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SYMFULS

Kinetic Energg. (ft-Its),
2
,

L
“
.

o o 0

Input or Jutyut inergy. {ft—lbs)(
I
;

T . . . Torque. (ft~lbs)

F , . . Force. (lbs)

I . . . Moment of Inertia. (slugoft2)

A . . . mass. (slugs)

CL) . . . Instantaneous Angular VelocitV. (rad/sec)

a . . . Instantaneous Angular Acceleration. (rad/sec?)

V . . . Instantaneous Linear Velocity. (ft/sec)

A . . . Instantaneous Linear Acceleration. (ft/secz)

9, Q . . Angular Displacement. (radians)

s . . . Linear D'sylacement.' (feet)

t . . . Time. (seconds)

G . . . Center of Gravity.

SIGN CONVENTION

Torques, angular diSplacements, angular velocities and angular

accelerations are considered positive in a counterclockwise direction.

Forces, linear displacements, linear velocities and linear ac-

celerations are considered positive if they act in the direction of the

positive X or Y axis.



INTRJJJCTlJN

The study of dynamic characteristics of mechanisms and machines

has become more important with the advent of increased speeds in high-

speed machinery. The designer of these mechanisms requires a method for

accurately analyzing their dynamic characteristics. The purpose of this

thesis is to develop and apply energy methods to the analysis of the

dynamic characteristics of mechanisms.

Two general types of problems which are involved in the design of

a mechanism are:

A. Detennination of tne dynamic forces resulting in a mechanism

which has specified velocities and accelerations.

B. Determination of the velocities and accelerations resulting

from the application of Known forces.

The problem of determining the forces required to produce Specified

dynamic characteristics in a mechanism can be solved using vector

polygon methods.1 This method, however, does not provide a direct

approach to the determination of velocities and accelerations resulting

from the application of known forces. The dynamic characteristics

usually are analyzed for one motion cycle of the mechanism and the

vector polygon method becomes lengthy and tedious. The required forces

are determined for a sufficient number of successive phases of the

 

lHam, C. W. and E. J. Crane. Mechanics of Machinery, 3rd ed., McGrawa

Hill Book Company, Inc., New lorE,'I9h8,'§§8fipp.
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mechanism to yield a curve of the driving force versus the mechanism

phase. The mechanism phase is either designated by an angular dis—

placement of one of the linxs of the mechanism or by a linear displace-

ment of some point in toe mechanism which has translation, A driving

force, which will vary in the manner determined by the vector polygon

method, may be impractical to produce. n designer has at his disposal

certain devices which can be adapted to driving mechanisms. Springs,

air and hydraulic cylinders, and solenoids are three of these devices.

All of these devices have known force-displacement relations. Placing

these limitations on the available driving sources, it becomes necessary

to analyze the dynamic characteristics resulting from the application

of known forces. This indicates tnat a method for solving type B

problems would be desirable. Several attempts have been made toward

this goal.2’3 However, the methods developed were not general in their

application.

Studying a mechanism from an energy viewpoint limits the analysis

to scalar quantities and allows for easier analytical solutions. The

energy in a mechanism is a function of the velocities. Therefore, a

dynamic analysis of a mechanism would only require a velocity analysis

to determine certain characteristics whi h can be applied in the energy

method equations. The energy method solutions indicate two possible

'methods of representing and analyzing a mechanism. They are an equiva—

lent moment of inertia or an equivalent mass system. Either of these

 

2Quinn, B. B. Energy Method for Determining Dynamic Characteristics of

Mechanisms, igurnal of Applied Mechanics (ASME Trans.) Vol. 71, l9h9,

283-288 _. “'

3VanSickle, R. C. and T. P. Goodman. Spring Actuated Linkage Analysis

to Increase Speed, Product Engineering, Vol. 2h, No. 7, 1953, 152-157
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In the analysis that follows, strain energy, potential energy and

bearing friction will be neglected. Therefore, the only energy that

will be considered is the input, output and kinetic energy of the

mechanism.

Equivalent Moment of Inertia

The kinetic energy of a rigid body having plane motion is equal

to the kinetic energy due to rotation about its center of gravity

plus the kinetic energy due to translation of its center of gravity.

Referring to Figure l, the kinetic energy of each of the links is:

. .fl 2

. , . 2 , 2
11m 3 Kb. = 1/2 1g3w3 + 1/2 a, v (1)

3 £53

link h K81; 9- 1/2 lbw:

 .1

I2 and I are the moments of inertia of links 2 and b about their
h

respective centers of rotation. IE3 is the moment of inertia of link 3

about its center of gravity (G3). The subscript on the angular

velocity symbols (6&1) indicate the respective links. Vg3 represents

the instantaneous linear velocity of the center of gravity of link 3.

The total kinetic energy of a system of rigid bodies is equal to

the algebraic sum of the kinetic energy of each body in the system.

Therefore, the total kinetic energy (Kt) of the mechanism for the con-

figuration shown is:



   
FIGURE I. A FOUR-BAR MECHANISM.
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CURVE.
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at = K52 + K83 + nth

or,

“rid 1/21w2+l/2I w2+l’2“ V2 +l/216i)2 (2)a 1.1

t 2 2 w 3 / 333 ' u n

This instantaneous kinetic energy is attributed to a variable

mass which is rotating about the fixed point 02 at an instantaneous

angular velocity equal to that of link 2; link 2 is the input link of

he mechanism. It is apparent that the kinetic energy of this variable

mass will be:

2

Kbeq = 1/2 quw2 (3)

qu is the instantaneous moment of inertia of tne variable mass.

Equating the two kinetic energy expressions and solving for the equiva—

lent moment of inertia, the following expressions result:

‘I - v

Kbeq KEt

“m2
=Is+1 (w7) +1£> +m<i~>2i d)

qu g3

Equation h gives a relation between the moments of inertia of each

link in the mechanism and the equivalent moment of inertia, when the

kinetic energy of the mechanism is referred to link 2. A similar ex-

pression will result if a different reference is chosen.

A more general expression for the equivalent moment of inertia for

any mechanism, regardless of its complexity is:

K - n

2

I - (ms). (t )

eq wz :5 a

r K=2



where (6&2r) is tne angular velocity of the reference link and (n)

is the number of links in tne mechanism.

In Equation b there are ratios of tie angular velocities of the

links of the mechanism which can be determined by a velocity analysis.

The angular velocity ratios are a function of the lengths of the links

and the angular positions of the links. Therefore, it is not necessary

to know a Specific value for the angular velocity of a link. The

analysis is usually carried out assuming a constant angular velocity

for the input or reference link. After this velocity ratio analysis

has been completed it is possible to construct a curve of the equivalent

moment of inertia versus the angular position of the reference link,

using Equation h. A typical equivalent moment of inertia curve is shown

in Figure 2.

Some of the simple mechanisms will be adaptable to complete anal-

ytical solution by writing the angular velocity ratios as functions of

the crank angle (9), then substituting in Equation h to obtain an anal-

ytical expression for the equivalent moment of inertia.

The mechanism is supplied with energy in the form of an input

torque (T1), at link 2, and energy is removed in the form of an output

torque (T0) at link h. The instantaneous angular velocity of link 2,

after link 2 has moved through an angular displacement ((39), can be

found by applying the principle of dynamics that is stated below:

"The work done on a system of particles by all of the

external and internal forces in any displacement of the system

is equal to the change in the kinetic energy of the system in

the same displacement."

 

ESeely, M. S. and N. E. Ensign. Analytical Mechanics for Engineers,

3rd ed., John Wiley and Sons, Inc., New York;*I9HB, p 299
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J.

The total work done, on the mechanism, will be equal to tne dif-

ference between the input and output energies. neferrint to Fiqure 3,

the input energy (Bi) will be:

5. = Ti d9 (5)

From Figure h, the output energy (do) will be:

a.

so a To up (6)

”at

The limits used to evaluate the output energy from Equation 6

must be compatible with the limits used to evaluate the input energy

from Equation 5. Each set of limits should represent the same change

in position of the links of the mechanism. To avoid errors in the

choice of limits it is possible to reconstruct the output torque curve

of Figure h to a curve of output torque versus the reference crank

angle (9), since the angle (fl) is a function of the angle (9). However,

in many cases the values of the limits, pa and flb, will be detennined

which are compatible with the limits, Ga and 9b. To evaluate the energy

quantities given by the Equations 5 and 6, it will be necessary to know

the relation between the torques and their respective angles. if the

torque relations are not adaptable to analytical expressions it will be

necessary to construct the two torque curves and by graphical or num—

erical means evaluate the energy. The difference between the input and

output energy, or the net input energy, can be determined by constructing

curves similar to those in Figure 5. The area, cdef, between the two
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torque curves within the diSplacement interval will represent the net

input energy during that interval. This area can represent a negative

input or loss in net input energy if more than one half of the total

area indicated lies above the input torque curve. This is illustrated

in Figure 6. The area, abc, represents a net gain of input energy while

the area, cde, represents a net loss in input energy to the mechanism.

I

To construct the curve in Figure 5 for an equivalent output torque (To)

versus angular displacement (9) it is necessary to use the following

relations:

95 lab
1

To d9 . To d¢

93 75a

Differentiation with respect to 9 yields:

l

T = T 92
O 0 d9

OJ

hilt, g2 3......9.

d9 w,

1. f o T, - T wh
( )

.here ore. o - 0-127— 7

Equation 7 indicates that the value of the output torque (T0) at

any position can be converted to an equivalent output torque with ref-

erence to the input link, if it is multiplied by the angular velocity

ratio of the output to the input link at that position.

Subtraction of Equation 6 from Equation 5 and equating this result

to the change in the kinetic energy of the equivalent system during the

same displacement interval yields the following expressions:



12.

2 2

. _ = / _ / 1 ’2T1 d9 TO d?) 1,2(qu)bb)b l, 2( eq)awa to)

93 la

The subscripts on qu and C0’ indicate the angular positions of the

equivalent system and the reference link of the actual mechanism. The

equivalent system is rotating at the same angular velocity as the ref-

erence link, link 2. Therefore,¢k) b will equal the instantaneous

angular velocity of link 2 at the angular position G~. Solving

Equation 8 for the angular velocity yields the following equation:

9b ¢b ' 2

3 (qu)b 9 £75
3. a

If the net input energy supplied to the mechanism during a

 

particular angular displacement of the reference link is equal to zero,

C
r
.

( i 2 EC), then the instantaneous angular velocity after this displace-

ment will be given by the following relation:

cub = wa _._SL(I€‘)e (8b)

(qu)b

The terms (leq)a and (qu)b denote the value of the equivalent moment

of inertia of the mechanism at positions Ga and 9b, respectively. If

the reference link of the mechanism is rotating at an instantaneous

angular velocity'(€u)a), at the angular position 9 and is allowed to
a,

rotate to position 9b without a change in the total energy of the



3.

mechanism, the instantaneous angular velocity of the reference link

will change in accordance with Equation 3b. This change in angular

velocity of the reference link would indicate a tron fer of energy be-

tween the links of the mechanism.

To determine the angular acceleration (ab) of fhe reference link

at the angular position 9%, equation Ea is differentiated once with re-

 

 

 

spect to 9, and the relation, (1 =cud w, is used to obtain:

d9

“I.
_ Wit - <To>b (Ughfl

(lb “ "

die a. A
q u .3 , A

( d9 )b[§ TidQ - % Todd/5 + 1/2I10q)aw;]

- a a (9) 

/ 'T' 2

\ieq)b

Substitution of Equation 8a in dquation 9 yields:

 

“II

mob - (Tub (mu (“2% d1
(Lb = - -—-~-—‘ (—33 )b (9a)

(qu)b 2(qu)b (19

When performing the differentiation, it must be remembered that

the terms (qu)b, Ti, TO and (Lib are functions of the angular position

9, while (qu)a and C~Ia have specific values as determined at position

93.

In Equation 9a, tne tenns (Ti)b, (To)b’ (leq)b’ (Egga)b and (423%)b

are determined for the angular position, 9b, of the reference link. The

torques (Ti)b and (To)b are obtained from the input and output torque

GU

1‘)
CLJ2 b

 curves or analytical expressions. The angular velocity ratio (
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can be determined by graphical methods or from the data used to cor-

struct the equivalent moment of inertia curve. The value of the equiv-

HT
1 - - 1 ”‘ * E’C) . -.

alent moment 01 inertia (leq)b and the slcpe (‘55’)b are obtained irom

dIQC)

the equivalent moment of inertia curve. The slope (—-;3) can be deter-

d9

mined graphicall; for each particular position being analyzed or the

equivalent moment of inertia curve can be graphically or numerically

differentiated and a slope curve constructed to permit a complete

analysis of the mechanism.

The angular acceleration can also be obtained by graphical differ—

entiation of the angular velocity versus the angular displacement curve,

d<2J

which is obtained from Equation 8a, and using the relationship, a =GU':;".

0

Both methods require one graphical differentiation and would introduce

approximately the same error in the analysis. However, the equivalent

moment of inertia curve has been constructed for use in obtaining the

angular velocity from Equation 8a. it would therefore seem more desir-

able to differentiate this curve anl use Equation 9a to obtain the

angular acceleration.

Rewriting Equation 9a yields:

 

‘01: (602) di
b< dSQ)b + (aqua.b <9b>

‘ *

[(1'in " (To)b(w2)b] a

This equation is more convenient for finding the torques required to

meet specified angular velocities and accelerations.

To determine the time required for the linkage to move through a

particular angular displacement, it is necessary to construct a curve

. . . 1 .
of the reciprocal oi the angular velOCity (227) versus the angular dis—

placement. Equation 8a is used to compute the angular velocity. The
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area under this curve, within the displacement limits, will then rep—

resent the time. This can be shown by the following equations:

00:93

dt

1 ,
or, dt=a7d9

l
tb-ta=S-6b-'dg (10)

Ga

The curve of (zng versus 9 can be graphically integrated to obtain

a time versus angular displacement curve. In some cases it would only

be necessary to measure the total area under the curve to determine the

time for a complete motion cycle of the reference link.

Equivalent Mass

The preceding outline offers a method for the complete dynamic

analysis of a mechanism when the mechanism is reduced to a single rota-

ting mass with a variable moment f inertia. A similar analysis results

for an equivalent mass system if a reference point which has translation

is chosen instead of a reference link which is rotating about a fixed

point. Referring to the mechanism in Figure 7, the Kinetic energy for

any configuration of the mechanism can be determined from the following

expression:

.. 2 2 . 2 .. ,2
at = 1/2 12602 + 1/2 ig3w3 + 1/2 u3vg3 + 1/2 mth (11)
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The instantaneous kinetic energy of a variable mass, Which is translating

at an instantaneous linear velocity equal to that of the point ”P" in the

actual mechanism, will be:

ME =
eq (1?)

If the mechanism and the variable mass arc assumed to possess the

same Kinetic energy at all times, then the mass of the equivalent

system m‘st vary in order to maintain this energy balance. The ex-

pression used to find the value of the equivalent mass of the variable

mass body, for any configuration of tne mechanism, can be determined h;

equating the two Kinetic energy eXpressions and solving for j.eq .

‘fi’2 1 («I3 a V 3 2 ...

I""EBQ [I2 (-7];- + 133(_V-p-) + "13 (fl) + “hi (13)

For a mechanism with "n" links and a point "P" chosen as the trans-

lation reference point, the equivalent mass equation becomes:

4 = n

M - 2 (mg)
eq v2 K (13a)

p

2<=2

The velocity ratios in Equation 13 vary

figuration of the mechanism. Therefore, the

several configurations which Will completely

of the reference point. Then a curve of the

linear displacement of the reference point is constructed.

with each particular con-

ratios are determined for

represent one motion cycle

equivalent mass versus the

Figure 8 in—

dicates a method for representing the data obtained from Equation 13 or

13a.
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Because the reference point in this analysis has reciprocating

motion, the velocity becomes zero at each end of its path. Similarly,

the angular velocity for an oscillating cran< would become zero at the

end of its path. heferrin: to Ehuation l2, this would indicate that the

kinetic ene‘gy of the equivalent system becomes equal to zero, However,

the kinetic energy of the actual mechanism is not nac;sserily equal to

zero. Therefore, the equivalent mass must become infinite y large.

The value of this equivalent mass will he indeterminate from hquation 13.

It will therefore be necessary to construct the equivalent mass curve as

accurately as possible up to the head end and crana end dead center

C
D

positions, but not including these positions. As the curve in Figure

indicates, there would be consideraole error introduced at the two end

dMeg

ds

alent mass curve will be required for the analysis. This slope, in the

positions. It will be shown later that the slope ( ) of the equiv-
 

region at the ends of the path of motion, will be very susceptible to

error and this error may be objectionable in the analysis, however,

some mechanisms of this type will only be analyzed through a portion of

their entire motion cycle and if this motion is restricted to the ac-

curate portion of the equivalent mass curve, the equivalent mass analysis

can be used. If a complete analysis of this mechanism is required it

will be necessary to use the equivalent moment of inertia method; in

which case, the input or output torque curve can be replaced by a force-

displacemcnt relation similar to the one shown in Figure 9. This will

not introduce any new problems to the analysis because the energy,

either input or output, will be determinate from the force-displacement

curve.
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The linear velocity (Up) of the reference point in the mechanism

of Figure 7 can be determined in a manner similar to that previously

outlined for finding the angular velocity of tne reference link in the

mechanism of Figure 1. Tue input energy supplied to the mechanism

during a change in the configuration of the meghanism, assuming an in-

Y"

4

put torque versus angular displacement relation as shown in rigure 3 is

known, can be determined by the following equation:

9

c.
)

The output energy during the same configuration change can be de-

termined if the output force-displacement relation is known. The curve

in Figure 9 represents a general relation between the force acting on

the piston and the linear displacement of the piston. The output energy

is obtained from the following equation:

E = F ds (15)

‘where the limits, 3a and sb, are compatible with the limits, 9a and 9b,

respectively.

The force-displacement curve of Figure 9 can be changed to an

equivalent output torque (Tg) versus angular diSplacement curve if the

value of the force at a particular configuration is multiplied by the

ratio of the linear velocity of the piston to the angular velocity of the

input link at that position. This relation can be shown by the follow—

ing equations:



9b 5b

I

1 d’ = h 1o ~.9 (S

s
9a a

r
e

H

V t . . . . . . ‘

wnere (To) is toe equivalent output torque function acting on lan 2.

Differentiation witn respect to 9 yields:

rds
p__

O (14-)

but, 25 =

’
4

J :
therefore, T' = F (5%.)

2

The net input

(16)

nergy supplied to the mechanism during a particular

displacement interval can be detentined by subtracting Equation 15 from

Equation lb. The following exyressions result if the net input energy

supplied to the mecoanism is equatel to the change in the Kinetic energy

of the equivalent system during the some disolacement interval,

d. - f = ' — ’5l uo Ktob A a

9b Sb

. 2 . . 2
Ti d9 - F ds = l/2(;eq)b(vp)b - l/2(Aeq)a(\lp)a

9a 8a

Solving Equation 17 for the instantaneous linear velocity of the

3ields the following equation:

F %

Ti d9-

_ 9a 58 _J

‘Sb W

 

)2 2

(V = .
p b (Ineq)b

2
F ds + 1/2(:.-:req)a(vp)a

  

(1?)

piston

(17a)
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Equation 173 can be usci to compute the instantaneous linear

velocity of the reference point in the mechanism after a particular

climWe in tEEB confi,niratinri of tanznectmniism,

The irstantaneous linear velocity of the reference point, after

particular dislacemont durin_; which the not input energy suppliei to

the mechanism is equal to zero (ii = 60), will be oLtained from tie

following equation:

   

(*"eq )3

 

  up)b = (v (m)
(L.qu)b

Equation 17b inricates that if the mechanism was supplied with a

certain amount of energy then allowed to coast, without a chanbe in the

total energy of te mechmnism, the velocity of the reference point will

vary, This indicates that the kinetic energy of each link varies in

order to maintain the overall energy level and conse uently energy must

be transferred between the links of the mechanism.

Differentiation of Equation 17a with respect to 5 ani use of the

avg)
9%?relation, AP: V ), yields the following eXpression for the instan—

taneous linear acceleration of the reference ‘HOllt:

a) 9b Sb

[ohm-ft, - (bub) (35%)}, é‘ri d9 45:1? as + 1/2<:..eq>a<vp>:

  A =

(p)b (221 )b 2
eq (uéqh) (18)

Substitution of Equation 17a in equation 18 yields.

[(T > (v-p?) (F) 1 )2b b b ('p b_ dl: n \

(Ap)b= .. - 2": ) (de:Sjjb (183)

(22-:q>b \weq b
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‘ 2
r: ,....~ a w \r‘ - (-7 .+‘ . , ~ ‘~.',fne terms (Heq)a and (Vp)a3 in blHdJlOfl l7a, axe not a function

of the linear disglacement but have Specific values as deternined at

(ea). All other tenns in eyuation l7a are a function of tne diSplace-

ment. The subscript, outside the parentheses, on the terns in Equation

mo

l18a indicate the position at which the functions are evaluated. ne

”“1

fbrme(F) is a function of the linear diSplacemcnt (5). inc torque (Ti)

is a function of the cran: angle (9), and the equivalent mass (seq) is

a function of the linear displacement. All of these functions are rep-

resented hy their resyective graphs or curves.

The instantaneous linear acceleration of the reference point can

also be obtained by graphical differentiation of the linear velocity

versus linear displacement curve. The velocity—displacenent curve can

be constructed using fiquation 17a,

The time required for the reference point to move through a

particular linear displacement can be determined by constructing a

1

curve of the reelprocal of the linear veloc1ty (7-) versus the linear

displacement. The area under this curve, within the diaplacement limits,

will represent the time for that displacement. Tne equations for ob—

taining the time are as follows:

v =15.

dt

Sb

1

or, dt = '3 ds

Sa

Integration yields: Sb

ds (1?)
tb ' ta 3

<
H
+
d
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The two equivalent systems derivcfi {rum enerf; methads are very

general, but the equivalent. 'TH"‘.E‘H+. of inertia (31.1.“1til‘1i5 u'JiLl {ally to

al].:zec*uumlsxus zuvi 153<turu3Llsnwel €319 ALDFE {orufral. )1 [$13 txffi sv.st6£ns
v C
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To better understand tne potentialities and t3 evaluate tne

merits of tne energg method, four proilens are gresented Wmich illus-

trate the application of tne derived equations to actnal necnenisms.

All of tne problems are solved using tne equations and methods derived

for an equivalent moment of inertia system.

The first problem uses a parallel cranr mechanism subjected to

constant input and outgut torques. The mechanism represents a special

case of tne equations.

The second problem uses a four-bar mechanism subjected to a con-

stant input torque.

The third yroblem uses the same mechanism tnat is used in problem

two with a more general condition on tne aptlied forces. Tie mechanism

is considered to be an opening electrical switch.

The fourth problem uses a slider crank mechanism subjected to an

inyut force on the giston.



followin;\
5
'

The parallel crank necnanisn shown in Figure lo has tn

.ri 3i<ral ‘1‘).c1+ was:

7
D.Uel_fhi, Of‘ lira: 2 . . . . . . . . . . . . . . . . . . . . ll) lit)

iweittn; oi'.lirr< 3 . . . . . . . . . . . . . . . . . . . . 2§)§U‘s

Neiqht of link h . . . . . . . . . . . . . . . . . . . . 1) lbs

Loments of inertia of links 2 and b

about their resgective centers m

of Sravitg' . . . . . . . . . . . . . . . <).Ol? sluf'.-ft‘1

Loment of inertia Of link 3

. . , . . 2
acout its center of grav1ty . . . . . . . . 0.020 slug—it

, . . . . .)

The menianisn starts from rest at a poSLtion corresponding to Q = 3

and is subjected to a constant input torque of 10 ft—lbs and a constant

output tarqie cf 5 ft—lhs. The torques act in the directions indicated

on tflie ”Lecinriisni.

The equations and nethols derived from the ener:3 equations are

used to cinstruet the angulir velocity and acceleratiin curves. else

the time required For one motion cgcle is to be determined, The solution

of this problem is accomplished in the following four ste;

(1.) filiation h is used to construct the equivalent nonent of

inertia curve.

wh2 33.2212
1.x} = {12 + m (—5") + Iy3iw2) + “BL—02;) ]

The parallel crank mechanism is unique in that the following conditions

'17 “ "
Q;)i-)l.‘/ 0

r
0

L
“
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  SCALE"- 4"- I'

FIGURE IO. PARALLEL CRANK MECHANISM.
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2 : l + Ti + ‘.-n—_. )2
8,1 2 l4 “3 \.,C311

T'rrefore, the eqiivalent mo.‘ot ii in‘i‘-a is consilii For .11 pnases

)t ttme'mechaniswu . n: "lies )1 t,M3 in cit" fl l”’Fqu.ffl"“ L11 )1:

statement if the yrofiion are about the centers *f jravit; Jl tie l1n:s

J. 3

anfi the values in one above equation era about t;e centers o; rotation.

.he parallel axis theorem is applied to find 12 and 1h'

 

Io = 132 + m2(0232)2
CD

0.031h slug—ft2F
—
i

M

II

9

0.03lh slug—ft“I.

[
.
7
' ll

Therefore,

’7

qu = 0.2173 slug-ft‘

(2.) fliuation Be is used to construct the angular velocity curve.

For this problem, the torques are constant, the initial angular velocity

(L~>a) is equal to zero and the angle 9 is equal to the angle fl,

r
-
3

.I l) ft—lbs ......... T- d9 10 9

i
d ll

\
J
I

F
“
.

(
+
-

I

P
-
S

O

c
.

(
1
.
)

ll

\
,
1

(
I
)

Substitution of the above relations in Jquation 83 yields the following

general equation for the instantaneous angular veloci g of the reference

link as a function of the angular displacement.

w = (13.78 1/;-
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i fie did—fil- {1.1 d J L-JA‘) A

x . . ..

-acenent \4) is measured in rallans.

, r ‘V N I \ .' -I r- ‘rs " . ' r. -. 1r .r‘. . ‘- . ,7 ' l""’~' y‘

angulal VBlLClLQ Vferc twe angular disolncenent is olixn

(-

o o I Q ' -., ,‘ . ‘ v-‘i - f‘ .yir ’T“ I‘..,-y-< ‘ ., ,—

lor :iré IQVJI.HLLNL'JL tie IKLJBTUHCC la n.. la: dLuMJ; silatiill

for more than one revulution.

(3.) The angular acceleration curve is constructel next

equation 2. fiuation is simplified by the coalition tnat

constant.

(4)1,

Ti " Tofu-5)

a:
 

qu

10-5
-—02

0.2178

23 rad/sec2

(any--
it) up

in Figuro ll

‘will agpl;

‘15}ng

l is
(Dq "
d

The angular acceleration for this problem is constant. This can also

be determined by differentiation of the equation for tne angular velocity.

ca 6.78 “/5-

(OZ

C~>

II

E
.

U (
D

2003—— =u6
d9

a L6/2 = 23 rad/sec2

(14.)

cycle can be detennined in two ways.

a.

problem is substituted in Squation 10.

The angular velocity equation determined for this

The time required for the mechanism to complete one motion
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i
n
.

(
l
)

M (
I
)

t = m. = 0,7ll seconds

c
x

. :
3

b. Since qu is constant, the .echanism can be treated

as a rigid body rotating about a fixed point. Therefore,

the equations of motion for a rigid body apply. The

rigid body starts from res and is subjected to a con—

stant acceleration.

(of w0+at

(of 23t

The angular velocity after one motion cycle is equal to

l? rad/sec (from Figure ll). Therefore,

t = 17/23 = 0.7h seconds

A check on the results of this problem can be made using the vector

polygon methods.
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The four-bar mechanism shown in Fifure 2a has the following

physical properties:

Weight of linK 2 . . . . . . . . . . . . . . . . . . . . . 13 lbs

'Jeight of link 3 . . . . . . . . . . . . . . . . . . . . 3.22 lbs

Weight of linK h . . . . . . . . . . . . . . . . . . . . . lo lbs

Loments of inertia of linxs 2 and b

about their respective centers

of gravity . . . . . . . . . . . . . . . . . .0.0l2 slug—ft2

Moment of inertia of link 3

about its center of gravity . . . . . , . , , 0.320 slug-ft2

The mechanism starts from rest at a position corresponding to a = 30

and is subjected to a constant input torque of 13 ft—lbs. The torque

acts in the direction indicated on the mechanism.

The angular velocity and the annular acceleration curves, for

link 2, are constructed in the following manner:

(1.) Equation h is used to construct the equivalent moment of

hwfifiacmwe,

wk 2 3 2 n {ll-:3 2

la; ‘ [12 * lid-‘33) * IgB‘W‘g) + ““30? 1

The velocity ratios, in Equation h, are determined from a velocity

vector polygon. The velocity polygon is drawn for a sufficient number

of phases to construct the equivalent moment of inertia curve. A samp e

irelocity polygon is shown in Figure 12b. The data obtained from the

Paolygons and the information required to construct the curve are tab-

Lllated in Table I. The equivalent moment of inertia versus the angular

clisplacement curve is shown in Figure 13.

(2.) The angular velocity curve is constructed using aquation 8a.

53filnce the mechanism starts from rest at Q = 0° and is subjected to a

<3<>nstant input torque of 13 ft—lbs, the following conditions apply:
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(a). FOUR-BAR MECHANISM
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2

'F'"‘" *

I.) w 11 £03 £2 IGQ 2

degrees a.) 2 2 2 slug—ft

0 1.000 1.000 0.308 0.0923

7 1/2 0.610 0.825 0.199 0.0608

15 0.238 0.633 0.192 0.0009

22 1/2 0.0S< 0.070 0.263 0.0029

30 .281 0.300 0.333 0.0070

37 1/2 0.030 0.250 0.389 0.0538

05 0.532 0.187 0.020 0.0590

60 0.660 0.130 0.067 0.0672

75 0.725 0.050 0.092 0.0722

90 0.750 0.008 0.500 0.0700

105 0.750 0.021 0.500 0.0700

120 0.725 0.059 0.090 0.0720

135 0.682 0.100 0.075 0.0687

150 0.600 0.162 0.005 0.0631

165 0.082 0.201 0.000 0.0559

133 0.338 0.330 0.309 0.0090

195 0.185 0.020 0.299 0.0009

210 0.050 0.080 0.258 0.0028

225 0.055 0.510 0.206 0.0028

200 0.150 0.513 0.250 0.0037

255 0.209 0.078 0.253 0.0060

270 0.350 0.008 0.333 0.0095

285 0.075 0.292 0.391 0.0560

300 0.662 0.100 0.068 0.0670

307 1/2 0.782 0.038 0.508 0.0760

315 0.913 0.200 0.550 0.0888

322 1/2 1.075 0.396 0.588 0.1050

330 1.220 0.600 0.600 0.1213

337 1/2 1.355 0.830 0.600 0.1388

305 1.390 1.000 0.550 0.1020

352 1/2 1.265 1.060 0.005 0.1201

360 1.000 1.000 0.308 0.0923

in; u)
* . . 2 V

qu --= {.0311 + .0310 (—J’i) + .020(w--;&3—)2 + 06.3%

30.
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Ti = l) ft—los ......... Ti d9 = 10 Q

o

T = O
o

wa=o

Therefore,

(4) = 20 0

qu

Table II contains the results of computations based on the above

equation. These datr are plotted in Figure lh to graphically represent

the angular velocity af linx 2 versus the aujular diSplacement.

(3.) The angular acceleration curve is constructed using

Equation 9a. This equation is simplified by the conditions of the

problem to obtain:

2 Ti - wzfiifzay
a. = __ di“

2 qu

The construction of the angular acceleration curve, using the

above equation, requires three intermediate steps. First, the value of

the angular velocity must be read from the angular velocity curve for

the number of positions required to adequately represent a complete

motion cycle. Secondly, the equivalent moment of inertia must be tab-

ulated for the same positions. Thirdly, the slope of the equivalent

moment of inertia curve must be detenuined at each of these positions.

'Graphical methods for the de,ermination of the slepe are sufficiently

accurate for use in most problems. The values of the slope in Table III

Inere determined for the required positions. Table III also contains the

'information necessary to compute the angular acceleration. The angular



nvv, ‘ P n ' .. r‘fi

11-.l'J‘.JL.’i JL‘AwJ‘Vll

FIT"

TAB L11) 1 I

c) ‘(IllT‘fl -\ J yfi—h‘ 'J r); -4 ‘ “ ‘\ I

1 1.111111 FJi- 1‘ uu.n—L11.Ll ....J,. .‘L; 1 u

37.

 

 

 

 

9 9 2 ’3 9 1 eq (.0 2 CU

degrees radians ft—lh—rad slug—ft2 (rad/sec)2 rad/sec

0 0 0 0.0923 0 0

15 0.262 5.20 0.0009 116.3 10.8

30 0.520 10.08 0.0070 221.0 10.9

60 1.005 20.90 3.0672 311.3 17.6

90 1.571 31.00 0.0700 025.0 20.6

120 2.095 01.90 0.0720 530.0 20.-

150 2.620 52.00 0.0631 830.0 28.8

180 3.102 62.80 0.0090 1273.0 35.6

210 3.670 73.00 0.0028 1718.0 01.5

200 0.190 83.80 0.0037 1918.0 03.7

270 0.710 90.20 0.0095 1910.0 03.6

300 5.200 100.80 0.0670 1550.0 39.0

315 5.500 110.00 0.0888 1200.0 35.2

330 5.760 115.2' 0.1210 950.0 30.8

305 6.020 120.00 0.1020 805.0 29.0

360 6.283 125.60 0.0923 1360.0 36.9

330 6.800 136.00 0.0070 2875.0 53.6       





 

  

 

 

.201001.00~0.1.1>‘.111 20:

F00-01; 111.15;.

9 (1)2 01 qu a

degrees (rad/sec)2 slu*—ft2 slug-ft,2 rad/3e02

d‘110:18

O 0 —O.202 0.0923 108

15 117 -0. 053 0.1009 290

30 221 0.003 0.0070 100

60 311 0.020 0.0672 90

90 025 0.000 0.0700 135

120 580 —0.010 0.0720 179

150 830 —0.028 0.0631 302

180 1273 -0.020 0.0090 510

210 1718 -0.005 0.0020 330

200 1918 0.005 ‘0.0037 120

270 1910 0.020 0.0095 -130

300 1550 0.030 0.0670 -505

315 1200 0.110 0.0838 -685

330 950 0.130 0.1210 -000

305 805 -0.019 0.1020 127

360 1360 -0.202 0.0923 1890      



curve is plotted in Figure 15.

zero at tw0 different values

250 degrees and 305 degree

n i ‘

Figure la, idesr

1

.11 anrular displacement values carresrfie

00 .

The anfular acceleration is equal to

1. A r- ,. ,-‘ I . .‘ —, ‘ ~ \ rq‘r‘y 1‘ ,

.00 0030101 dlsyluLQmaflt. 13‘ are

‘ferrin; to the angular velocitg curve,

,01 t7 points on

the curve where tne 51000 is equal t0 zero, which is eXpec*ed.
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Four—ear fiechnnism deed as 0 Switch

\

The four-bar mechanism Shown in Figure 15 has the same pnysical

properties as the mechanism in the yreceding problem. Tee mecnanism

is considered to be an opening electrical switcn. The mechanism starts

from rest at a position where e = 22 l/2°. it is subjected to an input

torque that is represented graphically in Figure 17 and an output torque

that is represented in Figure 13. The equivalent minent of inertia curve

is the same curve as constructed for the preceding problem and is shown

in Figure 13.

The angular velocity curve is constructed for the displacement

interval represented by 9 = 22 l/2° to 9 = 180°. Squation 8a is used

to compute the angular velocity of link 2 at a series of angular dis-

placements. Table IV contains the computed angular velocities. it

also contains the data obtained from tne equivalent moment of inertia

curve and that data obtained from the two torque curves. These data

are plotted in Figure 19.



FIGURE l6.

 

FOUR - BAR

SCALE=- 3"- I'

MECHANISM USED AS A SWITCH.

03.
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O 22 l/Z 90

ANGULAR DISPLACEMENT- 6 (DEGREES)

FIGURE l7. INPUT TORQUE CURVE.
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ANGULAR DISPLAcEMENT-43 (DEGREES)

FIGURE

 51’ ll!

OUTPUT TO ROUE CURVE .

I48



 

 

 

1000111 73100113 01.. 1.» 2011-011 0' 10151

0330 15 1 51110.

11-..... “ o
9 fii d9 fio dfl ieq Cd" 0)

degrees ft-lbs ft-lbs slug-ft2 (rad/sec)2 rad/sec

0 o 0 __ __ __

22 1/2 0 0 0.0029 0 0

30 1.20 0.175 0.0070 05.0 6.70

37 1/2 2.33 0.393 0.0538 71.8 8.06

05 3.26 0.707 0.0590 86.7 9.30

52 1/2 0.07 1.090 0.0632 90.5 9.70

60 0.72 1.080 0.0672 96.0 3.80

67 1/2 5.25 1.965 0.0700 90.0 9.69

75 5.62 2.000 0.0722 89.3 9.05

82 1/2 5.83 2.880 0.0738 80.0 8.95

90 5.90 3.360 0.070) 68.3 8.39

105 5.90 3.360 0.0700 68.8 8.39

120 5.90 3.360 0.0720 70.5 8.00

135 5.90 3.360 0.0687 70.0 8.60

150 5.90 3.360 0.0631 80.5 8.95

155 9.90 3.360 0.0559 91.0 9.55

180 5.90 3.360 0.0090 103.0 10.10        
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Slider Crank Mechanism

H
r
-

The slider crank mec1anism shown in Figure 2D has the {allowing

phjsical praperties:

Weight of 110K 2 . . . . . . . . . . . . . . . . . . 3,2” lee

'I‘N'eitrzht Oi‘ link 3 O D l O n o o o o a o o o a I I O a 0 30:3,“ :1 0

Weight of the piston . . . . . . . . . . . . . . . . . 3.22 lbs

Moment of inertia of link 2 about

its center of gravity . . . . . . . . . . . 0.3280 slug-ft2

Moment of inertia of linx 3 about 2

its center of gravity . . . . . . . . . . . 0.0203 slugqft

The mechanism starts from rest at a position corresnonding to 9 = 0°.

The piston is subjected to an input force which decreases linearly

from the head-end dead center position. The force-displacement re—

lation is expressed analytically as:

Fi = 103 - 200 s

where (s) is the linear diSplacement, in feet, of the giston. It is

measured positively from the head-end dead center position.

force is wupal to zero at the crank-end dead center position. The

mechanism complc.es the retaining one—half cycle without energy being

supplied or removed.

The angular velocity curve for link 2 is constructed in the follow—

ing manner:

(1.) Equation 0 is used to construct the equivalent moment of

inertia curve. For this mecnanism, the equation is rewritten in the

following fonn:

CL)

- 3 V. 2 _ V 2

1eq = [12 + Ig3(02)2 + M3953“) + I“"h(‘E-=) l

2 ‘02

Table V contains the data obtainei.from a velocity analysis and

also the computed data necessary to construct the equivalcnt moment of
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FIGURE 20. SLIDER CRANK MECHANISM.



 

 

 

       

Tx J; Ll“. V

0001711007 ninsui 02 1010010 0011 F00

Stinrnztuuxng..ecwsnjsn

1] 1‘7

9 ‘P '53 “”3 leg

degrees a.) 2 w 2 co 2 slug-£152

0 0 0.125 0.250 3.0328

15 0.080 0.301 0.202 0.0338

30 0.150 0.175 0.217 0.0362

05 0.208 0.213 0.179 0.0392

60 0.206 0.238 0.127 0.0018

75 0.258 0.252 0.067 0.0031

90 0.250 0.250 3 0.0025

105 0.225 0.238 0.067 0.0008

120 0.190 0.213 0.127 0.0383

135 0.100 0.180 0.179 0.0357

150 0.098 0.155 0.217 0.0303

165 0.050 0.130 0.202 0.0332

180 0 0.125 0.250 0.0328

95 0.050 0.130 0.202 0.0332

210 0.093 1.155 0.217 0.0303

225 0.100 0.180 0.179 0.0357

200 0.190 0.213 0.127 0.0383

55 0.225 0.238 0.067 0.0008

270 0.250 0.250 0 0.0025

285 0.258 0.252 0.067 0.0031

300 0.206 0.238 0.127 0.0018

315 0.208 0.213 0.179 0.0392

330 0.150 0.175 0.217 0.0362 1

305 0.080 0.101 0.202 0.0338

360 0 0.125 0.250 0.0328

.3!
w 2 'T v

‘I = [.030 + .02ot-—2) + .l(182)2 + .1(l£LJ



inertia curVE. Tues: data are pl3tted in Fiane 21. For slider crank

mechanisms, the eqiivalent moment of 'ne‘tia curve is very nearly

sinusoidal in nature and the portion of tie curve from 189 degrees to

369 degrees '5 a mirror image of the yoliiwn fr); 0 degrees to lBJ de-

G
.
)

.
.

\
L
‘

r
n

A

gr

(2.) For this mechanism, equatien $0 is rewritten and simglified

to obtain:

2 F ds

where,

F ds = E.
Q 1

O

and,

100 s (l - s)[
1
3

II

The above equation is used to compile the data in Table VI. These

data are plotted in Figure 22 to represent the angular velocity of link 2

for one motion cycle. In this analysis, it is assumed that the input

force on the piston can cause turning of the crank when the mechanism is

at the head—end dead center phase.
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9 ii 1 QC; 2 CO

degrees ft lbs slug-ft2 (rad/sec)2 rad/see

0 0 0.0328 0 0

15 0.99 0.0338 59 7.7

30 3.92 0.0362 217 10,7

05 8.06 0.0392 012 20.3

60 12.65 0.0018 . 606 20.6

75 16.70 3.3031 775 27.8

90 20.18 (L0025 952 30.9

105 22.50 0.0008 1100 33.2

120 23.90 0.0383 1250 35.3

135 20.60 0.0357 1330 37.2

150 20.89 0.0303 1050 38.1

165 20.91 0.0332 1500 38.7

180 25.00 0.0328 1525 39.0

210 25.00 0.0303 1060 38.2

200 25.00 0.0383 1305 36.1

270 25.00 0.0025 1175 30.2

300 25.00 0.0018 1195 30.6

330 25.00 0.0362 1380 37.2

360 25.00 0.0328 1525 39.0   



 

 
 



S 1.} 0.3.00.1

The equations and met00ds derived from the energy equations are

general. They can be used forcdetermining the dynamic characteristics

of any mechanism. This is evident from the fact that either of the

two general types of problems can be solved using these equations.

The velocity polygon will suggly the information necessary to perform

a complete analysis of a mecuanism. it will not be necessary to deter-

mine accelerations which may be difficult in the case of complex

mechanisms.

The proposed methods consist of the following steps which lead to

the comolete analysis of a mechanism subjected to Known forces.

A. Construction of an equivalent moment of inertia or

equivalent mass curve.

8. Construction of an angalar velocity curve.

. Construction of an angular acceleration curve.

D. Construction of a time curve.

Step A requires a preliminary operation involving a velocity—vector

polygon. The remaining steps are gerfonnei using the equations and

methods preposed.

The energy method solutions indicate two methods of representing

a mechanism for analysis. They are the equivalent moment of inertia

and the equivalent mass systems. The equivalent moment :f inertia is

the more general of the two systems. However, both systems are applic-

able for the solution of the two types of general problems.
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vantages which limit the accuracy or the analysis. The effect of

friction is cumulative, uni the error may increase during the motion

cycle. The detcrmination 0f the vel0cit; rntios from the velocity

polygon and the determination of the slope 0f the e11ivalent moment of

inertia or anfiular velocity curves will introdxce errors. Such errors,

h0wever, are difficult to deteroine analytically. Some of these errors

can be minimized by careful apolication of the :raghical methods re-

quired.
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