
 

 



ABSTRACT

MECHANICAL PROPERTIES AND STRUCTURAL

STABILITY OF THE WHEAT PLANT

by Safwat Mahmoud Ali Moustafa

This study was initiated to study the behavior of

the cereal grain plant under applied stresses. Since the

plant stem is the principal supporter of the plant struc—

ture, the understanding of its behavior and physical

properties is of major importance to the engineer. The

mechanical and rheological properties of the plant stem

as well as the stability of the plant structure were in—

vestigated. Tests were conducted over a period of four

weeks to study the maturity effect, and were limited to

three varieties of wheat——(Triticum Vulgarus)-—Comanche,
 

Redcoat and Genesee.

All tests were conducted in a testing chamber under

controlled temperature and humidity conditions. Tension,

compression, and bending tests were conducted to study

the behavior of the straw to applied stress. Elastic

and viscous properties of the straw were evaluated using

elastic and viscoelastic flexure theory. The buckling

stability was studied for the plant structure.

Theoretical equations were derived for the evaluation

of the elastic and viscoelastic moduli from quasi-static
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flexure. Critical load and deformation equations were

derived from the theory of elastic stability.

The wheat plant reacted to applied forces as an

elastic-plastic-viscous body. A viscoelastic model, con-

sisting of one viscous and two simple Maxwell elements in

parallel, simulated the behavior of the plant stem in com-

pression. The stem behaved in flexure similar to two

simple Maxwell elements in parallel.

The stability of the plant structure was explained

by employing the theory of elastic stability together with

the concepts of inelastic buckling. The existence of the

nodes provided a localized increase in the inertia of the

straw which contributed to the stability of the plant.

The decrease in the outside diameter of the plant stem to-

ward the plant top was assumed linear and the wall thickness

constant. This cross—sectional change reduced the buckling

strength of the plant by a factor which is a function of

the rate of change in the cross section. The top internode,

which is the longest, was the least stable. Wind force

acting on the plant, as it stands in the field, was approxi—

mated by a linearly distributed horizontal force having its

largest magnitude at the top of the plant. These forces

greatly influenced the deformation of the plant.

As the plant reached the harvesting stage, the

viscous properties decreased and the elastic properties

dominated the behavior of the plant for small deformations.

In this stage the head weight becomes the principal axial
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force acting on the plant. A high velocity wind will

force the plant to deform from its initial straight shape.

The strains in the top internode may exceed the elastic

range. As the wind stops the plant tends to recover its

original shape but retains a slightly curved shape due to

the residual plastic strains in the fibers where the

elastic limit was exceeded. Successive wind forces to-

gether with the growth of the plant head increase the

residual plastic strain which results in the familiar bent

shape of the top internode during the harvesting season.

An exceptionally high intensity wind, in this stage, may

result in the failure or lodging of the plant.

Approved flAW

Maj Professor

Approved 0/W

Department Chairman

 

 



MECHANICAL PROPERTIES AND STRUCTURAL

STABILITY OF THE WHEAT PLANT

By

Safwat Mahmoud Ali Moustafa

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering

1966



ACKNOWLEDGMENTS

The guidance and leadership of Dr. B. A. Stout

(Agricultural Engineering) is gratefully acknowledged.

The inspiration provided throughout this portion of my

graduate program and during the course of this investi-

gation has made it a pleasing and rewarding experience.

Sincere appreciation is extended to Dr. W. A.

Bradley (Metallurgy, Mechanics and Material Science) for

his valuable suggestions and active professional interest

in this study.

Additional acknowledgment is offered Dr. M. L.

Esmay (Agricultural Engineering) and Dr. E. H. Everson

(Crop Science) for serving as guidance committee members

and providing advice and help whenever needed.

The unfailing support and encouragement provided

by my wife, Samraa, has supplied inspiration needed

throughout my graduate education.

ii



To

Samraa, Mona, and Shereef

Mr. and Mrs. M. A. Moustafa

The United Arab Republic

111



ACKNOWLEDGMENTS

DEDICATION.

LIST OF TABLES

LIST OF FIGURES

CHAPTER

1. INTRODUCTION . . . . . .

Objective . . .

2. LITERATURE REVIEW. . . .

2.1 Physical Structure of Biological

Materials. . .

2.2 Physical Structure of the Grain

Crop Plant . . . . .

2. 3 Physical and Mechanical

Properties . . . . . .

3. THEORETICAL CONSIDERATIONS . .

3.1 Mechanical PrOperties.

3.1a Elasticity

3.lb Plasticity . .

3.1c Viscoelasticity.

3.2 Theory of Elastic Stability.

TABLE OF CONTENTS

3.2a Straight Column.

3.2b Initial Curvature

3.2c Influence of Lateral Forces.

3.2d Variation of Moment of

Inertia

iv

Page

ii

iii

vii

viii

l2

l2

l2

12

14

2O

22

23

26

28



CHAPTER Page

3.3 Inelastic Buckling . . . . . 33

3.3a Double Modulus Theory . . 33

3.3b Tangent Modulus Theory. . 38

3.30 Inelastic Buckling Model . 39

3.4 Inelastic Curved Hollow

Tubular Columns . . . . . 42

4. EXPERIMENTAL PROCEDURE AND EQUIPMENT . . 51

4.1 Equipment . . . . . . . . 52

4.1a Testing Chamber . . . . 52

4.1b Testing Machine and

Recording Unit . . . 52

4.10 Stress Measurement . . . 54

4.1d Strain Measurement . . . 54

4.2 Laboratory Tests. . . . . . 55

4.2a Tension and Compression

TGStS o o o o o o 56

4.2b Bending Test . . . . . 61

4.20. Buckling Test. . . . . 62

5. RESULTS AND DISCUSSION. . . . . . . 66

5.1 General Characteristics of the

Plant Behavior Under Applied

Loads O O O O O O O O 66

5.1a Tension and Compression

Tests . . . . . . 66

5.1b Bending Test . . . . . 71

5.10 Stability Test . . . . 73

5.2 Rheological PrOperties. . . . 76

5.2a Viscoelastic Modeling . . 80

5.26 Evaluation of the Modulus

of Elasticity from

Loading Curve. . . . 84

5.20 The Maturity Effect on

Viscoelastic Behavior . 87



CHAPTER Page

5.3 The Stability of the Plant . . . 90

5.3a Effect of Initial Shape

and Inelastic Behavior . 93

5.3b The Influence of Lateral

Forces. . . . . . . 95

5.30 The Effect of the Cross-

Sectional Variation . . 96

5.4 The Influence of the Plant

Physical Changes on its

Strength and Behavior. . . . 99

6. SUMMARY . . . . . . . . . . . . 102

7. CONCLUSIONS . . . . . . . . . . . 105

8. RECOMMENDATIONS FOR FUTURE WORK . . . . 107

REFERENCES. . . . . . . . . . . . . . 108

APPENDIX . . . . . . . . . . . . . . lll

vi



LIST OF TABLES

Table

A—1 Modulus of Elasticity (1b/in2) Obtained from

Tension Test . . . . . . . . .

A—2 Modulus of Elasticity (lb/in2)Obtained from

Compression Test. . . . . . . . .

A-3 Data for Loading Curve (Compression) Using

Optical Strain Measurement Technique .

A-4 Modulus of Elasticity Evaluated from the

Bending Test . . . . . . . .

A-5 Viscoelastic Model Parameters Obtained from

the Compression Test for the Genesee

Variety. . . . . . . . . . .

A—6 Viscoelastic Model Parameters F1, 11 and F2

12 Obtained from the Relaxation Curves

of the Bending Test. . . . . . . .

A—7 Theoretical and Experimental Values of the

Buckling Loads for the Lower Portion of

the Plant . . . . . . . . . .

A-8 Theoretical and Experimental Values of the

Critical Loads for the Upper Portion of

the Plant . . . . . . . . . .

vii

Page

112

113

114

115

116

117

119

120



LIST OF FIGURES

Viscoelastic Models

An Element of Elastic Beam Showing Load-

ing Condition and Forces on a Free

Body

Elastic Columns Under Different Loading

Conditions . . . . . . .

Columns with Varying Cross Sections.

The Double and Tangent Modulus Theories of

Inelastic Buckling

Stresses and Strains in a Section of an

Inelastic Column Subjected to Axial

Loading . . . .. . .

Inelastic Buckling Model . . . . .

Inelastic Curved Hollow Tubular Column

Under Axial Loading . . . . . . .

The Relation Between the Axial Stress and

the Deformation of the Centroidal

Axis at the Middle of the Column.

Overall View of the Testing Machine and

Recording Unit. . . . . -

Samples Prepared for Testing . . .

Measurement of the Cross Section of the

Test Specimen

The Method of Mounting Samples for

Tension Test . .

viii

Page

17

21

21

29

35

35

40

43

50

53

57

57

59



Figure

4.5

4.6

14.7

4.8

U
7

L
A
.
)

The Tension Test . . . . . .

Straw Specimen for Compression Test.

Uniaxial Compression Test . . . . .

The Bending Test . . .

Method of Mounting Samples for Buckling

Test . . . . . . . . . . .

Buckling Test

Moisture Content and Linear Density of

the Samples Over the Testing Period.

Typical Behavior of Loading and Relaxation

Curves Obtained from the Compression

and Bending Tests.

Stress-strain Curves Obtained from Three

Samples by Using Optical Strain

Measurement Technique .

Typical Elastic, Elastic-plastic, and

Plastic Buckling Curves Obtained from

the Stability Tests . . . . . .

Deformation Shape for Straw with Uniform

Section, Approximately Sinusoidal

Deformation Shape for Straw with Varying

Section . . . . . . . .

Graphical Technique for Evaluating the

Viscoelastic Model Parameters from

the Relaxation Portion of the Uniaxial

Compression Test . . . . . . .

A Sample of the Relaxation Curve and the

Graphical Technique for Evaluating

the Viscoelastic Parameters from the

Bending Test . . . . . . .

Variation of Viscoelastic Parameters with

Maturity, Obtained from the Relax—

ation of Samples in Bending

ix

Page

59

60

60

63

64

64

67

68

7O

75

77

77

82

85

88



Figure

5.10 The Values of the Factor E as a Function

of the Change in the Cross Section

(i.e., hO/hm) . . . . . .

Page

98



1. INTRODUCTION

Cereal grains are the greatest source of food on

our planet. In the U. S. A. and other highly mechanized

areas of the world, these crops are harvested with com—

bines. Although these harvesters have great capacities

and are very effective, they are expensive and have high

power requirements.

Many researchers have sought methods of improving

the efficiency and lowering the power requirements of

combines. The cone thresher and the standing harvester

studies at Michigan State University are recent examples.

So far, all the threshing mechanisms, either the

conventional rotating cylinder or the centrifugal thresher,

are based on the application of an impulsive force, either

impact or the combined effect of impact and acceleration

forces, until the grains are separated from the plant

head.

Successful mechanical harvesting depends both on

technical factors and on the extent to which the plant's

agrotechnical and morphobiological properties are suited

for mechanized harvesting. The physical properties of

most agricultural materials which influence the machine



design or operation and the quality of the final product

are not completely understood. Increased knowledge of

the physical properties of the cereal grain plant will be

of value not only to engineers but also to plant scientists

and breeders who are concerned about the lodging problems

in these plants. Hence, one must consider the physico—

mechanical properties of the plants not only when designing

new machinery, but also when breeding new varieties and

perfecting methods for their cultivation.

The design of farm machinery started as an art.

However, with the tremendous progress in technology of the

last fifty years it became essential for the agricultural

engineer to know and understand in detail the fundamental

anatomical and mechanical characteristics of the biological

materials with which he is dealing, and to have this in-

formation in his engineering language. Although the

engineer has collected most of the basic information about

the behavior of engineering materials, he has not yet col-

lected the needed data on materials of biological origin.

One basic reason for that is the heterogeneity and com—

plexity of their structure.

Mechanical properties of a material have been defined

as the properties that determine the behavior of the

material under applied forces and loads. One of the most

widely used and most easily interpreted methods of specify-

ing the behavior of materials is in terms of mechanical

models. A mechanical model normally consists of an element



or a combination of elements whose characteristics and

behavior under applied forces are known.

Objective
 

The general objective of this study was to investi—

gate the basic physical and mechanical properties of the

wheat plant and express them in engineering terms. Specific

objectives were to:

1. Develop a theoretical model for the wheat plant,

as a whole, for the study of its stability and

strength.

2. Develop a viscoelastic model for wheat straw

that represents its behavior under applied

stresses.

3. Verify the validity of the theoretical models

of the plant by experimental evaluation of plant

parameters.

4. Determine the effect of maturity on the various

plant parameters.



2. REVIEW OF LITERATURE

2.1 Physical Structure of Biological

‘ Materials
 

The cell is the smallest structural unit of a bio-

logical material. The plant cell is composed of a non-

protoplasmic rigid wall and an inner cytoplasmic fluid.

The cell wall, being the supporter of the cell, determines

its shape and texture. The plant has two types of walls,

a primary wall and a secondary wall. Living cells, which

carry out life processes, have only a primary wall whereas

non-living supportive cells have an additional secondary

wall.

Primary walls are composed of a fine mesh network of

cellulose fibrils which are filled with pectic and hydro—

philic compounds. The secondary walls are composed of

crystalline cellulose grouped into coarse branching strands

which are encrusted with pectins, hemicelluloses and lignins.

Frey-Wyssling (1952) reported that primary walls were capa-

ble of up to 50 percent extension as compared with about

two percent for secondary walls. This is due to the

large amount of amorphous cellulose and pectic compounds

in primary walls as contrasted to crystalline cellulose

and lignins in secondary walls.



Kollman (1964) reported that the woody cell wall

consists of 45-65 percent cellulose, which is formed from

glucose anhydrides. He also reported that x-ray optical

studies have shown four cellobios residues form the crystal-

line element body of cellulose. Increasing crystallinity

has a very strong influence on the most important physical

and mechanical properties of cellulose containing fiber.

With it the density, the modulus of elasticity, and the

tensile strength increase, while the moisture absorption,

the swelling and stretchability decrease.

Such mechanical properties as of cellulose-containing

fibers and tissues may depend, besides crystallinity, on

the orientation of the crystalline regions of the fiber

axis.

Kollman (1964) also reported that the crystallized

parts of the cell wall behave as elastic elements while

amorphous regions are like viscous elements.

Generally the cell wall behaves in what is believed

to be a nearly elastic manner while the cellular fluids

are liquids exhibiting a viscous behavior. Therefore,

it seems logical to represent the mechanical behavior of

selected biological materials by using mechanical models

composed of elastic and viscous elements.

2.2 Physical Structure of the

Grain Crop Plant

 

 

The wheat plant consists of three major parts. The

root, the stem,and the head. The root functions are to



support the plant in the soil, to gather water and minerals

from the soil, and transport them to the stem of the plant.

The stem represents the major part of the plant structure

above the ground. It supports the head and leaves of the

plant and carries out life processes. The head grows at

the top of the plant and carries the grain.

The plant stem varies in height between two to Six

feet. The stem can be approximated by a hollow tube with a

gradually decreasing diameter toward the plant top. The

stem has a number of nodes ranging between four and five.

The distance between nodes (internode) increases toward the

plant top.

The node represents the origin of the leaf. In the

nodal area, the stem slightly decreases in diameter and the

wall becomes thicker until it becomes solid at the connection

with the base of the leaf.

All elements entering into the composition of the

plant stem—-the strongest, as well as the weak pith-—play

more or less important parts in the plant's resistance to

the action of external forces (Esau, 1965).

Burmistrova (1956) reported that the plant stem was

considered as a tubular columnar structure with a height

to diameter ratio of four to six times greater than that

of architectural structures.

Percival (1921) reported that in the stem of the

wheat plant the course of vascular bundles through the

internode and the leaf sheath is practically parallel.



Near the node the leaf sheath is considerably thickened,

attaining its maximum thickness just above its union with

the stem. The stem, on the other hand, decreases in thick-

ness in the same direction and has the smallest diameter

above the junction with the leaf sheath. Below the junction

of leaf sheath and stem, the smaller of the leaf traces are

prblonged in the peripheral part of the axis. The larger

leaf traces become part of the inner cylinder of the strands.

The bundles of the internode located above the leaf in—

sertion assume a horizontal and oblique course and are re-

oriented toward a more peripheral position in and below

the node.

2.3 Physical and Mechanical Properties
 

Agricultural materials, being composed of structural

substances and fluids, do not react in a purely elastic

manner. Rather their response is a combination of elastic,

plastic and viscous behavior.

A number of investigators have studied the mechanical

behavior of agricultural materials by treating them as

engineering materials. Suggs and Splinter (1964) studied

the behavior of tobacco stalks in bending. They found a

difference between compression and tension moduli. They

also observed a viscoelastic effect as exhibited in the

stress relaxation behavior of the stalks. This effect was

'predominant at low strain rates.



Halyk and Hurlbut (1964) applied engineering material

testing procedures to alfalfa stems in order to determine

their ultimate tensile and shear strength.

McClelland and Spielrin (1957) reported the existence

of a precise relationship between the force required to

cause failure in bending and linear density of the plant

material for three pasture plants--Wimmera ryegrass (Lolium

rigidum), lucerne (Medicagg sativa), and Algerian oats
 

(Avena byzantina).
 

The Soviet All-Union Scientific Research Institute

for Agricultural Machine Building (VISKHOM) built in 1934

a special laboratory to specialize in investigations on the

physicomechanical properties of grain crOps, rice, corn,

sunflower, potato, sugar beet, various fodder crOps, flax,

hemp, castor, soyabean, groundnuts, tobacco, etc. Burmi-

strova, et_al. (1956) reported some of their data on size,

weight, volume and quantitative properties of plants, and

strength indexes of various plant's parts subjected to the

action of different machine working parts. Other results

obtained from these investigations were on friction co—

efficients of various plants subjected to different sur—

face conditions, speeds, pressures, etc. These investigations

were for the purpose of providing experimental basis for

the machine designer's work.

Diener (1965) used static and dynamic loading to

study the mechanical properties of cherry bark and wood.

He determined the maximum strength of bark specimens from



tensile loading. He also measured the elastic and viscous

properties of bark and green wood specimens using the

elastic and viscoelastic flexure theory. He derived an

approximate and an exact equation for determining the

viscoelastic modulus from dynamic flexure. He concluded

that the strength of bark was highly dependent on the

direction of the applied force, i.e., the material is

anisotropic.

The use of mechanical models to approximate the be-

havior of materials of biological origin has been proven

to be useful. Most mechanical models consist of an ele-

ment or number of mechanical elements whose behavior under

applied stresses is known. This provided the possibility

of describing and explaining a wide range of behavior.

Zoerb (1958) studied the mechanical and rheological

properties of cereal grains. He obtained stress—strain

curves for both the whole kernel and a core specimen made

by cutting off each end. Information derived from these

studies was used for the evaluation of hysteresis losses,

moduli of resilience, and moduli of elasticity. He also

conducted stress relaxation studies on pea beans using

varying loading rates. The relaxation data was fitted to

a two-element Maxwell model which gave a close approximation

of the observed behavior.

Mohsenin, et_al. (1963) prOposed a qualitative model

to represent the viscoelastic nature of creep behavior for
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fruits in terms of the analogous behavior of a Maxwell

model in series with a Kelvin~Voigt model.

Finney, gt_al. (1963) considered the potato tuber

as a linear viscoelastic body and established a physical

basis for this consideratIOn by studying the constitutive

components of the potato tuber. They also studied the

stress relaxation properties of the tubers when axially

loaded between parallel plates. The relaxation was repre-

sented qualitatively by the equivalent response of four

Maxwell models in parallel. Timbers (1964) studied both

creep and stress relaxation behavior of Netted gem Potato.

He also proposed a mechanical model to represent the tuber

behavior.

Shpolyanskaya (1952) studied the structural-mechanical

properties of wheat kernels. She reported that wheat ker—

nels behaved as an elastic-plastic—viscous body which ex-

hibited creep, stress relaxation, and elastic after—

effects. She proposed a mechanical model to represent the

time-dependent behavior of a grain subjected to uniaxial

compression. She also utilized the classical Hertz solution

for contact stresses to evaluate the modulus of deformability

for the grain.

Morrow (1965) studied the viscoelastic properties of

McIntosh apples subjected to both uniaxial and bulk com-

pression. Mechanical models were chosen to represent both

creep and relaxation behavior.
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Morrow and Mohsenin (1965) proposed standardization

of techniques for the evaluation of mechanical properties

of agricultural products. They suggested that all mechanical

properties should be evaluated in terms of common engineer-

ing parameters as a first approximation. They also sug—

gested that all moduli of compliances should be fitted to

viscoelastic models for the purpose of obtaining meaningful

time constants and other viscoelastic parameters. They ob—

tained a consistent correlation between experimental re-

sponses of McIntosh apples and those predicted by visco-

elastic models.



3. THEORETICAL CONSIDERATIONS

3.1 Mechanical Properties
 

Mechanical properties are the properties that deter—

mine the behavior of the material under applied forces.

Those properties which are concerned with flow and de-

formations are referred to as rheological properties.

Rheology, generally, considers those stress strain relation-

ships of the materials which are time dependent.

Jastrzebski (1964) reported that all loaducarrying

materials can be divided into three main divisions accord-

ing to the mechanism involved in their deformation under

applied forces. These are elastoplastic, viscoelastic,

and elastic materials. It follows that three basic types

of deformations are involved in the response of all engineer-

ing materials to applied forces. These are elastic, plastic,

and viscous deformations.

3.1a Elasticity
 

A material is called elastic when the deformation

produced in the body is wholly recovered after removal of

the forces. For linearly elastic materials, the relation

between stress and the corresponding strain, in the elastic

range of the material, is governed by Hooke‘s law. Hooke's

12
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law states that the stress is proportional to strain and

independent-of time. It follows that the ratio of stress

to strain is a constant characteristic of a material, and

this proportionality constant is referred to as the modulus

of elasticity.

‘ For an isotropic material each stress will induce

corresponding strain, but for an anisotropic material a

single stress component may produce more than one type of

strain in the material. Since there are three main types

of stress--tension, compression and shear—~there will be

three corresponding moduli of elasticity.

' Very few materials behave as perfectly elastic bodies

because of structural imperfections. Many materials yield

a curved stress-strain diagram practically from its be-

ginning. The definition of the modulus of elasticity does

not require the stress—strain curve to be linear. If the

curve is not linear, the modulus of elasticity should be

taken as a secant or tangent elastic modulus. A tangent

elastic modulus is defined as an increment of stress

divided by an increment of strain for an elastic substance.

3.1b Plasticity
 

Many materials when stressed beyond a certain minimum

stress show a permanent, nonrecoverable deformation. This

is called plastic deformation, and it is the result of

permanent displacement of atoms, molecules, or groups of

atoms and molecules from their original positions after

the removal of stress.
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An ideal plastic body, also called St. Venant's solid,

is represented on the stress-strain diagrams as a line paral-

lel to the strain axis at a distance corresponding to the

yield stress of the material.

Closely connected with plastic deformation is the con—

cept of plasticity, which is defined as the ability of the

material to be deformed continuously and permanently without

rupture during the application of a force that exceeds the

yield value of the material.

Most of the materials show deviations from both per-

fect elastic and ideal plastic behavior; therefore, the re-

lationship between stress and strain will not be linear.

They show a slightly curved line in the elastic range and

a considerable increase in stress during plastic de—

formation.

Jastrzebski (1964) reported that the mechanism of

plastic deformation is essentially different in crystalline

and amorphous materials. Crystalline materials undergo

plastic deformation as the result of slip along a definite

crystollographic plane, whereas in amorphous materials slid—

ing of individual molecules or groups of molecules past one

another occurs, resulting in a flow.

3.10 Viscoelasticity
 

The classical theory of elasticity deals with mechanical

properties of perfectly elastic solids, for which, in accor-

dance with Hooke's law, stress is assumed always directly

proportional to strain but independent of the rate of strain.

The theory of hydrodynamics deals with properties of perfectly
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viscous liquids, for which in accordance with Newton's law the

stress is always directly proportional to rate of strain but

independent of the strain itself. These categories are ideal-

izations; however, as mentioned before, any real solid shows

deviations from Hooke's law under suitably chosen conditions,

and it is probably safe to say that any real liquid would

show deviations from Newtonian flow if subjected to suffi—

ciently precise measurements.

There are two important types of deviations. First, the

strain (in a solid) or the rate of strain (in a liquid) may

not be directly proportional to the stress but may depend on

stress in a more complicated manner. Such stress anomalies

are familiar when the elastic limit is exceeded for a solid.

Second, the stress may depend on both the strain and the rate

of strain together, as well as higher time derivatives of the

strain. Such time anomalies evidently reflect a behavior

which combines liquid and solid like characteristics, and

they are therefore called viscoelastic.

Both stress and time anomalies may of course coexist.

If only the latter is present, we have linear viscoelastic

behavior; then, in a given experiment the ratio of stress

to strain is a function of time alone, and not of the

stress magnitude.

When a material exhibits linear viscoelastic behavior,

its mechanical properties can be duplicated by a model con-

sisting of some suitable combination of springs, which obey

Hooke's law, and viscous dashpots (pistons moving in oil),

which obey Newton's law.
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To simulate a real material, the model may require

an infinite number of units with different spring constants

and flow constants, but if each unit is linear (Hookean

or Newtonian respectively) the overall behavior is linear.

In general viscoelastic materials may include as

special cases, the ideal elastic (Hookean) solid at one

extreme and the ideal viscous (Newtonian) fluid at the

other. All other viscoelastic materials may therefore be

viewed as incorporating in varying amounts through suit-

able combinations of the characteristic behavior associ-

ated with those two materials. Accordingly, simple models

composed of suitable arrangements of linear springs (Hookean

elements) and viscous dashpots (Newtonian elements) serve

well to portray the phenomenological behavior of visco-

elastic media.

A visceelastic model (Figure 3.1) is composed of

two (or more) primary elements, the elastic element and

the viscous element.

(i) The elastic element (Hookean): or spring

element:

F = Eu; where: E spring modulus = const.

u displacement

(ii) The viscous element (Newtonian): or dashpot

element:

F = n %% = nDu; where: n = the viscosity of

the dashpot fluid

d
D3670-
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Figure 3.1——Viscoelastic models: (a) Elastic element

(Hookean),(b) Viscous element (Newtonian), (0) Maxwell

model, (d) Kelvin—Viogt model, (e) Three element model,

(f) Generalized Maxwell model.



(iii)

(iv)

(v)

Combination in series: (Maxwell model):

Du = (gt—3) DF + (in F.

Combination in parallel: (Kelvin-Voigt model):

F = Eu + n Du.

Generalized Maxwell Model:

A parallel combination of a Hookean element,

Newtonian elemeng and a large number of Maxwell

models.

I. If this model is given a sudden deformation
 

(u) defined as u = K H(t), where H(t) is

the Heaviside unit function, defined by

H(t) 0, t < 0

H(t) 1, t 1 O

(e.g., a constant strain situation), the

problem of stress relaxation can be repre-

sented in terms of the mathematical equation

F(t) = K E; H(t) + Kn; 6(t)

where 6(t) = the Dirac delta function = D H(t)

The force response to a unit extension

u(t) = H(t), and excluding the constant and

delta components, is defined by Bland (1960)

as the "relaxation function," denoted by X(t).

For the generalized Maxwell model, therefore,

it is:
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n -Eit/ni

X(t) = 2 E1 (e )H(t)

i=3

n —t/'ri

= 2 E1 (e >H<t>

i=3

where:

n1
1 = —— = the relaxation time
1 E1

II. Similarly for a constant strain rate

loading (R)

F(t) = E1 f Rdt + an

-t/T
i

+ 1 R11 (1 — e )

i

E

3

(3.1)

"
5
4
5

Generalized Maxwell models having various

number of Maxwell models in parallel can be

used to represent the stress relaxation in

materials. If the stress falls to zero for

large values of time then there should be no

spring in parallel with the other elements

when a model is used to simulate the behavior

of this material. Likewise, if there is an

indication that it responds as a rigid body

for increasingly high rates of deformation,
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then there should be a dashpot in parallel

with the other elements of the Maxwell

model.

After a satisfactory model is postulated, the relax—

ation function, and the complete viscoelastic behavior of

the material under various types of loading can be mathe—

matically defined.

This general discussion of various types of behavior

should help in the understanding and analysis of the behavior

of the wheat plant. Because of the existence of both the

viscous and elastic—like properties in the plant cell, one

would expect to have a behavior that combined more than one

of the idealized conditions discussed previously.

The first part of this study deals with the behavior

under applied loads, as well as the influence of the time

factor. Once this is understood, it will then be possible

to proceed in the second part of the study which deals with

the structural stability of the plant.

3.2 The Theory of Elastic Stability
 

Consider an element of a beam subjected to longitudinal

and transverse loads as shown in Figure 3.2. The differ—

ential equation of the displacement in the y—direction

takes the form

d2 d2 d d_y_ _
——-— (E1 J) + a"; (P dx) - g. (3.2)
dx2 dx2

where: P = axial compressive load
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Figure 3.2-~An element of elastic beam showing loading

condition and forces on a free body.
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Figure 3.3--E1astic columns under different loading

conditions.
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E1 = flexural stiffness of the section

q = transverse load per unit length.

3.2a Straight Column

Consider a flexible straight column fixed at one end

and free at the other, and subjected to an axial load P

(Figure 3-3a). Assume that E1, the bending stiffness,

is uniform, q = 0, i.e., no transverse load, and that the

buckling occurs in the x-y plane. Under these conditions

the governing equation 3.2 will be reduced to the form

4 2

9%+§fd—§-=o (3.3)
dx dx

with the boundary conditions:

y = 0

I at x = 0,

£11..

dx — O

and

2

Mb=-EIQ—1-o

dx2

I at x = L

A possible solution of equation 3.3 takes the form

y=c1+02X+C3 Sin/fiX‘FCqCOS/EX, (3.“)
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and considering the given boundary conditions, the expres-

sion for the deflection curve takes the form

 

y = 01 El - COS ( 2 IT]’ for n = l,2,3,...

from which the value of P, for the first mode of buckling,

is

2

P (the critical load) = W EI (3.5)

4L2

 

also the corresponding deflection curve is

y = 01 (l — cos 3%) (3.6)

Similarly if the column was considered to be hinged from

both ends, the corresponding critical load, for the first

mode of buckling, will be

NZEI

Pcritical = L2 (3'7)

3.2b Initial Curvature
 

When a bar is submitted to the action of the lateral

load only, a small initial curvature of the bar has no

effect on the bending, and the final deflection curve is

obtained by superposing the ordinates due to initial

curvature on the deflection calculated as for a straight

bar. However, if there is an axial force acting on the

bar, the deflection produced by this force will be sub—

stantially influenced by the initial curvature.
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Consider the initial shape of the column axis to

be given by the equation

y - e sin %§ (3.8)
O

i.e., it initially has the form of a sine curve with

maximum ordinate at the middle equal to e, and under the

action of the longitudinal compressive force F (Figure

3.3b). Additional deflection, y1, will be produced so

that the final ordinates of the deflection curve are

y = yo + II (3-9)

The bending moment at any cross section is

M‘P(yo+y1)

 

 

 

dZYI

also M = - EI '

dx2

dZYI

or = - §% (yo + yl)

dx2

dZYI "x

therefore + k2y1 a —k2e sin IT (3.10)

dx2 '- '

P2 a __
where k E1

The general solution of equation 3.10 is
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‘ITX

 

 

 

y1 = A sin kx + B cos k x + ————9——— sin If (3.11)

Tr2

— l

k2L2

From the boundary conditions.

y1 = O, for x = O and x = L,

A = B = 0

Introducing the notation

a e _B_ = _E__ _ _B£3 ksz
- 3

or NZEI NZEI "2

L2

-a -1i
then yl - l + a e Sin [J ,

 

(
D

 sin %§ (3.12)

This equation shows that the initial deflection, e,

at the middle of the column is magnified in the ratio

if{%—; by the action of the longitudinal compressive force.

Iflden the longitudinal compressive force, P, approaches its

critical value, and a approaches unity, the deflection

<1rdinate, y, increases indefinitely.
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3.20 Influence of the Lateral Forces
 

The wind forces acting on the plant in the field

can be approximated by a linearly distributed lateral

force having its largest value at the plant head.

Consider a straight column subject to longitudinal

force P together with a linearly distributed force

q(x) = q0 §, (Figure 3.30). Assuming P and E1 to be con-

stant,equation 3.1 becomes

2

EIQ+PM~_q§.’

dx‘+ dx2 0 L

4 2 q X

or Q_% + k 9—? = - EIL , (3.13)

dx dx

P
2 = __

where k El .

The general solution of equation 3.13 takes the form

3
q x

y = A sin k x + B cos k x + C x + D - 62PL , (3.14)

and A, B, C, D are constants of integration that must

be evaluated from the boundary conditions:

y = 0,

} at x = 0
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2

and Q_1 = 0

dx2

} at x = L.

21—314.}(2 91:0

dX3 dx

These conditions together with equation 3.14 yield the

following values for the integration constants

 

C qo l L

A = - - = - —— (-—— + —)
k Pk k2L 2

q

and B = - D = - ° [1 - (fit + %%J sin kL]

P k2 cos kL

Substituting these values of the constants in equation 3.14

yields

.
0

.._9._L _
y k (k2 + ) (kx sin kx)

m
u
d

q

 

o 1 kL

+ [1 — (~— + -—) sin kL][l — cos kx]

sz cos kL RL 2

,q 3
-'62%L

(3.15)

In this equation it is clear that the deformation

is greatly influenced by the lateral forces. This situ-

ation is similar to the one discussed in section 3.2b in

the sense that deformation takes place before the critical

load is reached.
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3.2d Variation of_£hgjfl§ygyl

of Inegtia
 

Many researchers treated the stability problem of

builtuup columns of varying stiffness. Bleich (1951) pre—

sented the solutions for columns with variable sections.

This available information may be utilized to study the

influence of the change in the dimensions of the plant

stem cross section on its stability. As the plant stands

in the field, the stem cross section has its largest di—

mensions just above the soil, and gets smaller toward the

top of the plant until it reaches its smallest dimension

just below the plant head.

Under the assumption that this cross—sectional vari-

ation is gradual, the whole plant may be considered ana—

logous to half of a column hinged from both ends, chang-

ing in cross section symmetrically about its midpoint and

with straight cords as shown in Figure 3.4a.

For experimental purpose, a specimen of varying

cross section was hinged from both ends and tested for

stability. This case could be considered analogous to

that of a nonusymmetrical column changing in cross section

with str"ight chords as shown in ‘igure 3.4b.

Case (i): ,Symmetrical Column with Straight Chords

 

Denoting by IM the moment of inertia at midpoint

and by Ix its value at the re:erence point x, one may

write
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(a) SYMMETRICAL (b) NONSYMMETRICAL

Figure 3.4--Columns with varying cross sections.
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h2x x2
IX Im hz Im 2 ,Im a .(3.l6)

s
m

where E = g is a dimensionless quantity.

The bending moment is

2

M=Py=—EtIX§—¥-

dx2

2

or Et I Q_1 + P y = 0. (3.17)

x dx2

Substituting IX from equation 3.16 and introducing

 

leads to the differential equation with variable co-

efficients

2

52 i—% + a2 y = O . (3.18)

E

The general solution of this equation is

y = /E [A1 sin (K lose a) + A2 cos (K lose 5)], (3.19)

where K = Va? - k; and A1 and A2 are integration con—

stants. Substituting equation 3.19 into the boundary

conditions:
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h

0

5";

m

y=o atEBEO.

and %%-o at£=l,

results in the equations

h h

o o _
Alsin (K loge h-) + Azcos (K loge Hm) - 0,

m m

A2

The non-trivial solutions exist only if the determinant

condition

I\
11L

tan (K log m9 — 2 K = c
e hm

which has an infinite number of roots K. The smallest root

K1 defines the critical load, Pcr’ as follows

E I

 

t m

P — (1 + 4 K12)

which can be written as

ant Im

PC“ = u-—--—-— (3.20)
.-. L2

where the factor u is defined by

1+4K12 2 l+ux§ n2

u = ----——-——-— (g) = —-—-—2——-—(i — 59-). (3.21)
4w2 n im
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Equation 3.20 indicates that the critical load, Per,

is found as the critical load of a column with a constant

cross section having an equivalent moment of inertia

I = uIm, where u is given by equation 3.21.

 

Case (ii): Nonsymmetrical Column with Straight

Chords Figure 3.4b.
 

In this case equation 3.19 is applied to the boundary

conditions:

h

_ _ _ o

y ‘ O at E - £0 - Ef‘,

m

and y=0 at£=l

yielding the equations

ho ho
A1 sin (K loge 5;) + A2 cos (K loge 5;) = 0

and A2 = 0

Therefore, the stability conditions require

hO

5")”
H1

sin (K loge

from which the smallest non—trivial root is

“If

K1 2 loge hO w loge hm

 

and the corresponding critical load is



 

= .__JL_JE
Pcr u L2 (3.22)

in which

h 2

u=k(l-39) 334 L‘ (3.23)
m 11‘

_ 2
(loge ho loge hm)

The critical load is again analogous to that of a column

with constant cross section having an equivalent moment

of~inertia

3.3 Inelastic Buckling
 

The theory of elastic stability is based on the

assumption that the stresses in the column would be below

the elastic limit at the instant when equilibrium becomes

unstable. In shorter columns the elastic limit is ex-

ceeded before the column becomes unstable. In such a

condition, the equivalent modulus of elasticity becOmes

a function of the critical stress.

3.3a Double Modulus Theory
 

Considering a short column compressed by an axially

applied load, P, so that a = E exceeds the proportional

limit. Then let the load be further increased until the

column reaches the condition of unstable equilibrium

similar to that of elastic columns, and let it be deflected
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slightly. In every cross section there will be an axis,

n-n, perpendicular to the plane of bending in which the

cross sectional stress developed prior to deflection re-

mains unchanged. Bending will increase the compression

stress on one side of the line nun and decrease it on

the other side. The rate of increase is proportional to

30 = E and E is the tangent modulus of the stress-
53 t’ t

strain curve in Figure 3.5. Because the strain reversal

relieves only the elastic portion of the strain, the re-

duction on the other side of n-n will be following the law

of proportionality of stress and strain. The stress dia-

gram on the convex side is bounded by the line, NA',

(Figure 3.6) having a different slope from that of the

line, NB'.

The equilibrium between internal stresses and external

load requires

and

f 81 dA - f s dA = o (3.24)

n1 .n2

f 81(21 + a) dfi. + f 32 (82 - a) CIA = Py ,

O O

(3.25)

where: 31 and S; denote the statical moments

of the cross-sectional area to the left

and right of the axis n—n, about this axis.
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Figure 3.5-—The double and

tangent modulus theories of

inelastic buckling.
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a = the distance between the neutral and

centroidal axis.

and y = the deflection, taken with respect to

the centroidal axis of the column.

From Figure 3.6,

01 02

81:5;- zlandSZ=ngz

Also from the relative rotations of two cross sections

in Figure 3.6:

 

oldx

and since A dx = E

01 02

then 91 = ____ =  

2

For small deformations %3 = Q_1

X d 2

x

2 2

therefore 01 = E hl Q_X and 02 = E hz Q_X

2 t 2
dx dx

Therefore equation 3.24 becomes

h h
2 1 2 2

E Q_1 f 21 dA - Et Q_1 f 22 dA = 0

dx2 0 dx2 0

or E 81 - Et 82 = 0 (3.26)
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This equation together with the relation, hl + h2 = h,

determines-the position of neutral axis, n—n. The second

equation, 3.25, yields

hz

9—1 (E I 212 dA + Et I 222 dA)

dx2 o o

h h2
2 1

+ a 9—1 (E I 21 dA - Et -I 22 dA) = Py
dx2 o o

2

which results Q_X (E I1 + E. 12) = P y

dx2 t

where 11 and 12 represent the moments of inertia to the

left and right of n-n respectively.

Introducing' E I = E 11 + Et 12

-d2

results E -—l + P = O (3.27)

dx2 y

_ II I2

where: E = E If + Et I?” (3.28)

= the effective or double modulus

and I-= the moment of inertia of the cross

section about the axis through the

center of gravity.
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Once the stress—strain curve in compression is avail-

able, E can be determined by means of equations 3.26 and

3.28. In the inelastic range E is variable, while in the

elastic range E becomes the same as E.

And as in section 3.2a,for straight column hinged

from both ends, the critical load becomes

2 ..

L2

3.3b Tangent Modulus Theory
 

This theory was originated under the assumption

that when the column buckles after being stressed beyond

the elastic limit, no strain reversal takes place on the

convex side of the bent column when it passes from the

straight form to the adjacent deflected configuration.

Under this assumption the value of the tangent

modulus, Et’ applies over the entire cross section. For

axial loading, the differential equation of the deflected

center line is

2

Et I 9—Y- + Py = 0, (3.30)

dx2

and the critical load for the hinged ended column will be

-— (3.31)
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which is smaller than the value obtained from the double

modulus theory. This value could be considered as a lower

limit of the buckling load.

3.30 Inelastic Buckling Model
 

Crandall (1959) presented a simplified model that

simulates the inelastic buckling conditions described in

section 3.3a and 3.3b. The model, shown in Figure 3.7,

consists of a rigid member supported by two strain hardened

springs A and B. The force deformation relations for the

Springs has the same form as the stress-strain curve for

the column material, Figure 3.7d.

Suppose that under the load, P, the system has

reached the position where both springs have been com—

pressed by 60, and the column remains straight, Figure

3.7a. Now suppose that only a small change is required.

to lead to the tipped position. There are two possible

mechanisms by which this tipping can occur.

(1) The double modulus mechanism: where spring
 

B is compressed a small additional amount while spring A

decompresses (i.e., plastic loading and elastic unloading).

(ii) The tangent modulus mechanism: where both
 

spring A and B suffer additional but unequal compression

(i.e., further plastic loading).

General Considerations:
 

a. Considering the forces acting on the free body,

Figure 3.7b, and assuming a small displacement,

then



4O

  
   
 

.————.—L. w
Ai is 1'7”?“—ng ' .A a

NO LOAD STABLE UNSTABLE

(a) Inelastic model with no load and under stable and

unstable loading conditions.
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Force—deformation

curve of the

column.

(b) Free body (0) Geometry of (d)

diagram deformation

Figure 3.7-—Inelastic buckling model.
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E F = F + FB — P 8 O
y A

and 2 MO = e 0 FA + 0 FB - L e P = o

_P Le

FA_2(1 Ho“)

} (3.32)

.2 Li
FB-.2(1+ C

F

Considering the geometry of Figure 3.70, the

displacements of the two springs are related

to the angle 6 as follows

_ = ’77 ‘7‘
GB 5A a L 0 (3-33)

The plastic modulus, Kg, in a small neighbor—

hood of 60, can be expressed approximately by

the tangent of the curve at 60. Therefore

F = FO + Kt (6 - 60), represents the loading

'
1
1

II

’
1
3

Io Ke (6 - 60), represents the unloading

o = the force in each spring when the column is

straight and the spring deflection is 60.

e = the slope of the elastic line of the force

deformation curve.
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With the above considerations in mind the loads at which

the stability can exist are

 

 

2 02 2 Ke Kt
P = ,for the double modulus mechanism, (3.34)
d L Ke + Kt -

and

2 C2

Pt = L Kt,for the tangent modulus mechanisms. (3.35)

This model simulates the inelastic buckling once

the force deformation behavior of the springs is similar

to that of the original column material.

3.4 Inelastic Curved Hollow Tubular Column
 

Considering a given part of the straw as a hollow

tubular column, it is possible to study the combined effect

of initial curvature and inelastic behavior.

Assuming that the initial shape of the center line

of the straw, Figure 3.8a, takes the shape:

Y1 = e sin %% (3.36)

And under the action of the compressive force, P,

an additional deflection:

Y2 = 6 sin %? (3.37)

is produced. The change of the curvature at the middle

of the straw is



43

   
   

 
 

I ‘2
p~

£1

\\

y"
I \ 7

\
W‘Vz

\/ STRESS DUE

F To eewomc

e “Ik-OI

‘ *
C
E
N
T
R
O
I
D
A

   (
D

—
-
'
|

a
)

—
l
"
'
|

(
I
)

U
)

 

 (a)

Figure 3.8--Ine1astic curved hollow tubular column under

axial loading.
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dzyz
l . 6 2

E'Fl”"" 2 = "2 (3.38)
o dx x = L/2 L

where :L-= the initial curvature at x = g

o
4

Assuming that the strains in the outmost fibers at

the middle of the straw are 61 and £2. The change of

curvature, due to the deformation resulted from the longi—

tudinal force,P, can also be written as

62-61

1 _ ,
_ '5';- 2171 (3°39)

O
i
l
—
1

where Do the initial radius of curvature

and the radius of curvature of the section under

consideration.

From the last two equations the additional deformation, 6,

can be obtained for any assumed values of el and 32,

 
 

L2 62 - e1

6 = —— ——§——— (3.40)

"2 Pl

Also the compressive force, P, from the equation

_P_l 5?-
oc — Area - €2_€1 Elf ode (3.41)

and the bending moment is related to the total deflection

as follows

P (e + 6) = M (3.42)
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Since bending and direct stress occur simultaneously

from the beginning and grow together with increasing load

P, no strain reversal is presumed to occur on the convex

side of the deflected straw at the instant at which the

critical load is reached. When P increases until the pro-

portional limit is exceeded in the entire cross section, or

at least in the highest stressed portion of the section,

the stress distribution will follow the stress—strain dia—

gram for the straw. As shown in Figure 3.8b,every section

will have a do axis along which the stress equals the

P
average stress K’ i.e.,

Considering the total stress, 0, consisting of two

parts 00’ and the stress due to bending denoted by ab,

then

0 = c + Ob . (3-43)

In Figure 3.8b, the condition of equilibrium requires

  

rl-a 7’r12 - (c1 + a)2 r2-a //r22-(c1 + a)2

0b dczdcl - °b dczdcl = o

-r1_a o -r2-a O

(3.44)
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and

rl-a /I'12 -(C1+ a)2 r2—a /P22 - (C1+ a)2

ob CldCdel - {ob cidc2dcl = 1.o_P(yl + Y2)

-r1—a O -r2-—a O

(3.45)

where, as shown in Figure 3.8b

c1 = the distance of a fiber from the<%-axis of the

cross section.

a = the distance between the centroidal axis and

the do axis.

Also in Figure 3.8b, the stresses and corresponding strains

are: £0 = the compressive strain corresponding to the

average stress 00.

61,82 = the minimum and maximum compressive strains,

respectively, corresponding to the compressive

stresses 01 and 02 at the external fibers.

Let us consider the relative rotation of two cross

sections a distance unity apart; and in reference to

Figure 3.8b,

e - e = -— (3.96)

and 62 — 61 l- l
——-———--—= —-— (3.47)

2r1
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From equations 3.46 and 3.47 we can write

2 r1 co (6 - to)

C1 = 2 r1 + 00 (£2 - 61) (3.48)

 

Differentiation with respect to C1 yields

62 — e1
1

——§—;?— + 3;) dfil (3-49)

Using equations 3.48 and 3.49 together with equations

3.44 and 3.45, we can write

 
 

  

// 2 2rloo(e-eo) 2 // 2 2P100(€-€O) 2

62 P1 ”{2r1 + 90(62-81) + a} 62 P2 -{2P1 + 90(82-813 + a}

51 b dczde - ,1 °b dczdc = o

(3.50)

and

 
 

  

// 2 2rlpo(e—eo) —Z // 2 2P100(€-€O) 2

82 P1 -{2P1 + po(€2-€1) + a} £2 r2 -{2P1 + 00(62—613 + a}

// Ob(E—EO) dCsz -

£1
Ob(e-EO) dCZdE

2

{2P1 + 00(82-61)}

= we P(y1 + yz)

8P12 p

 

O

(3.51)
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In these equations Ob should be considered a function

of 6 represented by the portion of the stress-strain curve

which lies between 61 and 52 (Figure 3.8b).

For a given average stress, 0o = g, and a given maxi—

mum compressive strain, 62, on the concave side of the column,

equation 3.50 yields the minimum compressive strain 51-

Similarly a set of various distributions of stress pertain—

ing to the same axial load, P, can be determined, represent—

ing possible distributions of stress which may exist at the

various cross sections of the bent column. For each of

these stress areas a value of radius of curvature can be

determined through equation 3.47. In this manner a set of

correlated values,(>and y , can be obtained defining a

function p = f(y1,y2). And since for small a deflection,

2

l = Q_l , the following relationship can be established:

‘3 dx2

2

id = Nylon) - (3-52)
dx2

Such a differential equation defines y, the shape of the

g, initial shape yl, andcenterline, for any value of Go

length of the straw.

Bleich (1951) reported a typical relationship between

the average stress, 00, and the deformation, ym, at the mid-

height of a straight column with a rectangular solid cross

section, made of elastic plastic material DOW,eccentrically

loaded. In such a situation of a eccentrically loaded elastic-

plastic column, the relation between Go and ym will be
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similar to that of Figure 3.9. From this relation, some

observations can be made. At the stress Oo’ two con—

figurations of equilibrium are possible, both pertaining

to the same load P = AGO. One configuration corresponds

to a stable deflection, where an increase in 0 results in

an increase in the deflection. This configuration exists

after the load, P, is removed and the column returns

toward its original shape. However, it retains a slightly

bent shape due to the residual plastic strain in those

fibers where the proportional limit was exceeded. The

second configuration is unstable; since a further increase

in ym involves reduction of do

The maximum value of stress, 00’ indicates, therefore,

the transition from stable to unstable equilibrium. Accord—

ingly, P Acc defines the failure load of the eccentri—
cr

cally loaded column. It should be clear, from this reason—

ing, that the failure is not due to reaching a certain

critical fiber stress, but because the stable equilibrium

is no longer possible between the internal and external

bending moment.

In the limiting case of straight column, i.e., no

initial curvature, the do - ym curve assumes the shape

indicated by the dashed curve of Figure 3.9. The critical

load is then the load obtained from the tangent modulus

theory.
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4. EXPERIMENTAL PROCEDURE AND EQUIPMENT

In agricultural engineering research, two approaches

are commonly used: (a) the factorial analysis, i.e., iso—

lating the different factors affecting certain phenomena

and checking each one of them separately, and (b) the

utilization of information or techniques available from

other engineering areas. The second approach is being

used in this study.

To determine experimentally the mechanical and

rheological properties of an agricultural material, it is

necessary to have some means of measuring applied stresses

and the amount of strain as a function of time. It is

also highly desirable to have a recording unit to provide

a continuous and permanent record to the existing relation-

ships. It was recognized from preliminary tests that the

cereal grain plant has viscoelastic behavior, and as such

its behavior would be considerably influenced by tempera—

ture and humidity conditions. Therefore, a temperature

and humidity controlled testing chamber was utilized.

51
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4.1 Equipment
 

4.1a Testigg Chamber

The testing chamber was six feet wide, eight feet

long, and seven feet high. It was previouSly constructed

of two layers of plywood between which fiberglass insul—

ation was fitted. The temperature was controlled by means

of a thermostat operated air conditioner located in the

lower front corner of the chamber. With an air duct

fitted to it, it directed the air toward the top of the

chamber to minimize temperature gradient and to reduce

air movement in the area where the samples were tested.

The humidity was controlled by means of a.humidistat

operated solenoid in a low pressure steam line entering the

chamber through a horizontal 20-inch long half-inch pipe.

The pipe had small holes drilled at one-inch spacing along

the top.

Throughout the tests the temperature was maintained

at 72 (i 3) degrees F., and the humidity was held at 65

(i 4) percent.

4.1b The Testing Machine and

Recording Unit

 

The overall view of the testing machine and recording

unit is shown in Figure 4.1. The basic unit of this machine,

which was assembled previously by Finney, was a 4—inch

stroke, double acting, pneumatically driven air motor with

positive, hydraulically controlled piston speed in both

directions. The machine was capable of producing forces in
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Figure 4.l—-Overall view of the testing machine and

recording unit.
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tension and compression of about 300 pounds at constant

strain rates which may be varied from zero to about 50

inches per minute.

4.10 Stress Measurement
 

During the tests, the encountered forces were mea-

sured by a Baldwin-LimanHamilton U—lB 50-pound capacity

load cell and recorded by a Mosley 135 X—Y recorder. Due

to the low range of forces used, additional amplification

of the load cell output was provided by using a Brush

strain gage bridge amplifier.

Before each series of tests, the calibration of the

load cell and the amplifier was checked.

4.1d Strain Measurements
 

In most of the tests, it was necessary to check the

relaxation characteristics of the tested specimen. For

this reason these tests were conducted in two parts: (1)

a constant strain rate loading followed by, (2) stress

relaxation test while the specimen was held at constant

deformation. During the loading phase displacements were

measured using a dial gage at the load cell. The observed

displacements were recorded using an event marker on the

X-Y recorder.

This method of strain measurement gave the relative

displacement between the load cell and the base of the

testing machine. This means that the strains within the

mountings were also included. As indicated later, it
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became necessary for some of the tests, especially the com-

pression tests, to search for another method of measuring

the strains within the specimen itself.

Because of the difficulty of mounting any strain

measuring devices on the wheat plant specimen itself and

the small forces used in most of the tests, it became

necessary to utilize a method that does not include touch—

ing the tested specimen.

An optical strain measurement method was developed.

This method proved useful for strain measurement in the

compression test. In this optical method two marks, one-

half of an inch apart, were made on the straw specimen,

and while the load was applied successive photographs were

taken at defined intervals. A mark, corresponding to each

picture, was recorded on the loading curve using the event

marker on the X-Y recorder. The photos were taken with a

35-millimeter camera at a fixed distance of about 4.5-inches

from the tested specimen. The change in the distance be—

tween the two marks on the straw was measured by projecting

the negative and producing sufficient enlargement to give

reasonably accurate measurements.

4.2 Laboratory Tests
 

In order to determine the mechanical and rheological

behavior of wheat plants under different loading conditions,

it was necessary to conduct a series of strength tests.

Compression, tension, and bending tests were made. For the
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purpose of studying the stability of the plant, buckling

tests were also carried out. In each of these tests two

parts of the plant were tested. The first part was that

immediately below the head, and the other was the lower

portion of the plant just above the ground.

Three varieties of the wheat plant (Triticum Vulgarus)
 

were tested over a four-week period starting one week

before the early harvesting season of 1965. The varieties

tested were Comanche, Redcoat, and Genesee. Six samples,

from three plants, were tested in each experiment.

The samples were obtained from the field in the

morning and stored in the temperature and humidity con—

trolled testing chamber. The samples then were prepared

and tested in the same day. With each test, a moisture

content and linear density test were made. Also, the cross—

sectional dimensions, the outer diameter and thickness of

the sample was measured (Figure 4.3). Figure 4.2 shows the

samples prepared for testing.

4.2a Tension and Compression Tests
 

In order to determine behavior of the wheat stem in

tension, three-inch samples were tested from the tOp and

lower portion of the plant stem. Each sample was clamped

from both sides by two 1/4 of an inch plywood blocks covered

with sand paper to prevent the sample from slipping. The

distance between the two clamps was about one—inch. The

recording procedure was such that the recording pin moves



 
Figure 4.2——Samples prepared for testing.

 
Figure 4.3--Measurements of the cross section of the

test Specimen.
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in the x-direction at a constant rate while the resulting

force was recorded on the y-axis. The deformation was

measured, as stated previously, by using the dial gage at

the load cell. The observed displacement was recorded

using the event marker on the X-Y recorder. In fact, this

displacement was that of the piston rod. This includes

any relative movement between the specimen and the support—

ing clamps, if such slip occurs. The length of tested

specimen, i.e., the distance between the two supports, and

the cross-sectional dimensions, the outer diameter and wall

thickness, were recorded for each sample. Figures 4.4 and

4.5 show the tested specimen, mounting technique and

testing procedure.

Compression tests were made on the straw specimen

for the purpose of obtaining the stress—strain and relax-

ation characteristics of the wheat straw. The sample

preparation had to be made such that neither buckling nor

stress concentrations at the ends of the sample would exist.

A one-inch sample was considered to be desirable to avoid

buckling and yet not be too difficult to handle. To avoid

stress concentration at the ends of the sample, several

mountingtechniques were tried. The chosen technique was

to glue two nails inside of the straw. This allowed the

stresses to be transferred from the mounting nails to the

straw through the bond. Figures 4.6 and 4.7 show the com-

pression test samples before and after preparation for

testing. The test was conducted in two parts: (1) a
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Figure 4.4-—Method of mounting samples for tension test.

 
Figure 4.5——The tension test.
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Figure 4.6——Straw specimen for compression test.

 
Figure 4.7—«Uniaxial compression test,
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constant strain rate loading followed by, (2) stress

relaxation test while the specimen was held at constant

deformation. And, as in the tension test, during the load—

ing phase displacements were measured, using the dial gage

at the load cell, and recorded on the chart using the event

marker on the X-Y recorder. This measured displacement

should include all the strain in the mounting nails, and

supporting bond. And as will be mentioned in the next

chapter, this was the reason behind the lower values of

moduli of elasticity obtained from compression tests.

During the loading portion of the test the force

was recorded on the y—axis of the X—Y recorder while the

recording pin was moving in the x-direction at a constant

rate of 20 seconds per each inch. The force was applied

at a constant rate of about 0.01 i 0.005 inches per minute.

The second part of the test was the stress relax—

ation test. This test took place at the end of each con-

stant strain loading test where the specimen was held at

constant deformation while the encountered force was re-

corded as a function of time.

Another strain measurement method, the photostrain

technique, was used to avoid the additional strains from

the mounting areas (Section 4.1d).

4.2b Bending Test
 

Because of problems encountered in mounting and

strain measurements together with the time required for
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sample preparations, during which some changes in moisture

content of the sample is expected to take place, the bend-

ing test was proved to be much more convenient and reliable.

The test was conducted by loading the specimen as simply

supported beam as shown in Figure 4.8. The force was

applied at a constant strain rate. Throughout the tests

the loading rate was in the range of 0.009 and 0.027 inches

per minute. The sample supporting frame, as shown in

Figure 4.8, consisted of two fixed and one moveable support

in the middle. The encountered force and displacement at

the middle of the tested specimen was measured by means of

the load cell and dial gage.

As in the compression test, the bending test con—

sisted of two parts: (1) constant strain rate loading,

and (2) stress relaxation test during which the specimen

was held at constant deformation. Also, the time base of

the recorder was used for both deformation and relaxation

measurements.

4.20 The Buckling Test
 

The stability of the wheat plant under axial load

was also studied. An 8-inch specimen was selected be-

cause of the limits of the testing machine. Loads were

applied at a constant rate of strain until the critical

buckling load was reached. Two mounting techniques were

employed in the stability tests. The first, as shown in

Figure 4.9, was similar to that used in the compression
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Figure 4.8——The Bending Test.
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Figure 4.10e—The buckling test.Figure 4.9—-Method of

mounting samples for

buckling test
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test, where nails were fitted and bounded to the ends of

the specimen for the purpose of preventing a failure at

the ends of the specimen. This technique was desirable

for the tests where the samples did not have a node at

the end. The second technique, without fitted nails,

was suitable for the samples which had nodes at the end.

The displacements of the ends were recorded, and a

l6-millimeter film was taken for the purpose of checking

the shape of the deformation.

Two samples were tested from each plant; the first

was from the portion immediately under the plant head

where the cross-sectional dimensions decrease gradually

from the top node toward the plant head. The second

sample was taken from the lower portion of the plant.

Figure 4.10 shows the buckling test. The cross-sectional

dimensions, length, and initial shape of each sample were

determined for each test.



5. RESULTS AND DISCUSSION

5.1 General Characteristics of the Plant

Behavior Under Applied Loads

 

 

It was clear from the force-deformation curves that

the wheat straw does not react to applied stresses in a

purely elastic manner. It was also observed that the load-

ing curves of most of the tests had a plastic—like behavior.

The shape of the stress relaxation curves confirmed the

assumption that the wheat plant has some viscous properties.

The moisture content and linear density of the tested

plant were evaluated over the testing period, (Figure 5.1).

5.1a Tension and Compression Tests
 

Tension curves showed an approximately linear stress-

deformation relationship. Compression curves, Figure 5.2a,

however, showed a significant plastic—like behavior in the

loading curves. The stress relaxation test showed the

existance of significant damping effect. And as will be

shown in section 5.2, it is possible from the loading and

relaxation curves to obtain the necessary information about

the elastic and viscous moduli of the tested specimens.

After checking the damping characteristics of the wheat

straw, as will be eXplained in section 5.2, the slope of

66
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(a) Compression test
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’ Figure 5.2--Typical behavior of loading and relaxation curves

obtained from the compression and bending tests.
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the first part of the loading curve was used to obtain

the modulus of elasticity of the test specimen. Appendix

Tables A-1 and A—2 show the obtained values of the modulus

of elasticity from the tension and compression tests re-

spectively.

From the first test, in comparing the obtained values

for the modulus of elasticity from tension and compression

to that obtained from the bending test, it was clear that

the modulus of elasticity was much lower than eXpected

 

 

from the results of the bending tests. The main reason for

that wasthe larger values of measured strains than that

within the specimen itself. This mmsmainly due to slip in

the tension test, and strains within the mounting area in

the compression test.

In order to reduce the error in strain measurement,

the photo-strain measurement technique was developed.

Three different samples were tested, and their stress-

strain curves are shown in Figure 5.3. Appendix Table A—3

gives the data obtained from this technique. The values

of the modulus of elasticity obtained from this technique

were considerably higher than those obtained from the

mechanical strain measurement and seems to be a practical

method for such delicate materials as the wheat straw.

It also lacked some sensitivity for short periods. Even

after expanding the recorded view about 70 times larger

than actual length, the change in length was small and

quite difficult to make a precise measurement of the
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expanded photo. The accuracy could be improved if very

sharp and dark marks are made, together with using a high

sensitivity and better quality film.

5.1b Bending Test
 

In this test, all specimens were supported as simple

beams and center loaded at constant rate of deformation.

The encountered force and displacements of the middle

point were recorded. The force-displacement relation was

visibly non-linear. The amount of non-linearity of the

relation depended on the amount of damping in the straw.

At the end of the loading operation the material was al-

lowed to relax while the deformation was held constant.

A typical loading and relaxation curve for the wheat straw

in bending is shown in-Figure 5.2b. As will be shown in

section 5.2, the slope of the first portion of the loading

curve of a viscoelastic material can be used to obtain the

elastic modulus of a tested specimen. For a simply sup-

ported beam with a force acting in the middle, the displace—

ment, y, in the direction of the force is expressed as

=FL3

3’ Hrs—is

where: F = the applied force

L = the length of the specimen (distance between

fixed supports)

I = the moment of inertia of the sample cross

section
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4

'
_

.
'
.
A

I '.

v
2
;

.
—
-
‘
.



72

E = the modulus of elasticity

or E = F L3 .

INTI—57

This relation was used to calculate the modulus of elasticity

of the specimen. Appendix Table A-4 shows the calculated

value of E from the bending tests over the four week period

of tests. As shown in the table, the data obtained from a

given test in the same period of time and for the same

variety, give different values of E. The variation from

one plant to another is a typical problem encountered in

research on biological materials. If the aim of a given

research is to obtain statistical data regarding a given

characteristic, a large number of samples should be tested

depending on the amount of variation that exists. In this

study the main objective, however, was to explore the be-

havior of the plant and to express its behavior in terms-

of the engineering language. For this reason, only three

samples were tested in each experiment.

It was also observed that after exceeding a certain

amount of deformation,the cross section immediately under

the applied force started to change from a circular to a

rather elliptical shape. This flattening resulted in a

reduction in the moment of inertia of the cross section

and therefore less resistance to deformation.

'The Values of medulus of elasticity obtained

from the bending test was used to check the assumed
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buckling model. Because of the variation from one plant

to another, the value of E obtained from averaging three

tests was not expected to be necessarily the exact value of

the modulus of elasticity of the sample being tested for

stability. It was assumed, however, that this value of

E . should be close enough to approximate that of the

av

sample tested for stability.

5.10 The Stability Test
 

As the wheat plant stands in the field, it can be

approximated by a column fixed at the bottom and free at

the top. The cross section of the stem, which may be

treated as a hollow tube except for the nodes, changes

gradually in the cross sectional dimensions as it tends

to have a smaller diameter toward the top of the plant.

As the plant stands in the field it carries a static

load of its own stem and leaves, and an axial load repre-

sented by the head. As the plant approaches the harvest-

ing season, the head grows heavier until it becomes the

main static load acting on the stem. The plant is sub—

jected also to the wind force, which varies in intensity

from still air to very high speed wind. As the plants

stand in the field, there is a great deal of shielding

or mass effect which in turn reduces the wind effect.

The wind forces may be approximated by a linearly

distributed force with its latgest intensity towards

the plant top, Figure 3.3.
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For experimental convenience the stability tests

were made on samples hinged from both ends, instead of

fixed from one end and free in the other as it actually

stands in the field. In these tests force was applied

axially to the tested sample at a constant rate of de—

formation until the critical buckling load was reached

and long enough after that in order to identify the type

of buckling that took place from the shape of the resulted

force deformation curve.

It should also be mentioned that most of the speci—

mens were not perfectly straight. There was a significant

initial eccentricity in the tested specimens. And as will

be discussed in section 5.3, this resulted in the existence

of~a bending moment together with axial stress throughout

the stability test.

From the shape of the resultant force-deformation

curves, it was quite easy to tell whether the buckling

that took place was elastic, elastic—plastic, or plastic

buckling (sections 3.2, 3.3, and 3.4). Figure 5.4 shows

typical elastic, elastic plastic, and plastic buckling

curves resulted from the stability test.

Because the internode distance increases toward

the plant top, the change in the diameter of the straw

was more visible in the top portion of the plant. For

this reason two samples were tested for stability from

each plant. The first sample was from the lower portion

of the plant where the diameter was assumed to be the
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Figure 5.4--Typical elastic, elastic-plastic, and plastic

buckling curves obtained from the stability tests.
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same, and the second was from the top portion where the

change in the diameter was obvious.

During the tests it was observed that the lateral

deformation of the specimens obtained from the lower portion

had the form of a sine curve. The samples obtained from the

top portion, however, tended to deform more in the direction

of the smaller diameter. Figures 5.5 and 5.6 show the

typical deformation curves for the uniform and conical

samples respectively.

5.2 Rheological Properties
 

The behavior of the wheat stem, being composed of

structural substances and fluids,as most agricultural

materials, was expected to be time dependent. The stress

relaxation test showed some viscoelastic behavior in all

tested specimens.

For an ideal relaxation test, it is desirable to

load the specimen by means of some step-change technique,

i.e., a loading which changes from zero to the desirable

value within an infinitely small time interval. This

technique has the advantage of minimizing the effect of

stress relaxation during the loading process, but it is

rather difficult to simulate eXperimentally. In this

study the tested specimen was loaded at a constant rate

of strain until a certain pre—determined level was reached,

and then the deformation of the specimen was maintained
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Figure 5.5——Deformation shape for straw with

uniform section approximately sinusiodal.
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Figure 5.6—-Deformation shape for straw

with varying section.
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constant while the force required to maintain this defor-

mation was measured and recorded as a function of time.

It was assumed that the behavior of the wheat stem

can be described by a generalized Maxwell model, Figure

3.1, section 3.1. Under this assumption and with constant

strain loading, the curve that resulted from loading the

wheat straw can be expressed by the equation,

t n -t/T

 

F(t) = E1 I R dt + an + 2 E1 R11 (1 - e i)

o i=3

n --t/Ti

= El R t + an + Z Ei R11 (1 - e ) (5.1)

i=3

where: R = the rate of strain

T _ ii = viscosity of dashpot fluid

i 1 spring modulus

the relaxation time

After a loading period of t = t1, and then holding

the displacement constant, the relaxation equation may be

obtained by assuming that stopping the extension at t = t1

is equivalent to applying a negative strain rate, —R, such

that from time t1 and on, the sum of the two opposing

strains yields zero extension. The resulted expression

for "F" will be
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F(t - t1) = E1 R t + n; R + 2 E1 R11 (1 - e )

i=3

n -(t-t1)/Ti

— E1 R(t - t1) - n2 R - 1 E1 R11 (1 - e )

i=3

. n -(t - t1)/Ti -t1/Ti

3 ElRtl + 2 E1 R11 e (l - e )

i=3

(5.2)

Equation 5.2 represents the stress in the specimen being

allowed to relax after loading from time, t = 0, to

time, t = t1, at a constant rate of strain, R. Equation

5.2 can be written in the form

n -(t - t1)/Ti

F(t — t1) = E1Rt1 + 12 F1 e (5.3)

=3

-t1/Ti

E RT (1 - e
i i i )

where: F

the stress in the 1th Maxwell element at

the end of the loading process.

Figure 5.2 shows typical loading and relaxation

curves obtained from compression and bending tests re-

spectively.

By comparing the loading and relaxation equations,

one can expect the following:

1. A sudden change in the encountered force at

the end of the loading process can be referred

to the existence of a dashpot in parallel with

the spring and the Maxwell elements.
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2. If the encountered force falls to zero for large

values of time, then there should be no spring

in parallel with other elements when a model

is postulated to simulate the behavior of the

tested specimen. If, on the other hand, the

stress does not approach zero as time approaches

infinity, and instead it tends to level up to a

constant value, then obviously this type of be-

havior should be represented by an elastic ele-

ment in parallel with the remaining elements in

the generalized model.

The stress relaxation function of a Maxwell material,

i.e., a material that can be represented by an element of

a simple Maxwell model, is F(t) = F0 e‘t/T. This function

when represented graphically on semi—log paper, will appear

as a straight line with slope of - %. For models consist—

ing of more than one simple Maxwell element in parallel,

the graphical representation may be obtained by fitting

several straight lines to the curve. Each straight line

represents one exponential function corresponding to the

relaxation of one Maxwell element. This graphical tech—

nique was introduced by Whitehead (1953) to represent the

decay of electrical charges in dielectric materials.

5.2a Viscoelastic Modeling
 

In spite of the problems encountered in the compres—

sion test, the relaxation characteristics were studied.
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The graphical technique was used to obtain the correspond-

ing viscoelastic model. In this test it was observed that

the force deformation curves showed a sudden increase in

the encountered forces at the beginning of the loading

process, and a sudden decrease in it at the end of the

loading process and beginning of the relaxation test. And

as mentioned before, this can be referred to as the exis-

tence of a dashpot in parallel with the other elements of

the generalized Maxwell model. After a long relaxation

time there was no sign that the relaxation curve tends to

level out, and this ruled out the possibility of having an

elastic element in parallel with the other elements of the

model. And by using the graphical technique to study the

rest of the curve, it was found that two Maxwell elements

in parallel,together with the dashpot will give a satisé

factory simulation of the relaxation characteristics of

the wheat straw under axial compression. Figure 5.7 shows

a sample curve and the graphical technique used to chose

the viscoelastic model for the relaxation of the straw

under compression.

The stress-time relaxation equation of this sample

takes the form

3 —t/T1

0=N1_R+ 2 e

' i=2

This model constantly represented the relaxation

behavior of the straw over the four weeks period of tests.
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Appendix Table A-5 gives the values of the model parameters

for the Genesee variety over the four—week period of tests.

The problems encountered in the compression tests

raised some questions regarding the relaxation behavior of

the tested specimens in compression. It was mainly whether

the sudden change in the encountered force was a true be-

havior of the straw under compressive force, or due to the

mounting bonds as a result of the sudden change of the rate

of deformation. There is no definite answer to this state-

ment; however, some tests of straw specimens under compres-

sion and without reinforcing the ends, showed an identical

behavior. In these unmounted samples, however, the samples

tended to fail at the ends because of stress concentration.

The relaxation was studied also for samples tested

in bending. Neither a dashpot nor an elastic element were

believed to exist in parallel with simple Maxwell elements.

Using the graphical technique it was found that a model con-

sisting of two Maxwell elements in parallel can give a good

approximation of the stress relaxation of the wheat straw.

This model constantly represented the relaxation behavior

of the three different varieties of wheat plants through—

out the four weeks period of testing. In reference to

equation 5.1 and 5.3, the loading and relaxation curves

were represented respectively by the following equations:

—t/T1 -t/12

F(t) =E1R11(l—e )+E2 RT2(l-e ), (5.“)

for loading, and



8H

-(t - t1)/T1 -(t — t1)/T2

F(t - t1) = F18 + F2 e
3

for relaxation, where:

“tl/Ti

’
1
1 I

i - Ei R11 (1 - e )

R = the rate of deformation of the center of the

tested specimen

T ”_1.
i Ei

t1 = the time at which the loading was ended and

relaxation test was started.

Figure 5.8 shows a sample of a relaxation curve and the

graphical technique used to find the viscoelastic model

for the bending. Appendix Table A-6 gives the values of

11, 12 and F1, F2 obtained from the bending test for the

three wheat varieties, Comanche, Redcoat and Genesee, for

the four-weeks of tests.

5.2b Evaluation of the Modulus of

Elasticity from the Loading Curve

 

 

It was mentioned in section 5.1 that the modulus

of elasticity was evaluated from the slope of the tangent

of the starting punddon of the loading curve. In both ten—

sion and compression curves the slope gave the force—

deformation ratio which was used together with informations

of the cross-sectional area and sample length to evaluate

E as:

E _ Force x original length

Area deformation
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Figure 5.8—-A sample of the relaxation curve and the

graphical technique for evaluating the viscoelastic para-

meters from the bending test.
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Similarly the force, F, and deformation, y, of the

middle point of the straw tested in simple bending were

used together with the moment of inertia of the cross

section, I, and length of the span, L, to evaluate E from

the relation

Theoretically if we refer to the function representing the

loading curve in bending:

-t/T1 -t/T2

F(t) = E1RT1 l—e + E2RT2 l—e

= 1'51er 1-(1-3— + -—'93——— _ —-E-3—— + ..)

T1 (2!)rl2 (3:)113

‘2 (2:).22 (3:)123

2 3

+ EZRTZ[1-(1.-L + ——E——— - ————E——— + ....)‘J

t2 t3
+ EZR t - —————— + ——————— - ... (5.6)

[- (21>r2 (32m.2 ]

and



2

F'(t)=E1Rl-—P—+ t —

T1 (2!)‘1’12

2

+E2R1_—P_+__P___

T2 (2!)T22

from which

lim F'(t) = EIR + EZR (5.7)

t+o

which represents the effect of the elastic elements only,

and completely independent of the damping effect in the

specimen.

If we follow the same procedure for the function

representing the loading curve in compression we will end

with an expression identical to equation 5.7.

5.2c The Maturity Effect on the

Viscoelastic Behavior

 

 

As shown in Figure 5.9, the relaxation time tends to

increase as the straw becomes more mature. This change

with time was more significant early in the harvesting

season, i.e., during the first two weeks of testing. For

the same period the moisture content (wet basis) and the

linear density of the wheat plants decreased as shown in

Figure 5.1. And as T = %, one can conclude that in order

for r to increase one of three possibilities must exist;

either E decreases while n remains approximately constant,

or n increases at higher rate than E, or n increases while
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E remains approximately constant. From the data of E

listed in Appendix Table A-U one can say that the last of

the three mentioned possibilities is more likely to take

place. If this is the case, this means that n becomes

higher with maturity which means that the dashpots become

stiffer with maturity. Physically if we imagine a hypothe-

cal situation in which the damping factor became infinitely

high, a simple Maxwell model will become similar to an

elastic element in series with a rigid body, i.e., the

simple Maxwell model will behave simply like an elastic

element. Theoretically this proves to be true as we con-

sider equation 5.6 which represents the loading function

for two simple Maxwell models in parallel:

 F(t) = EIRI} - t2 t3 - ...]

(2!)Tl (:3!)le

2 3

+E2R|:t ————13-——+———P-———-...]

(2:)12 (3I)T22

lim F(t) = R t (E1 + E2) (5.8)

(T1:T2)*'

This concludes that the ultimate case is an elastic

material.

For the wheat plant one can conclude that as the

plant becomes more mature, the viscous effect becomes

lower and the plant tends to behave more like an elastic

material.
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5.3 The Stability of the Plant
 

While the engineers have devoted considerable at-

tention to the buckling stability of metallic StruCtures,

they have done little to investigate how nature handled

this problem. Agricultural engineers are now investi-

gating biological structures with the same degree of

mathematical sophistication and instruments previously

used on engineering materials. Theories of plant struc-

ture and data accumulated can be of great importance for

more understanding and better communication between the

engineer and the plant scientists. It has been a custom

for the engineer to try to think of a way to treat or

harvest a plant no matter how peculiar the existing shape

of the plant might be. If the day comes in which the

engineer reaches the stage of understanding the nature of

this biological structure in the same way he understands

common engineering materials, he probably can ask-the:;

plant scientist to look for a certain property or variety

that has certain characteristics which if achieved can en-

able him to make a breakwthrough in the technology and

efficiency of his machine.

An example for that was the process of developing

standing harvestors which were supposed to strip the

grains from the plant as it stands in the field. If such

a machine proved successful it could provide a very ef-

ficient way of harvesting with a smaller and more economical

machine. Theoretically such a function could be achieved
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if we have the plant standing straight with the head at

the very top. Once the stability of the plant is clearly

understood, the plant scientists can look for certain

varieties which can achieve these requirements on stability.

He can even specify certain properties in the stem of the

plant, its shape and strength which might achieve such

requirements. In this case while the plant scientist is

looking for a better yield and certain other qualities in

the grains, he can also look for the physical structure

which will satisfy the requirements of the engineer.

In this investigation of the stability of the plant

structure, the intention was to explore the means of handl—

ing such a study. Unfortunately, most of what is avail—

able in literature deals with metal structures which were

designed from materials, with known behavior, to perform

certain functions. A good number of this information

deals with idealized shapes and structures which are not

common in biological structures.

In order to establish some basis for this study, an

idealized plant structure was assumed. After that some

modifications of the originally assumed shape took place

in order to have a situation closer to reality. These

modifications were made on separate steps to reduce the

complexity of the problem. One should also take in con-

sideration the fact that this study is by no means a

complete one, it is rather a start for more work to follow

in the future.
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As a start, a Specimen of the wheat plant stem was

assumed to have buckling strength similar to that of an

elastic, straight hollow tube which was made of a material

whose modulus of elasticity is equal to that of the plant

stem. The values of the modulus of elasticity were those

obtained from the bending test and listed in Appendix

Table A-u. The tests were made on three varieties of

wheat plants, Comanche, Redcoat and Genesee. Two samples

were tested from each plant, one from the lower part and

the other from the top. The tested samples were hinged

from both ends. Because the moduli of elasticity used

were the average of three tests, different plant and due

to the variation from one plant to another, it was realized

that these average values of B may not necessarily be

the exact values of E for the samples being tested for

buckling stability. The theoretical values for the samples

from the lower portion were calculated from the equation

 

where: E Modulus of elasticity obtained from the bend-

ing test.

I = Moment of inertia of the cross section which

was assumed to be constant for samples from

the lower part of the plant.

L = Sample length.
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Appendix Table A-7 shows the values of the theoretical

and experimental values of Pcr for the samples from the

lower part of the plant over the four-weeks period of

tests. In each test the type of buckling, elastic,

elastic-plastic, or plastic, was identified from the

shape of the force—deformation curve obtained from test-

ing each sample.

The factors which contributed to the variations be-

tween the theoretical and experimental values, other than

E, were the initial shape and the inelastic behavior of

the straw. Other factors influencing the stability of

the plant as it stands in the field include also the wind

forces, and the influence of cross-sectional variation

along the plant. Each one of these three major factors

will be discussed separately.

5.3a The Effect of the Initial Shape

and Inelastic Behavior
 

As mentioned in section 5.10, the tested specimens

were not straight. They had some initial eccentricity which

may be approximated to a sine curve. In section 3.2b the

stability of an elastic column with initial eccentricity

of this type was discussed. Also, it was found, in

section 3.2b, that if we assume small deformations and

as long as we stay in the elastic range, the critical

load will be the same as that for straight column. The

initial curvature, however, will result in a larger de-

formation.
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For the case of wheat straw which does not behave

like a perfectly elastic material, the situation is differ—

ent. In fact, we have two factors working together in_

order to increase the deformation and deviate from the

elastic behavior before reaching the critical load: (1)

the damping factor which allows the material to relax

while the load is being applied at a constant rate of

deformation, and therefore result in a larger deformation

for the same load; (ii) the elastic elements in the material

had the tendency to have a plastic like behavior for large

 

 
deformations. And since bending and direct stress occur

simultaneously from the beginning and grow together with

increasing the axial load, P, no strain reversal is pre-

sumed to occur on the concave side of the deflected speci-

men at the instant at which the critical load is reached.

When P is increased until the proportional limit is ex—

ceeded in the entire cross section, or at least in the

highest stressed portion of the cross section, plastic flow

is presumed to take place. In this case, we will have the

situation discussed in section 3.A, where, as in Figure

3.9, the resulted value of the critical load will be

lower than the one obtained from both the theory of

elastic stability and the tangent modulus theory of in-

elastic buckling.

After the load, P, is removed, the sample returns ;

toward its originally straight form but retains a slightly

bent shape owing to the residual plastic strain in those
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fibers where the proportional limit was exceeded. And

as was shown in Figure 5.A; section 5.1, there are three

possible situations depending on the extent to which the

elastic limit was exceeded: (1) If we are still within

the elastic range and the proportional limit, if there is

one. This was referred to as elastic buckling. The

experimental values should be the closest to the values

obtained theoretically from the theory of elasticity.

(ii) Outside the proportional and not far from the elastic

range; and in this case we will have an elastic and some

plastic buckling which_may have some non-recoverable

strain in the highest stressed portion of the section.

This situation was referred to in this thesis as the

transition or "elastic—plastic" buckling."(iii) Outside

both the proportional limit and the elastic range. This

is referred to as "plastic" buckling.

The situation, where plastic flow takes place in

the section where the elastic range was exceeded, could

also be considered analogous to the double-modulus model

of plastic buckling. A successful compression test may

enable checking the validity of this assumption.

5.3b The Influence of the Lateral

Forces

 

The principal source of lateral forces is the wind.

If we have a single plant standing alone in the field,

the wind forces may be approximated by a uniformly

 71.1a
.

.
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distributed force. However, the fact that the plants

provide shielding to each other, reduces the intensity

of these forces.

A linearly distributed horizontal force with its

largest magnitude acting toward the head of the plant may

be a logical approximation of the wind forces. The in-

tensity of these forces (especially q(x) Figure 3.3) depend

mainly on the wind speed and air relative humidity.

As demonstrated in section 3.2c, the displacement

of the straw is greatly influenced by the intensity of

 

 
the wind forces. A strong wind will result in a very

large deformation of the straw and therefore a large

moment acting on it because of the axial force, mainly

the plant head. As a result, the stresses in some sections

might exceed the proportional and elastic ranges, and the

final result will be plastic and non—recoverable defor—

mations in the straw.

5.3c The Effect of the

Cross-Sectional Variation

 

 

As mentioned in section 5.lc, the gradual decrease

in the cross-sectional dimensions toward the top of the

plant can be assumed linear. The direct effect of such

change will be a reduction in the axial force that is

required to cause buckling.

The theoretical treatment of this effect was made

in detail in section 3.2d. For the plant as a whole,
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fixed from one end where the largest cross section exists

and free from the other, the critical load will be:

2
n E I

A L2

where: Et = the tangent modulus of elasticity for this

stress level.

Im = The moment of inertia of the large section.

L = The plant height.

1+IIK§ ho
—-—————<1—B-—>

2
TT m

1
: II

This is identical to the solution for columns with uniform

sections except for the factor u. Figure 5.10 shows the

values of u, for this case of "symmetrical column with

straight chords" plotted as a function of the ratio between

E2)
9 h '

m

The value of u is always smaller than one. Hence,

the smallest dimension to the largest (i.e.

the change in the cross section results in smaller critical

loads.

In the experimental tests, to check the effect of the

change in the cross section, the samples were hinged from

both ends. For this situation of a "nonsymmetrical column

with straight chords," the theoretical solution of section

3.2d resulted in a critical buckling load equal to

sztIm

L2

P = u
3
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Figure 5.lO--The values of the factor u as a function of

the change in the cross section (i.e. hO/hm).
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and for this situation

h 2

wan-H9) —1—+ “
m n2

. __ 2
(loge hO loge hm)

 

For this "nonsymmetrical column with straight chords," the

values of u are shown in Figure 5.10, plotted as a function

h

of Hg. For this case, also, A is always less than one.

m

Therefore the cross—sectional reduction will always result

in a reduction in the critical buckling load.

The experimental and theoretical values of the criti-

cal buckling loads for the tested specimens are shown in

Appendix Table A-8. In this data, the experimental values

are frequently smaller than the ones predicted theoretically.

The principal reason for this was the large initial de-_

flection in all the specimens tested. This large initial

deflection resulted in a large bending moment acting from.

the beginning of the loading process and increasing as the

applied load increases.

5.“ The Influence of the Plant Physical

Changes on Its Strength and Behavior

 

 

From the collected information thus far, it is possible

to visualize the general behavior of the plant and the ef-

fect of the physical changes that take place as the plant

hedomes more mature.

Early in the growing season the plant has a very

high moisture.content and therefore high viscous properties.
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The weight of the plant head is much smaller, compared

with its weight later during the harvest season. In this

stage the plant is very stable and less sensitive to

plastic deformations due to the laterial forces resulting

from the wind. This is mainly because of the viscous

effect which enables the plant to recover its original

shape even after large deformations.

As the plant becomes more mature, the viscous be—

havior becomes less, and the plant head grows heavier.

In this stage the plant becomes more sensitive to plastic

strains. Such strains take place as a result of the com-

bined effect of the axial force, provided by the plant

head, and the lateral force, resulted from the wind forces.

One should also emphasize two facts: the first is

that plant head weight is less than the critical buckling

load of the plant as a whole, and the second is that the

presence of the nodes, which varies in number between

three to six, provides an additional inertia and stiff-

ness to the plant stem. These two factors help the plant

to remain stable. On the other hand the length and small

diameter of the upper internode tend to reduce the buckling

strength. The exposure to wind and sun radiation reduces

the moisture content of the upper internode which further

weakens it.

Considering these factors, one can conclude that

for the same intensity of wind the plant has a better
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chance to recover its original stable shape early in the

growing season compared with that during the harvesting

season. In some cases the wind together with the head

weight caused a situation of instability such that the

stresses in the plant do not exceed the elastic range

except the top internode, which is the weakest. In such

a situation the plant as a whole may be able to recover its

original shape except for the top part which retains a

slightly bent shape owing to the residual plastic strains

in those fibers where the elastic limit was exceeded.

As the same process is repeated, the deformations get

even larger because of the initial eccentricity that was

a result of the first plastic instability in the top part.

Successive processes of that nature results in the shape

that the plants actually have during the harvesting season.

In such stages the plant stem is more sensitive to complete

failure with high speed wind because of the larger bending

moments introduced as a result of the deformed shape of

the plant.



6. SUMMARY

This study was initiated to study the behavior of

the cereal grain plant under applied stresses. Since the

plant stem is the principal supporter of the plant struc—

ture, the understanding of its behavior and physical prop-

erties is of major importance to the engineer. The mech-

anical and rheological properties of the plant stem as

well as the stability of the plant structure were investi-

gated. Tests were conducted over a period of four weeks

to study the maturity effect, and were limited to three

 

varieties of wheat--(Triticum yulgarus)-—Comanche, Redcoat

and Genesee.

All tests were conducted in a testing chamber under

controlled temperature and humidity conditions. Tension,

compression, and bending tests were conducted to study the

behavior of the straw to applied stresses. Elastic and

viscous properties of the straw were evaluated using

elastic and viscoelastic flexure theory. The buckling

stability was studied for the plant structure.

Theoretical equations were derived for the evalu-

ation of the elastic and viscoelastic moduli from quasi—

static flexure. Critical load and deformation equations

were derived from the theory of elastic stability.
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The wheat plant reacted to applied forces as an

elastic-plastic-viscous body. A viscoelastic model, con-

sisting of one viscous and two simple Maxwell elements in

parallel, simulated the behavior of the plant stem in com-

pression. The stem behaved in flexure similar to two

simple Maxwell elements in parallel.

The stability of the plant structure was explained

by employing the theory of elastic stability together with

the concepts of inelastic buckling. The existence of the

nodes provided a localized increase in the inertia of the

straw which contributed to the stability of the plant.

The decrease in the outside diameter of the plant stem to-

ward the plant top was assumed linear and the wall thick-

ness constant. This cross—sectional change reduced the

buckling strength of the plant by a factor which is a

function of the rate of change in the cross section. The

top internode, which is the longest, was the least stable.

Wind force acting on the plant, as it stands in the field,

was approximated by a linearly distributed horizontal force

having its largest magnitude at the top of the plant.

These forces greatly influenced the deformation of the

plant.

As the plant reached the harvesting stage, the viscous

properties decreased and the elastic properties dominated

the behavior of the plant for small deformations. In this

stage the head weight becomes the principal axial force

acting on the plant. A high velocity wind will force the

plant to deform from its initial straight shape. The
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strains in the top internode may exceed the elastic range.

As the wind stops the plant tends to recover its original

shape but retains a slightly curved shape due to the

residual plastic strains in the fibers where the elastic

limit was exceeded. Successive wind forces together with

the growth of the plant head increase the residual plastic

strain result in the familiar bent shape of the top inter-

node during the harvesting season. An exceptionally high

intensity wind, in this stage, may result in the failure

or lodging of the plant.



7. CONCLUSIONS

The wheat plant reacted as an elastic—plastic-

viscous body to applied forces.

A viscoelastic model consisting of one viscous 7{

and two simple Maxwell elements in parallel

simulated the behavior of the plant stem in

 
compression. . I

The plant stem behaved in flexure similar to :5

two simple Maxwell elements in parallel.

The stability of the wheat plant structure was

explained by employing the theory of elastic

stability together with the concepts of in-

elastic buckling.

The existence of nodes increased the buckling

strength while the decrease in the cross—

sectional area towards the plant top decreased

it.

The top internode, being the longest and small—

est in cross-sectional area, is least stable

and more sensitive to plastic deformations.

The wind force was approximated by a linearly

distributed horizontal forcc having its largest
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magnitude at the top of the plant. These

forces greatly influence the deformations of

the plant.

The viscous properties decreased with maturity,

and the elastic properties dominated the be—

havior of the stem for small deformations.

High speed winds resulted in large deformations,

especially in the top internode. If the strains

exceed the elastic range, plastic flow takes

place, and the plant retains a slightly bent

shape. Successive wind forces, together with

the growth in weight of the plant head, results

in a familiar bent shape of the top internode

during the harvesting season. An exceptionally

high speed wind, in this stage, may result in

failure, or lodging of the plant.

 



8. RECOMMENDATIONS FOR FUTURE WORK

The results of this investigation indicate the need

for additional work in the following areas:

1. Refining the optical strain measurement technique f1

and using it to obtain true stress-strain curves ET‘

for tension and compression. Then using these

curves to check the theoretical analysis of j:

the stability of the inelastic curved beam pre— Li 
sented in section 3.U.

Studying the variation of the plant parameters

from one plant to another and employing statisti—

cal analysis to study such variation and its

distribution.

Extending the maturity study to start early in

the growing season.

Studying the behavior of the plant under dynamic

loading.

Studying the structure of the head. The kernal

support strength and orientation should also be

studied under static and dynamic loading.
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TABLE A-l.--Modulus of elasticity (lb/in2xlO-3) obtained

from tension test.

 

 

 

 

Comanchel Redcoatl Geneseel

Test

Date Upper2 Lower2 Upper Lower Upper Lower

7/lLI/65 213 335 273 312 220 210

260 264 295 287 162 165

299 292 213 225 2““ 290

7/21/65 217 262 239 259 187 246

197 291 281 312 269 309

162 253 326 293 270 392

7/28/65 262 35“ 215 218 292 219

185 313 380 327 312 372

272 317 308 353 31“ 357

lVariety.

2Specimen taken from upper or lower part of the plant.
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TABLE A-2.—-Modulus of elasticity (lb/in2xlO—3) obtained

from compression test.

 

 

 

 

Comanchel Redcoatl Geneseel

Test

Date Upper2 Lower2 Upper Lower Upper Lower

7/7/65 169 320 25A 290 202 200

195 198 172 161 219 198

127 228 201 196 231 201

7/14/65 270 181 18“ 172 3A5 176

227 160 138 197 170 180

7/21/65 168 156 232 300 154 29“

191 159 267 203 212 169

324 258 252 231 206 202

7/28/65 129 17“ 197 159 336 275

178 189 289 313 367 229

240 321 189 188 239 301

lVariety.

2Specimen taken from upper or lower part of the plant.
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TABLE A—4.-—Modu1us of elasticity (lb/in2x10'3) evaluated

from the bending test.l

 

 

 

Test Date Comanche2 Redcoat2 Genesee2

7/7/65 785 1,107 827

1,133 1,315 763

1,678 990 800

7/14/65 856 759 834

951 752 780

720 814 706

7/21/65 709 1,054 1,198

629 1,014 659

640 859 1,028

7/28/65 885 1,061 859

787 758 923

695 694 845

1
The lower portion of the plant.

2Variety
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rAuhE A-7.—-Theorctlcal and experimental values of the critical buckling loads for the lower portion

of the plant.

..__..___ Ing,-_,-s -9

 

 

 

 

 

 

 

,. '*‘“:2:3¢::i.”:%“e ““8825; is?“
lest Number Date Number Elastic Stability, Deformation Curve Buggiéng

10

9

lb

Comanchel

lst 7/7/05 1 1.034 Elastic~Plastic 0.546

Test 2 2.038 Elastic~Plastic 0 860

3 1.500 Elastic 0.870

2nd 7/14/05 0.096 Elastic 0 980

Test 0.371 Elastic-Plastic 0.546

3rd 7/21/05 1 0.597 Elastic 0.560

Test 2 0.438 Elastic 0.540

. 3 0.090 Elastic 0.008

4th 7/28/05 1 . 0.887 Elastic and 0.560

Test Some Plastic

2 1.280 Elastic and 1.190

Some Plastic

3 1.524 Elastic-Plastic 1.700

Redcoatl

lst 7/7/05 1 3.109 Elastic-Plastic 1.054

Test 2 3.225 Elastic-Plastic 1.050

3 3.432 Elastic-Plastic 1.058

2nd 7/14/05 1 1.099 Elastic-Plastic 1.306

Test 2 0.207 Elastic-Plastic 0.502

3 0.000 Elastic-Plastic 0.806

3r0 7/21/05 1 1.220 Elastic~P1aStic 0.912

Test 2 0.722 Elastic-Plastic 0.712

3 1.403 Elastic-Plastic 1.108

4th 7/28/05 1 1.203 Elastic 1.020

Test 2 2.212 Elastic'Plastic 1.074

3 1.051 Elastic-Plastic 2.200

Geneseel

lst ' 7/7/05 1 2.305 Elastic-Plastic 1.092

Test 2 2.384 Elastic~Plastic 1.088

3 3.293 Elastic-Plastic 1.094

2nd 7/14/65 1 2.181 Elastic-Plastic 1.730

Test 2 2.795 Elastic-Plastic 2.106

3 1.489 Elastic-Plastic 2.106

3rd 7/21/65 1 2.173 Elastic-Plastic 2.380

Test 2 1.508 Elastic-Plastic 1.012

4th 7/28/65 1 2.069 Elastic-Plastic 1.600

Test' 2 1.805 Elastic-Plastic 1.620

3 2.000 Elastic-Plastic 2.084

1
Variety
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