


ABSTRACT

MECHANICAL PROPERTIES AND STRUCTURAL
STABILITY OF THE WHEAT PLANT

by Safwat Mahmoud Ali Moustafa

This study was initiated to study the behavior of
the cereal grain plant under applied stresses. Since the
plant stem 1s the principal supporter of the plant struc-
ture, the understanding of 1its behavlior and physical
properties is of major importance to the englneer, The
mechanical and rheological properties of the plant stem
as well as the stabllity of the plant structure were in-
vestigated. Tests were conducted over a period of four
weeks to study the maturity effect, and were limited to

three varieties of wheat--(Triticum Vulgarus)--Comanche,

Redcoat and Genesee.

All tests were conducted in a testing chamber under
controlled temperature and humidity conditions. Tension,
compression, and bending tests were conducted to study
the behavior of the straw to applied stress. Elastic
and viscous properties of the straw were evaluated using
elastic and viscoelastic flexure theory. The buckling
stability was studied for the plant structure.

Theoretical equations were derived for the evaluation

of the elastic and viscoelastic moduli from quasi-static
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flexure. Critlical load and deformation equations were
derived from the theory of elastic stability.

The wheat plant reacted to applied forces as an
elastic-plastic-viscous body. A viscoelastilic model, con-
sisting of one viscous and two simple Maxwell elements in
parallel, simulated the behavior of the plant stem in com-
pression. The stem behaved in flexure similar to two
simple Maxwell elements in parallel.

The stability of the plant structure was explained
by employing the theory of elastic stability together with
the concepts of inelastic buckling. The existence of the
nodes provided a localized increase in the inertia of the
straw which contributed to the stability of the plant.

The decrease in the outside diameter of the plant stem to-
ward the plant top was assumed linear and the wall thickness
constant. This cross-sectional change reduced the buckling
strength of the plant by a factor which 1s a function of

the rate of change in the cross section. The top internode,
which 1s the longest, was the least stable., Wind force
acting on the plant, as it stands in the field, was approxi-
mated by a linearly distributed horizontal force having 1its
largest magnitude at the top of the plant. These forces
greatly influenced the deformation of the plant.

As the plant reached the harvesting stage, the
viscous properties decreased and the elastic properties
dominated the behavior of the plant for small deformations.

In this stage the head weight becomes the principal axial
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force acting on the plant. A high velocity wind will
force the plant to deform from its initial straight shape.
The strains in the top internode may exceed the elastic
range. As the wind stops the plant tends to recover its
original shape but retains a slightly curved shape due to
the residual plastic strains in the fibers where the
elastic 1limit was exceeded. Successive wind forces to-
gether with the growth of the plant head increase the
residual plastic strain which results in the familiar bent
shape of the top internode during the harvesting season.
An exceptlonally high intensity wind, in this stage, may
result in the fallure or lodging of the plant.

Approved _B A Si}d.

MaJj Professor

worores (Butnd Sl

Department Chairman




MECHANICAL PROPERTIES AND STRUCTURAL
STABILITY OF THE WHEAT PLANT

By

Safwat Mahmoud Ali Moustafa

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering

1966



ACKNOWLEDGMENTS

The guidance and leadership of Dr. B. A. Stout
(Agricultural Engineering) is gratefully acknowledged.
The 1inspiration provided throughout this portion of my
graduate program and during the course of this investi-
gation has made it a pleasing and rewarding experience.

Sincere appreciation is extended to Dr. W. A.
Bradley (Metallurgy, Mechanics and Material Science) for
his valuable suggestions and active professional interest
in thils study.

Additional acknowledgment is offered Dr. M. L.
Esmay (Agricultural Engineering) and Dr. E. H. Everson
(Crop Science) for serving as guidance committee members
and providing advice and help whenever needed.

The unfailing support and encouragement provided
by my wife, Samraa, has supplied inspiration needed

throughout my graduate education.

ii



To

Samraa, Mona, and Shereef
Mr. and Mrs. M. A. Moustafa

The United Arab Republic

iii



ACKNOWLEDGMENTS
DEDICATION. .
LIST OF TABLES

LIST OF FIGURES

CHAPTER

TABLE OF CONTENTS

1. INTRODUCTION . . .« . .

Objective . . .

2. LITERATURE REVIEW.

2.1 Physical Structure of Biological

2.2

2.3 Physical and Mechanical

Materials.

Physical Structure of the Grain

Crop Plant . .

Properties . . .

3. THEORETICAL CONSIDERATIONS

3.1

3.2

Mechanical Properties.

3.1la Elasticilty
3.1b Plasticity . .
3.1lc Viscoelasticity.

Theory of Elastlc Stability.

3.2a Straight Column.
3.2b Initial Curvature

3.2¢ Influence of Lateral Forces
3.2d Variation of Moment of

Inertia

iv

Page
ii
iii
vii

viii

12
12
12
12
20
22
23
26

28



CHAPTER Page

3.3 Inelastie Buekling . . .. . . 33
3.3a Double Modulus Theory . . 33
3.3b Tangent Modulus Theory. . 38
3.3¢c Inelastic Buckling Model . 39
3.4 1Inelastic Curved Hollow
Tubular Columns . . . . . 42
4, EXPERIMENTAL PROCEDURE AND EQUIPMENT . . 51
4,1 Equipment . . . . . . . . 52
4,la Testing Chamber . . . . 52
4,1b Testing Machine and
Recording Unit . . . 52
4,1c Stress Measurement . . . 54
4.,1d Strain Measurement . . . 54
4.2 Laboratory Tests. . . . . . 55
4.,2a Tension and Compression
Tests . . . . . . 56
4.2b Bending Test . . . . . 61
4,2¢ Buckling Test. . . . . 62
5. RESULTS AND DISCUSSION. . . . . . . 66

5.1 General Characteristics of the
Plant Behavior Under Applied

Loads + + 4« 4 e e e 66

5.l1la Tension and Compression
Tests . . .+ .+ . . 66
5.1b Bending Test . . e e 71
5.1c Stabillity Test . . . . 73
5.2 Rheological Properties. . . . 76
5.2a Viscoelastic Modeling . . 80

5.2b Evaluation of the Modulus
of Elasticity from

Loading Curve. . . . 84
5.2¢ The Maturity Effect on
Viscoelastic Behavior . 87



CHAPTER Page

5.3 The Stability of the Plant . . . 90
5.3a Effect of Initial Shape
and Inelastic Behavior . 93
5.3b The Influence of Lateral
Forces. . . . . . . 95
5.3¢c The Effect of the Cross-
Sectional Variation . . 96

5.4 The Influence of the Plant
Physical Changes on its

Strength and Behavior. . . . 99

6. SUMMARY . . .+ « « « « « o« e 4 . 102

7. CONCLUSIONS . + v « « « o« « o o 105

8. RECOMMENDATIONS FOR FUTURE WORK . . . . 107
REFERENCES. . . .+ « « « « « « o o & 108
APPENDIX . . .+ « « « « v e e e e 111

vi



Table

A-1

A-3

A-4

A-5

A-T7

A-8

LIST OF TABLES

Modulus of Elasticity (1b/1n ) Obtained from

Tension Test . . . . . . .

Modulus of Elasticity (lb/in ) Obtained from

Compression Test. . . . . e

Data for Loading Curve (Compression) Using
Opfical Strain Measurement Technique .

Modulus of Elasticity Evaluated from the
Bending Test . . .« + « « .+ .+ .

Viscoelastic Model Parameters Obtained from

the Compression Test for the Genesee
Variety. . «« .« « < < & < . .

Viscoelastic Model Parameters F;, t; and F,
12 Obtained from the Relaxation Curves
of the Bending Test. . . . . . .

Theoretlical and Experimental Values of the
Buckling Loads for the Lower Portion of
the Plant . . .. + .+ + .+ < . .

Theoretical and Experimental Values of the

Critical Loads for the Upper Portion of
the Plant . . . . . . e e

vii

Page

112

113

114

115

116

117

119

120



LIST OF FIGURES

Page

Viscoelastic Models . . . . .. .+ .+ . 17
An Element of Elastic Beam Showing Load-

ing Condition and Forces on a Free

Body . . . . . . L] . . . . . 21
Elastic Columns Under Different Loading

Conditions . . . . .+ .+ .+ . . 21
Columns with Varying Cross Sections. . . 29
The Double and Tangent Modulus Theories of

Inelastic Buckling . . . .. .+ . . 35
Stresses and Strains in a Section of an

Inelastic Column. SubjJected to Axial

Loading . . L . L] . . . . . . 35
Inelastic Buckling Model . . . . . . 40
Inelastic Curved Hollow Tubular Column

Under Axial Loading . . . . . . . 43
The Relation Between the Axial Stress and

the Deformation of the Centroldal

Axls at the Middle of the Column. . . 50
Overall View of the Testing Machine and

Recording Unit. . . .. . .+ . .+ . 53
Samples Prepared for Testing . . . . . 57
Measurement of the Cross Section of the

Test Specimen . . . . . .+ .+ .+ . 57
The Method of Mounting Samples for

Tension Test . . e e e 59

viii



Figure

4.5
b.6

14.7

4.10

Ui
w

The Tension Test . . « . « « « .+ .
Straw Specimen for Compression Test.
Uniaxial Compression Test . . . .+ .
The Bending Test . . .

Method of Mountlng Samples for Buckling
Test . . e e

Buckling Test

Moisture Content and Linear Density of
the Samples Over the Testing Period.

Typical Behavior of Loading and Relaxation
Curves Obtalned from the Compression
and Bending Tests.

Stress-strain Curves Obtained from Three
Samples by Using Optical Strain
Measurement Technique .

Typical Elastic, Elastic-plastic, and
Plastic Buckling Curves Obtained from
the Stability Tests . . . . . .

Deformation Shape for Straw with Uniform
Section, Approximately Sinusocldal

Deformation Shape for Straw with Varying
Section o v e e e e

Graphlcal Technlque for Evaluating the
Viscoelastic Model Parameters from
the Relaxation Portion of the Uniaxial
Compression Test . . . . .« « .+ .

A Sample of the Relaxation Curve and the
Graphlical Technique for Evaluating
the Viscoelastic Parameters from the
Bending Test . . .+ .+ + . .

Variation of Viscoelastic Parameters with

Maturity, Obtained from the Relax-
ation of Samples in Bending

ix

Page
59
60
60
63

oU
64

67

68

70

75

[

7

82

85

88



Flgure
5.10

The Values of the Factor u as a Function
of the Change in the Cross Section
(i'e', ho/hm) . LY . . . .

Page

98



1. INTRODUCTION

Cereal gralns are the greatest source of food on
our planet. In the U. S. A. and other highly mechanized
areas of the world, these crops are harvested with com-
bines. Although these harvesters have great capacities
and are very effective, they are expenslve and have high
power requirements,

Many researchers have sought methods of improving
the efficiency and lowering the power requirements of
combines. The cone thresher and the standing harvester
studies at Michigan State University are recent examples.

So far, all the threshing mechanisms, either the
conventional rotating cylinder or the centrifugal thresher,
are based on the application of an impulsive force, either
impact or the combined effect of impact and acceleration
forces, untll the gralins are separated from the plant
head.

Successful mechanical harvesting depends both on
technical factors and on the extent to which the plant's
agrotechnical and morphobiological properties are suited
for mechanilzed ha}vesting. The physical properties of

most agricultural materials which influence the machine



design or operation and the quality of the final product
are not completely understood. Increased knowledge of

the physical properties of the cereal grain plant will be
of value not only to englneers but also to plant scientists
and breeders who are concerned about the lodging problems
in these plants. Hence, one must consider the physico-
mechanical properties of the plants not only when designing
new machinery, but also when breeding new varieties and
perfecting methods for their cultivation.

The design of farm machinery started as an art.
However, with the tremendous progress in technology of the
last fifty years 1t became essentlal for the agricultural
engineer to know and understand in detail the fundamental
anatomical and mechanlcal characteristics of the blologlical
materials with which he is dealing, and to have this 1in-
formation in his englineering language. Although the
englneer has collected most of the basic information about
the behavior of engineering materials, he has not yet col-
lected the needed data on materials of biological origin.
One baslic reason for that is the heterogenelty and com-
plexity of thelr structure.

Mechanical properties of a material have been defined
as the propertles that determine the behavior of the
material under applied forces and loads. One of the most
widely used and most easlly interpreted methods of specify-
ing the behavior of materials 1s in terms of mechanical

models. A mechanical model normally consists of an element



or a combination of elements whose characteristics and

behavior under applled forces are known.

Objective
The general objective of this study was to investi-

gate the basic physical and mechanical properties of the
wheat plant and express them in engineering terms. Specific
objectives were to:

1. Develop a theoretical model for the wheat plant,
as a whole, for the study of its stablility and
strength.

2. Develop a viscoelastic model for wheat straw
that represents its behavior under applied
stresses.

3. Verify the validity of the theoretical models
of the plant by experimental evaluation of plant
parameters.

i, Determine the effect of maturity on the various

plant parameters.



2. REVIEW OF LITERATURE

2.1 Physical Structure of Biological
Materials

The cell is tle smallest structural unit of a bio-
logical material. The plant cell 1s composed of a non-
protoplasmic rigid wall and an inner cytoplasmic fluid.

The cell wall, being the supporter of the cell, determines
its shape and texture. The plant has two types of walls,
a primary wall and a secondary wall. Living cells, which
carry out life processes, have only a primary wall whereas
non-1living supportive cells have an additional secondary
wall.

Primary walls are composed of a fine mesh network of
cellulose fibrils which are filled with pectic and hydro-
philic compounds. The secondary walls are composed of
crystalline cellulose grouped 1nto coarse branching strands
which are encrusted with pectins, hemicelluloses and lignins.
Frey-Wyssling (1952) reported that primary walls were capa-
ble of up to 50 percent extenslon as compared with about
two percent for secondary walls. This 1is due to the
large amount of amorphous cellulose and pectlc compounds
in primary walls as contrasted to crystalline cellulose

and lignins in secondary walls.



Kollman (1964) reported that the woody cell wall
consists of 45-65 percent cellulose, which is formed from
glucose anhydrides. He also reported that x-ray optical
studies have shown four celloblos residues form the crystal-
line element body of cellulose. Increasing crystallinity
has a very strong influence on the most important physical
and mechanical properties of cellulose containing fiber.
With it the density, the modulus of elasticlty, and the
tensile strength increase, while the moisture absorption,
the swelling and stretchabllity decrease.

Such mechanical properties as of cellulose-contalning
fibers and tissues may depend, besides crystallinity, on
the orientation of the crystalline regions of the filber
axis.

Kollman (1964) also reported that the crystallized
parts of the cell wall behave as elastic elements while
amorphous regions are llke viscous elements.

Generally the cell wall behaves in what 1s believed
to be a nearly elastic mannef while the cellular fluids
are liquids exhibiting a viscous behavior. Therefore,
it seems loglcal to represent the mechanical behavior of
selected blological materials by using mechanical models
composed of elastic and viscous elements.

2.2 Physical Structure of the
Grain Crop Plant

The wheat plant consisfs of three majJor parts. The

root, the stem,and the head. The root functions are to



support the plant 1n the soll, to gather water and minerals
from the soll, and transport them to the stem of the plant.
The stem represents the major part of the plant structure
above the ground. It supports the head and leaves of the
plant and carrles out 1life processes. The head grows at
the top of the plant and carries the grain.

The plant stem varies in height between two to six
feet. The stem can be approximated by a hollow tube with a
gradually decreasing diameter toward the plant top. The
stem has a number of nodes ranging between four and five.
The distance between nodes (internode) increases toward the
plant top.

The node represents the origin of the leaf. In the
nodal area, the stem slightly decreases 1n diameter and the
wall becomes thicker untll it becomes solid at the connection
with the base of the leaf.

All elements entering into the composition of the
plant stem--the strongest, as well as the weak pith--play
more or less important parts in the plant's resistance to
the action of external forces (Esau, 1965).

Burmistrova (1956) reported that the plant stem was
consldered as a tubular columnar structure with a height
to diameter ratio of four to six times greater than that
of architectural structures.

Percival (1921) reported that in the stem of the
wheat plant the course of vascular bundles through the

internode and the leaf sheath 1s practically parallel.



Near the node the leaf sheath 1is conslderably thickened,
attalning its maximum thickness just above its union with
the stem. The stem, on the other hand, decreases in thick-
ness in the same direction and has the smallest diameter
above the Junction with the leaf sheath. Below the Jjunction
of leaf sheath and stem, the smaller of the leaf traces are
prolonged in the peripheral part of the axls. The larger
leaf traces become part of the inner cylinder of the strands.
The bundles of the internode located above the leaf in-
sertlion assume a horizontal and oblique course and are re-
oriented toward a more peripheral position in and below

the node.

2.3 Physical and Mechanical Properties

Agricultural materials, being composed of structural
substances and fluids, do not react in a purely elastic
manner. Rather their response 1s a combination of elastic,
plastic and viscous behavior.

A number of investigators have studied the mechanical
behavior of agricultural materials by treating them as
englineering materials. Suggs and Splinter (1964) studied
the behavior of tobacco stalks 1in bending. They found a
difference between compression and tension moduli. They
also observed a viscoelastlc effect as exhibited in the
sStress relaxation behavior of the stalks. Thils effect was

Predominant at low strain rates.



Halyk and Hurlbut (1964) applied engineering material
testing procedures to alfalfa stems in order to determine
their ultimate tensile and shear strength.

McClelland and Spielrin (1957) reported the existence
of a precise relationship between the force required to
cause fallure in bending and linear density of the plant
material for three pasture plants--Wimmera ryegrass (Lolium

rigidum), lucerne (Medicago sativa), and Algerian oats

(Avena byzantina).

The Soviet All-Union Scientific Research Institute
for Agricultural Machine Building (VISKHOM) built in 1934
a special laboratory to specialize in investigations on the
physicomechanical properties of grain crops, rice, corn,
sunflower, potato, sugar beet, various fodder crops, flax,
hemp, castor, soyabean, groundnuts, tobacco, etc. Burmi-
strova, et al. (1956) reported some of their data on size,
weight, volume and quantitative properties of plants, and
strength indexes of various plant's parts subjected to the
action of different machine working parts. Other results
obtalned from these investigations were on friction co-
efficients of various plants subjected to different sur-
face conditions, speeds, pressures, etc. These investigations
were for the purpose of providing experimental basis for
the machine designer's work.

Diener (1965) used static and dynamic loading to
study the mechanical properties of cherry bark and wood.

He determined the maximum strength of bark specimens from



tensile loading. He also measured the elastic and viscous
properties of bark and green wood specimens using the
elastic and viscoelastic flexure theory. He derived an
approximate and an exact equation for determining the
viscoelastic modulus from dynamic flexure. He concluded
that the strength of bark was highly dependent on the
direction of the applied force, 1.e., the material is
anisotropic.

The use of mechanical models to approximate the be-
havior of materials of biological origin has been proven
to be useful. Most mechanical models consist of an ele-
ment or number of mechanical elements whose behavior under
applied stresses 1s known. This provided the possibility
of descrilbing and explaining a wide range of behavior,

Zoerb (1958) studied the mechanical and rheological
properties of cereal grains. He obtained stress-strain
curves for both the whole kernel and a core specimen made
by cutting off each end. Information derived from these
studies was used for the evaluation of hysteresis losses,
moduli of resllience, and modull of elasticity. He also
conducted stress relaxation studies on pea beans using
varying loading rates. The relaxation data was fitted to
a two-element Maxwell model which gave a close approximation
of the observed behavior.

Mohsenin, et al. (1963) proposed a qualitative model

to represent the viscoelastic nature of creep behavior for
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frults 1n terms of the analogous behavior of a Maxwell
model in series wilth a Kelvin-Voigt model.

Finney, et al. (1963) considered the potato tuber
as a linear visccelastic body and established a physical
basis for thils consideration by studyling the constitutive
components of the protato tuber. They also studied the
stress relaxation properties of the tubers when axially
loaded between parallel plates. The relaxatlon was repre-
sented qualitatively by the equlvalent response of four
Maxwell models in parallel. Timbers (1964) studied both
creep and stress relaxation behavior of Netted gem Potato.
He also proposed a mechanlcal model to represent the tuber
behavior.

Shpolyanskaya (1952) studied the structural-mechanical
properties of wheat kernels. She reported that wheat ker-
nels behaved as an elastic-plastic-viscous body which ex-
hibited creep, stress relaxation, and elastic after-
effects. She proposed a mechanical model to represent the
time-dependent behavior of a grain subjected to uniaxial
compresslon. She also utlilized the classical Hertz solution
for contact stresses to evaluate the modulus of deformability
for the grain.

Morrow (1965) studied the viscoelastic properties of
McIntosh apples subjected to both uniaxial and bulk com-
pression. Mechanical models were chosen to represent both

creep and relaxation behavior.
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Morrow and Mohsenin (1965) proposed standardization
of techniques for the evaluation of mechanical properties
of agricultural products. They suggested that all mechanical
properties should be evaluated 1in terms of common engineer-
ing parameters as a first approximation. They also sug-
gested that all modull of compliances should be fitted to
viscoelastlic models for the purpose of obtalning meaningful
time constants and other viscoelastic parameters. They ob-
talned a conslistent correlation between experimental re-
sponses of McIntosh apples and those predicted by visco-

elastic models.



3. THEORETICAL CONSIDERATIONS

3.1 Mechanlical Properties

Mechanical properties are the properties that deter-
mine the behavior of the material under applied forces.

Those properties whilch are concerned with flow and de-
formations are referred to as rheclogical properties.
Rheology, generally, considers those stress straln relation-
ships of the materials which are time dependent.

Jastrzebski (1964) reported that all load-carrying
materials can be divided 1Into three main divisions accord-
ing to the mechanism involved in thelr deformation under
applied forces. These are elastoplastic, viscoelastic,
and elastic materials. It follows that three basic types
of deformations are involved in the response of all engineer-
ing materials to applied forces. These are elastic, plastic,

and viscous deformations.

3.1la Elasticity

A materlial is called elastic when the deformation
produced in the body 1s wholly recovered after removal of
the forces. For linearly elastlc materials, the relation
between stress and the corresponding strain, in the elastic

range of the material, 1s governed by Hooke's law. Hooke's

12
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law states that the stress 1s proportional to strain and
independent of time. It follows that the ratio of stress
to strain 1s a constant characteristic of a material, and
this proportionality constant is referred to as the modulus
of elasticity.

For an 1iseotroplc material each stress willl induce
corresponding straln, but for an anisotropic material a
single stress component may produce more than one type of
strain 1in the material. Since there are three main types
of stress--tension, compression and shear--there will be
three corresponding modull of elasticity.

" Very few materials behave as perfectly elastic bodies
because of structural imperfections. Many materials yield
a curved stress-strain dlagram practically from its be-
ginning. The definition of the modulus of elasticity does
not require the stress-strain curve to be linear. If the
curve 1s not llinear, the modulus of elasticity should be
taken as a secant or tangent elastic modulus. A tangent
elastlc modulus 1s defined as an increment of stress

divided by an increment of straln for an elastic substance.

3.1b Plasticilty

Many materials when stressed beyond a certain minimum
stress show a permanent, nonrecoverable deformation. This
is called plastic deformation, and it 1s the result of
permanent displacement of atoms, molecules, or groups of
atoms and molecules from their original positions after

the removal of stress.
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An ideal plastic body, also called St. Venant's solid,
i1s represented on the stress-strain diagrams as a line paral-
lel to the strain axis at a distance corresponding to the
yleld stress of the material.

Closely connected with plastic deformation is the con-
cept of plasticity, which is defined as the ability of the
materlial to be deformed continuously and permanently without
rupture during the applicatlion of a force that exceeds the
yleld value of the material.

Most of the materials show deviations from both per-
fect elastic and ideal plastic behavior; therefore, the re-
lationshlp between stress and strain will not be linear.
They show a slightly curved line in the elastic range and
a considerable increase in stress during plastic de-
formation.

Jastrzebskl (1964) reported that the mechanism of
plastic deformation 1s essentially different in crystalline
and amorphous materials. Crystalline materials undergo
plastlic deformation as the result of slip along a definite
crystollographic plane, whereas in amorphous materials slid-
ing of individual molecules or groups of molecules past one

another occurs, resulting in a flow.

3.1c Viscoelasticity

The classical theory of elasticity deals with mechanical
properties of perfectly elastic solids, for which, in accor-
dance with Hooke's law, stress is assumed always directly
proportional to strain but independent of the rate of strain.

The theory of hydrodynamics deals with properties of perfectly
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viscous 1liquids, for which in accordance with Newton's law the
stress 1s always directly proportional to rate of strain but
independent of the stralin itself. These categories are 1deal-
izations; however, as mentloned before, any real sollid shows
deviations from Hooke's law under sultably chosen conditions,
and 1t 1s probably safe to say that any real liquid would

show deviations from Newtonian flow if subjJected to suffi-
clently preclse measurements.

There are two important types of deviations. First, the
strain (in a solld) or the rate of strain (in a liquid) may
not be directly proportional to the stress but may depend on
stress 1n a more complicated manner. Such stress anomalies
are familiar when the elastic 1limlit is exceeded for a solid.
Second, the stress may depend on both the straln and the rate
of strain together, as well as higher time derivatives of the
strain. Such time anomalies evidently reflect a behavior
which combines 1liquid and solid like characteristics, and
they are therefore called viscoelastic.

Both stress and time ancmalles may of course coexist.

If only the latter is present, we have linear vliscoelastic
behavlor; then, in a given experiment the ratlio of stress
to straln is a function of time alone, and not of the
stress magnitude.

When a material exhibits linear viscoelastic behavior,
its mechanlcal properties can be duplicated by a model con-
sisting of some suitable comblnation of springs, which obey
Hooke's law, and viscous dashpots (plstons moving in oil),

which obey Newton's law.
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To simulate a real materlal, the model may require
an infinite number of units with different spring constants
and flow constants, but 1f each unit 1s linear (Hookean
or Newtonian respectively) the overall behavior is linear.

In general viscoelastlic materials may include as
special cases, the 1deal elastic (Hookean) solid at one
extreme and the ideal viscous (Newtonlan) fluld at the
other. All other viscoelastic materlals may therefore be
viewed as 1ncorporating in varylng amounts through suit-
able combinations of the characteristic behavior associ-
ated with those two materials. Accordingly, simple models
composed of sultable arrangements of linear springs (Hookean
elements) and viscous dashpots (Newtonian elements) serve
well to portray the phenomenologlical behavior of visco-
elastic medla.

A visegelastic model (Figure 3.1) is composed of
two (or more) primary elements, the elastic element and
the viscous element.

(1) The elastic element (Hookean): or spring

element:

F = Eu; where: E spring modulus = const.

u displacement

(1i) The viscous element (Newtonian): or dashpot

element:

F=n %% = nDu; where: n = the viscosity of

the dashpot fluld

d

D='&'
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Figure 3.1--Viscoelastic models: (a) Elastic element

(Hookean),(b) Viscous element (Newtornian), (c¢) Maxwell
model, (d) Kelvin-Viogt moael, (e) Three element model,
(f) Generalized Maxwell model.



(111)

(iv)

(v)

Combination in series: (Maxwell model):

Du = (%) DF + (%) F.

Combination in parallel: (Kelvin-Volgt model):

F = Eu + n Du.

Generalized Maxwell Model:

£

varallel combination of a Hookean element,

Newtonlan element, and a large number of Maxwell

maodels.

I.

If thls model 1s given a sudden deformation

(u) defined as u = K H(t), where H(t) 1is
the Heavislde unit function, defined by
H(t) = 0, t <0

H(t) =1, t >0

(e.g., a constant strain situation), the
problem of stress relaxation can be repre-

sented in terms of the mathematical equation

F(t) = K E; H(t) + Knp 6(t)

where &§(t) = the Dirac delta function = D H(t)
The force response to a unilt extension
u(t) = H(t), and excluding the constant and
delta components, 1s defined by Bland (1960)
as the "relaxation function,” denoted by X(t).
For the generalized Maxwell model, therefore,

it 1s:
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n -Eit/ni
X(t¢) = ] E,; (e ) H(t)
i=3
n —t/Ti
= 7 Ey (e ) H(t)
i1=3
where:
Ny
T, = =— = the relaxation time
i Ei

II. Similarly for a constant strain rate

loading (R)

F(t) = E; / Rdt + Rnj

-t/t
1y

n
+ 1 E; Rty (1 - (3.1)

i=3
Generalized Maxwell models having various

number of Maxwell models 1in parallel can be
used to represent the stress relaxatilon in
materials. If the stress falls to zero for
large values of time then there should be no
spring in parallel with the other elements

when a model is used to simulate the behavior
of this material. Likewise, 1f there is an
indication that it responds as a rigid body

for increasingly high rates of deformation,
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then there should be a dashpot in parallel
with the other elements of the Maxwell
model.

After a satisfactory model 1s postulated, the relax-
atlon function, and the complete viscoelastic behavior of
the material under various types of loading can be mathe-
matically defined.

This general discussion of various types of behavior
should help iIn the understanding and analysis of the behavior
of the wheat plant. Because of the exlstence of both the
viscous and elastic-like properties in the plant cell, one
would expect to have a behavior that combined more than one
of the 1ldealized conditions discussed previously.

The first part of thls study deals with the behavior
under applied loads, as well as the influence of the time
factor. Once this 1s understood, 1t will then be possible
to proceed in the second part of the study which deals with

the structural stability of the plant.

3.2 The Theory of Elastlc Stabllity

Consider an element of a beam subjected to longitudinal
and transverse loads as shown in Figure 3.2. The differ-
ential equation of the dilsplacement in the y-direction

takes the form

2 2
4a- (EI d——"’1) +
dx? dx?

P

(3.2)

Lo,
e
N
n
o]

d
ax

where: P = axial compressive load
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Figure 3.2--An elenment ot elastlic beam snowilng loading
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Figure 3.3-=-Elastic columns under different loading
conditions.
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EI = flexural stiffness of the sectilon

q = transverse load per unit length.

3.2a Straight Column

Consider a flexible straight column fixed at one end
and free at the other; and subjected to an axial load P
(Figure 3.3a). Assume that EI, the bending stiffness,
is uniform, @q = 0, 1i.e., no transverse load; and that the
buckling occurs in the x-y plane. Under these conditilons

the governing equation 3.2 will be reduced to the form

b4 2
e S (3.3)
dx dx

with the boundary conditions:

y =0
} at x = 0’
dy -
dx 0
and
2
M, = - BT &L = 0
dx?
} at x = L.

3
V=EId—X+P%l=o
dx3 X

A possible solution of equation 3.3 takes the form

y =c; + cox + c3 sin /ET-X + c, cos / ET X» (3.4)
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and considering the given boundary conditions, the expres-

sion for the deflectlion curve takes the form

y = c; [1 - cos (g%fl) %?], forn=1,2,3,...

from which the value of P, for the first mode of buckling,

is
P (the critical load) = n2EL (3.5)
412
also the corresponding deflectlion curve is
y = c; (1 - cos ZX) (3.6)

2L
Similarly if the column was considered to be hinged from
both ends, the corresponding critical load, for the first
mode of buckling, will be

T2EI

Pcritical - 1,2 (3.7)

3.2b Initial Curvature

When a bar is submitted to the action of the lateral
load only, a small initial curvature of the bar has no
effect on the bending, and the final deflection curve is
obtalned by superposing the ordinates due to initial
curvature on the deflectlion calculated as for a straight
bar. However, 1f there 1s an axlal force acting on the
bar, the deflection produced by this force will be sub-

stantlially influenced by the 1nitial curvature.
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Conslder the initial shape of the column axis to

be given by the equatilon

i.e., it initlally has the form of a sine curve with

y. = e sin %?

o

(3.8)

maximum ordinate at the middle equal to e, and under the

action of the longitudinal compressive force P (Figure

3.3b). Additional deflection, y;, will be produced so

that the final ordinates of the deflection curve are

The bending moment at any cross section is

also

or

therefore

where

The general

y =Y, ¥t N

M.P(y0+y1)

d2y,
M= - EI =
dx?

solutlon of equation 3.10 is

(3.9)

(3.10)
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Y1 = A sin kx + B cos k x + sin += (3.11)
n2
-1
k212
From the boundary conditions.
y1 = 0, for x = 0 and x = L,
A=B=20
Introducing the notation
o = P - P _ _PLZ_ Kk2L?
3
cr m2EI  @2EI n2

then Y1 = 1%

= sin IX (3.12)

Thls equation shows that the initlal deflectilon, e,

at the middle of the column is magnified in the ratio

1
l - o

When the longitudinal compressive force, P, approaches its

by the action of the longiltudinal compressive force.

critical value, and o approaches unity, the deflection

ordinate, y, increases indefinitely.
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3.2¢ Influence of the Lateral Forces

The wind forces acting on the plant in the fileld
can be approximated by a linearly distributed lateral
force having its largest value at the plant head.

Consider a straight column subject to longitudinal
force P together with a linearly distributed force

X

q(x) = aQ, s (Figure 3.3c). Assuming P and EI to be con-

stant,equation 3.1 becomes

2
EIg__Y.-{»Pg_X—_q .}E.,
ax® dx?2 oL
4 2 q.X
or Ly -5, (3.13)
dx dx
P
2 =
where k ET -

The general solution of equation 3.13 takes the form

3
q X
y=Asink x+Bcoskx+Cx+D - 69?5 , (3.14)

and A, B, C, D are constants of integration that must

be evaluated from the boundary conditions:

y =0,

} at x =0
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2
and .d__l = 0
} at x = L,

Qil + k2 QZ =
dx3 dx

These conditions together with equation 3.14 yield the

following values for the 1integration constants

C B 1 L
A=-CS=.201 L
K Pk ‘i op © 2
q
and B=-D=- o [1 - (fi + %%) sin kL]
P k2 cos kL

Substituting these values of the constants in equation 3.14

yilelds
9% 1 , L
Yy = n (—; + 5) (kx - sin kx)

k
9, 1 , kL

+ - - [1 - (Ef + 7;) sin kL][1 - cos kx]

cos
Qox?

In this equation it is clear that the deformatilon
is greatly influenced by the lateral forces. This situ-
ation 1s similar to the one discussed in section 3.2b in
the sense that deformation takes place before the critical

load 1s reached.
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3.2d Variation of the Moment
of Inertia

Many researcliecrs treated the stavility problem of
built--up columns of varying stiffness. Eleich (1951) pre-
sented the soluticns for columns with variable sections.
This available infoimnation may be utilized to study the
influence of the change in {(he dimensions of the plant
stem cross section on its stability. A4s the plant stands
in the fileld, the stem cross section has its largest di-
mensions Jjust above the soll, and gets smaller toward the
top of the plant until it reaches its smallest cdimension
Just below the plant head.

Under the assumption that this cross-sectional vari-
etlon 1s gradual, the whole plant may be consldered ana-
logous to half of a column hinged from both ends, chang-
ing in cross section symmetrically about its midpoint and
with straight cords as shown in Figure 3.L4a.

For experimental purpose, a speclmen of varying
cross section was hinged from both ends and tested for
stabllity. This case could be consicdered analogous to
that of a non-symmetrical column changing in cross section
with stralght chords as shown in Figure 3.40.

Case (1): Symmetrical Cclumn with Straight Chords

Fig. 3.l4a.

Denoting by I,n the monent of inertia at midpoint

and by Ix 1ts value at the reflerence proint x, one may

write
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(a) SYMMETRICAL

-

(b) NONSYMMETRICAL

Figure 3.4--Columns with varying cross sections.
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I. = I —2=1 2.=171 ¢2 . (3.16)

where g = g is a dimensionless quantity.

The bending moment is

2
M=Pys=-E I a7y
dx?
2
or E. I % + py = 0. (3.17)
dx?

Substituting I from equation 3.16 and introducing

leads to the differential equation with variable co-

efficients

2
g2 %—% + a2y =0 . (3.18)
3

The general solutlon of this equation is

y = /g [A; sin (K log, &) + Ay cos (K log, £)], (3.19)

where K = /a2 - %; and A; and A, are integration con-
stants. Substitutling equation 3.19 1nto the boundary

conditions:
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h
2
h *
m

y =0 ateBEO.

gx- =
and ac e} at ¢ 1,

results in the equatioans

h h
A;sin (K loge HQ) + Aj,cos (K loge HQ) =0,
B | m
Az
and Ay K+ = = 0.

The non-trivial solutlons exist only if the determinant

condition

)3
‘:9 - D =
tan (X loge i 2 K C
m
which has an infinite number of roots X. The smallest. root

K, defines the critlcal load, Pcr’ as follows

E, I
P = 5 B (1 4y g,2)

which can be written as
P = Y— (3.20)

where the factor u 1is defined by

1+)-|K12L2
b ——— (7 -
Lhg2 S

1+ 4 k? h 2
—r— (1 - ) . (3.21)
.m
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Equation 3.20 indicates that the critical load, Pcr’
is found as the critical load of a column with a constant
cross section having an equivalent moment of 1inertila

I = uIm, where u 1s given by equation 3.21.

Case (11i): Norsymmetrical Column with Straight

Chords Figure 3.4b.

In this case equation 3.19 1s applied to the boundary

conditions:
ho
vy =20 at ¢ = §_ = —
o ho?
and y =90 at £ =1
vielding the equations
o ho
A; sin (X log,_ ) + A, cos (K log_;=) =0
e hm (S }Am

and A2 = 0

Therefore, the stability conditions require

hO
g =0
m

sin (K loge

from which the smallest non-trivial root 1is

K = T_l’_
1 log, h, - log, h_

and the corresponding critical load is



w2E, I
= t ™m
Pcr " T (3.22)
in which
h, 2
1 4
o=k (1 - 22) =+ (3.23)
by n2

- 2
(loge hg log, hm)
The critical load 1s again analogous to that of a column

with constant cross section having an equivalent moment

of 1nertia

3.3 Inelastic Buckling

The theory of elastic stabllity 1is based on the
assumption that the stresses in the column would be below
the elastic 1limit at the instant when equililibrium becomes
unstable. In shorter columns the elastlc 1limit is ex-
ceeded before the column becomes unstable. In such a
condition, the equivalent modulus of elasticity becomes

a function of the critical stress.

3.3a Double Modulus Theory

Considering a short column compressed by an axially
applied load, P, so that o = % exceeds the proportional
limit. Then let the load be further lncreased until the
column reaches the condition of unstable equilibrium

similar to that of elastie calumns, and let 1t be deflected
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slightly. In every cross section there will be an axis,
n-n, perpendicular to the plane of bending in which the

cross--scevional stress developed prior to deflection re-
mains unchanged. Bending will increase the compression

stress on one side of the line n-n and decrease it on

the other side. The rate of increase 1s proportional to

2
o€ t?

strain curve in Figure 3.5. Because the strain reversal

= E and Et is the tangent modulus of the stress-
relieves only the elastic portion of the strain, the re-
ductlion on the other side of n-n will be following the law
of proportionality of stress and straln. The stress dia-
gram on the convex side 1s bounded by the line, NA',

(Figure 3.6) having a different.slope from that of the

line, NB'.

The equilibrium between internal stresses and external

load requires

s S, dh - f S dA =0 (3.24)

nd h - Rz
a s S;(z, + a) A+ s S, (z, - a) dA = Py ,
(o] (@]

(3.25)

where: S; and S- Zenote the statical moments
of the cross-sectional arez to the left

and right of the axis n-n, about this axis.
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Figure 3.5--The double and igure 3.6-=-Stresses and
tangent modulus theorles of strains 1n a section of an
inelastic buckling. inelastic column subJected

to axial loading.
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a = the dlstance between the neutral and
centroidal axis.
and y = the deflection, taken with respect to

the centroldal axils of the column.

From Figure 3.6,

S} = — 2z; and S; = — 2Z)

Also from the relative rotations of two cross sections

in Figure 3.6:

0;dx
and since A dx = 5
o1 g2
de _ =
then dx Elhl E2h2

2
For small deformations %% = 4%y

dx?
2 2
therefore o, = E h a7y and o, = Et h, a7y
dx? dx?
Therefore equation 3.24 becomes
h h
2 1 2 2
%Y ;2 aa-k TL s Tz, an = 0
dx? o dx? o

or E Sy -E S,=0 (3.26)
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This equation together with the relation, h; + h, = h,
determines the position of neutral axis, n-n. The second

equation, 3.25, ylelds

2 hy h,
Y (E s 2,2 A+ E, s 2,2 dA)
dx? o) o
h na
2 1
+a 3L (E s 2z, dA-E / 2z, dA) = Py
dx? o o)

2
which results &L (E I, + E, I,) = P y
dx?2 t

where I, and I, represent the moments of inertia to the

left and right of n-n respectively.

Introducing: E I = E I + E, I»
— g2
results ESY +p =0 (3.27)
de y
_ I I,
where: E =E T + Et —:-[—, (3.28)
= the effective or double modulus
and I = the moment of inertia of the cross

section about the axis through the

center of gravity.
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Once the stress-strain curve in compression is avail-
able, E can be determined by means of equations 3.26 and
3.28. 1In the inelastic range E is variable, while in the
elastic range E becomes the same as E.

And as in section 3.2a; for stralght column hinged

from both ends, the critical load becomes

) =
P, = -1 (3.29)
L?

3.3b Tangent Modulus Theory

This theory was origlnated under the assumption
that when the column buckles after being stressed beyond
the elastlic limlt, no straln reversal takes place on the
convex side of the bent column when it passes from the
stralght form to the adjacent deflected configuration.

Under thils assumption the value of the tangent
modulus, Et’ applies over the entire cross section. For
axial loading, the differential equaticn of the deflected

center line 1s

2
E, I %y 4+ py = 0, (3.30)
dx?

and the critical -load for the hinged ended column will be

= (3.31)
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which 1s smaller than the value obtalned from the double
modulus theory. Thils value could be conslidered as a lower

1limit of the buckling load.

3.3¢ Inelastilic Buckling Model

Crandall (1959) presented a simplified model that
simulates the 1inelastic buckling conditlons described in
section 3.3a and 3.3b. The model, shown in Figure 3.7,
conslsts of a rigid member supported by two strain hardened
springs A and B. The force deformation relations for the
springs has the same form as the stress-strain curve for
the column material, Figure 3.7d.

Suppose that under the load, P, the system has
reached the position where both springs have been com-
pressed by 60, and the column remains straight, Figure
3.7a. Now suppose that only a small change is required
to lead to the tipped position. There are two possible
mechanisms by which thils tipping can occur.

(1) The double modulus mechanigm: where spring

B 1s compressed a small additional amcunt while spring A
decompresses (l.e., plastic loading and elastic unloading).

(1i) Trhe tangent modulus mechanism: where both

spring A and B suffer additional but unequal compression
(1.e., further plastic loading).

General Considerations:

a. Considering the forces acting on the free body,
Figure 3.7b, and assuming a small displacement,

then
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(a) Inelastic model with no load and under stable and
unstable loading conditions.
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8 DEFORMATION
(b) Free body (c) Geometry of (d) Force-deformation
dlagram deformation curve of the
column.

Figure 3.7--Inelastic buckling model.
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and

and

where

. and

and z Mo = - C FA + C FB -LeP=20
_ P Lo
Fp=z3 Q1 -%)
} (3.32)
=P L6
Fg=3 1+ 7%
b. Consilering the geometry of Figure 3.7c, the

F

displacements of the two springs are related

to the angle 6 as follows
6g = 8, = 2C ¢ (3.33)

The plastic modulus, Kis in a small neighbor-
hood of 60, can be exnressed approximately by

the tangent of the curve at 60. Therefore

F=F + K_ (6 - 50), represents the loading

F = Fo - Ke (6 - 60), represents the unloading

o = the force in each spring when the column 1is
straight and the spring deflection 1s 60.

e = the slope of the elastic line of the force

deformation curve.
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With the above considerations in mind the loads at which

the stabllity can exlst are

o c2 o Ko K¢
P, = sfor the double modulus mechanism, (3.34)
d L Ke + Kt -
and
_2¢c2
Pt = T Kt,for the tangent modulus mechanisms, (3.35)

Thls model simulates the inelastic buckling once
the force deformation behavior of the springs 1is similar

to that of the original column material.

3.4 Inelastic Curved Hollow Tubular Column

Considering a given part of the straw as a hollow
tubular column, it 1is possible to study the comblned effect
of initial curvature and 1lnelastic behavior.

Assuming that the initial shape of the center line

of the straw, Figure 3.8a, takes the shape:

y; = e sin X (3.36)

And under the actlion of the compressive force, P,

an addltional deflection:

y2 = & sin %% (3.37)

is produced. The change of the curvature at the middle

of the straw is
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Figure 3.8--Inelastic curved hollow tubular column under
axial loading.
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d?y, 2
%-pi-h( —) =‘5"2 (3.38)
° dx® s =12 L
where éL = the 1initilial curvature at x = %
o

Assuming that the stralns in the outmost fibers at
the middle of the straw are e€; and e€;. The change of
curvature, due to the deformation resulted from the longi-

tudinal force,P, can also be written as

€2 = €]

S S
pO

(3.39)

'O“—J

2r)

where Po the initial radius of curvature

and the radius of curvature of the section under
consideration.
From the last two equatlions the additional deformation, 6,

can be obtalned for any assumed values of €; and €5,

L2 €2 — €}
§ = — —— (3.40)
22 °r
Also the compressive forcé, P, from the equation
_ P _ 1 €2
9. = Zres = FETE Elf ode (3.41)

and the bending moment 1s related to the total deflection

as follows

P (e +38) =M (3.42)
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Since bending and direct stress occur simultaneously
from the beginning and grow together with increasing load
P, no strain reversal 1s presumed to occur on the convex
slde of the deflected straw at the instant at which the
critical locad is reached. When P 1increases untll the pro-
portional 1limit 1s exceeded in the entire cross section, or
at least in the highest stressed portion of the section,
the stress distribution will follow the stress-strain dia-
gram for the straw. As shown in Figure 3.8b, every section
will have a 9 axls along which the stress equals the

P
average stress i’ i.e.,

Consldering the total stress, o, consisting of two
parts L and the stress due to bending denoted by Ty s

then

o = o  + o . (3.43)

In Figure 3.8b, the condition of equilibrium requires

r;-a /ri2 - (g, + a)? ro-a //rzz- (z; + a)2

b dg,dg; - % dgpdg; = 0
-r;j-a o -I'p,-a O

(3.44)
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and
r;-a //P12 - (g1 + a)? rp-a //P22 - (g + a)?
op ¢1d22d2) - j/ oy £1dgodg; = %P(y; + y2)
-r;-a o -rz-a o
(3.45)

where, as shown in Figure 3.8b

t1 = the distance of a fiber from the<%-axis of the
cross section.
a = the distance between the centroidal axis and

the 95 axis.

Also in Figure 3.8b, the stresses and corresponding strains
are: €y T the compressive straln corresponding to the
average stress o .
€152 = the minimum and maximum compressive strains,

respectlvely, corresponding to the compressive

stresses o; and o, at the external fibers.

Let us consider the relative rotation of two cross
sections a distance unlty apart, and in reference to

Figure 3.8b,

e - e = - (3.146)

and €2 = €1 1. 1
—_— = - - — (3.47)
2r1
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From equations 3.46 and 3.47 we can write

2ry o, (e - e)

- (o]
L1 = 2 r, + po (82 - 61) (3.“8)

Differentiation with respect to g; yilelds

€2 — &)

- 1
de = (——5—57— + g;) dCl (3-“9)

Using equations 3.48 and 3.49 together with equations

3.44 and 3.45, we can write

// ) 2r1po(e-eo) 2 // ) 2rlpo(e-eo) 2
€2 r -{2P1 + p0(82_61) + a} €2 ra -{2T1 + po(ez-eT) ¥ a}

&1 4 b dg,de - WA b dg,de = 0
(3.50)
and
2rip (e~-e ) 2 // 2rip (e-e ) 2
2_ ®) ) 2 0 ®) -
/;2 //rl {2r1 + po(gz—gl) + a} €2 r2 {2rl + DO(EZ_EI) + d}
& i cb(e—eo) dg,de - e . cb(e-eo) dg,de

2
{er; + 00(82—61)}
= P(y: + y2)
8ri12 o

o)

(3.51)
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In these equations 9y should be considered a function
of ¢ represented by the portion of the stress-strain curve
which lles between €; and e, (Figure 3.8Db).

For a glven average stress, 0y = %, and a given maxi-
mum compressive strain, e,, on the concave side of the column,
equation 3.50 ylelds the minimum compressive straln e;.
Similarly a set of various distributions of stress pertain-
ing to the same axial load, P, can be determined, represent-
ing possible distributions of stress which may exlist at the
various cross sections of the bent column. For each of
these stress areas a value of radius of curvature can. be
determined through equation 3.47. 1In this manner a set of
correlated values, pand y , can be obtained defining a
function p = f(y;,y2). And since for small a deflection,

2
1.4y , the followlng relatlonship can be established:

(o] dx?2

d2
& = £(y,,y2)
dx?

. (3.52)

Such a differential equation defines y, the shape of the

%, initial shape y;, and

centerline, for any value of Oy =
length of the straw.

Bleich (1951) reported a typlcal relationship between
the average stress, Oy and the deformation, Yp? at the mid-
height of a straight column with a rectangular solid cross
sectlion, made of elastic plastic material now,eccentrically

loaded. In such a situatlon of a eccentrically loaded elastlc-

plastic column, the relation between 9y and Y will be
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similar to that of Figure 3.9. From this relation, some
observations can be made. At the stress S two con-
figurations of equilibrium are possible, both pertaining
to the same load P = Aco. One configuration corresponds
to a stable deflection, where an increase in o results in
an increase in the deflection. This configuration exists
after the load, P, is removed and the column returns
toward its original shape. However, it retains a slightly
bent shape due to the residual plastic strain in those
fibers where the proportional limit was exceeded. The
second configuration 1s unstable: since a further increase
in Ym involves reduction of o,

The maximum value of stress, Oy indicates, therefore,
the transition from stable to unstable equilibrium. Accord-
ingly, Pcr = Aoc defines the fallure load of the eccentri-
cally loaded column. It should be clear, from this reason-
ing, that the failure 1s not due to reaching a certain
critical flber stress, but because the stable equilibrium
is no longer possible between the internal and external
bending moment.

In the limiting case of straight column, i.e., no
initial curvature, the o, = ¥, curve assumes the shape
indicated by the dashed curve of Figure 3.9. The critical
load 1s then the load obtalned from the tangent modulus

theory.
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4. EXPERIMENTAL PROCEDURE AND EQUIPMENT

In agricultural englneering research, two approaches
are commonly used: (a) the factorial analysis, i.e., 1so-
latlng the different factors affecting certain phenomena
and checking each one of them separately, and (b) the
utllization of information or techniques available from
other englneering areas. The second approach 1s being
used in this study.

To determine experimentally the mechanical and
rheological properties of an agricultural material, it is
necessary to have some means of measuring applled stresses
and the amount of strain as a function of time. It is
also highly desirable to have a recording unit to provide
a continuous and permanent record to the existing relation-
ships. It was recognized from preliminary tests that the
cereal grain plant has viscoelastic behavior, and as such
its behavior would be considerably influenced by tempera-
ture and humidity conditlions. Therefore, a temperature

and humidity controlled testing chamber was utilized.

51
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4.1 Equipment
k.la Testing Chamber

The testing chamber was slx feet wide, eight feet
long, and seven feet high. It was previously constructed
of two layers of plywood between which fiberglass insul-
ation was fitted. The temperature was controlled by means
of a thermostat operated air conditioner located in the
lower front corner of the chamber. With an air duct
fitted to 1t, 1t directed the air toward the top of the
chamber to minimize temperature gradlent and to reduce
alr movement in the area where the samples were tested.

The humidity was controlled by means of a humidistat
operated solenoid in a low pressure steam line entering the
chamber through a horizontal 20-inch long half-inch pipe.
The pipe had small holes drilled at one-inch spacing along
the top.

Throughout the tests the temperature was malntalned
at 72 (+ 3) degrees F., and the humidity was held at 65
(+ U4) percent.

4.1b The Testing Machine and
Recording Unit

The overall view of the testing machine and recording
unit 1s shown in Figure 4.1. The basic unit of this machine,
which was assembled previously by Finney, was a U4-inch
stroke, double acting, pneumatically driven air motor with
positive, hydraulically controlled piston speed in both

directions. The machine was capable of producing forces in
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Figure 4.1--Overall view of the testing machine and
recording unit.
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tension and compression of about 300 pounds at constant
straln rates which may be varied from zero to about 50

inches per minute.

4,1c Stress Measurement

During the tests, the encountered forces were mea-
sured by a Baldwin-Lima-Hamilton U-1B 50-pound capacity
load cell and recorded by a Mosley 135 X-Y recorder. Due
to the low range of forces used, additional amplification
of the load cell output was provided by using a Brush
straln gage bridge amplifier.

Before each series of tests, the calibration of the

load cell and the amplifier was checked.

4.1d Strain Measurements

In most of the tests, it was necessary to check the
relaxation characteristics of the tested specimen. For
this reason these tests were conducted 1n two parts: (1)
a constant strain rate loading followed by, (2) stress
relaxation test while the specimen was held at constant
deformation. During the loading phase displacements were
measured using a dial gage at the load cell. The observed
displacements were recorded using an event marker on the
X-Y recorder.

Thlis method of straln measurement gave the relative
displacement between the load cell and the base of the
testing machine. This means that the strains wilthin the

mountings were also included. As 1ndicated later, it



55

became necessary for some of the tests, especially the com-
presslon tests, to search for another method of measuring
the strains within the specimen itself.

Because of the difficulty of mounting any strailn
measuring devices on the wheat plant specimen itself and
the small forces used in most of the tests, 1t became
necessary to utilize a method that does not include touch-
lng the tested specimen.

An optical strain measurement method was developed.
This method proved useful for strain measurement in the
compresslion test. In thils optlcal method two marks, one-
half of an inch apart, were made on the straw specimen,
and while the load was applied successive photographs were
taken at defined intervals. A mark, corresponding to each
plcture, was recorded on the loadlng curve usling the event
marker on the X-Y recorder. The photos were taken with a
35-millimeter camera at a fixed distance of about 4.5-1inches
from the tested specimen. The change 1n the distance be-
tween the two marks on the straw was measured by projecting
the negative and producing sufficient enlargement to gilve

reasonably accurate measurements.

4.2 Laboratory Tests

In order to determine the mechanical and rheological
behavior of wheat plants under different loadlng conditicns,
it was necessary to conduct a series of strength tests.

Compression, tension, and bending tests were made. For the
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purpose of studyling the stability of the plant, buckling
tests were also carried out. In each of these tests two
parts of the plant were tested. The first part was that
immedlately below the head, and the other was the lower

portion of the plant just above the ground.

Three varieties of the wheat plant (Triticum Vulgarus)

were tested over a four-week period starting one week
before the early harvesting season of 1965. The varieties
tested were Comanche, Redcoat, and Genesee. Six samples,
from three plants, were tested in each experiment.

The samples were obtained from the field in the
morning and stored in the temperature and humidlty con-
trolled testing chamber. The samples then were prepared
and tested in the same day. With each test, a molsture
content and linear density test were made. Also, the cross-
sectlional dimenslions, the outer diameter and thickness of
the sample was measured (Figure 4.3). PFigure 4.2 shows the

samples prepared for testing.

4.2a Tension and Compression Tests

In order to determine behavior of the wheat stem 1in
tension, three-inch samples were tested from the top and
lower portion of the plant stem. Each sample was clamped
from both sides by two 1/4 of an inch plywood blocks covered
with sand paper to prevent the sample from slipping. The
distance between the two clamps was about one-inch. The

recording procedure was such that the recording pin moves
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Figure 4.2--Samples

Figure 4.3--Measurements of the cross section of the
test specimen.
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in the x-direction at a constant rate while the resulting
force was recorded on the y-axls. The deformation was
measured, as stated previously, by using the dlal gage at
the load cell. The observed displacement was recorded
using the event marker on the X-Y recorder. In fact, this
dlisplacement was that of the piston rod. This includes
any relative movement between the specimen and the support-
ing clamps, 1f such slip occurs. The length of tested
specimen, i.e., the distance between the two supports, and
the cross-sectional dimensions, the outer diameter and wall
thickness, were recorded for each sample. Figures 4.4 and
4.5 show the tested specimen, mounting technique and
testing procedure.

Compression tests were made on fhe straw speclmen
for the purpose of obtailning the stress-straln and relax-
ation characteristics of the wheat straw. The sample
preparation had to be made such that neither bucklling nor
stress concentrations at the ends of the sample would exist.
A one-inch sample was considered to be desirable to avoid
buckling and yet not be too difflcult to handle. To avoid
stress concentration at the ends of the sample, several
mounting technliques were tried. The chosen technlque was
to glue two nalils inside of the straw. Thils allowed the
stresses to be transferred from the mounting nails to the
straw through the bond. Figures 4.6 and 4.7 show the com-
pression test samples before and after preparation for

testing. The test was conducted in two parts: (1) a
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Figure 4.U4--Method of mounting samples for tension test.

Figure 4.5--The tension test.
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Figure 4.6--Straw specimen for compression test,

Figure 4.7-~Uniaxial compression test,
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constant strain rate loading followed by, (2) stress
relaxation test while the specimen was held at constant
deformation. And, as in the tension test, durling the load-
ing phase displacements were measured, using the dial gage
at the load cell, and recorded on the chart using the event
marker on the X-Y recorder. This measured displacement
should 1lnclude all the strain in the mounting nalls, and
supporting bond. And as willl be mentioned in the next
chapter, thls was the reason behind the lower values of
modull of elasticity obtained from compression tests.

During the loading portion of the test the force
was recorded on the y-axis of the X-Y recorder while the
recording pin was moving in the x-direction at a constant
rate of 20 seconds per each inch. The force was applied
at a constant rate of about 0.01 + 0.005 inches per minute.

The second part of the test was the stress relax-
atlon test. This test took place at the end of each con-
stant strain loading test where the specimen was held at
constant deformation while the encountered force was re-
corded as a function of time.

Another strain measurement method, the photostrain
technique, was used to avold the additional stralns from

the mounting areas (Section 4.14d).

4L.2b Bending Test

Because of problems encountered 1n mounting and

strain measurements together with the time requlired for
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sample preparations, during which some changes in moisture
content of the sample is expected to take place, the bend-
ing test was proved to be much more convenient and reliable.
The test was conducted by loading the speclimen as simply
supported beam as shown in Figure 4.8. The force was
applied at a constant strain rate. Throughout the tests
the loading rate was in the range of 0.009 and 0.027 inches
per minute. The sample supporting frame, as shown in
Figure 4.8, consisted of two fixed and one moveable support
i1n the middle. The encountered force and displacement at
the middle of the tested specimen was measured by means of
the load cell and dial gage.

As 1n the compression test, the bending test con-
slsted of two parts: (1) constant strain rate loading,
and (2) stress relaxation test during which the specimen
was held at constant deformation. Also, the time base of
the recorder was used for both deformation and relaxation

measurements.

4.2¢ The Buckling Test

The stablility of the wheat plant under axial load
was also studied. An 8-inch specimen was selected be-
cause of the limits of the testing machine. Loads were
applied at a constant rate of strain until the critical
buckling load was reached. Two mounting techniques were
employed in the stabllity tests. The first, as shown in

Figure 4.9, was similar to that used in the compression
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Figure 4.8--The Bending Test.
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Figure 4.10«-The buckling test.

Figure 4.9--Method of
mounting samples for
buckling test
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test, where nails were fltted and bounded to the ends of
the specimen for the purpose of preventing a fallure at
the ends of the specimen. This technique was desirable
for the tests where the samples did not have a node at
the end. The second technique, without fitted naills,
was sultable for the samples which had nodes at the end.

The displacements of the ends were recorded, and a
l6-millimeter film was taken for the purpose of checking
the shape of the deformation.

Two samples were tested from each plant; the first
was from the portion immedlately under the plant head
where the cross-sectional dimensions decrease gradually
from the top node toward the plant head. The second
sample was taken from the lower portion of the plant.
Figure 4.10 shows the buckling test. The cross-sectional
dimensions, length, and initial shape of each sample were

determined for each test.



5. RESULTS AND DISCUSSION

5.1 General Characteristics of the Plant
Behavior Under Applied Loads

It was clear from the force-deformatlion curves that
the wheat straw does not react to applied stresses in a
purely elastic manner. It was also observed that the load-
ing curves of most of the tests had a plastic-like behavior.
The shape of the stress relaxation curves conflirmed the
assumption that the wheat plant has some viscous properties.
Thé molisture content and linear density of the tested

plant were evaluated over the testing period, (Figure 5.1).

5.1la Tension and Compression Tests

Tension curves showed an approximately linear stress-
deformation relationship. Compression curves, Figure 5.2a,
however, showed a significant plastic-1like behavior in the
loading curves. The stress relaxation test showed the
exlstance of significant damping effect. And as will be
shown in section 5.2, it 1s possible from the loading and
relaxation curves to obtaln the necessary information about
the elastic and viscous modull of the tested specimens.
After checking the damping characteristics of the wheat

straw, as will be explained in section 5.2, the slope of

66
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Figure 5.2--Typical behavior of loading and relaxation curves
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the first part of the loading curve was used to obtain

the modulus of elasticlty of the test specimen. Appendix
Tables A-1 and A-2 show the obtalned values of the modulus
of elasticlity from the tenslon and compression tests re-
spectively.

From the first test, in comparing the obtained values
for the modulus of elasticity from tension and compression
to that obtalned from the bending test, 1t was clear that
the modulus of elasticity was much lower than expected
from the results of the bending tests. The main reason for
that wasthe larger values of measured strains than that
within the specimen itself. Thils was malnly due to slip in
the tension test, and strains within the mounting area in
the compression test.

In order to reduce the error in straln measurement,
the photo-straln measurement technique was developed.
Three different samples were tested, and their stress-
strain curves are shown in Figure 5.3. Appendix Table A-3
glves the data obtained from this technique. The values
of the modulus of elastlcity obtained from this technique
were considerably higher than those obtained from the
mechanlical stralin measurement and seems to be a practilcal
method for such delicate materlals as the wheat straw.

It also lacked some sensitlvity for short periods. Even
after expanding the recorded view about 70 times larger
than actual length, the change 1n length was small and

quite difficult to make a precise measurement of the

fRy s ]
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expanded photo. The accuracy could be improved if very
sharp and dark marks are made, together with using a high

sensitivity and better quality film.

5.1b Bending Test

In this test, all specimens were supported as simple
beams and center loaded at constant rate of deformation. ql
The encountered force and displacements of the middle e
point were recorded. The force-~displacement relation was

visibly non-linear. The amount of non-linearity of the -

K

relation depended on the amount of damping in the straw.

At the end of the loading operation the material was al-
lowed to relax while the deformation was held constant.

A typical loading and relaxation curve for the wheat straw
in bending 1s shown in Figure 5.2b. As will be shown 1n
section 5.2, the slope of the first portion of the loading
curve of a viscoelastic material can be used to obtaln the
elastic modulus of a tested specimen. For a simply sup-
ported beam with a force acting in the middle, the displace-

ment, y, in the direction of the force 1s expressed as

_ F 13
YTIET "
where: F = the applied force

L = the length of the specimen (distance between
fixed supports)
I = the moment of inertia of the sample cross

section |
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E = the modulus of elasticity

or E = EEETE; .

This relation was used to calculate the modulus of elasticity
of the specimen. Appendix Table A-4 shows the calculated
value of E from the bending tests over the four week period
of tests. As shown in the table, the data obtalned from a
given test in the same period of time and for the same
variety, give different values of E. The variation from
one plant to another is a typical problem encountered in
research on biological materials. If the aim of a given
research 1s to obtaln statistical data regarding a given
characteristic, a large number of samples should be tested
depending on the amount of variatlon that exists. In this
study the main objective, however, was to explore the be-
havior of the plant and to express 1ts behavior in terms.
of the engineering language. For thils reason, only three
samples were tested in each experiment.

It was also observed that after exceeding a certailn
amount of deformatlon.,the cross- section lmmediately under
the applled force started to change from a circular to a
rather elliptical shape. This flattenling resulted in a
reduction in the moment of inertia of the cross section
and therefore less resistance to deformation.

‘The values of modulus of elasticlty obtained

from the bending test was used to check the assumed
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buckling model. Because of the variation from one plant

to another, the value of E obtained from averaging three
tests was not expected to be necessarlly the exact value of
the modulus of elasticity of the sample being tested for
stability. It was assumed, however, that this value of

E should be close enough to approximate that of the

av.
sample tested for stability.

5.1lc The Stability Test

As the wheat plant stands 1in the fleld, it can be
approximated by a column fixed at the bottom and free at
the top. The cross section of the stem, which may be
treated as a hollow tube except for the nodes, changes
gradually in the cross sectional dimensions as it tends
to have a smaller diameter toward the top of the plant.
As the plant stands in the field 1t carries a statilc
load of its own stem and leaves, and an axial load repre-
sented by the head. As the plant approaches the harvest-
ing season, the head grows heavier until it becomes the
main static load acting on the stem. The plant 1s sub-
Jected also to the wind force, which varies in intensity
from still air to very high speed wind. As the plants
stand in the field, there 1s a great deal of shielding
or mass effect which iIn turn reduces the wind effect.

The wind forces may be approximated by a linearly
distributed force with its latgest intensity towards

the plant top, Figure 3.3.
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For experlmental convenience the stabllity tests
were made on samples hinged from both ends, instead of
fixed from one end and free in the other as it actually
stands in the fileld. 1In these tests force was applied
axlally to the tested sample at a constant rate of de-
formation until the critical buckling load was reached
and long enough after that in order to identify the type
of buckling that took place from the shape of the resulted
force deformation curve.

It should also be mentioned that most of the speci-
mens were not perfectly straight. There was a significant
initial eccentricity in the tested specimens. And as will
be discussed 1n section 5.3, thlis resulted in the existence
of a bending moment together with axlal stress throughout
the stabllity test.

From the shape of the resultant force-deformation
curves, 1t was quite easy to tell whether the buckling
that took place was elastic, elastic-plastic, or plastic
buckling (sections 3.2, 3.3, and 3.4). Figure 5.4 shows
typlcal elastic, elastic plastic, and plastic buckling
curves resulted from the stability test.

Because the internode distance 1lncreases toward
the plant top, the change in the diameter of the straw
was more visible in the top portion of the plant. For
this reason two samples were tested for stability from
each plant. The flrst sample was from the lower portion

of the plant where the dlameter was assumed to be the
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same, and the second was from the top portion where the
change 1n the diameter was obvious.

During the tests it was observed that the lateral
deformation of the specimens obtained from the lower portion
had the form of a slne curve. The samples obtalned from the
top portion, however, tended to deform more in the direction
of the smaller diameter. Figures 5.5 and 5.6 show the
typical deformation curves for the uniform and conical

samples respectively.

5.2 Rheologlical Properties

The behavior of the wheat stem, being composed of
structural substances and flulds, as most agricultural
materials, was expected to be time dependent. The stress
relaxation test showed some viscoelastic behavior in all
tested specimens.

For an 1ideal relaxation test, it 1is desirable to
load the specimen by means of some step-change technique,
i.e., a loading which changes from zero to the desirable
value within an infinitely small time interval. This
technique has the advantage of minimizing the effect of
stress relaxation during the loading process, but 1t is
rather difficult to simulate experimentally. In this
study the tested specimen was loaded at a constant rate
of strailn until a certaln pre-determined level was reached,

and then the deformation of the specimen was maintained
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Figure 5.5--Deformation shape for straw with
uniform section approximately sinusiodal.

Figure 5.6--Deformation shape for straw
with varying section,



78

constant while the force required to maintain this defor-
mation was measured and recorded as a function of time.

It was assumed that the behavior of the wheat stem
can be described by a generalized Maxwell model, Figure
3.1, section 3.1. Under this assumption and with constant
strain loading, the curve that resulted from loading the

wheat straw can be expressed by the equation,

t n -t/ri
F(t) =E, / Rdt + Rnp + ) E, Rt, (1 - e )
L i i
0 i=3
n -t/'ri
=E; Rt + Rnp + E; Rty (1 - e ) (5.1)
i=3
where: R = the rate of strain
.. =N _ viscosity of dashpot fluid
i § spring modulus

the relaxation time

After a loading period of t = t;, and then holding
the displacement constant, the relaxation equation may be
obtalned by assuming that stopping the extenslon at t = t;
1s equivalent to applying a negative straln rate, -R, such
that from time t; and on, the sum of the two opposing
strains ylelds zero extension. The resulted expression

for "F" will be
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F(t - t;) =E; Rt +ny R+ } Ey Rty (1 - e )
1=3
n -(t-tl)/‘ti
- E; R(t -t;) - nag R~ J E; Ry (1 - e )
1=3
. n -(t - tl)/Ti -tl/ri
= E;Rt; + ) E, Rty e (1 - e )
i=3
(5.2)

Equation 5.2 represents the stress in the specimen beling
allowed to relax after loading from time, t = 0, to
time, t = t,, at a constant rate of strain, R. Equation
5.2 can be written in the form

n -(t - t1)/Ti
F(t - t;) = E;Rt; + 12 F, e (5.3)
=3

where: Fi = Ei Rri (1 - e

)

the stress 1in the ith Maxwell element at

the end of the loading process.

Figure 5.2 shows typical loading and relaxation
curves obtained from compression and bending tests re-
spectively.

By comparing the loading and relaxation equatilons,
one can expect the followilng:

1. A sudden change in the encountered force at

the end of the loading process can be referred
to the existence of a dashpot in parallel with

the spring and the Maxwell elements.
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2. If the encountered force falls to zero for large
values of time, then there should be no spring
in parallel with other elements when a model
i1s postulated to slimulate the behavior of the
tested specimen. If, on the other hand, the
stress does not approach zero as time approaches
infinity, and instead 1t tends to level up to a
constant value, then obviously thils type of be-
havlior should be represented by an elastic ele-
ment 1in parallel with the remalning elements in
the generalized model.

The stress relaxation function of a Maxwell material,

l.e., a material that can be represented by an element of

a simple Maxwell model, is F(t) = F e /T This function
when represented graphically on semi-log paper, will appear
as a straight line with slope of - %. For models consist-
ing of more than one simple Maxwell element 1n parallel,
the graphical representation may be obtained by fitting
several straight lines to the curve. Each straight line
represents one exponential function corresponding to the
relaxation of one Maxwell element. Thils graphical tech-

nique was introduced by Whitehead (1953) to represent the

decay of electrical charges in dielectric materials.

5.2a Viscoelastic Modeling

In spite of the problems encountered in the compres-

slon test, the relaxation characteristics were studied.



81

The graphlcal technique was used to obtaln the correspond-
ing viscoelastic model. In this test 1t was observed that
the force deformation curves showed a sudden increase in
the encountered forces at the beginning of the loading
process, and a sudden decrease 1in 1t at the end of the
loading process and beginning of the relaxation test. And
as mentloned before, this can be referred to as the exis-
tence of a dashpot 1in parallel with the other elements of
the generalized Maxwell model. After a long relaxation
time there was no sign that the relaxation curve tends to
level out, and this ruled out the possibility of having an
elastic element in parallel with the other elements of the
model. And by using the graphlcal technique to study the
rest of the curve, it was found that two Maxwell elements
in parallel,; together with the dashpot, will give a satis-
factory simulation of the relaxation characteristics of
the wheat straw under axial compression. Flgure 5.7 shows
a sample curve and the graphical technique used to chose
the viscoelastic model for the relaxation of the straw
under compression.

The stress-time relaxation equation of thls sample
takes the form

c=n R+ ] e
i=2

This model constantly represented the relaxation

behavior of the straw over the four weeks period of tests.
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Appendix Table A-5 gilves the values of the model parameters
for the Genesee variety over the four-week period of tests.
The problems encountered 1in the compresslon tests
raised some questions regarding the relaxation behavior of
the tested specimens in compression. It was mainly whether
the sudden change in the encountered force was a true be-
havior of the straw under compressive force, or due to the
mounting bonds as a result of the sudden change of the rate
of deformation. There 1is no definite answer to this state-
ment; however, some tests of straw specimens under compres-
sion and without reinforcing the ends, showed an 1ldentical
behavior. In these unmounted samples, however, the samples
tended to falil at the ends because of stress concentration.
The relaxation was studled also for samples tested
in bending. Neither a dashpot nor an elastic element were
believed to exist in parallel with simple Maxwell elements.
Using the graphical technique it was found that a model con-
sisting of two Maxwell elements 1in parallel can give a good
approximation of the stress relaxation of the wheat straw.
This model constantly represented the relaxatlon behavior
of the three different varleties of wheat plants through-
out the four weeks period of testing. In reference to
equatlon 5.1 and 5.3, the loading and relaxation curves
were represented respectively by the following equations:
-t/1, -t/1,
F(t) = E; Rt;(1 - e ) + E; Rtpo(1 - e ) (5.4)

for loading, and
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-(t - t1)/7, -(t - t1)/1,
F(t - t,) = Fie + Fp e s

for relaxation, where:

-t/

(1 - e 1

4
|

g = By Ry

)
R = the rate of deformation of the center of the
tested specimen
I |
i Ei
t; = the time at which the loading was ended and

relaxatlon test was started.

Figure 5.8 shows a sample of a relaxation curve and the
graphical technique used to find the viscoelastic model
for the bending. Appendix Table A-6 gives the values of
T1, T2 and F;, F, obtained from the bending test for the
three wheat varieties, Comanche, Redcoat and Genesee, for
the four weeks of tests.

5.2b Evaluation of the Modulus of
Elasticity from the Loading Curve

It was mentioned in sectlon 5.1 that the modulus
of elasticity was evaluated from the slope of the tangent
of the starting portion of the loading curve. In both ten-
sion and compression curves the slope gave the force-
deformation ratio which was used together with informations
of the cross-sectional area and sample length to evaluate

E as:

E = Force X orlginal length
deformation

Area
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Similarly the force, F, and deformation, y, of the
middle point of the straw tested in simple bending were
used together wilth the moment of inertia of the cross
section, I, and length of the span, L, to evaluate E from

the relatlon

g = FL
IBTY

Theoretically if we refer to the function representing the

loading curve in bending:

B —t/Tl —t/‘l'z
F(t) ElRTl l-e + E;)_RTZ l-e

B 2 3
= E,Rr; |1-(1-2 + & -t )
1 (2!)1,2 (3!)7,;3

& BoRt,|1-(1- + — 2 tD o
T2 (21)1,2  (31)1,3

t2 t3

t2 t3
+ EobR|t - + - .. (5.6)
[ (2!)1, (31)1,2 }

and



2
F'(t) = E;R|1 - = + — & _
1 (21)1,2
2
# E,R|1 - = + t -
T2 (2')'(22
from which
lim F'(t) = E;R + EZR (5.7)
t+o

which represents the effect of the elastlic elements only,
and completely independent of the damping effect in the
speclimen.

If we follow the same procedure for the function
representing the loading curve in compression we will end
with an expression ldentical to equation 5.7.

5.2¢ The Maturity Effect on the
Viscoelastic Behavior

As shown in Figure 5.9, the relaxation time tends to
increase as the straw becomes more mature. This change
with time was more significant early in the harvesting
season, 1.e., during the first two weeks of testing. For
the same period the moisture content (wet basis) and the
linear density of the wheat plants decreased as shown in
Figure 5.1. And as 1 = %, one can conclude that 1n order
for t to increase one of three possibilities must exist;
elther E decreases whlle n remalns approximately constant,

or n increases at higher rate than E, or n lncreases while
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E remains approxlimately constant. From the data of E
iisted in Appendix Table A-U4 one can say that the last of
the three mentioned possibilities 1s more likely to take
place. If this 1s the case, this means that n becomes
higher with maturity which means that the dashpots become
stiffer with maturity. Physically if we imagine a hypothe-
cal situation in which the damping factor became infinitely
high, a simple Maxwell model will become similar to an
elastic element in series with a rigid body, 1.e., the
simple Maxwell model will behave simply like an elastic
element. Theoretically this proves to be true as we con-
sider equation 5.6 which represents the loading function

for two simple Maxwell models in parallel:

F(t) = EIR[% o t? A ...J
(2!)1; (3!)1,2
2 3
+ EZR[} - £ + £ - ---}
(21)ty  (3!)1,2
lim F(t) =Rt (E; + Ep) (5.8)
(11:72)'"'

This concludes that the ultimate case 1s an elastic
material.

For the wheat plant one can conclude that as the
plant becomes more mature, the viscous effect becomes
lower and the plant tends to behave more like an elastic

material.
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5.3 The Stability of the Plant

While the englneers have devoted considerable at-
tention to the buckling stabllity of metallic structures,
they have done little to investigate how nature handled
this problem. Agricultural engineers are now investi-
gating biological structures with the same degree of
mathematical sophistication and instruments previously
used on engineering materials. Theories of plant struc-
ture and data accumulated can be of great 1mportance for
more understandling and better communication between the
engineer and the plant sclentists. It has been a custom
for the engineer to try to think of a way to treat or
harvest a plant no matter how peculiar the existing shape
of the plant might be. If the day comes 1in which the
engineer reaches the stage of understanding the nature of
thls blologlcal structure in the same way he understands
common engineering materials, he probably can ask the -
plant scientist to look for a certaln property or variety
that hes certaln characteristics which i1f achieved can en-
able him to make a break-throcugh in the technology and
efficlency of his machine.

An example for that was the process of developing
standing harvestors which were supposed to strip the
grains from the plant as it stands 1n the field. If such
a machine proved successful it could provide a very ef-
ficient way of harvesting with a smaller and more economical

machine. Theoretically such a function could be achleved
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1f we have the plant standing straight with the head at
the very top. Once the stabllity of the plant is clearly

understood, the plant scientlsts can look for certain

varleties which can achieve these requirements on stability.

He can even specify certaln properties in the stem of the
plant, its shape and strength which might achieve such
requirements. In this case while the plant scientist 1is
looking for a better yleld and certain other gqualitles in
the grailns, he can also look for the physical structure
which will satlsfy the requirements of the engineer.

In this investigation of the stabllity of the plant
structure, the Intention was to explore the means of handl-
ing such a study. Unfortunately, most of what is avail-
able 1In literature deals with metal structures which were
designed from materials, with known behavior, to perform
certaln functions. A good number of this informatilon
deals with idealized shapes and structures which are not
common in bilological structures.

In order to establish some basis for this study, an
idealized plant structure was assumed. After that some
modifications of the originally assumed shape took place
in order to have a situation closer to reality. These
modificatlions were made on separate steps to reduce the
complexity of the problem. One should also take in con-
sideration the fact that thils study 1s by no means a
complete one, it 1s rather a start for more work to follow

in the future.
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As a start, a specimen of the wheat plant stem was
assumed to have buckling strength similar to that of an
elastic, straight hollow tube which was made of a material
whose modulus of elasticity is equal to that of the plant
stem. The values of the modulus of elasticlity were those
obtalned from the bending test and listed 1n Appendix
Table A-4. The tests were made on three varieties of
wheat plants, Comanche, Redcoat and Genesee. Two samples
were tested from each plant, one from the lower part and
the other from the top. The tested samples were hinged
from both ends. Because the modull of elasticity used
were the average of three tests, different plant and due
to the variation from one plant to another, it was realized
that these average values of E may not necessarily be
the exact values of E for the samples being tested for
buckling stability. The theoretical values for the samples

from the lower portion were calculated from the equation

where: E Modulus of elasticity obtained from the bend-

ing test.

I = Moment of inertia of the cross section which
was assumed to be constant for samples from

the lower part of the plant.

L = Sample length.
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Appendix Table A-7 shows the values of the theoretical
and experimental values of Pcr for the samples from the
lower part of the plant over the four-weeks period of
tests. In each test the type of buckling, elastic,
elastic-plastic, or plastic, was identified from the
shape of the force-deformation curve obtained from test-
ing each sample.

The factors which contributed to the varliations be-
tween the theoretical and experimental values, other than
E, were the 1initial shape and the inelastic behavior of
the straw. Other factors influencing the stabllity of
the plant as 1t stands in the fleld 1include also the wind
forces, and the influence of cross-sectlonal variation
along the plant. Each one of these three major factors
will be discussed separately.

5.3a The Effect of the Initial Shape
and Inelastic Behavior

As mentioned in section 5.1lc, the tested speclmens
were not stralght. They had some initial eccentricity which
may be approximated to a sine curve. In section 3.2b the
stabllity of an elastic column with initial eccentricity
of this type was discussed. Also, 1t was found, in
section 3.2b, that if we assume small deformations and
as long as we stay 1in the elastic range, the critical
load will be the same as that for straight column. The
initial curvature, however, will result in a larger de-

formatilon.
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For the case of wheat straw which does not behave
like a perfectly elastic material, the situation is differ-
ent. In fact, we have two factors working together in
order to increase the deformation and deviate from the
elastlc behavior before reaching the critical load: (i)
the damplng factor which allows the matgrial to relax
while the load is being applled at a constant rate of
deformation, and therefore result in a larger deformation
for the same load; (11) the elastic elements in the material

had the tendency to have a plastic like behavior for large

deformations. And since bending and direct stress occur
simultaneously from the beginning and grow together with
increasing the axial load, P, no strain reversal 1s pre-
sumed to occur on the concave side of the deflected speci-
men at the instant at which the critical load 1s reached.
When P 1s increased until the proportional 1limit is ex-
ceeded 1n the entire cross section, or at least in the
highest stressed portion of the cross section, plastic flow
i1s presumed to take place. In this case, we will have the
situation discussed in section 3.4, where, as in Figure
3.9, the resulted value of the critical locad will be
lower than the one obtained from both the theory of
elastic stablillity and the tangent modulus theory of in-
elastic buckling.

After the load, P, 1s removed, the sample returns
toward its originally straight form but retains a slightly

bent shape owing to the residual plastic strain in those
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fibers where the proportional limlt was exceeded. And

as was shown in Figure 5.4; section 5.1, there are three
possible sltuations depending on the extent to which the
elastic 1limit was exceeded: (1) If we are still within
the elastic range and the proportional 1limlit, 1f there is
one. This was referred to as elastic buckling. The
experimental values should be the closest to the values
obtained theoretically from the theory of elasticity.
(11) Outside the proportional and not far from the elastic
range; and in this case we will have an elastic and some
plastic buckling which may have some non-recoverable
straln 1n the highest stressed portion of the section.
This situation was referred to in this thesis as the
transition or "elastic-plastic" buckling.  (iii) Outside
both the proportional 1limit and the elastic range. This
is referred to as "plastic" buckling.

The situation, where plastic flow takes place in
the section where the elastic range was exceeded, could
also be considered analogous to the double-modulus model
of plastic buckling. A successful compression test may
enable checking the validity of thlis assumption.

5.3b The Influence of the Lateral
Forces

The principal source of lateral forces 1s the wind.
If we have a single plant standing alone in the field,

the wind forces may be approxlimated by a uniformly

N m—

TRFTX
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distributed force. However, the fact that the plants
provide shielding to each other, reduces the intensity
of these forces.

A linearly distributed horizontal force with its
largest magnitude acting toward the head of the plant may
be a logical approximation of the wind forces. The in-
tensity of these forces (especially q(x) Figure 3.3) depend
mainly on the wind speed and air relative humidity.

As demonstrated in sectlon 3.2c¢c, the displacement

of the straw 1s greatly influenced by the intensity of

the wind forces. A strong wind will result in a very

large deformation of the straw and therefore a large

moment acting on it because of the axlial force, mainly

the plant head. As a result, the stresses 1n some sectlons
might exceed the proportional and elastic ranges, and the
final result will be plastic and non-recoverable defor-
mations in the straw.

5.3¢c The Effect of the
Cross-Sectional Variation

As mentloned 1in sectlon 5.1c, the gradual decrease
in the cross-sectional dimensions toward the top of the
plant can be assumed linear. The direct effect of such
change will be a reduction in the axial force that 1s
required to cause buckling.

The theoretlcal treatment of this effect was made

in detail in section 3.2d. PFor the plant as a whole,
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fixed from one end where the largest cross section exists

and free from the other, the critical load will be:

12 E I
P:u.&
4y 12
where: Et = the tangent modulus of elasticity for this
stress level. Fl
Im = The moment of inertia of the large section. -
L = The plant height.
2 h 2 l
1 + 4 K] 0o [..
e ——— (1 -5 .
m2 m

This is identical to the solutlon for columns with uniform
sections except for the factor u. Figure 5.10 shows the
values of u, for this case of "symmetrical column with
straight chords" plotted as a function of the ratio between
the smallest dimenslon to the largest (i.e., ;9).

The value of u 1s always smaller than on?. Hence,
the change in the cross section results in smaller critical
loads.

In the experimental tests, to check the effect of the
change in the cross section, the samples were hinged from
both ends. For thils situation of a "nonsymmetrical column
with straight chords,”" the theoretical solution of section
3.2d resulted in a critical buckling load equal to
ﬂZEtIm

L2

P =y

5
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and for this situation

h >
w=% (1 - HQ) Loy
m n2

4
: - 7
(1oge ho loge hm)

For this "nonsymmetrical column with straight chords," the
values of u are shown 1in Figure 5.10, plotted as a function

h

of HQ. For this case, also, u is always less than one.
m

Therefore the cross-sectional reduction will always result
in a reduction in the critical buckling load.

The experimental and theoretical values of the criti-
cal buckling loads for the tested specimens are shown in
Appendix Table A-8. 1In this data, the experimental values
are frequently smaller than the ones predicted theoretically.
The principal reason for thlis was the large initial de-
flection in all the specimens tested. This large 1initial
defle¢tion resulted in a large bending moment acting from.
the beginning of the loading process and increasing as the

applied load increases.

5.4 The Influence of the Plant Physical
Changes on Its Strength and Behavior

From the collected information thus far, it is possible
to visualize the general behavior of the plant and the ef-
fect of the physical changes that take place as the plant
becomes more ma;ure.

Early in the growing season the plant has a very

high moisture content and therefore high vilscous properties.

G
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The weight of the plant head is much smaller, compared
with its weight later during the harvest season. 1In this
stage the plant 1s very stable and less sensitive to
plastic deformations due to the laterial forces resulting
from the wind. This 1s mainly because of the viscous
effect which enables the plant to recover its original
shape even after large deformations.

As the plant becomes more mature, the viscous be-
havior becomes less, and the plant head grows heavier.

In this stage the plant becomes more sensitive to plastic

strains. Such stralns take place as a result of the com-
bined effect of the axial force, provided by the plant
head, and the lateral force, resulted from the wind forces.

One should also emphasize two facts: the first is
that plant head weight 1s less than the critical buckling
load of the plant as a whole, and the second is that the
presence of the nodes, which varies in number between
three to six, provides an additional inertia and stiff-
ness to the plant stem. These two factors help the plant
to remain stable. On the other hand the length and small
diameter of the upper 1internode tend to reduce the buckling
strength. The exposure to wind and sun radiation reduces
the moisture content of the upper internode which further
weakens 1it.

Considering these factors, one can conclude that

for the same intensity of wind the plant has a better
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chance to recover 1ts original stable shape early in the
growing season compared with that during the harvesting
season. In some cases the wind together with the head
welght caused a situation of instabllity such that the
stresses 1n the plant do not exceed the elastlc range
except the top internode, which 1s the weakest. 1In such

a situation the plant as a whole may be able to recover its
original shape except for the top part which retains a
slightly bent shape owing to the residual plastic strains
in those fibers where the elastic 1limit was exceeded.

As the same process 1s repeated, the deformations get

even larger because of the initial eccentriclty that was

a result of the first plastic instability in the top part.
Successive processes of that nature results in the shape
that the plants actually have during the harvesting season.
In such stages the plant stem 1s more sensitive to complete
fallure with high speed wind because of the larger bending
moments introduced as a result of the deformed shape of

the plant.



6. SUMMARY

This study was initiated to study the behavior of
the cereal grain plant under applied stresses. Since the
plant stem 1s the principal supporter of the plant struc-
ture, the understanding of its behavior and physical prop-
erties is of major importance to the engineer. The mech-
anical and rheologlical properties of the plant stem as
well as the stability of the plant structure were investi-
gated. Tests were conducted over a periocd of four weeks
to study the maturity effect, and were limited to three

varieties of wheat--(Triticum Vulgarus)--Comanche, Redcoat

and Genesee.

All tests were conducted in a testing chamber under
controlled temperature and humidity conditions. Tensilon,
compresslion, and bending tests were conducted to study the
behavior of the straw to applied stresses. Elastlic and
viscous properties of the straw were evaluated using
elastic and viscoelastic flexure theory. The buckling
stabllity was studied for the plant structure.

Theoretical equations were derived for the evalu-
ation of the elastic and viscoelastic moduli from quasi-
static flexure. Critical load and deformation equations

were derived from the theory of elastic stability.

102
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The wheat plant reacted to applled forces as an
elastic-plastic-viscous body. A viscoelastic model, con-
sisting of one viscous and two simple Maxwell elements in
parallel, simulated the behavior of the plant stem in com-
pression. The stem behaved in flexure similar to two
simple Maxwell elements 1n parallel.

The stability of the plant structure was explained
by employing the theory of elastic stability together with
the concepts of inelastic buckling. The existence of the
nodes provided a localized increase in the inertia of the
straw which contributed to the stability of the plant.

The decrease 1n the outside diameter of the plant stem to-
ward the plant top was assumed linear and the wall thick-
ness constant. Thils cross-sectional change reduced the
buckling strength of the plant by a factor which is a
function of the rate of change in the cross section. The
top internode, which 1s the longest, was the least stable.
Wind force acting on the plant, as it stands in the field,
was approximated by a linearly distributed horizontal force
having its largest magnitude at the top of the plant.
These forces greatly influenced the deformation of the
plant.

As the plant reached the harvesting stage, the viscous
properties decreased and the elastic properties dominated
the behavior of the plant for small deformations. In this
stage the head weight becomes the principal axial force
acting on the plant. A high velocity wind will force the

plant to deform from its initial straight shape. The
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strains in the top internode may exceed the elastic range.
As the wind stops the plant tends to recover its original
shape but retains a slightly curved shape due to the
residual plastic strains in the fibers where the elastic
limit was exceeded. Successive wind forces together with
the growth of the plant head increase the residual plastic
strain result in the familiar bent shape of the top inter-
node during the harvesting season. An exceptionally high
intensity wind, in this stage, may result 1in the failure

or lodging of the plant.



7. CONCLUSIONS

The wheat nlant reacted as an elastic-plastic-
viscous body to applied forces.

A viscoelastic model consisting of one viscous
and two simple Maxwell elements in parallel
simulated the behavior of the plant stem in
compression.

The plant stem behaved 1n flexure similar to
two simple Maxwell elements in parallel.

The stability of the wheat plant structure was
explained by employing the theory of elastic
stablility together with the concepts of in-
elastic buckling.

The existence of nodes increased the buckling
strength while the decrease in the cross-
sectional area towards the plant top decreased
it.

The top internode, being the longest and small-
est 1n cross-sectional area, is least stable
and more sensitive to plastic deformations.
The wind force was approximated by a linearly

distributed horilzontal force having 1ts largest
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magnitude at the top of the plant. These
forces greatly influence the deformations of
the plant.

The viscous properties decreased with maturity,
and the elastic properties dominated the be-
havior of the stem for small deformations.

High speed winds resulted in large deformations, B%q_
especlally in the top internode. If the strailns

exceed the elastic range, plastic flow takes

wogaaw.

place, and the plant retains a slightly bent

shape. Successive wind forces, together with
the growth in weight of the plant head, results
in a familiar bent shape of the top internode
during the harvesting season. An exceptionally
high speed wind, 1n this stage, may result in

failure, or lodging of the plant.



8. RECOMMENDATIONS FOR FUTURE WORK

The results of thils investigation indicate the need

for additional work in the following areas:

l.

Refining the optical strain measurement technique ‘1
and using it to obtain true stress-strain curves

for tension and compression. Then using these

1d

curves to check the theoretical analysls of j
the stability of the 1inelastic curved beam pre- ,;f
sented in section 3.4.

Studying the variation of the plant parameters

from one plant to another and employlng statisti-

cal analysis to study such variation and its

distribution.

Extending the maturity study to start early in

the growing season.

Studylng the behavior of the plant under dynamic

loading.

Studying the structure of the head. The kernal

support strength and orientation should also be

studled under static and dynamic loading.

1Q7
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TABLE A-1.--Modulus of elasticity (1b/in2x10_3) obtained
from tension test.

Comanche1 Redcoat1 Geneseel
Test
Date Upper'2 Lower2 Upper Lower Upper Lower
7/14/65 213 335 273 312 220 210
260 264 245 287 162 165
244 242 213 225 2uy 290
7/21/65 217 262 239 254 187 2L6
197 291 281 312 264 309
162 253 326 293 270 342
7/28/65 262 354 215 218 242 219
185 313 380 327 312 372
272 317 308 363 314 357
1Variety.

2Specimen taken from upper or lower part of the plant.
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TABLE A-2.--Modulus of elasticity (1b/in2x10—3) obtained
from compression test.

Comanche1 Redcoatl Genesee1
Test
Date Upper'2 Lower2 Upper Lower Upper Lower
7/7/65 169 320 254 290 202 200
195 198 172 161 219 198
127 228 201 196 231 201
7/14/65 270 181 184 172 345 176
227 160 138 147 170 180
7/21/65 168 156 232 300 154 294
141 159 267 203 212 169
324 258 252 231 206 202
7/28/65 129 174 197 159 336 276
178 184 284 313 367 229
240 321 184 188 239 301
lVariety.

2Specimen taken from upper or lower part of the plant.
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TABLE A-4.--Modulus of elasticity (1b/in°x1073) evaluated
from the bending test.1l

Test Date Comanche2 Redcoat2 Genesee2
7/7/65 785 1,107 827
1,133 1,315 763
1,678 990 800
7/14/65 856 759 834
951 752 780
720 814 706
7/21/65 709 1,054 1,198
629 1,014 659
640 859 1,028
7/28/65 885 1,061 859
787 758 923
695 694 845

lThe lower portion of the plant.

2Variety



116

° _0T X (gUT/®8s Q) ad® U JO s3Tun ayg,

i
¢oree €221 1267 LG £9°6T 9GH ‘T 968°69 £
6€° L2 2E0°T 9TL* GG 9g°Le HgT¢?2 18249 2
L9 €€ 8L6 GrG RS GG hy ¢go‘e 96219 T 69/82/1L
cr 62 6£2°T 960" 16 02°6G2 .18 6T °9€ ¢
ge¢ce 890°T TYRRR! ST'H1 it 109°66 2
£0°62 0Q2°T 129 79 29°¢fT HEL 6GE * 0Of T ¢9/12/1
TAUAT HGOT 1€2°0¢ on°12 Teh‘T 218 G2 ¢
LG e 186G T Lg€ € 6602 H1.9°T 6L GE 2
6L°8T €HO‘T 86862 60°€2 2ETCT 29¢ - e¢ T S9/h1/L
hg 9T 028 £68°9T1 6G° 02 6961 GOL" LT 9
RE* 02 HELCT 2T€ 8T 2¢ 12 HOT 2 T16°02 2
02°92 88€°T T1G66° LT lLg*z2ze 290°¢z geL g2 T TYIND)
088 038 u 098 098 u
€21 €11 1 €C1 €1, 1 I5qum
oﬁmemm 51BQ 383
aTdweg UOT3Jd0g J9MOT oTdweg uotiaog dog

ayj J0J 13893

*99sausy :£39TJaBA qBOUM
uofssaadwod ayj WoJIJ PSUTBIQO Sddq4aurded TapOoW OTISBIS00STA--'G-Y ATV



117

188" he 2L0"0 L2666 H16°0 £
66l ee 600°0 8LI 86T"0 2 383l
G89°g¢ 6Th"ge §20°0 0£9°¢g GgT L 89G°0 T S9/n1/lL pugz
Gl €T g€o-o 6T9°T 00L°0 2 3sal
096°€1 GLTnT REO"0 LTh T qref‘t c08°0 T G9/L/1 3sT
T 3B00DPaY
H19°ge G600 6ET1°G §49°0 £
6Th°ge 2ho°o 129°¢ gllL:0 4 183],
19€ 1€ 060" LE 20" 0 698°6G 949G 80G°0 T 69/82/1L Uah
L90°9¢ 800°0 9G2‘¢ G0€'0 €
296 €€ 610°0 6Tc n gle'o 2 3S9]
G9¢ * GE L90°9¢ 020°0 2LECS 799 80€°0 T G9/12/L pag
0£E€ T 690°0 09€°¢ G6G°0 €
LLL 1y 900°0 968° 1t 6€€°0 2 1s9],
T6h° 1h G9¢€ " g¢ 250°0 T€0°G gEg R 020 T S9/h1/L pug
GGl ze 600°0 06T 9 2eE0 ¢
£€G°GT 000 00€°¢H gne o 2 19T
greE 02 GGl ez 600°0 £9L°y ong e 182°0 T S9/L/1L 3sT
Hmcocmsoo
oww oas qatr oww 088 at Jaquny a3eQq Jaquny
93BJ3AY €z, T4 EVERETIN ‘1. ‘1g aTdweg 1s3g

*3s93 3ugpusq 8yj Jo

SSAJIND UOT3BXBISJI dY3 WOJJ paute3zqo ¢1 %y pue li ‘lg sasgsweaed Tepow OF3SBIR00STA--'9-y FTIGVL



118

LasTaep

T

ele ne LE0°0 €089 £9g8°0 19

hG6°he GG0°0 hit G 0211 2 189,
£L6°g2 £69°Le LEOQ"O £16°9 €92, LG8 0 1 G9/82/1 Yaf

£60°Th 2hT 0 LE6CG 2L6°0 ¢

GE9°9¢ 090°0 089°¢S 929°0 2 1S9
TAREAY L69°8T 620°0 L6179 nlg8 L L66°0 T 69/12/1. pag

LhG G2 070" 0 99G°6 8h9°0 £

geg9‘ee 060°0 920°¢. G88°0 2 1897
LOT "he 9¢T " fe 0S60°0 2129 Sto‘9g G9.°0 T G9/h1/. pug

o6 L2 900°0 T98°¢€ t0L°0 £

£€0°gt 800°0 02l 2 0T 0 2 3s9T
69612 LG6° 6T 0£0°0 hoh€ T€9°¢€ 659°0 T §9/L/1L 3T

.mmmw [usyn

281 0¢ 200 G2E6 €620 ¢

h69°Ge HT0°0 0£6°H 9T€"0 2 1837
EnGle Gl 9e 2no°o T.8°L gGE6 A TARN T S9/82/. Uk

enG-ge 860°0 TN 020°'T £

£€g° 8¢ 060°0 HlE€Q 2LG0 2 31S91
GGG 9¢ 682 2¢ gh0°0 19€°9 £9L¢9 06S°0 T s9/12/1. pag



119

YAnLe A=( . == peorctlcal and oxperlimental values of the critlcal buckling loads for tne lower porticn
of tne plant.

. Theoretical Value Type of Buckling -
Test Numuer Date :3:\”;;: for Tneory of from Load bxgﬁxc*;r;igtal
) Elastic Stavility, Deformation Curve Load g
lv :
1o
Comanchel

lst 1/7/05 1 1.034 Elastic-Plastic 0.546
Test 2 2.038 Elastic-Plastic 0.850
3 1.500 Elastic 0.870
2nd T7/14 /05 1 0.09Y0 Elastic 0.980
Test 2 0.371 Elastic-Plastic 0.546
3rd 1/21/05 1 u.597 clastic 0.500
Test 2 J.438 Elastic V.ol
3 U.uyu Elastic 0.008
htn 7/28/v% 1 . u.887 Elastic and u.560

Test Some Plastic
¢ 1.280 £lastic and 1.130

Some Plastic
3 1.524 Elastic-Plastic 1.700

r.edcoatl
1st T/7/70> 1 3.1uy Zlastic-Plastic 1.054
Test 2 3.229 lastic-Plastic 1.0%0
3 3.432 =lastic-Plastic 1.058
2nd 7/14/05 1 1.0)9 Elastic-Plastic 1.300
Test 2 J.JoT Elastic-Plastic 0.502
3 J.uod Elastic-Plastic 0.800
3ra 1/721/uv» 1 l.dcu wlastic~Plastic 0.y12
Test 2 J.iéd <lastic-Plastic 0.712
3 1.403 clastic-Plastic 1.108
btn T7/28/0% 1 l.2v3 clastic l.028
Test 2 2.21e2 zlastic-Plastic l.o74
3 l.6v1 rlastic-Plastic 2.200
Geneseel

1st 7/7/65 1 2.305 Elastic-Plastic 1.092
Test 2 2.384 Elastic-Plastic 1.088
3 3.293 Elastic-Plastic 1.034
2nd 7/14/65 1 2.181 Elastic-Plastic 1.730
Test 2 2.795% Elastic-Plastic 2.106
3 1.489 Elastic-Plastic 2.106
3rd 7/21/65 1 2,173 Elastic-Plastic 2.380
Test 2 1.508 Elastic-Plastic 1.012
4th 7728765 1 2.009 Elastic-Plastic 1.600
Test 2 1.505 Elastic-Plastic 1.620
3 2.0006 Elastic-Plastic 2.084

1Variety
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