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ABSTRACT

THE EFFECTS OF VIBRATION
ON AN
INERTIAL MEASUREMENT UNIT

By Louis Ralph Papale

In this thesis, the errors produced by both sinusoidal and random
vibration acting on an inertial measurement unit are considered.

The sources of vibration in missiles are presented and the vibration
characteristics are established. A brief description of an inertial
measurement unit and its major components, which consist of the
gimbal system, the accelerometers and the gyros, are presented. A
state model of the gimbal system is developed and an example of the
state model to the design of an inertial measurement unit is pre-
sented. The particular design considerations associated with vibra-
tion are indicated. Analyses of the accelerometers and the gyros
are performed. The error equations for the vibropendulous error,
the nonlinearity error and the scale factor error of a pendulous,
pulse-rebalance accelerometer are derived. The error equation is
developed for the anisoelastic effects of a gyro under sinusoidal
vibration. The system error equations are derived for both the sin-
usoidal and random vibration effects on an inertial measurement unit.
The significance of the vibration effects are illustrated and means

for minimizing the effects are indicated.
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"The aim of science is to seek the simplest explanation of complex
facts. We are apt to fall into the error of thinking that the
facts are simple because simplicity is the goal of our quests. The
guiding model in the life of every natural philosopher should be

'Seek simplicity and distrust it'."

by Alfred North Whitehead

""Concepts of Nature"
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1.0 INTRODUCTION

The major part of the missile target error produced by an
inertial guidance system is, in general, caused by instrument im-
perfections. However, a significant consideration, from the stand-
point of both the error contribution and the design, is the effect
of vibration on the instruments. This thesis considers the effects
of vibration on the instruments as utilized in an inertial measure-

ment unit from the standpoint of accuracy and design considerations.

The errors in an inertial guidance system can be allocated

to four major groups:

1. Instrument imperfections.
2. Initial alignment.
3. Simplification of guidance equations.

4. Vibration.

The first two are generally included in the error analyses
considered for each system. The third is evaluated when establish-
ing the guidance equations and should represent a small error
relative to the first two error sources. The fourth error source
may be a significant amount depending on the characteristics of the
instruments and the vibration environment. It is imperative in the
design of an inertial measurement unit to establish the errors aris-
ing from vibration. Such a determination provides the means of

selection of the type of instruments to be used, such as floated



or non-floated gyros; it is important from the standpoint of reli-

ability as well as for establishing the need for vibration isolation.

In the development of inertial measurement units, the usual
shock and vibration tests are performed in the laboratory to
establish the functional capability of the system. A more elabo-
rate test prior to actual flight test is to subject the IMU to a
high speed sled test environment. This allows the unit to be tested

in an environment much like that of a missile.

The material herein, although quite general with respect to
inertial measurement units, presents an example of the development
of a specific type of an IMU. This development program was carried
to a point beyond the normal laboratory testing phase and included
a high speed sled test program at Holloman Air Force Base, New Mexico.

Examples of actual data obtained at the track are included.

Specifically, the material herein presents a unified treat-
ment of the effects of vibration on an IMU from the standpoint of
both sinusoidal and random vibration. The particular points of

accomplishment are as follows:

1. A state model of the IMU gimbal system is derived.
2. An example of the application of the state model to a
specific IMU is presented, and the design considerations

for future engineering efforts are outlined.



3. The error equations for the vibropendulous error of a

pulse-rebalance accelerometer are derived.

4. The error equations for the nonlinearity errors for an

accelerometer are developed.

5. The error equations for the scale factor error of a

pulse-rebalance accelerometer are derived.

6. The error equation for the anisoelastic effects of a

gyro under sinusoidal vibration is developed.

7. The system error equations for both the sinusoidal and

random vibration effects on an IMU are derived.

In summary, the contribution of vibration to the IMU system
error can be significant, and can range to as high as 25% of the
allowable miss distance, depending on the level of vibration. The
particular features to be considered in minimizing the vibration

effects are pointed out.

The arrangement of the material is based upon the logical
flow of the vibration from the missile structure to the platform
instruments. Consequently, the first consideration is the missile
environment and the characteristics of vibration. This, then,

describes the input signal at the case of the IMU. Following this



discussion is a brief description of the IMU and the major items
considered in the study which were the gimbal system, the acceler-
ometers, and the gyros. Continuing with the signal flow, the next
presentation is the development of the state model of the IMU
gimbal system. It is the gimbal system that shapes the environment
seen by the platform instruments and is illustrated by an example.
The specific error equations for the platform instruments (acceler-
ometers and gyros) due to sinusoidal vibration are developed, and
the system error equation due to sinusoidal vibration is formulated.
Similarly, the error equations for the platform instruments due to
random vibration are derived, and finally, the system error equation

for random vibration is developed.



2.0 SOURCES OF VIBRATIONS

Prior to any considerations of the effects of vibrations, it
is helpful to review the sources of vibrations in missiles. This
section presents a discussion of the three main sources of vibra-
tions in missiles and points out the various characteristics of the

vibration which most likely represent the environment of the IMU.

Vibrations in missiles are generated by three main sources:

1. The missile power plant.
2. Aerodynamic effects, such as boundry layer and turbulence.

3. Internal operating components.

In addition to these sources, a high speed sled used in testing
inertial guidance systems has one additional vibration source.

This is the effect of the slipper and slipper suspension on the
track (see Figure 1). Examples of the vibration presented on a

rocket sled are shown in Figures 2, 3, and 4.

The missile power plant may consist of a single rocket or a
cluster of rockets, depending on the vehicle. All rocket thrust
chambers vibrate with variations depending upon the design. The
physical mechanism of all these vibrations is not clearly estab-
lished but basic types of vibrations have been observed in various

rocket thrust chamber assemblies. The first is believed to be a



ROCKETS
/

TELEMETRY
~~ COMPARTENT

TEST
_ SPECINEN
COMPARTNENT

SLIPPER
SUSPENSION

SLIPPERS

FIGURE 1

HIGH SPEED ROCKET SLED




4TS LINO0Y V NO AFUNSVIN TIATT ¥iIMOd NVIW

-5 “ON NNY
Ea *sTeAINU]
patnI uvo pamrojiad sysAteve
yex329ds damod setAS] 3ILOM

¢ ANOId

4 oy JusEsINSEIy
9 sda 0021 81114 ssed Mo
D oee 2-v WIT N
INIL SA ¥ImOd

WL NI1 SA Y3MOd NUOENVS




NOI.LOW LSYId ¥d.L4V SANOOIS 8
a3a71s LINJO0d V NO a3dNSviW ALISNIA TVILIddS diMOd

¢ JUNOIA

- n.n b.l.sﬂ .J.._v..rﬂltre..r”;-rnrd .,..1.'.,.;) AP L L F»-lb,,.r*’an M;.Pi h.;tL-PPIv
.._er LY SJ oM\ Q0T pmﬂh | 00E ¥ | 00S
NI - | W |

i as o _
H W T
. . - — e
w B 8
i Pl B el Sl S|
. & £
< +
: Ta .o |
B N NTT
. . T -
. S —s——
4 - »*» .
L2 V H
RN e .\_
T Tt i
SRR SR . o
13 Or 2 A
T3 e o 2 2k e S B
: . H H H .
8 R Tl ®
ISR RS RN R
— 8t : g 8
P P = _: s 1
— — + —+
w m =} ' )
N O ©
l
4
- 1 ] -
o H M o

R e



NOILOW ¥id.1d4V SANODHS vl
a371S L3INOOY V NO Q:NSVAW ALISNdA TVHLIUdS ddMOd

vy FdNOId

S

?PPﬂHP?P..FP.ﬁa.m ..r.‘uv.\LrE*— tripmainn 1:...»..##,«4r-w.H Aipuiii i1

L1440 0a030 03

| | T
os os/ oo? | os¥ o% oo S . | oop| 00s

_ .
NI TRt | “ _
} 1 : ! | _
ﬁ + o—
| i | | i
S L
S S T il
I ! i |
' _ !
. o . w 1
)
m —_ * =4
T
— e P + .
SR ; £
[} b » L Q
w T 3
b — R S - -
— ,n1w - + T 3
— = 4
—_— + - < 1 u
: o__, H i gi
T o —— — - : + =
—— — : — s
. e BAEN AN S D QDN
- TY;.LM \*41 4. o et . - Hfﬂw rT . d
. 1 v Ty LT ED T [ SRS L~
S N i uih bt B L T e L34+ T |
i I ER BEIEEE S5 St BENREE S [BEESE SREESE BETEEE BRENN
] ' . - . . . s . - . .
Dol 3 Ry N Dt SN i
——8 ! n“., B H ‘« + ,".
N RY i B S N ER P T e
L) ” ¢ TPOOSes g Al ¢+ X 63 G T + X - s —= . * W . x ~
- il T T R TV e——— =+ b4 4 [ i G B o G S S R S LI
e i S.i-bd L ,&r - i PRl B
bl - . 2 e SR BN SN A IR bl SR
: 3 r S 3 = fr S HE S S o = [ G S
: M : i .- i B B3R [ i Efal EE S
- =1 - I EEE =3 T
3 : ¥ =S R 3 H . Y
1 ] < 71 T T o T &t Iy v o 8
i . 4 . — IR .- i
- - 2 = - - - - -
© 1 o.l.a*lo ¥ T o ° »

e meas Hi—rm et o wtoa s s - Tciaiee ——ete



10

chamber pressure and feed system oscillation with relatively low
frequencies in the range of 0.1 cps to 15 cps. The second type

of vibration is that caused by the excitation of the natural fre-
quency of the metal parts, such as the chamber, pipelines, and
structural parts. This frequency is usually below 100 cps. The
third type is a high pitch, high energy vibration and is associated
with the combustion. Overall, the vibration spectrum is of a random

nature with the power levels concentrated at the points indicated.

In considering the aerodynamic effects, it can be shown’”
that the vibrations due to the boundary layer are caused by surface
pressure fluctuations created by turbulence within the boundary
layer. 1In addition, atmospheric turbulence may cause surface pres-
sure fluctuations. Further considerations of aerodynamic effects
must take into account the flight conditions (dynamic pressure).
These are the vibration conditions that exist in the subsonic state.
However, in the transonic region, a condition known as transonic
buffeting takes place. This is created by a highly turbulent con-
dition with a build-up of dynamic pressure. One kind of buffet is
identified by a white distribution of power in the power spectrum.
The transonic region is of major concern because of possibie
structural and equipment damage . However, the duration of flight

through this region is relatively short for missile flights.

* Superscripts refer to the references.
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Another kind of buffeting - depending upon the re-entrant
angles - is that which takes place due to the detachment of the air
flow on bulbous configurations. The pressure fluctuations act over
a greater area than the first type of buffet and the frequency dis-
tribution of the pressure fluctuations is concentrated more at the
low end of the spectrum. The greater the magnitude of this buf-
feting, the greater the intensity of the lower frequency components
which in turn tend to excite the primary structural modes of the

vehicle.

Finally, such things as hypersonic buzz (a hinge moment
oscillation produced by high speed flight) and flap flutter also

lead to vibration effects.

The third item considered as a primary source of vibration is
the internal operational components. These, of course, could be
such items as motors, hydraulic pumps, inverters, blowers and the

like.

It has been shown, in missile experience, that the vibration
environment for the vehicle arises principally from acoustic pres-
sures impinging on the vehicle surface. A typical curve of mms
acceleration at some location on the re-entry vehicle, e.g., the
guidance truss, as a function of flight time is given in Figure 5.
At launch, the sound field from the booster engines envelops the

re-entry vehicle and excites the structure and its contents. As the
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vehicle clears the pad and begins to accelerate, the noise level
drops until the excitation is due mostly to thrust pulsations being
fed through the structure. As Mach 1 is approached, the buffeting
forces build up and the vibration levels exceed those at launch.
After Mach 1, the dynamic pressure continues to increase but the
flow is less disturbed so that, in general, an intensity plateau is
maintained until after maximum dynamic pressure is reached. As the
dynamic pressure decreases and the vehicle leaves the atmosphere,

the noise again drops to the structural-path contribution level.

50

-
©

Acceleration (g rms)
8

—

Time of Flight (sec)

FIGURE 5*

NOISE LEVELS FOR BOOST FLIGHT

In producing such vehicles, the design provision for re-
duction of equipment vibration level utilizes a well-tested proce-

dure for frequency separation called the octave rule. The octave

* Reprinted from "Astronautics and Aerospace Engineering' with
permission.
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rule requires the basic frequency of each component to be an octave
higher than that of the structure on which it is mounted. In this
way, the possibility of the resonant frequency of one equipment

being the same as that of another is avoided.

A typical vibration environment for an inertial measurement
unit for a missile is a power spectral density of 0.07g2/cps over
a frequency range of 20 to 2000 cps. From a system standpoint, this
is a white noise input to the IMU, which is briefly described in

the next section.



3.0 DESCRIPTION OF AN INERTIAL MCASUREMENT UNIT

Having established the vibration environment, it is appro-
priate to consider the IMU per se. This section presents a brief
description of an IMU, its function in relation to the missile,

and the major components.

An inertial measurement unit is a device capable of measur-
ing any changes in rotational or translational motion with respect
to an inertial frame of reference. As implied, the means of opera-
tion is based upon Newton's laws of motion and consequently an
inertial guidance system is sometimes referred to as a '"self-

contained system."

From the basics of kinematics it is known that the trajectory
of a body may be defined by an appropriate combination of transla-
tional and rotational measurements. Thus, to describe the path
of a missile, an inertial measurement unit is used to provide such
information (see Figure 6). This information is then supplied to a
guidance computer in which it is utilized as the present position of
the missile. Stored in the guidance computer is a specific program
indicating where the missile should be at a particular time. The
two pieces of information are compared and the difference then
serves as the basis for applying corrections to the propulsion
system and/or the control system. Hence, the accuracy of the tra-
jectory is primarily dependent upon the accuracy of the inertial

measurement unit.

14
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The function of an IMU can be provided in two ways. In
either case the basis of operation is the gyro and the accelerometer.
One method, known as the stable platform approach, has a mechanical
gimbal system which operates as part of a stabilization loop to
maintain the accelerometers (located on the stable element) fixed
to some reference (see Figure 7A). The second method, known as a
strapped-down system, has the accelerometer and gyros located di-
rectly on the missile airframe. Hence, a computer is required to
convert from the missile body coordinate system to an inertial

coordinate system (see Figure 7B).

Consequently, in examining the effects of vibration on an
inertial measurement unit, the gyros, accelerometers and the gimbal
system must be analyzed. The first thing to be analyzed is the

gimbal system which is treated in the next two sections.
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4.0 STATE MODEL OF A GIMBAL SYSTEM

In establishing the effects of vibration on an inertial
measurement unit, it is first necessary to develop a methematical
model of the gimbal system. This model may then be utilized with
specific vibrations present at the missile airframe as described in
Section 2.0 to determine the type of vibration seen by the IMU in-

struments located on the stable platform.

A schematic diagram of a gimbal system can be represented by
a combination of spring, mass and damper elements as shown in
Figure 8. Three degrees of freedom are indicated since the gimbal
system is assumed to consist of three gimbals. Additional degrees
of freedom are sometimes introduced in the form of a fourth gimbal
or a vibration isolator. However, this is a design parameter and
only a slight modification of the state model is required to provide

for this.

The analysis herein considers translational motion only since
the platform is assumed to be independent of rotations. This is a
realistic assumption since the stabilization loops have a capability

of maintaining the rotation to a few arc-seconds of motion.

In the mechanical system, each mass element represents the

total lumped mass parameter of each gimbal and the particular in-

struments located on that gimbal. The spring element represents the

18
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stiffness coefficient of the combination of the particular gimbal
and the bearings used in the mechanization. The damper element
represents the structural damping and windage effects. Figure 9

illustrates a typical IMU with roll, yaw, and pitch gimbals.

The development of the state model for the gimbal system will

now be considered.

The terminal equations for the components in the system can

be written in the form

ro - - 1 ‘ r 2
§1(t) | w o 0 . £,(t)
d ] 1
It §,(t) = 0 M—Z- 0 f,(t)
o 1
0 0 —— fa(t)
uda(t)_a — M3 - L 3( -
r = . 7 r . )
£, (t) Ky 0 0 §,(t)
d - 0 K 0 8¢ (1)
It fe(t) = 6 6
fg(t) 0 0 Kg 58(t)
- J - - - -
— - ~ = ~ o -
fe (t) Ds 0 0 S5(t)
£(t) - 0 Dy 0 §7(¢)
fg (1) 0 0 D §9(t)
— - L.. - — -

Glo(t) a specified across driver
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Note that the terminal equations for the mass elements are

explicit in the across variables, while the terminal equations for
the spring and damper elements are explicit in the through variables.
The tree is selected to include elements 1, 2, 3, and the across
driver. The normal-form model is developed by first eliminating

all tree through variables and all chord across variables in the

above terminal equations.

The cutset equations for the through variables yield

~ =
£, 1 1 0 0 0 0 £,
£, = -1 -1 1 1 0 0 fs
£, 0 0 -1 -1 1 1 £
£,
fg
fq

-

Substituting these equations into the terminal equation yields

— W - - r - r— l - r— -
§ L 0 o 3 L 0o o £
1(t) M, 4 My 5
d -1 1 £ -1 1 0 £
dt d2(t) W M ° s My M ’
o -1 1 -1 1
§a(t 0 —_— = f 0 —_ — f
L 3l )- M3 M3 L ® J M3 W Lg J




23

From the circuit equations the following equations for the

across variables may be found

— - ~ N - ‘T
8, (1) 0 -1 1 0 810
8¢ (1) = 0 0 -1 1 §,
Sa(t 1 0 0 -1 §

§ 3
— -

- - - - - A - A
£, Ky K, 0 &, 0 [é,o]
& fs| - 0 kg  Kg i1 + | o
fo 0 0 -Kg ¢, Kg
- ! J LU -

From the circuit equations we also have

— - r - — -
§s o -1 1 0 810
8, = 0 0o -1 1 8,
8g 1 0o o0 -1 &,

L - g - .

63
— -
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And substituting these results into the terminal equations gives

Combining the previous equations appropriately yields the

state model for the gimbal system as

§ (v

§,(v)

§5(1)

fu(t)

fe(t)

£q(t)

M)

(-Ds+Dy)

KK

(-D7+Dy)

L
M

2 5
LA

&

()

dy(t)

fu(t)

fo(t)

fo(t)

for]



5.0 AN APPLICATION OF THE GIMBAL SYSTEM STATE MODEL

In the previous section, the state model for a gimbal system
was developed. This section presents the use of the state model in
formulating the design criteria utilized in the vibration analysis
of gyros and accelerometers. In pursuing this end, a typical IMU

will be considered.

5.1 TERMINAL EQUATION PARAMETERS

The IMU to be considered herein is shown in Figure 9. It is
an inside-out platform with a dumbbell configuration. The mechan-
ical system and system graph can be represented as shown in Figure 8.
Hence, it remains to establish the parameters in the terminal equa-

tions.

The IMU considered is a combination of aluminum and stainless
steel with the bulk of the structure being aluminum. The weight of
the individual gimbals, including all components on that gimbal, are

as follows:

Inner gimbal 13.80 1bs.
Middle gimbal 3.42 1bs.
Outer gimbal 6.99 1bs.
Case 27.39 1bs.

25
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In determining the spring constants, the contribution from
both the gimbal structure and the bearings utilized in the gimbals
are considered. Therefore, the total spring constant is made up of
the individual elements in series. Thus, the terminal equation

involving the spring constants is as follows:

— - r - . -

£,(t) Ky, 0 0 [ 8,(t)
d _ .
it fe(t) = 0 Kg 0 Sg(t)

£g(t) 0 0 Kg §g(t)

— - ~— J L J

where

1 1 1

— = —_— + —_—

Ki KG KB
and

.th .
Ki = the i~ spring constant
KG = the spring constant of the ith
gimbal structure
KB = the spring constant of the ith

bearing
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All of the platform gimbals are considered to be constructed
of aluminum with the exception of the inner gimbal which is stain-

less steel. The specification for both kinds of material is as

follows:
Aluminum
Density 0.097 1bs/in3
Modulus of Elasticity 10,500,000 psi
Tensile Strength 30,000 psi

Stainless Steel

Density 0.29 1bs/in3
Modulus of Elasticity 29,000,000 psi
Tensile Strength 90,000 psi

The spring constants for each gimbal were calculated. For
the inner gimbal the structure was assumed to be a cantilever beam.
For the middle and outer gimbals a simple beam supported at both
ends with a concentrated load at the center was assumed. The re-

sulting spring constants were found to be:

Inner Gimbal 5.5 x 10° 1bs/in
Middle Gimbal 1.4 x 10% 1bs/in

Outer Gimbal 2.1 x 10% 1bs/in
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The bearings used in the gimbal system for this application

are roller bearing type having a contact angle of 25° (contact

angle is the angle made by a line passing through points of contact
of the ball and both raceways with a plane perpendicular to the

axis of the bearing when both races are centered with respect to
each other). The spring constant for the bearings is dependent

upon the direction of loading, i.e. axial or radial loading. Graphs
of the bearing deflection versus load for both axial loads and
radial loads with a contact angle of 25° are shown in Figures 10
and 11. For the specific condition used in this case, the spring

constants were found to be

Axial Load 5 x 10° 1lbs/in

Radial Load 8.3 x 105 1bs/in

As can be seen from the graphs, the relationship between the
deflection and load is nonlinear, but since the operation is over a
small range, the relationship may be considered linear. If a dif-
ferent operating point is selected, the bearing spring constant may
be changed. This change is operating point is accomplished through
the use of bearing pre-load (bearing pre-load is a means by which

the bearing can be placed under an initial load).

After the appropriate combination of the material spring

constant and bearing spring constant was made according to the
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AXIAL DEFLECTION VS AXIAL LOAD FOR A SINGLE BEARING
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system model, the gimbal spring constants to be used in the temminal

equations were found to be:

Inner Gimbal 10.3 x 10% 1bs/in
Middle Gimbal 1.39 x 10% 1bs/in
Outer Gimbal 4 x 10% 1bs/in

The last parameter to be considered is the damping coef-
ficient. It has been found through experience with other gimbal
systems that this parameter is small in comparison to the spring
constant and the mass of the gimbals. The system damping is pro-
vided by the combination of structural damping and windage effects
which are minimal factors. Experience has shown that the damping

ratio may range from .0l to .06 for a platform gimbal system.

5.2 SOLUTION OF THE STATE MODEL

The primary objective of this analysis is to determine the
system resonant frequencies and, consequently, a simplified pro-
cedure may be used to solve the state model. This method consists
in triangularizing the coefficient matrix to obtain an explicit
expression for a sub-set of the variables in the state vector. The

sub-set provides the desired information.

Consider the state model which can be represented as

follows:

d -
T X(t) = AX(t) + E(t)
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Taking the Laplace transform gives:
s X(s) = A X(s) + X(0) + E(s)
or

[s U - A] X(s) = X(0) + E(s)

then

X(s) = [s U - A]"" (X(o) . E(s))

In this example all initial conditions are considered as
zero. The coefficient matrix after application of the Laplace

transform is

~ - r ' r 9
Ds Ds 1
s W 0 o 0 0 & (s) 0 [‘10(5)]
Ds Ds+Dy Dy -1 1 .
W R 2 ’
Dy D7+Dy -1 1 i Dy
0 A e el A 2@ W,
-Ky K, 0 ] 0 0 £, (s) 0
0 -Ke¢ K¢ 0 s 0 fe(s) 0
0 0 -Kq 0 0 s fo(s) Ke
L J L < L -
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After manipulation on the rows the result is:

- N r ~ r -
M) sZeDgs-K, Des-K, . .
-—N)_S— T;'— 0 o 0o o0 6;(s) o 8,0(s)

Dgs-K, Mys2e (DgeDy)se (KooK ) Dys-Kg .
M;s W;s %S o 0 o0 §(8) 0
Dys-Kg M3s2¢(DyeDy)se (KgoKy) Dys-Kg
° Wy Ty c o o 0] Wi
Ky Ky [} s o o0 fo(s) L]
0 -K¢ K¢ 0 s 0 fel(s) ]
0 0 -Kg 0 0 s fo(s) K
L - - o - -’

The first three equations are independent of the last three
and consequently the resonant frequencies may be solved much more
simply. Considering only the first three rows and multiplying each

by M;s, M,s, and M3s, respectively, results in the set:

My s2+DgseK, Des-K, 0 §1(3) 0 [é,,(s)]
Dgs-K, M;52+(DgeDy)s+K,*Kg D,s-Kg 82(s) . 0

0 Ds-Kg M3s2+(Dy+Dg)se (K*Kg) é (s) Dys-Kq
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The characteristic equation may be solved for the resonant
frequencies by a number of methods. Substitution of the parameters
established previously into the above equations will provide the

system characteristics.

To facilitate limit checks and hand calculations it should
be noted that z<<1 and, therefore, can be assumed to be zero. This

leads to little error in computing the resonant frequencies since:

To determine the transmissibility (this is the ratio of the
amplitude of displacement transmitted to the impressed displacement)
at the resonant frequencies, the following approximation* can be
used:

ey 1
Transmissibility = 7
A reasonable estimate for the damping ratio (z) applicable to the

case under consideration is 0.05. Consequently the transmissibility

at the resonant frequencies is assumed to have a nominal value of 10.

* This is exact for a second-order system.



35

The sub-set may now be easily solved by taking the inverse

matrix as follows:

§1(s) F 0 [510(5)]
§,08) | = D%s) A(S) 0
;_é3(5)_. DgS-Ka

where D(s) is the characteristic polynominal and A(s) is the adjoint
matrix. From this expression the transfer function of the inner
gimbal response to an excitation on the case may be obtained. If

the damping coefficients are considered zero, the transfer function

is found to be:

81(s) K,KgKg
S10(s) M;s2+Dgs+K, Dss-K, 0
Dss-K, Mys2+ (Ds+Dy) s+Ky+Kg D;s-Kg

0 Dys-Kg M3s2+(D7+Dg) s+Kg+Kg
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Solving the characteristic equation (assuming zero damping
coefficients) with the parameters previously established results in

the following resonant frequencies:

wy; = 850 rad/sec f; = 135 cps
wp = 1730 rad/sec f, = 275 cps
w3 = 5330 rad/sec f3 = 850 cps

A plot of the transmissibility for the gimbal system is shown in
Figure 12 where the resonant frequencies are those given above and
the amplitude of the transmissibility at each frequency was com-

puted using the approximation of g = .0S.

5.3 DESIGN CONSIDERATIONS

The obvious objective in the design of a stable platform from
the environmental standpoint is to provide as low a response to
vibration as possible. This condition necessitates the minimization
of the transmissibility, and requires attenuation over a large por-
tion of the frequency spectrum. Commensurate with this objective,

several basic factors should be considered:

1. Damping coefficient - This is mainly a function of the
material used in the design. A damping ratio range of 0.02 to 0.05
means a transmissibility range of 25 to 10. Hence, this factor

should be a critical item when considering the material to be used.
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2. Gimbal frequencies - No two gimbals should have the same
resonant frequencies. The octave rule should apply whereby the
frequencies are to be kept an octave apart. In this way, the pos-
sibility of two resonant frequencies lying on top of each other is

avoided.

3. Instrument natural frequencies - The natural frequencies
of the instrument mounted on the platform should not coincide with
the gimbal natural frequency, and should be in a region where the
attenuation provided by the platform furnishes adequate protection

for the instrument.

4. Minimum resonant frequency - Inasmuch as the platform
will have a resonant rise at some point, the specific frequency must
be considered in the design of stabilization loops and similar equip-

ment which must function properly throughout the range of vibration.

5. Platform isolator - An obvious method reducing vibration
effects is the use of a platform isolator. However, this is by no
means a simple solution since this adds an additional degree of
freedom to the platform which may cause problems in the stabiliza-
tion loops. In addition, adequate isolators are difficult to obtain
without considerable time and expense, and provide another item that

can fail.



6.0 EFFECT OF SINUSOIDAL VIBRATION ON PLATFORM INSTRUMENTS

To this point the main consideration has been the gimbal
system. This was necessary since its characteristics shape the
environment seen by the platform instruments which are located on
the innermost gimbal known as the stable element. Now, considering
the vibration on the stable element, the effects on the platform
instruments will be considered. This section presents a description
of the errors resulting from sinusoidal vibration in both acceler-

ometers and gyros.

6.1 ACCELEROMETERS

The most common type of accelerometer used in inertial guid-
ance is a pendulous force-balance type (Figure 13), and is the type
considered here. This accelerometer consists of a pendulous mass
which acts as the sensing element within a servo loop. Under gravi-
tational attraction only, the mass hangs along the line of local
gravity. Assume an acceleration (a) is now applied along a line
perpendicular to the local gravity line. This produces a torque on

the pendulum since

where P is the pendulosity. In this accelerometer a pickoff senses

the motion of the pendulum, amplifies the signal, and then applies

39
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it to a torquer which acts to counteract the torque. The torque

produced by the torquer can be found from

where KT is torquer gain

and i is the current through the torquer

Therefore, a measure of the acceleration can be made by determining

the current in the feedback loop since

where

K represents the ratio %l
T

In an accelerometer there are three major sources of error.
These are known as vibropendulous effects, nonlinearities, and scale
factor variation. The first condition is inherent in the pendulous
characteristic of the accelerometer. The other two are common to
all types of accelerometers. Each of these errors will now be dis-

cussed.
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6.1.1 Vibropendulous Error

The error produced by the pendulous characteristic of the
accelerometer when subjected to a sinusoidal vibration can be
readily seen by referring to the forces acting on a pendulum under
an acceleration. If an acceleration upward and to the right is
assumed, then the forces on the pendulum are as shown in the illus-

tration and the resulting torque can be noted.

o AectFhano

PENDULOUS
MASS

RE-ACTION V Fy
FORCES

Now, if the acceleration is reversed (downward and to the left) it
can be seen in both cases the torques due to the force along the
X axis are in the opposite direction and therefore if the average

torque is considered, these two torques would cancel.

PIVOT
POINT

RE-ACTION
FORCES
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However, the torques caused by the forces along the Y axis are in
the same direction (counterclockwise) in either case and conse-
quently are additive. This is known as vibropendulous torque which

results in an accelerometer error.

For the pendulous force-balance accelerometer with analog
output the vibropendulous torque can be described by the following

expression:®

P2 A2 § sin 2 ¢ cos Y

Moo= 2
where
M = vibropendulous torque dyne-cm
P = pendulosity
A = mms vibration
§ = pendulum deflection rad/dyne-cm
¢ = line of applied vibration with
respect to sensitive axis
¢ = phase lag of the pendulum deflection

relative to applied vibration

Several things can be noted immediately from the expression.
It is important to minimize the accelerometer pendulosity since the
torque is proportional to the square of the pendulosity. The torque
is also proportional to the square of the applied rms vibration. A

high stiffness coefficient will reduce the effect on vibropendulosity.
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The maximum error is at the 45° points. However, if the vibration
is first along a 45° line and then along a 135° line, the resulting
torques differ in direction and thereby cancel each other. The

final item is, of course, the phase lag which should be considered

as a possibility in reducing this error.

The above is a typical pendulous force-balance type of ac-
celerometer. Another interesting type which is now becoming quite
common is a pulse-rebalance accelerometer (Figure 14) which is quite
similar to the one already described. The difference lies in the
operation of the accelerometer which provides the restoring torque
in the form of pulses rather than as a continuous analog signal.
Consequently, whenever some minimum threshold level is exceeded by
the motion of the pendulum, a fixed pulse of energy is applied to
the torquer thereby forcing the pendulum back to the nominal posi-
tion. Depending on the particular parameters, then, each pulse is
equivalent to an increment of velocity. By summing these pulses,

the total velocity at any time can be determined.

Vibropendulous torque also exists in this type of acceler-
ometer but the effects are not as great. This can be seen by con-
sidering such an accelerometer being subjected to a sinusoidal

vibration along a line at some angle ¢ to the sensitive axis.
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Since the force along the Y axis was shown to produce the vibropend-

ulous torque, this can be found to be
M = mA, r sin @
y .

The motion of the pendulum is small; therefore, it is appro-
priate to let sin 6 = 6. In addition, the pendulosity, mr, is a
constant of the accelerometer which allows the above expression to

be re-written as

Thus it can be seen that the vibropendulous torque is a function of
the pendulosity, the applied vibration and the pendulum swing. In
the case under consideration the applied vibration is a sinusoidal

vibration; therefore, let

A (t = A sin wt
y (V) y ¢
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Since the pendulum swing associated with a sinusoidal vibration is

also sinusoidal and, taking into account the phase lag, the pendulum

swing can be written as
8(t) = 6 sin (wt-y)

where

y = phase lag

Substituting the expressions for the applied vibration and pendulum

swing into the above equation for vibropendulous torque results in

M(t) = P Ay sin wt [ 8 sin (wt-W)]

By trigonometric identities this reduces to

PA o
M(t) = —_ZL [:cos y-cos (2wt-y)

Since the average torque is desired and the average contribution to

the torque by the cyclical term is zero, the average torque can be

written as

PA 06 cos ¢
M = .___.L__._
avg 2
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Since Ay = A sin ¢, where A is the amplitude of the total vibration

input, the above becomes

P A6 sin ¢ cos y

Mavg N 2
where
M = vibropendulous torque, dyne-cm
P = pendulosity, gm-cm
6 = threshold level, radians
A = amplitude of vibration, cm/sec?
¢ = angle of applied vibration with sensitive axis
¥ = phase lag of the pendulum

The pulse torquing approach appears to have reduced the sus-
ceptibility to vibration effects. In this case, the vibropendulous
torque can be seen to be proportional to the pendulosity and the
applied vibration whereas previously, it was shown to be dependent
upon the square of each of these factors (in most cases operation
of the accelerometer requires that P > 1). The torque is also a
function of the pendulum swing which for this type of accelerometer
is a constant. Reduction in the threshold level (pendulum swing)
produces a proportional decrease in the vibropendulous torque. The
final difference to be noted is the dependency of the torque on ¢
rather than 2 ¢. Therefore, the maximum torque will be produced by

an applied vibration lying essentially along a line perpendicular
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(6 < 90°) to the sensitive axis of the acceleromcter. The require-
ment for ¢ to be less than 90° stems from the need for a small com-
ponent of acceleration along the X axis which is necessary to drive

the pendulum off of the null position.

6.1.2 Nonlinearities

Another characteristic of the accelerometer that is impor-
tant when considering vibration is the nonlinearity in gain that
may exist. It will be shown that an error is produced by the non-

linear terms due to rectification effects.

Consider the output of an accelerometer to be described by

the following expression:

Vo= K +K A+K AZ + K3 A3 + oo
where
V = accelerometer output in volts
A = acceleration input
Ko = bias terms
K; = scale factor
K, = coefficient of second order nonlinearity

K3 = coefficient of third order nonlinearity
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Assume the acceleration input consists of thrust acceleration
and vibration. This can be represented by

A = AT + AV sin wt

Substitution into the above expression with consideration given
only to the second order nonlinearity (assuming the higher terms

are negligible) and terms including vibrations yields

<
!

2Ky Ap A, sin ot + Ky A2 sin? ut

or

K, A2
2

<
]

2K, AT Av sin ot + (1-cos 2 wt)
Taking the average and considering only complete cycles results in

the error produced by vibration as

However, an important aspect of the two terms dropped should not be
overlooked. Although the average value of each term can be seen to
be essentially zero, the amplitude of the error contribution can be
significant. Therefore this could lead to saturation of the acceler-
ometer and additional errors. For purposes of this thesis, it is
assumed that the accelerometer is not saturated and that the above

error equation holds.
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6.1.3 Scale Factor Error

The particular characteristic of an accelerometer defined as
scale factor was noted previously. Here it will be shown how such
a characteristic of a pulse-rebalance accelerometer generates an

error under sinusoidal vibration.

Consider the expression for the pulse-rebalance acceler-

ometer as follows:

P = K At
where
P = accelerometer output in pulses
K = scale factor pulses/sec/g
A = acceleration input
g = gravity
t = time in sec.

Since the accelerometer is designed such that each pulse is equi-
valent to a specific value of velocity, the total velocity can be

found by performing an algebraic summation, or

where N = total number of increments of velocity
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The point under consideration here is that the scale factor is dif-
ferent for the positive and negative sides of the accelerometer as
shown in the figure. Consequently under a sinusoidal vibration the

difference between the two slopes will result in an error.

- PULSE
COUNT/SEG,

This can be seen by considering the above expression with

two different slopes as

P = Kl Al tl - K2 A2 tz

where the subscripts refer to the polarity. Assuming a sinusoidal

vibration, the following holds:

then

P = (Kl - KZ) At
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The velocity error produced by this is

N
V = J (K - Kp) At,
i=1

Therefore, in spite of the fact that the input vibration has a zero

mean, an extensive error can be built up due to vibration.

This aspect is particularly important in inertial guidance
systems since a common guidance technique utilized is to fly a tra-
jectory such that the cross-axis acceleration is held to zero.

Under this condition the cross-track accelerometer will be subjected

to vibration inputs and could produce significant errors.
The discussion of the effects of sinusoidal vibration on
accelerometers is now complete. The next section will present the

specific considerations of gyros under vibration.

6.2 GYROS

The drift in gyro performance is categorized into two major
groups?: non-g-sensitive drift, and g-sensitive drift. The first
category is unaffected by vibration, and consequently this section
will be concerned only with g-sensitive drift as produced by sin-

usoidal vibration.



54

The g-sensitive drift is further divided into two groups:

1) drift due to mass unbalance, and 2) drift due to anisoelastic

effects. Each of these will be considered in relation to vibration.

6.2.1 Mass Unbalance Drift

One effect of sinusoidal vibration on gyros can be seen by

considering the expression for gyro drift due to mass unbalance:

where

-

drift rate in deg/hr

error coefficient due to mass

unbalance deg/hr/g

total acceleration, g's

If the total acceleration is again considered to be

of the thrust acceleration and a sinusoidal vibration then:

or

©-

©-e

T

+ (AT + Av sin wt) dt

(o]

],(r—l[ (A.rt-%COSwt)]

T

(o}

composed
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The first term is the error produced by the thrust acceler-
ation and is normally considered in error analyses. The second term
can be seen to have a zero average contribution. Hence, it can be
concluded that sinusoidal vibration will produce no steady-state

error from the mass unbalance coefficient.

It is interesting to consider if this conclusion is upheld by
applying an equation for a pendulous mass of an accelerometer. That
is, the mass unbalance of the gyro can be viewed as a pendulous mass
about the output axis; therefore, it is reasonable to ask if a vi-
bropendulous error is also incurred. This may be answered by con-
sidering the expression for vibropendulous torque of a pendulous

force-balance accelerometer as presented in Section 6.1.1:

P2 A2 § sin 2 ¢ cos ¢

M= 2
where
M = vibropendulous torque dyne-cm
P = pendulosity
A = mms vibration
8 = pendulum deflection rad/dyne-cm
¢ = 1line of applied vibration with respect
to the sensitive axis
¢ = phase lag of the pendulum deflection

to the applied vibration
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The particular parameter that must be determined is the pen-
dulum deflection. The relationship between torque and the gyro

output axis angle can be seen from the transfer function

e . _1/D
T s(t s + 1)
where
T = time constant, I/D
p = gyro angular displacement
T = torque input

For most gyros the time constant is approximately equal to
one, and in addition, the damping coefficient is much greater than
one. Therefore, from these considerations it can be seen that any
sinusoidal input signals would be greatly attenuated. Hence, under
these conditions, the vibropendulous torque due to mass unbalance is

insignificant and corroborates the previous analysis.

6.2.2 Anisoelastic Drift

The anisoelastic drift due to sinusoidal vibration can be

seen by considering the following equation:

. K, sin 2 8

(o]
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where
$ = drift rate in deg/hr
K, = error coefficient due to anisoelastic
effect in deg/hr/g?
® = angle the input axis makes with the
applied vibration
A = total acceleration, g's

For the case where the total acceleration acting on the gyro
is composed of the thrust acceleration and sinusoidal vibration, the

drift error is found to be

T
R K, sin 26
$ 2

= S [A.rz+2ATAvsinwt+Av2 sin? wt]dt
(o]

The first term is the error contributed by the thrust ac-
celeration and shall not be considered further. The second term can
be seen to result in an average contribution of zero. The third

term results in the following

o
"

K Ayz sin 20 T
2 [- —l—cos wt sin wt+lt]
T 2w 2

(o]

or

] Ko A% sin 26
$ = 3
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It should be noted that - due to the sine term - the drift
rate of the gyro is sensitive to the direction of applied vibration.
In some cases, where the direction is changing, some cancellation

can occur.

This completes the analysis of the major platform instruments
in relation to sinusoidal vibration. The system error due to the
combination of each of the platform instrument errors is treated in

the next section.



7.0 SYSTEM ERROR DUE TO SINUSOIDAL VIBRATION

The ultimate objective of the analyses carried out herein is
the formulation of the equation for the total system error due to a
sinusoidal vibration present on the case of the IMU. This section

presents the development of such an equation.

From the standpoint of vibration effects the IMU has been

considered to consist of three major components:

1. a gimbal structure
2. accelerometers

3. gyros

Each of these has been treated in the preceding sections but it
remains to establish their relationships to the system error. Refer
to Figure 15. The system error is seen to be the error existing in
the accelerometer output, and is dependent upon the three major com-
ponents. With a given vibration on the case of the IMU the gimbal
structure serves to shape the vibration seen by both the gyros and
the accelerometers. Consequently the susceptibility to vibration of

the gyros and accelerometers,in turn, produce errors in performance.

The accelerometer error adds directly to the system error
whereas the gyro errors have an indirect effect. The errors in the
gyros cause the stable platform to lose its orientation (tilt) there-

by introducing coupling errors in the accelerometers. The errors

59
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consist of either gravity coupling or thrust coupling which produce
additional errors in the accelerometer output. The system error

equation reflecting these effects will be shown.

The vibration on the case of the IMU is modified by the gim-
bal structure was developed in Section 4.0 with an example given in
Section 5.0; it will not, therefore, be repeated here. The technique
as illustrated in those sections serves to determine the vibration

on the accelerometers and gyros.

The accelerometer was shown to have three types of errors:
1) vibropendulous error, 2) non-linearity, and 3) scale factor
error. Since the errors in the accelerometers contribute directly
to the system error, the error equations as derived in Section 6.1
can be considered directly. The error equations for a pendulous,
pulse-rebalance accelerometer are as follows where the acceleration

error is given by (refer to Sections 6.1.1 and 6.1.2)

roo r - - r - - -
i K
8 sin ! cos ! 2X 2
k‘ 2 0 0 A! m 0 0 Al
0 8 sin ¢ cos § 0 A 0 EIL 0 A2
~ - 2 y . zlly

i K2z
A 0 0 ¢ sin g cos y A 0 0 A2

x 2 z 2K) g 3
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and the velocity error is (refer to Section 6.1.3)

- - - 9 -9
n
v I (K-K2)t, 0 0 Ax
x i=1
i A
v = 0 I (K-K)ty 0 y
y i=1
7 A
0 0 (K]_'Kz)t. z

The drift error produced in the gyros was shown to be pro-
duced by the effect of vibration on the anisoelastic characteristics

of the gyros (see Section 6.2) and was found to be

. Ko A2 sin 20
¢ = >

The gyro drift produces a tilt in the stable platform which causes a

component of either gravity or the thrust vector to be sensed by the
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accelerometer. This can be seen by referring to the figure. The
component of gravity sensed by the accelerometer because of the

gyro drift angle is
X = g sin ¢

Since ¢ is small then this can be written as

~__ N CYRO DRIFT ANGLE

X
g
9 xl
PLATFORM_AXIS

AFTER TILT

The acceleration can be expressed as a function of the gyro drift

rate error as

bt

X(t) 57.3 x 3600
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where t is the time duration in seconds over which the vibration
acts on the gyro and the 57.3 and 3600 factors correspond respec-

tively to conversions from degrees to radians and hours to seconds.

Replacing the gyro drift rate error by the expression given

above yields

gt Ky Av2 sin 26
2 x 57.3 x 3600

X(t) =

One further item needs to be considered before the expression
for the gyro errors can be written. This is the coupling produced
by each gyro. Fron a consideration of the drift of each of the
gyros it can be found that the X axis accelerometer will sense a
component of gravity and the Z axis accelerometer will sense a com-
ponent of the thrust vector. In the case of the Y accelerometer a
component of both the thrust vector and the gravity vector is sensed.

Then, the error equation can be written as

p— — ~ — — —
A 0 gt Ksin 26 g t K sin 26 A 2
x 412,560 412,560 vX
A Tt K sin 26 (g+T) t K sin 26 gt K sin 26 A 2
y = 412,560 412,560 412,560 vy
A Tt K sin 26 T t K sin 26 0 A 2
z 412,560 412,560 v

- - — J — -




The significance of the individual errors with respect to
the system error can be seen by considering an example. Assume a
missile flight trajectory of 50 nautical miles having a 10 g,
10-second boost period, and a total flight time of 200 seconds.
The IMU components selected provide an accuracy of 1 mile circular
error probability (that is, there is a 50% probability of each mis-
sile falling within a circle about the target having a radius of
300 feet). The contribution to the system error is shown in
Figure 16 as function of the amplitude of the sinusoidal vibration.
It can be seen that at the 3 g level the error contributions start
becoming appreciable, especially those which are a function of the
square of vibration. However, the total summation of the individual
errors is dependent upon the polarity of each of the errors. Since
the polarity is defined by the specific physical condition of each
of the instruments, either a positive or negative direction can

result. Hence some cancellation of the errors can occur.

Summarizing the individual results, the system error equation

can be written as follows

S, T Ay Ay A G
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where

S = system error, ft.

= accelerometer vibropendulous error, ft.

= &

= accelerometer nonlinearity error, ft.

>
)]
[]

accelerometer scale factor error, ft.

G = accelerometer error due to gyro drift, ft.

This expression assumes that the acceleration and velocity errors
defined by the individual error equations are appropriately in-

tegrated over the time of flight of the missle.

This completes the analyses associated with sinusoidal vi-

bration. The next two sections are concerned with random vibration.



8.0 EFFECT OF RANDOM VIBRATION ON PLATFORM INSTRUMENTS

Whereas sinusoidal vibrations can be described over all time
by a particular function, a random vibration can only be defined on
the basis of probability. This section will consider random vibra-

tion and its effect on accelerometers and gyros.

8.1 ACCELEROMETERS

Three possible sources of error in an accelerometer produced
by a random vibration -- and known as vibropendulous torque, non-
linearity, and scale factor variation -- will be presented here.
The type of accelerometer to be considered is the pulse-rebalance

accelerometer described in Section 6.1.

8.1.1 Vibropendulous Error

Within the trigger levels of a pulse-rebalance accelerometer
(refer to Section 6.1) the pendulum is essentially free with the
only restraining force being produced by the damping fluid and the
inertia of the pendulum. The vibropendulous error produced by a
random vibration acting on such an accelerometer will be developed

here.

Consider a pendulum as illustrated in the figure. An ap-

plied acceleration (A) is shown along a line at an angle ¢ with the

68
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accelerometer input axis. The components of the applied accelera-

tion are seen to be

"
b3

Ax = A sin ¢
Ay = A cos ¢ = ;
A
! % ACCELERONETER
OUTPUT AXIS By INPUT AXIS
(OUT OF PAPER)
r

Each of the components of acceleration will produce a reaction
torque due to the pendulosity of the accelerometer. The pendulosity
is P = mr where m is the mass of the pendulum and r is the length.

Then, the equation of motion is

- Py(t) cos 8 + P x(t) sin6=16+C b

Since 6 is small, then cos 6 can be replaced by 1 and sin 6 = 6, so

SPy(t) +Px(t) 8 =16+C?

This is a nonlinear equation which can be linearized by considering

the magnitude of 6. The maximum value of 6 in a pulse-rebalance
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_b4
accelerometer is 2 x 10 radians. Therefore the contribution by
the P i(t) 6 term is small compared to the P ;(t) term and may be
disregarded without any significant loss. Then the expression be-

comes:

_Py(t) = 16+C8

Taking the Laplace transform (assuming all the initial conditions

are zero) yields

-PY(s) = Is28+Cs®

Solving for 6 gives

p -
- = Y(s)
os) = S

SES"‘I

The time solution can be obtained using

t
0(t) = - g | f1(0) £ (t-0)de

(o]
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Let
L
I/C
fl(‘[) = 1-e
£a(t-1) = y(t-1)
then
t
p
B(t) = - T
o
or
t
P .
e(t) = - T y(t-1)dt
o
t
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Since the applied vibration is considered to be wide-sense

ergodic, then the first term integrates to zero or

1
. 1/C
y(t-1)e dt

"
Olo

8(t)

As pointed out in Section 6.1 the vibropendulous torque is
the product of pendulosity, the cross-axis acceleration (in this
case x(t)), and the swing of the pendulum. Therefore the vibro-

pendulous torque is given by
M(t) = P x(t) 8(t)

Substituting from above yields

t X
p - 1/C
M(t) = T x(t) y(t-1)e dt
(o]
Since
x(t) = A(t) sin ¢
y(t) = A(t) cos ¢



73

and since the autocorrelation function of

A(t) is Ry, (1) = E[A(t) A(t-1)]

the expected torque can be written as

2 : -
Mg (t) = E[M(t)] = P 51"c¢ cos ¢ Ry, (1)e 7 4

(o)

Since the average value of the expected torque is desired, where

t
_ lim 1
avg T+ T ME(t)dt
o
then
T (t o
_ P2 sin ¢ cos ¢ lim I7C
Mavg - C T>o Raa(m)e drdt

o0

Interchanging the order of integration and carrying out the inside

integration results in two terms; one reduces to zero with the
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substitution for RAA(T) as noted below. Considering only the

remaining term, gives

00

L

I/C

2 gj -
P< sin ¢ cos ¢ RAA(T)e dt

Mavg = C

(o]

If it is assumed that the input vibration has a constant
power spectrum over the bandwidth w; to w, and zero elsewhere, the

autocorrelation function can be found to be

A
0 . .
R(t) = = | sin w2t - sin wt

Substituting into the above yields

1
P2 A sin ¢ cos ¢ sin wpt - sin w1t | - /¢
M = e dt
avg C T
o
or
[ "
1/C
p2 A, sin ¢ cos ¢ sin wytT e /
M = dt
avg C T
o
-
-
o R S
sin w;t e /e
- dr
T
o -
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Let

= sin T dt
91 T w]

Differentiating under the integral sign gives

T
3 ¢ - 1/C
- = e cos w; 1 drt
w)
o
or
1
d ¢’1 I/C
d wl - 1 2 9
I/C tou
Since

I
Ye I1/C
the above becomes
d¢1 ) wc
d w

w2+w12
C
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Then

wC
o = —— dy

w2+w12
Cc

Carrying out the integration gives

- w]
= tan _—
| "

Performing the same type of operation on ¢, gives

From above it was found that

p2 A, sin ¢ cos ¢

Mavg = C (62 - ¢1)
or
p2 A, sin ¢ cos ¢ o1 w2
M = tan —
avg C W,
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Since A0 is in g?/cps this needs to be corrected to rad/sec

p2 A, sin ¢ cos ¢

-1 w -1 w
M = tan 2. tan” —
avg 2nC we we
where
Mavg = average vibropendulous torque, dyne-cm
p = pendulosity, gm-cm
A, = power spectral density, g2/cps
C = damping coefficient, dyne-cm-sec
¢ = angle the axis of applied vibration makes
with the accelerometer input axis
w] = lower frequency of vibration input, rad/sec
wp = upper frequency of vibration input, rad/sec
W, = accelerometer corner frequency, rad/sec

It can be seen that the vibropendulous torque is a function

of the square of the pendulosity, the power spectral density of the

applied vibration, the direction of the applied vibration and the

relationship of the accelerometer corner frequency to the range of

frequencies of the applied vibration.
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8.1.2 Nonlinearities

As noted previously the output of an accelerometer can be

described as follows:

Vo= K + K A+ Ky AZ + K3 Ad + «oo
where
V = accelerometer output in volts
Ko = bias term
Ky = scale factor
K, = coefficient of second order nonlinearity
K3 = coefficient of third order nonlinearity

To determine the effect of random vibration on the output of
the accelerometer a simplified approach may be taken!?, It is a
reasonable assumption that the random vibration can be described by
a finite number of discrete frequency components consisting of a
series of sinusoidal vibrations having constant amplitudes, and
random phase relationships such that the rms value over any reason-

able time period remains constant.

Let all the vibration in a strip Aw be represented by a single
discrete frequency. Let the magnitude of this discrete component be

N. Since the assumed vibration is assumed to range from 0 to an
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upper frequency of G then there will be G/Aw discrete components.

The approximation for the vibration can then be written

G/bw
A(t) = ) nsin (n but + ¢)
n=1
where
¢ = random phase angle

As Aw » 0 this approximation becomes very good. For use here let

Aw = 1 which results in the approximation for the vibration as

G
Z n sin (n t + ¢)
n=1

A(t)

Considering only the second order nonlinearity and making the sub-
stitution into the above expression for the output of the acceler-

ometer results in the temm

G
K, Y Nsin (nt+ ¢)
n=1
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Carrying out the multiplication results in terms of the form
K, N2 sin? (nt + ¢;) + K, N2 sin (nt + ¢.) sin (mt + ¢ )

The rms value is

Therefore, the error in terms of the rms value is

where

A = mms value of the applied sinusoidal

vibration

Thus, with the rectification effect of the accelerometer, each

frequency contributes to the error. In addition, the error is also

related to the bandwidth of the accelerometer which certainly is

reasonable since frequencies above the bandwidth of the accelero-

meter would not be expected to add to the error. From this consider-

ation, it can be seen that two ways of minimizing the error are by

reduction in the error coefficient and decreasing the accelerometer

bandwidth.
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8.1.3 Scale Factor Error

As with sinusoidal vibration, a difference in the scale
factor over the positive and negative range of operation of a pulse-
Tebalance accelerometer produces an error when subjected to random
vibration. This section derives the error equation for such a con-
dition. Here, again, the random vibration is assumed to be wide-

sense ergodic.

Consider the input vibration applied to the accelerometer as
shown in Figure 17. The vibration is assumed to have a normal dis-
tribution with a zero mean. For an ideal accelerometer the scale
factor is a constant over the range of operation. Therefore, for a
given input, the output would also be a normal distribution having
a zero mean. In this case there is no error introduced by the ac-

celerometer.
Now consider the non-ideal condition where the scale factor

is different for the positive and negative regions. With the given

input the output amplitudes can be found to be

y for - = <y <o

1]

Z = yG(y)
ky for o <y < =
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where

Z = output amplitude
y = input amplitude
G(y) = transfer characteristics of the

accelerometer (scale factor)

k = ratio of non-ideal to ideal scale factors

The output probability density function, po(y), would then be

p,(y) for - = <y <o
pi()') =
1 L\ for o < <
k Pilk =y =

and must have a value such that

) o) 0

1

P00 &+ 1 | by (¥) oy

- 00 -0 (o]

P,(y) dy

The input probability density function can be seen to be

1
pl()’) = g '/2_,"' ¢
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The probability density function associated with the non-ideal con-

dition can be found to be

It is desired to determine the effect on the mean of the output.

The mean value, y, is equal to the first moment of the density

function. Then

0 0 B
- 1 2 o2 &y = -
y, = yp; ) &y = 5w y e Y =T o
and
o - y?2
- 1 Yy 1 2k2 g2 4 _ ko
Y20 T %X | TP (k) S kovam | 7€ /2n
(o] [o]

Since the mean is equal to the sum of the individual means, then

Yy * Y, = /o (k-1)

<1
"
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Thus it can be seen that the non-ideal condition results in a shift

in the mean to some non-zero value. Since the expression for the

output of a pulse-rebalance accelerometer is

P = KAt
where
P = accelerometer output, pulses
K = scale factor, pulses/sec/g
A = acceleration input, g's
g = gravity
t = time in sec

the error due to the random vibration can be found to be

P. = Z_ (k-1) Kt
E

The resulting velocity error is

i=1 v2n
where
o = mms value of random vibration
N = number of seconds

Hence, the importance of maintaining the scale factor to a constant

value has been shown.
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8.2 GYROS

The gyro drift errors due to mass unbalance and anisoelastic
effects caused by random vibration will be considered in this

section.

8.2.1 Mass Unbalance Drift

As already shown for sinusoidal vibrations, no error is pro-
duced by random vibrations due to gyro mass unbalance. This may be
readily shown by considering the expression for drift error due to

mass unbalance:

T
L ] Kl
¢ = T A dt
o
where
¢ = drift rate in deg/hr
K, = error coefficient due to mass

unbalance, deg/hr/g

A = total acceleration, g's

If the input acceleration is presumed to consist of a ran-
dom vibration having a zero mean, the integral is equivalent to

zero and consequently no drift error is contributed by the mass
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unbalance term. This may be further verified by again referring to

the transfer function for the gyro as:

1/D
s (ts+1)

3o

where

time constant I/D

-
1]

If the input torque is assumed to be a wide-sense ergodic
random process and the input power spectral density is represented

by ST(m), then the output power spectral density is represented by

2
Sp (W)

S (w) = IH (jw)
where

H (jw) = complex frequency response

Since the overall magnitude of H (jw) is less than one, the
output power spectral density will be small with respect to one.
Therefore the motion of the mass unbalance due to the random vibra-
tion will be small and in turn the vibropendulous error will be in-

significant.
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8.2.2 Anisoelastic Drift

A gyro has elastic deflections that take place under vibra-
tion. Since the metal used in the fabrication of the gyro is not
perfect, variations in the deflections occur producing anisoelastic
torque. The literature® has already treated such a condition under

random vibration and the pertient equations will be presented here.

The mean torque about the gyro output axis due to random

vibration is given by

-3t

980)2 m sin 26 . .
g = R mein $an ) | R, Ky GE) - R_Ky () | df

0o

where

TOA = average anisoelastic torque about the
gyro OA (output axis) due to random
vibration, dyne-cm

m = mass of gyro rotor, grams

G = angle between the line of applied
vibration and the gyro spin reference
axis

¢AA(f) = power spectral density of applied

vibration acceleration transmitted

to gyro case, G2/cps
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£2  _ f2
R K. (jf) = - %
i 47 £2 - £2 \° 4 472 £2 g2
M i
with
fnl, fn = undamped natural frequencies of
2
rotor elasticity along the SRA
and IA respectively, cps
Ci = damping ratio
SRA = spin reference axis
IA = input axis

From the above expression for the mean torque it can be
seen that if the elastic characteristics along the spin reference
axis and the input axis of the gyro are identical, the average
torque is zero. However, if a difference exists then a mean torque
is developed which is a function of the power spectral density, the

mass of the rotor and the direction of applied vibration.

The drift due to the anisoelastic effects can be found

through the use of the gyro equation
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where

€
0]

gyro drift, rad/sec

=)
n

mean anisoelastic torque, dyne-cm

—
—_—
n

gyro angular momentum, gm-cm?/sec

This, together with the previous expression for mean torque, pro-
vides a means of determining the anisoelastic drift of a gyro due

to random vibration.



9.0 SYSTEM ERROR DUE TO RANDOM VIBRATION

In considering the system error due to random vibration, the
same system model applies here as already presented in Section 7.0.
Based on this the system error equation - consisting of the error
contributions from the gimbal structure, accelerometers, and gyros -

is presented.

Assuming a vibration on the case of the IMU, the gimbal
structure serves to shape the environment for the accelerometers
and gyros. The state model was developed in Section 4.0 with an
example given in Section 5.0 and will not be repeated here. Stand-
ard approaches applicable to random vibration can be used to find

the vibration at the stable element.

For random vibration, also, it was shown that an acceler-
ometer had three types of errors - vibropendulous error, non-
linearity, and scale factor error. From Section 8.1 the vibropend-

ulous error equation was found to be

r— - - - - -
A A 0 0 A
X X oX
A = 0 A 0 A
y y oy
LA 0 0 A A
z L 2 . oz

91
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where

Ax’ Ay’ Ay are acceleration errors along the X, Y, Z axes,

A ,A ,A are the power spectral density level in the
ox’ "oy’ "oz
X, Y, Z axes, G2/cps
and
. -1 w2 —l wl
A = P sin ¢ cos ¢ tan — - tan —_
2w w w
c c
where
P = pendulosity, dyne-cm
¢ = angle the line of applied vibration
makes with accelerometer input axis
w; = lower frequency limit of applied vibration
wp = upper frequency limit of applied vibration
w_ = accelerometer corner frequency



The error equation for the nonlinearity is

~ 7 - 7 ~
A —2X 0 0 A2
X K ms
1X (x)
K2
A, = 0 -K—l 0 Az
ly (y)
K
A 0 0 2z A2
z K ms
B L 12z B L (z)

The equation for scale factor error can be found to be

- - r ) -

- N
| 1 _
A izl 7= (k-1)ktg 0 0 A
; 1
A 0 (k-1)Kt, 0 A
b4 - i=1 /2 i nsy
¥
A, 0 0 1 7= (kDY Ams
i=]

- - L J L
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As pointed out in Section 7.0, the gyro errors produce a
misorientation of the platform such that the accelerometers sense a
component of gravity or the thrust vector or the combination of the
two. Hence, the accelerometer output is in error by an amount de-
pending upon the gyro drift. The general expressions for the ac-

celerometer error produced by the gyros are

szng
A, = gG
y © 8%
A, = TG
y y
AL = TG
Z Z

where Ax’ Ay’ Az are the accelerometer error outputs along the

X, Y, Z axes,

gravity

(1,2}
1]

-3
n

thrust in g's

and Gx’ Gy’ and Gz are terms associated with the X, Y, Z axes and

are defined as follows:

0A

sl
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where
t = time in seconds
H = gyro angular momentum, gm-cm?/sec
and
= (980)2 m sin 26 ey .
T, > o) | R, K2 GE) - R, Ky (GE) | of
(o]
where
ToA = average anisoelastic torque about the
gyro output axis due to random vibration,
dyne-cm
m = mass of gyro rotor, grams
¢AA(f) = power spectral density of applied vibration
acceleration transmitted to gyro case, g2/cps
f2 - f2
. _ 1 i _
Re Ki (Gf) = A2 , 1 =1, 2
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with

f , £ = undamped natural frequencies of rotor
along the spin reference axis and the

input axis respectively, cps.

Each of the individual error forms has been developed for
the accelerometer and the gyros. It remains to establish the system
error due to the combination of errors. In pursuing this, it is
reasonable to make the assumption that each of the indiviual errors
has a normal distribution and each is independent of all others.

Then the system error can be found? to be

s [Ke ke ]’

where

wn
n

system error, ft

™

= accelerometer vibropendulous error, ft
accelerometer nonlinearity error, ft

= accelerometer scale factor error, ft

&z F

(7]
n

accelerometer error due to the gyros, ft

™
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An example of the errors produced by the platform instru-
ments under random vibration was considered. Here, also, a 50-mile
flight was assumed and the results are shown in Figure 18. It can
be seen that the contribution to the system error can be signi-
ficant. The vibration was assumed to have a constant power spec-
tral density over the frequency range from 20 cps to 2000 cps.
Therefore, the filtering action of the gimbal structure would tend
to reduce the effects as indicated. In all, however, the importance

of paying careful attention to vibration has been illustrated.
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10.0 CONCLUSIONS

This thesis has presented a unified treatment of the effects
of vibration on an IMU from the standpoint of both sinusoidal and
random vibration. A state model of the IMU was developed and an
example of the application of the state model to the design of an
inertial measurement unit was presented. The particular design
considerations associated with vibration were indicated. The error
equations for vibropendulous torque, nonlinearity, and scale factor
variation of the pendulous, pulse-rebalance accelerometer were de-
rived. The error equation was derived for the anisoelastic effects
of a gyro under sinusoidal vibration. The system error equation
was derived for both the sinusoidal and random vibration effects on
an inertial measurement unit. The significance of the vibration
effect was pointed out and means for minimizing the effects were
indicated. It was shown that the errors due to vibration could

range as high as 25% of the allowable miss distance.
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