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ABSTRACT

BEHAVIOR OF SELECTED TRACE METALS IN SEDIMENTS FROM THE CONTINENTAL

SHELF OF THE AMAZON RIVER

By

Sandra M. PeTowski

This research was to determine the chemica) partitioning of Fe,

Mn, Zn, Cu, Pb, Ni, Cr, Co, Ba and A1 in sediments of the Amazon River

ContinentaT SheTf. Partitioning of metaTs was determined by a method

of seTective chemica) attacks. The chemica] data were studied in raw

form and after reduction by R and Q-mode factor anaTysis. These data

and previous studies on shelf hydrodynamics were used to concTude that:

(1) the Amazon River is dominate over aTT other sources of trace metaTs

to shelf sediments; (2) repartitioning of metals in sediments occurs

between river and sheTf environments; (3) the river sediment can be a

potentia) source of metaTs to seawater, during passage to seawater.

Importance as a source decreases as Ni>Co>Fe>Cr; (4) meta] concentra-

tions in the shelf sediments are dependent on grain-type; (5) Amazon

SheTf Sediments remain oxic to a depth of 450 cm; (6) little reparti-

tioning occurs with sediment depth.
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INTRODUCTION

The geochemical cycle of any trace metal is defined in terms of

sources, pathways, and sinks. In continental shelf environments conti-

nental fresh water and marine waters mix. Upon mixing more than 95% of

the terrigenous sediment contained in the freshwater settles out prior

to 3 0/00 salinity (Milliman st 31., 1975), thereby making continental

shelf sediments a possible major sink for trace metals in exogenic

systems.

Two major sources of trace metal influx into oceanic sediments

exist; a river source and a hydrothermal source (Schutz and Turekian,

1965). Traditionally, continental runoff has been considered the major

source of metals to seawater and marine sediments (Gibbs, 1965;

Sholkovitz and Price, 1980). Recently, however, it has been suggested,

and in part demonstrated, that hydrothermal activity associated with

oceanic ridge systems could also be a significant source of metals to

marine environments (Gordon and Corliss, 1979; Edmond £5 21,, 1979;

Hindom gt al., 1971; Brumsack, 1980; Dymond, 1981; Marchig gt al.,

1982; Bischoff and Dickson, 1975). The significance of this source,

though, has as yet not been assessed.

The purpose of this research is to determine the controls on trace

metal concentrations in continental shelf sediments as well as their

source. The area for this study is the Amazon Continental Shelf which

is a relatively contaminate free environment (Drever, 1982). The



working hypothesis for this study is that patterns of trace metal

chemical partitioning among various chemical phases in shelf sediments

should reflect the controls on their chemical behavior and sources of

metals to the sediment (Loring, 1976; Loring, 1982; Luoma and Bryan,

1981).



SIGNIFICANCE AND RESEARCH GOALS

The Amazon River Continental Shelf was selected as a study area

because it is an unpolluted system whose river source drains through

diverse environments. Hence, it offers an excellent Opportunity to

study trace metal geochemical behaviors. It is also one of the major

rivers of the world, supplying 18% of all river water to the ocean.

Consequently, the study of the nature of trace metals in the associated

shelf sediments should be particularly important in helping to

understand the chemical processes occurring in shelf sediments.

The goals of this research are to:

(1) Determine the partitioning fate of selected trace metals upon

interaction with shelf sediments,

(2) Determine the fate of selected trace metals during shelf

sediment diagenesis,

(3) Define trace metal sources to shelf sediments.



NATURE OF METALS IN MARINE AND CONTINENTAL SHELF ENVIRONMENTS

This section discusses previous work on the geochemical cycle of

elements in marine environments. The geochemical cycles are defined in

terms of sources, pathways, and sinks of the elements. Discussion is

focused on those aspects of the marine environment that can be related

to the geochemical behavior of metals in continental shelf environ-

ments. Trace metal diagenesis in marine sediments will also be

discussed.

Sources of Metals to Shelf:
 

Sources of trace metals to marine and therefore continental shelf

environments have been summarized by Schutz and Turekian (1965) as:

(1) stream and river,

(2) submarine volcanism,

(3) submarine alteration or solution of non-volcanic material,

(4) eolian,

(5) glacial discharge, and

(6) anthropogenic.

Eolian and glacial discharge are considered minor sources of trace

metal input into the continental shelf (Schultz and Turekian, 1965).

Submarine alteration and submarine volcanism on the other hand are

difficult to distinguish as unique sources to shelf sediments and are

therefore classified together as a ridge source. In the case of the

Amazon River system, the anthropogenic input is considered negligible



(Drever, 1982). Ridge systems and river runoff can therefore be con-

sidered the two major sources of trace metal input into the shelf

sediments.

Several marine environments have been studied (estuaries, deep

ocean sediments, ridge systems, continental shelf and fjords) with

regard to the delineation of separate trace metal sources. Factor

analysis was used to define the relative importance of each source

input (Imbrie and Van Andel, 1964). In this research two basic types

of multivariant factor analysis were utilized, Q-mode and R-mode.

Q-mode correlates two samples on the basis of the variables, whereas

R-mode compares the relationships between the variables on the basis of

the samples (Kerlinger, 1973; Nelson, 1981; Parks, 1970; Imbrie and Van

Andel, 1964).

Mathematically, Q and R-mode factor analysis treat each sample or

variable as a vector and resolves it into a small number of component

vectors (Imbrie and Van Andel, 1964). Frequently, the original or raw

data matrix must be transformed, but this transformation should in no

way affect the accuracy of the program because relative proportions of

variables are preserved (Bopp, 1981; Loring, 1982). This transforma-

tion of raw data allows every variable to have equal weight in the

statistical program despite the ranges observed in variable's

concentration.

The results of Q-mode factor analysis are written in two matrixes,

the FS-matrix and the B-matrix. The Fs-matrix is a table listing

combinations of the variables that define the compositional end-members

for each of the factors. The B-matrix is a matrix of the influence

exerted by each end-member (i.e., matrix relates the intensity of



correlation between the factors) on each sample (Bopp, 1981; Bopp and

Briggs, 1981). In the scaled varimax factor listing (FS-matrix), if

all variables were equally represented their varimax factor value would

be 1.000. A strong positive value represents a positive correlation.

A zero value represents no correlation and a strong negative value

represents an inverse correlation with the matrix for that factor. A

contour map of the matrix for each factor is generated and illustrates

the distribution of factors in the study area (B0pp, 1981; Bopp and

Biggs, 1981).

Most marine environments that have been studied have shown several

source inputs. For example, Bopp and Biggs (1981) have identified

three sources of metals to Delaware Bay sediments (representative of

(1) a terrigenous natural background level source; (2) an oceanic

source; and (3) a river source). Holmes and Martin (1978) on the other

hand have determined two sources of trace metal origin to the continen-

tal shelf in the Gulf of Mexico (a natural background source and an

anthropogenic source). In addition, Loring (1976, 1976b, 1979, 1982)

has delineated two sources of trace metal input to the Saguenary Fjord;

an industrial source and a natural source. Harding and Brown (1975)

also investigated trace metal sources in the sediments of the Pamlico

River Estuary, North Carolina. They found that the sources include a

background (natural weathering) input source, and an industrial

(anthropogenic) input source. Bender gt al., (1971) studied sediments

in the East Pacific Rise and found a seawater source and a ridge

volcanism source. Edmond gt al., (1982) dealt with sediments in the

East Pacific Rise and concluded that the hydrothermal input in the

oceans are substantial compared with fluvial transport. Heath and



Dymond (1981) identified 5 sources of input to Nazca plate sediments (a

biogenic, detrital, hydrothermal, authigenic and solution residue).

The detrital, hydrothermal and biogenic sources are the three dominate

sources of trace metal input to the Plate sediments. The detrital cone

ponent is the major input source for trace metals to the Plate sedi-

ments near the continental coast of South America, whereas the hydro-

thermal component is the major source of input to ocean sediments near

the East Pacific Rise. The hydrothermal source is undetectable at 2500

km east of the East Pacific Rise (Heath and Dymond, 1981; Dymond,

1981).

The previous research cited above has shown that (I) when an

anthropogenic source is present it is dominate; (2) when a study area

is located near a ridge system, the hydrothermal source is dominate;

(3) when a study area is located near a continental coast, the detrital

input is dominate and (4) if 2500 km from a ridge source, ridge input

is undetectable. Therefore, the concentrations and distributions of

trace metals in a continental shelf environment should be able to be

interpretated in terms of a single source.

Pathways and Sinks in Marine Systems:
 

The pathways of metals in exogenic systems can be defined in terms

of five mechanisms of transport (Kharkar gt al., 1968). They are:

(1) in solution (free and complexed).

(2) in the lattice of minerals of the suspended load,

(3) associated with oxides of the suspended load,

(4) adsorbed on the minerals of the suspended load, and

(5) associated with solid organic material.

Trace metals can be removed from active transport in the marine

environment by:

(1) mechanical deposition of larger particles,



coagulation of the colloidal fraction,

humus colloids uptake

plankton microorganism extraction,

precipitation as oxide coatings,

adsorption in cation exchange sites, and

(in anaerobic conditions) forming insoluble sulfides

(KrauskOpf, 1956; Morozov, 1979; Harding and Brown 1975).
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These seven removal mechanisms would be the major sinks of trace metals

in marine and therefore continental shelf systems.

The chemical nature of the pathways and sinks of metals are very

similar as shown above and reflect whether or not the metal is in an

active state of transport. The chemical nature of a metal in exogenic

systems (independent of its state of transport) is defined then by the

chemical state it is in:

dissolved (free and complexed),

adsorbed on or in exchange position in clays,

precipitated as hydroxides,

adsorbed on or co-precipitated with Fe and Mn oxides,

associated with organic matter,

precipitated as sulfides,

in lattice sites of minerals.
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States of 2-6 are the states of the metal associated with the sediment.

States 2-5 are collectively called the hydromorphic fraction or phase

and state 6 is called the detrital or residual fraction. Metals in

these fractions are normally differentiated by a series of selective

chemical attacks on the sediment as discussed in the methods section.

After the sediment has been chemically characterized, the metals are

said to be partitioned among the different fractions of the sediment.

The following is a summary of work that has been done in defining

these fractions for metals in marine sediments. Loring (1975, 1976,

1976b, 1979, 1982) studied trace metals in the sediments of the

Saguenary Fjord. He found that the highest concentrations are found in

mud (fine-grained) sediments and that the lowest concentrations occur



in the sandy (coarse) sediments (i.e. Co, Ni, Cr, Zn, Cu, and Pb con-

centrations increase with decreasing grain size). The detrital phase

-of Co, Ni, Cr, Zn, Cu, and Pb concentrations account for 71-98% of the

total elemental concentrations in Fjord sediments. Holmes and Martin

(1978) trace Cr, Cu, Fe, Mn, Ni, Zn, Ba and Pb migration in a continen-

tal shelf environment in the northwest Gulf of Mexico. They concluded

that the most important factor affecting physical and chemical process

within the sedimentary environment are variation in sediment accumula-

tion rates. Brannon st 31., (1979) researched Cu, Fe, Mn, and Zn in

sediments from Mobil Bay, Alabama. They defined selective extraction

phases investigated as adsorbed (ion exchangeable) on sediment materi-

al, reducible (solubility and migration controlled by oxidation-reduc-

tion reactions), bound in organic matter and residual. Iron in the

reducible phase has a value of 68-79%. 0f secondary importance to Fe

is the organic phase (12-19%). Combined, the reducible and organic

phases represent 90% of the total Fe concentration in the sediments.

Manganese has 15-35% of total metal concentration in the reducible

phase, 35-44% in the organically bound phase and 8-12% in the residual

phase. Together, the organically bound, residual and reducible phases

account for 78-80% of total Mn concentrations in the sediments. Copper

has 51-61% of total metal retained in the residual phase. The organi-

cally bound phase is of secondary importance with 32-41% of total metal

concentration. Combining the residual and organic phases, they repre-

sent 92% of total Cu in the sediments. Zinc has 52-59% of total metal

concentration held in the organic phase and 38-44% in the residual

phase. United, they equal 95% of total Zn concentration to the Bay

sediments (Brannon st 31., 1974). Harding and Brown (1975) studied Co,
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Cr, Cu, Ni, Pb and Zn in the Pamlico River Estuary. They found that

factors affecting trace metal uptake in sediments included an enrich-

ment of trace metal concentrations in clays and organic matter. They

stated that the surficial distribution of fine sediments appear to be

due to the patterns of water circulation. Trace metal incorporation

with clay sediments and organic matter in the estuary were dependent on

temperature, pH, Eh and clay mineral type (the relative importance of

each was undefined). Harding and Brown (1975) explain trace metal dis-

persal in the estuary based on the relative mobility of the elements.

Cr is the most immobile element studied. It quickly drops out of the

water column upon entering the estuary and is not dispersed throughout

the Bay sediments. The moderately immobile trace elements, Co, Cu, Ni

and Pb (relatively compared to the other elements studied) remain in

solution, are circulated from their industrial source and are dispersed

in clays and organic matter throughout the estuary sediments. Cosma st

31, (1979) studied trace metals (Cr, Cu, Ni, Mn) in surface Sediments

in the continental shelf area between Arenzano and Capo Noli in the

Liqurian Sea. Cr was controlled by pollution inputs. Nickel concen-

trations were accounted for by stream input of eroded basic rock

outcrops. C0pper concentrations are associated with the organic frac-

tion. Manganese concentrations are related to sediment textures.

Turekian and Imbrie (1966) researched deep sea sediments from the

Atlantic Ocean. They found that the trace elements Ba, Co, Cu, Ni, Pb,

Cr and Mn showed no correlation with clay mineralogy or depth of water.

There was a strong correlation of metals Mn, Ni, Co with areas of low

clay accumulation rates possibly due to a fine grained pelagic compo-

nent. Morozov (1979) studied migration of Fe, Mn, Zn, Cu, Ni, Co, Cr,



11

and Pb around the mouths of several rivers. The general conclusions of

this investigations were: Trace metal concentration in the suspended

and dissolved forms decreased in the sequence river-estuary—sea-ocean;

The portion of suspended Fe and Mn forms decrease from the river (97%)

to ocean (7%); the mechanical deposition of the larger particles occurs

near the mouth of a river; coagulation of the colloidal fraction and

the humus colloids take up a large fraction of trace metals at the

mouth of a river; and sea/fresh water zones show extensive plankton

microorganism development which extract metals from the water column.

Summarizing past research these conclusions can be drawn: (1)

trace metal concentrations increase with decreasing grain size; (2)

there is no correlation with clay mineralogy or depth of water from the

Atlantic deep-sea sediment core samples; (3) an important factor

affecting processes in a basin is the variation in sediment accumula-

tion rates; and (4) the relatively immobile elements will drop out of

the water column upon entering an estuary from a river source.

Diagenesis of Metals in Marine Sediments:
 

Chemical conditions of sediments can change with depth as a result

of compaction and age (Bonatti gt al., 1971). Factors affecting the

chemical conditions are: changes in Eh, sediment compositon, tempera-

ture, bioturbation, and pH (Yen and Tang, 1977). Eh values normally

decrease with depth in sediments (Addy st 31., 1976). The relatively

mobile elements should be enriched in the oxidized sediment zone (Ni,

Fe, Mn, Co) (Addy gt al., 1976; Holmes and Martin, 1978; Heath and

Dymond, 1981); while less mobile elements like zinc and c0pper show

little migration in the sediment column (Addy 33 al., 1976). Brooks gt

Eds, (1968), Bonatti et al., (1971) concluded that Fe and Cu are not
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mobile elements and show no overall trend to increase with sediment

depth, and Fe seems to show inconsistent behavior during diagenesis.

Ba and Pb are also relatively immobile elements and according to Holmes

and Martin (1978) show no overall trend with depth. Brannon ft 31.,

(1979) stated that no patterns of migration for the elements Fe, Mn, Cu

and Zn could be conclusively drawn. Generally, if an environment is

reducing, the elements with higher redox potentials should go into

solution and if an environment is oxidizing they should precipitate.

In this way the higher redox potential elements migrate up the sedi-

ment column, creating an enriched metal concentration on the top

centimeters of the ocean floor (Addy gt al., 1976).

In summary, these investigations show that: (1) Ni, Co, Mn should

be enriched in the upper centimeters of the sediment column; (2) Ba,

Pb, Zn, Cu should not be enriched nor depleted in the upper centimeters

of the sediment column; and (3) Conflicting Fe behavior exists.

This summary shows that much research still needs to be done. No

research involving source delineation in unpolluted continental shelf

sediments has been reported. In this investigation, the chemical par-

titioning data on the Amazon Continental Shelf coupled with factor

analysis can aid in the resolution of trace metal sources to shelf

sediments. Chemical partitioning data with depth in Amazon Shelf sedi-

ments will help to eliminate conflicting diagenetic trace metal behav-

ioral observations. Exploring trace metal behaviors encountered when

fresh and oceanic waters merge will aid in the investigation of the

controls or aid in determining the controls of geochemical cycling of

trace metals.



STUDY AREA

The study area is located on the Continental Shelf at the mouth of

the Amazon River (Figure 1) and extends from a latitude of 52°N to 46°E

and a longitude of 2°S to 6°N. The Amazon River Basin lies entirely in

the central equatorial area, extending from 5°N to 20°S longitude and

from 50°N to 77°N latitude (Gibbs, 1967; Stallard, 1980). The Amazon

River drains a diverse climatic area ranging from the artic Andean

Mountains to the tropical rain forests. Temperatures vary from less

than 15°C in the Andeas to 28°C in the tr0pical forests (Gibbs, 1967).

The Amazon River Drainage Basin is the largest in the world,

draining an area 6.3 x 106 km2 (Keller, 1962). The river drains

diverse geological environments (Figure 2) comprising active orogenic

zones, epiorogenic uplift zones, stable cratonic zones and active sedi-

mentary basin zones (Gibbs, I967; Stallard, 1980). The Amazon River

has an average discharge of 1.7 x 105 m3/sec, supplying 18% of all

water from rivers into the ocean (0ltman, 1968; Drever, 1982). Sedi-

ment influx ranges from 8-9 x 108 tonnes/year; influx was measured

at Dbidos a site marking 80% river flowage (Figure 4) (Holeman, 1968).

The dissolved load is 2.9 x 108 tonnes/year (Meade st 31., 1979).

The clay content at the mouth of the river consists of 33% illite, 31%

kaolinite, 27% montmorillite, and 2% chlorite (Milliman et al., 1975).

Precipitation in the Amazon River Basin ranges from less than 2000

mm/year to over 3500 mm/year (Stallard, 1980; Hoffman, 1968). The

13
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Figure 1. Study area and location of sampling stations.

 



Figure 2.
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Morphostructural Map of Amazon Drainage Basin (Stallard,

1980).
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Symbol key:

CONSTRUCTIVE STRUCTURAL RELIEF ELEMENTS

Trend of folded young mountain ranges of the Andean system.

Crest of horst mountains and monoclimes.

Fault flexure.

Lithological. Step, escarpment.

DESTRUCTIVE NON-STRUCTURAL RELIEF ELEMENTS

Old erosion. Surfaces of Mesozoic Tertiary age.

Occurrence of inselbergs.

Crest of residual relief.

ACCUMULATIVE RELIEF ELEMENTS

Quaternary fluvial. Alluvial or eolian deposits (in the

Andes including glacio-fluvial and volcanic tectonic mudflow

deposits).

Occurrence of Late-Tertiary and Quaternary lacustrine or

marine deposits.

Pleistocene loess with ash-admixtures.

Sand dunes.

Pleistocene glacial deposits.

Occurrence of volcanoes.

Salt flat.

Lake.

 



Figure 3.
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Typical Surface-water salinities (O/OO) during wet season

conditions (April-May, 1968) and dry season conditions

(November, 1967) of the surface waters off the Amazon.

Profiles in the upper right hand corners show vertical

salinity gradients in profiles taken directly seaward of the

Amazon mouth. (Milliman gt_al., 1975).
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Figure 4. Map of Amazon river, showing locations on mainstream

tributaries where sediment loads were measured in 1977 for

the study by Meade gt_gl., 1979.
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river has a low buffering capacity and pH values range from 6.5-7.5

throughout the year (Schmidt, 1972). The waters of the Amazon also

appear thoroughly mixed vertically (Gibbs, 1967).

The Amazon River flows onto the shelf and into the Guiana Current.

The Guiana Current is an extension of the South Equatorial Current

which flows in a northwesterly direction along the east coast of South

America (Ryther et al., 1967; Eisma st 31., 1971). At the mouth of the

river, 95% of the terrigenous sediment from surface waters settle out

prior to 3 0/00 salinity (Milliman gt al., 1975). Figure 3 shows sur-

face water salinities for two seasons--the dny season, November, and

the wet season, April-May.

The width of the Shelf ranges from 100 to 300 km. The bathymetric

chart (Figure 1) of the Continental Shelf reveals a relatively flat

inner shelf to the 40 meter isobath. There is an abrupt change at this

point and a steepening in slope appears until the 60 meter isobath.

The change of slape represents the foreset of a subaqueous prograding

delta (Kuehl gt al., 1982; Nittrouer 33 al., 1983). Surface grain size

type distribution are shown in Figure 5. The upper two centimeters of

shelf sediments are composed of (1) a mud (silt and clay) zone occupy-

ing the inner shelf seaward and northwestward of the Amazon River mouth

and (2) a sand zone dominating the rest of the outer shelf region.

Three detrital sedimentary deposits are observed from the surface sedi-

ment on the Amazon Continental Shelf (1) an outer shelf sand deposit;

(2) an inner shelf mud deposit; and (3) mud interbedded with sand

deposit (K“9h].EE.El°’ 1982; Nittrouer gt al., 1983). The areal dis-

tribution of sediment grain size is in Figure 6. Outer shelf sands

(median grain size 1.5-3.0 0) show moderate to good sorting. Inner



Figure 5.
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Distribution of grain types at 0-2 cm depth on the Amazon

Continental Shelf (Nittrouer gt al., 1983).
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Figure 6.
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Areal distribution of mean grain size on the Amazon

Continental Shelf (Nittrouer gt al., 1983).
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shelf muds (median grain size 6-9 0) are poorly sorted (Nittrouer gt

‘31., 1983).

Several models have been proposed to explain the sedimentary

structures and grain size distribution on the Amazon Continental Shelf

(Milliman et al., 1975; Gibbs, 1976; Nittrouer gt al., 1983). Milliman

'gtnal., (1975) hypothesizes that no modern muds are being deposited on

the Amazon Shelf, except on a small nearshore zonal area. However,

Milliman 3: al., (1975) states that two distinct periods of sedimenta-

tion have occurred in Quaternary time. One occurring at high sea level

and the other at low sea level (60-80 meters below present sea level).

During high sea level periods, inner shelf sediment accumulation occurs

only in a narrow nearshore belt of mud. The majority of muds, however,

are deposited at low sea levels. In direct opposition to Milliman gt

al,, (1975) theory are Pb-210 data on shelf sediments. The Pb-210

dates indicate that modern mud accumulation is presently occurring

(Figure 7) (Kuehl 33 al., 1982; Gibbs, 1976).

A second theory to explain the physical processes on the Amazon

Continental Shelf was pr0posed by Gibbs (1976). Gibbs (1976) states

that the Amazon River waters move offshore as a plume and is carried

northwestward. Upon entry into the shelf, river particles settle out

and are transported landward by bottom currents. A landward fining of

particle size should result. Recent data, however, reveal an absence

of reverse grading, contradicting the sedimentation model of Gibbs

(1976) (Figure 8) (Nittrouer gt al., 1983; DeMaster, personal communi-

cation 1982).

A recent model proposed by Nittrouer st 21. (1983) suggests that

modern sediment accumulation occurs as a result of a subaqueous delta
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Figure 7. Distribution of sediment acguaulation rates on the Amazon

Continental Shelf based on Pb geochronology. (Kuehl

3331., 1982).
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prograding over relict basal sands. Nittrouer 33 al., (1983) hypothe-

sizes that a turbulent jet emanates from the river mouth and flows

across the inner shelf. Their hypothesis is consistant with sediment

accumulation rates based on Pb-210 data (Figure 7), sedimentary deposit

data (Figure 5) and sediment grain distribution data (Figure 5).

At low sediment accumulation rates, the effects of bioturbation on

the disruption of sedimentary structures increases (i.e., original

stratification is preserved in areas of highest sediment accumulation

rates with minimal bioturbation). A strong correlation therefore

exists between accumulation rate and sedimentary structure (Kuehl gt

Eflr’ 1982). The model of Nittrouer st 21., (1983) is the most consis-

tant with present data and is therefore the accepted theory for use in

this research.



METHODOLOGY

A research cruise to the Amazon Continental Shelf took place in

October 1979. Shelf sediments (Figure 1) were sampled using an N.E.L.-

Reineck type box corer (20 cm x 30 cm cross-sectional area), in order

to maintain core stratigraphic integrity. These cores and soil samples

from Belem (Figure 1) were immediately subsampled and shipped to

North Carolina State University Laboratories. At North Carolina State

University a series of analysis including grain-size analysis and

Pb-210 analysis for sediment accumulation rate data were performed

(Nittrouer et al., 1983).

The cores were again subsampled for trace metal analysis in the

Michigan State University Geochemistry Laboratory. The vials contain-

ing the Amazon sediments were placed in a 40°C oven for 96 hours, to

completely dry the wet core samples. Each sample was dry sieved with a

brass U.S. standard .212 mm sieve Opening (65 mesh) sieve. After each

sample, the sieve was placed in a sonic cleaner filled with distilled

water for washing. After 10 minutes in the sonic cleaner, the sieve

was rinsed with double distilled water and placed on its side to dry to

prevent atmospheric or dust contamination (Bopp, 1981). To insure no

contamination of the brass sieve on sediment samples, two identical

samples were processed; one passing through the sieve, the second

unsieved. Differences in the two samples were not statistically

33
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different, therefore the sieve offered no significant source of contam-

ination to the sample.

Each sample (5.000 grams dry weight of the less than .212 mm frac-

tion) was weighed on a Mettler HL 52 scale and placed directly into

pre—treated polyethylene centrifuge bottles. (Pre-treatment of the

polyethylene centrifuge bottles included the following: (1) washing

with soap and water, (2) rinsing with distilled water, (3) soaking in a

l:3 HCL solution overnight, (4) rinsing in double distilled water three

times and (5) thoroughly drying).

A series of sequential chemical extractions were performed on each

5.000 gram sample (Figure 9). Extractions were performed in order to

determine the partitioning of trace metals from four hypothesized

fractions:

Hypothesized sediment fraction Chemical response of sediment to attack

(1) Clay Exchangeable

(2) Fe, Mn oxide Hydromorphic Easily and moderately reduced

(3) Organic Oxidized

(4) Residual Detrital Resisent

 

(Gephart, 1982).

The procedure utilized is a combination of attacks performed by Tessier

st 21" (1979); Gibbs (1977); Gephart (1982); and Gupta and Chen (1975)

and is summarized below:

(1) Exchangeable: 40 ml of 1 M MgClz, pH=7 were added to the

5.000 gram less than .212 mm dry sediment sample. The mixture was con-

tinuously agitated at room temperature for one hour (Tessier gt al.,

1979; Gibbs, 1977).
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Figure 9. Flow chart of selective chemical attacks.

DRY SEDIMENT

I
.212 mm SIEVED 5.000 gms

 

 

40 ml 11M MgClz @ pH=7

for 1 hour
 1

CENTRIFUGE : Decant, leachate defined as Exchangeable Fraction
 1

NASH RESIDUE (SEE TEXT)

100 mlI.O4 M NHZOH-HCL in

25% (v/v) HOAc

@ 96 i 3°C for 6 hours

 

 

l

CENTRIFUGE : Decant, leachate defined as Oxic Fraction
 

l

NASH RESIDUE (SEE TEXT)
 

l

15 ml .02M HNO3 and

25 ml 30% H O @ pH=2

@ 85t 2°E Tor 2 hrs

add 15 ml 30% H20 heat

@ 85t 2°C for hrs

cool

add 25 ml 3.2 M NH4OAc in

20% (v/v) HNO3 + distilled

water to 100 ml volume

CENTRIFUGE : Decant, leachate defined as

Organic Fraction

 

NASH RESIDUE (SEE TEXT)
 

DaY (at 40°C overnight)

'T—T'T'l

.200 gms sample and

1.000 gms

LiBO3 Fuse

Dissolve in 5 ml HCL +

50 ml H O

Dilute to 1 0 ml volume

Defined as Fraction
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(2) Fe-Mn Oxide: The residue from (1) was leached with 100 ml of

0.04 M NHZOH-HCL in 25% (v/v) HOAc. This extraction was performed

at 96 i 3°C for six hours (Tessier 3131., 1979; Gephart, 1982).

(3) Organic: The residue from (2) was extracted with 15 ml of

0.02 M HNO3 and 25 ml of 30% H202 pH=2 (adjusted with HNO3)

heated to 85i2°C for two hours with occasional agitation (every

15—20 minute agitation). At the conclusion of two hours a second ali-

quot of 15 ml 30% H202 was added. The sample was then returned to

the water bath of 85i2°C for three additional hours, occasionally

agitating. After three hours, the sample was cooled to room tempera-

ture, at which time 25 ml of 3.2 M NH4OAc in 20% (v/v) HNO3 and

double distilled water (diluting sample to 100 ml) were added. This

mixture was stirred continuously at room temperature for 30 minutes

(Gephart, 1982; Gupta and Chen, 1975).

(4) Residual: 0.200 grams of dry residue from (3) were fused with

1.000 gram of LiBO3 at 1000°C in graphit crucibles for 15 minutes.

The fused sample was removed from the furnace and immediately placed in

a pre-prepared solution of 5 ml HCL and 50 ml double distilled water.

Once dissolved, the sample was diluted to 100 ml with double distilled

water. Duplicate fusions were run on each sample (Perkin Elmer Atomic

Adsorption Instruction Manual, 1973; Gephart, 1982).

Upon completion of each attack, except the residual fraction, the

sample was centrifuged for 12 minutes at 15,000 RPM. The supernate was

drawn off and stored in pre—treated 250 ml polyethylene storage

bottles. The residue sample was then rinsed with double distilled

water and centrifuged at 15,000 RPM for 12 minutes, prior to subsequent

extraction phases.
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The supernate from each selective chemical extraction phase and

the residual LiBO3 fraction were analyzed by either a flame atomic

adsorption 560 spectrOphotometer or by a graphite furnace atomic

adsorption HGA-ZZOO spectrOphotometer. Atomic adsorption control set-

tings for the elements analyzed by flame attachment in all matrixes

were modified from conditions stated in the Perkin Elmer Atomic Adsorp-

tion Instruction Manual (1978). The Instruction Manual does not, how-

ever, offer optimized control settings for different matrixes when ana-

lyzing by graphite furnace. Optimization for each element analyzed by

the graphite furnace for each of the four matrixes had to be performed.

Optimization for each element in each matrix analyzed was in accordance

with guidelines set forth in the Perkin Elmer Atomic Adsorption

Instruction Manual for furnace (1978). Optimized control settings for

the graphite furnace found in this study are summarized in Appendix II.

All sample sediments were also analyzed for total organic carbon

content by a modified Halkley-Black titration method (Gaudette st 31.,

1974). A .200 gram dried, less than .212 mm sieved sediment sample was

placed in a 500 ml Erlenmeyer flask. Precisely 10 ml of 1 N

K2Cr207 solution was added to each sample. The flask is then

gently swirled to mix sediment and solution. Next, 20 ml of concen-

trated H2504 were added to the flask and again gently swirled for

one minute. The mixture in the flask was allowed to stand at room

temperature for 30 minutes. A standardization blank was run with each

batch of samples. After standing 30 minutes, the solution was diluted

to 200 ml volume with double distilled water and 10 ml 85% H3PO4,

.20 grams NaF and 15 drops of diphenylamine indicator were added to the

flask.
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The solution in the flask was then back titrated with 0.5 N fer-

rous ammonium sulfate solution. The color progressed from an Opaque

green-brown to green upon the addition of the ferrous ammonium sulfate

solution. The color continuously shifted upon further titration to a

bluish-black-grey; at this point the addition of a few dr0ps of ferrous

solution shifted the color to a brilliant green end point (a one-drop

end point) (Gaudette gt al., 1974). The results of the analysis were

calculated by the following equation:

Organic Carbon = 10(1-T/S)((.34)(.OO3)(100/.20))

T= sample titrated; S = standardization blank titration;

.003 = meq weight of carbon; .34 = normality of K2Cr407;

N = weight of sediment sample; 10 = volume of KZCr407

(Gaudette et al., 1974).

The total organic carbon (TOC) content is presented in Appendix I.

The data from the chemical partitioning attacks were reduced by

factor analysis, both R and Q-mode. Factor analysis can aid in reveal-

ing simple patterns from complex data sets. Data from the chemical

partitioning attacks fulfills the three requirements of factor analysis

utilization:

(1) conveniently coded -- values in ppm,

(2) large number of sample volume -- 84 samples, chemically frac-

tionated into four phases, analyzed for 10 elements, and

(3) prior knowledge of relationships is inadequate

(Kerlinger, 1973;

Imbrie and Van Andel, 1964).

The data were factored by factor analysis in original (raw) form and

after transformation of the data by natural log. The transformation of

the data was done in order to see if any improvements on correlation

could be made since geochemical data frequently does not have a normal

distribution.



RESULTS AND DISCUSSION

Results of the chemical partitioning studies for the metals are

presented in Appendix I. These results will be discussed in three

parts; general nature of partitioning of metals in the sediments, dia-

genesis of metals in the sediments in terms of metal partitioning, and

source of trace metals to the sediments as interpreted from R and

Q-mode factor analysis of the partitioning data.

Chemical Partitioning of Metals in Amazon Shelf Sediments

Two aspects of the chemical partitioning of the metals in the sed-

iments are discussed: (1) a general summary of the nature of the par-

titioning in the sediments and (2) the nature of the partitioning over

the shelf. In Table 1 the partitioning results from Appendix I are

summarized as a function of sediment type. The sediments in the study

area were classified by Nittrouer st 31., (1983) as to type using the

classification scheme of Folk (1974). Sediment types are defined as a

function of where the sediment plots on a ternary diagram with respect

to the three end-member compositions of clay-sand-slit. Numerical

representation of sediment types found by Nittrouer st 31., (1983) is

shown below in Figure 10:

Figure 10. Numerical representation of sediment type from Folk (1974).
(MY

Type 1 = sand Type 4 = sand-silt-clay

Type 2 = sand-silt Type 5 = clayey-silt

Type 3 = silt-sand Type 6 = silty-clay
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Four chemically defined sediment fractions are shown on Table 1

(exchangeable, Fe-Mn oxide, organic matter, and detrital). The values

are the average of the percent of the metal in a particular fraction.

Since these values are averages of percents, the totals of a metal in a

sediment type are not necessarily 100%.

Table 1 also present a summary of the work of Gibbs (1977) on the

partitioning of selected metals in the suspended load of the Amazon

River. Gibbs samples were taken off Macapa' Brazil and therefore would

not be influenced by marine water (Gibbs, 1977). Although Gibbs sam-

ples were taken approximately five years before the present study sam-

ples were taken, little has happened climatically or environmentally

that would change the nature of the partitioning of metals in the sus-

pended load. It is suggested then that the results of Gibbs (1977) in

general reflect the nature of metal partitioning in the suspended sedi-

ment today. Gibbs data can therefore be used to study gross dif-

ferences in metal partitioning in the sediments between the freshwater

environment of the Amazon River and the marine continental shelf envi-

ronment. Table 2 is a summary of partitioning of metals in the soils.

Soil samples were taken at Belem.

A summary of the behavior of each metal follows. SuSpended load

sediments refers to Gibbs (1977), shelf sediments refer to surficial

(O—Scm) Continental Shelf sediments.

Chromium: Most of the Cr (usually greater than 90%) is associated in

the residual fractions of the suspended load, shelf sediments, and

soils and suggests that most of the Cr addition to the oceans is in the

detrital phase of sediments. Of the hydromorphic phases in the shelf

sediment, Fe-Mn oxides are the most important in sequestering Cr;
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organic matter is second with the exchangeabie fraction pTaying a

reTativeTy minor roTe. This nature of Cr partitioning in sediments is

consistent with past work (Gephart, 1982).

The reTative partitioning of Cr amount in the sediment fraction

does not appear to be strongiy dependent on grain-type in the SheTf

sediments. There is, however, SignificantTy more Cr in the hydromor-

phic fraction of the sediments composed of sand (Type 1) than the other

sediment types, with the Fe-Mn oxide fraction becoming very dominate in

the sequestering of Cr. The nature of Cr partitioning in the sand

sediment is consistant with the higher amount of hydromorphic Fe in

this sediment type with respect to the other sediments (Tabie 1).

In generaT, there is sTightTy Tess metaT in the hydromorphic frac-

tion of the sheTf sediments compared to the suspended Toad sediments.

Organic matter is more important in sequestering Cr than Fe-Mn oxides

in the suspended Toad. The hydromorphic fraction of the soi1 better

refiects the partitioning in the suspended Toad rather than the sheif

sediments, in that the organic fraction is dominate. The exchangeabTe

and Fe-Mn oxide fractions have very minor roTeS in the sequestering of

Cr in the soiT sampTes.

The nature of Cr partitioning in the Amazon River environment sug-

gests that Cr undergoes a repartitioning from river to sheTf (e.g.,

organic fraction to Fe-Mn oxide fraction) and that the suspended sedi-

ment coqu be a source for dissoTved Cr to seawater (e.g., Tess Cr in

hydromorphic fraction of sheTf sediments). The direction of reparti-

tioning (organic matter to Fe-Mn oxide) suggests that organic matter

coqu be a source of the dissoTved Cr within the sediment.
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Manganese: The Fe-Mn oxide fraction and residuaT fraction, combined

account for the majority of Mn concentration in both suspended Toad and

sheTf sediments (approximateiy 80-95%). The amount of Mn in the Fe-Mn

oxide fraction, the dominate fraction, decreases from suspended Toad to

marine environment, whereas Mn in the detritai fraction in both sus-

pended 10ad and sheTf remains simiTar (33%). The Mn organic fraction

concentrations are of minor importance (5%) and are simiTar for sheTf

and suSpended Toad sediments. The exchangeabie fraction accounts for

Tess than 1% totai Mn in the suspended Toad sediments but increases in

the sheTf sediments to 15%. In generaT Mn can be quite mobiie in this

system Since most of the Mn occurs in the hydromorphic phase.

Mn partitioning in the oxide, organic and detritaT fractions of

sheTf sediments, appear to be infTuenced by grain-type. There is more

Mn hydromorphics in cTay sediments (Type 6) than in the other sedi-

ments. Within the hydromorphic fraction, the oxide fraction is domi-

nate and increases from sand (Type 1) to ciay (Type 6) sediments, 35%

to 55% respectiveiy. The organic fraction behaves simiTar to the oxide

fraction (e.g., Type 1 at 1.8% increases to Type 6 at 55%). This Mn

behavior is contrary to Cr hydromorphic behavior which decreases from

sands (Type 1) to cTays (Type 6) and Cr detritaT fraction behavior

which increases from sand (Type 1) to cTay (Type 6) sediments.

The Mn in soiTs have a different distribution pattern among the

four fractions than either the suspended Toad or sheTf sediments. 0f

major importance in Mn sequestering in 50115 is the detritaT fraction

(at greater than 89%). The hydromorphic fraction is of minor impor-

tance with the oxide fraction being the most insignificant. This is a

drastic change from SheTf and suspended Toad sediments which had the
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oxide fraction being of primary importance. In generaT, the data from

TabTe 1 indicates that Mn undergoes repartitioning within the hydromor-

phic fraction from a river to a marine environment (e.g., oxide frac-

tion to exchangeabTe fraction).

222315: ‘The detritaT fraction is the fraction accounting for most of

Co in sheTf sediments and soiTs (90% and 99%, respectiveiy). The domi-

nance of the detritai fraction over the hydromorphic fractions has been

found previousTy (Loring, 1979). The detritaT fraction is aTso domi-

nate (44%) versus the exchangeabie, organic or oxide fractions. In the

suspended Toad sediments, the hydromorphic fraction is the dominate

fraction for Co concentration. Within the hydromorphic fraction for

the suspended Toad sediments, the Fe-Mn oxide fraction dominates (28%).

of secondary importance is the organic fraction (19%), and of Teast

importance is the exchangeabTe fraction (8%).

The partitioning of Co in sheTf sediments and soiTs are simiTar

and differ from suspended Toad sediments. SheTf sediments and soiTs

have 90-99% of Co sequestered in the detritaT fraction with the hydro-

morphic fraction pTaying a minor roTe. However, in the suspended Toad

(River) sediments the hydromorphic fraction dominates (e.g., 56%).

There are sTight grain-type variations observed in Co. The hydro-

morphic fraction increases from sand (Type 1) to cTay (Type 6) sedi-

ment. Co partitioning among various grain-types in sheTf sediments is

simiTar to Mn partitioning (e.g., the hydromorphic fraction increases

from Type 1 to Type 6).

GeneraTTy, the nature of Co partitioning in this system suggests

that Co goes through repartitioning from river to sheTf (e.g., hydro-

morphic fraction to detritai fraction) and that the change in reTative
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importance of the hydromorphic fraction (56% to 6%) coqu be a source

for dissoTved cobaTt to seawater.

£22233; Approximateiy 79% of the Cu is associated in the detritai

fraction (suspended, sheTf, and soiT horizons). Therefore, most of the

Cu in sediments brought into the ocean is in the detritai phase. The

hydromorphic fraction (suspended and SheTf) comprise the remaining 21%

of Cu sequestered in sediments. Within the hydromorphic fraction, the

oxide fraction is dominate (8-13%), foTTowed by the organic fraction

(6%) and the exchangeabie fraction (2-5%). Comparing the organic and

detritaT fractions for suSpended Toads and sheTf sediments, simiTar

percent concentration vaTues exist (6% organic fraction and 79% detri-

taT fraction). However, the exchangeabTe fraction draps from 5% to 2%

and the oxide fraction increases from 8% to 13% in suspended versus

sheTf sediments.

There is TittTe significant change among the different grain-types

(Types 1-6) in the detritaT or hydromorphic fractions, aTthough, there

is a sTight infTuence of grain-type on the exchangeabTe fraction. The

exchangeabie fraction decreases from Type 1 (2%) to Type 6 (.3%).

The nature of Cu partitioning between a soiT core (sampTe from

BeTém) and soiT horizons (A-D) are different. SoiT horizons have a

simiTar partitioning trend for Cu in sheTf and suspended Toad sedi-

ments. The soiT core has a residuaT fraction of Cu reTative percent

vaTue of 23-55%. The hydromorphic fraction has a reTative Cu concen-

tration vaTue of 21% for suspended Toad sediments, sheTf sediments and

soiT horizons and increases to 45-77% for soiT core.

In generaT, there is TittTe repartitioning between the hydromor-

phic and detritai fractions from river to sheTf environments. But,
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within the hydromorphic fraction repartitioning occurs. Repartitioning

of Cu from river to sheif environments is via the exchangeabTe fraction

to the oxide fraction. This suggests that the oxide fraction is pTay-

ing a greater roTe in sequestering Cu and that the exchangeabie frac-

tion may reTease Cu to seawater (i.e., be a source of Cu to seawater).

.1392; The major phases of Fe in the suspended sediments are the detri-

taT fraction (46%) and oxide fraction (46%). There is a dramatic

increase (46%-82%) in Fe detritaT fraction and subsequent decrease in

hydromorphic fraction from suspended Toad to sheif sediments. The dom—

inate Fe fraction within the hydromorphic phase of the sheif sediments

is the oxide fraction (17%). The organic and exchangeabTe phase are of

minor significance.

SheTf sediments are sTightTy grain-type dependent. The detritaT

fraction in Type 1 is at a Tower reTative percent vaTue than Type 6

(73% to 82%, respectiveiy). There is a corresponding decrease in

hydromorphic fraction from Type 1 to Type 6.

SoiTs (core and horizon) and sheif sediments have simiTar parti-

tioning data. The detritaT fraction dominates Fe partitioning with the

oxide fraction of secondary importance. The organic fraction and

exchangeabie fraction are of minor importance.

Repartitioning does occur in Fe sediment concentrations between

river and sheif sediments. The hydromorphic fraction decreases Fe con-

centration vaTues whiTe the residuaT fraction increases from river to

sheif environments. This suggests that the suspended Toad can be a

source of Fe to seawater.

512321: In the suspended Toad sediments the reTative partitioning of

Ni is dominated by the oxide fraction (45%) and the detritaT fraction



50

(38%). 0f minor importance are the organic fraction (13%) and the

exchangeabTe fraction at 3%. The sheTf sediments have different parti-

tioning of Ni. Most of the Ni in the sheTf sediments are in the detri-

taT fraction (87%). Partitioning of Ni in the hydromorphic fraction of

the sheTf sediments is oxide fraction (7%), organic fraction (5%),

exchangeabie fraction 1%.

SheTf sediments appear sTightTy dependent on grain-type. The

residuaT fraction has a sTightTy higher concentration percentage vaTue

in Type 1 grain-type (94%) as opposed to Type 6 (87%). Corresponding

to this change, the hydromorphic fraction increases from Type 1 (6%) to

Type 6 (13%).

SoiTS, both horizons and core sampTes, behave in a simiTar parti-

tioning pattern as sheTf sediments but not as suspended Toad sediments

behave. SoiTs appear to have one dominate fraction (detritaT 95—99%)

for Ni. The hydromorphic fraction is minor and within this fraction,

the oxide fraction is at undetectabTe TeveTs.

The nature of Ni partitioning from suspended Toad to sheTf envi-

ronment suggests Ni repartitioning. The oxide fraction in the sus-

pended Toad sediment repartitions to the detritai fraction in sheTf

sediments. This repartitioning of hydromorphic fraction (eSpeciaTTy

the oxide fraction) can be a potentiai source for Ni to seawater from

suspended Toad sediments.

31355 Gibbs (1977) did not anaTyze for Zinc in suSpended Toad sedi-

ments and therefore there wiTT be no comparison between suspended Toad

and sheTf sediments for zinc. However, partitioning data for zinc is

avaiTabTe for soiT sampTes, sheTf sediment and sheTf sediment changes

with grain-type (TabTe 1). The residuaT fraction (73% for sheTf
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sediments) is the dominate fraction of Zn in sheTf sediments. The

oxide fraction is of secondary importance at 21% with both organic (5%)

and exchangeabie (1%) fractions being of minor importance.

Grain-type dependency is observed in the residuai as weTT as

hydromorphic fractions. There is an increase in detritai Zn for Type 1

(64%) to Type 6 (77%). Corresponding to this increase, is a reTative

decrease in the hydromorphic fraction (Type 1 at 36% to Type 6 at 23%).

A11 three individuaT phases (exchangeabie, oxide, organic) within the

hydromorphic fraction decrease from Type 1 (sand) to Type 6 (ciay).

The soiT horizons dispTay a simiTar behavior as sheif sediments.

The detritaT phase is dominate (76-78%) and the hydromorphic is of

Tesser importance. However, soiT core sampTes differ. They dispTay

two dominate fractions, the detritaT and the oxide.

Insmmmw:

(1) OnTy Cr and Cu have the majority of their concentration in the

residuaT fraction for aTT three environments (suspended Toad,

sheTf, soiT).

(2) Two fractions dominate the partitioning of Mn, Co, Ni, Fe in

suspended Toad sediments (aimost equaT fractions): oxide and

detritaT.

(3) In generaT, most metaTs (90%) are in a combination of residuaT

and oxide fractions.

(4) The hydromorphic fraction is dominate in controTTing the

behavior of Mn in both suspended and sheTf environments.

(5) A11 metaTs except for Mn and Cu show a decrease in the organic

fraction from river to sheif environments.

(6) A11 metaTs except for Mn and Cu show a decrease in the per-

centage of the metaTs in the hydromorphic fraction from river

to sheTf environments.

(7) In generaT, the reTative partitioning trends as a function of

grain-type are preserved for aTT metaTs.
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(8) The hydromorphic fraction for Mn, Co, Cu, Ni aTT have grain-

type trends which increase eTement concentrations from Type 1

and Type 6, Cr and Zn have a reverse trend.

(9) The reTative partitioning within the hydromorphic fraction is

highTy variabTe between soiT and sheTf environment, except for

Cr, the reTative partitioning of the metaTs between the soiTs

and suspended materiai are not simiTar.

(10) Cr, Co, Cu, Fe, Zn, Ni are partitioned simiTarTy in sheTf

sediments (detritai 73-94%; oxide 4-27%; organic .2-6%;

exchangeabie 0-2%).

(11) ReTative partitioning of Mn, Cr, Cu in the sediment percent is

the same in river and sheTf environments.

(12) Differences were observed in the reTative partitioning of Fe,

Co, and Ni between the sediments at the river and those of the

sheTf. The hydromorphic fraction (especiaTTy the oxide

fraction) is much smaTTer in the sheTf sediments.

The data can be interpretated to suggest that:

(1) Significant repartitioning occurs between water and sheTf

environments.

(2) Upon mixing with seawater the sediment coqu be a source of

metaTs to seawater, the order of importance of this source

decreases in the order Ni>Co>Fe>Cr.

(3) Decay (oxidation) of organic matter coqu be the source of

metai to seawater within the sediment.

Distribution of MetaTs on the SheTf:

The behavior of seiected trace metaTs in this system were studied

by the construction of contour maps of eTementaT concentrations in the

surface sediment (Figures 11-13). Distribution maps were created for

Zn and Ba. Zinc behavior was studied as a representative of a metaT

with both significant hydromorphic as weTT as residuaT partitioning.
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Figure 11. Contour map of zinc in the detritaT fraction of the surface

(9-5 cm) sediment of the Amazon Continentai Sheif.
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Figure 12. Contour map of zinc in the hydromorphic fraction of the

surface (9-5 cm) sediment of the Amazon Continentai SheTf.
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Figure 13. Contour map of totaT zinc in the Surface (0-5 cm) sediment

of the Amazon Continentai SheTf.
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Ba was chosen for study because it is an aTkaTine eTement and Shoqu

behave differentiy than the transition metaTs studied.

Concentrations of zinc in the continentaT sheTf sediments are

shown in Figures 11, 12, and 13 representing absoTute vaTues of Zn in

the detritaT fraction, hydromorphic fraction and totaT sediment,

reSpectiveTy. The concentration patterns are simiTar in each figure

and appear to refTect the distribution of sediment types on the sheTf

(Figure 5).

The concentration of Zn decreases from core Tocation 2 (Type 6) to

core Tocations 3,4,5,6 (Type 1). Core Tocations 30 and 33 (Type 1)

have corresponding Tower concentrations than core Tocations 31 and 32

(both of Type 5). Core Tocations 35, 29 and 28 aTT of simiTar type

(Type 6) dispTay simiTar concentrations. Cores 47-57, again refTect

grain-type composition; they dispTay simiTar grain-type compositions

(Type 5) and therefore simiTar concentration vaTues.

The dependency on grain-type for metai concentrations in the sheif

sediments can be further demonstrated by pTotting eTementaT concentra-

tion in the sediment versus grain-type. Figures 14, 15, and 16 are

such piots for Zn-totaT, Zn-residuai and Zn-hydromorphic, reSpectiveTy.

These Figures show distinct cTusters of Zn concentrations depending on

grain-type, with the biggest difference between Type 1 and Types 5 and

6 (sand and SiTt-cTay, respectiveiy). If the concentrations are

pTotted as ranked data, rather than as absoTute data, the differences

are made even cTearer. For exampTe, Figure 17 is a pTot of sediment

type versus Zn hydromorphic using ranked concentrations. One can

cTearTy see that the concentration distribution of the Zn in the sheTf

sediment can be expTained by the distribution of the various sediment



Figure 14.

Figure 15.

6O

PTot of sediment type versus concentration of zinc totaT.

Numbers refer to overTapped points.

PTot of sediment type versus concentration of zinc in the

detritaT fraction. Numbers refer to overTapped points.
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Figure 16.

Figure 17.

62

PTot of sediment type versus concentration of zinc in the

hydromorphic fraction. Numbers refer to overTapped

points.

Piot of sediment type versus concentration of zinc in the

hydromorphic fraction pTotted as ranked data.
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type over the sheif. The dependency of metaT concentration on grain—

type is supported by the works of Gupta and Chen (1975), Loring (1979).

On the Amazon Continentai SheTf, grain-type appears to controT metaT

concentration.

These resuTtS suggest that physicaT processes (mechanicaT deposi-

tion as a function of sediment type and sheTf hydrodynamics) are mainTy

reSponsibTe for the distribution of metaTs on the sheTf.

In an attempt to eTiminate the effect of grain-type on metaT con—

centrations when interpretating partitioning data, ratioed concentra-

tions were studied. By using ratios, other possibTe controTs (biogenic

and geochemicai) on metaT distributions in sheTf sediments can be

deduced (Long and Gephart, 1982).

Ratios of metaT concentration to AT were used to study metaT dis-

tribution independent of biogenic effects (ShoTkovitz and Price, 1980).

Figures 18 and 19 are concentration maps of Zn residuaT/AT residuaT and

Zn hydromorphic/AT totaT, reSpectiveTy. Both maps show a strong depen-

dency on grain-type and suggests that biogenic controTs on the distri-

bution of Zn in the sheif sediment is minor.

Zn, Ba/Fe + Mn oxide ratios were aTso utiTized. The Fe + Mn oxide

ratios were chosen because of the dependency of the oxide fraction on

grain-type and by utiTizing the ratio, normaTization with respect to

grain—type dependency was sought (Tessier 33 al., 1982). Figure 20 is

a concentration map of Zn oxide/Fe + Mn oxide. The Zn oxide ratio has

a uniform distribution across the sheTf. Figure 21 is of Ba oxide/Fe +

Mn oxide. The Ba oxide ratio has a high concentration (dump) at the

mouth of the river and vaTues decrease away from the coast. Figure 21

coqu be reiated to saTinity, as the river waters mix with the oceans a
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Figure 18. Contour map of the ratio zinc in the detritaT fraction

divided by aTuminum in the detritai fraction in the surface

(0-5 cm) sediments of the Amazon ContinentaT SheTf.
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Figure 19. Contour map of the ratio hydromorphic zinc concentration

divided by totaT aTuminum concentration in the surface (0-5

cm) sediments of the Amazon ContinentaT SheTf.
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Figure 20. Contour map of the ratio zinc in the oxide fraction divided

by iron and manganese in the oxide fraction in the surface

(0-5 cm) sediments of the Amazon Continentai SheTf.
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Figure 21. Contour map of the ratio barium in the oxide fraction

divided by iron and manganese in the oxide fraction in the

surface (0-5 cm) sediments of the Amazon ContinentaT SheTf.
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drop Miterrigenous sediment load occurs before 3 0/00 salinity

(Nfilliman.gtqal., 1975) (Figure 3). Both maps (Figures 20 and 21) no

longer show the strict grain-type dependency for the distribution of

the metal in the sediment, each map having a slightly different

distribution pattern.

Figures 22 and 23 show Zn hydromorphic/Zn residual and Ba hydro-

morphic/Ba residual, respectively. Both Figures (22 and 23) display an

increase in hydromorphic/detrital ratios as one moves in a direction

across the shelf, away from the coast. Also observed in Figure 22 is

the high ratio Zn values associated with sediments of Types 1 and 2

(sands). These Figures suggest that either the hydromorphic fraction

is a source for metals to seawater resulting in a decrease in hydromor-

phic fraction or that metal is repartitioned from the hydromorphic

fraction to the detrital resulting in an increase in residual fraction

to account for observed ratio trends.

Diagenesis of Metals in Amazon Shelf Sediments:

Sediment samples were taken as a function of depth at locations 10

and 42 (Figure 1). Core 42 and core 10 were found to have similar

trends and therefore only core 10 will be discussed. Metal concentra-

tions versus depth profiles are in Figures 24-31 for core 10. Figure

24 shows sediment type for samples with depth. Figure 25 is a plot of

Cr concentration with depth and shows that the organic and oxide phases

are of minor importance in controlling Cr concentration and have a con-

stant value throughout the core. Chromium concentrations in the detri-

‘tal phase, however, show several fluctuations. There is a decrease at

50 cm (silt composition), an increase at 220 cm (clay composition), a
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Figure 22. Contour map of the ratio zinc in the hydromorphic fraction

divided by zinc in the detrital fraction in the surface

(w-S cm) sediments of the Amazon Continental Shelf.
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Figure 23. Contour map of the ratio barium in the hydromorphic

fraction divided by barium in the detrital fraction.

 

 

  

 



77

 

Ba HYDROMORPHlC/Ba DETRITAL

 

    
 



Figure 24.
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Sediment type with depth for core 10 (Nittrouer gt_gl.,

1983).
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decrease at 310 cm (sand), and an increase at 350 cm (silt composi-

tion). This suggests for Cr that the detrital fraction is grain-type

dependent.

Iron concentration versus depth (Figure 26) shows relatively con-

stant concentration values for Fe in the oxide and detrital phases.

However, a slight decrease of Fe in these fractions is observed at 360

cm where a compositional change from sand-silt—clay to silty-clay

occurs. The exchangeable, and organic phases show a fluctuation in Fe

concentration at 100 cm; the exchangeable phase increases while the

organic phase decreases. At 200 cm there is a decrease in Fe concen-

tration and at 350 cm, another decrease in both exchangeable and organ-

ic phases. These changes in concentration reflect changes in composi-

tion. (Type 4 has a higher concentration value than Type 6). This

suggests that for Fe, grain-type plays a significant part in metal

concentration.

Mn concentration with depth (Figure 27) shows that the amount of

Mn in the exchangeable, residual and organic fractions is fairly con-

stant with depth. Manganese in the oxide fraction (the major phase of

Mn in the sediment) changes with depth as a function of sediment type.

The highest concentration values are in the sand-silty-clay composi-

tion, the lower concentrations appear in the sand and silty-clay compo-

sitions. Thus, for Mn, the concentration changes with depth and nature

of its partitioning suggests that Mn concentration is grain-type depen-

dent and that the total Mn concentration pattern reflects the Mn oxide

pattern.

Figure 28 is a plot of Zn concentration versus depth. The Zn plot

shows that concentrations in the organic and oxide phases are constant



F
i
g
u
r
e

2
6
.

C
o
n
c
e
n
t
r
a
t
i
o
n

o
f

i
r
o
n

w
i
t
h

d
e
p
t
h

i
n

c
o
r
e

1
0
.

S
y
m
b
o
l

k
e
y
:

0
E
X

e
x
c
h
a
n
g
e
a
b
l
e

f
r
a
c
t
i
o
n

I
O
R
G

A
O
X
D

o
r
g
a
n
i
c

f
r
a
c
t
i
o
n

o
x
i
d
e

f
r
a
c
t
i
o
n

I
R
E
S

d
e
t
r
i
t
a
l

f
r
a
c
t
i
o
n

-
T
O
T

t
o
t
a
l

F
e

c
o
n
c
e
n
t
r
a
t
i
o
n

83



W3 NI I-uaao

(

8
u S

N
-
J

P
P
M
I
I
O
N

S
T
O
O
m

2 l
i
l
i
i
i
m
”

  

$
5
0
-

 
E
X

O
G

 
 

C
O
R
E

I
O
I
R
O
N

84



F
i
g
u
r
e

2
7
.

C
o
n
c
e
n
t
r
a
t
i
o
n

o
f
m
a
n
g
a
n
e
s
e

w
i
t
h

d
e
p
t
h

i
n

c
o
r
e

1
0
.

S
y
m
b
o
l

k
e
y
:

0
E
X

e
x
c
h
a
n
g
e
a
b
l
e

f
r
a
c
t
i
o
n

I
I

O
R
G

o
r
g
a
n
i
c

f
r
a
c
t
i
o
n

A
O
X
D

o
x
i
d
e

f
r
a
c
t
i
o
n

I
R
E
S

d
e
t
r
i
t
a
l

f
r
a
c
t
i
o
n

-
T
O
T

t
o
t
a
l

M
n

c
o
n
c
e
n
t
r
a
t
i
o
n

85



86

 

m
m
m
2
<
0
2
<
<
¢

o
—
w
¢
O
U

 

 

 
 

A
X

T
H
U
?

&
.

.
r

.
.
r

a
.

a
.

.
r

a
.

8
:
6
2
3
:
i
t

o
r

L
:

....

m.

ééééééégs

 



87

Figure 28. Concentration of zinc with depth in core 10.

Symbol key:

II ORG - organic fraction

A OXD - oxide fraction

I RES - detrital fraction

- TOT - total Zn concentration
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with depth except at 330 cm. There is a decrease of Zn in the organic

phase and an increase of Zn in the oxide phase. There are two fluctua-

tions of Zn in the residual phase with depth: at 150 cm and at 310 cm.

Both depths show a decrease in detrital concentration of Zn. At 150 cm

and 310 cm depths the sediment composition changes to the sand (Type

1). Other compositional changes (sand-silty—clay and silty-clays)

appear to have no discernable effect on concentrations of Zn in the

sediment.

Figure 29 is a plot of Cu concentration with depth. Copper in the

oxide fraction appears constant with depth and is relatively small.

The organic fraction also is constant with depth except for an increase

at 300 cm. The organic fraction increases drastically due to encoun-

tering a grain-type compositional change at this point. Copper in the

detrital fraction is of dominate control on its concentration in these

sediments and fluctuates throughout the sediment core. The Cu detrital

fraction appear to be controlled by the sediment type (higher concen-

tration values are associated with clay type sediment and lower concen-

tration values are associated with sand type composition).

Figures 30 and 31, nickel and barium concentrations with depth,

respectively, show similar grain-type dependencies. The organic and

oxide fraction are relatively unimportant and remain constant with

depth. Little repartitioning occurs with depth. The detrital fraction

has two major low level concentration points at 150 cm and 300 cm for

both barium and nickel profiles. These low level concentration points

correspond to a sand grain-type (Type 1). High concentration levels

correspond to a clay grain-type (Type 5 and Type 6). Nickel and barium



Figure 29.

90

Concentration of copper with depth in core 10.

Symbol key:

II ORG - organic fraction

A OXD - oxide fraction

0 RES - detrital fraction

- TOT - total Cu concentration
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concentrations with depth are, therefore, grain-type dependent and show

little repartitioning.

In general, there exists a relationship between sediment type and

concentration of the detrital fraction. The hydromorphic phase is more

independent of sediment type with depth than they are at the surface

(excluding Mn oxide fraction). The relative importance of the hydro-

morphic phases in sequestering metal does not indicate major reparti-

tioning of the metals with depth within the hydromorphic fraction.

These observations can be interpreted to indicate that to a depth

of 450 cm on the shelf, the metal concentrations in the sediment are

dependent on sediment type. However, the relatively high amount of Mn

in the Fe-Mn oxide fraction results in the profile of total Mn concen-

tration with depth to be independent of sediment type as the Mn in the

oxide fraction gets redistributed.

Core 10 sediments are also considered oxic throughout the core

length. The lack of decreasing metal concentration in the oxide phase

and no observable oxidized sediment zone enrichment for Ni, Fe, Mn, and

Co which is expected when reducing conditions are encountered [Addy st

31,, 1976; Holmes and Martin, 1978; Heath and Dymond, 1981]. These

observations lead to the conclusion that core 10 does not encounter a

reducing environment and is therefore considered oxic throughout the

core.

segues:

Partitioning data for the surface (0-5 cm) shelf sediments were

arranged in a Q-mode and R-mode factor analysis array. The data was

factored in raw form and in transformed form (i.e., natural log matrix)

(Loring, 1982). The B-matrix for factor analysis of raw R-mode,
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transformed R-mode, transformed R-mode PA1, raw Q-mode, and transformed

Q-mode PA1 appear in Appendix III. Q-mode will be discussed below.

The results of R-mode factor analysis will not be discussed, however

the data appears in Appendix III. PA1 (principal factoring iteration)

was employed because one factor dominated. PA1 may extract other vari-

ables which cannot be determined by other factor methods (Statistical

Package for the Social Sciences, 1975).

The B-matrix is the influence of each end member on the total

metals found in each sediment sample (Bopp and Biggs, 1981). Q-mode

factor analysis, both raw and transformed PA1 forms, show high

communality (i.e., squared multiple correlation) of about .9 and has

one factor accounting for greater than 90% factor influence on the

shelf. In conclusion, only one factor appears to be controlling the

source of trace metals to the shelf sediments. This factor is

interpreted to indicate that the Amazon River is the dominant source.

Other factors accounting for an anthropogenic source or a biogenic

source are undetectable. A hydrothermal source is also undetectable,

which is in support with past work (Dymond and Heath, 1982).



CONCLUSIONS

This research examined the chemical partitioning of Fe, Mn, Zn,

Cu, Pb, Ni, Cr, Co, Ba and Al among four theoretical phases within

continental shelf sediments and soils from Belem. The conclusions of

this study are:

(1) The Amazon River is dominate over all other sources of trace

(2)

(3)

(4)

(5)

(6)

metals to shelf sediments.

Significant repartitioning of metals in sediment occurs when

sediments move from a river to an ocean environment.

The suspended load sediment of the river can be a potential

source of metals to seawater, when the sediment enter

seawater. The order of importance for this source decreases

in the sequence Ni>Co>Fe>Cr.

Metal concentrations and distribution in and on the shelf are

mainly dependent on the grain-type of the sediment.

Amazon shelf sediments do not encounter reducing conditions to

a depth of 450 cm.

Little repartitioning of metals in the sediment occurs with

depth.
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Figure 29. Concentration of copper with depth in core 10.

Symbol key:

II ORG - organic fraction

A OXD - oxide fraction

I RES - detrital fraction

- TOT - total Cu concentration
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concentrations with depth are, therefore, grain-type dependent and show

little repartitioning.

In general, there exists a relationship between sediment type and

concentration of the detrital fraction. The hydromorphic phase is more

independent of sediment type with depth than they are at the surface

(excluding Mn oxide fraction). The relative importance of the hydro-

morphic phases in sequestering metal does not indicate major reparti-

tioning of the metals with depth within the hydromorphic fraction.

These observations can be interpreted to indicate that to a depth

of 450 cm on the shelf, the metal concentrations in the sediment are

dependent on sediment type. However, the relatively high amount of Mn

in the Fe-Mn oxide fraction results in the profile of total Mn concen-

tration with depth to be independent of sediment type as the Mn in the

oxide fraction gets redistributed.

Core 10 sediments are also considered oxic throughout the core

length. The lack of decreasing metal concentration in the oxide phase

and no observable oxidized sediment zone enrichment for Ni, Fe, Mn, and

Co which is expected when reducing conditions are encountered [Addy gt

al,, 1976; Holmes and Martin, 1978; Heath and Dymond, 1981]. These

observations lead to the conclusion that core 10 does not encounter a

reducing environment and is therefore considered oxic throughout the

core.

game:

Partitioning data for the surface (0-5 cm) shelf sediments were

arranged in a Q-mode and R-mode factor analysis array. The data was

factored in raw form and in transformed form (i.e., natural log matrix)

(Loring, 1982). The B-matrix for factor analysis of raw R-mode,
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transformed R-mode, transformed R-mode PA1, raw Q-mode, and transformed

Q-mode PA1 appear in Appendix III. Q-mode will be discussed below.

The results of R-mode factor analysis will not be discussed, however

the data appears in Appendix III. PA1 (principal factoring iteration)

was employed because one factor dominated. PA1 may extract other vari-

ables which cannot be determined by other factor methods (Statistical

Package for the Social Sciences, 1975).

The B-matrix is the influence of each end member on the total

metals found in each sediment sample (BOpp and Biggs, 1981). Q-mode

factor analysis, both raw and transformed PA1 forms, show high

communality (i.e., squared multiple correlation) of about .9 and has

one factor accounting for greater than 90% factor influence on the

shelf. In conclusion, only one factor appears to be controlling the

source of trace metals to the shelf sediments. This factor is

interpreted to indicate that the Amazon River is the dominant source.

Other factors accounting for an anthropogenic source or a biogenic

source are undetectable. A hydrothermal source is also undetectable,

which is in support with past work (Dymond and Heath, 1982).



CONCLUSIONS

This research examined the chemical partitioning of Fe, Mn, Zn,

Cu, Pb, Ni, Cr, Co, Ba and Al among four theoretical phases within

continental shelf sediments and soils from Belém. The conclusions of

this study are:

(1) The Amazon River is dominate over all other sources of trace

metals to shelf sediments.

(2) Significant repartitioning of metals in sediment occurs when

sediments move from a river to an ocean environment.

(3) The suspended load sediment of the river can be a potential

source of metals to seawater, when the sediment enter

seawater. The order of importance for this source decreases

in the sequence Ni>Co>Fe>Cr.

(4) Metal concentrations and distribution in and on the shelf are

mainly dependent on the grain-type of the sediment.

(5) Amazon shelf sediments do not encounter reducing conditions to

a depth of 450 cm.

(6) Little repartitioning of metals in the sediment occurs with

depth.
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APPENDIX I

Sample Location

Processed prior to receiving sample (1 = yes; 2 = no)

Bioturbated (1 = yes; 2 = no)

Sample sediment type (Type 1-6 see triangular diagram) (Nittrouer

3131., 1983).

Sediment accumulate rate based on Pb-210 data (Nittrouer et al.,

1983). -_'-—'

Depth in cm (low)

Depth in cm (high)

Total organic carbon

Exchangable fraction in ppm

Fe-Mn oxide fraction in ppm

Organic fraction in ppm

Residual fraction in ppm

Total metal concentration in ppm (Addition of I - L values)

Missing data

Missing data

Soils taken at Belem

81-85 = Soil horizons

All samples sieved in less than .212 mm sieve prior to analysis.
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APPENDIX 11

GRAPHITE CONTROL SETTINGS

FOR PERKIN ELMER 560

ATOMIC ADSORPTION SPECTROPHOTOMETER

WITH HGA:2200 GRAPHITE FURNACE
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MATRIX: MgClz (Exchangeable Fraction)

Signal = concentration (conc)

Mode = peak height(pk ht)

Recorder = TIC

Gas Flow = 7 nonmal:33 on Argon flow meter

Vol une = 20 ul

Chromium: atm 2700°C at 14 seconds

char 1100°C at 30 seconds

dry 100°C at 60 seconds

mode AA only

time = 8.0 seconds reading

Cobalt: atm 2700°C at 8 seconds

char 1000°C at 40 seconds

dry 100°C at 60 seconds

mode AA-BG

time = 6.0 seconds reading

Nickel: atm 2700°C at 10 seconds

char 1000°C at 30 seconds

dry 100°C at 60 seconds

mode AA-BG

time = 6.0 seconds reading

Aluminun: atm 2700°C at 11 seconds

char 1300°C at 20 seconds

dry 100°C at 60 seconds

mode AA-BG

time = 4.0 seconds reading

Bariun: atm 2800°C at 13 seconds

char 1500°C at 30 seconds

dry 100°C at 60 seconds

mode AA only

time = 4.0 seconds reading

Gas Flow increased for Ba

Lead: atm 2300°C at 10 seconds

char 700°C at 10 seconds

dry 100°C at 60 seconds

mode AA-BG

time = 6.0 seconds reading

Gas Flow = 30
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MATRIX: .04 M NH20H°HCL in 25% (v/v) HOAc (Oxide Fraction)

Signal = concentration (conc)

Mode = peak height (pk ht)

TICRecorder =

Gas Flow = 7 normal:33 on Argon flow meter

Vol une = 20 ul

Chromium: atm 2700°C at 12 seconds

char 1100°C at 10 seconds

dry 100°C at 20 seconds

mode AA only

time = 6.0 seconds reading

Cobalt: atm 2700°C at 12 seconds

char 1000°C at 20 seconds

dry 100°C at 20 seconds

mode AA-BG

time = 8.0 seconds reading

Nickel: atm 2700°C at 12 seconds

char 1000°C at 20 seconds

dry 100°C at 20 seconds

mode AA-BG

time = 6.0 seconds reading

Al uninun: atm 2700°C at 12 seconds

char 1400°C at 20 seconds

dry 100°C at 20 seconds

mode AA-BG

time = 6.0 seconds reading

Gas Flow increase for Al

Bariun: atm 2800°C at 14 seconds

char 1600°C at 20 seconds

dry 100°C at 20 seconds

mode AA only

time = 10.0 seconds reading

Gas Flow increase for Ba

Lead: atm 2300°C at 8 seconds

char 600°C at 16 seconds

dry 100°C at 20 seconds

mode AA-BG

time = 6.0 seconds reading

Gas Flow = 7N:30
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MATRIX: 3.5 ratio .02HN03z3.2 NH4OAc in 20% (v/v) HN03 (Organic

Fraction)

Signal = concentration (conc)

Mode = peak height(pk hq

Recorder = TIC

Gas Flow = 7 normal:33 on Argon flow meter

Volune = 20 pl

Chromium: atm 2700°C at 12 seconds

char 1100°C at 20 seconds

dry 100°C at 20 seconds

mode AA only

time = 10.0 seconds reading

Cobalt: atm 2700°C at 12 seconds

char 1000°C at 20 seconds

dry 100°C at 20 seconds

mode AA-BG

time = 6.0 seconds reading

Nickel: atm 2700°C at 12 seconds

char 1000°C at 20 seconds

dry 100°C at 20 seconds

mode AA-BG

time = 6.0 seconds reading

Aluminun: atm 2700°C at 12 seconds

char 1400°C at 30 seconds

dry 100°C at 20 seconds

mode AA-BG

time = 4.0 seconds reading

Bariun: atm 2800°C at 12 seconds

char 1500°C at 10 seconds

dry 100°C at 20 seconds

mode AA only

time = 6.0 seconds reading

Gas Flow increased for Ba

Lead: atm 2300°C at 10 seconds

char 700°C at 20 seconds

dry 100°C at 20 seconds

mode AA-BG

time = 8.0 seconds reading

Gas Flow = 7N:30



7 normal:33 on Argon flow meter

129

seconds

seconds

seconds

reading

seconds

seconds

seconds

reading

seconds

seconds

seconds

reading

seconds

seconds

seconds

reading

seconds

seconds

seconds

reading

for Ba

seconds

seconds

seconds

MATRIX: LiBO3 (Residual Fraction)

Signal = concentration (conc)

Mode = peak height pk ht)

Recorder = TIC

Gas Flow =

Volune = 20 ul

Chromium: atm 2700°C at 13

char 1100°C at 30

dry 100°C at 25

mode AA only

time = 4.0 seconds

Cobalt: atm 2700°C at 12

char 1000°C at 30

dry 100°C at 25

mode AA-BG

time = 6.0 seconds

Nickel: atm 2700°C at 12

char 1000°C at 30

dry 100°C at 25

mode AA-BG

time = 8.0 seconds

Aluminun: atm 2600°C at 15

char 1400°C at 30

dry 100°C at 25

mode AA-BG

time = 6.0 seconds

Bariun: atm 2700°C at 14

char 1600°C at 30

dry 100°C at 25

mode AA only

time = 6.0 seconds

Gas Flow increased

Lead: atm 2300°C at 12

char 600°C at 10

dry 100°C at 25

mode AA-BG

time = 6.0 seconds

Gas Flow = 7Nz30

reading



APPENDIX III

B-MATRIX OF WEIGHTS FROM Q-MODE

AND R-MODE FACTOR ANALYSIS
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Raw Q-Mode Factor Analysis

 
 

PA1*

Sample Location Communality Factor 1

2 .99870 .02474

3 .99849 .02474

4 .83878 .02267

5 .84175 .02271

6 .90706 .02358

7 .96277 .02429

9 .99887 .02474

10 .99396 .02468

11 .99982 .02475

12 .99919 .02474

13 .99914 .02474

14 .99875 .02474

15 .99977 .02475

16 .95771 .02423

17 .99978 .02475

18 .99985 .02475

19 .99924 .02475

20 .99616 .02471

25 .99972 .02475

26 .99865 .02474

27 .99119 .02465

28 .99713 .02472

29 .99874 .02474

30 .99845 .02474

31 .99819 .02473

32 .99997 .02475

33 .99856 .02474

34 .99911 .02474

35 .99972 .02475

36 .99821 .02473

37 .99986 .02475

38 .99830 .02473

39 .99967 .02475

42 .94691 .02409

43 .99826 .02473

46 .99945 .02475

47 .99562 .02470

50 .99634 .02470

55 .99945 .02475

56 .99642 .02471

57 .99929 .02475

Variance 98.5

Cum. Variance 98.5

*PAI = Principal factoring without Iteration.
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Transformed Q-Mode Factor Analysis

Factor Score Coefficients

  

Sample Location Communality Factor 1 Factor 2

2 .99904 -.03359 .07694

3 .97704 -.03402 .07687

4 .92040 .07805 -.05198

5 .84777 .05564 -.02497

6 .90567 .05313 -.02037

7 .90804 .06597 -.03645

9 .99404 .05992 -.02662

10 .99185 .06286 -.03036

11 .97462 .05409 -.01988

12 .99086 —.03125 .07446

13 .99054 -.03534 .07846

14 .99691 -.03669 .07991

15 .99727 -.03507 .07834

16 .97502 .05969 -.02680

17 .98611 .06046 -.02749

18 .99111 -.03392 .07726

19 .99415 .05386 -.01921

20 .98920 .05922 -.02574

25 .98732 .05845 -.02491

26 .97539 .04880 -.01313

27 .99882 .03942 -.00221

28 .99944 -.03371 .07705

29 .98462 -.03521 .07852

30 .97495 -.03222 .07527

31 .97432 .05991 -.02705

32 .99187 .03895 -.00169

33 .99489 -.03385 .07703

34 .98747 -.03696 .08012

35 .99507 .05740 -.02365

36 .99888 .05407 -.01936

37 .99515 -.03465 .07797

38 .99797 -.03597 .07917

39 .92482 -.03141 .07478

42 .99482 .05970 -.02806

43 .99562 -.03591 .07912

46 .99267 .06062 -.02753

47 .99454 .05369 -.01892

50 .98836 .06301 -.03063

55 .99431 .06457 -.03246

56 .99637 -.03471 .07797

57 .98825 .04442 -.00786

Variance 85.1 12.9

Cum. Variance 85.1 98.0



Variable

Ba

Ba

Cu

Cu

Fe

Fe

Co

Co

Mn

Mn

Zn

Zn

Ni

Ni

Pb

Pb

Cr

Cr

Al

Al

hydromorphic

detrital

hydromorphic

detrital

hydromorphic

detrital

hydromorphic

detrital

hydromorphic

detrital

hydromorphic

detrital

hydromorphic

detrital

hydromorphic

detrital

hydromorphic

detrital

hydromorphic

detrital

Transformed R-Mode Factor Analysis

Communality
 

.97813

.82681

.47255

.69516

.99442

.29146

.43779

.77044

.83414

.89422

.88380

.83561

.64380

.82108

.53736

.60302

.89696

.54842

.85187

.81213

Factor Score Coefficients

Factor 1

.43968

-.44567

-.03200

.08458

-1.99033

.04400

.08092

.33520

.45541

1.05746

.23477

.34932

.14875

-.27355

.09078

.16213

.18542

-.10497

.25574

.13346

Variance 72.3

Cun. Variance 72.3

Factor 2

.42335

.51495

-.O7351

-.39477

3.68699

-.02217

-.01364

-.33985

-.92104

-.88667

-1.20147

-.37750

-.22425

.03840

-.O9969

-.00120

.46088

.14161

-.48270

-.13397

10.5

82.8

Factor 3

-.73635

-.29946

-.02796

.06976

1.24704

.09278

-.14581

-.O7342

-.49177

-.13179

.15529

.23755

-.11346

.52969

-.03383

-.24376

-.02429

.18548

-.34914

.16588

7.3

90.1
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