THESIS

THE USE OF POLARIZED LIGHT IN STRESS ANALYSIS

Louis A. Morrison
1924

新；

$$
\begin{aligned}
& \text { Vogan }
\end{aligned}
$$

MHS USE OP POLARIFED LIGHT IN STRECS ANALY:IS.

1 Report Submitted to the Faoulty of the Miohigan Agrioultural College

By
Louis A. Morrison

Candidate for the Degree
 01
 Beohelor of solence June 16, 1924.

THESIS

COO.1

Aoicnowledgnent is hereby made for the help of mifather. Profossor Fdwin yorrison 01 the Physics Departmont, without whose suggestions this theses could not have been witton.
Table of Contonts.
Part I.
Introduotion PagePart II.
Theory of Polarized Light 4
Part III.
The Lotion of Polarised IIght on a Stressed Transparent
Model 12
Part IV.
Desoription of Apparatus uacd in the Coirer Photo-Elastic Method. 20
Part F_{o}
Testa on the Stress Distribution in Cement Bpiquettes by Photomelastic Methods; conducted by Prof Coker 23
Part VI.
Studies Condacted in the Prysios Laboratory at M. A. C. 28
Paxt VII.
Conelusions 31
B1 bll ography 82

Part I.
Introdnotion.
the purely moohanioal mothode by whioh experimental solutions ef etress problean are attacked are both diffioult and ofton queationabie in thoif results. On has to assuec at the atart that the etrese is proportional to the magnitude of the strain. this prineiple oan hold oniy within the olaitic linite of the material and beroad the elastic limit these mothods fall catirely. purthormore stresses within the body oamet be meagured by mochanical dovices. Whatever the arragemant may be, it is not posibie to moasure the stress at a point is the pood is aubjeoted to atress varying from point to point.

In a majority of the problema mich arise in actual praotice the atresces change rapidiy from point to point and our information has beon obtained of thor from neing mochanioal oquipmont or from
 poselble to obtain emot solutions of a variety of ocmplicated problems; but oren the almplest of problems offor groat diffioulty 1n solutlone por example, the dotermination of the stresses in hooke, ohain linke, rivoted plates, the offeot of notohes and holes of various forma in tomsion and ocmpreasion membere, beane, pillary and shafts, the distribation of strese in built up atrootures anoh as plate girders, rivetod framen, masonry dams, etc.. etc.

The option mothod of dotoraining streas distribution and Intensity has proved to be very accoptable. During the last \&ow jeare this subjeot has beca attaoked with a very satisfactory
dogree of suocess by a number of investigators, among which are Profossore pilton and Coker and Major Low of magland and M. Mosnager of Pranoe.

Porhaps the most notable application of optioal streas analysis has bean made by Mosnager who, from a glase model, made a doterination of the stress distribution in a bridge of reino fores concrete to be placed ofor the fiver Thene at Balme, Prance.

The comeral ficetric Company has done oonsiderable rescaroh work along this inne, in dotogaining the strose distributions in various types of stean turbine bepket dovetalns and tonons with difforent types of load.
the Barean of Aoronantios of the Havy Dopertmont has recently Eade atudy of a celluloid model 01 the alrahip "8monandoah" by mand of photomiantic methods. the work was lone in the laboratories of tho Massachusetts Inetitute of Fechnology. the Hasy Dopertmont will give no dofinite atatement of the rosulte of the teste, but ther have expresses themselves ae being well pleased with the data obtalnod. sher state that the experimonte ofll be ot ndistinot value and of material aid in the dosign of airahipe to provent a ropetition of the $2 R-2$ ' and 'Rom' dieasteran.

Prof Hecrans who condncted the tests atates ${ }^{n}$ By this photoo elastio method we can 100 k into the vast and intricate not work of the dipigible and ace amotly what is going on when it ia laboringe W0 can see how she is cariying and distributing the load. Wh have made an analysis of the 'ghomandoah', akowing axaothy how the strecsee are taken ap by the members of the frame and the wires. phon we

вaph2a Lab1 tco 20 noItivitqqs

siosasact gitazab Innot enob asc vas

- 3 -
hear of mew forees whioh the ship mant meet in its rontures overhoad we can tif thei out on the model here at reohnology." the model comaists of several thousand picees of colluloid manined cunotiy to soalo and iltted together in a miniature daplieate of the air ahip.

Part II.
The Theory of Polarised Light.

In oxder to understand the photomalastio mothod some komiedse mat be had 04 light maves and 02 plano polarised ilght. It is 02 interent to note that the phanomenom of polarisation hae afforded conoluaive proof that light maves are transvorse meves, - that is the othor partiolea whioh tranmalt light vibrate at right angloa to the direotion in whioh the diaturbance is being propagated.

Light is sefreoted in a dofinate wos whon it pases from air into glase or othor tremspartint substancos. thare are certaln eryatals, however, whioh bebave in alfforont mey toward ilght. Bartholinus in 1669 firet noticed thit as doubling of an objeot seon theorgh a parailel siced orystal of lecland opar or aciodte. Fo found that whan a bean of light atrifoes the aurfene of anok a calolte plate perponiloularly, one portion of the light goes atralght thround in the amomar it would in a plate of glace, rilio anothor portion is beat alichtiy on oatoring the firat auricee. goes through the plate in thit oblique diretion and then bende beok into a direotion pareliol mith the oxicimal ane as 1t leaves the seocnd eurface. thia erystal mich liviced the 11ght falling upen it into two parts, ceoh part boing roizated cocordity to a difforant lam is called a moubly refraoting orystal. The first of the two parts desoribed is called the ordinary ray. beomen it follow the ordinary lawe of refraotion, and the sccond part ia oalled the oxtreordinasy revo
\triangle natural caystal of ealcite is in the form of a Fhombohodron
two oppesite solld angles of which are boanded by three obtuse anglea. the optical aris of this exyatel is parellel to a ine dramin through ano of these selld angles oquald inolized to all three faces.

$$
\text { Fig. } 1
$$

In Pheure 1, a b repreacits the optical axisi 0 the

man a plate is out out of a calelite oryatal se that ise facee are perppolloular to the option ads, shan a ray 02 2Acht
 pasees through the plate in a direotion parallol to the optioal axia. whioh is the esfis qboat which the exyatal is aymotrical.

1 eryatel called toormalime acte in a aimiar manner to calcite bat In adilition it mas the proporty of absorting the ordinary ray completely within a vary short dietanoe, while it is fairly traneo parent to the extreordinasy ray.. If two platen of tourmalino are placel upen ach other, only the extraordlang rav will got throagh the firat plate. shia will go an throngit the scoond plate if the optical azes of the twe piaten are parallel. If the seoond plate is
turned so that the ares are not parallel when the extraordinary Fey enters the scoond plate it is divided into two parts, of which the ordinary part $1:$ absorbed and the extraordinary gets through. This part that gets through becomes gradually fainter as the turning continues, and disappears entirely when the plate has bean turned through 90° from the fleet position. On passing the 90° position the light reappears, and regal in fill brightness at 180°.

A meohenicel analogy will explain the phonomen shown by the crossed tourmaline crystals. Imagine a long flexible yabber tube $4 D_{0}$ Figure 2, with ane cad fastened to the mall and the other and held in the hand. By moving the and of the tube hold in the hand, A. to and fro it ia posable to once transverse mere e to travel

Fig. 2
dow the loagth of the tabe. if a blook of wood with a slot out In it is plaod over the tube, it is orident that the motion of the tube will not be interfered with $s 0$ long as the slot is parallel to the direotion of motion. If the tube is vibrated at fight angios to the slot the vibrating motion will not be able to pase the blook $0 f$ wood. Imagine that the and 01 the tube wion is held in the hand is cansed to vibrate in a nimber of different direotions. If the alot is in a vortical position, of all of these vibratory motions imparted to the tube only those whioh are in a rertical difeotion will be tranmaitted or pased through the blook. if a scoond slottod blook is pleced over the tribe, those fibraticas Whioh pass the first slot will pass the second providing the scoond slot is parallel to the firet. If the accond alot is placed at sight angles to the firet, no vibration will pacs.

This leads as to assume that ordinary light consists of a traneverse weve motion, the vibration talding place in man direotions. Then swoh a boan passes through a toarmalino osystal, only Fibrations In a cortaln direotion are allowed to paes, so that the tramaitited toan diffors frem oxdinary ilght in that the vibratosy motionc of the other particles are all in the same plane. this boing the oase, It is ofidont that this bern of light oan peas a scoond tourmailine eryatal ouly man it is parallel to the firat.

The bean which pacses the firet tormaline plate is oald to be "plane polarised" and the plate is called a "polarlsern. the enend plate eote as a doteotor of the polarized condition and is oalled an "analysorn.

In ordor to teo caloito ao polarisar or anadreor it is

 prica mes covisel for this parpese and maces net of the prinoipal of total roficetien. Rurgan showed that the double refreotion is acecunted for by the fact that the ordimary and extraordinary rays trevel in the eryetal aith difformt apocis. zhat is, oaloite hat two diffarmat indices of rofrection for the two beane. A rhomb of calolto may be ont at chewh in Piguro 8, and the two halvos are cemonted togethor again with Canela balen, alter the two ollque surfiece have beak pellahol. the refreotive inder of the halsem is intormediate botmen that of caloite for the ordinary and axtreo

Fig. 3.

$$
-9-
$$

oxiluary rays. tho formor moats the belean film at an angle greater than the oxitical ange and in totall roileoted to one side and mar Be absarba by son dark surface. FO_{c} therefore, bave plane polarised ben of polarised ligit marging from the prima whose Alreotion of vibration mat be onaged ly rotatiag the prita.

Hgare 4 givot un 140 of the ation 08 the Hicol prime It show t rat of light with its rendon vibrations before utering the prim and conging on tine further side as 2π of plane polarized 11gint.

Fig. 4.

If a plano polarisel bean of light is passed through olste Of quarts or mion of the proper thioknes it may be ohanged to a oiroular polarised bean. rata it, the othar particlan move in a olroular oxbit.

A thin plate of mioa or quarts is ont with its optian ads paralle $t 0$ the plate. 4 o becm of polerised 11 ght panges through thi plate. ortimay and extraordimayy ravis are again prodnod, areonting Fibration in direotians 90° to ean other. Figure 6

$$
\text { Fig. } 5
$$

shows beam of polarised light which atrikes the piate perpendioviar to the marface of the plate and to the optioal axia. A. Bo In this ase no bonding of oithor rif coourt, but one is retarded more than the othor, the difforemce in retardation dopending on the thiocmese of the plate. we have, thorefore, an enargent ray of lifint made up of two ocmpoments, the extrmordinary ray pibtato ing in the horizontal plaze and the ordinary in the rertioal plane. If the plate is out to evoh a thiokness that one of these rays is retarded a quarter of a wave longth with reapeat to the other, an ethor particle, eq at P_{0} is made to vibrate up and down and aide wers at tho tamp time. If on train is a quartar of a period behind the other, the resultant vibsetion is a dreular one and cireularif polarized 11 ght is aald to be produecd.

In ordor to produce a coparation into two perponiloularis polapisel refr, es deecribed above, the direotion of vibyation ot the inoldent light mant mare swoh an anglo with the optic axis 1 B that nolthor of the ocmpononts O or D vanish. These ocmponent

$$
\text { - } 12
$$

Tibrations mat be equal to produse Aroularly polarised light. Tharefore the direction 02 vibration muat make an angle of 45* with the optical ade in oxier to mate the component vibrations equal. Tw plate may shan be placed forr difforent positiona 80• apart to produce oiroularly polarised ilght. If the and 1 B chows is Pigare 8 mas ohanged to the vertioal, the lsoldont res would atill make angle 0246° with thit axil, but the rolative rotardation 02 the horisontal and vertieal compenent emargent rafs woeld be reversed in ifge the rearlt is that the direetion of Tibsetion of the oiroalasiy polarised bem taban place in the opposite sonse. Thozefore in order to reverse the direotion 08 ciroular vibration in o oiseriardy polarised beem it is morely neoossary to rotate the quarters mare plate through 90° in its plane. If polarised ilght is passed through two guartor mave plates with axter at 90° with oach othor the exfeot of one plate is montrallzed by the other, and the rey raming maitored.

Mica and quarts are ocmmond used $\$ 0$ man quartor mare platos. rica being nemally need in large plates.

- 28 -

Part III.
ten Aetion 02 Polarized Ingt on

- streaced grangparent modal.
soforv conaldaring the action of a stressed momber on a ray 08 ofsealaris polarisch 2icht it is meccaany to znow samothing of

 sight angles, and 12 thois alrootione and magitedes are kown over the whole aperiman the atate of etreae it cumplotely doternined. suec ypinefpel atreeses, called the p and q gaten almars
 whare thore are ao applich stresaec. Flgume 6 abow the peinoipal

Fig. 6
 11 freo beadiarien there oan bo mormal stress 80 that olthor p 02 a must penisho

Thase prinoipal tresses almays coinoide with the direotion of sext shear, so that the shoar at any point mas a maximin yalue in planes at 45° to the prinolpel tyese dixpotions. phis shomp Intenalty Fariea acording to the sine lav frow maximu 02 2/2 ($p-q$) at 48° to nue in the prineipal stress dreotions.

Thena fats hold of great ald in entmating strues distribatione

Fos thre dimonalona strest the gan lam hold true, with en extonsion to three ainocisione, manirio
(1) wheineipal stresa direotions are represuted by bhree gyeteme of linea at 90° to asoh otherp.
(\&) At as bounting unpeoe, whero no applied forees arist on of these alruetion is normal and the othor two coinaldont with that surfaue.
(8) Am plan coinolding with two of thoce otrens direction is a plane of suro mheare
(s) All planes at 45° to these planes are planes of ancimy shoar.
(8) the ohear varies from maximu in these 45° planes to gero in the prinolpal tress planes acconing So the ine lav.

Thon plane strused sperimun of ouluioid is piaocd in a ben of oimmiarif polerised light, an eotion ooours sirilar so that cocaring in the quartor mare plate. mat is. the wave of
ifght math thought 01 as boing soparated in two polarised oompononts with vibrations at right angles, and in this oase with thoir digeotions of vibrations coinoiding the the prinoipal stresces mentioned above. If the principal streasea ase unequal ene of the vibratione is retarded with reapect to the othor and this retardation is proportional to the prinoipel atrose difforenoeat the point considered. This in the law whioh conncots the light effeot with stress. Mathomaticelly it may be expressed as sollowe:-

$$
\begin{align*}
& \text { Relative retardation }=(p-q) t \tag{1}\\
& \text { where } p=\text { one prineipal streas }
\end{align*}
$$

Fig. 7
q = the other prinoipal etress
t - the thiokness of the spooimen

- - the optical constant for the material used.

Figure 7 shows bean of oiroularly polarized light passing through a stressed speoimen. thon the light morges the polarised ocmpopente at right anglea are retarded different amounts with reapeot to one another sooording to the law stated above, and thorefore the ampgont vibration is plane oiroularly or ollipticaily polarised dopending on the anomit of the relative retardam ticas of the ecmponents.

Pigare a a 8 wes the various changes this Fibration goes through for evary eighth wave length relative retardation. por

whole wave length retariations the light vibrates just as the inoident; for odd hale wave lengthe, $1 / 2,8 / 2,8 / 2$ eto. the Vibration is oiroular but in the opposite direotion to the imoidont. for odd quarter wavo longths the vibrations are plane polarised, and for odd elghth wave length elliptioally polarised. The reason for using oiroulariy polarised light on the stressed sample is that no matter what the principal atrese direotions are, the plane polar
isel ocmponents paraliol to these diroctions, into whioh it is soparated, must always be of equal amplitude. This is trae because linear eomponents $0 f$ a olroular motion at pight angles to each other are elways of equal smplitude. Therefore it makes no difforonce at what angle the apeoimen be turned in a plane perpendicular to the light direotion, or what direotion the prinoipel etresses p and q thice, the vibrations of the light emerging from the apooimen are almay of the aame oharacter and therefore like the forms shown in Figase 0. the angle of the amorging plane and olliptioally polarised light, however, does dopend on the stress drections, and changes as the asmple is rotated in its plane. On referring to plgure 7 the two ellipses shown will turn as the ample is turned.

After trancialsaion through the anmple as explaince above the ilght is $0 f$ the ohareoter show in Pigure 7. the direotion of the ocmponent pibrations dopending en the prinoipal atreas direotions, but the rolative retardations dopending only on the difforonec in mantredo of the prinolpel stresses for a spoimen of civen thickmas. cooording to the law stated in Equation (1). If this light 1s tranmitted through another quarter wave plate and anothor IIe01
 whore relative rotardations of integral mave longthe (see pigure () ase produca the light is al out offz for odd half wave longths It is all tranmitted, and the amplitude of vibration varies aceording to the ain law for intermediate points. This lavis expressed mathematically as rollowio

$$
\begin{aligned}
A & =A_{2} \sin \pi \lambda \\
\text { where } L & =\text { amplitude }
\end{aligned}
$$

$\Lambda_{\text {II }}=$ meximom amplitude
λ = relative retardstion of vibration conponents in wave langths.

The intonalty of ilght varies as the aquare of the amplitude and we have:-

$$
\begin{aligned}
I & =I_{m} \sin ^{n} \pi \lambda \\
\text { where } I & =\text { intensity op illumination } \\
I_{m} & =\text { maximum intensity }
\end{aligned}
$$

All the light transmitted through this second aiool prism is of course polarized in one plane.
the above discussion is trae only for a single wave longth, or monoohromatic light only. If red light were used, the ilght projooted on soreon pould consist of a system of blacik and red bands. Socond and higher ordern of red would appear whon the diffarene betrean the principal stressos p and q was great onough. There p and q were equal or where the stresa wes zero the red would all be out out and black would result. Blacx would also result whore p and q differed by an nount whioh produced an oven wave length relative retardation. por odd hale wave length relative retardatione the maximman would appear.

Similar recults are produced by an single wave lougth or color, but difforent oolort are retarded differant amonnta by a given atress. the result is that the syatem of bands of one oolor do not exactiy overlap those of another color. they are

- 18 -
ondrted with respeot to aach othor and for soveral colore the shifting reanlta in ropeatel meries of colors in place of what mes aingit brigit and dark band in the case of aingle o0lor. this 1: IIInotrated in Pigure 9 . Whioh ahow a series of colors obtained from actual observation, at the Gemeral Bleotric Laboratories, on e anople of collaloid 0.18 isohos thick and $8 / 0$ inchoe wide. the

stress mae carriod up to 5000 pounde por square inoh. pour different celore are ohom with thoir ohnrestorietic variations of intensitice experimpesed, which sives a corios apporimating the cotinal. Thay indicate the mor the color meries is prodnced. 18 p and q diffor mert and more this corien of color may pace through more than ono oxlor. As $(p-q)$ ubormasen (Equation l) the colon passen through drinite series. For celluloid this sequene is about ac followit begiming at ($p=q$) black, straw, orance, red, blue groen, and acain atraing orange, red, blue greon, ote. The color effect cives a measure $01(p-q)$ only, and not the velues OR p or .

In order to have a complete determination of the etress it is nocesetay to have ($p+q$) also. this is made by means of an oxtone acmoter measprement. only color obsorvations are necessery, howover, where p or q vanish. she prinoipal stresses p and q are alway normal and tangent to free adges and also there can be no normal stress at a free edge. Thorefore, p or q must vaniah and the remaining atress is tangent to the edge. at all free boundaries, thorefore, in a plane strosses spooimen the order of color is a direot measurement of the strese magnitude. sinoe edgen are moually regions of maxima stress this is a faot of importance. POr a almple seotankular tension membber or for parts of a beam of miform orosa scotion, there oxists only one set of prinoipal stresses and hore also the coler gives the etress direotly. the nentral acis of the been mey how as dark band. for many cases, however dapk areas will roprosont areas whore p and q have finito values bat are equal. The stress magitudes corresponding to particular c0l010 ane the read dixectly from the oolor. A sample of the same material as the spoimon under investigation is taicen and the various colors are colibrated in torme of atress. Anothor mothod is so baianoe ont the color until a dark fiold is produced, using a pi cac of the came matorial, on whioh the intensity is measured by a opring balance.

Fart IV.
Dasoription of Apparatus used in the
Cozer Photo-Elastic sethod.

Figure 9 is a diagramatic represeatation of the optical apparatas nsed and anow the path of the light rasi. The apparatue dose crited in in nee at the Gonoral Electric Company' a Researoh Laboratories.

Light from a source A passes through a oondonaing loas B and a water sereen 0 to reduce the heat ras. It is then pessed through a polapisar D. This unit consists of two $41 / 2$ lach comdonalye leases and two mall concave lonsea arranged as shom In Heare 10, In combination with a Hiool polarising prien of calelte. the lator is lese than onc inoh in diameter, but with the ombination of lonces gives a $4 / 2$ bean of polarised light.

The plane polarised ilght is then pessed through a quarter wave plate of mica J_{0} whioh ohanged it to olroulariy polarised lighte 2his is passed through the transparent specimen under investigation. This apeoimen is in the plane mariced P. The light then passes through lenses B. I and G and through the quartor wave plate I whioh is similar to J excopt that its axie is at 90° to that 02 J and therefore comnteracts the effeot of J. whe reanlting light Is analysed by the polariser a with its plane of polarisation 90° to that of the polariser D. The light is finally projected upon the sercen I so that pointe in olther the plane P or Q in which ever the apeoimen is plaoed, are brought to a fooue on this sorcen. The oolore produced depend direothy on the atreas distribation in the apeoimen.

The modela are naually made of oelluloid on aocount of ita great ilexibility and toughnoss and the case with whioh it oan be drilled, turnel or machince. Thie material has a value of (. 355,000. There 2s no very pronornced elantic limit and the
atrese deformation ourve is very noarly itraight up to a load of 1800 poands per square inoh, which mey be taken as the olastio limit 02 the matorial.

Part V gives the results of one 01 a number of experimenta conducted by Prof. Coker by this method.

Part ${ }^{\circ}$
Tests on the Stress Distribution in
Cement Briquettes by Photo-slastic
Mothods.

The stress distribution in cement briquettes is of a very comb plex nature. The loade are applied very obliquely to the contour at four points and the shape of the briquette invites muoh compleadty. This is at onoe ofident from the ilnes of prinoipal stress in the British standard form in whioh the oontaot loads appliod by the gripe prodion a oomplicatod stress eystem which would be praotioally impose aible to uncavel exoept by experiment.

In experiments conducted in 1913 Prof. Coker found it impossible to meesuro the stress distribation complotely, but an attempt was made to find the etress difforence ($p-q$) cor0ss the miniman and principal seotion and theroby fix the relation botweon the maximum stress there and the mean applied load, since at the oontour q must be soro at ovary place nntouohed by the gripa. sam earlier measurements on the British standard briquette indicate that this maimum atress is about 1.75 timos the value of the moan average etress coross the scetion, and in the standard American form of that date the corresponding value was fomd to be 1.70 , while in the continental form it appeared to rise to about 1.95 times the mean stress.

These measurementa have leen ropeated and amplified reoontly. so that it is now possible to give a better idea of the actual atress systems at the central sections of each form, and Figure 11
\bullet
chow the distribation obtained at the rinimue sentions of each bxiquot te.

40 will to obeorved the distinotive seature of the diatilo bation in each oace is an eatremoly variable tonsion p coroce

Fig. I/
 \& at rifft angien 05 comaldoreble manitude. In the beitian forn, sor armaplo, with a load givinc a man averace streec 02 800 peunde per equare loch the higheat value of p at the cater conteur is 870 pousis per equare lmon, or 2.74 times the value Of the men etrees, rital ainke to 405 pounis per equare inoh at the conter, or ellgitiy more thas 00 perocat 02 the mean avorace value. In adifticn to this strese thore is a oroscostrest which sises repidiy rece a sero valme at the contour to a valne of about 288 pornde per equase inch for the eontrel olxmtonthe of the oresen acetlon, se that the maner of loaling and the form 01 the section
calls into plev acosentsess of 47 por oont of the mean arareco atsees due to pall.
pharefere, a mabor of this form is cortainly not in pare tomalon and the oolor bande whioh are obsorved on the model will indleate this quite ciearly.

It is limportant to ahow that the atreas distribution in a ocmont briquette is similar to that in a tranoparent model and recent axperimants ohow that the of of the prinoipal stresses $(p+i)$ at the malst are ajmost armotly the same as those fomd In a tranaparent model when the briquette has boen made for some 81me. This is what may wexpoted, for it is vory probeble that the etress in a cencent belquotte of omsiderable ago is of axeotis the asm reind as experiments an traneparant modols chow eiseo old ccmant has resy perfeot olantic properties. The feot that momed Fibrations are tranmittod vory readily through ocmont partition malls and floors ahow this, and in anothor direotion it ane beon proved that avoh ocmont possosses vory poricot thermemolastic peoperties. This inttor property is not, howorer, posceased, or
 so that so far an this ovilence oan be taken into soeount it points to the concinaion that briquottes teated in ecton days and in twonty oight dayi, as is provided for in standard apeoifieatione, will not be mader amootly the acme type of atrese as tranaparant modals show. they are in seot mont probabiy in a scmi-alastic comaltion in whion the stress distribution is less variable than

 raving amper of the Driquotten thmaelvos. Int it does not appens
 orcuece athout the mocent of a molund corapping of undeto

 the cuntri part ir aldtion of a parallel part of the lues

Fig. 12
parailel leagth, the part in pure tenai on is at once defined by the sero 1soolinics as shown in Pigure

Gaving ostablishod this longth F by experimant, and this has already been done, it is a simplematter to make the length in pare temaion any quantity considered dosirable, and this noed only be a manl fraction of an inoh. Further experimont will be necessary to find in the ocmont briquette the atress distribution at the wals at various aces. It has been ostablishod by reoont measuramants that thare is uniforaity of latorel contraotion mener load in each type of briquette leacthoad in this mav, thoreing indiaatine the probabillty thet unflorm tomica oxiste at those contral orosescotions.

Shoula therd be mu furthor diffioultien it wocla sily be moceto eany to alter the meulde now in nee to obtain not cals uniformity In the comparison $o f$ roanlts, but also a fral teasion tot of ocmont whioh thore is sem reason to bolieve han nover yot beon attaimod mader existing ocoditions, owing to the variable tenaion th the waist, and the want of correapomdone of this variability in bsiquetter 05 different pattorme.

Part VI.

Studies Conduoted in the Prysios

Laboratory at M. A. O.

Oring to diffienities encountered in obtaining apparatue for wee In the Coker Photomsiantic method, wither, Prof. Morrison, has dovised anothor mothod. Instead of ovaluating the strese in torme 01 color, whioh is hard to estimate, this mothod will mako neo of the varying wave longthe 01 light in dotermining etrese intonsity.

The apparatus, Figure 15, consists of an edapted Forronbures Polarisoope. Ligit from a 100 entt lamp 1 pasees through a atandard raf filtor B whioh will give a bean of light $0 \&$

$$
\text { Fig. } 13
$$

wave lougth. This baan is polarised by means of a glase plate C and 1s pallcosed rortioally and passes through the quartor ware plate D. whore it is oiroularly polarised. After pasaing throagh the model I beling atudied, the beam is fooused into the IIcol analysing prita I m mans of the lons if of 16 ontio moters foosl leagth. 1 quarter weve plate is pleoed betweon the lens and analyser. 1 pioture of the effocte producod is taken be moans of a comara I.

The method 0 procedure will be as follow. 1 standardising begm of glase or oelluloid will be placed in olomp as chown in Figure 14. By placing woights on the lover aria known load may be comentrated at the ceater of the beam. the loaled boan will then be plaoed in the apparatus at point I and a ploture will be tacen of the strese dintribution, waing a ilght of μ, wave leagth.

The load on tho beam will thon to changed and another pioture tacene The standard ray filtor will then ve oindiged to one giving light of - wave longth μ_{2} and two piotures taken using the same laads as before. Therefore, by messuring the width of the stress ines produced and mowing the wave lengthe of tine 1 ight unod and the loeds ueed it will be possible to compate the suount of the strese at any point in terme of ware longths of light.

Io placing a model made of the same material as the the stand ard bean in the apparatus, and loading the model to prodeo an unknown atress distribution, and by taing pictures.using the standard ray Pllters it wil bo pussible to ovaluate the stressene

The two plotures show the etress in a meall piece of unamo nealed glase.

The apparatue ans just boon set up and furthor study will be mede.
0

Cogolusions.

Abstract

The photomelastic method has been used to show stress distribution and to measure the stresses themselves by the Americal Mave.

A proninent engineer in france has analyzed the stresses in a reinforoed concrete bridge which has been aotually constructed ofer the Rhone by this method.

A great industrial concern 11 loe the General Electric Company has nsed this method in designing steam turbine buokets.

Experiments conducted in the Fhysios Laboratory at M. A. C. have shown the possibility of using this metnod.

From the above statments it is to be seen that the photoelastic mothod of stress detemaination is being nsed more extensivoly and is deserving of furthor study.

Bibllograpias.
I.

Cn whe Seneral theory of Polarized Light
Preston: inecry of Ligint.
Woods Fhysical Octios.
11111men and M11188 Fleotrioity, Sound and Light.

Manns Adranoed Cptios.

Daffr 1 gextbook Of Fhysios.

Thtsons 1 iextboot of Hhysios.
Edsers Light for Students.
Franiclin and LeoNutts Light and sound.
II.

On the Applioation of Polarised Light to stress Anolysis.
Meanagers Determination of the Stress Distribution in a Reinforced Conorete Bridge over the Rhone at Balme.

Prof. R. G. Cokers Polarized Light and ita Applioations to Engineoringe Fridan Evening Disoourse. Rojal Institate, 1916. The Optical Dotermination of Stress. Fhilosophical Magasine, oot. 1910.

Fhotomiastioity. Pnginearing, Jan. 6, 1911.
The Measurement of Stresses in Materials and Stroctures. Canton Leotures, ROyal Sooiety of Arts, 2915.

Presidental Adreas to section a (Fagincering) of the Britiah Assooiation at Sydneg. B. A. Report, 1914.

Experimental Determination of the Distribution of Streas and Strain in Sollds. B. A. Roport, 1914.

- 53 -

Photomiantiolty for Englneers. Six leotures delivered at the General Bleotric Company at Sohencotady. Hew Yoric. Goneral Rlootrio Compang'e Magasine. $1920 \sim$ 2n.

ROOM USE ONLY

MICHIGAN STATE UNIVERSITY LIBRARIES

