mafluu v—p—_' w.—.V_. r..- Q-O- catacou-quoo --n oooeovOYOd-W?Oif'""”“ " 9‘ ”v‘”r~‘°" " '- ‘I I '18 MS 0F ECHA : [CS AND M THE KEN- THE F0 .. . . o . a. .r. I . .V. . . o u , . _ g I o . . I . o . .I. . .. - ‘5 . . I n . . o— .u. t . .. , . . . . .. . :0 .. I. .I .. .. . .. . . ._ o PLEXES ' R-MATION 0F METAL 00M . u A . . I. .‘ v n o . . _ . . _.. u. . ._. ._ u u a. c . . I. I .\ ._ .. . v...I I. . . . . . . .. . . .- c. u. .I ,. .Q o ... . r ‘ _ . _ . . _ o .. I ‘ .v . .._.. .... . . o . a c u n. I . . . u n I . n D. n . n - . S; NTAINING NON-CYCUC'AND Q .MACRDCYCUC U . ‘ . .I . . 1‘ . n — CI. . fi ._ .. . . r . I . o. ~ I I o I. I I . . . . z . : . . . . . . . o .I. r .. o J . . . . . . . c . . o . I . . . . . .1 I . L . v . . c o . . . .. I J. . .I .. . . . . I _. ‘_A . . u... I _ o y at _,' I: . .1. . I I o I . . . .. .... . . . I e. m _ I . . . . . 2 I . .. . In. 0'. , n . t . Q - . . . . I . . . . I . I .o .. . . . I . . Q. ‘ I .. . ._ . .. . v .. . . . . : .. Ila. . .f .. . . . . . o. - . . .... . .p. I . . . . I . I o . II .. o u _ I . I I . . .. . . It... 0 . o c . . . ... I 4 .I .n av... —, . . . I . a . . ..Il.. . .. . o . o .7 . f _ .z _. . u. f o u .n o a O u. _ h u . . . . I L . . I . _ . . I I. . . . . . . . 5 II IuaI l I .. . u . . . . .. . .u I .... c... ... . . . I I. n I 3 o . . . I. .. u n . . u I . a . . I I I. . Ina . ‘ I . o I v. 9 I o I , I . I . I I POT . 0.0 I... . I .o I . . of , u../..2 Ivul I c . . .. . . fix: .. _. _ 9 . O. . n. . II. I . .II. I .. . r. . I .. .. ._ .9. . . . . . , a '3 . . . T. . . . 4 . . . p. 0 . - >. u... I ~ . I 0 c a .o 4 a . C I _ II . . . .. . .I . I»... II . . _ .0: I n.. .. . . I I . - . . . O. .I h r. . . I. . a .0! a. I . . . . . . . < I I _ . Os ,. I. .- . . . , . 2. 1....IIO‘ r...¢I . . . I r l . . .3? 3.4 3 . . . . . . . _ . . . _ 2. I...’ . I . . _ . .I a an V I . a. I. . I . o . . . I . . _ .. . . ... . ; o J L .. o c . . . I I . . . . _ .I... . . I. L .. . I I ¢ .. . u y . a I _ . I ... . . . .3 - .o; .. c o. v . I I I . a u \I I . u . I . .J . ... . Q n V p ‘1. .4 d ‘ I.‘ I o . I I... .. ..o. o. I . . . . .;z. _“ . .. o a. v 0 ‘-‘ a . - 0., i O 0 [~. _..‘;1 r‘!. . . .. . I 9 .. . . S . -§ . I > I . o I . . . I 3. I. .. II I . . I w . . , u a I .3 . .v .101 II. _I I n. o . . ‘ l. . t . . . . o. .I I. In. 1.. .1 I . _ .c . I . I . . I. v c . o . . I . . ..,I. .. . I o . . I . , . . , 4 c _ I. . u I o v . A _ u I .I o o . no. I . I . V. o I. c .. I .I ._ . a .. .II... . .o.. I .. . —_I. . . . . . . I I ~ - ‘I . . . . , o. ...I. . I . I I 0 ~ . O: In. . Q n l I- .I'. . . . II 1.. o . .,. I. o I s . . . . .I . . . I .0 .33.. I <4 ,.I.. r. .. o. I . a. . ...I n . . . I . a r. 9 I .(1 .~ . I . P . . . of I _ J! . . . . , Iv; .o y . I u I. . . . . . 2 I . .r..¢ . r1: I . . I I. . . c I I . , . I o . . I I o. o I no I. . . . . . 1. _ o . . I II a. . I A O . . . a I, .. OIL I I . .. . I . .I . . n o I O o. , .v ,. . o . T' 2 .9. . . . . , I . . . . . . . . . . . . a . . IO . Iv O O .I I l . O n O .1 A I . . . A I v . I . a o . i . III. < .. n — o I . I . I o I v .. o A o! a . . . . . o . J. :0 o v . s . . l O I . . . . .L . .. I u.' . . ' .I ‘ f . . I . . I; - gr I . . — I. o a I. . I . I I I '1 . I I . I . o . . l .. 7 . . I 1 O I o - I I . I. . v I . O O . y . . O . . . I; . . . I, I v» It . . I I . . .. o. . I I . o .t . . . f . o . . I I I I. I . . I . ' I I u C I. u o . I I I . I I n a . . I O .I s . . I .I I . It . V U ., u I I u I nl . A u .4 I I III - . o I 0.. I I O: . . I I . a . . l‘. o . .. .I I III . .2 I o ., . f .. . _ . 4 n .. .: ... . . . . I: 3.....35 .. _ . . . I s $5.9} .c‘. . _ . .I;.. f. . v . ._ . I ‘9. 4 . . .. .r . _ . . . . . o . . _ o . P. t . 05.3.. o P u¢.r..' ”I“. I. I Q ‘ I. . I . . . I . . t . v .5 2 I v . ‘ I . ~ . . . . J- a. LIB R A E: Y E Michigan State 'i‘.‘ University .av v ~- ' 1m 839K BNDERY WC “ '1" -- BINDEH3 . T .‘I‘. "25;: ABSTRACT THE KINETICS AND MECHANISMS OF THE FORMATION OF METAL COMPLEXES CONTAINING NON-CYCLIC AND MACROCYCLIC LIGANDS By Karim Nafisi-Movaghar In this project the reaction of [a,a'"-[i50pr0py1idenbis (azo)]di-astibenendato]nickel(II), (NiMMK) with ethylinediamine and 1,3 - prOpanediamine has been investigated in the presence of solvent. NiMMK contains a ligand with cis-oriented CO groups. The reaction of ethylenediamine with NiMMK results in the formation of macrocyclic complex with four nitrogen donors, [3,3,9-trimethyl-6,7,12,13 tetraphenyl-l,2,4,S,8,ll-hexaazacyclotrideca-l,4,6,12-tetraenato] nickel(II), (NiMcyclo-IS). With 1,3-pr0panediamine, however, only one of the CO groups of NiMMK undergoes condensation producing a complex with a non-cyclic ligand, [a'[[1-[[2-[(Seamin0pr0pyl)amino]-l,2- diphenylviny1]azo]-1-methylethyl]azo]-a-stibenolato]nickel(II), (NiApSo). The reactions were followed spectrOphotometrically in tetrahydrofuran. The formation of NiApSo is found to involve a single slow step, but the formation of NiMcyclo-13 involves two slow steps (XVI). It was also found that the reactions of amines with NiMMK are base catalysed. Kinetics data have been obtained for the reactions. The dependence of the rate of the reactions on the hydroxide concentration and each of the reactants has been €60 (:7 investigated. A mechanism consistent with all the experimental data is prOposed. THE KINETICS AND MECHANISMS OF THE FORMATION OF METAL COMPLEXES CONTAINING NON-CYCLIC AND MACROCYCLIC LIGANDS By Karim Nafisi-Movaghar A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Chemistry 1974 To Terry and Jabbar ii AC KNOW LL‘DGMENTS The author would like to thank Dr. Gordon A. Nelson for his expert and imaginative professional guidance, his understanding, and his sincere friendship throughout the course of this study. The author wishes to express his gratitude to the Department of Chemistry, Michigan State University, for the financial aid paid to me as a graduate Teaching Assistnat. Thanks also goes to all my fellow graduate students for their very useful discussions. Finally, for the inspiration that has made the agony of this graduate student more than worthwhile, I thank Terry. iii TABLE OF CONTENTS CHAPTER ONE: Introduction . CHAPTER TWO: Experimental . . . . . . . . . . . . . . 1. 2. 3. Preparation of Materials . A. Nickel Complexes . B. Amines . C. Solvents . D. Sodium Hydroxide . Physical Measurements General Procedure for Obtaining Kinetics Data CHAPTER THREE: Kinetics and Data Treatment 1. The Kinetics of the Reactions of NiMMK with 1,3 PrOpanediamine . A. 1,3-Propanediamine Dependence of the Rate B. NiMMK Dependence of the Rate . C. Sodium Hydroxide Dependence of the Rate Kinetics of the Reaction of NiMMK with Ethylenediamine A. Ethylenediamine Dependence of the Reaction Rate B. NiMMK Dependence of the Reaction Rate C. Sodium Hydroxide Dependence of the Reaction Rate CHAPTER FOUR: Mechanism of the Reactions Benzoyl Derivative of the Intermediate . iv 10 10 10 10 10 ll 11 ll 13 13 29 4O 4O 47 SS 57 CHAPTER FIVE: APPENDIX . BIBLIOGRAPHY . Suggestions for Future Work . . 64 . 68 . 83 LIST OF TABLES TABLE I: A Set of Kinetics Data for the Reaction between NiMMK and 1,3—Propanediamine . TABLE II: 1,3-Propanediamine Dependence of the Rate . TABLE III: NiMMK Dependence of the Rate . TABLE IV: Sodium Hydroxide Dependence of the Rate . TABLE V: A Set of Kinetics Data of the Reaction of NiMMK with Ethylenediamine TABLE VI: [Ethylenediamine] Dependence of the First and Second Steps TABLE VII: [NiMMK] Dependence of the First and Second Step TABLE VIII: [Sodium Hydroxide] Dependence of the First and Second Step TABLE IX: Mass Spectrum of NiApSo . vi . 31 . 41 . 42 . 48 . 59 FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE 11: III: IV: VI: VII: LIST OF FIGURES Absorption Spectrum for Reaction of NiMMK with 1,3-Pr0panediamine . . . . . Absorption Spectrum of Equal Concentrations of NiMMK,(a) and NiApSo,(b) A Computer Plot of Absorbance vs. Time of the Reaction between NiMMK and 1,3-Propanediamine . . . A Plot of k0 vs. 1,3—Propanediamine bs Concentration for the Reaction between NiMMK and 1,3-Pr0panediamine A Plot of k0 vs. Sodium Hydroxide Concentration bs for the Reaction between NiMMK and 1,3—Propanediamine . Absorption Spectrum of the Reaction of NiMMK with Ethylenediamine Absorption Spectrum of Equal Concentrations of NiMMK(a) and NiMcyclo-13(b) VIII: A Computer Plot of Absorbance vs. Time IX: for the First Step of the Reaction of NiMMK and Ethylenediamine . A Computer Plot of Absrobance vs. Time for the Second Step of the Reaction of NiMMK and Ethylenediamine . Ethylenediamine Dependence of the Rate of the First Step vii 15 . 20 . 23 . 27 . 32 . 34 . 36 . 38 . 43 FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE XI: XII: XIII: XIV: XV: XVI: XVII: Ethylenediamine Dependence of the Rate of the Second Step . . . . . . . . . . . . . . . Sodium Hydroxide Dependence of the Rate for the Second Step . Sodium Hydroxide Dependence of the First Step for the Reaction between NiMMK and Ethylenediamine Sodium Hydroxide Dependence of the Second Step for the Reaction between NiMMK and Ethylenediamine . Absorption Spectrum for Reaction of NiMMK with 1,2-Propanediamine Absorption Spectrum for Reactions of NiDMK with Ethylenediamine . [NiMMK] Dependence for the Reaction between 1,3-Propanediamine and NiMMK . XVIII: [Sodium Hydroxide] Dependence for the XIX: XX: First Step of the Reaction between NiMMK and Ethylenediamine . [NiMMK] Dependence for the Second Stage of the Reaction between NiMMK and Ethylenediamine . [Sodium Hydroxide] Dependence for the Reaction between NiMMK and 1,3-Pr0panediamine . viii . 45 . 49 . 51 . 53 - 64 . 66 - 69 - 7O - 71 . 72 CHAPTER ONE INTRODUCTION The ability of transition metal ions to direct the steric course of certain condensation reactions between organic molecules has been recognized for several years. Many of the products of these condensation reactions are natural products, for example, derivatives of porphin or corrin ring systems. During the past ten years or so there has been considerable interest in the use of transition metal ions for the synthesis of compounds containing macrocyclic ligands which may serve as models for biological processes which are known to require the presence of metal ions. Research into the synthesis and characterization of complexes containing macrocyclic ligands has been extensive, and several reviews which summarize the research in the area have been published1-6. The most extensively studied systems are those which lead to the formation of complexes containing macrocyclic ligands with four nitrogen donors. Condensation reactions between carbonyl compounds and primary amines have been extensively employed for the formation of these new macrocyclic ligands. The groups of Busch and Curtis have been particularly active in this area (see reference 5) although significant contributions have been made by other workers including Jager7'10, Blackll, Cumming512-14, Green and Taskerls, and Bamfield16, Recently Kerwin and Melson reported some reactions between amines and ligands derived from hydrazonesl7. The research group of Helm has carried out extensive studies of the synthesis, characterization and reactions of complexes of this type, although their syntheses have been accomplished by direct reaction between the free organic macrocycle and the metal ion rather than by "in situ" reactions which are governed more directly by template effect518_20. While recognizing the significant results of Holm's research, we shall concentrate this discussion on "in situ" process; i.e., those processes in which the reactants are brought together by coordination to the same metal ion. The proximity of the reactive sites then promotes a reaction that would take place much less readily, if at all, in the absence of the metal ion. In spite of the wealth of data on the synthesis and characteriza- tion of metal complexes containing macrocyclic ligands with nitrogen donors, there is little information on the factors that are important in controlling the reactions or on the role that the metal ion plays in the "in situ" condensations. Indeed Lindoy and Busch in their article5 concerning complexes of macrocyclic ligands comment: Unfortunately the principles underlying some of the synthetic procedures are yet little understood, and in addition to its contribution to fundamental understanding, the elucidation of the mechanisms of the formation of macrocyclic complexes will undoubtedly be of great benefit in the design of new syntheses. Metal-ion control in the synthesis of Schiff base complexes has been the subject of a recent review21 although reactions of salicylaldehyde complexes with amines have been discussed earlierzz’zs. The nature of both the metal ion and the ligand is an important criterion to be considered in planning the synthesis of a Schiff base complex. Nunez and Eichhorn24 reported one of the early studies on the kinetics of formation of metal complexes containing Schiff bases. The reactions of nickel(II) and copper(II) with salicylal- dehyde and glycine were investigated and it was found that the nature of participation of the metal ion in Schiff base formation is dependent on the metal ion and on the order of mixing of the reactants. The proposed mechanism involves the formation of an intermediate, I, followed by reaction to produce the Schiff base complex, II. C NH2‘ 0“ HC’NC2V \ |./ CH2 +2I —--' x'I‘x 3; CH0 c /|\ cao o’ ‘o I, \o 0 I o l/ \Ni—O Leussing and co-workers25 have studied the formation of Schiff bases in the presence of metal ions in aqueous media, and the effects of metal ions on the rates of formation have been discussed26. Recently, Curti527’28 proposed the following mechanism for reactions between metal-amine complexes and carbonyl compounds: NH M9 M0 Me Me C 2 Me \:3+ \ / \C:_/ \C/ / I u ' n u NH2 N O \ 2 Ni + / + NH2 H AAe 5A9 ‘\\(>’,K:IE%:’,/ Me I 3, NH \ 02+ I / h"12 With the exception of the above work of Curtis and the report on the stepwise formation of phthalocyaninezg, no detailed studies related to the formation of complexes containing macrocyclic ligands with nitrogen donors have been reported. In 1968, Blinn and Busch described the only study of the kinetics of macrocycle formationso. This involved the reaction between 2,3 pentanedione-bis (mercaptoethylimino) nicke1(II) and a,a'- dibromo-o-xylene. The "kinetic coordination template effect" was demonstrated by following the reaction spectrOphotometrically in dichloroethane at 25°. A two-step mechanism was proposed; the first being slow, (III,IV) and the second ring closure step (IV-V) very rapid. f—fi /___\ 3\C/ \ / BrCH CH3\ / \I / 1c Ni 4' C, I | Ni CH 01/ \N/ \5 BrCHz CH/C\\N/Ilr’ Is 2 3 \ / 3 Since this report, other studies of reactions of the mercaptide function of complexes containing mercaptoamines with alkyl and aryl halides 1-34 have been reported3 although no further studies of macrocycle formation have appeared in the literature. Reactions between some monohydrazones, VI and ketones, 3 4 R R C=0 in the presence of nickel (II) ions have been reported recently by Melson and et al. 1 2 VI = = a,R R C6H5 R] 2 VI b,Rl=R2=CH3 R c... c VI C,R1=C(CH3)3,R2=H VI In all cases, nickel(II) complexes which contain ligands derived from two monohydrazones and one ketone, VII, are obtained35—37. 2.. F ] RL\ R2 1’ 1- 2_ C = C VII a,R —R ‘CGHS /' \. ___ 3 l_ 2_ O N N\ /R VII b,R -R -013 /C\ 4 VII c,R1=C(CH3)3,R2=H () P4===f4 R \ / C::==:€i l/’ R R2 VII J In the absence of nickel (II) ions, VIII is obtained. 1 2 R R \ / C—C 47 It 0 N.N=CR3R4 VIII. Thus the nickel (II) ions control the condensation reactions with the result that products are formed which are not obtained in the absence of the metal ions. The mode of coordination of the ligands with 3 4 2 2 R = R = CH and R1 = R = CH3 (VIIb) and R1 = C(CH3)3, R = H, 3! (VIIC) has been established from 1H nmr spectra38 and it is assumed that ligands derived from (VIIa) coordinate in a similar manner, as in IX. N ON \\/CH, 0/ 2% L E "/ \c/ The reactivity of the coordinated CO groups of these ligands towards amines has been investigated. Since they are oriented in a cis configuration in the nickel complex, reaction with a suitable diamine would be expected to result in a complex with a macrocyclic ligand containing four nitrogen donors. In the presence of diamines, the Species X have been obtained17. The mode of coordination and conformation of the new chelate ring has been established from 1H nmr and circular dichroism spectra39 R1 R2 \C_ C / / \ /N N\ x a,R1=R2=C6H5,R5=H R—CH / N 1 2 5 | Ni \/CH3 x b,R =12 =C6H5,R =CH3 CH2 / \ /C\ 1_ 2_ s_ \N- N CH3 x c,R -R —CH3,R 41 With 1,3 diaminOprOpane, replacement of only one of the coordinated oxygens occursl7, producing a complex containing a non-cyclic, potentially pentadentate ligand XI. N H C/ R2I 3 R' R2 \ __C/ HN—(CH2)3 \ /C \N 2 N\N / \N /N \C/CH3 R1=R2=C6HS C) \\\\ ””' \\‘(:Fl C R/ / It is interesting to note that the complex with ligand VIIC does not react with diamines, even under forcing condition537. Obviously the nature of the group attached to the coordinated CD has a marked influence on the reactivity of the carbonyl. It is appropriate at this time to determine the mechanisms of reactions which lead to the formation of complexes containing macro- cyclic ligands. This dissertation is a report on the kinetics and mechanism of ring closure reactions between IX, R1 = R2 = C6HS and some diamines such as ethylenediamine, 1,2-propanediamine and 1,3- pr0panediamine in solution. (The preparative reactions were carried out in the absence of solvent). It is anticipated that this study should lead to a more complete understanding of the mechanism of macrocycle formation and may lead to the development of new and more effective synthetic procedures. CHAPTER TWO EXPERIMENTAL 1. Preparation of Materials A. Nickel Complexes [a,a"'[IsoprOpylidenbis(azo)di~a stibenendato]nickel(ll), (NiMMK), [3,3-Dimethyl-6,7,12,lS-tetraphenyl-l,2,4,5,9,ll-hexaazacylo- trideca-l,4,6,12-tetraenato] nickel(II), (NiHcyclo-13), [3,3,9- Trimethyl-6,7,12,13 tetraphenyl-12,4,S,8,ll-hexaazacyclotrideca- 1,4,6,12-tetraenato] nickel(II), (NiMcyclo-IS) and [a'[[l-[[2- [(S-AminOprOpyl)amino]-l,2-diphenylvinyl]azo]-1-methylethyl]azo]- a-stibenolato] nickel(II), (NiApSo) were prepared as previously described32-34. NiMMK, NiHcyc1013 and NiMcyc1013 were recrystalyzed from acetone and NiApSo was recrystalyzed from tetrahydrofuran. B. Amines Ethylenediamine, 1,2-propanediamine and 1,3-propanediamine were distilled from sodium hydroxide under nitrogen, collected over sodium hydroxide and stored in a dry box. C. Solvents l. Tetrahydrofuran (Mallinckrodt) was refluxed and distilled from sodium to remove water, benz0phenone was added as an indicator. (Water content of the solvent after distillation was 60 ul per m1). 2. Acetonitrile (Baker analyzed reagent) was refluxed and then distilled from calcium hydride. Other solvents used were dichloro- ethane, dimethyl sulfoxide, dimethylformamide, dioxane and pyridine. 10 11 They were all reagent grade or equivalent and used as supplied. D. Sodium Hydroxide Stock solutions of sodium hydroxide were prepared by dissolving solid sodium hydroxide in absolute ethanol, and standardized with a standard solution of potassium hydrogen phthalate (Fisher scientific Company) using either phenolphtalein¢xr pH meter for deter- mination of end point. Note: All other chemicals used were reagent grade or equivalent. 2. Physical Measurements All visible and ultraviolet spectra were obtained between 600-275 nm by use of a Unicam SP800 B spectrophotometer. Kinetics data were obtained from a Beckman model Du spectrOphotometer. Both Unicam and Beckman spectrOphotometers were calibrated for absorption with a standard solution of potassiumdichromate in sulfuric acid and for wavelength with a didymium filter. The base lines of the Spectra were obtained via air vs. air. Mass spectra were determined with a Hitachi-Perkin-Elmer RMU-60 mass spectrometer. A pH meter model LS S-30005 (Sargent) was used for preparation of the standard sodium hydroxide solution. 3. General Procedure for Obtaining Kinetics Data A weighed amount of MiMMK was dissolved in a known quantity 3 of tetrahydrofuran (concentration approximately 2X10- - 8X10-3M) in a 50 ml round bottom flask filled with a reflux condenser, and 12 stOpcock. The st0pcock was closed with a serum cap. The solution was stirred with a magnetic stirrer. To the solution was added 0.5-2ml of m 1.5 M alcoholic solution of sodium hydroxide. The solution was warmed to m 600C and the diamine (approximately .3 M - .6 M) was injected into the mixture with a syringe, and within seconds the solution started to reflux. At this time (zero time for reaction) 0.2 - 0.5 ml of sample (depending on the original concentration of NiMMK) was removed with a microsyringe from the flask through the serum cap of the side arm. The sample was diluted with tetrahydrofuran to approximately 8 X 10—5 M in complex, and then transfered to a spectraphotometer cell, with a l Cm. path length, placed into the spectrophotometer, and the spectrum recorded (Unicam) or absorption at 500, 400, 385, 360 and 340 nm. measured (Beckman). Total run times ranged from 18 hours at high diamine concentration to m 24 hours at low diamine concentration. CHAPTER THREE KINETICS AND DATA TREATMENT I. The Kinetics of the Reactions of NiMMK with 1,3 PrOpanediamine The experimental procedure outlined for following the reaction between NiMMK and 1,3—propanediamine in tetrahydrofuran solution at 66°C results in a series of spectra (Figure I). Over a period of time the decrease in absorbance at 385 nm is larger than that at other wavelengths and the rate of reaction of NiMMK with 1,3-propanediamine may be followed at this point, (a typical data set is shown in Table I), however, choosing any point between each two isosbestic points is expected to show similar results, and they do. The change of the spectra of the reactants as the reaction progresses produces several sharp isosbestic points at 325, 418, 464 and 526 nm (see Figure I). These isosbestic points are coincident to those obtained experimentally from the spectra of the NiMMK and pure NiApSo (Figure II). This suggests a simple reaction between NiMMK and 1,3-pr0panediamine. Reactions were run under pseudo first-order conditions (31:200 NiMMK to 1,3-propanediamine) and therefore 1,3-pr0panediamine concentration can be considered to be constant. With this assumption, the data are fitted to pseudo first-order rate equation of the form (AaTAt/Aquo) = e-kt, where k is rate constant and A“; At and A0 are the observed absorbances at infinite, t and zero time (few seconds after mixing the reactants) respectively. By using this equation rate constants were calculated by the curve fitting program of Dye and Nicelygo. By feeding rate constant, time and absorbance to the computer the computer adjusts them until the 13 14 calculated constant agrees with the experimental one. The calculated and experimental data should nearly coincide if the form of the equation being used in the curve fitting program is correct. A sample plot of absorption vs. time, from the reaction between NiMMK and 1,3-propanediamine is shown in Figure III. 15 FIGURE I Absorption Spectrum for Reaction of NiMMK with 1,3-Propanediamine 16 I J L J 1 aoueqlosqe 0.2 - 350 400 450 ‘ 500 550 600 A (nm) 325 300 0.0 17 TABLE I A Set of Kinetics Data for the Reaction between NiMMK and 1,3-Pr0panediamine Ann, 340 385 440 500 T% A o\° > Time/Min A T% A T 0.0 1.075 8.75 1.280 5.35 0.668 21.75 0.521 14.66 1.015 8.90 H .232 6.00 0.692 20.25 0.493 28.83 0.987 10.28 H .175 6.90 0.713 19.50 0.469 42.16 0.958 11.10 1.120 7.90 0.734 18.75 0.451 53.83 0.942 11.50 1.080 3.50 0.752 17.90 0.435 68.50 0.938 11.90 1.050 9.10 0.778 17.00 0.419 85.16 0.910 12.38 1.008 9.98 0.790 16.25 0.399 110.16 0.878 13.50 0.962 11.00 0.802 15.90 0.375 140.16 0.842 14.45 0.910 12.40 0.828 15.00 0.355 175.16 0.812 15.60 0.865 13.80 0.842 14.70 0.336 213.83 0.800 16.00 0.838 14.80 0.862 13.92 0.324 255.50 0.812 15.35 0.817 15.30 0.878 13.40 0.315 325.50 0.779 16.80 0.797 16.10 0.886 13.10 0.302 508.83 0.768 17.10 0.772 17.00 0.897 12.90 0.291 1255.50 0.768 17.10 0.769 17.10 0.897 12.90 0.211 18 FIGURE II Absorption Spectrum of Equal Concentrations of NiMMK,(a) and NiApSo,(b) 19 000 own con onv 3.5 4 on:V own man 000 mum 0.0 N6 ‘0 0.0 m6 0.— a; V.— o; w.— 0d aoueqlosqe 20 FIGURE III A Computer Plot of Absorbance vs. Time of the Reaction between NiMMK and 1,3-Propanediamine 21 ohoIoF ho UdDFUanwh x34kwa #1 XII—Z u06m30¢mmco aeoneoaccooeeeeooeoe o x 11m II M“) OX X0 X0 tr- r . AU‘W—U‘MWLPMLPWMUWH OK xo ll “‘1‘ wu-wutwwu‘wuywuw?w I—u-r—OI—O—wf fl... OX > (hgmo >m x (hAMO wtdm ka 2a m < hzmoa Duh44304Jzov hzmoa awh< DUJIhU kc onNo- 924 XII~2 kc. ¢OCN~N06 ooeoeuocooooooeooooooooe OPm 0..--U00-0“-I-0m--00m0l'00“----m----m---DVD'--V'--0V0'--m----m--l-m--'-V'-nu0U---’Wl--'v-lu--w-Incl-m0---— CKU‘ )(C ‘ \u—O—u-OHLha-u—o— t—u x: x : C: 0--- t—C—t-U' o—o—u—o—o‘rv—u—u—u—U hot- v-vo—u‘u—a- u—u—U‘ o—o—u— o—U‘u—n—n—bU‘ u—e—u—n—U‘ u—u—u—u-mwu-u—wlr— > (bdmc 2; x (bauc utdm MI» 2— we: hz—Cn cuhdJDUTEU c2< J42»: bzucn Hakka-.9130 d v2¢u1 o ohz—Oa Adpzwi~mu0xu ‘4 $233. x 38 FIGURE IX A Computer Plot of Absorbance vs. Time for the Second Step of the Reaction of NiMMK and Ethylenediamine 39 umDhmoaym» xDqkwo h< ouoIoho m2»34—szd%rww uC oJroxo C24 :27“? uCorcccdwc. finuuueocusooaau003n:oaoo b -1:-u-11-muu-1m-1--w-1u1¢--11m111-muu-u0-111m111101111m-uuumuus1muuuuw11-10--- N 111 Cr. C K t—v—b-o—b-U‘ r—b— h-h-‘U‘D—D—hur-U‘O—a—v—u—U‘ I—ID—w—h—Lr‘D—D-D—D-‘Lf I—h-v—h-LrD—r—D—Hl! v—u—u—u—(r u—r—u-nb-u‘u— D-CI-oh—HD-IU‘HoupceaU‘t—nt—‘HHU'puHhh.U‘pa~~~JVHh4D-~U‘ O-‘Dc-b—a-o-u .HD—vl- h-n‘llb-CO—nhh—u‘t-‘vuh 0. «U m-»--m-11-0---1m----m---10----m1111mu-u-m1-uum11u-0----m--u-mu---r1-uum--o-011-10----m1111m1111m--- > u x dwguc mfdm wI» Zn wad kzpco Ow . . - - kq43644u c2: J42c. hzwca ompquzu_ NiMMK. am fast (1) k f2 kb NiMMK. am +()H- < 1 > [NiMMK(am-H)]-+ H20 fast (2) k b2 -k - [NiMMK(am-H)] > Nidang + 0H slow (3) ¢i§l93951-= k [NiMMK(am-H)]' dt 1 from 2 = [NiMMK(am-H)]'[H20] Kb [nnmx.am][mfi [NiMMK(am-H)]-= Kb[%E%]' . [NiMMK . am] 2 d o — a My?“ ) = 85113—20? W“ 3“” from I assume Therefore But Therefore 62 [NiMMK. am] = Kf[NiMMK][am] difl§%3281.= lebe [3301" [NiMMK](am] k3 = lebe W = k3 [on] [NiMMK][am]/H20 For ethylenediamine and NiMMK reaction: K [Nidang] + OH' > H20 + [Nidang]- fast (4) - k — [Nidang ] > NiMcycle + OH slow (5) d(NiMcycle) _ . - dt - k2[N1dang ] [H20][Nidang-] K = [0H][Nidang] [Nidang-] = K[0H1[Nidang] H20 d(NiMeycle) = k K [OH][Nidang] dt H20 CHAPTER FIVE SUGGESTIONS FOR FUTURE WORK In addition to the determination of the activation energy, entrOpy and ethalpy of the reaction of diamines with NiMMK, there are several other areas that should be investigated. Fragmentation pattern of NiApSo in mass spectrometer shows that the site of the first condensation is the five-membered chelate ring, rather than the six-membered ring (see Table IX). Work has to be done on the crystal structure of NiApSo to support the idea; we are in the process of doing this. We have also examined successfully reactions of 1,2- pr0panediamine with NiMMK and ethylenediamine with NiDMK (VII where R3 and R4 are methyl groups) in tetrahydrofuran. Their absorption spectra are shown in Figures XV and XVI respectively. Understanding their mechanism of the reaction needs more kinetics data; however reactions of NiMMK with 1,2 propanediamine shows very similar paths to those of NiMMK with ethylenediamine (compare Figures VI and XV). 63 64 FIGURE XV Absorption Spectrum for Reaction of NiMMK with 1,2-PrOpanediamine 2.0 1.6 - 6S eoueqlosqe _ 250 275 300 325 350 400 450 A(nm) 225 200 66 FIGURE XVI Absorption Spectrum for Reactions of NiDMK with Ethylenediamine 67 aoueqlosqe 300 325 350 400 450 500 550 600 A (nm) 275 APPENDIX APPENDIX During the preparation of this thesis we became aware of the * Tektronix 4012 graphics terminal. Reexamination of the kinetics data was carried out. The resulting plots obtained from the plotter are shown in Figures XVII-XXT* The program used for the plots is also included. Figure Figure I:igure f2igure XVII XVIII XIX XX [NiMMK] Dependence for the Reaction between 1,3-Pr0panediamine and NiMMK [Sodium Hydroxide] Dependence for the First Step of the Reaction between NiMMK and Ethylenediamine [NiMMK] Dependence for the Second Stage of the Reaction between NiMMK and Ethylenediamine [Sodium Hydroxide] Dependence for the Reaction between NiMMK and 1,3-Pr0panediamine *553]pecial thanks to Lawrence Pachla for this information. *R- ‘jrhe dotted line indicates the theoretical values; the triangles indicate the experimental values. 68 XM I N - XMHX - \"I‘l I N - VHF-1X '- HBSORBRHCE p p 600903 1.111 )- .ser+oo U12)- .1seE+01 69 FIGURE XVII ABS vs T CONTl- .1880E+01 .7634E+00 .89008-08 . p.. .n .... .,.‘_. 1 A A A A A A TIME (MIN) 70 FIGURE XVIII ABS vs T XHIH- 0. CONTl- .7870E+00 XMRX- .100E+03 U(1)- .10866+01 YNIN- .70®E+00 U(8)- .3834E-01 vmex- .1IOE+01 ‘1 P .‘. 0A > ". m: QOF‘BAHCE . flI #- ‘. . b ...‘ a“ b .°'-.. .0... + g... 0 TIME (MIN) 71 FIGURE XIX ABS 05 T XMIN- e CONTI- .6630E+00 xmex- 3805+03 0(11- .4aeeE+oe mm- .400E+00 U(c?.)- . 1082E-01 vmnx- .7er+ee b: 5 3. '11 HBSORBANCE . '. 'x r ‘. L r "3:-., .. C...‘ . .. . . "" ------ o... TIME (MIN) 72 FIGURE xx ass 03 T xmrn- e. CONTI- .13aeE+eI xmax- .7seE+03 lJ(1)- .833SE+00 YMIN- 7006+00 U(2)- .9844E-oa vmax- .140E+01 l: 1 P. s 1. I a 3 RBSORBANCE . '3 3. b O. 0‘. L .. 'fi . . . . A ' . 0.. TIME (MIN) 73 vwvvvvwvrvwvvvvvvvenvvwvvvvvvwvvuvvvua».vvwwvvvea.uvv ¢sanxsc vvvvvwvv ivVVVVVfi v« we vvrvv evavv Vi vw vvvvmwvw vuvvvvvw vvvvvmvvvvvvvvvwvvnweiwuvvvvvevvrrwvvwv.«vvavvvvvv.vv epxemxsc .ra.{r.cc. coau_xc vinEJvav V¥¥VVVVWUf wvvvv+ev mabvvmvv we . we vvvuvveevv uvvv~VVvvv we «a way vvv 99 In «w «i w; ViKUVV$$Jf vavvvvvvf wewvvvvwve vvvvvvvvvv vi iv J¢dvl¢ wf vv wwwdiv «vv we 94 #6? VJ +v cw ww «v «v vi 1% vv .4 JV VI vv VJ VF UV JJ J» VI vdv vv ¢v vei iv «w J« ivvuww «v we vvvv»v v; werewe $4 9fév~f 6; vv «a we $6 $9 $4 #0 Us if we vv we 9v «4; «a «Kw «v V! vawvv we vvvvvw vw iv 4% V% «v «4 9v (5 4% VJ {w «u m; we +9 a. wwvsivvvea av 49 wvvevvvvav 3+ «5 pl VWfi- vii {H IV «3 JV ¢e¢+euqi vvvwvuvv $¢f€¥i w+++vv if &v JV wv “V JV “V 6% Wig-bu)? VV‘VVV Vivueuv44 $I4vvixvv $+ we v“ ev vqwu44uev Vzidvvvii vi «4 vv 49 d« we VJ «a ye {i +44865vvrv vvaweyvvvv V$¢.v4..vv-.ww $vvvvvvuvv vv vé¢V¥¢JdJ¢ wivvvwavJv $4EMV!9U¢V vr$Vvaesi 4» «a ié {.0 wVJViiev Jiiifvdd Ir a; V :1... W%K.F.I. 9.! wavvivfivvv wvwwpv JHVVIi a» V0 W» (0 VJ 9! V4 «a v; .0 v4 rv we be 55 vv vviviv vVUVIv +w94v4w++1 ViVvavuvv x«.:r.cc. (aewwxc «ngvwewuvv.umevwoeq+uvtrumvaevwuvvrowvvvvmovvuvvvwvv .vvvvvvqe vvwiwa «0 vv uévvéwav viivvv wv Us iv v; Vi «r «r «a a“ Va «1 vv e; v: iv «3 9. Eu v. we we wv {v wm we 06 we «I (y «r vwsn12169 my a! r! +m vexivuacv Va VJ 9! «w (J «v vv JV I; «v 99 we EH «4 +1J4v€ Joviavvev (V «I waivvw iisvdavvv «emvuv «.mvvudv.¢ 4w vvvau quvuvrv~v we V! V! %i UM we v: a: we v+ we «I v» mv Iv vi Ev «v iv wi vvvrvvuuv we r0 «4 wavevvvgm vv «m v: we «w . Vv V+ vi U4 vv u+m if 9% wuwvmvvvw vvwvvv Hf uwv4wvvuw If 4% ¢¢avv9¢49w yiivvuve 44 “a «v9v«.vuew uu4sv¢r9 v.4 «a . vs 4* uv «Ir v! +f Iv a! Va Vu 1% F4 Ivrui #1 v6 v4 4+ u! Jievf VV an a! u; mquisuv «u 44 v. «9 {Vanessa . v” wv 4vr v; i! up we VJ“ mi 4v we #1 44 1mivvmr;«¢ Vr¢¢400: :4 vi vfi+VV1uqr¢ ¢v€;vouv 4a4¢+vw4e¢ vvvvq+uev¢ 4m vv4ur¢wvuv VJ vwiw%unuuv «w . rv WV “v V? “U I“ «v FaouLuwe u" IrUVJfiVev v» we we v» d« VJ «u uvvvxva¢ «u w+vevvcvw wv veme.vvvriv¢vvuumvu+w+xu4vv¢vuvmvvveuewvvvmvvvvwvwnvv 74 ucca .0 v. 0 ac U.m.< uc 0L.Orc 23:» +5.....n.u .._\fi~u+.03 704.33..— __(C .e 00 .64a »?.:a o<4:cra_2w .0 Ln »C._m uZHJ. at :Hh—_ -3 V‘Jwiflu .v .v~h(1....1$ .Jr..w.u».?2 .chxs 2 ._cc .6 unCJm . .0; ..;.. ZHJImz __: .0 dog u.nc.__a>< u..>o:c c7...o-_0 do vmo>~ 3:. a... T..1 .ohdzacu coc~u < 2— :w—~:c;— mm hurl aha: 4:002:22: ;_c.;vhc. :02. um .vzx roux) mmuaquaao ac »u_4 a m. cz.1:4.:u 1:. 5..¢: cu no..o' uhPu—\,._ ..:.__. .y..u.....-.(_:. . .y. .0 .....z<>. —To~.... .J_. Y. w4kwho>.3_.v.:. ‘ F 0....- .“ :‘rfl. ‘ “ 31--——\\r” I—NAA": .m.\‘.-" \—.v.¢~a\: ' ~C‘ rr-r ..>...2..u.........z..u.....osqe>...,..u.._..o_ccx..:.:.. ..: __J. ‘rn.u.«...e;qu>...z..u.....e5.« m 0 a (Q Q n .E“ u. 3 i‘ - :m. Gm. ((0.. .Ndw. 1% (d. m... Or. 33 .o 904< m.2.c& 4.:xm kc..1«.._locc:ocx «we ra;:c »:_Lwa..¢21:u .L..:.1e.:3 moozz< ..au arr: ._4:1:».x4:uxrt fi>>x<3way>x::.1».y>2_2».>¢v<:v.x0yv:_s<.xvzHqu ..tv:t¥.>x.mmz.x1y..e_..wzoxv.\uam_ vn «z:qt7x.:ca:45.uua.u.. u4<..y.u a. .>..\3101x. «moozxx.> .rczx.4u..n..x<>..o:o..¢4..ooa..uq(cx..c=c..>..rc o..x 2:.m2mz.a .c.ccu "sweep.hampacumua :.u csuc ecu ..»c.a Uh Oh VI 0( UV CU UV cc VF or mm cm V. o. 75 wcaa .hc. 7.. est; use Ocnnsxx en a. co .o.om.x.u. If.“h OWfl "xx .ca~.:cr.um<>a.. ..cu an. C—ko CHsC:>J$~hflék w<:r.f~ov.uhwal .u:.::1q ..au .er:.cr—.J:<:rr __cu .rocw...u?4.>.a..c. _.u 2»...>.J\0.1vhr*fi.... ‘n.z2& _.. .2:..::_.v.:..:l ._ .r..:-..¢uy<.;..141......)cu w<§<..~.!1.:? .:::2( ._.L .cmh. 04.4U7c.,:1 4.6U AF. C_uo ..I.._..> 41;... .Lu ~._2w.\\ou..P.n: All (a. ...cL .cah.c4..mm:,c1 _.cu :m t.é(u.u.0f.¢ w4». ....r4u..\. ufozc ._.U .V(~.,..c:.vfc>:t _4nL ...:.:.a4~c.ucu r4r4.~.m4u L..L. L‘ L. L pomp 00.1“.“ U. .... (.1 AT~¢or_..pr<..fu »_:_.4.4:.u+..7 A..~.'._ ~.«L .o..m<:.vr...n: _ .J..L.Jnm\. : _..; ..1.o..4u43«c3 ._ .TT.O£C.V3<>OI ..eL .cr1.!._.?531 ..cu . .c.ml.4m1310 .4vL :_.4n_ c. cc .c.:.44v>or . .:c:.;.4.¢310 _ "a. (...:luJJ; ma _ .of. 0:34nmq;Q1 __rg . cc.:m.c:x. #:\.onz_3n _ Ax>o2 r>.x<3xxo7 :x.(f...> _ :«a3... __4u AN1_th.:k :.©fl4 Ocma .omw>¢:u .zwaoummjv 44¢ 3cm w»o-.a gr.-. .o4m»1.wu3 kn n....or 5.... r . m2 J4 .u ..w3. 0r cc pp. :9 co .ozzw. 0L.q.._ r_:>1yct>ux> .4. .:.k«zx.<.. MIAMI>o.nH fiNm;O 13.. > > InrpxX .:.:....(tuo.. :IAosN ... .n. .0 w. m: S..> x 3:352: m...» ...\.h¢1~.0.. _..:4L..13 LCOIZ< JJcL .N.:....¢12iu .. n «(‘3 .o m. :.c.1c oo:..¢a gr» .c ..34c> > win 3.x.bqt .uCOIZC 44.U .:. c_u.b¢ta:u ?..K. IN 0...: . .D 1» :._<> r wt..vcc\\4 (tau. .0 UH Ian—10 or wvo m #4 w .N4.m.ww.:: u::;.< .ncL ._.... _.r...n......... <<<<. :5 a<;a Uh ah PF an an c— he. «a. axx rh— pm .r {m c. UR «— at __»C4; ww— cu. r4. cc— vr. or~ mm. an. m.— c.. m:— cc. mo cc V6 Cd 76 n wean oh¢o£¢ooc. m»u.4 v. ouq::2 wcruscuv a:c> .vfil4L. CL . ....f L .«c._.r.ur.m: .oam.2.aawz.4 u:» »q qpqc use» uc puma L1. crxL.1 g... gtnru ¢~\qm\~c _uhoc osralc.r> 2»L ocwt ucu .—r.c_.r;u».:.3 .::: ..QL m:f.Ia __qL fuzc::4x ..L,L1..........-._..U >3...4.... ..-..LU N: huh (LL _.. C» so .m»:m.c...«..;.: fflw.ku.... .) pox.s;..-~q. ._ _r..L >1CLSJ ....L .N.on.._o14<:..1<>L1.414..» 7.1L A>o 1.7; .. Nd Ch CC .....Ina. _. ......4n .n. L.y._..<>.:.>.u... _.gL ~l2..1_ ”.uni T. rt .>.x.24467.~ ..cL No S. CU .czrn. L. .¢ Cw cc .:J:x.: .U4qL>.L4o :. ..LJavac......f._ _.....L I. N". CCv CC ....U4qu>....L4c: __cu 3.. C. 7 n.._n. w:4._w{L .ffi..fiVU4cu>..fi4L _<.x.....L.:~. :L.c... . .::..2Cu ..fi.U4..fi.c.17 _.KU CNI ...LYHX 1L: Cfir. r w n...» xx"....r.1.,.._x mqsuxxx Ao¢hoyxwvr<>C1 ._uL CC, ovnu..u\.k .P."b 2:. h..~ ..LIPLuw ...—_..ogc..<:ccu ...4u>.rn7.v.v..63 .nuo.. <.eu¢.»< .rfu ...c:>.cL. r.u..ws ucc‘rq 4...u ...n» y..u. ocu cc n09. .co. 0‘ who ups rm rcm rm ch uo QC «0 so at hm cc. um 00 (a CCV bk (F rmo wh L—LC43 Iancrao era wan com v.n o—m ch ocm we. 00— ma. ca. UN— os— wr— at. 77 mo zpu cor: ccu .cocoocu.w » h M H U 3” fix u u .Cu‘u u_pyyxuuxuxxpxyxyv.x‘»y~xuuxx..Vx»..»._.xL....L xxxxxyrxxxxxxyx-xu>yx>xyuxv>LYxixxxy>yxxxyyxxyxuy.yyyryx..LL”L.:rL FT .br.~_.»~&3 pp Jodi-u” 0.. OW- —.~ .®.~.49m..m.L u. x.x..~.~._cu..~.L. L4fl..¢.n. Jon..¢.u. x45..m.n.._¢u..m.,.,ww. L.mh_13 .. _ .UZL..:LU U. ¥_:..FLN JCL..FLL. XJD..A.A. 40L..n.u Y_Io.—.h. J:;..—.L.K «n.;”»7: VA in C rC U“ C» CC A.Jo,Lh.)._-._h {K D. r.» ..C .hvuo;cno.h.0.¥4bo.(LnoJCLoAILU.343o.m.~.;cu.ATLU.\F.5.2»L~: pm . Jn C» 7C . ha ...» C... :.:.,.y..;u.~ on - ?_ (5 TC .¢.~.4cu.,¢.o.x4c.,w.n._cu..;.u._rwhuuL rr .m . an L- r: 5. 2L cc .q. .;,.LL c~ :— T. (Q .:.NnJm¢..va.o...o w._11 on : (F 1L h— c» f: .u.:;.\y..w .— . s. h” :c rm f.» ,5; .h.L_L.L. LL. Fm :» c; a:.:a.\a.L_ cm :L c. .J.r-.y4.u_ _:.\.J0L._¢.o u.x._z..m.~. 4cu..n.L x.:..m.~..3w. .NLU. ydz..p.n..ow.._...n .L..wL_:: m— 0» r.L F— Q» 90 : anJVLLh 2. u.~ CC .mLN. Jen. .rLL. v_a..m.~.JoL..m.u.x-~c.._.5. 4cu....u.un.fl.u+Lep .... CL CC V. ch :: .m.~. ...-.. . r— .ka ...... .m.u.;ou..m.u.24x..~.n._Cw....u._v.r.uf_23 . :_ C» CC F— C» C! .3.C..\x.-; Q— (5 TC .~.N.LCL.._.u.ox.~..LL2: \* C» CC _. t» :L ..... \....L CA c» cc .r.:u.yx.u» “rL.xw>m:L CCL «pct..._.b¢syoL _.Om.~LJPL11 Iwumzwg I:_HYJ: H IMP ”film. a AnaybzoL .1.4r3u...h .fivwr>u»fi.u xL._u. .L.. C: .r_Ln..r_.L..rfi.._<:..p...y:> 27~x2m1_ “N. u. xx. 4. #4:.c<:.u _.p u:_L:rum: osxcmxso ”upac (snouc.n> :LL ccvc use L— (— u~ €~ r— n~ _~ om oo— qu» wz_»:omu:v mw WU CV ma cc mp CF Uh cm v— c— 79 ucqa .~¢.¢r.cc. cnxomxhc _uhmo c~«a-=.~> 2LL c:w( L:c 02L . zzopda .mvazn .J«L Jacaqc L.cL 7... . . . firsl. L 7413:... ...LU v on- ¢.m 0...- afiofl .IsérO: ._ ”LL ..fi.>>..fi.xx. >..camny chmzszc .>>.rxoxu.czyw gratruumav fie.— wr_»:coc:v o~ 80 ~’ P“ -\\ a\ ,— 0\ moan .mmocr.oo. ¢h\¢m\~o .1»? .m aL> s umu .mJomnrm 4epzw ¢2u FLLuxL bruzw .v:ac<2- VVermuuq ozaq mgcax>m owp2L>z_ cocccc vqcc2>m u ¢»7LIL»35...»— _ v..: 1~uLCL¢L (La: ¢.qLv ppLuuL BIBLIOGRAPHY E; (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) C14) (15) C16) (17) (.18) (19) BIBLIOGRAPHY D.H. Busch, Rec. Chem. Prgg, 2E3 107 (1964). D.H. Busch, Helv. Chim. Acta, Fasciculus, Extraordinarius Alfred Werner, 1974 (1967). N.F. Curtis, Coord. Chem. Revs., g! 3 (1968). D.H. Busch, Adv. Chem. Series, No. 100, 44 (1971). L.F. Lindoy and D.H. Busch, "Preparative Inorganic Reactions”, W. Jolly Ed., Vol. 6, p. 1 Interscience, New York. D.St.C. Black and A.J. Hartshorn, Coord. Chem. Revs., 9, 219 (1972-73). E.G. Jager, Z. Chem., 3, 437 (1964). E.G. Jager, Z. Chem., §3 30 (1968). E.G. Jager, Z. Chem., B! 392, 470 (1968). E.G. Jager, Z. Anorg: Allg. Chem., 364, 178 (1969). D.St.C. Black and H. Greenland, Aust. J. Chem., 2§_1315 (1972) and previous articles in this series. S.C. Cummings and R.H. Sievers, Inorg. Chem., 9, 1131 (1970). J.G. Martin, R.M.C. Wei and S.C. Cummings, Inorg. Chem., 11, 475 (1972) J.G. Martin and S.C. Cummings, Inorgj Chem., 133 1477 (1973). M. Green, J. Smith and P.A. Tasker, Inorg. Chim. Acta, E, 17 (1971). P. Bamfield, J. Chem. Soc. (A), 2021 (1969). C.M. Kerwin and G.A. Melson, Inorg. Chem., 133 2410 (1973). T.J. Truex and R.A. Holm, J. Amer. Chem. Soc., 953 4529 (1972). S.C. Tang, G.N. Weinstein and R.H. Holm, J. Amer. Chem. Soc., gs, 613 (1973). (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) C39) C40) 84 S.C. Tang, 8. Koch, G.N. Weinstein, R.H. Lane and R.H. Holm, Inorg. Chem., 19, 2589 (1973). L.F. Lindoy, Quart. Revs., 99, 379 (1971). R.H. Holm, G.W Z, 83 (1966). E.J. Olszewski (1965). L.J. Nunez and B.E. Leach and and references D. HOpgood and N.F. Curtis, J. . Everett and A. Chakravorty, Frog. Inorg. Chem., and D.F. Martin, J. Inorg, Nucl. Chem., 91, 345 G.L. Eichhorn, J. Amer. Chem. Soc., 94, 901 (1962). D.L. Leussing, J. Amer. Chem. Soc., 99, 3377 (1971) cited therein. D.L. Leussing, J. Amer. Chem. Soc., 91, 3740 (1969). Chem. Soc. (Dalton), 1357 (1972). N.F. Curtis, J. Chem. Soc. (Dalton), 863 (1973). T.J. Hurley, M (1967). E.L. Blinn and E.L. Blinn and J.A. Burke, Jr. J.A. Burke, Jr. 1163 (1971). J.C. Shoup and C.M. C.M. D.B. G.A. G.A. .A. Robinson and S.I. Trotz, Inorg. Chem., 9, 389 D. H. Busch, Inorg. Chem., Z, 820 (1968). D. H. Busch, J. Amer. Chem. Soc., 99, 4280 (1968). and E.G. Brink, Jr., Inorg, Chem., 9, 386 (1969). , and 8.5. Campbell, J. Inorg. Nucl. Chem., 99, J.A. Burke, Jr., Inorg. Chem., lg, 1851 (1973). Kerwin and G.A. Melson, Chem. Comm., 1180 (1970). Kerwin and G.A. Melson, Inorg. Chem., ll, 726 (1972). Bonfoey and G.A. Melson, submitted (1974). Melson and D.B. Bonfoey, Inorg. Nucl. Chem. Lett., 9, 875 Melson, Inorg. Chem., to be published April 1974. J.L. Dye and V.A. Nicely, J. Chem. Educ., 49, 443 (1971). MICHIGAN STATE UNIVERSITY Ll ll lll lllllll RA :7; IES R 31193 03142 963