

The POLYMERIZATION of EPOXIDES By MEANS of the GRIGNARD DERIVATIVES of t-BUTYL BROMIDE

THESIS for the DEGREE of M. S. MICHIGAN STATE COLLEGE

John Roscoe Peffer 1951 TriESIS

221

Ralph C. Sustan LIBRAD.

3/3/52 University

THE POLICEUM OF EFEXIORS

BY MUANS OF

THE GRICHARD DERIVITIVES OF t-BUTYL DROKIDE

Ηy

JOHN ROSCOE FEFTER

A THIBIS

SUBMITTOR O THE SCHOOL OF G ADUATH STUDIES OF RESHIGAN

STATE COLLEGE OF AGREEMENTHE AND A SLIED SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIFIEDINGS

FOR THE DEFICE OF

MARTHR OF SCIENCE

DEPARTMENT OF CHARLAPRY

1951

29-54

ACKNOWLEDGEMENT

The author wishes to express his gratitude and appreciation for the help and encouragement given by Dr. Ralph L. Guile and Dean Emeritus Ralph C. Huston during the course of this investigation. DEDICATION

To my wife

ABSTRACT OF THESIS

рA

JOHN R. PEFFER

Title: The Folymerization of Epoxides by Means of the Grignard Derivatives of t-Butyl Bromide.

Tertiary butylmagnesium bromide, anhydrous magnesium bromide, and di-tertiary butylmagnesium were investigated as possible catalysts for the polymerization of ethylene oxide, propylene oxide, butadiene monoxide, and styrene oxide.

The monomer and catalyst were combined and shaken in a closed system. The polymers were purified by dissolving them in chloroform and removing inorganic material by centrifugation. The high and low molecular weight fractions were separated by precipitating the high molecular weight material with diethyl ether from a chloroform solution. The intrinsic viscosities of the various polymers were determined. The optimum catalyst concentrations were determined and the effect of removing the catalyst solvent was studied.

Tertiary butylmagnesium bromide resulted in high yields of low molecular weight polymers of ethylene oxide. The proportion of high molecular weight polymer to low molecular weight polymer increased with decreasing catalyst concentration. An anionic mechanism of polymerization was presented. Foorer yields of polymers were obtained from the other monomers when t-butylmagnesium bromide was used as the catalyst.

Magnesium bromide caused fair yields of ether soluble, low molecular weight polymers from all the epoxides used. A cationic mechanism of polymerization was suggested.

Di-tertiary butylmagnesium was a good catalyst for the production of high molecular weight polymers of ethylene oxide. At the concentrations used, it was ineffective against propylene oxide and butadiene monoxide, and caused a poor yield of low molecular weight polystyrene oxide. A free radical mechanism was proposed.

TABLE OF CONTENTS

	Page
Introduction	. 1
Historical	. 2
Experimental	6
Preparation of Catalyst Solutions	. 7
1. Freparation of t-butylmagnesium bromide	7
2. Preparation of anhydrous magnesium bromids etherate-	. 7
3. Preparation of di-t-butylmagnesium solution	. 8
Polymerizations	8
1. The reactions of epoxides with low concentrations of	
t-butylmagnesium bromide	8
2. The reactions of epoxides with anhydrous magnesium	
bromide etherate	10
3. The reactions of epoxides with varying concentrations	
of di-t-butylmagnesium	10
Purification of Polymers	11
Determination of Intrinsic Viscosity and Molecular Weight	11
Tables of Experimental Results	13
Results	23
Discussion	2 6
1. Optimum conditions for polymerization	26
2. Fossible mechanisms of polymerization	29
Summary	35
Bibliography	36

INTRODUCTION

Francis Evans, a graduate student in this laboratory, carried out a reaction between two moles of propylene exide and one mole of di-t-butylmagnesium. He did not obtain the expected addition product which would hydrolyse to give 4,4,-dimethyl-2-pentanel. Instead, he separated a white gummy mass which was insoluble in other, melted ever a wide range and could not be distilled.

This phenomenon prompted this investigation to determine the eptimum conditions for the polymerization of some epexides with t-butylmagnesium bromide and its equilibrium products, di-t-butyl-magnesium and magnesium bromide.

HISTORICAL

The polymerization of ethylene oxide, the simplest epoxide, was accomplished and studied by Staudinger in 1928. (1) He proposed the polymer molecule to be a linear chain with ether linkages between the individual units. Fractically the same products were obtained with basic catalysts, (tertiary amines, alkali metals, etc.) and acid catalysts, (e.g. stannic chloride). The polymers were not homogeneous but were a mixture of various molecular weight homologs. By fractional precipitation the mixture was separated into polymers varying in molecular weight from 450 (a viscous liquid) to 4500 (a waxy solid). The polymers were rather stable; they decomposed only above 300° C. They were very readily soluble in organic solvents (except petroleum ether and diethyl ether) and water,

Soon after Staudinger's publication, a series of patents (2) (3) (4) (5) (6) (7) appeared on methods of polymerizing ethylene oxide.

Without exception, these patents involved the use of potassium hydroxide or sodium hydroxide as catalysts. Witwer's patent (5) also takes advantage of the fact that if the solvent is a low polymer of the monomer, (e.g. diethylene glycol) further polymerization will occur to give a homogeneous product. In the United States, Carbide and Carbon Chemicals Incorporated manufactured and distributed polyethylene oxides under the trade name "Carbowax". ("Oxydwachs", German). The two principal forms are Carbowax 1000 and Carbowax 4000 (the number indicates average molecular weight) which are used in large tonnages in detergents, pharmaceuticals, and cosmetics. (8)

During his studies with ethylene oxide, Standinger also investigated the polymerization of propylene oxide. (9) Propylene oxide polymerized under the influence of anhydrous stannic chloride with extraordinary violence. For the most part, it formed low-molecular weight polymers which were generally liquid. By fractionating, it was possible to separate a high molecular weight product which was semi-solid. This semi-solid product melted only at a high temperature and was easily soluble in bensene.

Butadiene monoxide, 3,4-epoxy-1-butene is an interesting monomer since it contains two different polymerizable groups. Thus three types of polymerization are possible; (a) exclusively through the double bond, (b) exclusively through the specide bond, or (c) a combination of the previously suggested means.

$$-H_2C - HC - CH_2 - HC - H_2C - HC - CH_2 - CH_2$$

$$-CH - CH_{2} = \begin{cases} 0 - CH - CH_{2} - 0 - CH - CH_{2} \\ CH CH_{2} & CH - CH_{2} \end{cases}$$
(b)

$$-0 \left[H_2C - CH \cdot CH - CH_2 - O - CH_2 - CH \cdot CH - CH_2 - O \right]$$
(c)

However, Bloor, in this laboratory (10) showed that butadiene monexide was polymerizable only under conditions much more rigorous than its pseudo-dielefin characteristics would imply. He found that mass polymerization with sodium hydroxide resulted in a polymer high in double bond content and that a sodium sand catalyst caused the formation of a polymer high in epoxide content and relatively low in unsaturation. Benseyl peroxide, sodium Townaldehyde sulfoxylate, t-butyl peroxide and size chloride were ineffective as catalysts while concentrated sulfuric acid caused violent polymerization and decomposition. The polymers ebtained were soluble in ethyl alcohol, methyl alcohol and acetone and insoluble in ether, benzene and carbon tetrachloride.

The use of styrene oxide, 1,2-epoxyethyl benzene, as a polymerizable monomer has not been studied,

The reactions between organo-magnesium compounds and epoxides have been investigated extensively.

The investigators have shown that ethylens oxide and Grignard reagents resulted in primary alcohols, (11) (12) Substituted epoxides reacted with ergano-magnesium halides to give secondary alcohols upon hydrolysis.

(13) The exception was styrene oxide which gave primary or secondary alcohols depending upon the order of addition, (14)

Stevens and McCoubrey (15) and Huston and Brault (16) noted that t-butylmagnesium bromide when reacted with an epoxide gave a very poor yield of the alcohol. Huston and Brault obtained a fair yield of the bromohydrin of the epoxide and a trimer of the epoxide. They also obtained the bromohydrin by reacting the epoxide with anhydrous magnesium bromide in dry ether and hydrolyzing the precipitate.

In the reaction between epoxides and dialkylmagnesium compounds many workers have obtained gurmy and resinous by-products. (17) Bart-lett and Berry (18) reacted two-tenths of a mole of cyclohexene exide

•

with an equivalent amount of diethylmognesium and obtained five and one-half grams of polymer representing twenty-two percent of the starting materials. Golumbic and Cottle (19) obtained 2-phenyl-1-propanol and polymer when they hydrolyzed the reaction mixture of styrene exide and dimethylmagnesium. Huston and Tiefenthal (20) also isolated a polymeric mass when they permitted propylene exide and di-t-butylmagnesium to react for a considerable length of time.

Grignard reagents have been investigated as catalysts for the polymerization of monomers by Beaman (21), Landler (22), and Reedel (23).

Bruylant and coworkers (24) (25) obtained large amounts of dimers and trimers when they carried out a reaction between organo-magnesium browides and allyl cyanide.

Beaman (21) polymerized methacrylonitrile by means of butylmagnesium bromide, phenylmagnesium bromide, triphenylmathyl sedium and sodium in liquid ammonia. He obtained, from use of the Grignard reagent, a light yellow solid polymer with a molecular weight estimated at 8000.

Landler (22) polymerized methyl methacrylate with butylmagnesium bromide containing radioactive bromine. He showed that the catalyst initiated polymerization by direct action on the monomer and that termination occurred without catalyst dissociation. Both Beaman and Landler preposed ionic mechanisms for the polymerizations.

Reedel (23) achieved ethylene polymers at high molecular weight and high tensile strength by reacting ethylene with 0,005 - 5% of organometallic halides in an inert selvent such as benzene at 100° C. to 250° C. and at ethylene pressures of 400 - 1500 atmospheres.

EXPERIMENTAL

Monomore:

- 1. Ethylene oxide, b.p. 12° C./740 mm., obtained in cylinders from the Matheson Company.
- 2. Prepylene oxide, b.p. 33.4 34.4 C./740 mm. Dow Chemical Company.
- 3. 3,4-epoxy-1-butene, Columbia Chemicals Division of The Pittsburgh Plate Glass Company; redistilled-b.p. 65 67° C./740 mm.
- 4. Styrene oxide, Dow Chemical Company (Technical); redistilled...b.p. 60 61° C./2 mm.

Reagents:

- 1. Tertiary butyl bromide, Eastman Kodak Company.
- 2. Magnesium turnings for Grignard reactions, Dew Chemical Company.
- 3. Anhydrous disthyl ether, C.P. dried over sodius wire for at least one week.
- 4. Bromine, Mathesen Chemical Company.
- 5. 1,4-Dioxane. Eastman "Practical" was purified by the method of Fieser (26). It was kept under nitrogen and over sodium.
- 6. Silver nitrate, Mallinckrodt Chemical Company. Analytical Reagent.
- 7. Sodium thiocyanate, Mallinckrodt Chemical Company. C.P.
- 8. Nitrobensene, Eastman Kedak Company.
- 9. Standard hydrochleric acid solution. 0.1781 N.
- 10. Standard sedium hydroxide solution. 0.0986 N.

Preparation of Catalyst Solutions:

1. Preparation of t-butylmagnesium bromide.

Thirty g. of clean dry magnesium turnings and 100 ml. of dry diethyl ether were placed in a dry, one liter round-bottom flask equipped
with a reflux condenser, nitrogen addition tube, dropping funnel, and a
mercury-scaled stirrer. The apparatus was swept with nitrogen, and while
cocling in an ice bath, one mole (137 g.) of t-butyl bromide and two-hundred
ml. of dry diethyl ether were poured into the dropping funnel. About five
ml. of the mixture was added to the magnesium and ether in the flask and
stirring was started. The reaction initiated very easily. After it had
started the bromide solution was added very slowly over a period of twe
and one-half to three hours. The mixture was stirred in the cold for twe
more hours and than allowed to stand overnight.

The black solution was forced by nitrogen pressure through a tube with a glass wool plug into a nitrogen-filled bottle which was then tightly stoppered. The reagent was titrated with standard acid by Gilman's method.

(27) The concentration was generally 1.2 - 1.6 H. representing a 40 - 50% yield.

2. Freparation of anhydrous magnesium bromide etherate.

Twenty-six ml. (80 g.) of bromine was added ever a period of two hours to 14.5 g. of magnesium turnings in 250 ml. of dry other. The mixture was kept under nitrogen, cooled in an ice-bath, and was well stirred. The bromine was added at such a rate as to permit gentle reflux. After addition was complete, the mixture was left standing overnight. A two layer system formed, the lower, darker one containing the bulk of the

magnesium bromide. There was also a small amount of solid precipitate. The solution was removed from the excess magnesium by forcing the liquid through a glass wool plug in a delivery tube by applying nitrogen pressure. The concentration of the MgBr₂ in the lower layer was found by determining the bromide ion concentration by means of the Volhard procedure. (28) The concentration of this lower phase was found to be 2.5 M.

3. Preparation of di-t-butylmagnesium solution. (29)

Three hundred ml. of freshly prepared t-butylmagnesium bromide under nitrogen was cooled in an ice bath. Seventy ml. of a selution of 50 g. of dioxane in 100 ml. of ether was added slowly with stirring and the mixture was permitted to reflux. After addition of the dioxane the thick white paste was stirred vigorously for gime to ten hours. The mixture was centrifuged for fifteen minutes at 1500 rpm. If the supernatant liquid was not clear on testing, seven ml. of ether-dioxane solution was added to each bottle, and it was recentrifuged. The supernatant liquid was titrated by the Gilman (26) method and stored under nitrogen. The average concentration was 0.30 - 0.35 M. (29)

Polymerizations:

- 1. The reactions of epoxides with low concentrations of t-butylmagnesium bromide.*
- a. The addition of t-butylmagnesium bromide to propylene oxide at atmospheric pressure (open system).

A small round-bottom flask equipped with a mercury-sealed stirrer, dropping funnel, a nitrogen inlet, and a condenser with a dry ice-acctone

^{*} In most of the polymerizations and purifications of polymers, the various emoxides were treated alike. Thus, the procedures described are applicable for all monomers.

.

•

•

wfinger" was cooled in an ice bath and swept with nitrogen. The required amount of propylene oxide was admitted through the dropping funnel, allowed to cool, and then the catalyst was added all at once from a pipet while the mixture was stirred vigorously. The reaction was exothermic and a white precipitate immediately formed. The mixture was stirred for twenty-four to forty-eight hours. The material in the flask was collected and the unreacted monomer was permitted to evaporate.

Yields were very low since much of the propylene exide was lost by evaporation. Also, it was not possible to be sure that water and oxygen were excluded from the reaction. Therefore, to prevent contamination and to insure against monomer loss, it was decided to run the polymerizations in a closed system. The increased pressure of a closed system would favor formation of polymer in accordance with Le Chatelier's Frinciple.

b. Polymerisation in a closed system.

The required amount of monomer was placed in a clean, dry pressure bottle, which was being swept with nitregen and most in an ice bath. The t-butylmagnesium bromide was added as rapidly as possible and the bottle was immediately capped. It was then mechanically shaken for about thirty hours at room temperature.

The best means of excluding oxygen and water from the reaction and of preventing evaporation of monomer was to add the monomer and catalyst to a pharmaceutical bottle by means of hypodermic syringes. (30) To have a true mass polymerisation, the Grignard solution was injected into the nitrogen-filled bottle and the other was removed by suction through a hypodermic needle. Then the monomer was injected all at once into the catalyst containing bottle. The bottle was mechanically shaken for about eighty hours or until polymerization was complete.

Since high pressures were built up in the bottles (especially when the monomer was ethylene oxide), the following safety precautions were takens the flasks were well cooled during addition, glasses or goggles were worn, screens were placed around the bottles when they were not in the shaker, and a wire screen was placed over the bath containing the bottles which were being shaken. The bottles were so constructed that the rubber disphragms could withstand considerable pressure.

2. The reactions of epoxides with anhydrous magnesium bromide etherate.

The general precedure of closed system polymerisation as mentioned previously was followed. The monomer was generally added to the magnesium bromide. The reaction was vigorous.

In the equimolar reactions the following procedure for hydrolysis was followeds (31) After sixty hours shaking the bottles were coaled in ice and opened. They contained a flocculent precipitate and supernatant solvent. Pifty to 75 ml. of saturated ammonium bromide solution was added slowly with stirring. The other solution was decanted and the magnesium hydroxide and salts were washed with three 25 ml. partions of other. The solution and washings were combined and dried over sodium sulfate.

The bromshydrin was then collected by vacuum distillation.

3. The reactions of epoxides with varying concentrations of di-t-butylmagnesium.

The previously described slowed system method was followed. The reaction was not vigorous. A white cloudiness soon appeared in the solution,
and if polymerization occurred it was usually evident after twelve or less
hours of shaking.

Purification of Polymers

The polymer was removed from the reaction bottle and material adhering to the sides of the bottle was removed by rimsing with chloroform,

A large excess of chloroform was added to the polymer until all but the
inorganic material had dissolved and the solution was of a fairly low
viscosity. The insoluble inorganic material was separated by centrifuging
the solution for fifteen minutes at 1500 rpm and decanting. The bulk of
the chloroform was distilled off, The very viscous liquid was then added
with stirring to an excess of diethyl other to precipitate the highermolecular weight polymer fraction. The solid was collected by suction
filtration or centrifuging, and the other was driven from the liquid fraction.

Determination of Intrinsic Viscosity and Molecular Weight. (32)

Two-tenths to 0.5 g. of polymer was accurately weighed in a tared fifty milliliter volumetric flask and the flask was diluted to volume at 20°C, with the solvent, Aliquots of this solution were diluted to various concentrations between 0.1 and 2 g./100 ml. of solution.

in the Ostwald viscometer which was immersed in the constant temperature bath. The liquid was then drawn by slight suction from an aspirator past the top mark of the viscometer. The time required for the liquid to flew between the marks was accurately measured. Viscosity readings were taken until they were constant for the solution being tested. The specific viscosities \mathcal{N}_{sp} of four or five concentrations of the polymer solution were calculated from the equations

The intrinsic viscosity [N] was obtained by plotting $\gamma_{e}/conc$, against concentration and extrapolating to zero concentration.

The molecular weights of the ethylene oxide polymers were estimated by substituting the intrinsic viscosity in the Staudinger expression

$$K_{\text{benzene}} = 4.1 \times 10^{-5}$$
 (9)

In these viscosity determinations where carbon tetrachloride was the solvent, the following expression was used:

$$[\gamma]: \kappa + \kappa$$
 (32)

TABLE I-A

T-Butylmagnesium bromide as a catalyst with ethylene oxide as the monomer.

CHCI	J. 8	8.62	0 1.0	8.0 0	4.8 0	2.8	0 0.85	0.80	0 1.1
	mol.	200	540	9	9	850	069	9	830
Sol. ether	[n]	28.3 65 0.021	64 0.022	34 0.026	0.025	25 0.035	0.026	25 0.026	7 0.034
0	98	65	-	34	8	23	25	25	4
Sol	F. 50	28.3	20.55	0.9	9	77	4.3	4.3	32
	mol.	K10-3	37	313	1.5	63	1.56	en en	1.5
Insol, ether	Fn3		1.6	0.035 3	0.062	0.082	0.040 1.5	0.023	0.061 1.5
01.	PE	2.6	3	34	1,2	3	33	3	1.77
Ins	selbin R	1.15	4.0	0.9	18.3	32	5.9	7.2	20.6
	shaking time(hr)	9:08	> 500	9108	9708	80.6	9208	90.08	7.001
	catalyst	1/0.05	1/0.025	1/0.012	1/0.01	1/0.01	1/0,006	1/0.006	1 /0 OOK
	ml. m.	4	5	0	4	ď	0	25	es
ديد	3667 3	34	L/V.595	10			7 30	4	
178	b 0	60	1,32	0.7	1.6	1.6	0.3	0.3	0.8
Catelyst	Moles	0.05	900.0	0.0046 0.74	0.01	10.0	0,0023 0,37	0,0023 0.37	0.005
ner	bi	111	13.5	17.6	11	3	17.6	9.71	114
Monomer	Moles	1.0	0,3	4.0	1.0	1.0	0.4	7.0	3.0

temporature was maintained at 27° C. for all polymerizations except where indicated otherwise.

•

The catalyst solvent was removed by suction.

Half of the catalyst solvent was removed by suction.

CCl. solvent and equation (32) were unsatisfactory; the molecular weight was estimated by comparison. All other determinations were in benzene.

Pasito saprika			diam'ere	S. war	Contract of the Contract of th	Principal contracts	Property of Persons 1	Section.	-	-	The second second	-	de montenant et de	disseptation.	The state of the same
12	granus.	0.003	8.0	10	1/07005	75827	20,00	E	DOOLO		177	44	1 0 0 st	000	la La
8 3 3	10.04	0.0083	170.0	120	1/0.006	97.08	10.4	5	0.023	000		73	0.036	082	08.0
	2.73	0.0033 0.33	9.34	30	F\0.006	3508	0.5	333	0,00,0	ni In	-	8	9.036	059	88.0
	8-	.0.0	0.1	è	1/0.0/1	957.6	27	3	0.082	5	17	24	0.035	025	18.50
1000	E	10.0	7.6	-3	Tr.0\L	92,08	18.3	52	0.005	1.2	2	B	0.025	8	0.0
4		0.006	4F.0	E	7/0,035	prign	0.	150	9.00.5	ħ	0.0	1.6	286.0	Cato	09
1 3C V	100	27, 21, 75,00, 0,	25.73	a	1/0.025	> 300	1.6	3	0.41	R	OF THE PER	ä	0.083	PART	7.0
1	12	20.0	00	1.	170.08	2108	7.12	8.8		×10.3	2.75	3	TSO. 0	500	8.68
1	is .	Be Ici			THE CHANGE	(Til) Philip		74	5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14	53	100	·
155	COS CHARLE	780	0.03512	- September	Wetanaconomical	in softwarenders.	1115	1.10	OCERRI.	Party Carried	195	J.,	TEGER	Contract of the last	-

TABLE I-B

T-Butylmagnesium bromide as a catalyst with propyleme oxide as the monomer.

Tonome	£.	Cata	Catalyst			ether		In	sol. in ether Residue	Residu
Moles		g, moles g, ml, m.	g.	m)	m. menomer m. catalyst	8.	6.	80	[m]	g.
6.28	16.4	0.28 16.4 0.018 2.8 15	60	35	1/0.062	0	4.75 29	29	0.015	3.5
0,28	16.4	0,28 16.4 0,011 1.8 10	1.8	10	1/0.04	0	5.25	32	5.25 32 0.015 2.3	2.3
0,28	16.4	0.011	1.8	2	0.28 16.4 0.011 1.8 5b 1/0.04	0	6.08 37	37	0,015 1.8	1.8
0.56	32.8	0.010	1.6	9	0.56 32.8 0.010 1.6 10 1/0.018	0	4.50	13	4.50 13 0.011 2.8	2.8

The bettles containing the reaction mixture were shaken intermittantly for 200 hours. Half the solvent was evaporated from the catalyst.

TABLE I-C

T-Butylmagnesium bromide as a catalyst with butadiene monexide as the monemer.

Monomer	THE	Cata	Catalyst	A constitution of	Chicago and the second	Same and Managara	0	ether		stner	Standa.	Regi c ne
Moles		noles	- bi	m],	m. monomer m. catalyst	shaking time (hr)	bi	ં અવ	g.	80	[11]	
0.25	0.25 17.5 0.0		125 2.0	8.5	1/0.05	9	0	1111	0.9	34	6.0 34 0.025	lest
0,25	17.5	0.25 17.5 0.0125 2.0	2.0	d	1/0.05	80	0	S L	17	46	17 97 0.025 1.0	1.0
0.25	17.5	0.25 17.5 0.0025 0.4	0.4	el .	1/0.01	80	0		2,6 15	15	Lo	9.0
0.50 35	35	0.005 0.8 3.4	9.0	3.4	1/0.01	Q	4.0	11	3.6	30	4.0 11 3.6 10 0.025 0.8	9.0

a. The other was removed by suction.

b. The bottles containing the reaction mixture were shaken intermittantly for over 200 hours.

The state of the s

TAHLE I-D

T-Butylangnesius broaide as a estalyst with styrene oxide as the monomer.

Market		Catelrat	, trat				Item.	So	1.	Sol. ether	Incel. in
se l'es	K	seles	K	at.	Seles R moles R. M. n. catalrathine (hr.)	shaking kine (hr.)			×	e e s m	
0.25	8	0,0125	2.0	•	0.25 30 0.0125 2.0 * 1,0.05	A.	K	Len	Tri tri	oded.	
0.25	8	0,0069	1.0	4.2	0.25 90 0.0069 1.0 4.2 1/0.025	08	0	4.0	82	0 8.7 29 0.025	1,3
0,25	8	0.0025	750	1.7	0,25 30 0.0025 044 1.7 1,0.01	98	0	7.0	R	0 7.0 23 0.021	lest
0,25	8	0,0025	4.0	•	0.25 30 0.0025 0.4 4 1/0.00	QL.	0	6.2	Ħ	0 6.2 21 0.020	0.2
[

Temp. * 27P C. a. The other was dream from the catalyst by suction.

-		1			d,	FF 0 177	200		000000000000000000000000000000000000000	9
2.7.5	2800.0	0.20	la la	1,0,01	8	o	.07 .07	75 A		0.0
2.72	0.0189	2.0	b	1,0,03	80	0	T.	120	0.058	2.0
19.57	0.0329	2.0	8.9	2/0,05	d	0	0.8	1	0.025	haf
	810 7 010			devisery	tribe (pt.)	is .	-	ar	3	

TAMER I-D

T-Butylangnesius broaids as a catalyst with styrene oxide as the monomer.

Xene	Ŀ	Cetelrat	1				Ineal. Sol. ether	So	1. e	ther	Insel. in
Keles	,	seles	, K	al.	Teles R moles R. mi. m. catalystkins (hr.)	shaking time (hr.)			×	(1) S (1)	
0.25	R	0,0125	2.0	•	0.25 30 p.0125 2.0 • 1,0.05	Ç	-	198		ded.	
0.25	8	6900°0	1.0	4.2	0.25 90 0.0069 1.0 4.2 1,0.025	98	0	6.0	R	0 8.7 29 0.025	1,3
0,25	8	0.0025	720	1.7	0,25 30 0.0025 044 1.7 1,0.01	9	0	7.0	R	0 7.0 23 0.021	lest
9.25	8	8.25 90 0,0025 0.4	4.0	•	m.ot	R	0	6.2	ส	0 6.2 m 0.020	0.2

Temp. 2 270 C. a. The other was drawn from the estalyst by excelon.

:

L.

.

.

TABLE II-A

Anhidrous magnesium bromide as a catalyst with ethylene exide as the monomer.

Мопелет	J.	Cat	Catalyst				ether ether		rec te	her				Insel. in
Moles	-	moles	60	E.	m. monomer	shaking time(hr)	8	140	ti	W	In mol.	mel.		STATE
0.25	1	0.25 11 0.25	97	100	1/1	8	15g.	or a	36.0%	yleld /2mm	2 6 E	1, 48	CH_OH-CH_Br wa.	15g. or a 50% yield of CH_OH-CH_Br was obtained b.p. = 36-38° C/2mm np = 1.489
0.5	22	0.5 22 0.0625 11.5	11.5	255	1/0,125	90	4.5 20 11	8	n	8	50 0.011 270	270		80 8.45
6.0	8	0.5 22 0.0125 2.3	2.3	10	1/0.025 ^b	09	0		30	92	92 0.03 730	730		2.6
0.5	22	0.5 22 0.005	6.0	CV	0/0.01b	99	0		2.2	122	12 0.022 540	240	6,000	9.0

Temp. = 27°C. The catalyst was added at a temperature of -70° C. and held there for twelve hours after which the bottles were shaken for fifty hours at 27° C. e .

TABLE II-B

Anhydrous magnesium bromide as a catalyst with propylene exide as the monomer.

- 18	Mornomary	Cata	Catalvat	-	and promote the section of the section of	Section of the second	ether	Sol, in ether	ethe		CHCL
oles	tic	noles		m]	m, catalyst	Shaking time(hr)	2	g.	Ac	[11]	18
10	0.25 B.5	0,25	46	100	'n	9	14g. or 40% yield of CH_CHCH CH_Br was obtained. b.p. 49-51°C./15am.; np. 1.476 b.p. (4.7)=52-53°C/15mm.; np. 1.476	10% yes ined. 51°C./1; 51°C./2;	d of	CH CHOH	CH2Br 76 1.68
0.50	29	0.05	6	8	1,0,1	809	0	4	25	25 0.015	7.2
195	0.25 34.5	0.0125	25 2.3	35	1/0.05	q09	0	2.8	8	0.015	2.3
1.0	88	0.01	1.8	4	1/0.01	,09°	0	0.5 <1	**		9.0

The catalyst was added at a temperature of -70° C. which was held for 12 hours; then the bottle was shaken for 90 hours at a temperature of 27° C.

0,1	15	.0.01	02 4 8 m	tion.	200.00	200	0	0.5	Y.		8
0,25	100 100 100 100	0.0758	10	Cal.	1,0.05	700	0	30	8	0,003	2.5
R	255	0,05	-0.		2,40.2	A(0)	0	7	33	0.005	10 1-2
0.25	Ž.	g 	NG.	8	27	8	47 6 (77) 9 6 7 (7) 70 0 0 0 0 71 6 0	# 35 F	A W	or the property of	12.00
100/03	in .	as disc	100	187	Table of the state	Sapara S			r	3	

ř

.

4

7

.

TABLE II-C

Anhydrous magnesium bromide as a catalyst with butadiene monoxide as the monomer.

Non	oner	Cata	1yart		を できる これの の		ether	Sol. ether	ethe		CHCL
foles	60	moles	90	ml.	m. monomer m. catalyst	shaking time (br)	ė.		80	[m]	bi
05.0	35	0.025	4.6 10	10	1/0.05	10.00	0	4.0 20	8	0.027	2.3
0.25	17.5	0.0125	2.3	Q	1/0.05	36	0	13	2	70 0.025	2.0
0,25	17.5	0.005	6.0	۵	1,0.02	36	0	9	35	0.025	0.5

The catalyst was added at a temperature of -70° C. which was held for 12 hours; then the bottle was shaken for 50 hours at a temperature of 27° C.

The ether solvent was removed by suction.

TABLE II-D

Anhydrous magnesium bromide as a catalyst with styrene exide as the monomer.

Insol. Insol. ether CHCl.	m catalvst time(hr) g. g. g.	5 108 1/0.1 The reaction exploded after 5 min. shaking.	3 5ª 1/0.06 76 0 1.8 60 0.020 1.0	
a ca		4.6	2,3	
Cataly	males	30 0.025	30 0.0125	
Tomer	8	State of the last	30	
Mo	fole	0.25	0.25	

a. The ether solvent was removed by suction.

• • • • • • .

TABLE III-A

Di-t-butylmagnesium as a catalyst with ethylene oxide as the monomer.

11 0.00 14 0. 00 11 0.00 22 0.00	-	-					ACCRECATE B ALTERNATION	Management of the lighter	Service contracts		AND AND THE RESERVE THE PROPERTY OF THE PROPER		
1 3 1 8	Г	THE PERSON NAMED IN	m. monomer m. catalyst	shaking time(hr)	8	94	1	mel.		80	[u]	mol.	8
3 1 2	3	370		24.74	1.75	16	1.30	32	0.3	8	0.3		2.0
	6.9	99	1/0.05	99	7.1	16	99.0	16.5	2.6	9	5000	1200	9.4
1	5 1.7	17	1/0.05	24.24	3.0	28	2.65	65	0.35	3		i.	0.5
	1.4	28.5	1/0.02	122	1.8	40	0.85	23	0.2	1			1.0
0.5 22 0.005	0.7	14.2	1/0.01	°. 12	3.0	13	2.50	19	1.3	9	0.05	1200	
1.0 44 0.01	1.4	35	1/0.01	24	13.7	31	3.0	2	0.3	D			
22 0.0025	5 0.35 7.0	7.0	1/0,005	12	8.0	3	0.64	15.5					0.2
22 0,0005	5 0.07 1.4	1.4	1/0.001	12	77		40.50	0	258.	tot	0.25g. total; 1% yield	feld	
0.25 11 0.0125	5 1.7	۵	1/0.05	30	4.7	43	2,00	169	3.6	33	33 0.013	320	1.9
0.25 11 0.005	0.7	Q.	1/0.02	30	1.5	13.5	13.5 2.10	51	2.0	18	0.015	360	0.75
1.0 44 0.01	1.4	۵	1/0.01	908	21	4.5	45 3.6	88	2.0	2		- T	1,0
0.8 35 0.005	7.0	Q.	1/0.006		Re	actic	ixe u	Reaction exploded.		1		270	

The temperature for all polymerizations was 27° C.

The catalyst solvent was removed by suction. Polymerization appeared to be complete after shaking for approximately 24 hours. . . .

• :

TABLE III-B

Di-t-butylmagnesium as a catalyst with propylene oxide as the monomer.

Mon	Monomer	Cat	Catalyst	-	The state of the s	the sense water and the	Control of Control of the Control of	-
Meles C.	0	moles	g. ml.	ml.	m. monomer	shaking time(hr)		
0,25	14.5	0,25 14,5 0,005	69.0	14.8	0.69 14.8 1/0.02	120	Total yield : 1.6g.	.68
0.25	14.5	0.25 14.5 0.0025	0,35 €7.5	2.5	1/0.01	120	Total yield . 0.6g.	.6g.
0.25	14.5	0.25 14.5 0.00125 0.17 3.8	0.17	3.00	1/0.005	120	Total yfeld . 0.3g.	J.3g.
0.25	14.5	0.25 14.5 0.00025 0.03 0.8	0.03	9.0	1/0.001	120	Total yield : 0,2g.	3,28.

TABLE III-C

Di-t-butylmagnesium as a catalyst with butadiene monoxide as the monemer.

Meno	Der	Ú	atalyst		The state of the s	The state of the s			The second name of the second na	Assistante de la constitución de
foles	b	noles	bi	ml.	m. monomer	shaking time(hr)	6 (0)	b0	84	50
	17.5	0.0125 1.7	1.7	37.5	37.5 1/0.05	877	0	1.3	1.3 7.5	67
0.25	17.5	0.0050 0.7	0.7	at	1/0.02	84	0	1.1	1.1 683	0.3
0.25 17	100	0,0025 0,35	0.35	18	1/0.01	84	To	tal y	Total yield: 0.5g.	26

TABLE III-D

Di-t-butylmagnesium as a catalyst with styrene oxide as the monomer.

Meno	nomer	Cate	Tyst	1	No.	26	ether	et	ether	-	
Moles	76	mo	M	m m	m. monomer	shaking time (hr)	8.	6.0	80	CM	90
0,25	30	0.25 30 0.0125	1.7	36.38	1/0.05	87	3.7.12	9.5 32	32	0.021	0.25
0.25	30	0.25 30 0.0025	0.35	7,28	1/0.01	.0 60	Total	rield	1eld : 2.0 g	tic.	
20 0	30	in 25 30 0.0025	0.35	7.2	1/0.01	84	0	1.2	4	0.020	0.35

RUSULTS

1. Results from the use of t-butylmagnesium bromide catalyst.

There was a very poor yield of a red oil from the open system reaction between propylene oxide and t-butylmagnesium bromide. This procedure was supplanted by the closed system method of polymerization.

Ethylene oxide polymerized most readily and yielded a semi-solid paste or waxy solid depending upon the amount of solvent and catalyst concentration. This material was fractionally precipitated into an ether-soluble viscous liquid and an ether-insoluble waxy solid. In ben-seme, the liquid fraction had an intrinsic viscosity of 0.02 to 0.03, proportional to a molecular weight of 500 to 850. The solid fraction had an intrinsic viscosity in bensene of 0.06 to 0.08, proportional to a molecular weight of 1500 to 2000. These polymers were readily soluble in water, discount, alcohol, bensene, and chloroform; they were sparingly soluble in acctone and carbon tetrachloride. Of course, high molecular weight fractions were insoluble in disthyl ether and petroleum ether.

Propylene oxide yielded primarily an other-soluble liquid polymer fraction with an intrinsic viscosity of 0.015. It was sparingly soluble in water and dissolved readily in most organic solvents except petroleum other.

Butadiene monoxide formed an extremely viscous, dark, semi-liquid polymer which was soluble in ethyl alcohol, chloroform, and acctone, slightly soluble in carbon tetrachleride and benzene, but insoluble in petroleum ther and water. The polymer was purified by dissolving it in other. The unreacted monomer was distilled from the ether solution.

•

•

. . •

• •

Pelyexystyrene in 25 to 30% yield with an intrinsic viscosity of 0.02 was produced when t-butylmagnesium bromide was used as catalyst. When more than 0.05 mole of catalyst was used per mole of monomer, the reaction became uncontrollable. All three catalysts gave very similar polymers of styrene oxide. They were all very viscous yellow gums with an intrinsic viscosity of 0.02 and were soluble in other, benzene, and chloroform, and insoluble in water and petroleum other. A very small amount of higher molecular weight polymer was formed from this monomer when di-t-butylmagnesium was used as catalyst.

2. Results from the use of magnesium bremide catalyst.

When magnesium bromide was used as a catalyst for epoxide polymerisation, considerable difficulty was encountered in containing the reaction when the catalyst concentration was beyond 0.05 moles per mole of monomer.

A red, viscous, ether soluble liquid was obtained with ethylene oxide. The intrinsic viscosity was rather low (0.01 - 0.03) and was proportional to a molecular weight of 300 to 700. Like the other liquid polymers formed in this work, the material sould not be distilled even at 150° C. and 2 mm. mercury. It was not very soluble in water. A 50% yield of ethylene bromehydrin was obtained from equimolar reaction.

The propylene oxide pelymer produced with anhydrous magnesium bromide etherate was similar in appearance to the polymer from the action of tobutylmagnesium bromide. The intrinsic viscosities were identical. A 40% yield of the bromohydrin was obtained from equimolar reaction of propylene oxide and magnesium bromide.

Pelybutadiene monoxide produced by means of magnesium bromide catalyst was similar in appearance, solubility, and viscosity to those butadiene

monoxide polymers produced by the action of t-butylmagnesium bromide.

The yield was increased if the solvent was removed from the catalyst.

3. Results from the use of di-t-butylmagnesium catalyst.

Folyethylene exides of a very high molecular weight were obtained in a short time when ethylene exide was added to di-t-butylmagnesium. The ether insoluble polymer was a tough, white, fibrous material resembling crude cellulose acetate. It had an intrinsic viscosity in bensene of 0.6 = 3.6 which represents a molecular weight of 16,000 to 90,000. The polymer was soluble in water, chloroform, benzene, and diexane and insoluble in carbon tetrachloride, acetone, diethyl ether and petroleum ether. A very small amount of ether soluble liquid was obtained. Its intrinsic viscosity was 0.05 (molecular weight: 1200.)

No polymers of propylene oxide were obtained when di-t-butylmagnesium was used as a catalyst. Higher catalyst concentrations should have been tried.

Poor yields (6 - 7%) of other soluble polymer of butadiene monoxide were isolated when di-t-butylmagnesium was used as a catalyst.

In almost all cases it was noted that the polymer yield was increased when the catalyst solvent was removed before monomer addition.

DICCUSSION

- 1. Optimum conditions for polymerization.
 - a. Tertiary butylmagnesium bromide as catalyst.

The polymers of ethylene oxide most clearly illustrated the effect of varying polymerization conditions, such as type of catalyst, catalyst concentration, solvent effect and polymerization time.

When t-butylmagnesium bromide in other was used against ethylene oxide the total yield was 66 - 68% between catalyst concentration of 0.6 - 5.0 moles per mole of monomer. However, the amount of ether-soluble low molecular weight polymer increased and the amount of ether-insoluble polymer decreased with increasing catalyst concentration.

The molecular weight of the ether-soluble polymer does not appear to be dependent upon catalyst concentration. No generalization can be made concerning the effect of catalyst concentration on the ether-in-soluble polymers since different solvents were used for viscosity measurements.

When the monomer was added to the dry catalyst and shaken, the yield increased considerably. When the monomer-catalyst ratio was greater than 1/0.01 the polymerization was quantitative with the higher molecular weight polymer predominating.

Propylene oxide was polymerized by the action of t-butylmagnesium browide to give a thirty to forty percent vield of a viscous red oil. (9) Preliminary experiments indicated that catalyst concentrations greater than 0.1 mole per mole of monomer resulted in little or no polymer. Instead the yield appeared to increase with decreasing catalyst concentration. The optimum catalyst concentration under the experimental

conditions set forth in Table I-B was between 0.04 and 0.1 of a wole per male of monomer. The molecular weight ([N]: 0.015) did not appear to be dependent upon catalyst concentration.

The optimum catalyst concentration for the polymerization of butadiene monoxide is about five mole percent. Higher catalyst concentrations caused almost explosive polymerization with considerable decomposition. Poor yields were obtained when solvent was present, but true mass
polymerization resulted in a quantitative yield.

The polymers of styrene oxide obtained by means of t-butylmagnesium bromide were all ether soluble and of very nearly the same intrinsic viscosity. Since this was the case, melecular weight did not seem to be a function of the catalyst concentration. The optimum catalyst concentration appeared to be between 0.02 and 0.05 of a mole of catalyst per mole of monomer. The reaction was very vigorous above a catalyst concentration of five mole percent.

b. Anhydrous magnesium bromide as catalyst.

The eptimum catalyst concentration for the production of the low intrinsic viscosity polymer from ethylene oxide appears to be in the neighborhood of three mole percent. Polymerization in the cold may have had some effect in causing a higher molecular weight polymer; but since this polymerization factor was not intensively investigated, it is not at all certain whether this is the case. The decreased water solubility compared to other ethylene oxide polymers was probably due to bromine and groups on the polymer chains. (9)

The best catalyst concentration for the production of polypropylene

.

•

•

•,

•

exide by means of magnesium bromide was between 0.05 and 0.1 moles MgBr₂ per mole of monomer.

A true mass polymerization and a catalyst concentration near five moly percent appeared to be the best conditions for the polymerization of butadiene monoxide and styrene oxide by the action of magnesium bromide.

c. Use of di-t-butylmagnesium as catalyst.

The highest yield of high molecular weight polymorethylene was obtained at 0.01 or 0.05 of a mole of catalyst per mole of monemer. When the solvent was removed the same catalyst concentration produced still higher yields. The time required for polymerization was much shorter than when t-butylmagnesium bromide was used as a catalyst. A satisfactory shaking period seemed to be around twenty-four hours. The intrinsic viscosity roughly increased with decreasing catalyst concentration. Also, a considerable amount of ether-soluble low molecular weight polymer resulted from the true mass polymerization. The amount decreased with decreasing catalyst concentration,

Propylene oxide and butadiene monoxide did not polymerize at the catalyst concentrations used. Higher catalyst concentrations using the solvent evaporating technique should be tried.

Effective polymerizations of styrene oxide with di-t-butylmagnesium would require a monomer-catalyst ratio greater than 1:0.05. It is interesting to note that polyoxystyrene produced by the use of di-t-butylmagnesium had the same intrinsic viscosity as polyoxystyrene produced by the use of t-butylmagnesium bromide, while the corresponding ethylene exide polymers differed semarkably in that respect.

2. Possible mechanisms of polymerization.

The strained three-membered ring and the two lone pairs of electrons on the exygen atom should be expected to give the epoxide group some chemical properties similar to those of the double bond. One of these properties is the tendency toward polymerization.

Thus, like olefins, epoxides should be polymerized both by free radical and by ionic reactions. Though these two types of polymerization reactions may be represented in quite different ways, they both operate by bringing about the addition of a univalent group to one end of a molecule, and thereby generate a univalent free radical, or free ion, whereby the addition process can be continued.

Both types occur by means of a chain reaction consisting of three main steps. initiation, propagation, and termination. The polymerisation of ethylene oxide with acid catalysts such as sulfuric acid, aluminum chloride or stannic chloride probably proceeds as follows: (33)

$$CH_{2} - CH_{2} + H + CH_{2} - CH_{2}$$

$$CH_{2} - CH_{2} + CH_{2} + CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2}$$

$$CH_{2} - CH_{2} + CH_{2} + CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2}$$

$$(propagation)$$

$$H(OCH_{2} - CH_{2})_{n}O(CH_{2} - CH_{2})_{n} - O - CH_{2} - CH_{2} \times (termination)$$

The homolytic or free radical polymerization of ethylene exide probably occurs in a manner analogous to the polymerization of elefins.

•

·

First, a free radical is formed from the catalyst (e.g. from a metal alkyl or organic peroxide):

It is evident that polymerization caused by magnesium bromide etherate is ionic in nature. In the light of the work of Ribas and Tapia (34), and Huston and Agett (35), it probably proceeds thus:

$$\text{Mg} \stackrel{\text{\tiny Hg}}{\leftarrow} + 2 \text{ CH}_2 - \text{CH}_2$$

$$\text{O} \qquad \qquad \text{(initiation)}$$

$$\text{Mg} (\text{OCH}_2 - \text{CH}_2)_2 + 2 \text{n CH}_2 - \text{CH}_2 - \text{$$

In cation—catalyzed polymerisation the presence of the catalyst in the molecule attached by a coordinate valence as an erganometallic compound is indicated by Staudinger's observation (9) that polystyrene prepared with stannic chloride as the catalyst is difficult or impossible to

free from catalyst by precipitation from inert solvents, but the use of alcohol readily frees the polymer from tin and chlorine. This could readily be accounted for according to this formulation:

$$cl_{4}s_{n} + ch=chc_{6}H_{5} \longrightarrow cl_{4}s_{n}$$

$$cl_{4}s_{n} + chc_{6}H_{5} \longrightarrow cl_{4}H_{5} \longrightarrow cl_{$$

since the organometallic end group would undergo scission in a solvent containing active hydrogen, and the SnCl₃ group would be replaced by hydrogen. (33) The difficulty encountered in purifying the magnesium bromide-catalyzed polymers is also explainable by the preceding types of mechanism. This cationic mechanism is further verified by the fact that only low molecular weight polymers were produced. This is a distinguishing characteristic of ionically initiated polymerizations.

The type of mechanism involved in the polymerization with t-butylmagnesium browide and di-t-butylmagnesium is not so simply ascertained.

The differences in molecular weight observed in the various types of polyethylene oxides indicate that the reactions must have proceeded by different mechanisms.

Beaman (21) proposed an anionic mechanism for the polymerization of methacrylonitrile by means of butylmagnesium bromide, triphenylmethyl sodium and sedium in liquid armonia.

(A: = initiating negative fragment, e.g. Ph₃C:) (R = Electron withdrawing group)

(R': H or some other substituent)

(The termination reaction may oscur in some other manner, such as elimination of A: .)

He assumed that the ionic nature of the Grignard reagent and of triphenylmethyl sodium made it seem highly umlikely that these reagents should react by homolytic cleavage to yield free radicals in the presence of highly polar monomers. Immediate and quantitative polymerization of methacrylonitrile in liquid ammonia offered more direct evidence for an anionic mechanism. He also surmised that if the reaction were free radical, butadiene and styrene would be expected to polymerize readily. The failure te obtain any polybutadiene and only low molecular weight polymer from styrene can be explained from the point of view of the anionic mechanism because of of the relatively weak electronogative character of a vinyl or phonyl group.

Application of an anionic mechanism to the polymerization of epoxides with t-butylmagnesium bromide seems applicable in light of the results of this research. Ethylene oxide is particularly noteworthy. It is highly polar with two lone pairs of electrons at the oxygen atom. This would result in carbon stoms of an electrophilic nature. The analogous mechanism

• * • • • • • • **7.**

can be written thus:

$$(CH_3)_3C: + CH_2-CH_2-Q: \Theta \longrightarrow (CH_3)_3-CH_2-CH_2-O$$

$$(CH_3)_3C-CH_2-CH_2-O + n CH_2-CH_2-O \longrightarrow (CH_3)_3C(CH_2-CH_2-O)_nCH_2-CH_2-O$$

$$(CH_3)_3C-(CH_2-CH_2-O)_n-CH_2-CH_2-O + H \longrightarrow (CH_3)_3C-(CH_2-CH_2-O)-H$$

The low molecular weight of the products obtained is typical of ionically catalyzed polymerizations. Higher molecular weight products in greater yield than magnesium bromide catalyzed polymers is evidence against the cation-type mechanism. The less satisfactory results from the use of the other monomers may possibly be due to their lower polarity.

The very high molecular weight of the polymers obtained by the use of di-t-butylmagnesium on ethylene oxide seems to indicate that polymerization may have occurred by a mechanism different from that with the full Grignard.

A free-radical catalysis may have been possible since the t-butyl radical has a low free energy of formation. (36) In the absence of highly ionized magnesium bromide, this free radical formation may have taken precedence over the ionization of the alkyl. (see p. 30.)

This work is only an introduction to the subject of polymerization of epoxides by means of Grignard reagents. The results indicate that further investigations into this field should be quite worthwhile. The effects of varying temperature, pressure, and solvent concentration should be studied. The effects of higher concentrations of catalysts should be determined for those epoxides which are not readily polymerized at lower catalyst concentrations. The structure of the polymers of butaliene

. •

•

•

monoxide would be another interesting problem. (See page 3.)

As the search for new monomers is a never-ending project, so the quest for new and different polymerisation initiators will always continue as long as the desire for polymers with special properties is high.

SUMMARY

- 1. Tertiary butylmagnesium bromide, magnesium bromide etherate, and di-tertiary butylmagnesium were investigated as possible catalysts for the rolymerization of certain epoxides (ethylene exide, propylene exide, butadiene monoxide and styrene exide).
- 2. Tertiary butylmagnesium bromide was found to be an excellent catalyst for the production of lew molecular weight polymers of ethylene exide.

 Poorer yields of polymers were obtained when propylene exide, butadiene menoxide, and styrene exide were the monomers.
- Magnesium bromide produced fair yields of lew molecular weight polymers from all the epoxides used.
- 4. Di-tertiary butylmagnesium effected the production of high molecular weight polymers of ethylene oxide. At the concentrations used, it was ineffective against propylene oxide and butadiene oxide and caused a poor yield of low molecular weight polyoxystyrene.
- 5. The optimum catalyst concentrations were determined, and the effect of solvent was studied.
- 6. Possible polymerization mechanisms were discussed.

BIBLIOCRAPHY

- (1) Staudinger, H. and Schweitzer, O., Ber. 62B, 2395-2405 (1929).
- (2) I.G. Farbenind. A.G., Brit. 346,550 (1930).
- (3) I.G. Farbenind. A.G., Fr. 750,520 (1933).
- (4) Franz Webel (to I.G. Farbenind. A.G.), U.S. 1,921,378 (1933).
- (5) Max Witwer (to I.G. Farbenind, A.G.), U.S. 1,976,678 (1934).
- (6) I.G. Farbonind. A.G., Germ. 597,446 (1934).
- (7) I.G. Farbenind., Brit. 406,443 (1934).
- (8) McClelland, C.P. and Bateman, R.L., Chem. Eng. News 23, 247 (1945).
- (9) Standinger, H., Hoch Molekulare Organische Verbindungen, J. Springer, Berlin, (1932) p. 287-332.
- (10) Bloor, R.R., <u>Polymerization of Butadiene Monoxide</u>, Kaster's Thesis, Michigan State College, 1948.
- (11) Blaise, E.E., Compt. rend. 134, 551-553 (1902).
- (12) Grignard, V., Bull. Sec. chim. France (3) 29, 944 (1903).
- (13) Henry, M., Compt. rend. 145, 21 (1907).
- (14) Kharasch, M.S. and Clapp, L.B., J. Org. Chem. 3, 355 (1938).
- (15) Stevens, P.G. and McCoubrey, J.A., J. Am. Chem. Sec. <u>63</u>, 2847-2848 (1941).
- (16) Huston, R.C. and Brault, R.G., J. Org. Chem. 15, 1211 (1950).
- (17) Margrane, J.K. and Cottle, D.L., J. Am. Chem. Sec. 64, 484 (1942).
- (18) Bartlett, P.D. and Berry, C.M., J. Am. Chem. Sec. 56, 2683 (1934).
- (19) Golumbic, C. and Cottle, D.L., J. Am. Chem. Sec. 61, 996 (1939).
- (20) Huston, R.C. and Tiefonthal, H.E., J. Org. Chem. 16, 673 (1951)
- (21) Beaman, R.G., J. Am. Chem. Sec. 70, 3115-3118 (1948).
- (22) Landler, Y., Rec. trav. chim. 68, 992-998 (1949).

BIBLIOGRAPHY (Cont.)

- (23) Milton, J. Roedel (to E.I. duPont de Nemours & Co.), U.S. 2,475,520 (1949).
- (24) Bruylants, G. et. al., Bull. soc. chim. Belg. 32, 317 (1923).
- (25) Bruylants, G. et. al., Bull. soc. chim. Belg. 35, 239 (1926).
- (26) Fieser, L., Experiments in Organic Chemistry, D.C. Heath, N.Y., (1941) p. 369.
- (27) Gilman, H., Wilkinson, D., Fishel, W. and Meyers, C., J. Am. Chem. Soc. 45, 150 (1923).
- (28) Willard, H. and Furman, N., Elementary Quantitative Analysis, 3rd ed., D. Van Fostrand, N.Y., (1940) p. 317.
- (29) Noller, C.R. and White, W.R., J. Am. Chem. Sec. 59, 1354 (1937).
- (30) Harrison, S. and Meincke, E., Anal. Chem. 20, 47 (1948).
- (31) Huston, R.C. and Bostwick, C.C., J. Org. Chem. 13, 331-338 (1948).
- (32) Weissberger, C., Physical Methods of Organic Chemistry, vol. 1, Interscience, N.Y., (1945) p. 135-147.
- (33) Price, C.C., Reactions at the Carbon-Carbon Double Bond, Interscience, N.Y., (1946) p. 112-117.
- (34) Ribas, I. and Tamia, F., Anales Soc. espan. fis. quim. 30, 944-970 (1932).
- (35) Huston, R. C. and Agett, A., J. Org. Chem. 6, 123 (1941).
- (36) Bryant, W., J. Folymer Sci. 6, 359 (1951).

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03142 8521