to begin with, but the secondary leaves were very slow to emerge and, on emergence, their size was subnormal and were rather rubbery and with wavy margins (Plate 3). Plants were taken to the Plant Disease Diagnostic Laboratory on August 17 to see if the symptoms were of a pathological nature. Findings were negative.

The leaf characteristics showed veins that were almost transparent; the remaining areas were dark green and puckered. Leaf tips were sickle-shaped with wavy margins (Plate 4).

In contrast to these leaf characteristics, Gorter et al (21) has described the auxin herbicide effect on leaves as follows: "Growth of the mesophyll seems to be controlled by a

Plate 2. Effect of nutrient imbalance in the plant as shown on navy beans (var. Sanilac) Soil type: Osthemo loamy sand Soil pH: 5.4 Available soil manganese: 280 pp2m (acid soluble) 336 pp2m (easily reducible) Bean tissue manganese: 3600 ppm

Plate 3. Navy bean (var. Sanilac) plant showing well developed primary leaves and abnormal secondary leaves

> Soil type: Karlin sandy loam Soil pH: 4.8 Available soil manganese: 285 pp2m (acid soluble) 303 pp2m (easily reducible) Bean tissue manganese: 2140 ppm

Plate 4. Normal bean leaf (var. Sanilac) shown on the left and abnormal leaf on the right affected by nutrient imbalance
Soil type: Montcalm sandy loam Soil pH: 5.1 Available soil manganese: 175 pp2m (acid soluble) 138 pp2m (easily reducible)
Bean tissue manganese: 1360 ppm mechanism different from that for the growth of veins, for an auxin herbicide may reduce the amount of mesophyll without influencing the development of the veins. A pointed or even strap-like leaf may be the result. In extreme cases, complete absence of the mesophyll occurs. Crisped leaves are formed when vein growth is more retarded than mesophyll growth. The latter tissue then bulges out between the veins giving the leaves their crisped appearance. Crisping of leaves caused by auxin herbicides very much resembles the effects to be observed in virus diseased plants. Abnormal vein patterns as the band-like spreading of the tissue of the central vein and sometimes of veins of the second or third order also is commonly combined with inhibited development of the mesophyll tissue."

Comparing the observed abnormality of the leaves and the characteristic damage by the herbicide (2,4-D particularly) and observing them to be not quite similar, it was suspected that the two strains of virus may cause similar symptoms. The two suspected virus diseases were Curly Top and Bean Mosaic (57).

The three possible causes of these characteristic symptoms were as follows:

(a) a herbicidal damage
(b) a virus disease infection
(c) a nutritional disorder.

In order to ascertain which of these caused the symptoms previously described, inoculation studies were made in fresh soil samples as suggested by Dr. D. J. deZeeuw of the Botany and Plant Pathology Department, Michigan State University.

Beans were grown on suspected field soils (soils 6, 7 and 15) and on field soils not ordinarily producing the symptoms. The beans in the latter soil failed to give the virus-like symptoms and no disease could be transmitted from these plants to either tobacco or navy beans. Beans grown in the suspected soil produced the typical symptoms. Transmission of symptoms from these, however, was also negative on tobacco and navy beans. There was a lack of evidence for soil transmitted virus. No specific insect was noted for such virus as Curly Top and no contact or transmission from symptom-expressing plants could be obtained. It was concluded, therefore, that the symptoms observed on the bean plants were not due to a virus infection.

Dr. N. Leeling, Department of Entomology, Michigan State University, analyzed the soils and plants grown on those soils showing symptoms by gas chromatography to trace the herbicidal residue in the soil or taken up by the plant in its growing stages. Standards were established for the possible herbicides used: Randox, Eptam, and both ester and amine compounds of 2-4-D. Chromatographic column, 6 feet by 1/8 inch, contained

-111-

five per cent DC-11 Silicone oil on Chromosorb (60-80 mesh). The temperature was 200°C and the nitrogen gas flow rate was 55 ml. per minute. The chromatographic curves failed to show similar peaks against the standards.

Rejection of these two possibilities gives more weight to the possibility that these symptoms were due to some nutritional disorder, more of a toxic nature. Bean tissues from the soils receiving no treatment and with manganese added were extremely high in manganese and the plants showed the subnormal, shrunken growth with characteristic symptoms. Plants similar to these were obtained on the soils treated with lime. But the plant content of manganese was very much reduced (Table 36).

From these data it appears that the kind of physiological disorder that developed may be the result of nutrient element interaction or nutrient imbalance.

To compare the chemical composition of tissues obtained from normal and abnormal bean plants, a spectrographic analysis was carried out by Dr. A. L. Kenworthy, Horticulture Department, Michigan State University.

Results of the Spectrographic Analysis are shown in Table 37.

Table 37. Total manganese, iron, aluminum, copper and boron contents of tissue in the normal bean plants and plants showing nutritional disorder symptoms (Average of 7 observations)

Plant Growth	Treatment	Nutrient content in the plant tissue (ppm)				
		Mn	Fe	A1	Cu	В
Normal		26	277	173	15.2	43.3
Abnormal	Check	2200	200	100	16.0	42.0
	15 lbs/Mn acre	2972	340	161	22.0	70.0
	Lime treat- ment	40	55	90	17.0	6.0

When the ratios of other elements with manganese in the normal and abnormal plant tissues were compared (Table 38), the following observations were made: there was a 115-fold increase in manganese as compared to iron; 150-fold increase as compared to aluminum; approximately a 250-fold increase as compared to copper; and a 100-fold increase in boron. These ratios decreased with the application of manganese to the soil since the other nutrient contents also increased in the plant tissue. The application of lime brought about a sharp decrease in the manganese content of the bean tissue. The concentration of iron, aluminum, copper and boron also decreased but the ratio of manganese to these elements deviated considerably from that found in the normal tissue. This may have contributed to the similar symptoms that developed on the beans grown in the lime treated solls (Plate 5).

Evaluation of two extraction methods as to their effectiveness in determining available soil manganese:

The available soil manganese extracted by both methods were highly correlated on mineral soils (Experiment 2) and on soils grouped according to manganese deficiency index (Experiment 1). It was not significant on organic soils. It was noted that 1N NH₄OAc + 0.2 per cent hydroquinone consistently extracted more manganese on both mineral and organic soils.

-114-

Table 38.		manganese to and abnormal			elements
Plant Growth	Treatment	Fe:Mn	Ra A1:Mn	atios Cu:Mn	B:Mn

Plant Growth	Treatment		Ra	t10S	
		Fe:Mn	Al:Mn	Cu:Mn	B:Mn
Normal		1:0.09	1:0.15	1:0.58	1:0.60
Abnormal	Check	1:11.0	1:22.0	1:137.5	1:52.38
	15 lbs Mn/ acre	1:8.74	1:18.46	1:135.10	1:42.46
	Lime treat- ment	1:1.38	1:2.30	1:2.35	1:6.80

Plate 5. Navy bean (var. Sanilac) plant showing abnormal leaf symptoms Soil type: Karlin sandy loam (lime treatment) Soil pH: 7.0 Available soil manganese: 280 pp2m (acid soluble) 308 pp2m (easily reducible) Bean tissue manganese: 51 ppm However, it was also observed that the difference between $1\underline{N}$ NH₄OAc + 0.2 per cent hydroquinone and $0.1\underline{N}$ H₃PO₄ extractable manganese was greatest on the clays and least on the sandy loam soils. This difference was greater for organic soils (79 pp2m) than for mineral soils (60 pp2m). This may indicate that more manganese is extracted by $1\underline{N}$ NH₄OAc containing 0.2 per cent hydroquinone from clays and soils high in organic matter. Too, $1\underline{N}$ NH₄OAc + 0.2 per Cent hydroquinone extractable manganese was better correlated with manganese uptake by oats on organic soils than on mineral soils.

The soil manganese as determined by the two extraction methods were highly correlated with oat manganese uptake on both mineral and organic soils.

The yield of radishes obtained on the mineral soils was significantly correlated with 0.1N H₃PO₄ extractable manganese.

Soil manganese extracted by both methods were found to be negatively associated with soil chemical properties, such as pH and extractable bases on both mineral and organic soils. However, extractable phosphorus was positively correlated with soil manganese on mineral soils and negatively correlated on organic soils. The degree of association was higher for $0.1\underline{N}$ H₃PO₄ extractable manganese on all occasions.

-117-

A higher degree of correlation was associated with 1N NH₄OAc + 0.2 per cent hydroquinone extractable manganese on organic soils for oat and radish yields when soil phosphorus was included as a variable in the function.

On comparing the merits of the two extraction methods, it was found that $0.1\underline{N} + B_3PO_4$ extractant gave higher correlations than $1\underline{N} + 0.2$ per cent hydroquinone with plant yield and plant manganese content on mineral soils and on soils placed in the manganese sufficiency group as rated by the bean crop.

It can be stated that on mineral soils $0.1N H_3PO_4$ is more effective in determining the available manganese and on organic soils, $1N NH_4OAc + 0.2$ per cent hydroquinone is a better extractant to determine the available soil manganese.

Soil manganese as related to soil texture:

The manganese content of the different textural groups varied considerably. The easily reducible manganese ranged from 157 pp2m in sands to 227 pp2m in sandy loams while the acid soluble manganese varied from 57 pp2m in clays to 158 pp2m in sandy loams.

Even with this difference, manganese content in oats decreased in a uniform pattern from coarse to fine textured soils. On the average, both the coarse (sands, loamy sands

-118-

and sandy loams) and fine textured soils (loams and clays) contained an equal amount of easily reducible manganese. But the acid soluble manganese in the coarse textured soils was approximately one and a half times greater than the fine textured soils (Table 36). The manganese content of oats grown on coarse textured soils was twice as great as that obtained from the fine textured soils. From this relationship, it may be concluded that $0.1N H_3PO_4$ is more effective in determining the plant available manganese than 1N NH₄OAc + 0.2 per cent hydroquinone on mineral soils. The same trend was observed for the yield of oats. The yield of radishes, however, increased from coarse to fine textured soils. Soil manganese was highly correlated with plant manganese on medium textured soils but this was not true for the coarse textured soils. Except on sandy soils, acid soluble manganese was better correlated with plant manganese than the easily reducible manganese.

Soil manganese as related to soil reaction:

Soil manganese determined by both methods was highly negatively correlated with soil reaction on medium textured soils and on soils considered to be manganese sufficient as rated by the bean crop. Too, plant manganese uptake was negatively correlated with soil reaction on both mineral and organic soils and on soils grouped as manganese sufficient. However on organic soils, easily reducible manganese did not appear to be related significantly to soil pH. Soil pH increased from the sufficiency to deficiency group and the acid soluble and easily reducible manganese decreased. Similarly, the plant manganese content decreased. The yield of beans was more closely negatively related to soil pH on the deficiency group of soils and was positively related on the sufficiency group.

Soil manganese as related to the sum of the extractable potassium, calcium and magnesium:

Both acid soluble and easily reducible manganese were negatively correlated with extractable bases on mineral soils, organic soils, and on the soils grouped according to their manganese deficiency index. Acid soluble manganese was highly significantly correlated on all occasions. Extractable bases increased from sufficiency to deficiency group while soil and plant manganese decreased. The yield of beans was more closely related (negatively) to the sum of the extractable bases on the sufficiency group.

-120-

Soil manganese as related to extractable phosphorus:

The effect of phosphate on the increased uptake of manganese by crops has been observed by several workers (30, 35, 40, 46, 58). The direct effect has been attributed to the chemical mobilization of Mn brought about by the reaction between calcium mono-phosphate on the manganese compounds by precipitating them as manganous phosphate since this compound forms at pH 5.8 or above (35). This retards the oxidation of Mn and provides a constant and slow supply of Mn to the plant. Indirect effect of the superphosphate is by lowering the pH and thus increasing the divalent form of manganese (46).

In the present investigation, soil manganese as determined by the two methods, and plant manganese were highly positively correlated with soil phosphorus on medium textured soils and on all three groups classed according to the manganese deficiency index. However, the relationship was negative on sandy soils and organic soils. The uptake of manganese by beans was closely positively related to soil phosphorus on the deficiency group. Bean yield was negatively related to soil phosphorus on all the three groups rated according to the manganese deficiency index.

-121-

The highly significant multiple correlations obtained in this study indicate that the available soil manganese as determined by both soil extractants and the plant manganese were highly associated with such soil properties as pH, exchangeable bases and P on mineral and organic soils and when soils were grouped according to the manganese deficiency index. The easily reducible manganese was poorly related to these factors on organic soils.

The results of this study indicate that the near neutral and/or alkaline, coarse and fine textured soils and also muck soils respond well to manganese fertilizaton.

SUMMARY AND CONCLUSIONS

Greenhouse and laboratory investigations were initiated in 1964 to (1) study the manganese availability of several Michigan soils; (2) evaluate two extraction methods; (3) correlate several soil chemical properties with manganese availability; (4) study the effect of lime and manganese applications on manganese availability; and (5) to determine the manganese sufficiency level for oats, beans and radishes.

In the first experiment, 11 soil types, obtained from 15 locations in Michigan, were treated with manganese and lime to determine the manganese sufficiency levels using oats and beans as the indicator crops and to study the effect of manganese and lime applications on manganese availability. In the second experiment, 179 soils were selected at random from the University Soil Testing Laboratory and mixed with sand (1 part soil to 3 parts sand) and planted to oats and radishes. The results can be summarized as follows:

 The manganese content of the soils studied varied widely.

2. When $0.1N H_3PO_4$ extractable manganese is below 30 pp2m or when 1N NH40Ac + 0.2 per cent hydroquinone extractable manganese is below 62 pp2m the soil may be considered as deficient in this element for optimum growth of beans.

-123-

3. Twenty-five ppm or less manganese in the bean plant tissue may be considered as deficient level and more than 35 ppm manganese may be considered as sufficient for normal plant growth.

4. The $0.1\underline{N} + \underline{3}PO_4$ extractable manganese gave better correlations with plant manganese and yield on mineral soils. However, the yield and manganese content of plants grown on organic soils were better correlated with $1\underline{N} + \underline{0}Ac + 0.2$ per cent hydroquinone extractable manganese.

5. Soil texture imparted a significant influence on manganese availability. Coarse textured soils contained a greater amount of manganese compared to the fine textured soils.

6. Soil pH related negatively with the availability of manganese and thus uptake of manganese by the plant.

7. Soil phosphorus affected the manganese availability on medium textured soils. A positive relationship existed between extractable soil manganese and extractable phosphorus.

8. Acid soluble manganese was negatively correlated with extractable bases on all textures, organic soils and on the soils grouped according to their manganese deficiency index. Easily reducible manganese was not related to the sum of the extractable bases on the organic soils in Experiment 2 and on the manganese latent deficiency group in Experiment 1.

9. The near neutral and/or alkaline, coarse and fine textured soils and also muck soils respond well to manganese fertilization.

10. The nutrient imbalance (Mn, Fe, Al, Cu, B) arising on coarse and medium textured acid soils (pH 4.7 to 5.5) may give rise to abnormal growth of bean plants.

LITERATURE CITED

- Adams, Fred and John Wear. 1957 Manganese toxicity and soil acidity in relation to crinkle leaf ot cotton. Soil Sci. Soc. of Amer. Proc. 21:305-308.
- Agarwalla, S.C., Sharma, C.P. and A. Kumar 1964 Interrelationships of iron and manganese supply on growth, chlorophyll and iron porphyrin enzymes in barley plants. Plant Physiology 39:604-609.
- 3. Aso, K. 1902 Physiological influences of manganese compounds in plants. Bul. Coll. Agri. Tokyo Imperial University. From Minor Element Abstracts, Chilean Nitrate Educational Bureau, Inc. New York.
- 4. Benson, A A. 1964 Plant membrane lipids. Annual Review of Plant Physiology, 15:1-16
- 5. Boken, E. 1958 Investigation on the determination of available manganese content of soils. Plant and Soil. 9:269-285.
- 6. ______ 1962 On the effect of storage and temperature on the exchangeable manganese in soil samples. Plant and Soil 4:152-163.
- 7. Bray, R. H. 1942 Rapid tests for measuring and differentiating between the adsorbed and acid soluble forms of phosphate in soils. The Agr. Expt. Sta. Agron. Rept. Pamphlet Ag. 1028.
- Bromfield, S. M. 1958 The properties of a biologically formed manganese oxide; its availability to oats and its solution by root washings. Plant and Soil 9: 325-337.
- 9. Bukovac, M. J. and S. H. Witter 1957 Absorption and mobility of foliar applied nutrients. Plant Physiology, 32:428-435
- 10. Christenson, P. D., Toth, S. J., and F. E. Bear 1950 The status of soil manganese as influenced by moisture organic matter and pH. Soil Sci. Soc. Amer. Proc. 15:279-282.

- 11. Cook, R. L. 1948 Symptoms of nutritional disorders in sugarbeets. Proc. Am. Soc. of Sugar Beet Tech.: 81-88.
- 12. ______ and C. E. Millar 1941 Manganese for oats and white beans in Michigan. Soil. Sci. Soc. Amer. Proc. 6:224-227.
- 13. Davis, J. F. 1950 Muck soils when properly fertilized produce higher yields. Am. Plant Food Jrl. 4:4-11.
- 14. Dion, H. G. and P.J. G. Mann 1956 Three valent manganese in soils. Jrl. of Ag. Sci. 36:239-245.
- 15. Drennan, Donald S. H. and Alex M. M. Berrie 1961 Prevention of manganese deficiency in oats by soaking the grain in solutions of manganese chloride. Nature, 190:824.
- 16. Fujimoto, C. K. and G. Donald Sherman 1948 Behavior of manganese in the soil and the manganese cycle. Soil Sci. 66:131-145.
- 17. 1945 The effects of drying, heating, wetting on the level of exchangeable manganese in Hawaiian so-ls. Soil Sci. Soc. Amer. Proc. 10:107-121.
- 18. Gerretsen, P. C. 1953 Manganese in relation to photosynthesis II. Redox potentials of illuminated crude chloroplast suspensions. Plant and Soil 2: 159-193.
- 19. Giesking, J. E., Snider, H. J. and A. Getze 1935 Destruction of organic matter in plant material by the use of nitric acid and perchloric acid. Ind. Eng. Chem. 7:185.
- 20. Gilbert, B. E. and F. T. McLean 1928 A deficiency disease: The lack of available manganese in a lime induced chlorosis. Soil Sci. 26:27-31.
- 21. Gorter, C. J. 1964 Morphogenetic effects of herbicides. <u>The Physiology and Biochemistry of Herbicides</u> edited by Audus L. J.. Acad. Press, N.Y.

- 23. Hammes, Jack K. and K. C. Berger 1960 Manganese deficiency in oats and correlation of plant manganese with various soil tests. Soil Sci. 90: 239-244.
- 24. 1960 Chemical extraction and crop removal of manganese from air dried and moist soils. Soil Sci. Soc. Amer. Proc. 24:361-364.
- 25. Heintze, Signe G. 1951 Studies on soil manganese. Jrl. of Soil Sci. 8:287-300.
- 26. Hemstock, Glen A. and P. F. Low 1953 Mechanisms responsible for retention of manganese in the colloidal fraction of the soil. Soil Sci. 76: 331-343.
- 27. Henkens, C. H. 1957 The trace element manganese, the state of research in The Netherlands. Netherlands Jrl. of Agr. Sci. 6:197-203.
- 28. Hoff, D. J. and H. S. Medereski 1958 The chemical estimation of plant available soil manganese. Soil Sci. Soc. Amer. Proc. 22:129-132.
- 29. Knott, J. E. 1940 The response of onions to manganese on uproductive soils. Proc. of Am. Soc. of Hort. Sci. 37:830=836.
- 30. Larsen, Sigurd 1964 The effect of phosphate applications on manganese content of plants grown on neutral and alkaline soils. Plant and Soil 21:37-42.
- 31. Leeper, G. W. 1935 Manganese deficiency of cereal, plot experiments, and a new hypothesis. Proc. Royal Soc. Victoria 37:225-261.
- 32. 1937 The forms and reactions of manganese in the soil. Soil Sci. 62:79-94.
- 33. 1952 Factors affecting the availability of inorganic nutrients in soils with special reference to micronutrients. Annual Review of Plant Physiology 3:1-16.

- 34. Liddicotte, George W. 1960 <u>The radiochemistry of</u> <u>manganese</u>. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- 35. Lindsay, W. L. and H. F. Stephenson 1959 Nature of the reactions of monocalcium phosphate monohydrate in soils. I. Manganese solutions that react with the soil. II. Dissolution and precipitation reactions involving Fe, Al, Ca and Mn. Soil Sci. Soc. Amer. Proc. 23:12-32.
- 36. Mann, P. J. O. and J. H. Quatsel 1946 Manganese metabolism in soils. Nature 158:154-156.
- 37. McLachlan, J. D. 1941 Manganese deficiency in soils and crops. I. Control in oats by spraying. Studies of the role of micro-organisms. Sci. Ag. 22:201-297.
- 38. Mehler, A. H. 1950 Studies on reactions of illuminated chloroplasts II. Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. and Biophysics 34:332-351.
- 39. Mehlich, A. 1957 Al, Fe and pH in relation to lime induced manganese deficiencies. Soil Sci. Soc. Amer. Proc. 21:625-628.
- 40. Messing, J. H. C. 1965 The effects of lime and superphosphate on manganese toxicity in steam sterilized soil. Plant and Soil 23:1-16.
- 41. Mulder, E. G. and F. C. Gerretsen 1955 Soil manganese in relation to plant growth. Adv. in Agron. 4:221-277.
- 42. Nagaoka, M. 1903 Stimulative action of manganese upon rice. Bul. Coll. of Ag., Tokyo Imperial Univ. 5:467-472.
- 43. Nelson, Werner L. and S. A. Barber 1964 <u>Hunger signs in</u> crops. Howard B. Sprague. David McKay Co., N.Y.
- 44. Page, E. R. 1962 Studies in soil and plant manganese: The availability of higher oxides of manganese to oats. Plant and Soil 17:99-107.

- 45. Page, E. R. 1962 Studies in soil and plant manganese: the relationship of soil pH to manganese availability. Plant and Soil 16, No. 2. 247-257.
- 46. Schofield, E. K. Palmer and A. J. MacGregor 1963 Studies in soil and plant manganese. IV. Superphosphate fertilization and manganese content of young oat plants. Plant and Soil 9:29-30.
- 47. Passioura, J. B. and G. E. Leeper 1963 _Soil compaction and manganese deficiency. Nature, 200:29-30.
- 48. Piper, C. S. 1931 Availability of manganese in the soil. Jrl. of Agri. Sci. 21:762-779.
- 49. Prince, A. L. and S. J. Toth 1938 Studies on the behavior of manganese in soils. Soil Sci. 46:83-94.
- 50. Purvis, E. R. and R. L. Carolus 1964 <u>Hunger signs in</u> crops. Nutriènt deficiency in vegetable crops. 45.
- 51. Reid, A. S. J. and M. H. Miller 1963 Manganese cycle in soils II. Forms of soil manganese in equilibrium with solution manganese. Canadian Jr. of Soil Sci. 43:250-259.
- 52. Rich, R. I. 1956 Manganese content of peanut leaves as related to soil factors. Soil Sci. 82: 353-364.
- 53. Shannon, L. M., J. DeVellis, J. Y. Low 1963 Melonic acid synthesis in bush bean roots. II. Purification and properties of enzyme catalyzing dicarboxylation of oxaloacetate. Plant Phys. 38:691.
- 54. Sherman, D. Donald and P. M. Harmer 1943 Manganous manganic equilibrium of soils. Soil Sci. Soc. Amer. Proc. 7:398
- 55. J. S. McHargue, W. S. Hodgkiss 1942 Determination of active manganese in the soil. Soil Sci. 54:253-257.
- 56. 1942 The production of a lime induced manganese deficiency on an aroded Kentucky soil. Jrl. of Am. Soc. of Agron. 34:1076-1083.

57.

58. Snider, H. J. 1943 Manganese in some Illinois soils and crops. Soil Sci. 56:187-195.

Little, Brown and Co., Boston.

- 59. Shoemaker, H. E., McLean, E.O., and P. F. Pratt 1961 Buffer methods for determining lime requirements of soils with appreciable amounts of extractable aluminum. Soil Sci. Soc. Amer. Proc. 25: 274-277.
- 60. Somers, J. I. and J. W. Shive 1942 The iron and manganese relations in plant metabolism. Plant Physiology 17:582-602.
- 61. A Survey of Micronutrient Deficiencies in the USA and Means of Correcting Them. March 1965. Soil Testing Committee of the Soil Science Society of America.
- 62. Tanner, H. A., T. E. Brown, C. Eyster and R. W. Treharne 1960 Biochemistry and biophysics research communication 3:205.
- 63. Tisdale, S. L. and B. R. Bertramson 1949 Elemental sulphur and its relationship to manganese availability. Soil Sci. Soc. Amer. Proc. 14:131-137.
- 64. Vose, P. B. and P. J. Randall 1962 Resistance to Al and manganese toxicities in plants related variety and cation exchange capacity. Nature, 196:85-96.
- 65. _____ and D. J. Griffiths 1961 Manganese and magnesium in the Grey Speck Syndrome of oats. Nature, 191:299-300.
- 66. Walker, John M. and Stanley A. Barber 1960 The availability of chelated manganese to millet and its equilibria with other forms of manganese in the soil. Soil Sci. Soc. Amer. Proc. 24:485.
- 67. Wallace, T. 1961 The diagnosis of mineral deficiencies in plants, Second Edition. Chem. Publ. Co., N.Y.
- 68. Willard, H. H. and L. H. Greathouse 1917 Colorimetric determination of manganese using periodic acid as oxidizing agent. Jour. Amer. Chem. Soc. 39:2366.
- 69. Williams, D. E. and J. Vlamis 1962 Ion competition in manganese uptake by barley plants. Plant Physiology 37:650-655.

APPENDIX

HOUGHTON SERIES

Houghton series consists of organic soils developed from fibrous plant remains consisting of grasses, sedge, reeds, and other non-woody water tolerant plants over 42 inches thick.

Soil Profile: Houghton muck

- 01 0-7" Black (10YR 2/1) to very dark brown (10YR 2/2); muck composed of fibrous plant remains; weak to moderate, fine to medium, granular structure; very friable; medium acid; diffuse smooth boundary. 5 to 20 inches thick.
- 02 7-24" Dark brown (7.5YR 3/2) to brown (7.5YR 5/4); muck or partially decomposed peat; moderate, medium, granular grading downward to fine, fibrous fragments in lower part; friable; medium to slightly acid; diffuse smooth boundary. 7 to 15 inches thick.
- 03 24"+ Brown (7.5YR 5/4); moderately decomposed muck grading downward to fibrous peat, largely reeds and sedges; massive; friable; slightly acid to neutral.

<u>Topography</u>: Nearly level areas, depressions or broad depressed flats, in out-wash plains, till plains, and moraines.

Drainage and Permeability: Very poorly drained. Run-off is slow to ponded. Water table at or near the surface, except where artificially drained. Permeability is moderate. WISNER SERIES

The Wisner series comprises poorly drained humic-clay soils developed in highly calcareous clay loam or silty clay loam till which has probably been reworked by water in many areas.

Soil Profile: Wisner clay loam

- Ap 0-8" Clay loam; black (10YR 2/1) or very dark gray (10YR 3/1); moderate to strong coarse, granular structure; firm; calcareous to mildly alkaline; abrupt smooth boundary. 6 to 9 inches thick.
- B_{2g} 8-18" Clay loam or silty clay loam; dark gray (5YR 4/1) or gray (5Y 5/1) mottled with brown (7.5YR 5/4-4/4), mottles are common, medium, and distinct; moderate to strong, medium, angular or subangular blocky structure; firm; calcareous; gradual wavy boundary. 5 to 15 inches thick.
- Cg 18"+ Clay loam or silty clay loam; brown (7.5YR 5/2); (10YR 5/3) mottled with gray (5Y 5/1-6/1), pale brown (10YR 6/3), and yellowish brown (10YR 5/6-5/8), mottles are many, coarse, and distinct; weak medium and coarse, angular blocky or massive structure; firm; calcareous.

<u>Topography</u>: Nearly level to depressed areas in old lake plains. Dominant relief is less than 2 per cent slope, the areas were covered by former glacial lakes.

Drainage and Permeability: Poorly drained. Run-off is very slow to ponded. Permeability is slow to very slow.

SIMS SERIES

The Sims series included poorly drained Humic-Gley soils developed in calcareous clay loam or silty clay loam till. Sims soils are the poorly to very poorly drained member of the drainage sequence that included the well to moderately well drained Nester and the imperfectly drained Kawkawlin soils.

Soil Profile: Sims clay loam

- Ap 0-7" Clay loam; black (10YR 2/1) or very dark gray (10YR 3/1); moderate, medium, granular structure; firm to friable; slightly acid to mildly alkaline; abrupt smooth boundary. 6 to 9 inches thick.
- B21g 7-15" Clay loam or silty clay loam; light brownish gray (10YR 6/2) or gray (10YR 5/1) mottled with brown (10YR 5/3-4/3) and yellowish brown (10YR 5/4-5/6), mottles are few, medium, and distinct; moderate, medium, angular or subangular blocky structure; firm; slightly acid to mildly alkaline; gradual wavy boundary. 5 to 12 inches thick.
- B22g 15-32" Clay loam or silty clay loam; light gray (10YR 7/1) or light brownish gray (10YR 6/2) mottled with yellowish brown (10YR 5/4-5/6) and dark yellowish brown (10YR 4/4), mottles are many, coarse, and distinct; moderate to strong, medium, angular blocky structure; firm; neutral to mildly alkaline; clear wavy boundary. 5 to 20 inches thick.

-134-

Cg 32"+ Clay loam or silty clay loam; light gray (10YR 7/1) or light brown (10YR 5/2) mottled with yellowish brown (10YR 5/4) and brown (10YR 5/3-4/3); mottles are many, coarse, and distinct; weak, or moderate, medium and coarse, angular blocky structure; firm; calcareous.

<u>Physiography</u>: Nearly level to depressed areas in till plains and low moraines.

Drainage and Permeability: Poorly to very poorly drained. Run-off is very slow to ponded. Permeability is slow.

MONTCALM SERIES

Montcalm series includes well to moderately well drained biseque soils with a minimal Podzol upper sequum and a Gray Wooded lower sequum which developed in slightly acid to calcareous loamy sand or sand drift. Montcalm soils are the well to moderately well drained member of the catena that includes the imperfectly drained Otisco and the poorly to very poorly drained Edmore soils.

- Soil Profile: Montcalm loamy sand
- Ap 0-7" Dark grayish brown (10YR 4/2) to dark brown (10YR 3/3); loamy sand; very weak, fine, granular structure; very friable; slightly to strongly acid; low to moderate organic matter content; abrupt smooth boundary. 6 to 12 inches thick.
- A2 7-9" Light gray (10YR 7/2) to grayish brown (10YR 5/2); loamy sand; very weak, fine, granular structure; very friable; medium to strongly acid; smooth clear boundary. 1 to 7 inches thick.
- B2ir 9-15" Brown (7.5YR 4/4-5/4) to yellowish brown (10YR 5/4-5/6); loamy sand; very weak, fine, granular structure; very friable to loose; medium to strongly acid; gradual boundary. 4 to 10 inches thick.
- A2 15-26" Pale brown (10YR 6/3) to light yellowish brown (10YR 6/4); loamy sand, very weak, thin, platy structure; very friable to slightly compact and brittle; medium to strongly acid; clear wavy boundary. 8 to 18 inches thick.

- Bt 26-33" Reddish brown (5YR 4/4) to brown (7.5YR 5/4-4/4); sandy loam to coarse, sandy clay loam; weak to moderate, medium and coarse, sub-angular blocky structure; friable to slightly firm; slightly to strongly acid; abrupt wavy boundary. 3 to 12 inches thick.
- A2 and Light brownish gray (10YR 6/2) to pale brown 33-60" (10YR 6/3); medium to coarse and representing Bt the A2 with thin bands, layers, and lenses, sequence 1/2 to 4 inches thick, of reddish brown (5YR 4/4) to brown (7.5YR 4/4) of fine, loamy sand to sandy loam, representing the Bt horizons; the A2 has single grain structure and is loose; while the Bt is massive to very weak, medium, subangular blocky structure and is very friable to friable; slightly to medium acid; abrupt wavy boundary between the last Bt horizons and the C horizon. 15 to 42 inches thick.
- C 60"+ Pale brown (10YR 6/3) to yellowish brown (10YR 5/4); medium to coarse loamy sand to sand; single grain; loose; slightly acid, neutral to calcareous.

<u>Topography</u>: Nearly level to strongly sloping to steep areas in moraines, till plains, and outwash plains.

Drainage and Permeability: Well to moderately well drained. Run-off is medium on the milder slopes and rapid on the strongly sloping areas. Permeability is moderate to rapid.

KARLIN SERIES

The Karlin series consist of well-drained Podzols developed in loamy fine sand to find sandy loam, 15 to 42 inches thick, overlying sand. Weak, thin textural B horizons are often present below depths of 36 inches. Karlin soils are the well drained member of the catena (toposequence) that includes the imperfectly drained Sigma and the poorly to very poorly drained Sagaing soils.

Soil Profile: Karlin fine sandy loam

- Ap 0-8" Fine sandy loam; very dark grayish brown (10YR 3/2); very weak, granular structure; fine, very friable; moderate in organic matter; slightly to medium acid; abrupt smooth boundary. 6 to 11 inches thick.
- A2 8-9" Sandy loam; pinkish gray (7.5YR 6/2-72/); very weak, coarse, granular structure; very friable; medium to strongly acid; abrupt wavy boundary. 1 to 3 inches thick.
- B2ir 9-23" Coarse, sandy loam; dark brown (10YR 4/3-7.5YR 4/4); very weak, medium subangular block structure; very friable; medium to strongly acid; gradual wavy boundary. 9 to 20 inches thick.
- IIB2 23-30" Sand; yellowish brown (10YR 5/4-5/6); single grain structure; loose; medium acid; gradual wavy boundary. 8 to 15 inches thick.

IIB3 30"+ Sand; light yellowish brown (l0YR 6/4); single
grain structure; loose; medium to slightly
acid.

<u>Topography</u>: Nearly level to strongly sloping areas in outwash plains and old glacial drainageways.

Drainage and Permeability: Well-drained. Run-off is slow to medium. Permeability is rapdi.

GRANBY SERIES

Granby series includes Humic-Gley soils developed in neutral to calcareous sands. Granby soils are the poorly to very poorly drained member of the catena (toposequence), that includes the well-drained Oakville, moderately well-drained Ottokee, imperfectly drained Tedrow, and the very poorly drained very dark colored Maumee soils.

- Soil Profile: Granby loamy fine sand
- Ap 0-8" Loamy fine sand; very dark grayish brown (10YR 2/2) or very dark gray (10YR 3/1); very weak, medium, granular structure; very friable; medium acid to neutral; abrupt smooth boundary. 7 to 10 inches thick.
- Al2 8-12" Loamy fine sand; very dark gray (10YR 3/1); very weak, coarse, granular structure; very friable; medium acid to neutral; gradual wavy boundary. 2 to 6 inches thick.
- Bg 12-40" Loamy sand to sand; yellowish brown (10YR 5/6-5/8) mottled with gray (10YR 5/1), brownish yellow (10YR 6/6), and dark brown (7.5YR 5/2-4/4); mottles are common, medium and distinct in upper part with gradual change to many, coarse, and distinct in lower part; coatings of very dark gray are on many sand grains in upper 3 or 4 inches; single grain structure; loose; slightly acid to neutral; diffuse irregular boundary. 20 to 40 inches thick.

Cg 30"+ Sand; gray (10YR 5/1) or light brownish gray (10YR 6/2) mottled with yellowish brown (10YR 5/6-5/8), dark yellowish brown (10YR 4/4), and brownish yellow (10YR 6/6-6/8); mottles are many, coarse, and distinct, single grain structure; loose, mildly alkaline to calcareous.

<u>Topography</u>: Nearly level to slightly depressed areas in outwash and lake plains.

Drainage and Permeability: Poorly to very poorly drained. Run-off is very slow to ponded. Permeability is very rapid.

HODUNK SERIES

The Hodunk series consists of moderately well drained Gray-Brown Podzolic soils with fragipans which developed on calcareous sandy loam glacial till. Hodunk soils are found in association with the well drained Hillsdale and moderately well drained Elmdale series which are also developed on calcareous sandy loam till.

- Soil Profile: Hodunk sandy loam
- Ap 0-7" Dark grayish brown (10YR 4/2) to very dark grayish brown (10YR 3/2); sandy loam; moderate, fine, granular structure; friable when moist and soft when dry; medium content of organic matter; medium to slightly acid; abrupt smooth boundary. 6 to 11 inches thick.
- A2 7-16" Yellowish brown (10YR 5/4); pale brown (10YR 6/3) or light yellowish brown (10YR 6/4); sandy loam; weak, fine, granular to weak, fine, subangular blocky structure; very friable when moist and soft when dry; medium acid; abrupt wavy boundary. 6 to 20 inches thick.
- Bim 16-25" Brown (10YR 5/3) to pale brown (10YR 6/3); sandy loam to light sandy clay loam; massive to weak, thick, platy structure; firm when moist and brittle when dry; weak to moderately developed fragipan; few thick clay flows; medium to strongly acid; clear wavy boundary. 4 to 12 inches thick.

- B2g 25-46" Brown (10YR 5/3) to yellowish brown (10YR 5/4) mottled with yellowish bronw (10 YR 5/8) and dark brown (7.5YR 4/4), mottles are common, medium, distinct; sandy clay loam, heavy sandy loam, or light clay loam; few thick clay flows; weak, medium, subangular blocky structure; firm when moist, strongly to medium acid in the upper part and slightly acid in the lower part; abrupt irregular boundary. 15 to 30 inches thick.
- Cg 46"+ Light yellowish bronw (10YR 6/4) to brown (10YR 5/3) mottled with yellowish brown (10YR 5/6-5/8), mottles are commong, medium, distinct; sandy loam; massive to very weak, coarse, subangular blocky structure; friable when moist and hard when dry; calcareous.

<u>Topography</u>: Gently to moderately sloping till plains and moraines.

Drainage and Permeability: Moderately well drained. Surface run-off is slow to moderate. Permeability is moderate to slow depending upon the degree of development of the fragipan.

TUSCOLA SERIES

The Tuscola series comprises moderately well drained Gray-Brown Podzolic soils which developed in stratified silts, very fine sands, and fine sands. Tuscola series is the moderately well drained member of the drainage sequence that includes the well drained Sisson, imperfectly drained Kibbie, and the poorly to very poorly drained Colwood soils.

Soil Profile: Tuscola fine sandy loam

- Ap 0-9" Fine sandy loam; dark grayish brown (10YR 4/2), very dark grayish brown (10YR 3/2); weak, coarse, granular structure; friable; slightly acid; abrupt smooth boundary. 7 to 10 inches thick.
- A2 9-13" Fine sandy loam; yellowish brown (10YR 5/4) or brown (10YR 5/3) with grayish brown (10YR 3/2) organic coatings on some ped faces and in warm casts; weak, fine, subangular blocky to weak, thin, platy structure; friable; slightly acid to neutral; clear smooth boundary. 3 to 6 inches thick.
- B21 13-24" Fine sandy loam or loamy; dark yellowish brown (10YR 4/4) with a few pads coated with dark grayish brown (10YR 4/2); weak to moderate, medium, subangular blocky structure; slightly firm; very thin discontinuous clay flows; slightly acid to neutral; gradual smooth boundary. 8 to 17 inches thick.

- B22 24-34" Very fine sandy loam or silt loam; brown (10YR 5/3) with common, medium, faint yellowish brown (10YR 5/8) and common, fine, distinct gray (10YR 5/1) mottles weak, medium, subangular blocky structure; slightly firm; very thick discontinuous or patchy clay flows; slightly acid to neutral; clear smooth boundary. 6 to 14 inches thick.
- B23g 34-42" Silt loam or silts; grayish brown (10YR 5/2) with common, medium, distinct yellowish brown (10YR 5/6-5/8) mottles; weak, medium, subangular blocky structure; slightly firm; very thin patchy clay flows; neutral; clear wavy boundary. 6 to 12 inches thick.
- B3g 42-44" Very fine sandy loam; grayish brown (10YR 5/2) mottled with yellowish brown (10YR 5/6-5/8) and gray (10YR 5/1), mottles are common, medium, and distinct; massive (stratified) to very weak, coarse, subangular blocky structure; friable; mildly alkaline; abrupt wavy boundary. 1 to 10 inches thick.
- Cg 44-54" Silts and very fine sands; gray (10YR 5/1) mottled with grayish brown (10YR 5/2), and dark brown (7.5YR 4/4) mottles are common, medium, and distinct; massive (stratified) friable; calcareous.

<u>Topography</u>: Nearly level to gently sloping areas on lake plains and deltas.

Drainage and Permeability: Moderately well drained. Run-off is slow. Permeability is moderate.

BROOKSTON SERIES

Brookston series comprises poorly drained Humic-Gley soils developed in calcareous loam and silt loam till in the Gray Brown Podzolic Soil Region. Brookston soils are the poorly drained member of the drainage sequence that includes the well drained Miami, the moderately well drained Celina, the imperfectly drained Conover, and the very poorly drained, very dark-colored Kokomo soils.

Soil Profile: Brookston clay loam Ap 0-8" Clay loam; very dark grayish brown (10YR 3/2) or very dark brown (10YR 2/2); weak, coarse, granular structure; usually cloddy when dry; friable to firm; slightly acid to neutral; abrupt smooth boundary. 6 to 10 inches thick. A 1 8-12" Clay loam or silty clay loam; very dark brown (10YR 3/2) or very dark gray (10YR 3/1); weak, coarse, granular to moderate, fine, subangular blocky structure; firm, slightly acid to neutral; clear wavy boundary. 2 to 5 inches thick. B21 12-15" Clay loam or silty clay loam; yellow brown (10YR 5/6-5/8) or dark yellowish brown (10YR 4/4) mottled with grayish brown (10YR 5/2) gray (10YR 5/1), and pale brown (10YR 6/3) mottles are common, medium, and distinct; very dark brown (10YR 2/2) coatings occur on many pod faces and in cracks throughout the horizon; moderate, medium to coarse, subangular blocky structure; firm, slightly acid to mildly alkaline; gradual wavy boundary. 2 to 8 inches thick.

- B22 15-48" Clay loam or silty clay loam; dark yellowish brown (10YR 4/4) or yellowish brown (10YR 5/6-5/8) mottled with gray (10YR 5/1), brownish yellow (10YR 6/6), and light olive brown (2.5Y 5/4), mottles are many, coarse, and distinct; thick to thin clay coatings on many pod faces; weak, coarse, prismatic which breaks to moderate to strong, coarse, angular blocky structure; firm to very firm; neutral to mildly alkaline abrupt irregular boundary. 20 to 40 inches thick.
- Cl 48"+ Loam or silt loam; yellowish brown (10YR 5/4) or light olive brown (2.5Y 5/4) mottled with gray (10YR 5/2), grayish brown (10YR 5/2), and dark yellowish brown (10YR 4/4), mottles are many, coarse, and distinct; massive; friable, calcareous.

<u>Topography</u>: Nearly level broad depressed flats and depressions in till plains and morainic areas.

<u>Drainage and Permeability</u>: Poorly to very poorly drained. Surface runoff is very slow to ponded. Permeability is low.

NEWTON SERIES

Newton series comprises Humic-Gley soils developed in strongly to very strongly acid sands. They are the poorly to very poorly drained member of the catena (toposequence) that includes the well drained Plainfield, moderately well drained Nekoosa, imperfectly drained Morocco, and the very poorly drained, very dark-colored Dillon series.

<u>Soil Pr</u>	<u>ofile</u> :	Newton loamy fine sand
Ар	0 - 8 "	Loamy fine sand; very dark brown (10YR 2/2) or very dark gray (10YR 3/1) very weak, medium, granular structure; very friable; medium to very strongly acid; abrupt smooth boundary. 7 to 10 inches thick.
A12	8-12"	Loamy fine sand; very dark gray (10YR 3/1); few, fine distinct mottles of yellowish- brown (10YR 5/6-5/8) in lower part; very weak, coarse, granular structure; very friable; strongly to very strongly acid; clear wavy boundary. 2 to 6 inches thick.
Bg	12-30"	Loamy sand to sand; grayish-brown (10YR 5/2) or gray (10YR 5/1) mottled with yellowish- brown (10YR 5/6-5/8), dark yellowish-brown (10YR 4/4), and strong brown (7.5YR 5/6), mottles are common, medium, and distinct in the upper part, with gradual change to many, coarse and distinct in lower part; single grain structure; loose; strongly to very strongly acid; diffuse irregular boundary. 14 to 30 inches thick.

Cg 30"+ Sand; yellowish brown (10YR 5/6) or brownish yellow (10YR 6/6-6/8) mottled with gray (10YR 5/1), dark yellowish brown (YR 4/4), and dark brown (7.5YR 4/2-4/4); mottles are common, medium, and distinct; single grain structure; loose; strongly to very strongly acid; gradual change below 60 inches to medium or slightly acid reaction.

<u>Topography</u>: Nearly level to slightly depressed areas in outwash and lake plains.

Drainage and Permeability: Poorly to very poorly drained. Run-off is very slow to ponded. Permeability is very rapid.

OSHTEMO SERIES

The Oshtemo series comprises well drained Gray Brown Podzolic soils developed in sandy loam, loam, or loamy sand outwash materials underlain by neutral to calcareous sand and fine gravel to 42 to 66 inches or more. Oshtemo soils are the well drained member of the drainage sequence that includes the moderately well drained Bronson, the imperfectly drained Brady, and the poorly to very poorly drained Gilford soils.

<u>Soil Pr</u>	ofile	Oshtemo sandy loam
Ар	0 – 9 "	Sandy loam; dark grayish brown (10YR 4/2) or very dark grayish brown (10YR 3/2); weak, coarse, granular structure; very friable; slightly acid; abrupt smooth boundary. 7 to 12 inches thick.
A2	9 - 1 4 "	Loamy sand or sandy loam; dark brown (7.5YR 4/2) brown (lOYR 5/3) or yellowish brown (lOYR 5/4); very weak, fine, subangular blocky structure; very friable; numerous worn and root channels filled with Ap material; medium to strongly acid; clear smooth boundary. 4 to 10 inches thick.
B 2 1	14-26"	Sandy loam; dark reddish brown (5YR 3/4); very weak, coarse, subangular blocky structure; friable; slight increase in clay content from top to bottom of horizon, tubular fillings of Ap material extend into the upper part of horizon with a few thin discontinuous clay films; medium to strongly acid; clear wavy boundary. 6 to 20 inches thick.

B 2 2	26-35"	Sandy loam or sandy clay loam; dark brown (7.5YR 4/4); weak, coarse, subangular block structure; friable; medium to strongly acid; gradual wavy boundary. 3 to 10 inches thick.
B 3 1	35-46"	Loamy sand or sand with sandy loam stratra; very friable, medium acid; diffuse irregular boundary. 5 to 25 inches thick,
B32	46-63"	Loamy sand or sand with sandy loam stratra; dark brown (7.5YR 3/2) or stratra of variable thickness; sand grains have nearly continuous dark brown (7.5YR 3/2) coatings; massive or very weak, coarse, subangular blocky structure; very friable; medium to slightly acid; abrupt irregular boundary. 8 to 25 inches thick.

IIC 63-74"+ Sand and fine gravel; grayish brown (10YR
5/2); single grain (structureless); loose;
neutral to calcareous; some gravel has
lime coatings on lower side.

<u>Topography</u>: Nearly level to strongly sloping areas on outwash plains, valley trains, and moraines.

Drainage and Permeability: Well drained. Run-off is slow on the level to gently sloping areas and medium to rapid on the steeper slopes. Permeability is moderately rapid.

-151-

	Mu	ب	-	152-	
	Bean M Uptake	mgm/pot		171 144 171 171 171 171 168 054 054 080	016 042 044 060 060
	Bean Tissue	u M		00000000000000000000000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Bean Yield	d,	4 570 4 575 4 595 4 595 3 296 3 296 3 415 3 415	00995005550 00905550 00905550 0095550 0095550 0095550 009550 000000	
	Oat Mn Uptake	. /u6			
	0at Tissue		v=080058mn	101225555	
	Oat Yield	0	8 9.655 9.655 1.2.494 1.12.494 1.120 3.365 3.135 3.135	11.955 11.955 12.175 12.175 5.990 11.105 5.380 7.445	0000000
c	5 6		quinone 28 28 28 27 103 104 105 22 22 22	0000666988	5008545 5008545
pp2m	Extra	P04	000000000		
	Σ		3120 2912 2912 2574 2353 2353 2353 2312 3328	1898 2249 2249 2249 2249 2249 2249 2249 2	0000 400 400 400 400 400 400 400 400 40
acre	Са		14200 13600 14650 8320 8320 14200 114200 114200 114200	10400 13200 14000 14200 14200 13200 12800	6448 5616 5616 6760 5704 5704 5704 5705
inds per	×		222 259 259 259 2522 540 540 540	4438 546 544 444 654 654 654 654 6554 6554	2591 2591 2582 2591 2588 2584 2588
Poun	م		5223473980 5223473980	00447990 0040900000000000000000000000000	220 220 220 220 220 220 220 220 220 220
	Lime Require-	ment	000000000	000000000	0000000
	Hd		0.66.76.76 0.66.76		
	Mn Defi-	c ienc y Index ²	<u>م</u> ممەرە		0000
	Repli- cation		- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	Treaț- ment			4 4 4 0000000	٩ ٩ ٩ ७ ७ ७ ७ ७
	Soil Type		Houghton muck (Soil Number 1)	Houghton muck (Soil Number 2)	Wisner sandy clay loam (Soil Number 3)

				H		Pour	ounds per	acre		pp2m	m2		 				·
Soil Type		Repli-	M N N	Hq	Lime.	_ م	×	Ca	δ	l ă	c tants	0at Yield T	0at issue	Oat Mn Uptake	Bean Yield	Bean Tissue	Bean Mn Uptake
	ment.	cation	uer		Kequire- ment	· · ·			<u> </u>	0.1N H3P04	NH40AC		υ			υ	
	-										- <u>. 6</u> 5	gms / pot	шdd	mgm/pot	gms/pot	mdd	mgm/pot
Wisner sandy clay loam (Soil Number 3)	U U	~ ~ ~	2	7.6 7.4	00	122 134	264 280	5720 5403	515 541	20 25	30	00			1.803	33 47	. 059 059
Wisner sandy clay loam (Soil Number 4)	<<<> a d d a a a a a a a a a a a a a a a a	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000000000	906 0000000	53864279977 53864279977 538642799977	5304 45576 45576 455710 4680 78612 78680 78680	6559 6559 6559 6559 6559 776 776 776 776 776 776 776 776 776 77	22288wJ2ww	22 83 40002 - 22 - 25 - 25 - 25 - 25 - 25 - 25	0.560 8.000 8.550 9.5255 9.5255 9.5255 9.8100 9.8100 9.8100 9.8100 9.8100 9.8100 9.8100 9.8100 9.8100 9.8100 9.8100 9.8100 9.81000 9.81000 9.81000 9.81000000000000000000000000000000000000	005354360		4.025 2.620 2.730 2.730 2.730	5-2400595 2-2400595	. 101 . 101 . 137 . 160 . 163 . 082 . 061
Sims clay loam (Soil Number 5)	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			000000	0-8000 t t 500	2285 282 285 285 285 285 285 285 285 285	5324 53204 555104 5554 5554 5554 5554 5554 5554	DOWTNNNT	00000000	201286022 202286022 202286022	14.555 14.5555 14.5555 14.5555 14.5555 14.5555 14.5555 14.5555 14.5555 14.55555 14.55555 14.55555 14.5555555555	t287t6793	05888550 0588550 0598550 05985500 0598550 059750 059750 0598550 059750 0507500000000	2.235 2.2355 2.235 2.235 2.235 2.235 2.235 2.235 2.235 2.235 2.235 2.235	5-2223207 5-222320707	
Montcalm sandy loam (Soil Number 6)	444	m 01 m		2-2 2-2	4	160 300 336	320 344 237	1040 932 828	61 1 61 1 61 1	165 175 170	147 138 143	8.895 10.140	510 505 505	4.536 5.130 5.760	2.705 2.960	1000	2.705 4.026

.

	Bean Mn Uptake	ngm/pot	5.473 4.064 6.000 .150	-154- 103-262 103-262 103-262 103-20 100-200	078 078 1165 0893 1160 085 116
	Bean Tissue Mn	шdd	2600 3200 2000 73 624	863 2146 3250 3250 2400 2400 73 42	4900024 2900024 2900024
	Bean Yield	gms/pot	2.105 1.270 3.000 3.450 1.338 2.240		2.850 2.850 2.850 2.821 2.850 2.850
	Oat Mn Uptake	mgm/pot	12.314 9.225 1.522 1.522 1.392	11.776 7.908 7.908 7.445 9.454 1.405	
	Oat Tissue Mn	n dd	1175 900 169 174	2300 1075 2025 1000 1825 135 136	
	0at Yield	gms/pot	10.480 11.005 10.250 9.005 7.310 8.000	85.985 395 395 395 395 395 395 395 395 395 39	11.355 12.425 10.915 10.795 10.795 10.795 10.795 10.795 10.795 10.795 10.645
	tants 1 <u>N</u> NH ₄ 0	0.2 per cent Hydro- _ <u>quinone</u> _	220 168 153 153	00000000000000000000000000000000000000	828-6628880 828-65288 828-65288
m2qq	Mn Extrac 0.1N H3PO4		230 240 165 165 165	00055555 88000555555 588005555555555555	8000000000 000000000000000000000000000
	δ¥		67 67 19 19 19 19 19 19 19 19 19 19 19 19 19	220222222 2222222222222222222222222222	339 202 202 339 202 202 202 202 202 202 202 202 202 20
r acre	Ca		1144 1040 1040 3328 3016 2704	416 384 456 456 2392 2392 2392 2392	3322 3744 37444 35744 35744 35744 357246 3572746 357276 357276 3577777777777777777777777777777777777
Pounds pe	¥		307 307 301 301 301 301 301	2337 2538 2644 2644 2644 2644 2644 2644 2644 264	00000400 00000400 0000400
	۵.		282 276 306 240 276	22222460282 16622460282 16622460282	0 t 2 J m t 1 0 J J 5 m t m t t t m m
	Lime Require- ment		سسس۲۵۵۵ مکنن	400404000	00000000
	Hd	. <u> </u>		00000000000000000000000000000000000000	0-000-004
	Mn Defi- ciency Index2				0mm
	- Repli- cation		- 0 m - 0 m	-0-0-0-0-0	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
-	Treat- ment		ຍ ພ ພ ພ ພ ພ ພ ບ ບ ບ	4448880000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	oil Type		Montcalm sandy Loam (Soil Number 6)	Karlin sandy loam (Soil Number 7)	Granby loamy fine sand (high organic matter) (Soil Number 8

Table A, Cont.

					-1	55-	
		Bean Mn Untake		mgm/pot	693 757 757 7678 7678 7693 0490 080	154 146 146 149 149 1149 1159	. 078 . 063 . 060 . 101
		Bean	Ξ	wdd	220 260 260 2260 2260 2260 233 20	5-22 5-22 5-22 5-22 5-22 5-22 5-22 5-22	43 - 28 43 - 28
		Bean Yield	-	gms/pot	2.400 2.400 2.400 2.440 2.440	3.340 3.340 3.27555 3.27555 3.27555 3.27555 3.27555 3.275555 3.275555 3.2755555 3.27555555555555555555555555555555555555	2.780 3.320 2.400 3.245 2.662
		Oat Mn Untake		ngm/pot	2.205 2.205 2.205 2.173 2.955 2.955 2.145 2.145 2.1245		.137 .086 .190 .190 .167
	[8 1 1 1 1 1	0at Tissue	ΞΨ	шdd	3345055555 33355555555555555555555555555		14-10 1209 14-10
		0at Yield	-	gms/pot	8.320 8.880 8.880 8.470 8.470 8.435 6.750 6.750 6.750 6.750		9.795 9.535 9.505 10.225 11.975
	E	tants	1	cent Hydro- quinone	185 200 220 182 220 182 182	164 172 155 172 176 162 162	107 98 139 154
	pp2m	Fxtrac	0.1N H3P04		190 250 250 175 280 280 280 280	85 80 80 80 80 80 80 80 80 80 80 80 80 80	65 555 115 00 115
		- мд		1	2107333 61073333 610733333 610733333 61073333 6107333 61073 61073 61073 61073 61073 61073 61073 61073 61073 61073 61073 61073 61075 610075 610075 61075 61075 61000000000000000000000000000000000000	936 936 936 936 939 939 939 939 939 939	936 867 7444 898
	r acre	ca.			1144 1144 1144 1040 1040 1144 23120 33224	5096 4992 4744 4160 4160 5304 5720	5512 5200 6136 5304 4368
	Pounds pe	- K			124 124 130 130 130 158 172 172	301 374 308 308 308 308 308 301	208 221 208 194 236
		d		 	++8 +7005250	118 118 118 118 118 118 118 118 118 118	134 134 134 134
		Lime Require-	ment		.000000	00000000	00000
		Hd			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7.544
1		Mn Defi-				<u> </u>	
1	 	- Repli-			- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 9 - 9
		Treat-			ح ح ۵ ۵ 0 0 0 0		444000
able A, Cont.		Soil Type			Hodurk sandy loam (Soil Number 9)	Wisner sandy clay loam (Soil Number 10)	Tuscola fine sandy clay loam (Soil Number 11)

-155-

						<i>′</i> -	156-				
		Bean Mn Uptake		mgm/pot	.124 .095 .067 .047	.136	. 107 . 138 . 107 . 167 . 167	071.	.027 .022 .036 .023	.050 .038 .038 .043	.182 .177 .102
		Bean Tissue	Σ	шdd	40 28 17	27	237080 237080	30	512	2007 001 001 001 001 001 001 001 001 001	335
		Bean Yield		gms/pot	3.105 3.400 2.780 2.765	• •	4.990 7.070 8.070 8.070	• •	· · · ·	2.965 2.240 2.310 2.131	5.210 5.050 6.025
		Oat Mn Uptake		mgm/pot	.149 .092 .084 .050	.165	.177 .177 .482 .388 .172	. 162	. 195 . 195 . 149	.127 .191 .027 .080	.078 .152 .123
4		0at Tissue	Σ	шdd	<u>-</u> 080	91	229865	2= 1	<u> </u>	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1187
		0at Yield		gns/pot	8.750 10.170 10.535 9.955	<u>5</u> .	11.055 13.375 13.375 12.505 14.370	<u>5</u> 7	~9 5 5	7.910 7.655 4.920 4.010	11.160 8.470 111.175
	2m	n c tan ts	NH40Ac- 0.2 per	cent Hydro- guinone	190 96 100 129	38 26	264660 264660 264	54	2090	3 5 52 555 262	105 81 80
	pp2m		0. IN Н3Р04		130 440 130	35	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>2</u>	10 25 25	20000	200 200 200 200
********		<u>M</u>			867 776 776 776	1005	2000000 200000000000000000000000000000	867	867 837 744	088889 888889 88889 88889 88889	2146 1342 1342
	per acre	Ca			5304 5824 6552 6344	4680 4992	4388 4368 44264 6240 6240 6240	2096	10296 9468 7618 8112	9646 8424 9152 9360	14400 14200 13400
	Pounds p	×			250 208 208 208	137	13/ 166 137 200	101 1	398 264 272 268	356 374 374 374 374	780 897 728
	<u>م</u>	۵.			09111	61	50000 500000 500000	47	00570 0020	t t 300	102 102
		Lime Require-	ment		0000	<u></u>			0000	00000	000
		Hd			7.65 7.65	6.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.2	 	 	6.8 6.8
		Mn Defi-	ciency Index2		<u>– v– v</u>	- 0				- 47 54	
		Repli- cation			m- 4 m	- 01	~-~~~~	n w	- 9 0 -	0m-0m	- 0 M
		Treat- ment			ໝບບບ	44	∢ຉຉຉ຺຺	ა თ	4 4 4 M	മമറററ	444
		Soil Type			Tuscola fine sandy clay loam (Soil Number 11)	Brookston sandy clay loam (high	organic matter) (Soil Number 12)		Newton loamy sand (Soil Number 13)		Houghton muck (Soil Number 14)

÷.

Table A, Cont.

´-156-

Table A, Cont.											¥			+			
5 1 1 1		ς Ι Ι Ι			l		Pounds p	er acre		pp2m	Ę						
Soil Type	Treat- ment	- Repli- cation	Mn Defi- ciency Index2	Ha	Lime Require- ment	<u>م</u>	×	C a	б ш	H3P04	ants NH40	Oat Yield	Oat Tissue Mn	Oat Mn Uptake	Bean Yield	Bean Tissue Mn	Bean Mn Uptake
											0.2 per cent Hydro-	gns/pot	mqq	ngm/pot	gms/pot	md d	mgn/pot
Houghton muck (Soil Number 14)	തതതറററ	-0-0-00	00-	000222 200022	000000	88 665 644 644	770 770 988 780 780	9984 9870 10296 13400 12400	1040 1120 1157 1157	000000	204-14 24-188 24-1-14 24-1-14 24-1-14 24-14 24-14 24 24-14 24 24 24 24 24 24 24 24 24 24 24 24 24	12.060 10.810 8.890 6.940 8.005	t-87070	.277 .346 .178 .052 .056	750 760 760 760 760 760 760 760 760 760 76	-95 2-23 2-20 2-20	
Ostemo loamy sand (Soil Number 15)	۲ ۲ ۲ ۳ ۳ ۳ ۳ ۲ ۲ ۲	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000 	1622 1622 1622 1600 1600 1600	76969496 766467684 766467684	360 256 256 275 2496 2184	<u></u>	265 265 280 280 280 245 245	288 3366 3376 3376 3376 3308 3308 3308 3308 3308 3308 3308 330	10.800 9.875 11.015 10.460 10.550 10.555 10.555 8.385 8.385	8000 8000 8600 8600 8000 8000 8000 8000	4.158 3.158 10.722 8.440 8.440 8.440 268		2950 2950 2950 2950 2950 2950 38	22. 22. 23. 23. 23. 23. 23. 23.
Treatment: A control B 15 pounds o C LEP applic • Plant tissue t	of manganese cation suffic tested for he	: trol pounds of manganese per acre > application sufficient to induce manganese tissue tested for herbicidal traces (Gas Chrc	per acre ient to indu rbicidal tra	ine mani		deficienc matograph	су hy)	<pre>²Manganese Deficiency Index:</pre>	nese Deficienc No apparent m Very slight g classified Slight mottli Severe mottli Severe mottli	ficiency l arent mang light gene sified as mottling mottling mottling	cy lndex: manganese deficie general yellowing l as Mn latent def ing between veins ing and necrosis	iciency, deficie eins sis	classified the leaves ncy Classified	as but as	Mn sufficiency no mottling, Mn deficiency	9, Y C Y	

Soil textural class, chemical properties, plant yield values and manganese uptake data on 170 mineral soils and 9 organic soils. (Experiment 2) Table B.

> s A

	μd		ዋ	K	Ca	Mg	Mn	Mn				
	يد	Lime Require- ment)	Extrac 0.1 <u>N</u> H3PO4	<u>ц</u>	Oat Yield	Oat Tissue Mi n	Oat Mn Uptake	Radish Yield
								Hydro- quinone	gms/pot	mdd	mgm/pot	gms/pot
	6.4	1.5	12	112	2600	370	245	592	2.400	40.0	,096	.750
	6.7	0.0	35	72	1560	96	230	232	2.620	67.0	.176	.740
	6.7	0.0	7	112	2080	248	85	62	2.425	26.5	.064	.570
	7.3	0.0	9	80	3848	370	140	156	2.400	22.0	.053	1.050
	7.3	0.0	115	120	3016	274	115	142	2.795	5.5	.015	.850
	6.2	1.0	32	35	1040	160	212	256	2.360	70.0	.165	.430
	5.9	4.0	139	56	416	112	35	23	2.895	37.5	.109	.590
	7.3	0.0	123	216	3536	176	25	29	1.800	3.5	.975	.006
9 E	7.3	0.0	48	96	4160	274	- 25	27	2.080	8.0	.016	1.280
10 4	7.1	0.0	38	88	3598	646	120	156	2.405	3.5	.008	.630
11 3	6.4	1.0	37	80	2080	237	100	118	2.360	50.0	.118	.830
12 3	6.4	1.0	30	56	1976	128	80	66	2.325	35.5	.083	.790

Table B. continued

Soil Num- ber					Pounds	Pounds per acre			3				
				<u>р</u> ,	Х	Ca	Mg	Mn					
	Soil Tex- tural Class*	Hd	Lime Require- ment		1	}	P	Extrac 0.1 <u>N</u> H3PO4	Extractants .1 <u>N</u> 1 <u>N</u> PO4 NH4OAc+ 0.2 per- cent	Oat Yield gms/pot	Oat Tissue Mn Ppm	Oat Mn Uptake mgm/pot	Radish Yield gms/pot
									Hydro- quinone				
13	4	6.5	0.0	16	64	2392	203	85	124	2.305	55.0	.127	.620
14	ო	6.2	1.5	85	88	3266	203	76	30	2.440	31.0	.890	.075
15	4	7.6	0.0	45	88	10296	237	20	26	2.740	5.5	.015	1.280
16	1	5.8	3.0	9	40	512	80	260	512	2.350	155.0	.364	.350
17	2	5.5	5.0	44	100	1331	112	55	38	2.370	68.0	.161	.540
18	2	5.4	3.0	87	100	832	64	35	19	2.895	46.5	.135	.540
19	e	6.4	1.0	33	64	1248	112	355	412	2.475	44.0	.109	.750
20	с	6.4	1.0	29	64	1248	136	265	520	2.240	69.0	.155	.610
21	e	6.4	1.0	43	120	1331	104	375	430	2.660	76.0	.202	. 680
22	e	6.4	1.0	74	200	1248	64	300	320	2.810	70.5	.198	. 640
23	e	5.6	5.0	64	160	1560	112	230	380	2.640	109.0	. 288	. 800
24	7	7.1	0.0	35	136	2392	144	205	188	2.610	58.5	.153	.700

Table B. continued

•				Ъ	Pounds K	Pounds per acre K Ca	Mg	pp2m Mn	2m r				
ber t ber t	5011 Tex- tural Glass*	нд	Lime Require- ment					Екта 0. 1 <u>N</u> H3P04	Extractants • 1 <u>N</u> 1 <u>N</u> PO4 NH4OAc+ 0.2 per- cent Hydro- quinone	Oat Yield gms/pot	Oat Tissue Mn Ppm	Oat Mn Uptake mgm/pot	Radish Yield gms/pot
25	7	7.2	0.0	24	104	1976	144	80	78	2.790	22.5	. 063	. 590
26	2	7.1	0.0	37	56	2184	176	07	29	2.555	19.0	.049	.770
27	e	7.3	0.0	27	72	3744	384	100	265	1.870	25.5	.048	. 660
28	2	7.1	0.0	30	35	1664	136	30	17	2.325	11.0	.026	.530
29	7	6.1	1.5	131	112	1248	56	230	200	2.500	20.5	.051	.440
30	7	5.4	4.0	76	136	400	72	120	105	2.110	160.5	.339	.150
31	1	5.1	3.0	139	35	520	32	40	21	2.217	189.5	.420	.300
32	7	6.5	0.0	66	72	1144	72	315	296	2.600	139.0	.361	.330
33	n	5.7	1.5	60	100	832	104	600	640	2.430	225.0 .	.547	.450
34	e	6.3	1.5	66	80	832	112	260	416	2.355	194.5	.458	.560
35	4	4.5	5.0	564	348	1248	32	430	985	2.230	96.0	.214	.650
36	4	4.7	5.0	069	344	1144	38	520	266	2.005	97.5	.195	.720

				Ъ	Pounds p K	Pounds per acre K Ca	Mg	pp2m Mn	2m 1				
Soil Num- ber	Soil Tex- tural Class*	Н	Lime Require- Ment					Extrac 0.1 <u>N</u> H ₃ PO4	Extractants .1 <u>N</u> P04 NH4OAc+ 0.2 per- cent Hydro- quinone	Oat Yield gms/pgt	Oat Tissue Mn Ppm	Oat Mn Uptake mgm/pot	Radish Yield gms/pot
37	4	7.0	0.0	4	72	3016	408	190	608	2.220	52.5	.117	.770
38	4	6.5	0.0	10	112	2600	272	205	464	2.245	44.0	.099	.670
39	n	6.8	0.0	9	80	2704	312	75	116	2.495	16.5	.041	.810
40	2	6.4	1.0	17	104	1040	64	115	101	2.745	106.5	.292	.670
41	2	7.1	0.0	12	88	2392	192	06	100	2.430	26.5	.064	.760
42	e	6.6	0.0	30	100	2496	312	115	170	2.450	50.0	.123	.680
43	4	6.4	1.5	10	192	2704	384	120	232	2.790	80.0	.223	. 900
77	ς	5.6	2.0	38	112	1560	120	295	368	2.210	0.06	.199	.460
45	ς	6.5	0.0	16	160	3120	328	130	541	2.090	47.5	• 099	.670
46	ς	7.3	0.0	32	100	3848	448	55	60	1.785	16.0	.028	.790
47	ς	7.5	0.0	35	112	3848	424	35	56	2.160	1325	.029	.570
48	7	7.8	0.0	66	244	3598	128	25	6	1.620	2.5	.004	.780

	ł	1											
Radish	Yield gms/pot	.650	. 640	.345	.490	.510	. 640	.410	.340	.710	1.000	.920	.915
Oat Mn	Uptake mgm/pot	.130	.135	.172	.161	.134	.040	.145	.374	.322	.106	.037	.076
Oat	Tissue Mn ppm	60.0	57.5	68.0	55.0	46.5	16.5	50.0	135.0	116.0	46.0	19.0	36.0
	Yield gm/pot	2.160	2, 355	2, 525	2,930	2.875	2.405	2.900	2.770	2.775	2.310	1.965	2.115
2m t tants 1 <u>N</u>	NH4,0Ac+ 0.2 per- cent Hydro- guinone	608	800	74	278	156	330	110	204	320	10	12	156
Pp2m Mn Extractants 0.1 <u>N</u> 1 <u>N</u>	H3 P04	260	345	85	100	140	205	06	120	160	25	20	100
Mg		93	176	160	224	176	93	80	72	72	424	384	328
Pounds per acre K Ca		1768	1331	592	1560	1040	1872	1456	1040	1331	4160	5304	3016
Pounds K		104	200	56	80	104	104	64	64	05	112	128	104
р.													
11		72	60	21	22	46	39	48	43	30	37	50	35
Lime Require-	ment	0.0 72	0.0 60	1.0 21	0.0 22	0.0 46	0.0 39	1.0 48	1.0 43	1.0 30	2.0 37	0.0 50	0.0 35
pH Lime Require-	ment												
Hd	tural ment Class*		0.0	1.0	0.0	0.0	0.0	1.0	1.0	1.0	2.0	0.0	0.0

-162

Soil	Soil	На	Lime	Рч	Pounds K	s per acre Ca	Mg	pp2 Mn Extraci	pp2m Mn Extractants				
Num- ber	Tex- tural Class*	1 L	Require- ment					0.1 <u>N</u> H ₃ PO4	1 <u>N</u> NH4OAc+ 0.2 per cent Hydro-	Oat Yield gms/pot	Oat Tissue Mn Ppm	Oat Uptake mgm/pot	Radish Yield gms/pot
61	4	6.7	0.0	51	184	3848	468	75	20	2.015	35.0	. 071	. 780
62	2	6.6	0.0	64	96	832	160	140	264	2, 870	75.0	.215	.480
63	2	6.5	0.0	19	64	1331	93	1101	221	2.610	70.0	.183	.590
64	2	6.5	0.0	36	120	1456	93	165	308	2,955	105.0	.310	.710
65	2	6.2	1.0	82	80	1248	80	150	268	2.890	56.5	.163	. 500
66	2	6.1	1.5	51	112	624	80	150	276	2.740	83.5	.229	.530
67	2	6.8	0.0	6 6	136	1144	66	190	304	2.540	48.0	.122	.570
68	4	6.0	2.5	51	160	4888	720	50	55	2.450	79.0	.194	006.
69	4	5.1	3 . 5	22	104	1560	208	65	76	2.630	13.0	.034	.850
70	4	6.6	0.0	126	224	3120	424	100	78	2.325	26.5	.062	.860
71	4	7.3	0•0	64	352	8216	368	25	13	2.205	2.5	.006	.940
72	9	6.8	0.0	43	128	12200	952	15	54	3.305	11.5	.038	1.120

ľ

,

				<u>с</u>	Pounds K	per acre Ca	Mg	pp2m Mn	2 ^m				
Soil Num- ber	Soil Tex- tural Class*	Hq	Lime Require- ment		4	5	ę	Extra 0.1 <u>N</u> H ₃ PO4	Extractants • 1 <u>N</u> 1 <u>N</u> PO4 NH4OAc+ 0.2 per cent Hydro- guinone	Oat Yieldj gms/pot	Oat Tissue Mn	Oat Uptake mgm/pot	Radish Yield gms/pot
73	4	7.3	0.0	57	208	8008	328	20	18	2.040	4.5	.009	.610
74	с	5.9	2.0	56	112	1331	96	160	160	3.100	30.5	.095	1.050
75	4	6.0	2.5	30	104	3390	336	40	17	2.205	67.5	.149	.810
76	4	6.6	0.0	32	56	6760	480	25	5	2.820	24.5	.069	.370
77	с	5.5	3.5	46	88	1664	112	125	158	2.350	37.5	. 088	.700
78	с	6.9	0.0	32	64	8736	586	15	8	2.625	16.5	.043	1.320
79	с	7.1	0.0	59	136	3848	352	80	172	2.475	14.5	.036	.700
80	e	7.0	0.0	70	152	3744	394	95	160	2.370	25.5	.060	.620
81	n	7.1	0.0	37	72	3598	210	55	72	2.590	32.5	.084	. 690
82	4	6.4	1.5	16	88 	2600	237	85	120	2.205	130.0	.287	. 650
83	4	6.2	2.0	43	112	3744	304	45	24	2.160	92.5	.200	.930
84	4	6 •0	2.5	16	120	2184	192	70	56	2.180	56.5	.123	.630

.

	•			f	Pounds	per acre	2	pp2m	2m				
Soil Num-	Soil Tex-	Ηd	Lime Require-	24	×	E S	Mg	Mn Extrac 0.1N	Mn Extractants .lN lN	Oat	Oat	Oat Mn	Radish
er	tural		ment					H ₃ P04	NH40Ac+	Yield	Tissue	Uptake	Yield
	Class*								0.2 per cent Hydro- quinone	gms/pot	Min	mgm/pot	gms/pot
85	e	7.2	0•0	62	100	3016	166	170	265	2.530	23.5	. 059	.750
86	1	6 ° 9	0.0	135	196	1456	128	06	150	3.010	11.5	.035	.470
87	3	6.2	1.5	27	80	2912	192	95	152	2.470	64.0	.158	. 660
88	°	7.1	0.0	115	576	3120	150	160	180	3.040	14.8	.045	.940
89	3	7.1	0.0	78	112	7384	456	45	60	2.525	15.0	.038	.980
06	9	5.6	0.0	30	360	8008	530	35	210	2.980	47.0	.140	1.330
91	9	6.4	0.0	35	584	8632	480	35	200	4.005	34.5	.138	1.740
92	2	6.8	0.0	59	384	5616	530	40	60	2.820	30.0	.085	.540
93	2	7.3	0*0	68	832	12000	704	10	184	3.355	6.0	.020	1.310
94	7	6.3	0*0	35	600	8944	394	20	152	4.280	7.0	.030	1.330
95	e	7.1	0.0	8	112	3600	666	115	170	2.480	33.5	.083	1.140
96	4	7.7	0.0	82	296	8216	352	15	36	1.550	30.0	.047	1.020

(III)

				_ P4	Pounds K	per acre Ca	Mg	pp2m Mn	2m n				
Soil Num- ber	Soil Tex- tural Class*	Нd	Lime Require- ment)	Extra 0.1 <u>N</u> H PO4	Extractants • 1 <u>N</u> 1 <u>N</u> PO4 NH OAc+ 0.2 per cent Hydro quinone	Oat Yield gms/pot	Oat Tissue Mn Ppm	Oat Uptake mgm/pot	Radish Yield gms/pot
97	m	6.1	2.0	18	96	1872	93	70	78	2.625	71.0	.186	.430
98	e	7.0	0.0	17	80	3266	274	130	200	2.350	31.0	.073	.930
66	9	7.2	0.0	72	320	9568	832	10	84	3.710	2.5	600.	1.030
100	7	6.1	1.5	174	360	4680	237	70	50	2.390	56.5	.135	.310
101	9	7.4	0.0	23	296	11200	203	20	100	3.545	0.6	.032	1.270
102	9	7.3	0.0	29	216	14650	352	10	133	4.535	13.0	.060	1.790
103	2	5.6	5.0	76	96	368	$11_{\rm fi}$	15	12	2.360	21.5	.051	.390
104	e	5.7	3.0	27	56	1040	51	130	172	2.340	105.0	. 246	.610
105	4	6.8	0.0	30	104	2808	394	55	85	2.090	17, 5	.037	1.030
106	e	6.5	0.0	16	80	2392	274	75	156	2.335	44.0	.103	.790
107	4	5.5	1.5	7	88	1560	192	70	06	2.310	60.0	.139	.550
108	e	5.7	1.5	16	88	1560	138	230	480	2.225	85.0	.189	.850

-	Da
	nued
-	CONTL
	00
	-
,	ъ.
۶	4
	Те

				₽	Pounds	per acre		dd	pp2m				
Soil	Soil	рН	Lime	4	4	3	20 E1	Extra	Mu Extractants				
Num- ber	Tex- tural	•	Require- ment					0.1 <u>N</u> H ₃ P04	1 <u>N</u> NH4OAc+	Oat ∦Yield	Oat Tissue	Oat Uptake	Radish Yield
	Class*								0.2 per- cent Hydro- quinone	gms/pot	шdd	mgm/pot	gms/pot
109	4	6.2	2.0	24	128	3390	274	110	196	1.955	50.0	. 098	. 670
110	4	6.8	0.0	30	104	2808	394	55	109	2.090	25.5	.053	.920
111	4	7.1	0.0	37	136	3598	352	75	145	2.190	5.0	.011	.460
112	7	7.5	0.0	28	112	10192	832	15	36	1.855	4.0	.007	1.190
113	4	7.5	0.0	46	120	4368	336	55	56	2.155	12.5	.027	. 600
114	ß	7.5	0*0	42	128	6136	304	25	25	.195	16.5	. 0003	.450
115	4	5.6	3.0	30	304	1331	176	06	112	2.490	57.5	.143	.950
116	4	7.4	0*0	39	160	4056	560	110	176	2.420	28.5	.069	.950
117	4	7.6	0.0	50	196	4888	614	115	200	2.035	12.0	.024	1.050
118	4	6.5	0.0	15	168	5096	274	65	120	3.000	22.5	.068	066.
119	ß	6.0	2.0	18	96	3536	182	55	92	1.910	41.5	.079	.080
120	ę	6 •0	2.0	23	80	3390	210	45	50	1.865	18.5	.035	.720

Table B.		continued	ned					•				•	
Soil	Soil	Hd	Líme	<u>е</u> ,	Pounds K	per acre Ca	Mg	pp2m Mn Extracta	pp2m Mn Extractants				
Num- ber	Tex- tural Class*		Require- ment					0. 1 <u>N</u> H ₃ P04	1 <u>N</u> NH4,0Ac+ 0.2 per- cent Hydro-	Oat Yield gms/pot	Oat Tissue Mn Ppm	Oat Mn Uptake mgm/pot	Radish Yield gms/pot
121	2	7.0	0.0	36	56	1456	83	140	216	2.260	48.5	.110	. 640
122	2	6.2	0.0	50	80	1456	61	170	196	2.300	45.0	.104	. 635
123	7	7.0	0.0	29	112	1768	61	170	240	2.515	45.0	.113	.640
124	4	6.3	2.0	15	160	3536	352	35	54	2.170	27.5	.060	.680
125	Ś	6.1		198	248	1040	83	185	204	2.620	54.0	.141	. 600
126	S	6.2	1.5	144	168	728	80	175	162	2.570	49.5	.127	.650
127	'n	6.2	1.5	150	152	1144	93	120	120	2.270	52.5	.119	.740
128	ß	6.0	2.0	66	72	1560	51	95	98	2.350	54.5	.128	.740
129	ñ	6.3	1.5	39	72	2704	160	"35 _{° -}	214	2.280	40.0	.091	.570
130	ß	6 .6	0.0	39	100	1144	138	280	348	2.005	46.0	.092	.620
131	5	6.4	0.0	85	616	13000	800	15	192	3.160	10.5	.033	1.630
132	m	7.0	0.0	32	80	3744	262	50	42	2.270	12.0	.027	.700

Tax Require 0.1 Mit, 0.6 t 0.1 Mit, 0.6 t 0.1 missue ment 0.1 missue men	Soi1	Soil	Нq	Lime	Ч	Pounds K	per acre Ga	Mg	pp2m Mn Extract;	pp2m Mn Extractants				
Olass* 0.2 per- ¹ Minutable for the form of	Num- ber	Tex- tural	1	Require- ment					0.1 <u>N</u> H ₃ PO4	1 <u>NH4</u> 0Ac+	Oat Yield	Oat Tissue	Oat Mn Uptake	Radish Yield
3 6.0 2.0 40 104 2704 210 55 57 27.5 27.5 061 1 3 5.7 2.0 50 80 1331 64 205 261 2.440 87.5 .061 1 3 6.7 0.0 28 104 2080 182 45 23 2.315 .071 1 3 6.1 2.0 21 88 2184 83 125 105 2.326 33.5 .077 1 3 6.1 2.0 23 88 2184 83 125 105 2.355 35.5 .077 1 1 7.9 0.0 35 28 276 275 35.5 .078 .078 1 7.9 0.0 12 240 166 200 346 2.255 35.0 .078 128 1 7.3 0.0 2 130		Class*								0.2 per- cent Hydro- quinone	gms/pot	ЧЧ	mgm/pot	gms/pot
3 5.7 2.0 50 80 1331 64 205 261 2.410 87.5 $.211$ 3 6.7 0.0 28 104 2080 182 45 23 $2.9.0$ $.021$ 3 6.1 2.0 21 88 2184 83 125 105 53.5 $.077$ 1 3 6.1 2.0 21 88 2184 83 125 105 $.077$ 1 1 7.9 0.0 35 88 2184 83 125 248 2.275 35.0 $.077$ 1 1 7.9 0.0 32 88 2288 176 175 2.275 35.0 $.078$ 1 7.9 0.0 12 40 110 128 2.275 35.0 $.078$ $.078$ 1 7.0 0.0 <td>133</td> <td>ς</td> <td>6.0</td> <td>2.0</td> <td>40</td> <td>104</td> <td>2704</td> <td>210</td> <td>55</td> <td>50</td> <td>2.225</td> <td>27.5</td> <td>.061</td> <td>1.190</td>	133	ς	6.0	2.0	40	104	2704	210	55	50	2.225	27.5	.061	1.190
3 6.7 0.0 28 104 2080 182 45 23 2.320 59.0 $.021$ 3 6.1 2.0 21 88 2184 83 125 105 2.285 33.5 $.077$ 1 3 6.2 1.5 72 256 1976 166 200 346 2.285 33.5 $.077$ 1 3 6.5 0.0 35 88 2288 176 175 248 2.275 53.5 $.078$ 1 7.9 0.0 12 40 4160 210 130 128 2.560 15.0 $.078$ 1 7.9 0.0 12 40 2184 203 75 770 2.690 30.0 $.038$ 1 7.9 0.0 12 1640 64 65 36 2.560 17.0 $.038$ 1 8.0 0.0 12 32 1040 64 65 36 2.750 17.0 $.038$ 2 7.0 0.0 2184 2184 203 75 2.410 54.5 $.131$ 2 6.8 0.0 22 80 2184 40 75 70 2.745 43.5 $.131$ 2 6.8 0.0 22 80 2184 40 75 70 2.745 45.0 $.071$	134	e	5.7	2.0	50	80	1331	64	205	261	2.410	87.5	.211	.740
3 6.1 2.0 21 88 2184 83 125 105 2.285 33.5 $.077$ 1 3 6.2 1.5 72 256 1976 166 200 346 2.275 53.5 $.122$ 3 6.5 0.0 35 88 2288 176 175 248 2.275 53.5 $.078$ 1 7.9 0.0 12 40 4160 210 130 2128 2.250 15.0 $.038$ 1 7.3 0.0 26 166 203 75 70 $.038$ 1 7.3 0.0 26 160 2194 203 70 $.036$ $.031$ 1 8.0 0.0 12 2194 203 2160 17.0 $.038$ 1 8.0 0.0 12 2104 61	135	e	6.7	0*0	28	104	2080	182	45	23	2.320	0 • 63	.021	.840
3 6.2 1.5 72 256 1976 166 200 346 2.275 53.5 $.122$ 3 6.5 0.0 35 88 2288 176 175 248 2.225 35.0 $.078$ 1 7.9 0.0 12 40 4160 210 130 128 2.560 15.0 $.038$ 1 7.3 0.0 26 16 2184 203 75 70 2.690 30.0 $.038$ 1 8.0 0.0 12 32 1040 64 65 36 2.690 30.0 $.031$ 3 7.0 0.0 12 32 1040 64 65 36 2.410 $.038$ 3 7.0 0.0 42 64 2808 61 185 2.70 2.410 54.5 $.131$ 2 7.0 0.0 29 56 1976 32 100 103 2.745 43.5 $.131$ 2 6.8 0.0 22 80 2184 40 75 70 2.745 $.131$	136	e	6.1	2.0	21	88	2184	83	125	105	2.285	33.5	.077	1.120
3 6.5 0.0 35 88 2288 176 175 248 2.225 35.0 .078 1 7.9 0.0 12 40 4160 210 130 128 2.560 15.0 .038 1 7.3 0.0 26 16 2184 203 75 70 2.690 30.0 .081 1 7.3 0.0 26 16 2184 203 75 70 2.690 30.0 .081 1 8.0 0.0 12 32 1040 64 65 36 2.250 17.0 .038 3 7.0 0.0 42 64 2808 61 185 2.710 2.410 54.5 .131 2 7.0 0.0 22 2.0 103 2.745 43.5 .131 2 6.8 0.0 22 80 2.150 2.150 .131	137	e	6.2	1.5	72	256	1976	166	200	346	2.275	53.5	.122	006.
	138	e	6.5	0.0	35	88	2288	176	175	248	2.225	35.0	.078	. 680
17.3 0.0 26 16 2184 203 75 70 2.690 30.0 $.081$ 1 8.0 0.0 12 32 1040 64 65 36 2.250 17.0 $.038$ 3 7.0 0.0 42 64 2808 61 185 270 2.410 54.5 $.131$ 2 7.0 0.0 29 56 1976 32 100 103 2.745 43.5 $.119$ 2 6.8 0.0 22 80 2184 40 75 70 2.150 45.0 $.097$	139	1	7.9	0.0	12	40	4160	210	130	128	2.560	15.0	.038	.750
1 8.0 0.0 12 32 1040 64 65 36 2.250 17.0 .038 3 7.0 0.0 42 64 2808 61 185 270 2.410 54.5 .131 2 7.0 0.0 29 56 1976 32 100 103 2.745 43.5 .119 2 6.8 0.0 22 80 2184 40 75 70 2.150 45.0 .097	140	ч	7.3	0.0	26	16	2184	203	75	70	2.690	30.0	.081	.540
3 7.0 0.0 42 64 2808 61 185 270 2.410 54.5 .131 2 7.0 0.0 29 56 1976 32 100 103 2.745 43.5 .119 2 6.8 0.0 22 80 2184 40 75 70 2.150 45.0 .097	141	1	8.0	0.0	12	32	1040	64	65	36	2.250	17.0	.038	.530
2 7.0 0.0 29 56 1976 32 100 103 2.745 43.5 .119 2 6.8 0.0 22 80 2184 40 75 70 2.150 45.0 .097	142	e	7.0	0*0	42	64	2808	61	185	270	2.410	54.5	.131	.790
2 6.8 0.0 22 80 2184 40 75 70 2.150 45.0 .097	143	2	7.0	0.0	29	56	1976	32	100	103	2.745	43.5	.119	.500
	144	3	6.8	0.0	22	80	2184	40	75	70	2.150	45.0	.097	.620

					Pounds K	per acre Ca	Me	pp2m Mn	2m				
Soil Num- ber	Soil Tex- tural	Hd	Lime Require- ment	ı	1	5	0	Extrac 0.1 <u>N</u> H ₂ PO4	Extractants • 1 <u>N</u> 1 <u>N</u> PO4 NH,OAc+	Oat Yield	Oat Tissue	Oat Mn Uptake	Radish Y∉é ld
	Class*							,	0.2 per- cent Hydro- quinone	gms/pot	ЧW	mgm/pot	gms/pot
145	e	6.2	1.5	70	144	1872	40	385	832	2.395	95.0	.228	006.
146	ę	6.8	0*0	38	184	2912	118	355	720	2.020	54.0	.109	.970
147	2	6.0	0.0	27	96	11000	614	Ŋ	77	2.295	15.5	.036	1.400
148	°	6.8	0.0	144	104	1872	80	125	118	2.385	37.5	060.	.580
149	4	6•9	0.0	18	72	2288	176	170	188	2.350	33.0	.078	. 890
150	c.	5.6	3.5	66	160	1248	93	240	342	2.015	95.0	.191	.816
151	4	6.4	1.5	36	160	7176	480	35	22	. 815	31.0	.003	.860
152	ε	6.7	0.0	87	168	2288	51	325	380	2.410	85.0	.205	.610
153	ę	5.9	1.5	66	192	1560	138	365	344	2.600	162.5	.423	.750
154	ε	5.4	3.0	105	120	1444	64	265	300	2.910	190.0	.553	.970
155	с	6.3	1.5	89	112	2184	118	345	432	1.990	149.5	. 298	1.630
156	5	6.5	0.0	11	88	12000	960	10	76	3.190	25.5	.081	.710

					Pounds p	per acre		pp2m	2m				
Soil	Soil	На	Lime	Ч	К	Ca	Mg	Extract	 Mn Extractants				
Num- ber	Tex- tural	 	Require- ment					0.1 <u>N</u> H3P04	1 <u>N</u> NH4,0Ac+	Oat Yield	Oat Tissue	Oat Mn Uptake	Ra dish Yield
	Class*								0.2 per- cent Hydro- quinone	gms/pot	ЧИ	mgm/pot	gms/pot
157	2	5.8	2.0	68	100	1248	96	130	172	2.380	70.0	.167	. 800
158	7	5.9	1.5	50	96	1248	118	150	168	2.420	123.0	. 298	.620
159	7	6.2	1.0	222	104	1456	51	205	200	2.715	115.0	.312	.460
160	7	5.1	3.5	210	72	077	32	185	198	1.720	60.0	.102	.490
161	4	7.7	0.0	150	666	4992	702	95	77	1.850	7.0	.013	1.140
162	٣	6.7	0.0	32	72	3266	237	70	42	2.400	71.0	.170	.760
163	n	7.1	0.0	14	£64	3390	248	125	140	2.300	67.5	.109	.780
164	4	7.8	0.0	9	64	5200	288	285	266	2.115	27.5	.058	.860
165	ς	6.4	1.0	22	96	1768	32	230	288	2.200	52.5	.116	. 690
166	4	7.2	0.0	9	96	4264	530	130	232	2.205	31.5	.070	1.120
167	9	6.5	0.0	19	381	12200	1768	15	61	2.500	15.0	.038	1.711
168	9	6•9	0.0	18	236	12000	1898	20	24	2.010	8.5	.017	1.620

					Pounds 1	per acre		dd	pp2m				
Soil	Soil	Hq	Lime	Ч		Ca	Mg	Extrac	Extractants				
Num- ber	Tex- tural	1	Require- ment					0.1 <u>N</u> H ₃ P04	1 <u>N</u> NH4OAc+	Oat Yield	Oat Tissue	Oat Mn Uptake	Radish Yield
	Class*								0.2 per- cent Hydro- quinone	gms/pot	ЧW	mgm/pot	gms/pot
169	e	7.5	0.0	35	229	5616	589	45	18	1.565	20.0	.031	1.180
170	4	6.1	0.0	35	296	5408	768	40	30	2.050	19.0	. 039	1.190
171	ς	5.2	3.5	152	221	288	80	265	326	2.705	14.5	.039	.390
172	7	7.2	0.0	12	64	3120	237	80	73	2.580	15.5	.040	1.370
173	ς	6.1	0.0	72	100	832	118	190	186	2.410	59.0	.142	1.140
174	ς	7.3	0.0	86	312	5200	530	115	138	1.940	27.5	.053	1.450
175	۳	7.2	0.0	74	250	6344	586	75	67	1.580	8,5	.013	1.050
176	ŵ	6.3	0.0	16	104	4680	656	20	24	1.955	17.5	.034	.930
177	7	7.7	0.0	36	184	0948	509	25	22	1.455	5.0	.007	1.530
178	9	6 . 8	0.0	57	672	10192	728	20	29	2.650	10.0	.027	1.790
179	ę	5.8	1.5	125	32	184	80	170	296	2.125	88.5	.190	.510
	*Soil 1. 2. 3.		textural class: Sands Loamy sands Sandy loams	4.00	Loams Clay Organic	c soils	7.	Loamy s	sands with high organic matter	ıigh organ	iic matter		

