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ABSTRACT

EQUIVARIANT ALGEBRAIC COBORDISM AND DOUBLE POINT RELATIONS

By

Chun Lung Liu

For a reductive connected group or a finite group over a field of characteristic zero, we

define an equivariant algebraic cobordism theory by a generalized version of the double point

relation of Levine-Pandharipande. We prove basic properties and the well-definedness of a

canonical fixed point map. We also find explicit generators of the algebraic cobordism ring

of the point when the group is finite abelian.
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1. Introduction

Cobordism is a deep and well-developed theory in topology. According to Thom’s defini-

tion, two dimension d smooth oriented manifolds M,N are said to be cobordant if there exists

a dimension d+1 smooth oriented manifold with boundary M q (−N) (Negative sign means

opposite orientation). By definition, the set of all cobordism classes, with addition given by

disjoint union and multiplication given by product, is called the oriented bordism ring U∗

(grading given by dimension). This ring was well-studied. For instance, Thom showed that

the torsion free part can be described by U∗⊗ZQ ∼= Q[x4k | k ≥ 1]. In addition, Milnor and

Wall showed that all torsion has order 2. The main technique involved was the use of the

Thom spectrum which we will briefly explain below.

Consider a SO(n)-bundle E over a manifold X. Let D be the set of all vectors (fiberwise)

with length ≤ 1 and S be the set of all vectors with length 1. Then, the Thom space is

defined as the quotient space D/S and denoted by T (E). Now consider the classifying space

BSO(n) with universal SO(n)-bundle En. Denote the Thom space T (En) by MSO(n).

Notice that En × R1 becomes a SO(n + 1)-bundle over BSO(n) and hence induces the

classifying map BSO(n) → BSO(n + 1) and En × R1 → En+1. Apply the Thom space

construction on both sides of the second map, we get

MSO(n) ∧ S1 ∼= T (En × R1)→ T (En+1) = MSO(n+ 1).

That defines the Thom spectrumMSO. We can then consider the homotopy groups ofMSO,

namely πk(MSO)
def
= lim−→

n

πn+k(MSO(n)). The importance of the Thom spectrum comes

from the isomorphism Uk →̃ πk(MO) which is given by the Pontrjagin-Thom construction

(see [St]).

More generally, for a smooth oriented manifold X, we say two maps f1 : Y1 → X and

f2 : Y2 → X, where Y1, Y2 are both dimension d smooth oriented manifolds, are cobordant if

there exists a map F : Z → X such that Z is a dimension d+1 smooth oriented manifold with

boundary and F |∂Z = f1 q (−f2) (Negative sign means opposite orientation on domain).

The set of all cobordism classes with addition given by disjoint union is denoted by U∗(X)

(grading given by dimension of the domain of the map). That is the oriented bordism group.
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Other than oriented bordism theory, there are other bordism (or cobordism) theories. For

example, for a stably complex manifold X, we define

MUk(X)
def
= lim−→

n

[S2n+k,MU(n) ∧X]

and

MUk(X)
def
= lim−→

n

[S2n−k ∧X,MU(n)]

where MU(n) is the Thom space of the universal U(n)-bundle over the classifying space

BU(n). This way, one defines the complex bordism theory (given by MU∗(X)) and the

complex cobordism theory (given by MU∗(X)). Milnor showed [Mil] that the complex

bordism ring MU∗ is just a polynomial ring Z[x2k | k ≥ 1] and MU∗ ∼= MU−∗.

Moreover, this complex cobordism theory is equipped with Chern classes and it leads to

what is called the formal group law. More precisely, for each complex vector bundle E over

X of rank r, there are Chern classes ci(E) ∈ MU2i(X) for 1 ≤ i ≤ r associated to it (see

[CoF]). It turns out the complex cobordism group MU∗(CP∞) is given by the power series

ring MU∗[[s]] and the tensor product map CP∞ ×CP∞ → CP∞ will define a Hopf-algebra

structure on MU∗(CP∞). Thus, we obtain a map

MU∗[[s]] ∼= MU∗(CP∞)→MU∗(CP∞×CP∞) ∼= MU∗(CP∞)⊗̂MU∗(CP∞) ∼= MU∗[[u, v]].

Denote the image of s by F ∈MU∗[[u, v]]. Since CP∞ is the classifying space for U(1) and

the elements s, u and v correspond to c1(O(1)), c1(O(1, 0)) and c1(O(0, 1)) respectively, we

obtain the following relation for any pairs of complex line bundles L1, L2 over X :

c1(L1 ⊗ L2) = F (c1(L1), c1(L2))

as elements inside MU∗(X). This power series F is called a formal group law over MU∗

(see [Q]).

Unfortunately, because of the lack of the notion of boundary in the category of algebraic

varieties, an algebraic version of cobordism theory can not be defined in a similar manner.

There is a naive approach which turns out to be unsuccessful. We may define two dimension

d smooth projective varieties X, X ′ to be cobordant if there exists a morphism Y → P1
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where Y is a dimension d+ 1 smooth projective variety such that X, X ′ are the fibers over

0, 1 respectively. This approach was also addressed by M. Levine and F. Morel (see remark

1.2.9 in [LeMo] for more detail). Consider the case when d = 1. Since the genus and the

number of connected components are invariant under this concept of cobordism, we can not

decompose a smooth genus g curve. Hence, the cobordism group of curves will be much

bigger than Z, which is what we expect from the theory of complex cobordism.

Nevertheless, in [LeMo], Levine and Morel managed to define an algebraic cobordism

theory Ω, which is an analog of the complex cobordism theory, in spite of the absence of

notion of boundary. However, the definition is relatively complicated. Roughly speaking, if

X is a separated scheme of finite type over the ground field k, then we consider elements of

the form (f : Y → X,L1, . . . ,Lr) where f is projective, Y is an irreducible smooth variety

over k and the sheaves Li are line bundles over Y (the order of Li does not matter and

the number r of line bundles can be zero). The dimension of (f : Y → X,L1, . . . ,Lr) is

defined to be dimY − r. There is a natural notion of isomorphism on elements of this form.

Denote the free abelian group generated by isomorphism classes of elements of this form by

Z(X). Let Ω(X) be the quotient of Z(X) by the subgroup corresponding to imposing the

axioms (Dim) and (Sect) (following the notations in [LeMo]). The algebraic cobordism

group Ω(X) is defined to be the quotient of Ω(X)⊗Z L, where L is the Lazard ring, by the

L-submodule corresponding to imposing the formal group law (FGL).

This cobordism theory satisfies a number of basic properties, (D1)-(D4), (A1)-(A8),

(Dim), (Sect) and (FGL) (following the notation in [LeMo]). It also satisfies some more

advanced properties, for example, the localization property and the homotopy invariance

property. Moreover, the cobordism ring Ω(Spec k) will be isomorphic to the Lazard ring

L when the characteristic of k is 0, which is what we expect from the complex cobordism

theory (see Corollary 1.2.11 and Theorem 4.3.7 in [LeMo]).

One may wonder if it is possible to construct an algebraic cobordism theory via a more

geometric approach. Suppose X is a smooth variety over k. We may consider the abelian

group M(X)+ generated by isomorphism classes over X of projective morphisms f : Y → X

where Y is a smooth variety over k. The hope is that by imposing some reasonable relations,

we will obtain an algebraic cobordism theory that also satisfies some previously mentioned
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properties. Such a construction was introduced by M. Levine and R. Pandharipande in

[LeP]. A relation called “double point relation” was introduced and it was shown that the

theory ω obtained by imposing this relation is canonically isomorphic to the theory Ω under

the assumption that the characteristic of k is 0 (see Theorem 1 of [LeP]).

More precisely, let φ : Y → X×P1 be a projective morphism where Y is an equidimensional

smooth variety over k. Consider the fibers for the composition Y → X ×P1 → P1. Suppose

the fiber Yξ is a smooth divisor on Y and the fiber Y0 can be expressed as the union of two

smooth divisors A,B such that A intersects B transversely. Then, the double point relation

is

[Yξ ↪→ Y → X] = [A ↪→ Y → X] + [B ↪→ Y → X]

− [P(O ⊕NA∩B↪→A)→ A ∩B ↪→ Y → X].

The objective of the current paper is to develop an algebraic cobordism theory of varieties

with group action that assembles the theories of Levine-Morel and Levine-Pandharipande.

For this, we go back to topology for inspiration. In topology, for a compact Lie group G,

the concept of G-equivariant bordism was first studied by Conner and Floyd (see [Co] or

[H]). In their approach, for a G-space X, we consider the set of maps Y → X where Y is

a stable almost complex G-manifold. Define the notion of G-bordism similarly to form the

geometric unitary bordism group of X, denoted by UG∗ (X). Another approach was pursued

by Tom Dieck [T]. Let ξGn → BU(n,G) be the universal unitary n-dimensional G-bundle

and MU(n,G) be its Thom space. Then, the homotopy theoretic unitary G-bordism group

of X is defined by

MUG2k(X)
def
= lim−→

V

[SV , MU(dimC V − k,G) ∧X ]G

and

MUG2k+1(X)
def
= lim−→

V

[SV ∧ S1, MU(dimC V − k,G) ∧X ]G

where V runs through all unitary G-representations (see [T]). Inspired by the isomor-

phism between the principal G-bordism group over a point and the oriented bordism group

MSO(BG) (where EG → BG is the universal G-bundle) when G is finite (see [Co]), there

4



is also a third G-equivariant bordism theory defined by the following equation :

MU
G,h
∗ (X)

def
= MU∗((X × EG)/G).

In the case when X is a point, there are some maps relating the three theories.

UG∗
a→MUG∗

b→MU
G,h
∗

The map a is given by the same Pontrjagin-Thom construction, but an inverse can not be

constructed in the same manner due to the lack of transversality when there is group action.

Indeed, the map a is never surjective (unless the group G is trivial) because there are non-

trivial elements in the negative degrees of MUG∗ . However, the injectivity of the map a

was shown by Loffler and Comezana when G is abelian (see [Lo] and [Ma]). On the other

hand, when G is abelian, the map b identifies the I-adic completion of MUG∗ , where I is the

augmentation ideal, to MU
G,h
∗ (see [GrMa]).

There are some computational results on different versions of equivariant bordism ring.

In [Ko], Kosniowski gave a list of G-spaces which multiplicatively generate the geometric

unitary bordism ring UG∗ over MU∗ when G is a cyclic group of prime order. When G is

an abelian compact Lie group, Sinha gave a list of elements and relations that describe the

structure of the homotopy theoretic unitary bordism ring MUG∗ as a MU∗-algebra (see [Si]).

Since MU
G,h
∗ can be identified with the I-adic completion of MUG∗ when G is abelian, we

also obtain the structure of MU
G,h
∗ .

Following this pattern, we can expect to also have several different approaches to equi-

variant algebraic cobordism theory. In order to define an analog of the homotopy theoretic

bordism theory MUG in the algebraic geometry setup, one possible way is through Vo-

evodsky’s machinery of A1-homotopy theory (see [MoV]). A (non-equivariant) algebraic

cobordism theory defined this way is discussed in [V], but, to our knowledge, an equivariant

version of this has not yet been considered.

To define an analog of the theory MUG,h, one can employ Totaro’s approximation of EG.

In [EG], Edidin and Graham successfully defined an equivariant Chow ring following this line

of thought. For a given dimension n algebraic space X with G-action and for a fixed integer
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i, pick a G-representation V and an invariant open set U inside such that G acts freely on

U and the codimension of V − U is larger than n − i. Then, X × U → (X × U)/G will

be a principle G-bundle. Moreover, the Chow group Ai+dimV−dimG((X × U)/G) is indeed

independent of the choice of the pair (V, U). Hence, the equivariant Chow group AGi (X) is

defined to be Ai+dimV−dimG((X × U)/G).

Unfortunately, since the independence of choice relies on the fact that the negative (coho-

mological) degrees of Chow groups are always zero, i.e. Ai = 0 whenever i < 0, equivariant

algebraic cobordism theory can not be defined in the exact same manner. One approach is

by considering a whole system of good pairs {(V, U)} and define the equivariant algebraic

cobordism group ΩiG(X) to be the inverse limit of Ωi((X × U)/G) (see [HeLop] for more

details). Another, possibly equivalent, approach was pursued by Krishna [Kr].

Aside from these two homotopical approaches, one can also define an equivariant algebraic

cobordism theory analogously to the geometric bordism theory UG, namely by considering

varieties with G-action and imposing the G-action also on the double point relation. Suppose

G is an algebraic group over k and X is a smooth G-variety over k. This is what we do in

this paper. We can consider the abelian group MG(X)+ generated by isomorphism classes

of G-equivariant projective morphism f : Y → X where Y is also a smooth G-variety. For

a morphism φ : Y → X × P1 where Y is a smooth G-variety, P1 is equipped with the trivial

action and φ is projective and G-equivariant satisfying the same conditions on the fibers

Yξ and Y0 as before, we impose the exact same equation with all objects involved equipped

with their naturally inherited G-actions. Then, all morphisms involved will also be naturally

equivariant.

For technical reasons, we focus on the case when the characteristic of k is zero and G is

either a finite group or a connected reductive group. Observe that if there is a projective,

G-equivariant morphism Y → X and smooth G-invariant divisors Yξ, A, B on Y satisfying

the conditions in the double point relation, then Yξ is equivariantly linearly equivalent to

A + B and Yξ + A + B is a reduced strict normal crossing divisor. Suppose we are given

a smooth, G-invariant, very ample divisor C on Y . Due to the lack of transversality in the

equivariant setting, the choice of the pairs of smooth G-invariant divisors A, B such that

C ∼ A+B and A+B +C is a reduced strict normal crossing divisor may become seriously
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limited, if not impossible. To remedy this, it is preferable to impose a more general relation

which we call generalized double point relation.

More precisely, suppose X, Y are both smooth varieties with G-action and φ : Y → X is

an equivariant projective morphism. Assume there are smooth invariant divisors A1, . . . , An,

B1, . . . , Bm on Y such that A1 + · · ·+An is equivariantly linearly equivalent to B1 + · · ·+Bm

and A1 + · · · + An + B1 + · · · + Bm is a reduced strict normal crossing divisor. Then, the

generalized double point relation GDPR(n,m) we will impose is of the form

[A1 ↪→ Y → X] + [A2 ↪→ Y → X] + · · ·+ [An ↪→ Y → X] + extra terms

= [B1 ↪→ Y → X] + [B2 ↪→ Y → X] + · · ·+ [Bm ↪→ Y → X] + extra terms

where the extra terms are of the form [P → C ↪→ Y → X] such that C is the intersec-

tion of some of the divisors A1, . . . , An, B1, . . . , Bm and P → C is an admissible tower

(see subsection 6.3 for the definition). Denote the left hand side of the above equation

by L(φ,A1, . . . , An, B1, . . . , Bm) and the right hand side by R(φ,A1, . . . , An, B1, . . . , Bm).

Hence, we define the (geometric) equivariant algebraic cobordism group, denoted by UG(X),

to be the quotient of MG(X)+ by the abelian subgroup generated by

L(φ,A1, . . . , An, B1, . . . , Bm)−R(φ,A1, . . . , An, B1, . . . , Bm)

for all equivariant projective morphisms φ : Y → X and all possible set of invariant divisors

A1, . . . , An, B1, . . . , Bm satisfying the conditions described above. We conjecture that the

generalized double point relation is indeed stronger than the double point relation (See

Remark 6.23 in the text).

An important observation is that the generalized double point relation actually holds in

the non-equivariant theory ω. In other words, our equivariant algebraic cobordism theory in

the case when G is trivial coincides with the non-equivariant algebraic cobordism theory, i.e

. U{1}(X) ∼= ω(X) for all smooth varieties X. That means this theory UG can be thought as

a generalization of ω. In addition, although the generalized double point relation may look

tedious, it is actually easier to use because of the freedom of the number of divisors involved.
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Using this theory, we are able to define a “fixed-point map” which is similar to a well-

known construction in topology. Recall the definition of the fixed point map in topology (see

[T]). For simplicity, suppose G is a finite group of prime order p. Then, there are exactly

p non-isomorphic irreducible complex G-representations. Denote them by V1, . . . , Vp. For

a unitary G-manifold M , let F be a component of the fixed point set MG. The normal

bundle of F inside M can be written as ⊕pi=1 Vi ⊗ Ni for some complex vector bundles

Ni over F with no G-action. Compose the classifying map of Ni with the natural map

BU(rank of Ni) → BU . We get a map F → BU which we will denote by fi. Thus, the

fixed point map

φ : UG∗ →
p⊕
i=1

MU∗(BU)

is given by sending [M ] to the sum of

([f1 : F → BU ], . . . , [fp : F → BU ])

over all components F . If we add up the elements [fi] and push them down to the bordism

ring, we obtain a map

UG∗ →
p⊕
i=1

MU∗(BU)→MU∗(BU)→MU∗

given by

[M ] 7→
∑
F

([f1], . . . , [fp]) 7→
∑
F,i

[fi] 7→
∑
F,i

[F ] = p [MG].

Assume the ground field k has characteristic 0 as before. If the group G is finite, then

the fixed point locus of any smooth variety over k is again smooth (Proposition 3.4 in [Ed]).

The same statement also holds when G is reductive (by Proposition 7.1). So, for a smooth

variety X, we have an abelian group homomorphism from MG(X)+ to M(XG)+ defined by

sending [Y → X] to [Y G → XG], which we will also call fixed point map. One of our main

results is the following Theorem (Corollary 7.3 in the text) which can be considered as an

analog of the topological fixed point map.
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Theorem 1. For any smooth G-variety X, sending [Y → X] to [Y G → XG] defines an

abelian group homomorphism

F : UG(X)→ ω(XG).

We also managed to find a set of generators for the equivariant algebraic cobordism ring of

the point Spec k when G is a finite abelian group with exponent e and k contains a primitive

e-th root of unity. We can naturally embed the non-equivariant algebraic cobordism ring

L ∼= ω(Spec k) ∼= U{1}(Spec k)

inside the equivariant algebraic cobordism ring UG(Spec k) (by assigning trivial G-action)

(see Corollary 7.4). This construction provides UG(Spec k) with a L-algebra structure. Then,

the following Theorem describes a set of generators of UG(Spec k) (see Theorem 6.22 for more

detail).

Theorem 2. Suppose G is a finite abelian group with exponent e and k contains a

primitive e-th root of unity. Then, the equivariant algebraic cobordims ring UG(Spec k) is

generated by the set of exceptional objects

{En,H,H′ | n ≥ 0 and G ⊇ H ⊇ H ′}

and the set of admissible towers over Spec k as a L-algebra.

Here is the definition of the exceptional objects. For an integer n ≥ 0 and a pair of

subgroups G ⊇ H ⊇ H ′, since G is abelian, we can write

H/H ′ ∼= H1 × · · · ×Ha

where Hi is a cyclic group of order p
mi
i for a prime pi. Define an (H/H ′)-action on

Proj k[x0, . . . , xn, v1, . . . , va]

by assigning Hi to act faithfully on k−span{vi} and trivially on other generators, for all

1 ≤ i ≤ a. Then, the exceptional object is defined as, with the natural G-action,

En,H,H′
def
= G/H × Proj k[x0, . . . , xn, v1, . . . , va] / (v

p
m1
1

1 − g1, . . . , v
pmaa
a − ga)
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where gi ∈ k[x0, . . . , xn] is homogeneous with degree p
mi
i such that En,H,H′ is smooth with

dimension n ([En,H,H′ ] ∈ UG(Spec k) is independent of the choice of {gi}).

Let us now give a brief outline of this paper. In section 2, we state some basic notions

and assumptions we will be using throughout the paper. In section 3, we give the precise

definition of generalized double point relation and also the definition of our equivariant

algebraic cobordism theory UG. We also show that the generalized double point relation

holds in the non-equivariant theory ω. Then, a number of basic properties, namely (D1)-

(D4) and (A1)-(A8) that does not involve the first Chern class operator, will be stated

and proved. The last subsection will be devoted to the investigation of the case when the

action is free. In this case, we show an isomorphism ω(X/G) ∼= UG(X).

In section 4, we handle the (first) Chern class operator. We first define the notion of

“nice” G-linearized invertible sheaves. Then, we define the Chern class operator c(L) for

all such sheaves and prove the most important property of this operator : formal group

law (FGL). Next, we extend the definition to arbitrary G-linearized invertible sheaves with

stronger assumptions on G and k (in particular, G is a finite abelian group).

In section 5, we will first prove the rest of the list of basic properties, i.e. (D1)-(D4) and

(A1)-(A8) that involve the Chern class operator. Then, we will show the properties (Dim)

and (FGL).

The whole section 6 will be devoted to proving the Theorem about the set of generators

of the equivariant cobordism ring UG(Spec k) as a L-algebra. The first subsection in section

6 will be dedicated to an interesting general technique which we will call splitting principle

by blowing up along invariant smooth centers. Finally, in the last section, we will prove the

well-definedness of the fixed point map, i.e. Theorem 7.2.
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2. Notations and assumptions

Throughout this paper, we work over a field k with characteristic 0. We will denote by

Sm the category of smooth quasi-projective schemes over k. We will often refer to this as

varieties even though they do not have to be irreducible. The identity morphism will be

denoted by IX : X → X. The groups which act on varieties are either reductive connected

groups or finite groups over k. So, they are always affine over Spec k. We will often use the

symbol πk to denote the structure morphism X → Spec k and the symbol πi to denote the

projection of X1 × · · · ×Xn onto its i-th component Xi.

As in [MuFoKi], an action of a group scheme G on a variety X is by definition a morphism

σ : G×X → X such that

1. The two morphisms σ ◦ (IG × σ) and σ ◦ (µ× IX) from G×G×X to X

agree, where µ : G×G→ G is the group law of G.

2. The composition

X →̃ Spec k ×X
e×IX−→ G×X σ−→ X

is equal to IX , where e is the identity morphism.

For any α ∈ G and x ∈ X, we will denote σ(α, x) by α · x, or simply αx if there is no

confusion. We will say that the action is proper if the morphism G×X → X ×X given by

(α, x) 7→ (α · x, x) is proper. Similarly, we will say the action is free if the above map is a

closed immersion. This notion is stronger than the notion “set-theoretically free”. According

to Lemma 8 of [EG], set-theoretically free and proper implies free. In the case when G is a

finite group scheme, the two morphisms σ, π2 : G×X → X are both proper. That means the

morphism G×X → X ×X above is proper. Hence, in this case, “set-theoretically free” is

equivalent to free. Morphisms between G-varieties are always assumed to be G-equivariant

unless specified otherwise. We will denote by G-Sm the category with objects in Sm with G

action and

MorG-Sm(X, Y ) = {f : X → Y | f is G-equivariant}.

If X is in G-Sm and E is a locally free coherent sheaf on X with rank r, then a G-

linearization of E is a collection of isomorphisms {φα : α∗E →̃ E | α ∈ G} that satisfies the
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cocycle condition :

φαβ = φβ ◦ (β∗φα),

as isomorphisms from (αβ)∗E to E , for all α, β ∈ G. There is a natural definition of isomor-

phism associated to it. The set of isomorphism classes of invertible sheaves on X with a

G-linearization will be denoted by PicG(X).

If X, Y are two objects in G-Sm, then X × Y is considered to be in G-Sm with G

acting diagonally. An object Y ∈ G-Sm is called G-irreducible if there exists an irreducible

component Y ′ of Y such that G·Y ′ = Y . The set of isomorphism classes of invertible sheaves

on X with a G-linearization will be denoted by PicG(X). For a locally free sheaf E of rank

r over a k-scheme X, the corresponding vector bundle E over X will be given by

E
def
= Spec Sym E∨.

The same applies to the case that X is a G-scheme over k and E is G-linearized.

Recall the definition of transversality from [LeP]. For objects A,B,C ∈ Sm and morphisms

f : A → C and g : B → C, we say f, g are transverse if A ×C B is smooth and for all

irreducible components A′ ⊆ A and B′ ⊆ B such that f(A′), g(B′) are both contained in

the same irreducible component C ′ ⊆ C, we have either

dimA′ ×C′ B
′ = dimA′ + dimB′ − dimC ′

or A′ ×C′ B
′ = ∅. If A,B are both subschemes of C, we say that A,B are transverse if the

inclusion morphisms are transverse. If f : A → C and x is point in C, we say that x is a

regular value of f if the inclusion morphism x ↪→ C and f are transverse.

Also recall the definition of principal G-bundle from [EG]. A morphism f : X → Y is

called a principal G-bundle if G acts on X, the morphism f is flat, surjective, G-equivariant

for the trivial G-action on Y and the morphism

G×X → X ×Y X,

defined by (α, x) 7→ (α · x, x), is an isomorphism.
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For a morphism f : X → Y and a point y ∈ Y , we denote the fiber product Spec k(y)×Y
X by f−1(y) where k(y) is the residue field of y and Spec k(y) → Y is the morphism

corresponding to y. Similarly, if Z is a subscheme of Y , then we denote Z ×Y X by f−1(Z).

If A,B are both subschemes of X, then we denote A×X B by A ∩B.

In this paper, for a G-irreducible object X ∈ G-Sm, a G-invariant divisor D on X is a

Weil divisor of the form
∑
imiDi where Di are distinct, G-invariant, G-irreducible, reduced,

codimension 1, closed subscheme of X. We call such a divisor smooth if all the multiplicities

mi are 1 and Di are smooth and disjoint. We call a G-invariant divisor A1 + · · · + An

reduced strict normal crossing divisor if each Ai is a smooth G-invariant divisor and, for

each I ⊆ {1, . . . , n}, the closed subscheme ∩i∈I Ai is smooth with codimension |I| in X.

13



3. Geometric equivariant algebraic cobordism UG

3.1. Preliminaries. Before digging into the equivariant algebraic cobordism theory, we need

to understand more about G-invariant divisors and G-linearized invertible sheaves.

Weil Divisors :

Let X be a G-irreducible object in G-Sm. A G-invariant, G-irreducible reduced closed

subscheme D ⊆ X with codimension 1 will be called a prime G-invariant Weil divisor. A

G-invariant Weil divisor is a finite Z-linear combination of prime divisors, i.e. D =
∑
niDi.

A G-invariant Weil divisor D is called effective if ni are all non-negative. Let K be the sheaf

of total quotient rings of OX , which has its natural G-action. We say that two G-invariant

Weil divisors D, D′ are G-equivariantly linearly equivalent, denoted by D ∼ D′, if there is

an element f ∈ H0(X,K∗)G such that D − D′ = div f where div f is defined in the usual

way.

Cartier Divisors :

Similar to the definition of Cartier divisors in Ch II, section 6 in [Ha], a G-invariant Cartier

divisor is an element in H0(X,K∗/O∗)G. We say two G-invariant Cartier divisors D, D′ are

G-equivariantly linearly equivalent if D −D′ is in the image of

H0(X,K∗)G → H0(X,K∗/O∗)G.

As usual, we will represent a G-invariant Cartier divisor by {(Ui, fi)} where {Ui} is an open

cover of X and fi ∈ H0(Ui,K∗). The (left) G-action on the sheaf K (or the sheaf O) is given

explicitly by

(α · f)(x) = f(α−1 · x)

for any f ∈ K (or in O) and α ∈ G. Then, the Cartier divisor D being G-invariant implies

{(Ui, fi)} = {(α · Ui, α · fi)}

as elements in H0(X,K∗/O∗) for all α ∈ G. In other words, (α ·fi)/fj is a unit in O(α·Ui)∩Uj
for all i, j. Since X is smooth, we have a one-to-one correspondence between the set of G-

invariant Weil divisors and the set of G-invariant Cartier divisors by the same construction

as in [Ha]. Moreover, the notion of G-equivariantly linearly equivalent is also preserved.
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Hence, from now on, we will use the two notions interchangeably. Furthermore, divisors are

always assumed to be G-invariant unless specified otherwise and linear equivalence means

G-equivariant linear equivalence.

G-linearized invertible sheaves :

For a givenG-invariant divisorD on a smoothG-varietyX, we can construct aG-linearized

invertible sheaf naturally. We will denote it by OX(D). Here is the construction.

The underlying invertible sheaf structure is given by the natural definition as in Ch II,

section 6 in [Ha] : if D is represented by {(Ui, fi)}, then we define OX(D) by the following

equation :

OX(D)|Ui
def
= OUif

−1
i

for all i.

The G-linearization ofOX(D) can be defined as the following. Consider the case when D is

a prime G-invariant divisor. Then, it defines an ideal sheaf I which is naturally G-linearized.

Then, the natural isomorphism OX(−D) ∼= I induces a G-linearization on OX(−D). Hence,

we can define the G-linearization by taking the dual, namely, OX(D)
def
= OX(−D)∨. In

general, if D =
∑
niDi for some prime G-invariant divisors Di, then we define OX(D)

def
=

⊗OX(Di)
⊗ni .

The G-linearization structure on OX(D) can be explicitly given as the following. For a

given α ∈ G, we will define an isomorphism φα : α∗O(D) → O(D). Let us consider the

restriction on Ui, the domain becomes

(α∗O(D))|Ui = α∗(O(D)|αUi) = α∗(OUj∩αUif
−1
j )

(further restricted on Uj ∩ αUi)

= O
Ui∩α−1Uj

α−1 · f−1
j .

On the other hand, the codomain becomes O
Ui∩α−1Uj

f−1
i when restricted on Ui ∩ α−1Uj .

Then, we define

φα|Ui∩α−1Uj
: O α−1 · f−1

j → Of−1
i
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by sending α−1 · f−1
j to (fi / (α−1 · fj)) f−1

i . Since φα|Ui∩α−1Uj
is an identity map, φα is

well-defined and is an isomorphism.

We need to check the cocycle condition

φαβ = φβ ◦ (β∗φα) : (αβ)∗O(D)→ O(D).

For simplicity, we will denote OX (or other base) by simply O. Notice that, by the above

definition, φβ : β∗O(D)→ O(D) corresponds to O β−1 · f−1
j → Of−1

i and φα : α∗O(D)→

O(D) corresponds to O α−1 ·f−1
k → Of−1

j . So, the morphism β∗φα : β∗α∗O(D)→ β∗O(D)

corresponds toO β−1α−1·f−1
k → O β−1·f−1

j .On the other hand, φαβ : (αβ)∗O(D)→ O(D)

corresponds to O β−1α−1 · f−1
k → Of−1

i . Thus, the domains and codomains of φαβ and

φβ ◦ (β∗φα) are represented by the same generators and all the morphisms are identities.

Hence, they commute.

It remains to check its independence of the choice of representations {(Ui, fi)} of the

Cartier divisor. In other words, if D is represented by {(Ui, fi)} where fi ∈ H0(Ui,O∗), then

the G-linearized invertible sheaf it defined will be G-equivariantly isomorphic to the structure

sheaf. To see this, we define a morphism from O(D) to O by patching the morphisms

Of−1
i → O in which we send f−1

i to f−1
i . Then, it is a well-defined isomorphism. The

commutativity of the following diagram implies that this morphism is G-equivariant.

O α−1 · f−1
j −−−→ Oy y

Of−1
i −−−→ O

This natural construction also takes G-equivariantly linearly equivalent divisors to isomor-

phic G-linearized invertible sheaves, i.e. if f is in H0(X,K∗)G, then Of−1 →̃ O by sending

f−1 to 1.

Unfortunately, we do not have the one-to-one correspondence between the set of G-

invariant divisor classes and the set of isomorphism classes of G-linearized invertible sheaves.

Here is a simple reason. If the G-action on X is trivial, then the G-action on any G-invariant

divisor will be trivial too. Hence, the G-action on the line bundle corresponding to O(D)

must be trivial. But, there are certainly G-equivariant line bundles over X with non-trivial

fiberwise G-actions.
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The following are some basic properties of G-invariant divisors.

Proposition 3.1. Suppose X, Y are objects in G-Sm.

(1) If f : X → Y is a morphism in G-Sm and D is a G-invariant divisor on

Y such that f∗D is a G-invariant divisor on X, then f∗O(D) ∼= O(f∗D).

(2) If D is a G-invariant divisor on X and Z is a closed subscheme of X such

that Z ∩ SuppD is empty, then OX(D)|Z ∼= OZ .

(3) If D is a G-invariant divisor on X, then OX(D) ∼= OX if and only if

D ∼ 0.

Proof. (1) Suppose D is represented by {(Ui, gi)}. Then, the G-invariant divisor f∗D can

be represented by {(f−1(Ui), f
∗gi)}. Thus,

(f∗O(D))|
f−1(Ui)

= f∗(OUig
−1
i ) = O

f−1(Ui)
f∗g−1

i .

On the other hand, O(f∗D)|
f−1(Ui)

= O
f−1(Ui)

f∗g−1
i . So they are isomorphic. The

compatibility of the G-action is easy to check.

(2) Suppose D is represented by {(Ui, gi)} and i : Z ↪→ X is the closed immersion. Since

Z ∩ SuppD = ∅, by refinement, we can assume Ui either has empty intersection with Z or,

otherwise, gi is a unit in OUi . Thus, i∗D is a G-invariant divisor on Z and can be represented

by {(Ui ∩ Z, gi|Z)}, or simply {(Z, 1)} by the independence of representation. That means

OX(D)|Z ∼= OZ(i∗D) ∼= OZ .

(3) As mentioned before, if D and D′ are G-equivariantly linearly equivalent, then they

define the same G-linearized invertible sheaf, i.e. OX(D) ∼= OX(D′). So, it is enough to

show if OX(D) ∼= OX , then D ∼ 0. Suppose D is represented by {(Ui, gi)}. Then, the

isomorphism OX → OX(D) over Ui is given by sending 1 to aig
−1
i for some ai ∈ O∗Ui . The

fact that the isomorphism is globally defined implies that ai(gj/gi) = aj . Thus,

h
def
=

ai
gi

=
aj
gj
∈ H0(X,K∗).
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Since aig
−1
i corresponds to 1, the G-action on h is trivial. Hence, the two G-invariant

divisors {(Ui, gi)} and {(Ui, ai)} are G-equivariantly linearly equivalent. The result then

follows from the fact that ai ∈ O∗Ui . �

Remark 3.2. By property (3), we can consider the set of G-invariant divisor classes on X

as a natural subgroup of PicG(X).

We will also use the following fact about projective bundles from time to time.

Proposition 3.3. For an object X ∈ G-Sm, suppose L is in PicG(X) and E is a G-linearized

locally free sheaf of rank r over X. Then P(E) and P(E ⊗ L) are naturally isomorphic as

G-equivariant projective bundles over X.

Proof. First of all, we define a morphism from P(E ⊗ L) to P(E) without considering the

group action. Let {Ui} be an open cover of X such that E|Ui is trivial and L|Ui
∼= OUili.

Then, we define a morphism

γ : E|Ui → E ⊗ L|Ui

by e 7→ e⊗ li. This induces a morphism

f |Ui : P(E ⊗ L|Ui) = Proj Sym E ⊗ L|Ui → Proj Sym E|Ui = P(E|Ui).

We claim that {f |Ui} will patch together to form a morphism from P(E ⊗L) to P(E) and it

will be an isomorphism of projective bundles over X.

Let σE , σL be the transition functions of E , L respectively from Ui to Uj . Then, we have

σL(li) = a lj for some a ∈ O∗Uj and the transition function for E ⊗L will be σE ⊗ σL. Then,

(σE ⊗ σL) ◦ γ(e) = (σE ⊗ σL)(e⊗ li)

= σE (e)⊗ σL(li)

= σE (e)⊗ a lj

= a (σE (e)⊗ lj).

On the other hand,

γ ◦ σE (e) = σE (e)⊗ lj .
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If we consider σE (e) ⊗ lj and a (σE (e) ⊗ lj) as elements in Sym E ⊗ L, then they agree, in

homogeneous coordinates. Hence, {f |Ui} patch together to form a morphism f . Moreover,

it is obviously an isomorphism and a projective bundle morphism.

It remains to check if f is G-equivariant. The G-linearization on L is described by a

set of isomorphisms {φL,α : α∗L →̃ L}. When restricted on Ui ∩ α−1Uj , φL,α defines an

isomorphism from Olj to Oli. So, φL,α(lj) = bαli for some bα ∈ O∗
Ui∩α−1Uj

. Similarly, if

{φE ,α} and {φE⊗L,α} defines the G-linearizations on E and E ⊗ L respectively, then

γ ◦ φE ,α(e) = φE ,α(e)⊗ li.

On the other hand,

φE⊗L,α ◦ γ(e) = φE⊗L,α(e⊗ lj)

= φE ,α(e)⊗ φL,α(lj)

= φE ,α(e)⊗ bαli

= bα(φE ,α(e)⊗ li).

For the same reason, they agree in homogeneous coordinates and hence, f is G-equivariant.

�

3.2. Generalized double point relation. In [LeP] (Definition 0.2), the graded cobordism

group ω∗(X) is defined as the quotient of the free abelian group generated by symbols

[f : Y → X] where Y is an object in Sm and f is a projective morphism, by an equivalence

relation called double point relation. More precisely, suppose Y ∈ Sm is equidimensional

and there is a projective morphism φ : Y → X ×P1 such that a closed point 0 6= ξ ∈ P1 is a

regular value of π2 ◦ φ (in other words, Yξ
def
= (π2 ◦ φ)−1(ξ) is a smooth divisor on Y ), while

the fiber Y0 = A ∪ B for some smooth divisors A, B and A + B is a reduced strict normal

crossing divisor. Then, the double point relation is

[Yξ ↪→ Y → X] = [A ↪→ Y → X] + [B ↪→ Y → X]

− [P(O ⊕O(A))→ A ∩B ↪→ Y → X].
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We refer the reader to section 0 in [LeP] for more details.

In addition, in section 5.2 in [LeP], a relation called extended double point relation is

also introduced. Suppose Y ∈ Sm is equidimensional and there is a projective morphism

φ : Y → X. In addition, suppose we have divisors A, B, C on Y such that A + B + C is

a reduced strict normal crossing divisor and C ∼ A + B. Then, the extended double point

relation is

[C ↪→ Y → X] = [A ↪→ Y → X] + [B ↪→ Y → X]

− [P(O ⊕O(A))→ A ∩B ↪→ Y → X]

+ [P(O ⊕O(1))→ P(O(−B)⊕O(−C))→ A ∩B ∩ C ↪→ Y → X]

− [P(O ⊕O(−B)⊕O(−C))→ A ∩B ∩ C ↪→ Y → X].

On one hand, if we assume C does not intersect A∪B, then this is the same as the double

point relation. On the other hand, Lemma 5.2 in [LeP] shows that the extended double point

relation holds in the theory ω defined by the double point relation. One may then expect the

existence of similar formulas when Y0 = A1 ∪A2 ∪A3 in the double point relation setup, or

when B ∼ A1 + A2 + A3 in the extended double point relation setup. Indeed, it is possible

to write a formula for arbitrary number of divisors. For induction purposes, we will consider

the extended double point relation setup.

More precisely, suppose X is a separated scheme of finite type over k and φ : Y → X is a

projective morphism with Y ∈ Sm such that Y is equidimensional. Moreover, suppose there

are divisors A1, . . . , An, B1, . . . , Bm on Y such that

A1 + · · ·+ An ∼ B1 + · · ·+Bm

and A1 + · · · + An + B1 + · · · + Bm is a reduced strict normal crossing divisor. Then, we

expect a formula of the form

[A1 → X] + · · ·+ [An → X] + extra terms = [B1 → X] + · · ·+ [Bm → X] + extra terms.

We will give such a formula inductively. For this purpose, we will consider the following.
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Definition 3.4. Define a polynomial ring over Z with commuting variables :

R def
= Z[{Xi, Yj , U

p
k , V

q
l }]

where i, j, k, l ≥ 1 and 1 ≤ p, q ≤ 3.

Then, we define some elements in R inductively.

Definition 3.5. Let EX1 , FX1
def
= 0. For n ≥ 2, define

EXn
def
= EXn−1 − (X1 + · · ·+Xn−1 + EXn−1)XnU

1
n−1 −XnF

X
n−1

FXn
def
= FXn−1 + (X1 + · · ·+Xn−1 + EXn−1)Xn(U2

n − U3
n).

Similarly, define EYn , FYn by replacing X by Y and U by V in EXn , FXn respectively, namely,

EY1 , F
Y
1

def
= 0

EYn
def
= EYn−1 − (Y1 + · · ·+ Yn−1 + EYn−1)YnV

1
n−1 − YnF

Y
n−1

FYn
def
= FYn−1 + (Y1 + · · ·+ Yn−1 + EYn−1)Yn(V 2

n − V 3
n )

for n ≥ 2. Also, for n,m ≥ 1, define the elements GXn,m as the following :

GXn,m
def
= X1 + · · ·+Xn + EXn + (Y1 + · · ·+ Ym)FXn + EYmF

X
n .

Finally, define GYn,m by interchanging X and Y in GXn,m, namely,

GYn,m
def
= Y1 + · · ·+ Yn + EYn + (X1 + · · ·+Xm)FYn + EXmF

Y
n .

For a projective morphism φ : Y → X, such that Y is equidimensional, and divisors

A1, . . . , An, B1, . . . , Bm on Y such that A1 + · · · + An ∼ B1 + · · · + Bm and A1 + · · · +

An + B1 + · · ·+ Bm is a reduced strict normal crossing divisor, we define an abelian group

homomorphism

G : R → ω(X)

as the following.
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First of all, any term with Xi such that i > n, or Yj such that j > m, or U
p
k such that

k > n, or V
q
l such that l > m is sent to 0. Then, we send

1 7→ [Y → X]

Xi 7→ [Ai → Y → X]

Yj 7→ [Bj → Y → X]

U1
k 7→ [P(O ⊕O(D))→ Y → X]

where D
def
= A1 + · · ·+ Ak. Denote it by [P 1

k → X] for simplicity.

U2
k 7→ [P(O ⊕O(1))→ P(O(−Ak)⊕O(−D))→ Y → X]

Denote it by [P 2
k → X].

U3
k 7→ [P(O ⊕O(−Ak)⊕O(−D))→ Y → X]

Denote it by [P 3
k → X].

V
q
l 7→ [Q

q
l → Y → X]

where Q
q
l is defined in the same manner as P

q
l with divisors Bl and

D = B1 + · · ·+Bl instead.

Finally, we send the general term Xi · · ·Yj · · ·U
p
k · · ·V

q
l · · · to

[Ai ×Y · · · ×Y Bj ×Y · · · ×Y P
p
k ×Y · · · ×Y Q

q
l ×Y · · · → Y → X].

In order for the homomorphism G to be well-defined, we need to check that, in general,

the morphism

Ai ×Y · · · ×Y Bj ×Y · · · ×Y P
p
k ×Y · · · ×Y Q

q
l ×Y · · · → Y → X

is projective and its domain is smooth. Notice that

G(Xn
i ) = [Ai ×Y · · · ×Y Ai → X] = [Ai → X],
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which is projective and Ai is smooth. Since A1 + · · ·+An+B1 + · · ·+Bm is a reduced strict

normal crossing divisor, the same is true for the value of G at any term with Xi, Yj only. In

addition, the morphisms P
p
k → Y and Q

q
l → Y are both projective and smooth. That means

G : R → ω(X) is well-defined. Then, the generalized double point relation GDPR(n,m) is

the equality :

G(GXn,m) = G(GYm,n).

Remark 3.6. Observe that for any n,m ≥ 1, the terms in GXn,m or GYm,n are always of the

form

Xi · · ·Yj · · ·U
p
k · · ·V

q
l · · ·

where the powers for Xi, Yj are either 0 or 1. In other words, self intersection will never

happen in any GDPR(n,m). Moreover, 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m. In addition,

G(GXn,m), G(GYm,n) are both in ωdimY−1(X).

The generalized double point relation is indeed a generalization of the double point relation

and the extended double point relation. For example, if we apply the definition on the setup

IX : Y = X → X with A1 + A2 ∼ B1, we get

EX2 = − X1X2U
1
1

FX2 = X1X2(U2
2 − U

3
2 )

GX2,1 = X1 +X2 + EX2 + Y1F
X
2

= X1 +X2 −X1X2U
1
1 + Y1X1X2(U2

2 − U
3
2 )

GY1,2 = Y1

Hence, the GDPR(2, 1) is the equality

[A1 ↪→ X] + [A2 ↪→ X]− [P(O ⊕O(A1))→ A1 ∩ A2 ↪→ X]

+ [P(O ⊕O(1))→ P(O(−A2)⊕O(−A1 − A2))→ B1 ∩ A1 ∩ A2 ↪→ X]

− [P(O ⊕O(−A2)⊕O(−A1 − A2))→ B1 ∩ A1 ∩ A2 ↪→ X]

= [B1 ↪→ X],
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which is exactly the extended double point relation as Lemma 5.2 in [LeP]. If we further

assume that B1 is disjoint from A1, A2, then we get

[A1 ↪→ X] + [A2 ↪→ X]− [P(O ⊕O(A1))→ A1 ∩ A2 ↪→ X] = [B1 ↪→ X],

which is the double point relation in [LeP] (because NA1∩A2↪→A2
∼= OA1∩A2

(A1)).

Our first goal is to prove GDPR(n,m) holds in the theory ω. In other words, we will

show that imposing the generalized double point relation is equivalent to imposing the double

point relation.

To be more precise, suppose X is a separated scheme of finite type over k and φ : Y → X

is a projective morphism such that Y ∈ Sm is equidimensional. Moreover, suppose there

are divisors A1, . . . , An, B1, . . . , Bm on Y such that A1 + · · · + An ∼ B1 + · · · + Bm and

A1 + · · ·+An +B1 + · · ·+Bm is a reduced strict normal crossing divisor. We want to show

G(GXn,m) = G(GYm,n)

where G : R → ω(X) is the corresponding group homomorphism.

First of all, observe that G(GXn,m) = φ∗ ◦ G′(GXn,m) where G′ is the map defined by the

setup I : Y → Y with the same set of divisors on Y . Similarly, G(GYm,n) = φ∗ ◦ G′(GYm,n).

Hence, we reduce to the case when φ = IX . In particular, we may assume X is in Sm and

is equidimensional.

Suppose X is a separated scheme of finite type over k and L is an invertible sheaf over X.

Recall that in [LeP], there is a corresponding operator c̃1(L) ∈ End (ω(X)) which is called

the first Chern class operator. For simplicity, we will denote it by c(L) and call it Chern

class operator for the rest of this paper.

We are going to prove GDPR(n,m) by induction. For this purpose, we need to modify

the definition of G. Suppose X ∈ Sm is equidimensional and there are divisors A1, . . . , An,

B1, . . . , Bm on X such that A1 + · · · + An ∼ B1 + · · · + Bm. Then, we define a ring

homomorphism G : R → End (ω(X)) by
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Xi 7→ c(O(Ai))

Yj 7→ c(O(Bj))

Uak 7→ pa∗p
∗
a

where pa : P ak → X

V bl 7→ qb∗q
∗
b

where qb : Qbl → X

if 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m (The morphisms pa∗, p
∗
a, qb∗, q

∗
b are all well-defined because

pa, qb are both smooth and projective.). Otherwise, send them to zero.

For well-definedness of G, we need to check the commutativity of some endomorphisms.

Axiom (A5) in ω implies that c(L)c(L′) = c(L′)c(L). In addition, for p : P ak → X, we have

c(L)p∗p∗ = p∗c(p∗L)p∗ = p∗p∗c(L)

and same for q. For the commutativity between p∗p∗ and (p′)∗(p′)∗ where p : P
def
= P ak → X

and p′ : P ′
def
= P a

′
k′ → X, consider the following commutative diagram :

P ×X P ′
p′−−−→ P

p
y yp
P ′

p′−−−→ X
By axiom (A2) in ω,

p∗p∗(p′)∗(p′)∗ = p∗p′∗p
∗(p′)∗ = (p′)∗p∗p′

∗
p∗ = (p′)∗(p′)∗p∗p∗.

The commutativity between q and q′, p and q follow from similar arguments. Hence, the

ring homomorphism G : R → End (ω(X)) is well-defined.

The statement we are going to prove is G(GXn,m) = G(GYm,n) as elements in End (ω(X)).

Notice that we do not assume A1 + · · ·+An +B1 + · · ·+Bm to be a reduced strict normal

crossing divisor in the setup anymore. Moreover, if Ai is a smooth divisor, then

G(Xi)[IX ] = c(O(Ai))[IX ] = [Ai ↪→ X]
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by the (Sect) axiom in [LeP]. So, the statement corresponding to this modified G is actually

stronger than what we aimed to prove at the beginning (we will make this more precise later).

For simplicity, we will still call this statement GDPR(n,m) within this proof.

Here is the outline of the proof. We will prove that GDPR(n,m) holds by assuming

GDPR(n, 1). Then, for n ≥ 3, we will prove GDPR(n, 1) by assuming GDPR(n − 1, 1)

and GDPR(2, 1). Thus, we reduce the proof of GDPR(n,m) to the proof of GDPR(2, 1),

which is essentially the extended double point relation in [LeP]. But since the definition of

G is modified, GDPR(2, 1) becomes a stronger statement. Hence, there is still some works

needed to be done.

Suppose GDPR(n, 1) holds. Then, for a given equidimensional X ∈ Sm and divisors

A1, . . . , An, B1, . . . , Bm on X, let C
def
= A1 + · · · + An. Consider the setup corresponding

to A1 + · · ·+ An ∼ C. From GDPR(n, 1), we get G(GXn,1) = G(GY1,n). This means that, as

elements in End (ω(X)),

c(O(C)) = G(X1 + · · ·+Xn + EXn ) + G(FXn )c(O(C)).

Similarly, by considering the setup C ∼ B1 + · · ·+Bm, we get

c(O(C)) = G′(Y1 + · · ·+ Ym + EYm) + G′(FYm )c(O(C))

with corresponding G′.

Now, consider the map G′′ corresponding to the setup A1 + · · · + An ∼ B1 + · · · + Bm.

Then, by observing that G = G′′ on terms without Y or V and G′ = G′′ on terms without X

or U , we have

c(O(C))

= G(X1 + · · ·+Xn + EXn ) + G(FXn )c(O(C))

= G′′(X1 + · · ·+Xn + EXn ) + G′′(FXn ) (G′(Y1 + · · ·+ Ym + EYm) + G′(FYm )c(O(C)))

= G′′(X1 + · · ·+Xn + EXn ) + G′′(FXn ) (G′′(Y1 + · · ·+ Ym + EYm) + G′′(FYm )c(O(C)))

= G′′(GXn,m) + G′′(FXn FYm )c(O(C)).
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On the other hand,

c(O(C))

= G′(Y1 + · · ·+ Ym + EYm) + G′(FYm )c(O(C))

= G′′(GYm,n) + G′′(FXn FYm )c(O(C)).

Then, the result follows from cancelling G′′(FXn FYm )c(O(C)) on both sides. That means it

is enough to show GDPR(n, 1).

Assume GDPR(n−1, 1) and GDPR(2, 1) are true. Now, we start with a setup A1 + · · ·+

An ∼ B. Let C
def
= A1 + · · · + An−1. Consider the setup C + An ∼ B. Define σ

def
= p1∗p

∗
1

and σ′
def
= p2∗p

∗
2 − p3∗p

∗
3 where

p1 : P(O ⊕O(C))→ X

p2 : P(O ⊕O(1))→ P(O(−An)⊕O(−B))→ X

p3 : P(O ⊕O(−An)⊕O(−B))→ X.

Then, by GDPR(2, 1), we get

c(O(B)) = c(O(C)) + c(O(An))(1)

− c(O(C))c(O(An))σ + c(O(B))c(O(C))c(O(An))σ′.

By GDPR(n−1, 1) corresponding to the setup A1 + · · ·+An−1 ∼ C, we have G′(GXn−1,1) =

G′(GY1,n−1) where G′ is the corresponding ring homomorphism. That implies

c(O(C)) = G′(X1 + · · ·+Xn−1 + EXn−1) + c(O(C))G′(FXn−1).(2)

Now, consider the setup A1 + · · ·+An ∼ B and call the corresponding ring homomorphism

G. Then, G = G′ on terms involving only Xi, U
p
k , if 1 ≤ i, k ≤ n − 1. Also, we have

G(Xn) = c(O(An)).

For simplicity, we will drop the notation G. Hence, as elements in End (ω(X)),
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c(O(B))

= c(O(C)) +Xn − c(O(C))Xnσ + c(O(B))c(O(C))Xnσ
′

(by equation (1))

= (X1 + · · ·+Xn−1 + EXn−1 + c(O(C))FXn−1) +Xn

− Xnσ (X1 + · · ·+Xn−1 + EXn−1 + c(O(C))FXn−1)

+ c(O(B))Xnσ
′ (X1 + · · ·+Xn−1 + EXn−1 + c(O(C))FXn−1)

(by equation (2))

= X1 + · · ·+Xn−1 +Xn

+ EXn−1 − (X1 + · · ·+Xn−1 + EXn−1)Xnσ

+ c(O(B))σ′Xn(X1 + · · ·+Xn−1 + EXn−1)

+ c(O(C))FXn−1 − c(O(C))FXn−1Xnσ + c(O(B))c(O(C))σ′XnFXn−1,

which is equal to

X1 + · · ·+Xn + (EXn +XnF
X
n−1) + c(O(B))(FXn − FXn−1)

+ c(O(C))FXn−1 − c(O(C))FXn−1Xnσ + c(O(B))c(O(C))σ′XnFXn−1

by definition of EXn and FXn and the fact that σ = G(U1
n−1) and σ′ = G(U2

n − U3
n). Notice

that the last three terms are

c(O(C))FXn−1 − c(O(C))FXn−1Xnσ + c(O(B))c(O(C))σ′XnFXn−1

= (c(O(B))−Xn + c(O(C))Xnσ − c(O(B))c(O(C))Xnσ
′) FXn−1

− c(O(C))FXn−1Xnσ + c(O(B))c(O(C))σ′XnFXn−1

(by equation (1))

= (c(O(B))−Xn)FXn−1.
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Hence,

c(O(B)) = X1 + · · ·+Xn + EXn +XnF
X
n−1 + c(O(B))(FXn − FXn−1)

+ (c(O(B))−Xn)FXn−1

= X1 + · · ·+Xn + EXn + c(O(B))FXn ,

which is exactly G(GY1,n) = G(GXn,1). That means it is enough to show GDPR(2, 1).

Suppose X ∈ Sm is equidimensional and L, M are two invertible sheaves over X. Define

an element H(L,M) ∈ End (ω(X)) by :

H(L,M)
def
= c(L) + c(M)− c(L)c(M)p1∗p1

∗

+ c(L)c(M)c(L ⊗M)(p2∗p2
∗ − p3∗p3

∗)− c(L ⊗M)

where p1 : P(O ⊕ L)→ X

p2 : P(O ⊕O(1))→ P(M∨ ⊕ (L ⊗M)∨)→ X

p3 : P(O ⊕M∨ ⊕ (L ⊗M)∨)→ X.

Observe that if A, B, C are divisors on X such that A+B ∼ C, then

H(OX(A),OX(B))
def
= G(GX2,1)− G(GY1,2)

where G is the ring homomorphism corresponding to the setup A+B ∼ C. In other words,

it is enough to show H(L,M) = 0 for any equidimensional X ∈ Sm and invertible sheaves

L, M over X. For this purpose, we need the following two Lemmas.

Lemma 3.7. Suppose f : X ′ → X is a morphism in Sm such that X, X ′ are both equidi-

mensional and L, M are two invertible sheaves over X.

1. If f is projective, then H(L,M)f∗ = f∗H(f∗L, f∗M).

2. If f is smooth, then H(f∗L, f∗M)f∗ = f∗H(L,M).

Proof. 1. Axiom (A3) in ω implies that c(L)f∗ = f∗c(f∗L). For pi, consider the commu-

tative diagram
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P i ×X X ′
p′i−−−→ X ′

f ′
y yf
P i

pi−−−→ X

By axiom (A2), we have pi∗pi
∗f∗ = pi∗f

′
∗pi
′∗ = f∗pi′∗pi

′∗ and the morphisms p′i are

P 1 ×X X ′ = P(O ⊕ f∗L)→ X ′

P 2 ×X X ′ = P(O ⊕O(1))→ P(f∗M∨ ⊕ f∗(L ⊗M)∨)→ X ′

P 3 ×X X ′ = P(O ⊕ f∗M∨ ⊕ f∗(L ⊗M)∨)→ X ′.

2. Similarly, axiom (A4) implies that c(f∗L)f∗ = f∗c(L). For pi, we can consider the

same diagram above and we get pi
′
∗pi
′∗f∗ = pi

′
∗f
′∗pi∗ = f∗pi∗pi

∗. �

Lemma 3.8. Suppose X is a smooth k-scheme, L1, L2, . . . ,Ln are invertible sheaves over

X and L1, L2, . . . , Ln are the corresponding line bundles over X. Let X̃
def
= L1 ×X L2 ×X

· · · ×X Ln and π : X̃ → X be the projection. Then, there are canonically defined global

sections si ∈ H0(X̃, π∗Li) such that, for each i, the section si will cut out a smooth divisor

Di on X̃ and D1 + · · ·+Dn is a reduced strict normal crossing divisor.

Proof. Define si : X̃ → X̃×X Li by (x, v1, . . . , vn) 7→ (x, v1, . . . , vn, vi). This is a canonically

defined global section of π∗Li. It cuts out the divisor Di
def
= {(x, v1, . . . , vn) | vi = 0}.

Moreover, the intersection ofDi1 , . . . , Dij is just {(x, v1, . . . , vn) | vi1 = vi2 = · · · = vij = 0},

which is smooth and has codimension j in X̃. �

We are now ready to prove H(L,M) = 0. First of all,

H(L,M)[f ] = H(L,M)f∗[I] = f∗H(f∗L, f∗M)[I].

So, it is enough to consider the element [I]. Let L1, L2, L3 be the invertible sheaves L, M,

L ⊗M respectively and π : X̃ → X as in Lemma 3.8. Then, we have

π∗H(L,M)[I] = H(π∗L, π∗M)π∗[I] = H(π∗L, π∗M)[I].

By the extended homotopy property in ω, π∗ : ω(X) → ω(X̃) is an isomorphism. That

means it is enough to prove H(L,M)[I] = 0 when there are divisors A, B, C on X such that
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L ∼= OX(A), M ∼= OX(B), C ∼ A + B and A + B + C is a reduced strict normal crossing

divisor. In this case,

H(L,M)[I]

= c(O(A))[I] + c(O(B))[I]− c(O(A))c(O(B))p1∗p1
∗[I]

+ c(O(A)) c(O(B)) c(O(C)) (p2∗p2
∗ − p3∗p3

∗)[I]− c(O(C))[I]

= [A ↪→ X] + [B ↪→ X]− p1∗p1
∗c(O(A))c(O(B))[I]

+ (p2∗p2
∗ − p3∗p3

∗) c(O(A)) c(O(B)) c(O(C)) [I]− [C ↪→ X]

(by (Sect) axiom in ω)

= [A ↪→ X] + [B ↪→ X]− p1∗p1
∗[A ∩B ↪→ X]

+ (p2∗p2
∗ − p3∗p3

∗)[A ∩B ∩ C ↪→ X]− [C ↪→ X]

(by (Sect) axiom)

= [A ↪→ X] + [B ↪→ X]− [P(O ⊕O(A))→ A ∩B ↪→ X]

+ [P(O ⊕O(1))→ P(O(−B)⊕O(−C))→ A ∩B ∩ C ↪→ X]

− [P(O ⊕O(−B)⊕O(−C))→ A ∩B ∩ C ↪→ X]− [C ↪→ X]

= 0

by the extended double point relation in [LeP] (Lemma 5.2). Hence, we proved the following

Proposition.

Proposition 3.9. Suppose X ∈ Sm is equidimensional and A1, . . . , An, B1, . . . , Bm are

divisors on X such that A1 + · · · + An ∼ B1 + · · · + Bm. Let G : R → End (ω(X)) be the

corresponding map constructed before. Then, G(GXn,m) = G(GYm,n).

We can now apply this statement to prove that the generalized double point relation holds

in ω.

Corollary 3.10. Suppose X is a separated scheme of finite type over k and there is a

projective morphism φ : Y → X such that Y is in Sm and is equidimensional. Moreover,

suppose A1, . . . , An, B1, . . . , Bm are divisors on Y such that A1+· · ·+An ∼ B1+· · ·+Bm and
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A1 + · · ·+An+B1 + · · ·+Bm is a reduced strict normal crossing divisor. Let G : R → ω(X)

be the corresponding map constructed before. Then, G(GXn,m) = G(GYm,n).

Proof. By definition, G(GXn,m) = φ∗ ◦ G′(GXn,m) and G(GYm,n) = φ∗ ◦ G′(GYm,n) where G′ is

the map corresponding to the setup IY : Y → Y with the same set of divisors. So, we may

assume φ = IX . Then, it follows from the fact that

G(GXn,m)[IX ]

(the modified definition G : R → End (ω(X)))

= G(GXn,m)

(the original definition G : R → ω(X))

and similarly for GYm,n. �

Remark 3.11. Notice that in the generalized double point relation setup φ : Y → X with

A1 + · · · + An ∼ B1 + · · · + Bm on Y , we do not assume Ai or Bj to be nonempty. If G is

the map corresponding to A1 + · · ·+An ∼ B1 + · · ·+Bm and G′ is the map corresponding

to

A1 + · · ·+ An +
N∑

i=n+1

Ci ∼ B1 + · · ·+Bm +
M∑

j=m+1

Dj

where {Ci, Dj} are zero divisors, then

G(GXn,m) = G′(GXn,m) = G′(GXN,M ) and G(GYm,n) = G′(GYm,n) = G′(GYM,N ).

Indeed, notice that if a general termXi · · ·U
p
k · · · inR containsXi or Yj with n+1 ≤ i ≤ N

or m+ 1 ≤ j ≤M , then G′(Xi · · ·U
p
k · · · ) = 0. By definition,

EXn+1 = EXn +
∑

terms with Xn+1.

Inductively,

EXN = EXn +
∑

terms with Xi where n+ 1 ≤ i ≤ N.
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Similar facts hold for FXN , EYM and FYM . Hence,

GXN,M = X1 + · · ·+XN + EXN + (Y1 + · · ·+ YM )FXN + EYMFXN

= X1 + · · ·+Xn + EXn + (Y1 + · · ·+ Ym)FXn + EYmF
X
n

+
∑

terms with Xi where n+ 1 ≤ i ≤ N

+
∑

terms with Yj where m+ 1 ≤ j ≤M.

That means G′(GXN,M ) = G′(GXn,m) = G(GXn,m). Similarly, G′(GYM,N ) = G′(GYm,n) =

G(GYm,n).

3.3. Definition and basic properties. Now we will define our equivariant algebraic cobor-

dism theory using the generalized double point relation.

Definition 3.12. For an object X in G-Sm, let MG(X) be the set of isomorphism classes

over X of projective morphisms f : Y → X in G-Sm. Then, MG(X) is a monoid under

disjoint union of domains, i.e.

[Y → X] + [Y ′ → X]
def
= [Y q Y ′ → X].

We define the abelian group MG(X)+ as the group completion of MG(X).

The i-th graded piece (cohomological grading) : (MG(X)+)i, when X is equidimensional,

is given by [Y → X] where Y is equidimensional and i = dimX − dimY . We also have

homological grading MG(X)+
i where i denotes the dimension of Y , if Y is equidimensional.

Remark 3.13. The main reason for focusing on quasi-projective X instead of just separated

scheme of finite type over k as in [LeP] is because we will sometimes consider the quotient

X/G and the operation of taking quotient works better in the quasi-projective category.

Next, we will define the notion of equivariant generalized double point relation which is

the equivariant analog of the generalized double point relation we just defined in section 3.2.

To be more precise, we will consider the following setup.

Let φ : Y → X be a projective morphism in G-Sm such that Y is equidimensional. In

addition, A1, . . . , An, B1, . . . , Bm are G-invariant divisors on Y such that A1 + · · · + An ∼
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B1 + · · · + Bm (G-equivariantly linearly equivalent) and A1 + · · · + An + B1 + · · · + Bm

is a reduced strict normal crossing divisor. In this setup, we construct a corresponding

abelian group homomorphism G : R → MG(X)+ by the exact same definition as in section

3.2. Notice that all objects involved are smooth varieties with natural G-action and all

morphisms involved are naturally G-equivariant. We will call the collection of φ : Y → X

together with the divisors as above a generalized double point relation setup over X, or

GDPR setup.

Definition 3.14. The equivariant algebraic cobordism group UG(X) is defined as the quo-

tient of MG(X)+ by the subgroup generated by all expressions G(GXn,m) − G(GYm,n) where

G corresponds to some GDPR setup over X.

Remark 3.15. As pointed out in remarks 3.6, if φ : Y → X is the morphism defining G,

then G(GXn,m), G(GYm,n) both lie in MG(X)+
dimY−1. Hence, if X is equidimensional, we can

define a homological (cohomological) grading on UG(X), namely

UG(X) =
⊕
i

U iG(X) =
⊕
i

UGi (X)

where UGi (X) is defined as the quotient of MG(X)+
i by the subgroup generated by all

expressions G(GXn,m)−G(GYm,n) such that G corresponds to some GDPR setup over X where

the dimension of the domain of φ is i + 1. Similarly, the group U iG(X) is the quotient of

(MG(X)+)i with GDPR setups overX when the dimension of the domain of φ is dimX−i+1.

Generalized double point relation is a generalization of the double point relation in the

equivariant configuration.

Proposition 3.16. Suppose φ : Y → X×P1 is a projective morphism in G-Sm (with trivial

G-action on P1) such that Y is equidimensional. Let ξ ∈ P1 be a closed point. Assume that

the fiber Yξ
def
= (π2 ◦ φ)−1(ξ) is a smooth G-invariant divisor on Y and there exist smooth

G-invariant divisors A, B on Y such that Y0 = A∪B and A, B intersect transversely, then

[Yξ → X] = [A→ X] + [B → X]− [P(O ⊕O(A))→ A ∩B → X]

as elements in UG(X).
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Proof. Since Yξ is disjoint from A, B and A, B intersect transversely, Yξ+A+B is a reduced

strict normal crossing divisor on Y . In addition, since P1 has trivial G-action, Yξ ∼ A+ B.

That defines a generalized double point relation setup π1 ◦ φ : Y → X with Yξ ∼ A + B.

Thus, we obtain the equality G(GX1,2) = G(GY2,1) in UG(X) which is exactly

[Yξ → X] = [A→ X] + [B → X]− [P(O ⊕O(A))→ A ∩B → X].

�

In [LeP], M. Levine and R. Pandharipande listed several natural axioms and properties

that an algebraic cobordism theory should satisfy. Here, we will show the equivariant version

of some of them.

(D1) If f : X → X ′ in G-Sm is projective, then there is an abelian group homomorphism

f∗ : UG∗ (X)→ UG∗ (X ′).

Moreover, if f, g are both projective, then (g ◦ f)∗ = g∗ ◦ f∗.

Proof. As in the ω∗ theory of [LeP], the push-forward f∗ is given by sending [h : Y → X] to

[f ◦ h : Y → X ′]. We need to check that it preserves the generalized double point relation.

Suppose a generalized double point relation on X is defined by a projective morphism

φ : Y → X in G-Sm with A1 + · · · + An ∼ B1 + · · · + Bm. It defines a homomorphism

G : R →MG(X)+. We can then consider the generalized double point relation on X ′ given

by f ◦ φ : Y → X ′ with the same set of divisors. This will also define a homomorphism

G′ : R →MG(X ′)+. Thus, for a general term Xi · · ·Yj · · ·U
p
k · · ·V

q
l · · · in R,

f∗ ◦ G(Xi · · ·Yj · · ·U
p
k · · ·V

q
l · · · )

= f∗[Ai ×Y · · · ×Y Bj ×Y · · · ×Y P
p
k ×Y · · · ×Y Q

q
l ×Y · · · → X]

= [Ai ×Y · · · ×Y Bj ×Y · · · ×Y P
p
k ×Y · · · ×Y Q

q
l ×Y · · · → X → X ′].

On the other hand,

35



G′(Xi · · ·Yj · · ·U
p
k · · ·V

q
l · · · )

= [Ai ×Y · · · ×Y Bj ×Y · · · ×Y P
p
k ×Y · · · ×Y Q

q
l ×Y · · · → X → X ′].

That implies f∗ ◦ G = G′. In particular, f∗ ◦ G(GXn,m) = G′(GXn,m) and f∗ ◦ G(GYm,n) =

G′(GYm,n), which means f∗ ◦ G(GXn,m) = f∗ ◦ G(GYm,n) in UG(X ′). So, the group homomor-

phism f∗ : UG(X) → UG(X ′) is well-defined. Clearly, it preserves the homological grading

and (g ◦ f)∗ = g∗ ◦ f∗. �

(D2) If f : X ′ → X in G-Sm is smooth such that X,X ′ are both equidimensional, then

there is an abelian group homomorphism

f∗ : U∗G(X)→ U∗G(X ′).

Proof. Let [Y → X] be an element UG(X), then we define the pull-back f∗[Y → X] as

[Y ×X X ′ → X ′]. First of all, Y ×X X ′ is a smooth variety with natural diagonal G-action

and the morphism Y ×X X ′ → X ′ is projective and G-equivariant.

Consider a GDPR setup over X given by φ : Y → X with divisors A1, . . . , An, B1, . . . , Bm

on Y and G be the corresponding map. We have the following commutative diagram :

Y ′
def
= Y ×X X ′

f ′−−−→ Y

φ′
y yφ
X ′

f−−−→ X

We obtain a generalized double point relation setup over X ′ given by φ′ : Y ′ → X ′ with

divisors f ′∗A1, . . . , f
′∗An, f ′∗B1, . . . , f

′∗Bm on Y ′. Let G′ be the corresponding homomor-

phism. The smoothness of f ′ implies that f ′∗A1 + · · ·+f ′∗An+f ′∗B1 + · · ·+f ′∗Bm is still a

reduced strict normal crossing divisor. Observe that if P 1
k = P(O⊕O(D)) is a G-equivariant

projective bundle over Y , then P 1
k ×Y Y ′ ∼= P(O ⊕ O(f ′∗D)), as G-equivariant projective

bundles over Y ′. So,

G′(U1
k ) = [P 1

k ×Y Y ′ → Y ′] = f∗[P 1
k → Y ] = f∗ ◦ G(U1

k ).
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Similar statements with respect to U
p
k and V

q
l also hold. For a general term,

f∗ ◦ G(Xi · · ·U
p
k · · · )

= f∗[Ai ×Y · · · ×Y P
p
k ×Y · · · → X]

= [(Ai ×Y · · · ×Y P
p
k ×Y · · · )×X X ′ → X ′].

On the other hand,

G′(Xi · · ·U
p
k · · · )

= [(Ai ×Y Y ′)×Y ′ · · · ×Y ′ (P
p
k ×Y Y ′)×Y ′ · · · → X ′].

= [(Ai ×Y · · · ×Y P
p
k ×Y · · · )×Y Y ′ → X ′].

= [(Ai ×Y · · · ×Y P
p
k ×Y · · · )×X X ′ → X ′].

That shows the well-definedness of f∗ : UG(X) → UG(X ′). Since f is smooth, taking fiber

product with f : X ′ → X preserves codimension. Thus, f∗ preserves the cohomological

grading. �

(D3) In [LeP], there is a discussion of the first Chern class operator. This will be addressed

in the next section.

(D4) For each pair (X,X ′) of objects in G-Sm, there is a bilinear, graded pairing

× : UGi (X)× UGj (X ′)→ UGi+j(X ×X
′)

which is commutative, associative and admits a distinguished element 1 ∈ UG0 (Spec k) as a

unit.

Proof. The definition is standard. We define

[f : Y → X]× [f ′ : Y ′ → X ′]
def
= [f × f ′ : Y × Y ′ → X ×X ′].

Suppose a GDPR setup over X is given by φ : Z → X with divisors A1, . . . , An,

B1, . . . , Bm on Z and G be the corresponding homomorphism. We need to show

G(GXn,m)× [f ′ : Y ′ → X ′] = G(GYm,n)× [f ′ : Y ′ → X ′].
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Without loss of generality, we may assume Y ′ is equidimensional. Consider the GDPR setup

over X×X ′ given by φ×f ′ : Z×Y ′ → X×X ′ with divisors π∗1A1, . . . , π
∗
1An, π∗1B1, . . . , π

∗
1Bm

on Z × Y ′. Let G′ be the corresponding homomorphism.

Observe that if P 1
k = P(OZ ⊕OZ(D)), then P 1

k × Y
′ = P(OZ×Y ′ ⊕OZ×Y ′(π

∗
1D)). So,

G′(U1
k ) = [P 1

k × Y
′ → X ×X ′] = [P 1

k → X]× [Y ′ → X ′] = G(U1
k )× [Y ′ → X ′].

Similar statements with respect to U
p
k and V

q
l also hold. For a general term,

[f ′]× G(Xi · · ·U
p
k · · · )

= [f ′]× [Ai ×Z · · · ×Z P
p
k ×Z · · · → X]

= [(Ai ×Z · · · ×Z P
p
k ×Z · · · )× Y

′ → X ×X ′].

On the other hand,

G′(Xi · · ·U
p
k · · · )

= [(Ai × Y ′)×Z×Y ′ · · · ×Z×Y ′ (P
p
k × Y

′)×Z×Y ′ · · · → X ×X ′].

= [(Ai ×Z · · · ×Z P
p
k ×Z · · · )× Y

′ → X ×X ′].

That shows the well-definedness of ×. It is not hard to see that this product is graded,

associative and commutative. The unit in UG0 (Spec k) is simply [I : Spec k → Spec k]. �

Remark 3.17. We will refer to

× : UGi (X)× UGj (X ′)→ UGi+j(X ×X
′)

as the external product. This external product gives UG∗ (Spec k) a graded ring structure

and UG∗ (X) a graded UG∗ (Spec k)-module structure. In addition, if f : X → X ′ is a pro-

jective morphism in G-Sm, then the push-forward f∗ : UG∗ (X) → UG∗ (X ′) will be a graded

UG∗ (Spec k)-module homomorphism. Similarly, if f : X → X ′ in G-Sm is smooth such that

X, X ′ are equidimensional, then the pull-back f∗ : U∗G(X ′) → U∗G(X) will be a graded

U∗G(Spec k)-module homomorphism.
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The following two properties can be easily derived from the definitions, similarly to [LeP].

(A1) If f : X → X ′ and g : X ′ → X ′′ are both smooth and X, X ′, X ′′ are all equidimen-

sional, then

(g ◦ f)∗ = f∗ ◦ g∗.

Moreover, I∗ is the identity homomorphism.

�

(A2) If f : X → Z is projective and g : Y → Z is smooth such that X, Y , Z are all

equidimensional, then we have g∗f∗ = f ′∗g
′∗ in the pull-back square

X ×Z Y
g′−−−→ X

f ′
y yf
Y

g−−−→ Z
�

(A3), (A4), (A5) in [LeP] are properties involving the Chern class operator. Hence,

they will be addressed in the next section.

(A6) If f, g are projective, then

× ◦ (f∗ × g∗) = (f × g)∗ ◦ ×.

Proof. Let f : X → X ′ and g : Z → Z ′. The statement follows from the commutativity of

the following diagram, which is easy to check.

UG(X)× UG(Z)
×−−−→ UG(X × Z)

f∗×g∗
y y(f×g)∗

UG(X ′)× UG(Z ′) ×−−−→ UG(X ′ × Z ′)

�

(A7) If f, g are smooth with equidimensional domains and codomains, then

× ◦ (f∗ × g∗) = (f × g)∗ ◦ ×.

Proof. It follows from the commutativity of the previous diagram with vertical arrows re-

versed. �
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3.4. Results for free action. Consider the set of objects Y ∈ G-Sm such that the geometric

quotient (definition 0.6 in [MuFoKi] ) Y/G exists as scheme over k, lies in Sm and the map

Y → Y/G is a principal G-bundle. Denote this set of objects by D. We will consider D as

a full subcategory of G-Sm. Suppose X is a variety in D, it turns out that there is a one-

to-one correspondence between morphisms Z → X/G in the category Sm and G-equivariant

morphisms Y → X in the category G-Sm. This important observation will lead us to the

proof of the isomorphism

ω(X/G) →̃ UG(X)

for any X ∈ D.

Throughout this paper, we will call going from X to X/G “descent” and going from X/G

to X “ascent”.

Proposition 3.18. If f : Y → X is a morphism in G-Sm and X is in D, then Y is also in

D.

Proof. Recall that the group scheme G we are working with is either a reductive connected

group over k or a finite group.

Consider the case when G is connected and reductive. Since Y is quasi-projective, the

map Y → X is quasi-projective. Then, there exists an invertible sheaf L over Y (may not be

G-linearized) which is very ample relative to X. By Theorem 1.6 in [Su], since Y is normal,

there exists a positive integer m such that Lm (
def
= L⊗m) admits a G-linearization. Then,

by Proposition 7.1 in [MuFoKi], we have the following commutative diagram in which Y/G

is quasi-projective and Y → Y/G is a principal G-bundle.

Y −−−→ Xy y
Y/G −−−→ X/G

Since Y → Y/G is a principal G-bundle, the morphism Y → Y/G is locally trivial in the

étale topology. That means that Y/G can be covered by étale neighborhoods W for which

we have the following commutative diagram :
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W ×G étale−−−→ Yy y
W

étale−−−→ Y/G

Hence, Y is smooth if and only if Y/G is smooth.

For the case when G is finite, just replace Lm by ⊗α∈G α∗L. �

The following is mostly a standard application of descent theory, but we need to make

sure we preserve the smoothness and quasi-projectiveness assumptions.

Proposition 3.19. For any object X ∈ D,

(1) There is a one-to-one correspondence between the set of morphisms f :

Z → X/G in Sm and the set of morphisms g : Y → X in G-Sm, given

by sending Z → X/G to its fiber product with X → X/G. Moreover, its

inverse is given by sending Y → X to Y/G→ X/G.

(2) The above map defines a one-to-one correspondence between the set of pro-

jective morphisms f : Z → X/G in Sm and the set of projective morphisms

g : Y → X in G-Sm.

(3) The above map defines a one-to-one correspondence between the set of vec-

tor bundles E′ → X/G and the set of G-equivariant vector bundles E → X.

Proof. (1) For ascent, consider the following commutative diagram :

Z ×X/G X
g−−−→ Xy y

Z
f−−−→ X/G

There is a natural G-action on Z ×X/G X and g is G-equivariant. Since X,Z are quasi-

projective, Z ×X/G X is quasi-projective.

Claim 1 : If X is an object in D, then the morphism X → X/G is smooth.

Since X → X/G is a principal G-bundle, it is flat and locally trivial in the étale topology.

Thus, we have the following commutative diagram :

W ×G étale−−−→ Xy y
W

étale−−−→ X/G
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Let x be a point in X/G and K be the algebraic closure of k(x). Then, by taking fiber

product with SpecK → Spec k(x), we have the following commutative diagram :

WK ×G
étale−−−→ XKy y

WK
étale−−−→ SpecK

Clearly, dimXK = dimWK × G = dimG and XK is regular. The claim then follows from

Theorem 10.2 in Ch III in [Ha]. 4

Since the morphism X → X/G is smooth and Z is smooth, Z ×X/G X is smooth. That

shows the well-definedness of ascent.

For descent, consider the following commutative diagram :

Y
g−−−→ Xy y

Y/G
f
def
= g/G

−−−−−−−→ X/G

By Proposition 3.18, Y is in D. So, Y/G is in Sm. The fact that these two constructions are

inverse to each other is standard and follows from descent theory.

(2) Ascent clearly preserves projectiveness. For descent, it follows from the descent of

properness (Proposition 2 of [EG]) and the fact that Y/G is quasi-projective.

(3) Ascent clearly takes vector bundles to G-equivariant vector bundles. For descent, it

follows from Lemma 1 of [EG]. �

We are now ready to prove the following Theorem.

Theorem 3.20. Suppose X is an object in D. Sending [Z → X/G] to [Z ×X/G X → X]

defines an abelian group isomorphism

Ψ : ω∗(X/G)→ U∗G(X).

Proof. Define the inverse homomorphism Ψ−1 by sending [Y → X] to [Y/G → X/G]. We

will call Ψ “ascent” and Ψ−1 “descent”.

First of all, we need to prove that Ψ is well-defined. By Proposition 3.19, Ψ is well-defined

at the level of M(X/G)+. In this proof, we will denote the fiber product with X → X/G by
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a star, i.e. W ∗
def
= W ×X/G X. We also denote by π : X → X/G the projection. Consider

the following commutative diagram :

Y ∗
φ∗−−−→ X × P1y y

Y
φ−−−→ X/G× P1

where φ corresponds to a double point relation setup over X/G (the fiber Yξ is a smooth

divisor, Y0 = A ∪B for some smooth divisors A, B and A, B intersect transversely).

We want to show that φ∗ gives an equivariant double point relation setup over X. Notice

that Y ∗ is in D because X is in D (Proposition 3.18). So, Y ∗ is smooth and the projection

Y ∗ → Y is smooth (claim 1 in the proof of Proposition 3.19). Then, Y ∗ is equidimensional,

(Yξ)
∗ = (Y ∗)ξ, A

∗ and B∗ are G-invariant divisors on Y ∗,

A∗ ∪B∗ = (A ∪B)∗ = (Y0)∗ = (Y ∗)0

and A∗, B∗ intersect transversely. Clearly, φ∗ is projective. Hence, that gives us an equi-

variant double point relation setup over X. By Proposition 3.16, we obtain the following

equation in UG(X) :

[Y ∗ξ → X] = [A∗ → X] + [B∗ → X]− [P(OD∗ ⊕OD∗(A
∗))→ X](3)

where D
def
= A ∩B.

On the other hand, the double point relation on X/G corresponding to φ is

[Yξ → X/G] = [A→ X/G] + [B → X/G]− [P(OD ⊕OD(A))→ X/G].

If we apply Ψ on this equation, we will get

[Y ∗ξ → X] = [A∗ → X] + [B∗ → X]− [P(OD ⊕OD(A))×X/G X → X].(4)

Since

P(OD ⊕OD(A))×X/G X ∼= P( π∗(OD ⊕OD(A)) ) ∼= P(OD∗ ⊕OD∗(A
∗)),
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equations (3) and (4) are equivalent. This finishes the first half of the proof : well-definedness

of Ψ.

It remains to show the well-definedness of the inverse Ψ−1. By Proposition 3.19, it is

well-defined at the level of MG(X)+. It remains to show that for a given GDPR setup

φ : Y → X with divisors A1, . . . , An, B1, . . . , Bm on Y and corresponding homomorphism

G,

Ψ−1 ◦ G(GXn,m) = Ψ−1 ◦ G(GYm,n)

as elements in ω(X/G).

First of all, Y is in D (by Proposition 3.18) implies that Y/G is in Sm and is equidi-

mensional. In addition, for all i, the G-invariant divisor Ai is in D. So, Ai/G is in Sm.

Moreover, dimAi/G = dimAi − dimG implies that Ai/G is a smooth divisor on Y/G. By

similar arguments,

A1/G+ · · ·+ An/G+B1/G+ · · ·+Bm/G

is a reduced strict normal crossing divisor on Y/G. On the other hand, by definition, there

exists f ∈ H0(Y,K∗)G such that

A1 + · · ·+ An −B1 − · · · −Bm = div f.

By the fact that H0(Y,K∗)G ∼= H0(Y/G,K∗), we can consider f as an element in H0(Y/G,K∗)

and deduce that

A1/G+ · · ·+ An/G−B1/G− · · · −Bm/G = div f.

By Proposition 3.19, φ/G : Y/G → X/G is projective. Hence, we obtain a GDPR setup

over X/G given by φ/G : Y/G→ X/G with divisors A1/G, . . . , An/G, B1/G, . . . , Bm/G on

Y/G. Let G′ be the corresponding homomorphism. By Corollary 3.10,

G′(GXn,m) = G′(GYm,n)

in ω(X/G). So, it will be enough to show G′ = Ψ−1 ◦ G. We will need the following claim

first.
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Claim : For morphisms Z → X and Z ′ → X with X, Z, Z ′ ∈ D, we have the following

isomorphism :

(Z ×X Z ′)/G ∼= Z/G×X/G Z
′/G.

Notice that

(Z/G×X/G Z
′/G)×X/G X ∼= Z/G×X/G (Z ′/G×X/G X)

∼= Z/G×X/G Z
′

(by Proposition 3.19)

∼= Z/G×X/G X ×X Z ′

∼= Z ×X Z ′

(by Proposition 3.19).

Again, by Proposition 3.19, we get

Z/G×X/G Z
′/G ∼= ((Z/G×X/G Z

′/G)×X/G X) /G ∼= (Z ×X Z ′)/G.

The proves the claim. 4

Consider a general term Xi · · ·U
p
k · · · in R. On one hand,

G′(Xi · · ·U
p
k · · · ) = [Ai/G×Y/G · · · ×Y/G (P

p
k )′ ×Y/G · · · → X/G]

where (P
p
k )′ is the corresponding tower defined by {Ai/G}.

On the other hand,

Ψ−1 ◦ G(Xi · · ·U
p
k · · · ) = Ψ−1[Ai ×Y · · · ×Y P

p
k ×Y · · · → X]

where P
p
k is the corresponding tower defined by {Ai}

= [(Ai ×Y · · · ×Y P
p
k ×Y · · · )/G→ X/G]

= [Ai/G×Y/G · · · ×Y/G P
p
k /G×Y/G · · · → X/G]

(by the claim).
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Thus, it remains to show (P
p
k )′ ∼= P

p
k /G. Consider the case when p = 1. Let D be the

divisor A1 + · · ·+ Ak. Then, we have

(P 1
k )′ ×Y/G Y ∼= P( π∗(OY/G ⊕OY/G(D/G)) )

∼= P(OY ⊕OY (D))

= P 1
k .

By Proposition 3.19, we have (P 1
k )′ ∼= P 1

k /G. Similarly, (P
p
k )′ ∼= P

p
k /G for p = 2, 3. �

When X is an object in D, there are some natural formulas relating the push-forward,

pull-back and external product with their non-equivariant versions.

Proposition 3.21. Suppose f : X ′ → X is a morphism in D.

(1) If f is projective, then f/G is projective, we have push-forward

(f/G)∗ : ω(X ′/G)→ ω(X/G)

and

f∗ = Ψ ◦ (f/G)∗ ◦Ψ−1

as morphisms from UG(X ′) to UG(X).

(2) If f is smooth and X, X ′ are both equidimensional, then f/G is smooth,

we have pull-back

(f/G)∗ : ω(X/G)→ ω(X ′/G)

and

f∗ = Ψ ◦ (f/G)∗ ◦Ψ−1

as morphisms from UG(X) to UG(X ′).

Proof. (1) First of all, f/G is projective by Proposition 3.19. Also, X/G, X ′/G are both

in Sm. Hence, the push-forward (f/G)∗ : ω(X ′/G)→ ω(X/G) is well-defined. Moreover, by
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definition,

Ψ ◦ (f/G)∗ ◦Ψ−1 [Y → X ′] = Ψ ◦ (f/G)∗ [Y/G→ X ′/G]

= Ψ [Y/G→ X/G]

= [Y/G×X/G X → X]

= [Y → X].

(2) By the descent of smoothness (Proposition 2 of [EG]), the morphism f/G is smooth.

Also, X/G, X ′/G ∈ Sm are both equidimensional. Hence, the pull-back (f/G)∗ : ω(X/G)→

ω(X ′/G) is well-defined. Moreover,

Ψ ◦ (f/G)∗ ◦Ψ−1 [Y → X] = Ψ ◦ (f/G)∗ [Y/G→ X/G]

= Ψ [Y/G×X/G X
′/G→ X ′/G]

= [Y/G×X/G X
′/G×X′/G X

′ → X ′]

= [Y/G×X/G X
′ → X ′]

= [Y/G×X/G X ×X X ′ → X ′]

= [Y ×X X ′ → X ′]

by Proposition 3.19.

�

There is a also similar formula for the external product, which is somewhat harder to

state. We need some trivial facts first.

Let γ : G → H be a group scheme homomorphism between the group schemes G, H.

Then, for all X ∈ H-Sm, it induces a natural abelian group homomorphism

Φγ : UH(X)→ UG(X)

by sending [Y → X] with H-actions to [Y → X] with G-actions via γ. This homomorphism

obviously respects GDPR, so Φγ is well-defined.
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Denote the ascending homomorphism corresponding to G-action as ΨG : ω(X/G) →

UG(X).

Proposition 3.22. Suppose X, X ′ are two objects in D. Then, the external product

× : UG(X)× UG(X ′)→ UG(X ×X ′)

of the element (a, b) ∈ UG(X)× UG(X ′) can be given by

a× b = Φ∆ ◦ΨG×G(Ψ−1
G a×Ψ−1

G b)

where ∆ : G→ G×G is the diagonal morphism.

Proof. Follows from the definition. �
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4. The Chern class operator c(L)

Suppose X is an object in G-Sm and L is a G-linearized invertible sheaf over X. Our goal

in this section is to define an abelian group homomorphism

c(L) : UG∗ (X)→ UG∗−1(X)

which satisfies some natural properties.

Recall that in section 4 of [LeP], when L is a globally generated invertible sheaf over a

k-scheme X ∈ Sm, c(L) : ω∗(X) → ω∗−1(X) is defined as follow. Let [f : Y → X] be

an element in ω(X) such that Y is irreducible. Since f∗L is a globally generated invertible

sheaf over Y , there is a smooth divisor H on Y such that OY (H) ∼= f∗L. Then, we define

c(L)[f : Y → X]
def
= [H ↪→ Y → X].

It is natural to try to give a similar version in our equivariant setting. However, since

there is no assumption on how the group G acts on the scheme X, there is no guarantee that

even a single non-zero invariant global section of L can be found. For example, if the action

on X is transitive, then no matter how nice a G-linearized invertible sheaf L over X is, there

is no invariant global section that cuts out an invariant divisor. Hence, c(L)[I : X → X] can

not be defined in a similar manner.

Moreover, even if there is an invariant section cutting out a smooth invariant divisor, it

may not be generic. For example, take G
def
= GL(2) and X

def
= P2 with action

 a b

c d

 ·


x

y

z

 def
=


a b 0

c d 0

0 0 1




x

y

z


Consider the case when L = O(1), which is naturally G-linearized. Then, there is only one

invariant section s ∈ H0(X,L)G that cuts out an invariant divisor, namely s = z. In this

case, for a projective map f : Y → X, we can not define c(L)[f : Y → X] by f∗(s) because

there is no reason to believe that Hf∗s (the subscheme cut out by f∗s) will be smooth, or

even a divisor. So, it is important that the choice of section is generic. Indeed, we will

49



see later that this freedom of choice is essential for the well-definedness of our Chern class

operator.

4.1. First approach. As pointed out in the subsection 3.4, the theory UG works nicely in

the subcategory D. Hence, our first approach is to restrict to this subcategory and define

the Chern class operator. We first need a little lemma to ensure we stay inside the quasi-

projective setup.

Lemma 4.1. If X is quasi-projective over k and π : E → X is a vector bundle, then E is

quasi-projective over k.

Proof. Consider P(E∨ ⊕ OX) where E is the locally free sheaf over X corresponding to E.

Since P(E∨ ⊕OX)→ X is projective, the scheme P(E∨ ⊕OX) is quasi-projective. Then, E

can be considered as an open set inside P(E∨ ⊕OX), hence is quasi-projective. �

Here is the natural definition of c(L) when X is in D.

Definition 4.2. Suppose X is an object in D and L is a sheaf in PicG(X). We define the

Chern class operator c(L) : UG∗ (X)→ UG∗−1(X) by

c(L)
def
= Ψ ◦ c(π∗LG) ◦Ψ−1

where π : X → X/G is the quotient map and Ψ : ω(X/G) →̃ UG(X) is the ascent isomor-

phism defined in subsection 3.4.

Since X is in D, the sheaf π∗LG over X/G is invertible. Hence, the abelian group homo-

morphism c(π∗LG) : ω∗(X/G) → ω∗−1(X/G) is well-defined (see sections 4 and 9 in [LeP]

for more detail).

Remark 4.3. For X ∈ D and L ∈ PicG(X) such that L is globally generated by invariant

sections, we can construct c(L)[f : Y → X] by following the definitions of Ψ and c(π∗LG).

First, descend Y → X to get Y/G → X/G. Then, (f/G)∗(π∗LG) will be a globally gen-

erated invertible sheaf over Y/G (A G-linearized invertible sheaf L being globally generated

by invariant sections is equivalent to π∗LG being globally generated). Pick a global section
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s ∈ H0(Y/G, (f/G)∗(π∗LG)) that cuts out a smooth divisor Hs on Y/G. Then, ascend

Hs → Y/G→ X/G to obtain [Hs ×X/G X → X]. Thus,

c(L)[f : Y → X] = [Hs ×X/G X → X].

It can be seen that c(L)[f : Y → X] can also be obtained in the following way. Since L is

globally generated by invariant sections, f∗L is also globally generated by invariant sections.

Pick a section s′ ∈ H0(Y, f∗L)G that cuts out an invariant smooth divisor Hs′ on Y . Then,

c(L)[f : Y → X] = [Hs′ → Y → X].

Because of the natural isomorphism between UG(X) and ω(X/G) when X is in D, we

can now easily show the equivariant versions of some properties of the Chern class operator

listed in [LeP], namely (A3)-(A5), (A8), (Dim), etc.

4.2. Second approach. Instead of imposing a restriction on X, we may impose a restriction

on L. Our second approach is to first define the notion of a “nice” G-linearized invertible

sheaf. Then, we define the Chern class operator for “nice” sheaves L and extend this defini-

tion to more general G-linearized invertible sheaves through the formal group law.

Before proceeding to describe this second approach, let us recall the definition of the formal

group law and some basic properties.

We denote the Lazard ring by L (see section 1.1 in [LeMo]). Let {aij} with i, j ≥ 0 and

(i, j) 6= (0, 0) be the standard set of generators of the Lazard ring, i.e. L = Z[aij ]. Then,

the formal group law F is the power series in L[[u, v]] :

F (u, v) =
∑
i,j≥0

aiju
ivj = u+ v +

∑
i,j≥1

aiju
ivj

(see section 2.4.3 in [LeMo]). To help our intuition, we will think of the formal group law as

giving “addition”. By definition, we have

F (u, 0) = u.

F (u, v) = F (v, u).

F (u, F (v, w)) = F (F (u, v), w)
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and the relations on aij are the ones imposed by these equalities.

Moreover, there is a power series χ(u) ∈ L[[u]] that satisfies

F (u, χ(u)) = 0.

The power series χ(u) can be regarded as giving the “inverse” of u. Hence, we can define

“subtraction” by

F−(u, v)
def
= F (u, χ(v)).

For our purpose, we also need the notion of “multiplication by a positive integer” :

Fn(u)
def
= F (u, F (u, · · ·F (u, u) · · · ))

(n− 1 times application of F )

Finally, we will need the notion “division by a positive integer”. For simplicity, denote

L⊗Z Z[ 1
n ] by Ln. The Lazard’s Theorem states that L is a polynomial algebra over integers

with infinitely many generators (see [L]). In particular, L has no torsion and L ↪→ Ln.

Lemma 4.4. For all n ≥ 1, there exists a power series in Ln[[u]], denoted by F 1/n(u), such

that

F 1/n(Fn(u)) = Fn(F 1/n(u)) = u.

Proof. Let Fn(u)
def
=
∑
i≥1 aiu

i for some ai ∈ L.

Claim : a1 = n.

We proceed by induction on n. Obviously, the claim is true for n = 1. Suppose the claim

is true for n − 1. Notice that we can always ignore terms with degree of u greater than 1.

Hence,

Fn(u) = F (u, Fn−1(u))

= u+ Fn−1(u) + higher degree terms

= u+ (n− 1)(u) + · · ·

= nu+ · · · .
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That proves the claim. 4

Let F 1/n(u)
def
=
∑
i≥1 biu

i ∈ Ln[[u]] with coefficients {bi} yet to be determined. The

equality we want is

u = F 1/n(Fn(u)) = b1(a1u+ a2u
2 + · · · ) + b2(a1u+ a2u

2 + · · · )2 + · · · .

That gives us the following set of equations :

1 = b1a1

0 = b1a2 + b2a
2
1

0 = b1a3 + b22a1a2 + b3a
3
1, etc.

Thus, we have b1 = 1/a1 = 1/n ∈ Ln. After b1, . . . , bi−1 are determined, we can define

bi ∈ Ln by the equation with respect to ui and the fact that the term corresponding to bi is

just bia
i
1 = nibi. That gives us a power series F 1/n(u) ∈ Ln[[u]] such that u = F 1/n(Fn(u)).

To show the second equality Fn(F 1/n(u)) = u, let Fn(F 1/n(u))
def
=
∑
i≥1 ciu

i. Then,

b1u+ b2u
2 · · · = F 1/n(u)

= F 1/n(Fn(F 1/n(u)))

= F 1/n(
∑
i≥1

ciu
i)

= b1(c1u+ c2u
2 + · · · ) + b2(c1u+ c2u

2 + · · · )2 + · · · .

By comparing the coefficients, we obtain the following set of equations :

b1 = b1c1

b2 = b1c2 + b2c
2
1

b3 = b1c3 + b22c1c2 + b3c
3
1, etc.

Since b1 = 1
n , the first equation implies c1 = 1. Substituting c1 = 1 into the second equation

implies that c2 = 0. Inductively, ci = 0 for all i ≥ 2. Hence, Fn(F 1/n(u)) = u. �
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Remark 4.5. By examining the proof carefully, it can be shown that if F 1/n(u) =
∑
i≥1 biu

i,

then ni(i+1)/2bi ∈ L.

As mentioned at the beginning of this subsection, we will start by defining the notion of

a nice G-equivariant invertible sheaf.

Definition 4.6. Suppose X is an object in G-Sm and L is a sheaf in PicG(X). We say that

L is nice if there exists a morphism in G-Sm, ψ : X → Pn (with trivial G-action on Pn) such

that L ∼= ψ∗O(1).

Here are some basic properties.

Lemma 4.7. Suppose X is an object in G-Sm.

1. The structure sheaf OX is nice.

2. If the sheaves L, L′ ∈ PicG(X) are both nice, then L ⊗ L′ is also nice.

3. If f : X → Y is a morphism in G-Sm and L ∈ PicG(Y ) is nice, then f∗L is nice.

Proof. 1. By considering the map ψ : X → P0 ∼= Spec k.

2. Suppose we have two morphisms ψ : X → Pn and ψ′ : X → Pm such that ψ∗O(1) ∼= L

and ψ′∗O(1) ∼= L′. Let ψ′′ be the following composition :

X
ψ×ψ′−−−−→ Pn × Pm Segre−−−−→ PN .

Then, ψ′′∗O(1) ∼= L ⊗ L′.

3. By definition. �

We will start with a definition of the Chern class operator which depends on ψ. Suppose

that L is a sheaf in PicG(X) and there is a map ψ : X → Pn such that ψ∗O(1) ∼= L. We

would like to define cψ(L)[f : Y → X] as [Y ×Pn H → Y → X] where H is a hyperplane in

Pn such that Y ×Pn H is a smooth invariant divisor on Y . Clearly, it is enough to consider

the case when Y is G-irreducible. In what follows, we will show that this is well-defined,

i.e. that such an H exists, that this element is independent of the choice of H and that the

construction respects GDPR.

Lemma 4.8. Denote the dual projective space P(H0(Pn,O(1))) by (Pn)∗. Then, there is

a non-empty open set U in (Pn)∗ such that for any section s in U , the closed subscheme
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Y ×Pn H ⊆ Y , where H is the hyperplane in Pn cut out by the section s, is a smooth

invariant divisor on Y .

Proof. This is a variation of the Bertini’s Theorem when char k = 0. We have f : Y → X

and ψ : X → Pn as above. Let H be the analog of the universal Cartier divisor, i.e.

H def
= { (y, s) | s(ψ ◦ f(y)) = 0 } ⊆ Y × (Pn)∗.

Claim : H is smooth and of dimension dimY + n− 1.

Let Pn = Proj k[x0, . . . , xn] and (Pn)∗ = Proj k[c0, . . . , cn]. Let D(xi) be the affine open

subscheme of Pn given by xi 6= 0 and similarly for D(ci). Also, let SpecA be an affine

open subscheme of (ψ ◦ f)−1(D(xi)). Then, ψ ◦ f is locally given by a map SpecA →

Spec k[x0/xi, . . . , xn/xi], which corresponds to sending the elements xj/xi to some elements

aj ∈ A. So, the universal Cartier divisor H is locally given by the equation
∑
j 6=i(cj/ci)aj =

0 inside SpecA×D(ci). Hence, the claim is true. 4

Consider the projection H → (Pn)∗. For a section s ∈ (Pn)∗, the fiber is exactly Y ×PnH

where H is the hyperplane cut out by s. Hence, the open set we want will be the set of

regular values of this projection map. �

Lemma 4.9. Let s, s′ be two sections in (Pn)∗, cutting out H, H ′ respectively, such that

Y ×Pn H and Y ×Pn H
′ are both smooth invariant divisors on Y . Then we have

[Y ×Pn H → X] = [Y ×Pn H
′ → X]

as elements in UG(X).

Proof. Observe that H, H ′ are equivariantly linearly equivalent divisors on Pn. Thus,

Y ×Pn H = (ψ ◦ f)∗H ∼ (ψ ◦ f)∗H ′ = Y ×Pn H
′

as invariant divisors on Y . The result then follows from GDPR(1, 1). �

Lemma 4.10. Sending [Y → X] to [Y ×PnH → X] defines an abelian group homomorphism

from UG∗ (X) to UG∗−1(X).
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Proof. As before, let G be the map corresponding to a GDPR setup Y → X with divisors

A1, . . . , An, B1, . . . , Bm on Y . We need to show

cψ(L) ◦ G(GXn,m) = cψ(L) ◦ G(GYm,n).

For simplicity, we will denote X ×Pn H by XH . Consider the projective morphism YH →

XH . By the freedom of choice of H, we may assume XH is a smooth invariant divisor on X

and the same for YH . In particular, YH , XH are both in G-Sm and YH is equidimensional.

Similarly, we may assume the same property holds for AiH and BjH and also,

A1H + · · ·+ AnH +B1H + · · ·+BmH

is a reduced strict normal crossing divisor on YH . Since the divisors are given by pull-back

along YH → Y , we have

A1H + · · ·+ AnH ∼ B1H + · · ·+BmH .

Thus, we can define a map G′ : R → UG(XH) by the GDPR setup YH → XH with

A1H + · · ·+ AnH ∼ B1H + · · ·+BmH . So, it is enough to show

cψ(L) ◦ G = i∗ ◦ G′

where i : XH ↪→ X.

For a general term Xi · · ·U
p
k · · · ,

cψ(L) ◦ G(Xi · · ·U
p
k · · · ) = cψ(L)[Ai ×Y · · · ×Y P

p
k ×Y · · · → X]

= [(Ai ×Y · · · ×Y P
p
k ×Y · · · )H → X]

= [AiH ×YH · · · ×YH (P
p
k )
H
×YH · · · → XH → X].

Hence, it is enough to show (P
p
k )
H

is the same as the corresponding tower given by invariant

divisors {AiH}. The p = 1 case follows from the fact that

P(OY ⊕OY (D))H
∼= P(OYH ⊕OYH (DH))

56



and the p = 2, 3 cases can be proved similarly. That shows the well-definedness of the

homomorphism. The fact that it sends UG∗ (X) to UG∗−1(X) is clear. �

Hence, we have the following definition.

Definition 4.11. Suppose that L is a sheaf in PicG(X) such that there exists an equivariant

morphism ψ : X → Pn with ψ∗O(1) ∼= L. We define the Chern class operator cψ(L) :

UG∗ (X)→ UG∗−1(X) by

cψ(L)[f : Y → X]
def
= [Y ×Pn H → Y → X]

where H is a hyperplane in Pn such that Y ×Pn H is an invariant smooth divisor on Y .

We definitely do not want the definition of the Chern class operator to depend on the

particular morphism ψ : X → Pn.

Lemma 4.12. cψ(L) is independent of ψ.

Proof. Suppose we have two equivariant morphisms ψ1 : X → Pn and ψ2 : X → Pm such

that ψ∗1O(1) ∼= L ∼= ψ∗2O(1). Consider the pull-back of sections

ψ∗1 : H0(Pn,O(1))→ H0(X,L).

Then, the image of ψ∗1 will lie in H0(X,L)G and the same for ψ2. Let {s1i} be a k-basis for

H0(Pn,O(1)) and {s2j} be a k-basis for H0(Pm,O(1)). Then, k−span{ψ∗1s1i, ψ
∗
2s2j} will

be a finite dimensional vector space in H0(X,L)G. In addition, it is base-point free. This

defines an equivariant morphism ψ3 : X → PN which can be factored as X → Pn ↪→ PN or

X → Pm ↪→ PN . Also, ψ∗3O(1) ∼= L. Thus, it is enough to show cψ1
(L) = cψ3

(L).

Consider an element [Y → X] in UG(X). Pick a hyperplane H ⊆ PN such that Pn ∩H

is a hyperplane in Pn (this is equivalent to Pn ×PN H being a smooth divisor on Pn) and

Y ×PN H is a smooth divisor on Y . Then,

cψ1
(L)[Y → X] = [Y ×Pn (Pn ∩H)]

= [Y ×PN H]

= cψ3
(L)[Y → X].
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�

Hence, for a nice G-linearized invertible sheaf L over X ∈ G-Sm, we have a natural

definition of the Chern class operator

c(L) : UG∗ (X)→ UG∗−1(X).

4.3. Special pull-back and the formal group law. Recall that in the ω∗ theory in [LeP],

we have the following property (Proposition 9.4 in [LeP]).

For any X ∈ Sm and invertible sheaves L, M over X, we have

c(L ⊗M) = F (c(L), c(M))

as abelian group endomorphisms on ω(X) where F ∈ L[[u, v]] ∼= ω(Spec k)[[u, v]] is the formal

group law with ω(X) considered as a ω(Spec k)-module by the external product. Since the

Chern class operator always cuts down the dimension of the domain by one, F (c(L), c(M))

indeed acts as a finite sum on any given element in ω(X).

We will follow the notation in [LeP] and denote this property by (FGL). Our objective in

this subsection is to prove it holds in our equivariant setting, when all G-linearized invertible

sheaves involved are nice. First of all, we will need some basic facts.

Proposition 4.13. Suppose f : Y → X is a morphism in G-Sm. Then, there exists a

G-representation V and an equivariant immersion i : Y ↪→ P(V )×X such that f = π2 ◦ i.

If we further assume f to be projective, then i will be a closed immersion.

Proof. First, assume that G is reductive and connected. Since Y is quasi-projective, there

exists an (not necessarily equivariant) immersion i0 : Y ↪→ Pn. Define L def
= i∗0O(1) as

an (not necessarily G-linearized) invertible sheaf over Y . By Theorem 1.6 in [Su], there

exists an integer m such that Lm is G-linearizable. Fix a G-linearization of Lm. Since we

have a G-linearized very ample invertible sheaf L over Y , by Proposition 1.7 in [MuFoKi],

there exists an equivariant immersion i1 : Y ↪→ P(V ) for some G-representation V such that

i∗1O(1) ∼= Lm. Then, the map i1 × f : Y → P(V )×X will be the equivariant immersion we

want.
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Now assume that G is finite. As above, L = i∗0O(1) is a very ample invertible sheaf over

Y . Then, ⊗α∈G α∗L will be a G-linearized very ample invertible sheaf over Y , which gives

us the equivariant immersion i1.

If f is projective, then the image of i = i1×f will be a closed subscheme of P(V )×X. �

Suppose X is a scheme over k and U is a subscheme of X. We will denote the closure of

U in X by closXU . Also denote the singular locus of X by Sing(X).

Proposition 4.14. (Equivariant immersion with smooth closure)

(1) If Y is an object in G-Sm, then there exists a G-representation V where Y

can be equivariantly embedded into P(V ) such that its closure is smooth.

(2) Suppose X, Y are objects in G-Sm and U ⊆ X is an invariant open sub-

scheme. If a morphism f : Y → U in G-Sm is equivariant and projective,

then there exists a G-representation V , an equivariant closed immersion

i : Y ↪→ U × P(V ) such that f = π1 ◦ i, and closX×P(V )Y is smooth.

Proof. (1) By Proposition 4.13, we may assume there exists an equivariant immersion

Y ↪→ P(V ′) for some G-representation V ′. By the canonical resolution of singularities (The-

orem 1.6 in [BiMi]), for any variety Z over k (char k = 0), there exists a smooth variety Zres

and a morphism Zres → Z which is given by a series of blowups along canonically chosen

smooth centers. As pointed out in Remarks 4-1-1 in [M], since the blowups are canonical,

Zres has a natural G-action and Zres → Z will be G-equivariant. Apply this on our case

by setting Z
def
= closP(V ′)Y , then we have an equivariant morphism π : Zres → Z.

First of all, since Y is smooth, π is an isomorphism away from Sing(Z) ⊆ Z − Y . That

implies the equivariant immersion Y ↪→ Z lifts to an equivariant immersion Y ↪→ Zres

and closZresY = Zres. Moreover, Zres is projective because π is projective and Z is pro-

jective. By Proposition 4.13, Zres can be equivariantly embedded into P(V ) for some G-

representation V . Hence, we have Y ↪→ Zres ↪→ P(V ) such that closP(V )Y = Zres is

smooth.

(2) Since f : Y → U is projective, by Proposition 4.13, there exists an equivariant

immersion i′ : Y ↪→ U ×P(V ′) for some G-representation V ′ such that f = π1 ◦ i′. Consider

U × P(V ′) as an invariant open subscheme in X × P(V ′) and let Z
def
= closX×P(V ′)Y . By
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canonical resolution of singularities as above, we have an equivariant projective morphism

Zres → Z. By considering Zres → Z ↪→ X × P(V ′) → X, we know that Zres → X

is equivariant and projective. By Proposition 4.13, there exists an equivariant immersion

Zres ↪→ X × P(V ) for some G-representation V . Again, the equivariant immersion Y ↪→ Z

lifts to Y ↪→ Zres and we have Y ↪→ Zres ↪→ X × P(V ) where closX×P(V )Y = Zres is

smooth. Consider the following commutative diagram :

Zres ↪→ X × P(V )

↓ ↘

Z ↪→ X × P(V ′) → X.

Consider its restriction over U . Then, we obtain the following commutative diagram :

Zres|U ∼= Y ↪→ U × P(V )

↓ ↘

Z|U ∼= Y ↪→ U × P(V ′) → U.

That gives us an equivariant closed immersion i : Y ↪→ U × P(V ) such that the closure

closX×P(V )Y = Zres is smooth. Moreover, the composition π1 ◦ i is given by

Y →̃ Zres|U →̃ Z|U ∼= Y ↪→ U × P(V ′)→ U,

which is π1 ◦ i′ = f . �

In order to prove the (FGL) property , we need some reduction of arguments, which

requires the following special type of pull-back.

Let ψ : X →
∏
i Pni be a G-equivariant morphism where X ∈ G-Sm is equidimensional

and the G-action on
∏
i Pni is trivial. We are going to define ψ∗ : UG(

∏
i Pni) → UG(X).

Our proof is basically the equivariant version of Lemma 6.1 in [LeP]. Let Q be the group

scheme
∏
iGL(ni + 1) which acts on

∏
i Pni naturally. We consider Q as a variety with

trivial G-action, so Q is in G-Sm.

Lemma 4.15. Let f : Y →
∏
i Pni be a projective morphism in G-Sm such that Y is

G-irreducible.
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(1) There exists a non-empty open subscheme U(ψ, f) ⊆ Q such that, for all

closed points β ∈ U(ψ, f), the morphisms β · ψ and f are transverse.

(2) For any two closed points β, β′ ∈ U(ψ, f), we have

[X ×β·ψ Y → X] = [X ×β′·ψ Y → X]

as elements in UG(X).

Proof. (1) First of all, β · ψ is G-equivariant because β :
∏
i Pni →̃

∏
i Pni is trivially

G-equivariant. Define a map Q × X →
∏
i Pni by (β, x) 7→ β · ψ(x), which is clearly

G-equivariant. In addition, since Q acts on
∏
i Pni transitively, the map

TβQ⊕ TxX = T(β,x)(Q×X)→ Tβψ(x)(
∏
i

Pni)

is surjective (TxX means the tangent space of X at x). Since the domain and codomain are

both smooth, by Proposition 10.4 in Ch. III in [Ha] (char k = 0), the map Q×X →
∏
i Pni

is smooth. That implies (Q×X)×∏
i P
ni Y is smooth.

Let (Q×X)×∏
i P
ni Y → Q be the projection. If a closed point β ∈ Q is a regular value,

then ((Q×X)×∏
i P
ni Y )β = X ×β·ψ Y is smooth and

dimX ×β·ψ Y = dim((Q×X)×∏
i P
ni Y )β

= dim(Q×X)×∏
i P
ni Y − dimQ

= dimQ×X + dimY − dim
∏
i

Pni − dimQ

= dimX + dimY − dim
∏
i

Pni .

In other words, f and β · ψ are transverse. Hence, the open set U(ψ, f) we want is just the

set of regular values of (Q×X)×∏
i P
ni Y → Q.

(2) Consider the following commutative diagram :

(Q×X)×∏
i P
ni Y −−−→ Q×X −−−→ Q −−−→ ANx x x x

(U ×X)×∏
i P
ni Y −−−→ U ×X −−−→ U

def
= Q ∩ A1 −−−→ A1 def= line through β, β′

where the group scheme Q =
∏
iGL(ni + 1) is considered as an open subscheme of AN for

some large N (trivial G-action on AN ). Notice that U is a non-empty open subscheme of A1.
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All maps in the diagram are trivially G-equivariant. The morphism (Q×X)×∏
i P
ni Y →

Q × X is projective because it is an extension from f . By using a smaller U (as long as

U ⊆ U(ψ, f)), we can assume the projection map

(U ×X)×∏
i P
ni Y → U

to be smooth. Hence, (U ×X)×∏
i P
ni Y is smooth. Notice that the fibers are

((U ×X)×∏
i P
ni Y )β = X ×β·ψ Y.

Denote the map

Z
def
= (U ×X)×∏

i P
ni Y → U ×X

by g. Then, g is a projective morphism in G-Sm. In addition, Z is equidimensional because U

is equidimensional and Z → U is smooth. By Proposition 4.14, there exists a G-equivariant

closed immersion i : Z ↪→ (U ×X)× P(V ) for some G-representation V such that g = π1 ◦ i

and the closure of Z in (P1 ×X)× P(V ) is smooth. Let us denote this closure by Z. Thus,

we obtain a projective morphism Z → P1 ×X → X in G-Sm such that the fibers of Z over

β, β′ ∈ P1 agree with the fibers of Z over β, β′, namely Zβ = Zβ and Zβ′ = Zβ′ . Since

β, β′ can be considered as G-invariant divisors on P1 and they are G-equivariantly linearly

equivalent, we have Zβ ∼ Zβ′ , as G-invariant divisors on Z. Hence, by GDPR(1, 1),

[X ×β·ψ Y → X] = [Zβ → X] = [Zβ′ → X] = [X ×β′·ψ Y → X].

�

We will define the special pull-back ψ∗ : U∗G(
∏
i Pni) → U∗G(X) by sending the element

[f : Y →
∏
i Pni ] to [X ×β·ψ Y → X] with β ∈ U(ψ, f). Its well-definedness is given by the

following Lemma.

Lemma 4.16. Sending [f : Y →
∏
i Pni ] to [X ×β·ψ Y → X] defines an abelian group

homomorphism from U∗G(
∏
i Pni) to U∗G(X).
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Proof. This proof is roughly the same as the proof of the well-definedness of cψ(L). We need

to show it respects GDPR. This can be achieved by using the fact that the choice of β in

the group Q is generic which is similar to the generic choice of H in Pn in the other proof.

As before, let G be the map corresponding to a GDPR setup φ : Y →
∏
i Pni with

G-invariant divisors A1, . . . , An, B1, . . . , Bm on Y . Consider the following commutative

diagram :

Y ′
def
= Y ×∏

i P
ni X

(β·ψ)′
−−−−→ Y

φ′
y yφ
X

β·ψ−−−→
∏
i Pni

By picking β ∈ U(ψ, φ), we may assume that Y ′ is smooth and of dimension

dimX + dimY − dim
∏
i

Pni .

Similarly, there is a non-empty open subscheme U ⊆ Q such that A′i
def
= (β · ψ)′−1(Ai) is

a smooth invariant divisor on Y ′ for all β ∈ U . By taking intersection with some more

open subschemes, we may assume A′1 + · · ·+A′n +B′1 + · · ·+B′m is a reduced strict normal

crossing divisor on Y ′ for all β in some non-empty open subscheme U ′ ⊆ Q. The divisors

are given by pull-back, so A′1 + · · ·+A′n ∼ B′1 + · · ·+B′m. Thus, φ′ : Y ′ → X together with

A′1, . . . , A
′
n, B

′
1, . . . , B

′
m defines a GDPR setup over X. Denote its corresponding map by G′.

For a general term Xi · · ·U
p
k · · · ,

ψ∗ ◦ G(Xi · · ·U
p
k · · · ) = ψ∗[Ai ×Y · · · ×Y P

p
k ×Y · · · →

∏
i

Pni ]

= [X ×β·ψ (Ai ×Y · · · ×Y P
p
k ×Y · · · )→ X]

= [(X ×β·ψ Ai)×Y ′ · · · ×Y ′ (X ×β·ψ P
p
k )×Y ′ · · · → X].

= [A′i ×Y ′ · · · ×Y ′ (X ×β·ψ P
p
k )×Y ′ · · · → X].

On the other hand,

G′(Xi · · ·U
p
k · · · ) = [A′i ×Y ′ · · · ×Y ′ (P

p
k )′ ×Y ′ · · · → X].

Observe that X ×β·ψ P
p
k = Y ′ ×Y P

p
k
∼= (P

p
k )′. Hence, ψ∗ ◦ G = G′. �
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Hence, for any G-equivariant morphism ψ : X →
∏
i Pni such that X is equidimensional,

we obtain a special pull-back

ψ∗ : U∗G(
∏
i

Pni)→ U∗G(X)

which sends [f : Y →
∏
i Pni ] to [X ×β·ψ Y → X] where β is a closed point in Q such that

β · ψ and f are transverse.

Now we can proceed to the proof of (FGL). Here are a few simple properties we will need.

Lemma 4.17. Suppose ψ : X → Pn × Pm is a morphism in G-Sm such that X is equidi-

mensional. Denote the sheaves π∗1OPn(1), π∗2OPm(1) and π∗1OPn(1)⊗π∗2OPm(1) by O(1, 0),

O(0, 1) and O(1, 1) respectively.

(1) If L is either O(1, 0), O(0, 1) or O(1, 1), then L is nice and

ψ∗ ◦ c(L) = c(ψ∗L) ◦ ψ∗

as morphisms from UG(Pn × Pm) to UG(X).

(2) The special pull-back ψ∗ is a UG(Spec k)-module homomorphism.

Proof. (1) The sheaves O(1, 0),O(0, 1) and O(1, 1) are nice by definition. The equalities

follow immediately from our construction.

(2) Same reason as the usual smooth pull-back. �

Lemma 4.18. Suppose f : X → X ′ is a projective morphism in G-Sm and L ∈ PicG(X ′)

is a nice invertible sheaf, then

f∗ ◦ c(f∗L) = c(L) ◦ f∗

as morphisms from UG(X) to UG(X ′).

Proof. Let [Y → X] be an element in UG(X) and ψ : X ′ → Pn be a morphism in G-Sm such

that ψ∗O(1) ∼= L. Then,

c(L) ◦ f∗[Y → X] = c(L)[Y → X ′]

= [Y ×Pn H → X ′]

(fiber product via the map Y → X → X ′ → Pn).
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On the other hand,

f∗ ◦ c(f∗L)[Y → X] = f∗[Y ×Pn H → X]

(fiber product via the map Y → X → X ′ → Pn)

= [Y ×Pn H → X ′].

�

We are now ready to prove the formal group law property (FGL) of the Chern class

operator for nice G-linearized invertible sheaves. As mentioned before, the formal group law

is the power series

F (u, v) =
∑
i,j≥0

aiju
ivj ∈ L[[u, v]].

For nice sheaves L,M ∈ PicG(X), we consider F (c(L), c(M)) as a morphism from UG∗ (X)

to UG∗−1(X) given by ∑
i,j≥0

aijc(L)i ◦ c(M)j

where aij are considered as elements in UG(Spec k) via the maps

L ∼= ω(Spec k) ∼= U{1}(Spec k)
Φγ−→ UG(Spec k)

where Φγ is induced by the group scheme homomorphism γ : G → {1} (See definition of

Φγ in subsection 3.4. We will see that this is a ring embedding in Corollary 7.4). As in the

non-equivariant theory, the Chern class operator decreases the homological grading by one.

Since we have UGi (X) = 0 when i < 0, the power series
∑
i,j≥0 aijc(L)i ◦ c(M)j indeed acts

as a finite sum for any given element in UG(X).

Proposition 4.19. If X is an object in G-Sm and L, M∈ PicG(X) are both nice, then

c(L ⊗M) = F (c(L), c(M))

as morphisms from UG∗ (X) to UG∗−1(X).

Proof. Since [f : Y → X] = f∗[IY ], by Lemma 4.18, it is enough to prove the statement on

the element [IX ] such that X ∈ G-Sm is equidimensional.
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Let ψ1 : X → Pn and ψ2 : X → Pm be the maps such that ψ∗1O(1) ∼= L and ψ∗2O(1) ∼=M.

Let ψ : X → Pn × Pm be the map defined by ψ1 and ψ2. Then,

c(L)[IX ] = c(ψ∗O(1, 0)) ◦ ψ∗[IPn×Pm ]

= ψ∗ ◦ c(O(1, 0))[IPn×Pm ]

(by Lemma 4.17).

The same holds for M and L ⊗M. Hence, we have

c(L ⊗M)[IX ] = ψ∗ ◦ c(O(1, 1))[IPn×Pm ]

and

F (c(L), c(M))[IX ] = ψ∗ ◦ F (c(O(1, 0)), c(O(0, 1)))[IPn×Pm ].

Thus, without loss of generality, we can assume X = Pn × Pm, L = O(1, 0) and M =

O(0, 1). Notice that the G-actions on X, L, M and IX are all trivial now. Let

Φγ : ω(Pn × Pm) ∼= U{1}(P
n × Pm)→ UG(Pn × Pm)

be the abelian groups homomorphism induced by the group scheme homomorphism γ :

G → {1}. By Proposition 9.4 in [LeP], (FGL) holds in the non-equivariant theory ω∗. In

particular,

c(O(1, 1))[IPn×Pm ] = F (c(O(1, 0)), c(O(0, 1)))[IPn×Pm ](5)

as elements in ω(Pn × Pm). Observe that, for L = O(1, 0), O(0, 1) or O(1, 1), we have

Φγ ◦ c(L)[IPn×Pm ] = [Hs ↪→ Pn × Pm] = c(L)[IPn×Pm ]

where s ∈ H0(Pn × Pm,L) is a global section such that Hs is a smooth divisor on Pn × Pm.

By applying Φγ on equation (5), the same equality holds in UG(Pn × Pm). �

4.4. Extending the definition. In order to extend our definition to arbitrary G-linearized

invertible sheaves, we need to first consider the sheaf O(1) ∈ PicG(P(V )) for arbitrary G-

representation V . In the case when G is a finite abelian group with exponent e, it turns
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out the only way to define c(O(1)), so that the property (FGL) still holds, will force us to

invert the element e ∈ Z. Hence, we introduce the notation

UG(X)[1/e]
def
= UG(X)⊗Z Z[1/e].

Remarks 4.20. We will explain why we cannot expect a more general definition of c(L)

that satisfies the (FGL) without inverting the exponent of the group. Let us consider the

following example. Suppose G is a cyclic group of order p (prime) and the ground field k

contains a primitive p-th root of unity ξ. Let V
def
= k−span{x, y} with action α ·x = ξx and

α · y = y where α is a generator of G. Let X
def
= P(V ).

Suppose we have defined c(O(1)) : UG(X) → UG(X) such that (FGL) holds. Then, we

will have

c(O(p))[IX ] = c(O(1)⊗p)[IX ] = F p(c(O(1)))[IX ].

Notice that

F (c(O(1)), c(O(1)))[IX ] = 2 c(O(1))[IX ] + a11c(O(1))2[IX ] + · · · .

For any i ≥ 2, the element c(O(1))i[IX ] lies in UG1−i(X), which is zero because the dimension

of X is one. So, we have F (c(O(1)), c(O(1)))[IX ] = 2 c(O(1))[IX ]. Inductively, we get

F p(c(O(1)))[IX ] = p c(O(1))[IX ].

On the other hand, consider the G-equivariant map ψ : X → P1 (with trivial action on

P1) given by (x; y) 7→ (xp; yp). Then, OX(p) ∼= ψ∗OP1(1). Hence, OX(p) is nice. By the

definition of the Chern class operator for nice G-linearized invertible sheaves,

c(O(p))[IX ] = [Hp ↪→ P(V )] = [G ↪→ P(V )]

where Hp ∼= G (the k-scheme of p points with free G-action). Hence, by pushing down both

equalities to UG(Spec k), we obtain

[G] = p a(6)

where a
def
= πk∗(c(O(1))[IX ]) and πk : X → Spec k.
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Let [Z1]− [Z2] be a representative of a ∈ UG(Spec k). Consider the group scheme homo-

morphism {1} → G. It induces an abelian groups homomorphism

Φ : UG0 (Spec k)→ U{1}0 (Spec k) ∼= ω0(Spec k) ∼= Z.

That implies

p (Φ[Z1]− Φ[Z2]) = Φ(p a) = Φ[G] = p

as elements in ω0(Spec k). Since there is no torsion in ω0(Spec k) ∼= Z, we conclude that

Φ[Z1] − Φ[Z2] = 1. On the other hand, since the order of the group G is a prime and the

dimension of Z1 is zero, Z1
∼= SpecAt q SpecAf where the action on At is trivial and the

action on Af is free. Moreover, At can be written as the product of Kt,i, where Kt,i are

finite field extensions of k. Similarly, Z2
∼= SpecBtqSpecBf and Bt =

∏
j Lt,j . By Lemma

2.3.4 in [LeMo], we have [SpecK] = [K : k][ISpec k] as elements in ω(Spec k), where [K : k]

denotes the degree of the field extension. Hence,

1 = Φ[Z1]− Φ[Z2] =
∑
i

[Kt,i : k] + Φ[SpecAf ]−
∑
j

[Lt,j : k]− Φ[SpecBf ].(7)

Let us consider an G-irreducible component W of SpecAf . It can either be SpecK with

free action, or the disjoint union of p copies of SpecK with G permuting them. In the first

case,

Φ[W ] = Φ[SpecK] = [K : k] = [K : KG][KG : k] = p[KG : k].

In the second case,

Φ[W ] = Φ[Spec
∏p
i=1K] = p[K : k].

Either case, p divides Φ[W ]. Hence, p divides Φ[SpecAf ]. Similarly, p divides Φ[SpecBf ].

Now, if we apply the fixed point map F : UG(Spec k) → ω(Spec k) on equation (6) (see

section 7 for details), we obtain
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0 = F [G] = F(p ([Z1]− [Z2]))

= p (F([Z1])−F([Z2]))

= p ([SpecAt]− [SpecBt])

= p (
∑
i

[Kt,i : k]−
∑
j

[Lt,j : k]).

That implies

0 =
∑
i

[Kt,i : k]−
∑
j

[Lt,j : k].(8)

Combining equations (7) and (8) and the fact that p divides Φ[SpecAf ] and Φ[SpecBf ], we

get a contradiction.

Hence, it is impossible to define c(O(1)) as an operator on UG(X) such that (FGL)

holds. It can also be seen in this example that the natural definition of c(O(1))[IX ] should

be (1/p)[Hp ↪→ X], as an element in UG(X)[1/p].

In order to simplify the calculation, we need a condition on G and k such that any

irreducible G-representation will be of dimension 1.

Definition 4.21. We will say that the pair (G, k) is split, if the group G is finite abelian

with exponent e and the field k contains a primitive e-th root of unity.

Lemma 4.22. If the pair (G, k) is split, then any irreducible G-representation has dimension

one.

Proof. Recall that we are assuming char k = 0. We can easily see that when (G, k) is split,

we have k[G] ∼=
∏
k. The result then follows. �

For the rest of this subsection, we assume that the pair (G, k) is split. In this case, we

can extend our definition of the Chern class operator to arbitrary G-linearized invertible

sheaves. In order to preserve the (FGL) property, we would like to define c(L) by the

following formula :

F 1/e(F−(c(Le ⊗M), c(M)))
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where M is in PicG(X) such that Le ⊗M and M are both nice (recall that Le means

L⊗e and F 1/e(u) is the operation “division by e” in formal group law, see subsection 4.2 for

details). We need the following two Lemmas for its well-definedness.

Lemma 4.23. For any L ∈ PicG(X), there exists an invertible sheaf M ∈ PicG(X) such

that Le ⊗M and M are both nice.

Proof. Let us first consider the case when X = P(V ) where V is a G-representation and

L = O(1). By Lemma 4.22, X ∼= Proj k[x0, . . . , xn] such that, for all i, k−span{xi} is a

1-dimensional G-representation. Let Y
def
= Proj k[y0, . . . , yn] with trivial action and

ψ : X = Proj k[x0, . . . , xn]→ Proj k[y0, . . . , yn] = Y

be the morphism corresponding to the k-algebra homomorphism k[y0, . . . , yn]→ k[x0, . . . , xn]

defined by yi 7→ xei . Since e is the exponent of G, the map ψ is G-equivariant. Observe that

this map can also be considered as an e-uple embedding followed by a linear projection on

some G-invariant open subscheme. Hence, we have ψ∗OY (1) ∼= OX(e). In other words, the

sheaf OX(e) is nice.

For general X ∈ G-Sm and L ∈ PicG(X), by Proposition 4.14, there exists an equivariant

immersion ψ : X ↪→ P(V ). For large enough m, the sheaf L ⊗ ψ∗O(m) will be very ample.

By embedding P(V ) into some larger P(V ′), we can assume m = 1. Since L ⊗ ψ∗O(1) is

very ample and G-linearized, by Proposition 1.7 in [MuFoKi], there exists an equivariant

immersion ψ′ : X ↪→ P(V ′′) such that ψ′∗O(1) ∼= L ⊗ ψ∗O(1). Hence, we have ψ′∗O(e) ∼=

Le ⊗ ψ∗O(e). Then, the result follows because ψ∗O(e) and ψ′∗O(e) are both nice. �

Lemma 4.24. For any two sheaves M, M′ ∈ PicG(X) such that M, M′, Le ⊗M and

Le ⊗M′ are all nice, we have

F 1/e(F−(c(Le ⊗M), c(M))) = F 1/e(F−(c(Le ⊗M′), c(M′)))

as homomorphisms from UG(X)[1/e] to UG(X)[1/e].

Proof. By the fact that all sheaves involved are nice and Proposition 4.19, we have

F (c(Le ⊗M), c(M′)) = c(Le ⊗M⊗M′) = F (c(Le ⊗M′), c(M)).

70



That implies

F−(c(Le ⊗M), c(M)) = F−(c(Le ⊗M′), c(M′))

F 1/e(F−(c(Le ⊗M), c(M))) = F 1/e(F−(c(Le ⊗M′), c(M′))).

�

Definition 4.25. Assume the pair (G, k) is split. Suppose X is in G-Sm and L is in

PicG(X). We define the abelian group homomorphism c(L) : UG∗ (X)[1/e] → UG∗−1(X)[1/e]

by the following formula :

c(L)
def
= F 1/e(F−(c(Le ⊗M), c(M)))

where M is in PicG(X) such that Le ⊗M, M are both nice.

Remark 4.26. Suppose L ∈ PicG(X) is nice. In this new definition, we can pick M to be

L. Then,

F 1/e(F−(c(Le ⊗ L), c(L))) = F 1/e(c(Le)) = c(L).

That means the new definition is indeed a generalization of the definition of the Chern class

operator for nice G-linearized invertible sheaves.

Suppose X is an object in D and L ∈ PicG(X). Then we have two definitions of the

Chern class operator (as operators on UG(X)[1/e]), given by the first and second approach.

The last part of this section is to show that they agree.

Lemma 4.27. Suppose X is an object in D and L, M are sheaves in PicG(X). Let

π : X → X/G be the quotient map. Then, we have

π∗(L ⊗M)G ∼= π∗LG ⊗ π∗MG.

For any two sheaves L, M∈ Pic(X/G), we have

π∗(L ⊗M) ∼= (π∗L)⊗ (π∗M).

In other words, descent and ascent both commutes with tensor product.
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Proof. The second statement follows from a basic property of pull-back. For descent, since

X → X/G is a principle G-bundle, there is a one-to-one correspondence between PicG(X)

and Pic(X/G) given by π∗ and π∗(−)G. Therefore,

π∗LG ⊗ π∗MG ∼= π∗(π∗(π∗LG ⊗ π∗MG))G

∼= π∗((π∗π∗LG)⊗ (π∗π∗MG))G

∼= π∗(L ⊗M)G.

�

Suppose the pair (G, k) is split, X is an object in D and L ∈ PicG(X). Denote the

corresponding Chern class operator defined by the first approach by c′(L), i.e.

c′(L) = Ψ ◦ c(π∗LG) ◦Ψ−1

from UG(X)[1/e] to UG(X)[1/e]. Also denote the corresponding Chern class operator defined

by the second approach by c′′(L), i.e.

c′′(L)[Y → X] = [Y ×Pn H → X]

when L is nice (see subsection 4.2 for details), and for general L ∈ PicG(X),

c′′(L) = F 1/e(F−(c′′(Le ⊗M), c′′(M)))

from UG(X)[1/e] to UG(X)[1/e] where M is in PicG(X) such that Le ⊗M, M are both

nice.

Proposition 4.28. For any X ∈ D and L ∈ PicG(X), we have

c′(L) = c′′(L)

as group homomorphisms from UG(X)[1/e] to UG(X)[1/e].
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Proof. If L ∈ PicG(X) is nice, then there is an equivariant morphism ψ : X → Pn such that

ψ∗O(1) ∼= L. By definition,

c′′(L)[f : Y → X] = [Y ×Pn H → X]

where H is a hyperplance in Pn such that Y ×Pn H is an invariant smooth divisor on Y .

Let s ∈ H0(Pn,O(1)) be the global section that cuts out H. Then, Y ×Pn H is cut out

by the invariant global section (ψ ◦ f)∗s ∈ H0(Y, f∗L)G. On the other hand, by remark

4.3, c′(L)[Y → X] can also be given by the divisor cut out by any invariant global section

s′ ∈ H0(Y, f∗L)G as long as the divisor is smooth. Hence, c′(L) = c′′(L) when L is nice.

For general L ∈ PicG(X), let F 1/e(u)
def
=
∑
i≥1 bi u

i and F−(u, v)
def
=
∑
j,k≥0 cjk u

jvk.

Then, we have

c′′(L) = F 1/e(F−(c′′(Le ⊗M), c′′(M)))

=
∑
i

bi (
∑
j,k

cjkc
′′(Le ⊗M)jc′′(M)k)i

=
∑
i

bi (
∑
j,k

cjkΨ ◦ c(π∗(Le ⊗M)G)j ◦ c(π∗MG)k ◦Ψ−1)i

(the two definitions agree for nice sheaves)

= Ψ ◦ (
∑
i

bi (
∑
j,k

cjk c(π∗(Le ⊗M)G)j c(π∗MG)k )i) ◦Ψ−1

= Ψ ◦ F 1/e(F−(c(π∗(Le ⊗M)G), c(π∗MG))) ◦Ψ−1

= Ψ ◦ F 1/e(F−(c((π∗LG)e ⊗ π∗MG), c(π∗MG))) ◦Ψ−1

(by Lemma 4.27)

= Ψ ◦ c(π∗LG) ◦Ψ−1

( because (FGL) holds in ω(X/G) )

= c′(L).

�
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5. More properties for UG

In this section, we will state and prove some more basic properties in our equivariant

algebraic cobordism theory UG, equipped with the Chern class operator for nice G-linearized

invertible sheaves. Some properties are related to the Chern class operator. In that case,

we will also prove them in the theory UG[1/e]
def
= UG ⊗Z Z[1/e] for arbitrary G-linearized

invertible sheaves assuming that the pair (G, k) is split (recall that e is the exponent of G).

The non-equivariant version of these properties can be found in [LeP].

At this stage, we have established projective push-forward (D1), smooth pull-back (D2),

Chern class operator (D3) and external product (D4). For convenience, we will briefly

recall here some of the properties already shown in section 3.

(A1) If f : X → X ′ and g : X ′ → X ′′ are both smooth and X, X ′, X ′′ are all equidimen-

sional, then

(g ◦ f)∗ = f∗ ◦ g∗.

Moreover, I∗ is the identity homomorphism.

(A2) If f : X → Z is projective and g : Y → Z is smooth such that X, Y , Z are all

equidimensional, then we have g∗f∗ = f ′∗g
′∗ in the pull-back square

X ×Z Y
g′−−−→ X

f ′
y yf
Y

g−−−→ Z
(A3) If f : X → X ′ is projective and L ∈ PicG(X ′) is nice, then

f∗ ◦ c(f∗L) = c(L) ◦ f∗

in the theory UG. Moreover, if the pair (G, k) is split, then the same statement holds in the

theory UG[1/e] for arbitrary L ∈ PicG(X ′).

Proof. The first part of the statement follows from Lemma 4.18. For the second part,
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f∗ ◦ c(f∗L) = f∗ ◦ F 1/e(F−(c(f∗Le ⊗ f∗M), c(f∗M)))

(for some M∈ PicG(X ′) such that Le ⊗M, M are both nice)

= f∗ ◦
∑
i

bi (
∑
j,k

cjk c(f
∗Le ⊗ f∗M)j c(f∗M)k)i

where bi, cjk are coefficients for F 1/e(u), F−(u, v) respectively

= (
∑
i

bi (
∑
j,k

cjk c(Le ⊗M)j c(M)k)i) ◦ f∗

(by Lemma 4.18 and the fact that Le ⊗M, M are nice).

Hence,

f∗ ◦ c(f∗L) = F 1/e(F−(c(Le ⊗M), c(M))) ◦ f∗ = c(L) ◦ f∗.

�

(A4) If f : X → X ′ is smooth, X, X ′ are both equidimensional and L ∈ PicG(X ′) is

nice, then

f∗ ◦ c(L) = c(f∗L) ◦ f∗

in the theory UG. Moreover, if the pair (G, k) is split, then the same statement holds in the

theory UG[1/e] for arbitrary L ∈ PicG(X ′).

Proof. Suppose that ψ : X ′ → Pn is a morphism in G-Sm such that L ∼= ψ∗O(1). Let

[Y → X ′] be an element in UG(X ′) and H be a hyperplane in Pn such that Y ×Pn H is a

smooth invariant divisor on Y . Then,

f∗ ◦ c(L)[Y → X ′] = f∗[Y ×Pn H → X ′]

= [X ×X′ (Y ×Pn H)→ X].

On the other hand,

c(f∗L) ◦ f∗[Y → X ′] = c(f∗L)[X ×X′ Y → X]

= [(X ×X′ Y )×Pn H → X].
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Hence, they agree. The proof for arbitrary L is similar to the proof of the similar statement

of (A3). �

(A5) If L,L′ ∈ PicG(X) are both nice, then

c(L) ◦ c(L′) = c(L′) ◦ c(L)

in the theory UG. Moreover, if the pair (G, k) is split, then the same statement holds in the

theory UG[1/e] for arbitrary L,L′ ∈ PicG(X).

Proof. Suppose that L, L′ are nice and let ψ : X → Pn and ψ′ : X → Pm be the corre-

sponding maps for L and L′ respectively. Then, for some appropriately chosen hyperplanes

H ⊆ Pn and H ′ ⊆ Pm,

c(L) ◦ c(L′) [Y → X] = c(L) [Y ×Pm H ′ → X]

= [(Y ×Pm H ′)×Pn H → X]

= [(Y ×Pn H)×Pm H ′ → X]

= c(L′) ◦ c(L) [Y → X].

The statement for arbitrary L, L′ ∈ PicG(X) can be shown by a similar argument as

before. �

(A6) If f, g are projective, then

× ◦ (f∗ × g∗) = (f × g)∗ ◦ ×.

(A7) If f, g are smooth with equidimensional domains and codomains, then

× ◦ (f∗ × g∗) = (f × g)∗ ◦ ×.

(A8) Let a, b be elements in UG(X), UG(X ′) respectively and let L ∈ PicG(X) be a nice

invertible sheaf. Then we have

c(L)(a)× b = c(π∗1L)(a× b).
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Moreover, if the pair (G, k) is split, then the same statement holds in the theory UG[1/e] for

arbitrary L ∈ PicG(X).

Proof. Suppose that L is nice. Without loss of generality, we can assume a = [Y → X] and

b = [Y ′ → X ′]. Let ψ : X → Pn be the map corresponding to L. Then, for some H ⊆ Pn,

(c(L)[Y → X])× [Y ′ → X ′] = [Y ×Pn H → X]× [Y ′ → X ′]

= [(Y ×Pn H)× Y ′ → X ×X ′]

= [(Y × Y ′)×Pn H → X ×X ′]

(via the map Y × Y ′ → X ×X ′ → X → Pn)

= c(π∗1L)[Y × Y ′ → X ×X ′].

For arbitrary L ∈ PicG(X),

c(L)(a)× b = F 1/e(F−(c(Le ⊗M), c(M)))(a)× b

= (
∑
i

bi (
∑
j,k

cjk c(Le ⊗M)j c(M)k)i(a))× b

= (
∑
j,k

djk c(Le ⊗M)j c(M)k(a))× b

(expand the series out and denote the coefficients by djk)

=
∑
j,k

djk c(π
∗
1L

e ⊗ π∗1M)j c(π∗1M)k (a× b)

=
∑
i

bi (
∑
j,k

cjk c(π
∗
1L

e ⊗ π∗1M)j c(π∗1M)k)i (a× b)

= F 1/e(F−(c(π∗1L
e ⊗ π∗1M), c(π∗1M))) (a× b)

= c(π∗1L)(a× b).

�

(Dim) If L1, L2, . . . ,Lr ∈ PicG(X) are nice invertible sheaves and r > dimX, then

c(L1) ◦ c(L2) ◦ · · · ◦ c(Lr)[IX ] = 0.
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Moreover, if the pair (G, k) is split, then the same statement holds in the theory UG[1/e] for

arbitrary L1, L2, . . . ,Lr ∈ PicG(X).

Proof. It follows from the fact that c(L) : UG∗ (X)→ UG∗−1(X) and UG<0(X) = 0. �

(FGL) If L, L′ ∈ PicG(X) are nice invertible sheaves, then

c(L ⊗ L′) = F (c(L), c(L′))

in the theory UG. Moreover, if the pair (G, k) is split, then the same statement holds in the

theory UG[1/e] for arbitrary L, L′ ∈ PicG(X).

Proof. The statement for nice L, L′ was proved in section 4. For arbitrary L, L′,

F (c(L), c(L′)) = F ( F 1/e(F−(c(Le ⊗M), c(M))) , F 1/e(F−(c(L′ e ⊗M′), c(M′))) )

= F 1/e(F ( F−(c(Le ⊗M), c(M)) , F−(c(L′ e ⊗M′), c(M′)) ))

= F 1/e(F−( F (c(Le ⊗M), c(L′ e ⊗M′)) , F (c(M), c(M′)) ))

= F 1/e(F−( c(Le ⊗M⊗L′ e ⊗M′) , c(M⊗M′) ))

= c(L ⊗ L′)

because (L ⊗ L′)e ⊗ (M⊗M′) and M⊗M′ are both nice.

�

78



6. Generators for the equivariant algebraic cobordism ring

The main objective of this section is to prove Theorem 6.22, which gives a set of generators

of the equivariant algebraic cobordism ring UG(Spec k). To achieve this, we need to use a

different version of splitting principle. We will assume the pair (G, k) is split in this section.

6.1. Splitting principle by blowing up along invariant smooth centers. In this sub-

section, for a sheaf E over Y and a map f : X → Y , we will denote f∗E by EX if there is no

confusion. Suppose X is a scheme over k and Z is a closed subscheme of X. We will denote

the blow up of X along Z by BlowZX.

The main result in this subsection is similar to the equivariant analog of Theorem 4.7 in

[Kl].

Let S ∈ G-Sm be a ground scheme. Suppose N is a G-linearized locally free sheaf of rank

N over S and A ↪→ N is a rank 1 G-linearized locally free subsheaf. Recall the definition in

section 2.1 [Kl].

The scheme σ1,n(A,N ) is defined as the closed subscheme of Grassmannian Grn(N )

satisfying the following. A point (s,H) ∈ Grn(N ) (i.e. s ∈ S and H is a n-quotient of N|s)

is inside σ1,n(A,N ) if the composition A|s → N|s → H is zero.

Also recall the following definition in section 3.1 in [Kl].

Suppose X is in G-Sm and N is a G-linearized locally free sheaf of rank N over Spec k.

An equivariant immersion X ↪→ Grr(N ) is called twisted if it is the Segre product of an

equivariant map X → Grr(N1) and an equivariant immersion X ↪→ P(N2) for some G-

linearized locally free sheaves N1,N2 over Spec k.

Proposition 6.1. Suppose X ∈ G-Sm is G-irreducible with dimension d and there is a

twisted equivariant immersion

X ↪→ Grr(N )
def
= Y

for some G-linearized locally free sheaf N of rank N over Spec k (1 ≤ r < N). More-

over, there is a 1-dimensional character ψ such that the dimension of the ψ component

H0(Spec k,N )ψ is greater than r. Let Z
def
= GrN−1(N ) and A be the universal subbundle

over Z (A ↪→ NZ with rank 1). Then, there exists a closed point z of the fixed point locus
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ZG, with residue field k(z) ∼= k, such that the closed subscheme σ1,r(A|z,N ) ⊆ Y is smooth

with codimension r and the dimension of X ∩ σ1,r(A|z,N ) is d− r.

Proof. This statement is similar to Theorem 3.3 in [Kl]. First of all, notice that

X × Z ↪→ Y × Z = Grr(N )× Z ∼= Grr(NZ).

On the other hand, the subsheaf A ↪→ NZ induces σ1,r(A,NZ), which is a closed subscheme

of Grr(NZ). So, we will consider σ1,r(A|z,N ) and X ∩ σ1,r(A|z,N ) as fibers of

σ1,r(A,NZ) ↪→ Y × Z → Z

and

(X × Z) ∩ σ1,r(A,NZ) ↪→ Y × Z → Z

respectively.

Suppose the G-representation corresponding to N is given by a k-basis {e1, e2, . . . , eN}

such that each ei defines a 1-dimensional G-representation. Let UN be the invariant affine

open subscheme of Z corresponding to e1, . . . , eN−1. Then, UN = Spec k[s1, . . . , sN−1].

Since Z = GrN−1(N ) ∼= P(N∨) and dim H0(Spec k,N )ψ ≥ r+ 1, without loss of generality,

we may assume G acts on the coordinates s1, . . . , sr trivially. In addition, it can be shown

that A ↪→ NZ is defined by

f
def
=

N−1∑
i=1

siei

− eN
over UN .

Let U1,2,...,r be the affine open subscheme of Y corresponding to e1, . . . , er. Then, we have

U1,2,...,r = Spec k[ti,j ] where 1 ≤ i ≤ r and 1 ≤ j ≤ N − r. Let (N /G, z) = (ti,j , sk) be a

closed point in

Spec k[ti,j , sk] = U1,2,...,r × UN ⊆ Y × Z = GrrNZ .

Then, the map A|z → N → N /G at this point corresponds to

k−span{f} ↪→ ⊕Ni=1k−span{ei} → (⊕Ni=1k−span{ei}) / k−span{g1, . . . , gN−r}

where
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gi
def
=

 r∑
j=1

tj,iej

− er+i
for 1 ≤ i ≤ N − r. The composition being zero is equivalent to f ∈ k−span{g1, . . . , gN−r},

which is equivalent to

hi
def
= si +

N−r−1∑
j=1

sj+rti,j

− ti,(N−r) = 0

for 1 ≤ i ≤ r. So, σ1,r(A,NZ) is cut out by the equations h1, . . . , hr inside U1,2,...,r × UN .

Let z = (q1, . . . , qN−1) be a closed point in UN . Then, when restricted on the fiber of

U1,2,...,r × UN → UN over z, the closed subscheme σ1,r(A|z,N ) ∩ U1,2,...,r is cut out by r

linear equations :

hi = qi +

N−r−1∑
j=1

qj+rti,j

− ti,(N−r) = 0,

where 1 ≤ i ≤ r. So, σ1,r(A|z,N ) ∩ U1,2,...,r is smooth and of codimension r. Moreover,

since X ↪→ Grr(N ) is a twisted immersion and σ1,r(A|z,N ) ∩ U1,2,...,r is given by r linear

equations {hi = 0}, the scheme X ∩ σ1,r(A|z,N ) ∩ U1,2,...,r is of dimension d − r (See the

proof of Theorem 3.3 in [Kl] for details).

Because of the symmetry of f , the only other affine open subscheme of Y we need to

consider is U1,...,r−1,N . In this case, the map A|z → N → N /G corresponds to

k−span{f} ↪→ ⊕Ni=1k−span{ei} → (⊕Ni=1k−span{ei}) / k−span{g1, . . . , gN−r}

where

gi
def
=

r−1∑
j=1

tj,iej

+ tr,ieN − er+i

for 1 ≤ i ≤ N − r − 1 and

gN−r
def
=

r−1∑
j=1

tj,N−rej

+ tr,N−reN − er.
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Hence, the equations that cut σ1,r(A,NZ) out are

hi
def
= si +

N−r−1∑
j=1

sj+rti,j

+ ti,N−rsr = 0

for 1 ≤ i ≤ r − 1 and

hr
def
= −1 +

N−r−1∑
j=1

sj+rtr,j

+ tr,N−rsr = 0.

Let B be the closed subscheme of UN defined by the equations sr = sr+1 = · · · =

sN−1 = 0 and z = (q1, . . . , qN−1) be a closed point in UN − B. Then, in the fiber of

U1,...,r−1,N × UN → UN over z, the closed subscheme σ1,r(A|z,N ) is cut out by r linear

equations

hi = qi +

N−r−1∑
j=1

qj+rti,j

+ ti,N−rqr = 0

for 1 ≤ i ≤ r − 1 and

hr = −1 +

N−r−1∑
j=1

qj+rtr,j

+ tr,N−rqr = 0.

Since at least one of qr, . . . , qN−1 is non-zero, the linear equations {hi | 1 ≤ i ≤ r} are

linearly independent. Hence, by the same reason, σ1,r(A|z,N )∩U1,...,r−1,N is smooth with

codimension r and X ∩ σ1,r(A|z,N ) ∩ U1,...,r−1,N is of dimension d− r.

For a different affine open subscheme Ui1,...,ir−1,N
of Y , there is a corresponding “bad”

closed subscheme B of UN defined by the set of equations {sj = 0} where j /∈ {i1, . . . , ir−1}.

Hence, the result follows by picking z = (q1, . . . , qr, 0, . . . , 0) such that q1, . . . , qr are all

non-zero. �

Suppose A ↪→ N are G-linearized locally free sheaves of rank 1, N respectively, over

Spec k. Let Y
def
= Grr−1(N /A) and QY be its universal quotient. Let K be the kernel

of the composition NY → (N /A)Y → QY . Define a map g : Gr1(K) → Grr(N ) as the

following.
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For a point (y,H) in Gr1(K), we get an exact sequence

0→ G → K|y → H→ 0

where the rank of G will be N − r. Since K|y ↪→ N|y = N , we can consider N /G, which is

of rank r. Thus, we define

g(y,H)
def
= N /G.

Proposition 6.2. The map g : Gr1(K) → Grr(N ) constructed above is equivariantly iso-

morphic to the map corresponding to the blow up of Grr(N ) along σ1,r(A,N ).

Proof. This is the analog of Theorem 4.4 in [Kl]. First of all, it is not hard to see that

g is equivariant. Let X
def
= Grr(N ), Y

def
= Gr1(K) and X̃

def
= Blowσ1,r(A,N )Grr(N ).

Also denote the blow up map from X̃ to X by π. By Theorem 4.4 in [Kl], there exists an

isomorphism µ : X̃ → Y such that g ◦µ = π. So, it is enough to show µ is equivariant. Take

an invariant open subscheme U ⊆ X such that g|U and π|U are both isomorphisms. Since

g|U , π|U are both equivariant, the map µ|U = (g|U )−1 ◦π|U is also equivariant. Now, a map

being equivariant is a closed condition. Hence, µ is equivariant. �

Theorem 6.3. Suppose X ∈ G-Sm is G-irreducible and E is a G-linearized locally free

sheaf of rank r over X. Then, there exists an equivariant morphism f : X̃ → X, which is

the composition of a series of blow ups along invariant smooth centers, and a G-linearized

invertible subsheaf L ↪→ f∗E over X̃ such that the sequence

0→ L → f∗E → (f∗E)/L → 0

is exact and (f∗E)/L is locally free with rank r − 1.

Proof. Let d be the dimension of X. The result is trivially true if d = 0, so we may assume

d ≥ 1. By Proposition 4.13, we can embed X into P(N2) for some G-linearized locally free

sheaf N2 over Spec k. Denote E ⊗ OX(m) by E(m) for simplicity. Assume X is projective

first. Let N1 be the G-linearized locally free sheaf over Spec k corresponding to H0(X, E(m)).

For a sufficiently large m, we can assume the induced map (N1)X → E(m) is surjective and

defines an equivariant immersion X ↪→ Grr(N1), which sends x to E(m)|x. Then, we define a
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twisted equivariant immersion i : X ↪→ Grr(N )
def
= Y as the Segre product of X ↪→ Grr(N1)

and X ↪→ P(N2). In particular, N ∼= N1 ⊗N2.

By construction, i∗QY ∼= E(m + 1) where QY is the universal quotient of Y . Since dim

H0(X, E(m)) is a polynomial of m with degree d, we may assume there is a 1-dimensional

character ψ such that the ψ component H0(X, E(m))ψ has dimension much larger than r.

If X is not projective, we can pick N1 to be a sheaf corresponding to some finite dimen-

sional G-representation inside H0(X, E(m)) and construct i : X ↪→ Y in the same manner.

LetA be the universal subbundle ofGrN−1(N ). Let V1, V2 and V be theG-representations

corresponding to N1, N2 and N respectively. Then, the dimension of the ψ component of

V1 is much larger than r by construction. Thus, there is a 1-dimensional character ψ′ such

that the dimension of the ψ′ component of V is much larger than r. Hence, by Proposition

6.1, there exists a closed point z of the fixed point locus of GrN−1(N ), with residue field

k(z) ∼= k, such that σ1,r(A|z,N ) ⊆ Y is smooth with codimension r and X ∩ σ1,r(A|z,N )

has dimension d− r.

For such z, denote σ1,r(A|z,N ) by σ for simplicity. Then, we have smooth invariant

closed subschemes X, σ of Y with dimension d and dimY − r respectively. Moreover, X ∩σ

has dimension d − r. By applying the embedded desingularization theorem in [BiMi] on

X ∪ σ ↪→ Y , we obtain the following commutative diagram :

X̃
i′−−−→ Y ′

f
y yp
X

i−−−→ Y

where p : Y ′ → Y is the composition of a series of blow ups along smooth invariant centers

and f : X̃ → X is the map corresponding to the strict transform of X. In addition, X̃ ∪ 〈σ〉

(denote the strict transform by 〈 〉) is smooth and if E is the sum of the exceptional divisors

on Y ′, then X̃, 〈σ〉 and E will intersect transversely. Since X and σ are both smooth and

do not contain each other, according to the Theorem 1.6 in [BiMi], it is not hard to see that

each smooth invariant center is either a proper closed subscheme of the strict transform of

X, or a subscheme away from it. Hence, f is the composition of a series of blow ups along

smooth invariant centers.
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Observe that X̃ and 〈σ〉 are disjoint because X̃ ∪ 〈σ〉 is smooth. In addition,

i′−1 ◦ p−1(σ) = i′−1(〈σ〉 ∪ E) = X̃ ∩ (〈σ〉 ∪ E) = X̃ ∩ E,

which is an invariant divisor on X̃. By the universal property of blow up, there is a unique

map j : X̃ → BlowσY such that the following diagram commutes.

X̃
j−−−→ BlowσY

i′
y yq
Y ′

p−−−→ Y

Since z is a fixed point with k(z) ∼= k, the sheaf A|z is a G-linearized locally free sheaf of

rank 1 over Spec k and it is naturally embedded inside N . Following the construction before.

Let Y1
def
= Grr−1(N /A|z), QY1 be its universal quotient, K be the kernel of NY1

→ QY1

and Ỹ
def
= Gr1(K). By Proposition 6.2, the equivariant map g : Ỹ → Y is equivariantly

isomorphic to q : BlowσY → Y . Moreover, as pointed out in (4.1) in [Kl], there is an exact

sequence

0→ L′ def= QỸ → g∗QY → (QY1)
Ỹ
→ 0(9)

of G-linearized locally free sheaves over Ỹ where L′ is of rank 1.

Consider the following commutative diagram :

X̃
j−−−→ BlowσY BlowσY

f
y q

y µ
y

X
i−−−→ Y

g←−−− Ỹ

On one hand, f∗i∗QY ∼= f∗E(m+ 1). On the other hand, if we pull back the exact sequence

(9) by µ and then j. We got an exact sequence of G-linearized locally free sheaves over X̃

0→ j∗µ∗L′ → f∗E(m+ 1) ∼= j∗µ∗g∗QY → j∗µ∗(QY1)
Ỹ
→ 0.

The result then follows by twisting the whole sequence by f∗OX(−m− 1).

�
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6.2. Basic structure of G-linearized invertible sheaves. In this subsection, we will

state and prove some results about the structure of G-linearized invertible sheaves over some

X ∈ G-Sm.

Lemma 6.4. For any X ∈ G-Sm, we have

kernel {PicG(X)→ Pic(X)} = π∗k PicG(Spec k)

where PicG(X)→ Pic(X) is the forgetful map.

Proof. Finding the kernel of the forgetful map is the same as asking how manyG-linearizations

can OX have. A G-linearization of OX can be described by a set of isomorphisms

{α∗ : OX →̃ OX | α ∈ G}.

Each isomorphism α∗ induces an isomorphism

α∗ : H0(X,OX) →̃ H0(X,OX)

which sends 1 to some element aα ∈ H0(X,OX). Since aeα = 1 (e is the exponent of G) and

the pair (G, k) is split, aα is in k∗. In other words, there exists a 1-dimensional character

χ such that α∗(1) = χ(α) for all α ∈ G. Then, the result follows from the one to one

correspondence between the set of 1-dimensional characters and PicG(Spec k). �

Proposition 6.5. Suppose X ∈ G-Sm is G-irreducible and L is a G-linearized invertible

sheaf over X. Then, there exist an invariant divisor D on X and a sheaf N ∈ PicG(Spec k)

such that

L ∼= OX(D)⊗ π∗kN .

Proof. Without loss of generality, we may assume the action on X is faithful. Let U be a

non-empty, invariant open subscheme of X such that the action on U is free. By Theorem 1

in section 7 of [Mu], the geometric quotient U/G exists as a variety over k and π : U → U/G

is an étale morphism. By picking a smaller U , we may further assume U/G to be smooth.

Let D1, . . . , Dn be some invariant divisors on X such that Di ⊆ X − U for all i and the

codimension of X − U − ∪iDi in X is at least 2.
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Claim 1 : The kernel of the restriction map PicG(X)→ PicG(U) is generated by {OX(Di)}

and PicG(Spec k).

Consider the following commutative diagram :

PicG(Spec k)

π∗k
y

Zn a−−−→ PicG(X)
c−−−→ PicG(U)

I
y b

y b
y

Zn a−−−→ Pic(X)
c−−−→ Pic(U) −−−→ 0

where a sends “1” in the i-th position toOX(Di), b is the forgetful map and c is the restriction

map.

Clearly, the third row is exact. Moreover, by Lemma 6.4, the second column is also exact.

Then, the result follows from some diagram chasing. 4

Since the action on U is free, according to Proposition 2 in section 7 in [Mu], there is a

one-to-one correspondence between PicG(U) and Pic(U/G). In particular, π∗(L|U )G is an

invertible sheaf over U/G. Since U/G is smooth, there is a divisor D′ on U/G such that

π∗(L|U )G ∼= OU/G(D′). Thus, we have

L|U ∼= π∗(π∗(L|U )G)

∼= π∗OU/G(D′)

∼= OU (π∗D′)

(π : U → U/G is étale).

Consider the sheaf OX(D′′) ∈ PicG(X) where D′′ is the invariant divisor on X given by

the closure of π∗D′ in X. Hence, L⊗OX(−D′′) will be in the kernel of the restriction map

PicG(X) → PicG(U). By claim 1, there are integers {mi} and a sheaf N ∈ PicG(Spec k)

such that

L ⊗OX(−D′′) ∼= OX(
∑
i

miDi)⊗ π∗kN .

The result then follows by defining D
def
= D′′ +

∑
imiDi. �
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6.3. Reduction of towers. Next, we will define the notion of quasi-admissible tower and

admissible tower and prove we can reduce an quasi-admissible tower into something much

simplier. This subsection is an analog of section 7 in [LeP].

Definition 6.6. Suppose Y is an object in G-Sm. A morphism P→ Y in G-Sm is called a

quasi-admissible tower over Y with length n if it can be factored into

P = Pn → Pn−1 → · · · → P1 → P0 = Y

such that, for all 0 ≤ i ≤ n− 1, Pi+1 = P(Ei) where Ei is the direct sum of sheaves which is

either the pull-back of a G-linearized locally free sheaves over Y , or the pull back of OPj (m)

for some integer m and 1 ≤ j ≤ i.

In this subsection, for an object Y ∈ G-Sm, an invariant divisor D on Y and a G-linearized

locally free sheaf E over Y , we will denote E ⊗ OY (D) by E(D) for simplicity. Moreover, if

P→ Y is a quasi-admissible tower, then we will denote the pull-back of E as a sheaf over Pi

by E if there is no confusion.

Definition 6.7. Suppose Y is an object in G-Sm. We will call a sheaf L ∈ PicG(Y ) admis-

sible if there exist invariant smooth divisors D1, . . . , Dk on Y and a sheaf N ∈ PicG(Spec k)

such that

L ∼= OY (
∑k
i=1miDi)⊗ π∗kN

for some integers {mi}. Denote the subgroup of PicG(Y ) generated by admissible invertible

sheaves by APicG(Y ). Also, define the group of admissible invertible sheaves over Pi by

APicG(Pi)
def
= APicG(Y ) + ZOP1

(1) + · · ·+ ZOPi(1).

Then, a quasi-admissible tower P → Y is called admissible if all sheaves involved in the

construction are admissible invertible sheaves.

Remark 6.8. If all the G-linearized locally free sheaves involved in the construction of a

tower P→ Y are invertible, then it is a quasi-admissible tower.

Proof. Since

Pic(Pi) = Pic(Y ) + ZOP1
(1) + · · ·+ ZOPi(1)
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and, by Lemma 6.4, the kernel of the forgetful map PicG(Pi) → Pic(Pi) is given by

PicG(Spec k), we have

PicG(Pi) = PicG(Y ) + ZOP1
(1) + · · ·+ ZOPi(1).

Then, P→ Y is a quasi-admissible tower by definition. �

Lemma 6.9. Suppose Y ∈ G-Sm is G-irreducible and L is a sheaf in PicG(Y ). Moreover, E

is the direct sum of a finite number of invertible sheaves in PicG(Y ) and D is an invariant

smooth divisor on Y . Let

A
def
= P(E ⊕ L ⊕ L(D))|D,

B
def
= P(E ⊕ L),

C
def
= P(E ⊕ L(D)),

P def
= P(E ⊕ L ⊕ L(D)).

Then A, B, C are invariant smooth divisors on P, the sum of them is a reduced strict normal

crossing divisor, A+B ∼ C and

OP(A) ∼= OP(π∗D)

OP(B) ∼= (π∗L(D))∨ ⊗OP(1)

OP(C) ∼= (π∗L)∨ ⊗OP(1)

where π is the projection P→ Y .

Proof. The fact that A, B, C are smooth divisors on P and the sum of them is a reduced

strict normal crossing divisor was stated in section 7.2 in [LeP]. They are obviously invariant.

Since π is smooth, OP(A) ∼= OP(π∗D). Moreover, as in the proof of Lemma 7.1 in [LeP],

P(E ⊕ L) ⊆ P(E ⊕ L ⊕ L(D)) is given by the vanishing of the composition of equivariant

morphisms

π∗L(D)→ π∗(E ⊕ L ⊕ L(D))→ OP(1).
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Hence,

OP(B) = OP(P(E ⊕ L)) ∼= (π∗L(D))∨ ⊗OP(1).

Similarly,

OP(C) = OP(P(E ⊕ L(D))) ∼= (π∗L)∨ ⊗OP(1).

Then, we have

OP(A)⊗OP(B) ∼= OP(π∗D)⊗ (π∗L(D))∨ ⊗OP(1)

∼= π∗OY (D)⊗ π∗L(D)∨ ⊗OP(1)

∼= π∗L∨ ⊗OP(1)

∼= OP(C)

By remark 3.2, that implies A+B ∼ C. �

Lemma 6.10. Suppose Y is G-irreducible and D is an invariant smooth divisor on Y . If

P → Y is an admissible tower with length n and Pi+1 = P(⊕rj=1Lj), then there exist an

admissible tower P′ → Y of length n and quasi-admissible towers Q0, Q1, Q2, Q3 → D such

that

P′ = P′n → · · · → P′i+1 → Pi → · · · → P0 = Y

where P′i+1 = P((⊕r−1
j=1Lj)⊕ Lr(D)) and we have the following equality in UG(Y ) :

[P′ → Y ]− [P→ Y ] = [Q0 → D → Y ]− [Q1 → D → Y ] + [Q2 → D → Y ]− [Q3 → D → Y ].

Proof. Let P̂i+1
def
= P((⊕rj=1Lj)⊕ Lr(D)). Then, we have P̂i+1 → Pi and Pi+1 ↪→ P̂i+1.

We will first construct an admissible tower

P̂ = P̂n → · · · → P̂i+1 → Pi → · · · → P0 = Y

such that Pk = Pi+1 ×P̂i+1
P̂k for all k > i. Since

APicG(Pi+1) = APicG(Y ) + ZOP1
(1) + · · ·+ ZOPi+1

(1)

APicG(P̂i+1) = APicG(Y ) + ZOP1
(1) + · · ·+ ZOPi(1) + ZOP̂i+1

(1)
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and the restriction map PicG(P̂i+1)→ PicG(Pi+1) sends OP̂i+1
(1) to OPi+1

(1), if we write

Pi+2 = P(⊕L′
j′) for some L′

j′ ∈ APicG(Pi+1), then we can define P̂i+2
def
= P(⊕L′

j′) by

considering L′
j′ as in APicG(P̂i+1). Similarly, for higher levels, APicG(P̂k)→ APicG(Pk) is

surjective and P̂k+1 can be constructed.

Next, we will construct the admissible tower P′ → Y and quasi-admissible tower Q0 → Y .

As in the statement, P′i+1
def
= P((⊕r−1

j=1Lj)⊕Lr(D)), which can be naturally embedded inside

P̂i+1. Then, we define P′k
def
= P′i+1×P̂i+1

P̂k for all k > i+1, which is clearly admissible. The

quasi-admissible tower Q0 are defined by pull-back, i.e. (Q0)j
def
= D×Y P̂j for all 0 ≤ j ≤ n.

By Lemma 6.9, Pi+1, P′i+1 and (Q0)i+1 are all invariant smooth divisors on P̂i+1, the

sum of them is a reduced strict normal crossing divisor and (Q0)i+1 + Pi+1 ∼ P′i+1. Pull

them back to the top level, we have Q0 + P ∼ P′ as invariant smooth divisors on P̂. By

GDPR(2, 1), we have

[P′ ↪→ P̂] = [Q0 ↪→ P̂] + [P ↪→ P̂](10)

− [(Q0 ∩ P)×P̂ P
1 → P̂]

+ [(Q0 ∩ P ∩ P′)×P̂ P
2 → P̂]

− [(Q0 ∩ P ∩ P′)×P̂ P
3 → P̂]

as elements in UG(P̂), where

P 1 def
= P(O ⊕O(Q0))

P 2 def
= P(O ⊕O(1))→ P(O(−P)⊕O(−P′))

P 3 def
= P(O ⊕O(−P)⊕O(−P′)).

We then denote (Q0 ∩ P) ×P̂ P
1, (Q0 ∩ P ∩ P′) ×P̂ P

2 and (Q0 ∩ P ∩ P′) ×P̂ P
3 by Q1, Q2

and Q3 respectively. They all clearly lie over D. Since the towers Q1, Q2, Q3 → D are all

constructed by G-linearized invertible sheaves, by Remark 6.8, they are all quasi-admissible

towers. Hence, the result follows by pushing down equality (10) to UG(Y ). �
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Remark 6.11. Notice that P′j = Pj for all j < i + 1. For j > i + 1, if we identify the

admissible invertible sheaves over Pj−1 that comes from Y to those over P′j−1 and also the

sheaves of the form O(m) for some integer m, then P′j is defined by the exact same set of

admissible invertible sheaves as Pj .

Lemma 6.12. Suppose Y is an object in G-Sm and E is a G-linearized locally free sheaf of

rank r over Y . Furthermore, there exists an exact sequence of G-linearized sheaves over Y

0→ L → E → E/L → 0

such that L and E/L are locally free of rank 1, r − 1 respectively. Then,

P(E) ∼ P((E/L)⊕ L)

as invariant smooth divisors on P(E ⊕ L) and they intersect transversely.

Proof. Without loss of generality, we may assume Y is G-irreducible. P(E) and P((E/L)⊕L)

are obviously invariant smooth divisors on P(E ⊕ L) and their intersection is P(E/L). So,

we only need to prove they are equivariantly linearly equivalent.

Ignore the G-action first. Locally, over an affine open subscheme Ui, we have E ∼= Rei1 ⊕

· · · ⊕ Reir where R
def
= OY (Ui). Similarly, L ∼= Rfi. Let φ : L ↪→ E be the embedding

of sheaves as in the statement. For simplicity, denote P(E ⊕ L) by P, P(E) by A and

P((E/L) ⊕ L) by B. Locally, P = Proj R[ei1, . . . , eir, fi], A is defined by fi = 0 and B is

defined by φ(fi) = 0. So, it is enough to show g
def
= fi/φ(fi) ∈ K(P)∗ is independent of i,

namely, fi/φ(fi) = fj/φ(fj).

On the intersection Ui ∩Uj , we can consider the ratio fi/fj
def
= σij ∈ O(Ui ∩Uj)∗, which

defines the transition function of L. On the other hand, since φ : L ↪→ E is a morphism

between sheaves, we can also consider the ratio φ(fi)/φ(fj) and it should be σij too. That

means

fi
fj

= σij =
φ(fi)

φ(fj)
.

Hence, g is independent of i. Finally,

α · g = α · fi
φ(fi)

=
α · fi

α · φ(fi)
=

α · fi
φ(α · fi)

= g.
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The following result is an analog of Lemma 5.1 in [LeP].

Lemma 6.13. If X is in G-Sm and Z is an invariant smooth closed subscheme of X, then,

as elements in UG(X),

[BlowZX → X]− [IX ] = −[P1 → Z ↪→ X] + [P2 → Z ↪→ X]

for some projective morphisms P1, P2 → Z in G-Sm.

Proof. Without loss of generality, X is G-irreducible. Let Y
def
= BlowZ×0(X × P1) (trivial

action on P1). Consider the projective map Y → X × P1. For any closed point ξ 6= 0 in

P1, we have [Yξ → X] = [IX ], where Yξ denotes the fiber of Y over ξ as before. Consider

the fiber of Y over 0, we have Y0 = A ∪ B where A
def
= P(OZ ⊕ N∨Z↪→X) (the exceptional

divisor) and B
def
= BlowZX (the strict transform of X). In addition, A ∩ B = P(N∨Z↪→X).

Hence, Yξ, A, B are all invariant smooth divisors on Y and A,B intersect transversely. In

other words, Y → X × P1 defines an equivariant DPR. By Proposition 3.16, we have

[IX ]

= [P(OZ ⊕N∨Z↪→X)→ X] + [BlowZX → X]− [P(OA∩B ⊕OA∩B(A))→ A ∩B → X]

= [P(OZ ⊕N∨Z↪→X)→ Z ↪→ X] + [BlowZX → X]− [P(OA∩B ⊕OA∩B(A))→ Z ↪→ X].

Then, the result follows from defining P1
def
= P(OZ ⊕ N∨Z↪→X) and P2

def
= P(OA∩B ⊕

OA∩B(A)) and the fact that A ∩B = P(N∨Z↪→X) is projective over Z. �

Remark 6.14. We can express P2 in a different way. Consider the following commutative

diagram :

P(OA∩B ⊕OA∩B(A)) −−−→ P(N∨Z↪→X) = A ∩By y
P(OA ⊕OA(A)) −−−→ P(OZ ⊕N∨Z↪→X) = A

Since A is the exceptional divisor of the blowup Y → X×P1, we have OA(A) ∼= OA(−1).

Thus, OA∩B(A) ∼= OA∩B(−1). Hence,

P1 = P(O ⊕N∨Z↪→X)→ Z

93



P2 = P(O ⊕O(−1))→ P(N∨Z↪→X)→ Z.

Definition 6.15. Define UG(Spec k)′ to be the abelian subgroup of UG(Spec k) generated

by admissible towers over Spec k.

Remarks 6.16. If P→ Spec k and P′ → Spec k are two admissible towers, then the product

P × P′ → P → Spec k is also an admissible tower over Spec k. In other words, UG(Spec k)′

is a subring of UG(Spec k).

Proposition 6.17. For any quasi-admissible tower P → Y where Y is G-irreducible, there

exist elements ai ∈ UG(Spec k)′ and maps Y ′i → Y in G-Sm with dimY ′i ≤ dimY such that

[P→ Y ] =
∑
i

ai [Y ′i → Y ]

as elements in UG(Y ).

Proof. We will prove the statement by induction on dimension of Y . We will handle the

induction step first. Suppose dimY ≥ 1. Let UG(Y )′ be the subgroup of UG(Y ) generated

by elements of the form [P → Y ′ → Y ] where Y ′ ∈ G-Sm is G-irreducible with dimension

less than dimY and P → Y ′ is a quasi-admissible tower. So, elements in UG(Y )′ will be

handled by the induction assumption. Let P→ Y be a quasi-admissible tower. If the length

of the tower n is 0, then we are done. Suppose n ≥ 1.

Step 1 : Reduction to a quasi-admissible tower constructed only by G-linearized invertible

sheaves.

Define the integer “total rank” as the sum of ranks of all sheaves involved in all levels.

Also, define the integer “number of sheaves” as the number of sheaves in all levels. For

example, the tower P(E1)→ P(E2⊕E3)→ Y has total rank = rank E1 + rank E2 + rank E3

and number of sheaves 3.

Assume that, for the tower P → Y , number of sheaves is less than total rank. Then,

there exists a sheaf E , which is used in the construction of some level Pi, has rank greater

than 1. Notice that E has to come from Y because the tower is quasi-admissible. Let

Pi
def
= P((⊕jEj) ⊕ E). By Theorem 6.3, there exists a map π : Ỹ → Y , which is the

composition of a series of blow ups along invariant smooth centers with dimensions less than
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dimY , and a G-linearized invertible sheaf L over Ỹ such that the sequence of G-linearized

sheaves

0→ L → π∗E → (π∗E)/L → 0

is exact and (π∗E)/L is locally free with rank r − 1.

Define the tower P̃ → Ỹ by pulling back each level, namely P̃i = Pi ×Y Ỹ . Then, the

sheaves in the construction at each level of P̃ is exactly the same as P if we identify π∗M

and M. Thus, P̃ → Ỹ is a quasi-admissible tower with the same total rank and number of

sheaves.

Claim 1 : π∗[P̃→ Ỹ ]− [P→ Y ] lies in UG(Y )′.

First, assume π is given by a single blow up along some invariant smooth center Z ⊆ Y .

Observe that P̃ can be considered as the blow up of P along P|Z . By Lemma 6.13, we obtain

the equality

[P̃→ P]− [IP] = −[Q1 → P|Z → P] + [Q2 → P|Z → P].

Pushing them down to Y , we get

π∗[P̃→ Ỹ ]− [P→ Y ] = −[Q1 → P|Z → Z → Y ] + [Q2 → P|Z → Z → Y ].

Notice that the tower P|Z → Z is trivially quasi-admissible and, by Remark 6.14, the

sheaves involved in the construction of Q1, Q2 → P|Z are either of the form O(m) or

N∨P|Z↪→P
∼= N∨Z↪→Y in our notation. That implies Q1 → Z and Q2 → Z are both quasi-

admissible towers. The result then follows from the fact that dimZ < dimY . The general

case with more blow ups follows easily from the fact that π∗ UG(Ỹ )′ ⊆ UG(Y )′. 4

Hence, without loss of generality, we may assume the splitting

0→ L → E → E/L → 0

happens in the original tower P→ Y . Next, we will construct towers P̂, P′ → Y in a similar

manner as in the proof of Lemma 6.10. Define

P̂i
def
= P((⊕jEj)⊕ E ⊕ L) and P′i

def
= P((⊕jEj)⊕ (E/L)⊕ L).
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Then, by Lemma 6.12, Pi and P′i are equivariantly linearly equivalent invariant smooth

divisors on P̂i and they intersect transversely. For each level k > i, we construct P̂k by the

same set of sheaves used in Pk to form a tower

P̂ def
= P̂n → · · · → P̂i → Pi−1 → · · · → Y.

Also, for each level k > i, we construct P′k by fiber product, namely, P′k
def
= P̂k ×P̂i

P′i to

form another tower

P′ def= P′n → · · · → P′i → Pi−1 → · · · → Y.

In this case, P ∼ P′ as invariant smooth divisors on P̂ and they intersect transversely. By

GDPR(1, 1), we have [P ↪→ P̂] = [P′ ↪→ P̂] and hence,

[P→ Y ] = [P′ → Y ]

as elements in UG(Y ). Observe that, for each level k 6= i, the set of sheaves involved in

the construction of P′k is exactly the same as those of Pk in our notation. For level i, by

definition, P′i = P((⊕jEj)⊕ (E/L)⊕L). Hence, P′ → Y is a quasi-admissible tower with the

same total rank as P→ Y and one higher number of sheaves. By repeating this procedure,

we will obtain the highest number of sheaves possible : the number of sheaves is equal to

the total rank. That means all sheaves involved in the construction of the quasi-admissible

tower are G-linearized invertible sheaves.

Step 2 : Reduction to an admissible tower.

By step 1, we may assume P→ Y is a quasi-admissible tower constructed by G-linearized

invertible sheaves only. For each L ∈ PicG(Y ) used in the construction, there is an invariant

divisor DL on Y and a sheaf NL ∈ PicG(Spec k) such that

L ∼= OY (DL)⊗ π∗kNL

by Proposition 6.5. We can then represent such a (Weil) divisor as a linear combination of

prime divisors {DL,k} on Y . Let

{D1, . . . , DN}
def
= {DL,k where L is used in the construction of P→ Y }.
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Consider ∪Nk=1Dk as a reduced closed subscheme of Y . Apply the embedded desingular-

ization Theorem in [BiMi] on ∪Nk=1Dk ↪→ Y , we obtain a map π : Ỹ → Y , which is the

composition of a series of blow ups along invariant smooth centers such that
〈
∪Nk=1Dk

〉
is smooth. Let {El} be the set of exceptional divisors. Since

〈
∪Nk=1Dk

〉
= ∪Nk=1 〈Dk〉 is

smooth, the strict transforms {〈Dk〉} are disjoint invariant smooth divisors on Ỹ . Moreover,

we have

π∗OY (Dk) ∼= OỸ (〈Dk〉+
∑
l

mlEl)

for some integers ml and all invariant divisors involved are smooth. Hence, π∗L are all

admissible and the tower P̃ → Ỹ defined by P̃i
def
= Pi ×Y Ỹ becomes admissible. By claim

1, we reduce to the case when P→ Y is an admissible tower.

Step 3 : Reduction to an admissible tower with P1 = P(π∗kE1) where E1 is a G-linearized

locally free sheaf over Spec k.

By step 2, we may assume P → Y is an admissible tower. Consider the first level P1 =

P(⊕rj=1Lj). Since the sheaves Lj are admissible, we have Lj ∼= OY (
∑
k ±Djk)⊗ π∗kNj for

some invariant smooth divisors Djk on Y and some Nj ∈ PicG(Spec k). By lemma 6.10, we

can twist P→ Y to P′ → Y so that P′1 = P((⊕j 6=p Lj)⊕ Lp(D)) and the difference will be

given by quasi-admissible towers Q→ D. Notice that

[Q→ D ↪→ Y ] =
∑
i

[Qi → Di ↪→ Y ]

where {Di} are the G-components of D and Qi
def
= Q×DDi defines a quasi-admissible tower

over Di. So, [P → Y ] − [P′ → Y ] lie in UG(Y )′. Hence, by twisting each Lj by suitable

choices of D, we may assume there exists a sheaf L′ ∈ APicG(Y ) such that

Lj ∼= L′ ⊗ π∗kNj

for all j. In other words,

P1 = P(L′ ⊗ π∗kE1)

where E1
def
= ⊕j Nj is a G-linearized locally free sheaf over Spec k. Notice that P(L′⊗π∗kE1) is

isomorphic to P(π∗kE1) as equivariant projective bundles over Y . If we define P′1
def
= P(π∗kE1)
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and P′i
def
= Pi ×P1

P′1 for all 2 ≤ i ≤ n, then we obtain a tower P′ → Y which is isomorphic

to P→ Y . Since all the sheaves involved in the construction of P′ are invertible, by Remark

6.8, P′ → Y is a quasi-admissible tower. By applying step 2 on P′ → Y , we obtain an

admissible tower P̃→ Ỹ . Then, the result follows from claim 1 and the fact that

P̃1 = P′1 ×Y Ỹ ∼= P(π∗kE1).

Step 4 : Finish the induction step.

By step 3, it is enough to prove the statement in the case when P → Y is an admissible

tower with P1 = P(π∗kE1). Consider the second level P2 = P(⊕rj=1Lj). Since the sheaves Lj

are admissible and

APicG(P1) = APicG(Y ) + ZOP1
(1),

by the same trick as in step 3, we can twist P→ Y until there exists a sheaf L′ ∈ APicG(Y )

such that

Lj ∼= L′ ⊗OP1
(mj)⊗ π∗kNj

for all j. By Remark 6.11, the twisting will not affect P1. By defining

E2
def
= ⊕j(OP(E1)(mj)⊗Nj)

and p1 : P1 = P(π∗kE1)→ P(E1), we obtain an isomorphism

P2 = P(L′ ⊗ p∗1E2) ∼= P(p∗1E2).

Simiarly, we get an isomorphic quasi-admissible tower P′ → Y and then, an admissible tower

P̃ → Ỹ by blow ups. Thus, we have the following commutative diagram :

P(E2) ←−−− P(p∗1E2) = P′2 ←−−− P(q∗1p
∗
1E2) = P̃2y y y

P(E1)
p1←−−− P(π∗kE1) = P′1

q1←−−− P(π∗kE1) = P̃1y y y
Spec k ←−−− Y ←−−− Ỹ

That handles the second level. By repeating the process until level n, we obtain an admissible

tower
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Q = Qn = P(En)→ · · · → P(E1)→ Q0 = Spec k

such that

[P→ Y ] = [Y ×Q→ Y ] = [Q→ Spec k][Y → Y ].

Step 5 : dimY = 0 case.

In this case, any G-linearized locally free sheaf E over Y splits into the direct sum of

G-linearized invertible sheaves (by direct calculation or Theorem 6.3). Moreover, if L is a

sheaf in PicG(Y ), then, by Proposition 6.5, we have L ∼= OY (D)⊗π∗kN ∼= π∗kN . That means

P1 = P(⊕Lj) = P(⊕π∗kNj) = Q1 × Y

where Q1
def
= P(⊕Nj). The same argument applies to higher levels. Hence,

[P→ Y ] = [Q→ Spec k][Y → Y ]

with admissible tower Q→ Spec k. �

6.4. Generators for UG(Spec k). We are now in position to prove the generators Theorem.

First of all, we will prove that any two birational objects Y , Y ′ ∈ G-Sm agree in some

truncated theory.

Definition 6.18. For any X ∈ G-Sm, we define the abelian group UG(X) as the quotient

of UG(X) by the subgroup generated by elements of the form [Z][Y → X] where [Z] is in

UG≥1(Spec k)′ and [Y → X] is in UG(X), i.e.

UG(X)
def
= UG(X) /UG≥1(Spec k)′ UG(X).

Remark 6.19. UG can be considered as a theory on G-Sm with projective push-forward,

smooth pull-back, Chern class operator (for nice invertible sheaves) and external product.

In this truncated theory, the formal group law becomes additive, i.e.

c(L ⊗M) = c(L) + c(M).
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Proof. In section 7.3 in [LeP], the abelian group ω(Spec k)′ is defined as the subgroup of

ω(Spec k) generated by admissible towers (Without group action, the notions of “admissible

tower” in [LeP] and in our paper are equivalent). By Corollary 7.5 and equation 8.1 in [LeP],

the coefficients aij used in the formal group law in the theory ω are all inside ω≥1(Spec k)′.

Then, the result follows from the fact that the formal group law in the theory ω and the

formal group law in our theory UG share the same set of coefficients aij if we consider

ω(Spec k) ↪→ UG(Spec k). �

Proposition 6.20. Suppose Y , Y ′ ∈ G-Sm are both projective and G-irreducible. If they

are equivariantly birational, then [Y ] = [Y ′] as elements in UG(Spec k).

Proof. By the equivariant weak factorization theorem (Theorem 0.3.1) in [AKMW], there

exists a sequence of blowups and blowdowns along smooth invariant centers to go from Y to

Y ′. So, it is enough to consider a single blowup. By Lemma 6.13,

[BlZ Y → Y ]− [IY ] = −[P1 → Z → Y ] + [P2 → Z → Y ]

as elements in UG(Y ). Pushing them down to UG(Spec k) gives

[BlZ Y ]− [Y ] = −[P1 → Z → Spec k] + [P2 → Z → Spec k]

as elements in UG(Spec k). For simplicity, assume Z is G-irreducible. By Remark 6.14, P1,

P2 → Z are both quasi-admissible towers. By Proposition 6.17, [Pi → Z] =
∑
a [Z ′ → Z] for

some a ∈ UG(Spec k)′ and Z ′ ∈ G-Sm such that dimZ ′ ≤ dimZ. Since dimPi = dimY >

dimZ, the elements {a} are all in UG≥1(Spec k)′. Hence, the element [Pi → Z → Spec k]

vanishes in UG(Spec k). �

Finally, we are ready to prove our main Theorem. The generators of our equivariant

algebraic cobordims ring UG(Spec k), as a L-algebra, will be admissible towers over Spec k

and some “exceptional objects”. For an integer n ≥ 0 and a pair of subgroups G ⊇ H ⊇ H ′,

since G is abelian, we can write

H/H ′ ∼= H1 × · · · ×Ha
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where Hi is a cyclic group of order Mi
def
= p

mi
i for some prime pi. Let αi be a generator of

Hi. Define a (H/H ′)-action on Proj k[x0, . . . , xn, v1, . . . , va] as the following. First, H/H ′

acts on x0, . . . , xn trivially. Then, for all i, the subgroup Hi acts on vi by αi · vi = ξivi for

some primitive Mi-th root of unity ξi. For all j 6= i, the subgroup Hj acts on vi trivially.

Lemma 6.21. There exist homogeneous polynomials g1, . . . , ga ∈ k[x0, . . . , xn] with degrees

M1, . . . ,Ma respectively, such that the projective variety

Proj k[x0, . . . , xn, v1, . . . , va] / (v
M1
1 − g1, . . . , v

Ma
a − ga),

is smooth and has dimension n.

Proof. Let U be the open subscheme ∪ni=0D(xi) of Proj k[x0, . . . , xn, v1, . . . , va]. For 1 ≤

i ≤ a, let ψi : U → PNi be the (H/H ′)-equivariant map sending (x0; . . . ;xn; v1; . . . ; va) to

(x
Mi
0 ;x

Mi−1
0 x1; . . . ;x

Mi
n ; v

Mi
i )

(the first Ni − 1 coordinates run though all degree Mi monomials given by x0, . . . , xn). By

Lemma 4.8, there exist hyperplanes Hi ⊆ PNi such that U×
PN1

H1×PN2
H2×PN3

· · ·×PNa

Ha is smooth and has dimension n. The result then follows by observing each Hi defines a

homogeneous polynomial gi with degree Mi and

U×
PN1

H1×PN2
H2×PN3

· · ·×PNaHa = Proj k[x0, . . . , xn, v1, . . . , va] / (v
M1
1 −g1, . . . , v

Ma
a −ga).

�

Pick g1, . . . , ga as in Lemma 6.21. Let X be the projective variety

Proj k[x0, . . . , xn, v1, . . . , va] / (v
M1
1 − g1, . . . , v

Ma
a − ga).

Then, X is in (H/H ′)-Sm. Fix a set of representatives {βj} of G/H. The exceptional object

En,H,H′ is defined as G/H ×X such that for all α ∈ G and (βj , y) ∈ En,H,H′ ,

α · (βj , y)
def
= (βk, γ · y)
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where βk ∈ G/H and γ ∈ H are uniquely determined by the equality αβj = βkγ. We will

see that the element [En,H,H′ ] ∈ UG(Spec k) is independent of the choice of {gi}.

Theorem 6.22. If the pair (G, k) is split, then UG(Spec k) is generated by the set of excep-

tional objects {En,H,H′ | n ≥ 0 and G ⊇ H ⊇ H ′} and the set of admissible towers over

Spec k as a L-algebra.

Proof. Let S be the set of generators mentioned in the statement, i.e. S
def
= {[En,H,H′ ], [P]}.

Consider the following diagram of abelian groups :

UGn (Spec k)

↓
Pn
↘

UGn (Spec k)
Pn
99K UG(Spec k) /L[S]

Our goal is to prove S gives a set of generator of UG(Spec k) as L-algebra. It is obviously

enough to show that Pn = 0 for all n. Suppose we have shown that P0 = P1 = · · · = Pn−1 =

0. Then, since UG(Spec k)′ is a subgroup of L[S] and

(UG≥1(Spec k)′ UG(Spec k)) ∩ UGn (Spec k) =
n∑
i=1

UGi (Spec k)′ UGn−i(Spec k),

the homomorphism Pn is well-defined and the diagram is commutative. In addition, Pn = 0

will imply Pn = 0 and P0, P0 agree. So, it is enough to show that Pn = 0 for all n.

Suppose n ≥ 0 and [Y ] ∈ UGn (Spec k) is G-irreducible. Assume Y is irreducible and the G-

action is faithful first. Let G = G1×· · ·×Ga where Gi is a cyclic group of order Mi
def
= p

mi
i

for some prime pi and αi be a generator of Gi.

Claim 1 :

k(Y ) ∼= k(x1, . . . , xn)[xn+1, v1, . . . , va] / (f, v
M1
1 − g1, . . . , v

Ma
a − ga)

for some f , gi ∈ k[x1, . . . , xn+1] such that the G-action on xi is trivial, Gj acts on vi trivially

if i 6= j and αi · vi = ξivi where ξ ∈ k is a primitive Mi-th root of unity.

Denote the function field k(Y ) by K. Since the G-action on Y is faithful, the degree of the

extension K/KG is equal to the order of G and it is a Galois extension (separable because

char k = 0). Let Ki be the subfield of K consists of elements fixed by
∏
j 6=iGj . Then,
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K = K1 · · ·Ka, the intersection of any Ki 6= Kj is KG and the extension Ki/K
G is Galois

with Gal(Ki/K
G) ∼= Gi.

Since the dimension of the scheme Y/G is n, the field k(Y/G) ∼= KG has transcen-

dence degree n over k. So, there is an element f ∈ k[x1, . . . , xn+1] such that KG ∼=

k(x1, . . . , xn)[xn+1]/(f). Consider Ki as a Gi-representation over KG. Since the pair

(Gi, K
G) is split, Ki can be written as direct sum of 1-dimensional Gi-representations over

KG. Then, the action of αi on at least one of the Gi-representations is given by ξi. Let bi

be a generator of such representation. Since b
Mi
i is fixed by Gi, it is in KG. Denote it by

gi. Without loss of generality, gi ∈ k[x1, . . . , xn+1]. Consider the polynomial

vMi − gi =

Mi−1∏
j=0

(v − ξjbi) ∈ KG[v].

It is irreducible because if j < Mi, then α does not fix b
j
i , hence b

j
i /∈ K

G. Since vMi − gi

has degree Mi, the field Ki has to be generated by bi. In other words,

Ki ∼= k(x1, . . . , xn)[xn+1, vi] / (f, v
Mi
i − gi).

Also, the G-action on vi corresponds to the G-action on bi, which is exactly as the one

described in the statement. 4

Let

Y ′
def
= Proj k[x0, . . . , xn+1, v1, . . . , va] / (f, v

M1
1 − g1, . . . , v

Ma
a − ga)

and

P ′
def
= Proj k[x0, . . . , xn+1, v1, . . . , va]

where f , gi ∈ k[x0, . . . , xn+1] are homogeneous polynomials with degree d and Mi respec-

tively, the G-action on xi is trivial and the G-action on vj are the one described in claim

1. For simplicity, we will denote P ′ simply as Proj k[x, v]. By claim 1, Y ′ is equivariantly

birational to Y . By applying the embedded desingularization theorem [BiMi] on Y ′ ↪→ P ′,

there is a commutative diagram 〈
Y ′
〉
−−−→ Py y

Y ′ −−−→ P ′
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where
〈
Y ′
〉
, P are both in G-Sm. Since

〈
Y ′
〉

is smooth and equivariantly birational to Y ′,

by Proposition 6.20, we may assume
〈
Y ′
〉

= Y . Moreover, since P → P ′ is projective, by

Proposition 4.13, there exist free variables y0, . . . , ym with G-actions and a set of polynomials

{h} ⊆ k[x, v, y0, . . . , ym] which are bihomogeneous with respect to (x, v) and y such that

P ∼= BiProj k[x, v][y]/(h)

and

Y = BiProj k[x, v][y] / (h) + (f, v
M1
1 − g1, . . . , v

Ma
a − ga).

Define a set of indices

J
def
= {monomial in k[x] with degree d} q

∐
i

{monomial in k[x] with degree Mi}.

Let C
def
= k[{cj | j ∈ J}] be the polynomial ring generated by free variables indexed by J .

Then, f(x) can be considered as f(c0, x) for some c0 ∈ SpecC and similarly for gi. Let

T ′
def
= Proj C[x, v] / (f(c, x), v

M1
1 − g1(c, x), . . . , vMaa − ga(c, x)).

If we assign a trivial G-action to SpecC, then there is an equivariant, projective, surjective

map φ′ : T ′ → SpecC with fiber T ′c0
∼= Y ′ and T ′ is a closed subscheme of SpecC × P ′ ∼=

Proj C[x, v]. Also let

T
def
= BiProj C[x, v][y] / (h) + (f(c, x), v

M1
1 − g1(c, x), . . . , vMaa − ga(c, x)).

Similarly, there is an equivariant, projective, surjective map φ : T → SpecC with fiber

Tc0
∼= Y and T is a closed subscheme of SpecC × P ∼= BiProj C[x, v][y]/(h).

Claim 2 : T is in G-Sm and has dimension dim SpecC + n.

Without loss of generality, k is algebraically closed. Notice that T is cut out from SpecC×

P , which is smooth and has relative dimension n+a+1 over SpecC, by the equations f(c, x)

and v
Mi
i −gi(c, x). We will show that the gradients {∇f(c, x),∇(v

Mi
i −gi(c, x))} are linearly

independent and they are also linearly independent to any∇h at any closed point in T . Since
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h is in k[x, v][y], φ∗∇h = 0. So, it will be enough to show that the vectors

{φ∗∇f(c, x), φ∗∇(v
Mi
i − gi(c, x))}

are linearly independent. Over D(xj), if we denote xk/xj by tk, then we have

φ∗∇f(c, x) = (td0, t
d−1
0 t1, . . . , t

d
n+1, 0, . . . , 0)

and

φ∗∇(v
Mi
i − gi(c, x)) = −(0, . . . , 0, t

Mi
0 , t

Mi−1
0 t1, . . . , t

Mi
n+1, 0, . . . , 0)

(zero except coordinates corresponding to the coefficients of gi). Moreover, over D(vj), if

we denote xk/vj by tk, then we obtain the same equations for the vectors φ∗∇f(c, x) and

φ∗∇(v
Mi
i − gi(c, x)). Thus, they are linearly independent as long as (x0; · · · ;xn+1) 6= 0.

Suppose x = (x0; · · · ;xn+1) = 0 for a certain closed point in T . Then, v1, . . . , va are all zero

too. So, the coordinate of this point is (c, 0; 0, y) ∈ T ⊆ C ×P . We then get a contradiction

by realizing that the map C × P → P → P ′ will send (c, 0; 0, y) to (0; 0) ∈ P ′. 4

The same argument also shows that T ′ is in G-Sm and has dimension dim SpecC + n.

Notice that T and SpecC are both smooth, the map φ is projective, surjective and has

relative dimension n and the fiber Tc0 is smooth with dimension n. So, the map φ is

smooth if restricted in an open neighborhood of c0 (because the point c0 is not in the

image of {critical point}, which is closed). Call such a neighborhood U0. Pick a point

c1 = (c1j) ∈ SpecC such that the fiber T ′c1 is in G-Sm with dimension n (such point exists

by Lemma 6.21). Similarly, the map φ′ : T ′ → SpecC is smooth if restricted in an open

neighborhood of c1. Call such a neighborhood U1.

Claim 3 : There exists an equivariant, projective, birational map µ : T → T ′ of schemes

over SpecC.

The map µ is given by the restriction of the map SpecC × P → SpecC × P ′ which sends

(c, x; v, y) to (c, x; v). So, it is clearly equivariant and projective. Notice that P → P ′ is

birational. That means if η1 is the generic point of P ′, then Pη1 → Spec η1 is an isomorphism,

i.e. Proj k(x∗, v∗)[y]/(h∗) →̃ Spec k(x∗, v∗) where x∗, v∗ and h∗ are the dehomogenizations

of x, v and h with respect to x0, respectively. Let η2 be the generic point of T ′, as scheme
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over SpecC. Then,

Tη2
∼= Proj C(x∗, v∗)[y] / (h∗) + (f∗, v1

M1∗ − g1∗, . . . , va
Ma∗ − ga∗)

∼= SpecC(x∗, v∗) / (f∗, v1
M1∗ − g1∗, . . . , va

Ma∗ − ga∗)

∼= Spec η2.

That means µ is birational, as a morphism of schemes over SpecC. 4

Denote the open subscheme U0∩U1 ⊆ SpecC by U . Then, φ : T |U → U and φ′ : T ′|U → U

are both smooth and µ : T |U → T ′|U has birational fibers (over U). Also, denote the affine

line in SpecC connecting c0 and c1 by L and pick a closed point c2 ∈ U ∩ L. Consider the

equivariant, projective map φ : T |L → L. It is smooth over U0∩L. That means Sing(T |L) is

disjoint from the fibers Tc0 and Tc2 . By resolution of singularities (Theorem 1.6 in [BiMi]),

we can assume T |L is smooth (The blow ups will not affect the two fibers). Now, T |L has

fibers Tc0 and Tc2 which are both smooth invariant divisors. By Proposition 4.14, we can

extend T |L → L to some equivariant, projective map T → P1 where T is in G-Sm. Then,

GDPR(1, 1) will imply

[Tc0 ↪→ T ] = [Tc2 ↪→ T ]

as elements in UG(T ). Push them down to Spec k, we got [Tc0 ] = [Tc2 ]. By applying the

same argument on φ′ : T ′|L → L, we got [T ′c1 ] = [T ′c2 ]. Hence,

[Y ] = [Tc0 ] = [Tc2 ] = [T ′c2 ] = [T ′c1 ]

as elements in UG(Spec k) by Proposition 6.20 and the fact that Tc2 , T
′
c2

are birational and

are both smooth.

Because of the freedom of choice of c1 = (c1j), we can assume

Y ∼= Proj k[x, v] / (f, v
M1
1 − g1, . . . , v

Ma
a − ga)

for any choice of f(x), gi(x) as long as the degrees of f , gi are d, Mi respectively and Y is

smooth. Consider the equivariant map
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ψ : W
def
= Proj k[x, v] / (v

M1
1 − g1, . . . , v

Ma
a − ga)→ Proj k[x] ∼= Pn+1.

Then, Y can be considered as the preimage of a generic degree d hypersurface. More precisely,

as elements in UG(W ),

[Y ↪→ W ] = c(ψ∗O(d))[IW ] = d c(ψ∗O(1))[IW ]

because ψ∗O(1) is nice and formal group law becomes additive by Remark 6.19. In other

words, it is enough to consider the case when d = 1. Without loss of generality, we may

assume f(x) = xn+1. Hence, we have

Y ∼= Proj k[x0, . . . , xn, v1, . . . , va] / (v
M1
1 − g1(x), . . . , vMaa − ga(x)),

which is the exceptional object En,G,{1}. So, Pn[Y ] = 0. That proves the case when Y is

irreducible with faithful G-action.

If the G-action on Y ∈ G-Sm is faithful, but Y is reducible, then Y ∼= G/H ×X for some

subgroup H ⊆ G and some irreducible X ∈ H-Sm. By applying claim 1 on X with H-action,

we can define G/H ×X ′, G/H ×X, G/H ×P ′ and G/H ×P in the same manner to obtain

the following commutative diagram :

G/H ×X −−−→ G/H × Py y
G/H ×X ′ −−−→ G/H × P ′

We can also define the polynomial ring C and the C-schemes G/H×T ′ and G/H×T . We will

also have G-equivariant, projective maps φ : G/H×T → SpecC and φ′ : G/H×T ′ → SpecC

such that φ is smooth around c0 and φ′ is smooth around some c1 = (c1j). Similarly, the

natural map µ : G/H × T → G/H × T ′ will also be G-equivariant, projective and has

birational fibers over SpecC. Hence, as before,

[Y ] = [G/H ×X] = [(G/H × T )c0 ] = [(G/H × T )c2 ] = [(G/H × T ′)c2 ] = [(G/H × T ′)c1 ].

In other words, we may assume

X ∼= Proj k[x, v] / (f, v
M1
1 − g1, . . . , v

Ma
a − ga).
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Define ψ : G/H ×W → Pn+1 similarly to get the same reduction on f . We may further

assume

X ∼= Proj k[x, v] / (v
M1
1 − g1, . . . , v

Ma
a − ga).

Hence, we have Y ∼= G/H ×X ∼= En,H,{1}.

In general, if we have subgroups G ⊇ H ⊇ H ′ such that the (G/H ′)-action on Y is faithful

and Y ∼= G/H ×X for some irreducible X ∈ (H/H’)-Sm, then we may assume

X ∼= Proj k[x0, . . . , xn, v1, . . . , va] / (v
M1
1 − g1(x), . . . , vMaa − ga(x))

for some generic g1, . . . , ga where v1, . . . , va are given by H/H ′. Hence, Y ∼= En,H,H′ . That

finishes the proof. �

Remark 6.23. Notice that we did not use the full power of the generalized double point

relation in our proof of Theorem 6.22. More precisely, if we define our equivariant algebraic

cobordism theory by imposing the extended double point relation GDPR(2, 1) alone, the

same set of generators will still generate the equivariant algebraic cobordism ring. But, with

the aid of the generalized double point relation, we can actually simplify the exceptional

objects further.

Suppose the dimension of an exceptional object En,H,H′ is greater than the order of the

group H/H ′. Let

W
def
= G/H × Proj k[x0, . . . , xn, v1, . . . , va] / (v

M1
1 − g1, . . . , v

Ma−1
a−1 − ga−1).

Then, the invariant smooth divisor G/H × {vMaa = ga} = En,H,H′ is equivariantly linearly

equivalent to the sum of invariant smooth divisors G/H × {xi = 0} where i runs from 0 to

Ma − 1. Moreover, by the freedom of choice of {gi}, we can assume

En,H,H′ +
Ma−1∑
i=0

G/H × {xi = 0}

is a reduced strict normal crossing divisor. Thus, by the generalized double point relation

GDPR(Ma, 1),

[En,H,H′ ↪→ W ] =

Ma−1∑
i=0

[G/H × {xi = 0} ↪→ W ]
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as elements in UG(W ) (“extra terms” are always of the form [P→ Z ↪→ W ] where P→ Z is

a quasi-admissible tower and dimZ < dimP = n). In other words, it is enough to consider

objects of the form

G/H × Proj k[x0, . . . , xn−1, v1, . . . , va] / (v
M1
1 − g1, . . . , v

Ma−1
a−1 − ga−1)

instead. Similarly, we can apply the same argument to reduce En,H,H′ into

G/H × Proj k[x0, . . . , xn−a, v1, . . . , va] = G/H × P(V )

for some (H/H ′)-representation V . In particular, if the group G is a cyclic group of prime

order, then

[G/H × P(V )] = [G/H] [P(V )]

where V is some G-representation and H can be either G or the trivial group. Notice that

E0,{1},{1} ∼= G and P(V ) is an admissible tower over Spec k. Hence, only finite number of

exceptional objects are needed to generate UG(Spec k) in this case.
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7. Fixed point map

In this section, we will prove the well-definedness of the canonical fixed point map

F : UG(X)→ ω(XG),

which is an analogue of the fixed point map in topology. Recall the following definition

of fixed point locus from [Fo]. If X is a scheme over a field k, let XG be the G-scheme X

equipped with trivial G-action. If Y is a G-scheme over k, let hGY (X) be the set of morphisms

from XG to Y in the category of G-schemes over k. Then, hGX(−) is a cotravariant functor

from the category of schemes over k to category of sets. By Theorem 2.3 (for schemes of

finite type over a field k), hGX(−) is represented by a closed subscheme of X with trivial

G-action. We refer to this closed subscheme as the fixed point locus of X and denote it by

XG.

In order to show that the fixed point map is well-defined, we need to first make sure the

fixed point locus of any object in the category G-Sm stays inside the category Sm in our

basic setup (char k = 0 and G is either a reductive connected group or a finite group).

Proposition 7.1. For any object X ∈ G-Sm, the fixed point locus XG is smooth. Moreover,

if x ∈ XG is a closed point, then there is no non-zero conormal vector in N∨
XG↪→X

|x which

is fixed by the natural G-action.

Proof. By Proposition 3.4 in [Ed], the fixed point locus XG is smooth if G is finite. In

the case when G is linearly reductive, let x ∈ XG be a closed point and C(X, x) be the

tangent cone of X at x. Since X is smooth at x, the tangent cone C(X, x) is isomorphic

to Spec k(x)[t1, . . . , td] where d is the dimension of OX,x and t1, . . . , td are independent

indeterminates corresponding to a system of parameters of OX,x. Moreover, G acts on

k(x) trivially and the G-action on t1, . . . , td is linear. By Theorem 5.2 in [Fo], we have

C(X, x)G = C(XG, x). Therefore, C(XG, x) is a linear subspace of C(X, x), i.e. Ad′
k(x)

for

some d′. But then d′ = dimC(XG, x) = dimXG. Hence, the fixed point locus XG is smooth

at x. That shows the first part of the statement.
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For the second part, when G is finite, we have T XG|x ∼= (T X|x)G by Proposition 3.2 in

[Ed]. Moreover, the following exact sequence of G-representations splits :

0→ T XG|x → T X|x → NXG↪→X |x → 0.

Hence, there is no non-zero normal vector of XG which is fixed by G, and the same holds

for conormal.

When G is reductive,

T XG|x ∼= T C(XG, x)|0 ∼= T C(X, x)G|0 ∼= (T C(X, x)|0)G ∼= (T X|x)G.

Then the result follows similarly. �

Theorem 7.2. Suppose X is an object in G-Sm and {Z} is the set of irreducible components

of its fixed point locus XG. Then, sending [Y → X] to
∑
Z [Y G ×

XG
Z → Z] defines an

abelian group homomorphism :

F : UG(X)→
⊕
Z

ω(Z).

Before going into the proof, let us illustrate how this fixed point map respects the gen-

eralized double point relation by the following example. We would like to thank Professor

P. Brosnan for inspiration.

Example : Suppose C is the ground field and G is a cyclic group of order 3. Let X(3) be

the fine moduli space for generalized elliptic curves with Γ(3)-structure and E → X(3) be its

corresponding universal family (see [DR]). By the Γ(3)-structure, there are two sections s,

s′ : X(3)→ E such that, for each closed point µ ∈ X(3), s(µ) and s′(µ) is a set of generators

of the 3-torsion Eµ[3]. As in section 1.2 in [DR], the universal family can be given explicitly

by

E = {ν(x3 + y3 + z3) = 3µxyz} ⊆ Proj C[x, y, z]× Proj C[µ, ν]

projecting down to

X(3) = Proj C[µ, ν] = P1.
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Notice that the fiber over ∞ :

E∞ = {0 = 3xyz} ⊆ Proj C[x, y, z]

is a Néron 3-gon. Denote {x = 0}, {y = 0}, {z = 0} by A, B, C respectively and A ∩ B,

A ∩ C, B ∩ C by P , Q, R respectively. Then,

E∞ − {P,Q,R} ∼= Z/3Z×Gm

and, without loss of generality, the element s(∞) ∈ E∞ corresponds to an element (0, ξ3) ∈

Z/3Z × Gm, where ξ3 is a primitive cubic root of unity. In other words, if we define a

G-action on E by translation by s, then

(1) φ : E → X(3) ∼= P1 is a projective morphism in G-Sm (trivial G-action on

X(3)).

(2) The fiber E0 is an elliptic curve with free G-action.

(3) E∞ = A ∪B ∪ C and A, B, C are all G-invariant.

(4) The G-actions on A ∼= B ∼= C ∼= P1 are non-trivial and their fixed point

loci are AG = {P,Q}, BG = {P,R} and CG = {Q,R}.
Now, consider the GDPR(3, 1) setup given by πC : E → SpecC with G-invariant divisors

E0, A, B, C on E such that E0 ∼ A+B+C and E0 +A+B+C is a reduced strict normal

crossing divisor. Then, as elements in UG(SpecC), we have

[A] + [B] + [C]− [P1]− [P2]− [P3] = [E0]

where P1 = P(O⊕O(A))→ P , P2 = P(O⊕O(A+B))→ Q and P3 = P(O⊕O(A+B))→

R. But since

O(A)|P ∼= NA↪→E |P ∼= T B|P ,

O(A+B)|Q ∼= O(A)|Q ∼= NA↪→E |Q ∼= T C|Q,

O(A+B)|R ∼= O(B)|R ∼= NB↪→E |R ∼= T C|R,

we have P1
∼= P2

∼= P3
∼= A ∼= B ∼= C. Hence, [E0] = 0 in UG(SpecC). In this case, the

fixed point map will take both sides to zero because the G-action on E0 is free.
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Furthermore, if we consider P as an irreducible component of EG, sending [Y → E] to

[Y G|P → P ] will define a map from UG(E) to ω(P ). So, if we consider the GDPR(3, 1)

setup given by IE : E → E with the same set of divisors, we will have

[A ↪→ E] + [B ↪→ E] + [C ↪→ E]− [P1 → E]− [P2 → E]− [P3 → E] = [E0 ↪→ E],

as elements in UG(E). In this case, the fixed point map (restricted over P ) will send the

right hand side to zero and the left hand side to

[IP ] + [IP ] + 0− [ 0 ∪∞ → P ]− 0− 0,

which is also zero.

Proof of Theorem 7.2. By Proposition 7.1, Z is smooth and sending [Y → X] to [Y G ×
XG

Z → Z] is well-defined at the level of MG(X)+ → M(Z)+. If XG is the empty set, then

⊕Z ω(Z) = 0 and there is nothing to prove. So, we can assume XG is non-empty. The

strategy of this proof is very similar to that of the Proposition 3.9.

First of all, it is clearly enough to show the well-definedness of F with respect to one

fixed component Z, i.e. FZ [Y → X] = [Y G ×
XG

Z → Z]. Consider a generalized double

point relation setup given by φ : Y → X with A1 + · · · + An ∼ B1 + · · · + Bm on Y . Let

G : R →MG(X)+ be the corresponding map. What we need to show is

FZ ◦ G(GXn,m) = FZ ◦ G(GYm,n)

as elements in ω(Z).

For a general term Xi · · ·U
p
k · · · in R,

FZ ◦ G(Xi · · ·U
p
k · · · ) = FZ [Ai ×Y · · · ×Y P

p
k ×Y · · · → Y → X]

= [(Ai ×Y · · · ×Y P
p
k ×Y · · · )

G ×
XG

Z → Y G ×
XG

Z → Z].

If Y G ×
XG

Z is empty, then FZ ◦ G(GXn,m) = FZ ◦ G(GYm,n) = 0. So, we may assume

Y G ×
XG

Z is non-empty. Let {W} be the set of irreducible components of Y G ×
XG

Z

and πW : W → Z be the natural projective map. Let G′ : R → MG(Y )+ be the map

113



corresponding to the GDPR setup given by I : Y → Y with the same set of divisors on Y .

Then,

πW ∗ ◦ FW ◦ G′(Xi · · ·U
p
k · · · ) = πW ∗ ◦ FW [Ai ×Y · · · ×Y P

p
k ×Y · · · → Y ]

= πW ∗[(Ai ×Y · · · ×Y P
p
k ×Y · · · )

G ×
Y G

W → W ]

= [(Ai ×Y · · · ×Y P
p
k ×Y · · · )

G ×
Y G

W → W → Z].

Hence,

FZ ◦ G =
∑
W

πW ∗ ◦ FW ◦ G′.

That means it is enough to prove

FW ◦ G′(GXn,m) = FW ◦ G′(GYm,n)

as elements in ω(W ). In other words, we may assume φ = IX . In particular, X is equidi-

mensional. For simplicity, we will denote FZ by F .

Within this proof, we will call a G-linearized invertible sheaf L over X “good” if L|Z
has trivial G-action. Otherwise, we will call it “bad”. We will also call an invariant di-

visor D on X “good” (“bad”) if the corresponding G-linearized invertible sheaf OX(D) is

“good”(“bad”).

For a set of invariant divisors A1, . . . , An, B1, . . . , Bm on X such that A1 + · · · + An ∼

B1 + · · ·+ Bm, we define a ring homomorphism F ′ from R to End (ω(Z)) by the following

rules :

Xi 7→

 c(O(Ai)) if Ai is good

1 if Ai is bad
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U1
k 7→

 (p1
D)∗(p

1
D)
∗

if D
def
= A1 + · · ·+ Ak is good

2 if D is bad

where p1
D : P(O ⊕O(D))→ Z

U2
k 7→



(p2
k)∗(p

2
k)
∗

if D, Ak, D + Ak are all good

where D
def
= A1 + · · ·+ Ak−1

2(p1
D)∗(p

1
D)
∗

if D is good but Ak, D + Ak are bad

2 + (p1
Ak

)
∗
(p1
Ak

)
∗

if Ak is good but D, D + Ak are bad

2 + (p1
D+Ak

)
∗
(p1
D+Ak

)
∗

if D + Ak is good but Ak, D are bad

4 if D, Ak, D + Ak are all bad

where p2
k : P(O ⊕O(1))→ P(O(−Ak)⊕O(−D − Ak))→ Z

U3
k 7→



(p3
k)∗(p

3
k)
∗

if D, Ak, D + Ak are all good

where D
def
= A1 + · · ·+ Ak−1

1 + (p1
D)∗(p

1
D)
∗

if D is good but Ak, D + Ak are bad

1 + (p1
Ak

)
∗
(p1
Ak

)
∗

if Ak is good but D, D + Ak are bad

1 + (p1
D+Ak

)
∗
(p1
D+Ak

)
∗

if D + Ak is good but Ak, D are bad

3 if D, Ak, D + Ak are all bad

where p3
k : P(O ⊕O(−Ak)⊕O(−D − Ak))→ Z

if 1 ≤ i, k ≤ n. Otherwise, send it to zero. Define F ′(Yj), F ′(V
q
l ) similarly by replacing

“A” by “B”. As shown in the proof of Proposition 3.9, c(O(D)) and p∗p∗ commutes with

each other. Hence, F ′ is well-defined. Notice that since, in the U2
k , U3

k cases, we have

D + Ak ∼ (A1 + · · · + Ak), it is impossible to have only one of Ak, D, D + Ak being bad.

Thus, the definition covers all possibilities.

Claim 1 : F ′(GXn,m) = F ′(GYm,n) as elements in End (ω(Z)).
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By a similar symbolic cancelation as in the proof of Proposition 3.9, it is enough to show

the claim in the case when A+B ∼ C. In this case,

GX2,1 = X1 +X2 −X1X2U
1
1 + Y1X1X2(U2

2 − U
3
2 )

and

GY1,2 = Y1.

We will prove the claim case by case.

Case 1 : A, B, C are all good.

In this case,

F ′(GX2,1) = F ′(X1 +X2 −X1X2U
1
1 + Y1X1X2(U2

2 − U
3
2 ))

= c(O(A)) + c(O(B))− c(O(A))c(O(B))p1
A∗p

1
A
∗

+ c(O(C))c(O(A))c(O(B))( p2
2∗p

2
2
∗ − p3

2∗p
3
2
∗

)

where p1
A : P(O ⊕O(A))→ Z

p2
2 : P(O ⊕O(1))→ P(O(−B)⊕O(−C))→ Z

p3
2 : P(O ⊕O(−B)⊕O(−C))→ Z.

On the other hand,

F ′(GY1,2) = F ′(Y1)

= c(O(C)).

Thus, the difference F ′(GX2,1) − F ′(GY1,2) is exactly what we defined to be H(O(A),O(B))

in the proof of Proposition 3.9, which was proved to be zero.
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Case 2 : A is good but B, C are bad.

F ′(GX2,1) = c(O(A)) + 1− c(O(A))p1
A∗p

1
A
∗

+ c(O(A))( 2p1
A∗p

1
A
∗ − 1− p1

A∗p
1
A
∗

)

= 1

= F ′(GY1,2).

Case 3 : B is good but A, C are bad.

F ′(GX2,1) = 1 + c(O(B))− c(O(B))(2)

+ c(O(B))( 2 + p1
B∗p

1
B
∗ − 1− p1

B∗p
1
B
∗

)

= 1

= F ′(GY1,2).

Case 4 : C is good but A, B are bad.

F ′(GX2,1) = 1 + 1− (1)(2) + c(O(C))( 2 + p1
C∗p

1
C
∗ − 1− p1

C∗p
1
C
∗

)

= c(O(C))

= F ′(GY1,2).

Case 5 : A, B, C are all bad.

F ′(GX2,1) = 1 + 1− (1)(2) + (1)(4− 3)

= 1

= F ′(GY1,2).

That proves the claim. 4

The next step is to verify the correspondence between F and F ′. To be more precise, let

G : R → MG(X)+ be the map corresponding to a GDPR setup given by A1 + · · · + An ∼

B1 + · · · + Bm on X such that A1 + · · · + An + B1 + · · · + Bm is a reduced strict normal

crossing divisor and let F ′ : R → End (ω(Z)) be the map we just defined corresponding to
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this setup. Consider the fixed point map F as a map from MG(X)+ to ω(Z). The equation

we are going to prove is

F ◦ G(s) = F ′(s)[IZ ](11)

for any element s ∈ Z{Xi · · ·Yj · · ·U
p
k · · ·V

q
l · · · | power of any Xi, Yj ≤ 1}.

Suppose equation (11) is true. Then,

F ◦ G(GXn,m) = F ′(GXn,m)[IZ ]

= F ′(GYm,n)[IZ ]

(by claim 1)

= F ◦ G(GYm,n),

which is what we want. That means it is enough to verify equation (11). First of all, we

need to understand the meaning of an invariant divisor being “good”.

Claim 2 : Suppose D is a smooth invariant divisor on X. Then, D is good if and only if

D ∩ Z is a smooth divisor on Z. Also, D is bad if and only if D ∩ Z = Z.

First of all, observe that

D ∩ Z = D ×X Z = D ×X XG ×
XG

Z = DG ×
XG

Z,

which is always smooth. If D∩Z = ∅, then OZ(D) ∼= OZ . That means it is good and D∩Z

is the zero divisor.

Suppose D∩Z is non-empty. Take a closed point x ∈ D∩Z. Notice that since the action

on Z is trivial and Z is irreducible, the action OZ(D) is trivial if and only if the action

on OZ(D)|x is trivial. Moreover, OZ(D)|x ∼= OD(D)|x ∼= ND↪→X |x. Hence, the action on

ND↪→X |x is trivial if and only if D is good.

Suppose the action on ND↪→X |x is trivial and D ∩ Z is not a divisor on Z. That means

D ∩ Z = Z, i.e. Z ⊆ D. Thus, we have a natural injective map N∨D↪→X |x ↪→ N
∨
Z↪→X |x. It

contradicts with the fact that there is no non-zero vector inN∨Z↪→X |x fixed by G (Proposition

7.1).
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Suppose D ∩ Z is a divisor on Z. Then D and Z intersect transversely. That means

T X|x = T D|x + T Z|x and T D|x ∩ T Z|x = T (D ∩ Z)|x. Therefore, we have ND↪→X |x ↪→

T Z|x / T (D ∩ Z)|x and hence, the G-action on ND↪→X |x is trivial. 4

Suppose the smooth invariant divisor Ai is good. Then, we have

F ◦ G(Xi) = F [Ai → X]

= [AGi ×XG Z → Z]

= [Ai ∩ Z → Z]

= c(O(Ai))[IZ ]

(by claim 2 and (Sect) axiom in the theory ω)

= F ′(Xi)[IZ ].

On the other hand, if Ai is bad, then we have Ai ∩ Z = Z by claim 2. In this case,

F ◦ G(Xi) = [AGi ×XG Z → Z] = [Z → Z] = F ′(Xi)[IZ ].

Hence, equation (11) holds for Xi and Yj .

For U1
k , if D

def
= A1 + · · ·+ Ak is good, then P(OZ ⊕OZ(D)) has trivial action. Thus,

F ◦ G(U1
k ) = [P(O ⊕O(D))G ×

XG
Z → Z]

= [P(OZ ⊕OZ(D))→ Z]

= p1
D∗p

1
D
∗
[IZ ]

where p1
D : P(O ⊕O(D))→ Z

= F ′(U1
k )[IZ ].

If D is bad, then P(OZ ⊕OZ(D)) has non-trivial fiberwise action. That implies

P(OX ⊕OX(D))G|Z = P(OZ ⊕OZ(D))G = P(OZ(D))q P(OZ).

119



Thus,

F ◦ G(U1
k ) = [P(O ⊕O(D))G ×

XG
Z → Z]

= [P(OZ(D))q P(OZ)→ Z]

= 2[IZ ] = F ′(U1
k )[IZ ].

Hence, equation (11) holds for U1
k and V 1

l .

For U2
k , let D

def
= A1 + · · ·+Ak−1 as in the definition of F ′. There are five different cases

to consider.

Case 1 (Divisors D, Ak, D + Ak are all good) :

The action on the projective bundle P(OZ(−Ak)⊕OZ(−D − Ak)) will be trivial and so

is the projective bundle P(O ⊕O(1)) above it. Thus,

F ◦ G(U2
k ) = [P(O ⊕O(1))G ×

XG
Z → Z]

= [P(O ⊕O(1))→ P(OZ(−Ak)⊕OZ(−D − Ak))→ Z]

= p2
k∗p

2
k
∗
[IZ ]

(p2
k as in the definition of F ′)

= F ′(U2
k )[IZ ].

Case 2 (Divisor D is good but Ak, D + Ak are bad) :

In this case,

P(OZ(−Ak)⊕OZ(−D − Ak)) ∼= P(OZ(D)⊕OZ),

which has trivial action. Moreover, this isomorphism takes O(1) to O(1)⊗OZ(−D − Ak).

Hence, the tower

P(O ⊕O(1))→ P(OZ(−Ak)⊕OZ(−D − Ak))→ Z

is isomorphic to

P(O ⊕ (O(1)⊗OZ(−D − Ak)))→ P(OZ(D)⊕OZ)→ Z.
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Hence,

F ◦ G(U2
k ) = 2 [P(O(D)⊕O)→ Z]

= 2 p1
D∗p

1
D
∗
[IZ ]

= F ′(U2
k )[IZ ].

Case 3 (Divisor Ak is good but D, D + Ak are bad) :

Since D is bad, P(OZ(−Ak) ⊕ OZ(−D − Ak)) ∼= P(OZ(D) ⊕ OZ) has fixed point locus

P(OZ(−Ak))q P(OZ(−D − Ak)). Moreover, the tower

P(O ⊕O(1))→ P(OZ(−Ak))→ Z

is isomorphic to

P(O ⊕ (O(1)⊗OZ(−Ak)))→ P(OZ)→ Z,

which is simply P(O ⊕OZ(−Ak))→ Z and also, the tower

P(O ⊕O(1))→ P(OZ(−D − Ak))→ Z

is isomorphic to

P(O ⊕ (O(1)⊗OZ(−D − Ak)))→ P(OZ)→ Z.

Hence,

F ◦ G(U2
k ) = [P(O(Ak)⊕O)→ Z] + 2[IZ ]

= (p1
Ak∗

p1
Ak

∗
+ 2)[IZ ]

= F ′(U2
k )[IZ ].

Case 4 (Divisor D + Ak is good but D, Ak are bad) :

Similarly, the fixed point locus of P(OZ(−Ak) ⊕ OZ(−D − Ak)) is the disjoint union of

P(OZ(−Ak)) and P(OZ(−D − Ak)), and the corresponding towers are the same as in case
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3. Hence,

F ◦ G(U2
k ) = 2[IZ ] + [P(O(D + Ak)⊕O)→ Z]

= (2 + p1
D+Ak∗

p1
D+Ak

∗
)[IZ ]

= F ′(U2
k )[IZ ].

Case 5 (Divisors D, Ak, D + Ak are all bad) :

The fixed point locus of P(OZ(−Ak) ⊕ OZ(−D − Ak)) is again the disjoint union of

P(OZ(−Ak)) and P(OZ(−D − Ak)), and the corresponding towers are the same. Hence,

F ◦ G(U2
k ) = 2[IZ ] + 2[IZ ]

= F ′(U2
k )[IZ ].

That proves equation (11) holds for U2
k and similarly for V 2

l .

For U3
k , similarly, let D

def
= A1 + · · ·+ Ak−1. In case 1,

F ◦ G(U3
k ) = [P(O ⊕O(−Ak)⊕O(−D − Ak))→ Z] = p3

k∗p
3
k
∗
[IZ ] = F ′(U3

k )[IZ ].

In case 2,

F ◦ G(U3
k ) = [P(O)q P(O(−Ak)⊕O(−D − Ak))→ Z]

= [IZ ] + [P(O(D)⊕O)→ Z]

= (1 + p1
D∗p

1
D
∗
)[IZ ]

= F ′(U3
k )[IZ ].

In case 3,

F ◦ G(U3
k ) = [IZ ] + [P(O(Ak)⊕O)→ Z] = (1 + p1

Ak∗
p1
Ak

∗
)[IZ ] = F ′(U3

k )[IZ ].

In case 4,

F ◦ G(U3
k ) = [IZ ] + [P(O(D + Ak)⊕O)→ Z] = (1 + p1

D+Ak∗
p1
D+Ak

∗
)[IZ ] = F ′(U3

k )[IZ ].
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In case 5,

F ◦ G(U3
k ) = [P(O)q P(O(−Ak))q P(O(−D − Ak))→ Z] = 3[IZ ] = F ′(U3

k )[IZ ].

That proves equation (11) holds for U3
k and similarly for V 3

l .

Let s, t be two terms in

R def
= Z{Xi · · ·Yj · · ·U

p
k · · ·V

q
l · · · | power of any Xi, Yj ≤ 1}.

By definition, the domain of G(st) = the domain of G(s) ×X the domain of G(t). For sim-

plicity, we will focus on domains. By abuse of notation, we will still call it G. Observe

that

F [Y1 ×X Y2 → X] = [(Y1 ×X Y2)G ×
XG

Z → Z]

= [Y G1 ×XG Y G2 ×XG Z → Z]

= [(Y G1 ×XG Z)×Z (Y G2 ×XG Z)→ Z].

Hence, F(Y1 ×X Y2) = F(Y1)×Z F(Y2), by abuse of notation again. Suppose s
def
= Xi, Yj ,

U
p
k or V

q
l and t is a term in R such that st is also in R. By induction, we assume equation

(11) holds for s and t. In that case,

F ◦ G(st) = F [G(st)→ X]

= F [G(s)×X G(t)→ X]

= [F(G(s)×X G(t))→ Z]

= [F ◦ G(s)×Z F ◦ G(t)→ Z].

On the other hand,

F ′(st)[IZ ] = F ′(s) ◦ F ′(t)[IZ ] = F ′(s)[F ◦ G(t)→ Z]
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by induction assumption. Denote F ◦G(t) by Y and Y → Z by f . By the above calculation,

[F ◦ G(s)→ Z] = m1[IZ ] +m2[P→ Z] +m3[D ∩ Z ↪→ Z]

for some non-negative integers m1,m2,m3, tower P and good, smooth, invariant divisor D

on X.

Claim 3 : The map F ◦ G(s)→ Z is transverse to f : Y → Z.

The claim is clearly true for [IZ ] and [P → Z]. So, we only need to consider the map

[D ∩ Z ↪→ Z] where D is a good, smooth, invariant divisor on X. Recall that

Y = F ◦ G(Xi · · ·U
p
k · · · ) = F(Ai)×Z · · · ×Z F(P

p
k )×Z · · · .

Since F(P
p
k ) is the sum of towers and F(Ai) = Z when Ai is bad, we may assume it only

involves good divisors, i.e.

F(Ai1)×Z · · · ×Z F(Bj1)×Z · · · = Ai1 ∩ · · · ∩Bj1 ∩ · · · ∩ Z.

Notice that since st is in R, the divisor D and the set of divisors {Ai1 , · · · , Bj1 , · · · } are

all distinct. For simplicity, we will only show the transversality involving good divisors D,

D′. More precisely, we will show if D, D′ are good, smooth, invariant divisors on X such

that D + D′ is a reduced strict normal crossing divisor, then D ∩ Z + D′ ∩ Z is a reduced

strict normal crossing divisor on Z.

Since X is equidimensional, D is equidimensional. Let W be an irreducible component of

Z ∩ D. Then, D ∈ G-Sm is equidimensional, D ∩ D′ is an invariant smooth divisor on D

and W is an irreducible component of the fixed point locus of D. Notice that

OW (D ∩D′) ∼= OX(D′)|W ∼= OZ(D′)|W .

Thus, D ∩ D′ is a good divisor on D with respect to W , for all W , because D′ is a good

divisor on X with respect to Z. By applying claim 2 with X, D, Z replaced by D, D ∩D′,

W respectively, D ∩D′ ∩W is a smooth divisor on W . So, D ∩D′ ∩ Z is a smooth divisor

on D ∩ Z. Hence, D ∩ Z and D′ ∩ Z intersect transversely inside Z. 4
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Let {Yi} be the irreducible components of Y . Notice that f is projective. So, the push-

forward f∗ : ω(Y )→ ω(Z) is well-defined. Since Y , Z are both smooth and quasi-projective,

the map f is a local complete intersection morphism (See section 5.1.1 in [LeMo]). In

addition, the algebraic cobordism theories ω and Ω are canonically isomorphic (Theorem 1

in [LeP]) and, for any local complete intersection morphism g : X → X ′ with equidimensional

domain and codomain, the pull-back g∗ : Ω(X ′)→ Ω(X) is well-defined (see definition 6.5.10

in [LeMo]). Hence, f∗ : ω(Z)→ ⊕i ω(Yi) ∼= ω(Y ) is also well-defined.

Suppose we have shown that

F ′(s)[f : Y → Z] = f∗f∗F ′(s)[IZ ].(12)

Then, we have

F ′(st)[IZ ] = F ′(s)[f : Y → Z]

= f∗f∗F ′(s)[IZ ]

= f∗f∗[F ◦ G(s)→ Z]

(by induction assumption)

= [(F ◦ G(s))×Z (F ◦ G(t))→ Z]

(by claim 3 and Theorem 6.5.12 in [LeMo])

= F ◦ G(st).

That means equation (11) holds for st ∈ R. Hence, it remains to show equation (12).

By the previous calculation,

F ′(s) = m1 +m2 p∗p
∗ +m3 c(OZ(D))

for some non-negative integers m1,m2,m3, smooth, projective map p : P → Z and good,

smooth, invariant divisor D on X. The equation obviously holds for the identity operator.
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For c(OZ(D)),

c(OZ(D))[Y → Z] = [(D ∩ Z)×Z Y → Z]

(by claim 3 and (Sect) axiom in ω)

= f∗f∗[D ∩ Z → Z]

(by claim 3 and the Theorem 6.5.12 in [LeMo])

= f∗f∗c(OZ(D)) [IZ ].

For p∗p∗,

p∗p∗[Y → Z] = [P×Z Y → Z]

= f∗f∗[P→ Z]

(by Theorem 6.5.12 in [LeMo])

= f∗f∗p∗p∗[IZ ].

That proves equation (12) and hence finishes the proof of the Theorem. �

Corollary 7.3. If X is an object in G-Sm, then sending [Y → X] to [Y G → XG] defines

an abelian group homomorphism

F : UG(X)→ ω(XG).

Proof. Let {Z} be the set of irreducible components of the fixed point locus XG. By Theo-

rem 7.2, sending [Y → X] to
∑
Z [Y G×

XG
Z → Z] defines an abelian group homomorphism

UG(X)→ ⊕Z ω(Z). Then, the map F : UG(X)→ ω(XG) can be considered as the compo-

sition

UG(X)→ ⊕Z ω(Z)→ ⊕Z ω(XG)→ ω(XG)

defined by sending
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[Y → X] 7→
∑
Z

[Y G ×
XG

Z → Z]

7→
∑
Z

[Y G ×
XG

Z → Z ↪→ XG]

7→
∑
Z

[Y G ×
XG

Z → Z ↪→ XG] = [Y G → XG].

�

Corollary 7.4. Suppose X is an object in G-Sm with trivial G-action. Then, the abelian

group ω(X) ∼= U{1}(X) is a direct summand of UG(X) via the homomorphism

Φγ : U{1}(X)→ UG(X)

induced by the group homomorphism γ : G → {1}. In particular, the Lazard ring L is

naturally a subring of the equivariant algebraic cobordism ring UG(Spec k).

Proof. The fixed point map

F : UG(X)→ ω(XG) = ω(X) ∼= U{1}(X)

is a left inverse of the homomorphism U{1}(X)→ UG(X). Also,

Φγ : L ∼= U{1}(Spec k)→ UG(Spec k)

is a ring homomorphism. �
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