' ‘ I _.. I .I.. .. - . '1 . m .. M .- ”.‘lfl —- -. _ .- a ' - . ' -. 07“.- '1 . ' I I I I I . i . , I . ' I I I C . ; I ' I . . I . v .‘ I ‘ II ' ‘ . . I ' ~ . a - I I. I I I . I I I I u - . .. . I I . ‘ ’I I I 7‘ fig HHHHHIHH II I - ' mums As ANIACCISRE ' 1' . Aoa CONCRETE . . A. . .n - ' ' ' II I . > .; - I I I ‘ I I I ..'I . . . . I . I I 'I' I" I I I II I I . . , _ - . . . . ., .v n. ., f I.‘ .4 ' o l ‘ ‘ ' ‘ I ' I I I I I. I I ' ‘ I .' ‘ '. ' I u . - .; .. I or. II - I. In M I ‘ ‘ I I I III II I - .I . . . I_I I ." ' ' I ‘I I I ,'. o -. . n I - .‘ I. I I I II I. I . - ‘ .0 c "- ' . n c- " ' I II I I . - - v - - ,' ,, I ' ' ‘ .‘ I I I I . . . o I' "O' I I I . . .'. I '.I II I‘ . . . .' . II. ,. -r '- 1 I I ' ‘ , .. . o I I l I . . . . I II I I I’. I . I . h . .. I .. .: '.‘ ' I I i _ ' . l c . I . h . I. o: It" ' ' I I I - , ‘ I. I - ' ’ I I ‘ . . I . I » MI 2 II. I I. I . . . . . . . . . I' '.- ‘ "' 'I .I I I ~ .I . . o - ' ' ' I. I I .' .\ I'. ‘ ' III II . I ' I| I. II ' . I u . ' ... III . J m - ‘. n ‘1. r. l _' . . I I I I . .I I I I III I I o - ,_ . I . I ‘I I . O O l I . I . I'~. . ‘ . . r ’ I I I ‘ I . I . I- I ‘ I I . . I ’ ‘ ' ' I I I I - _ . .. V. '.' “‘3' I “I . -- . .I “- 'I I I. I I ‘ I . .’ . I ' .- I- \o c. ' I I. I I II ' ' . ‘t ' . . In . .9 I I I I I I . I I , . I ,K . . I ‘ .. I I ‘ I. V I I . . ‘ I .' ' I. U ‘ ' a a \ II I I .\ . I A .: -- - ' I' II I ‘ I" I I VI I . ' I u .’ a . I I III . I III I. . ..I ' I I . . a I I . . ' . I . " . ‘l I . I . ‘ . II I - . t ) ' I. I II I II I ._ I ' g A I I . I. ~ I.I -‘ . I . , - . J " I I I ' ‘ I ‘ I I I ' - ' .I . I ' ' ‘ I I I I . b | . .0, . . . . o . ..- o 'I I I I I . . _I _ .‘ ' ' I I i I .. . . I I . _ .I 'I I . '_O o I I. ‘ I I I I I I . I . ' ' v . .. (I. ‘ ' . . .‘ . . . . . ~. . . . I I . I I ' _. . I I! I , . . - . .‘ v n ,| O I . . . -- ' I I ‘ III ' ’ . I. , v o I I I . I In I I I I I . . . I a ‘. o l. " I I I. - C I i I I I ‘I ‘ . ~ . n A I ‘ I I I I I . | ' v I .. I " ' ’ I - I . . o . -. ~ n- o'- ‘ I ' I . I ' I ' . I . i I . . l. I. I - I II I A I . I . . I II . I I . ‘.. ' ‘ I ‘ ‘_I . I I I I , I 'I ‘ I I I ' I ‘ _ . . . . . y y I n . 'I I . ‘ ' I Y I . I" I I . I I. I ‘ I I I. ' . _ . r I I I I ‘ - I ' ‘ ‘ . ‘ . s' . I ‘ , . .o ‘ a? I . I. O I I I . ' , . A. 1 t ' . " -- . . . >-—o I . .. I ‘ . . I . I V l ‘ . ‘ - I I . I I — I O . I - : II I. , I I I - ' I I v .. I ' I w . . _ .. D l I . - I . . , . .— "I. I I l I I. : ~I - II — I . , . \ I - I I I I I U I I ’ . I r- ‘ . ' I ' I , 0 Q I I I 'I I - I . I I I ' . I I ' . . I 4 - " _ I I l I. I ‘ . ' — - ‘ I . - _ I I‘ II .A. I I I I .- I - . I -_ I ' . I ' I I I -' I I u I . q . - ' . . ‘ I - ~. ' D I . l . - I . 7 . V I . . I I ‘ . ‘ . ’ . - . . ; f ' ‘ . -. ' I. I . . -I- _ ‘ I I I I I I I I . v I i - . n g ‘- ‘ I I. I. —I. CA I . I -‘ I ‘ I I I I - . I I I THESIS CINDERS AS AN AGGREGATE FOR CONCRETE A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE , of AGRICULTURE AND APPLIED SCIENCE by D. J. Westerby Candidate for the Degree of Bachelor of Science 1943 THESIS ACKNOWLEDGEMENT The author wishes to acknowledge his indebtedness to Kr. Lee J. Rothgary, assist— ant professor in the Civil Engineering De- partment at Tichigan State College, for his many valuable suggestions and to the Civil Engineering Department for the use of their concrete laboratory. \ ' 148291 11. 111. 1V. CONTEI’CTS I?” C ERAL I}? FORZLATIDN C A. Specifications . Sieve Analysis . Absorption C D. Unit Weight E. Specific 'ravity H CIHDER CONCRETE TE‘TS C A. Driving and Pulling Hails . Sound Absoroticn . Compressive Strength B C D. Comparative Cost 8 11. Cinders as an ArereE te for Concrete Cinders are prodficed from both anthracite and bituminous coals. Their physical characteristics differ to a small degree. Anthracite cinders have been defiipded over bituminous cinders by certain specifications but evidence does not justify this attitude. Some engineers on the other hand prefer bituminous cinders because the particles are strong- er and the major part of the combustible matter is coke. Cinders for aggregate should be obtained from gas works, industrial plants, locomotives or similiar sources where a large amount of coal is burned. If the cinders are obtained from the above sources where efficient firing is maintained, a fairly uniform ash will result. The combustion process is practically always in- complete. The ash left usually contains unburned coal or coke. Well fired bituminous coal used in the follow- ing tests contain from 18% to 15% combustible material. #9 1’ "‘x Hany of the standard tests for stone aggreg te 1 AI! “.- s. can not be ap Ml- ed to cinders as cinders vary zreatly ‘, when compared to stone. Cinders vary in weight, hard- ness, porosity, absorption, foreign material, and strength. -1- A. Specifications The following specifications have been sug— gested; Cinders, when used for concrete, shall be the product of high temperature combustion of coal or coke. Residue from domestic furnaces shall not be used. The cinders shall be well burned, free from foreign matter, and so graded from coarse to fine as to produce cinder concrete or sand-cinder concrete, meeting the strength requirements of the building code. The cinders shall contain not more than 0.45 per-cent sulphur trioxide as sulphate. Experience indicates that if the first part of the specifications as to source is met,the cinders .1. will also meet the requirements for unc nsumed ca-— .cn and sulphur compounds. Cinder aggregate should be graded frsn course to fine. Cincers free high temperature combustion do not contain any amount of fine, fluffy ash- they contain some fine gritty material. These fines are rarely present in any undesirable excess-—they are needed for workability. A typical cinder aggre— gate usually contains less than 10% finer than the #100 mesh. The maximum size used in building units is generally 3/4 inches or less. 7‘ o. Sieve Analysis A sieve analysis is used to determine the par- ticle size distribution of fine and coarse aggre- ate, using sieves with square holes. The ap- (n aratus used consisted of a nest of Tyler sieves, ”0 (1-1/2, 3/4, 3/8, #4, #8, #14,#88, #48, #100), automatic shaker and scales (accurate to the near- est gran). Three representative test samples (cinder? from power plant at Lichigan State College) were obtained by quartering and shaking in the auto— matic shaker for 5 minutes. The results were ta - ulated in table 1. Curves were drawn (figs. 1, 2, and 3), plotting sieve sizes and per-cent retained. The fineness was calculated for the different samp- les of cinders to determine if there was enough of each size. C. Absorption Compared with sand and gravel, cinders are porous and highly absorptive. Although the ab- sorption is important, it is not a criterion as to whether a cellular material will produce a dry wall.' Suction is an important factor. A driving rainstorm does not ordinarily penetrate an .f.‘ . 'r 1 - . - 'o- fin O "r‘ I‘ . . ~~ 8 inch mail - is osn ,oice, tne tater is usually "\ l...) drawn by capillary force, which for cinder concrete is very low To determine the absorption of cinders, sever— al tests were made on surface dry cinders (ungrad— ed). The results varied greatly and were not re- corded. The samples were then graded in five parts by a set of sieves ( #4, #14, #28, #48, #lfifi, pan). The absorption was found for each of the graded sizes (table 2). By knowing the grams retained on _-.—.‘ _ “a~u.~' ‘ each of these sieves in our sieve analysis, we were able to calculate the water in the total sample, hence the absorotion,which checked within .2 of one per-cent. The following apparatus was used in this test-- 1. Balance (accurate to the nearest gram) 2. Oven (100-120 c) 3. Beaker 4. Trowel 5. Dry pans The test samples were representative samples which were screened to the sizes mentioned above. Each part of the sample was soaked for 84 hours and was first placed in a pan in the sun to sur— face dry. Next, the Sanples were placed in cans of known weight and wei;heo. Then they were plac- ed in the drying oven for 24 hours and reweiphed to deternine the moisture loss, which is tabulat- ed in table 3. From this 1088 we calculated the absorption (table 4). D. Tei ht One of the advantages of cinder concrete is its weight. For the cinder used in these tests (obtained from the Kichigan State College power plant) the unit weight was found to be 61.4 per cubic foot. The appara us used in this test was as foll- ows—— 1. Balance (accurate to the nearest gram) 2. Tapping rod (5/8 inches diameter) 3. heasure (l 8 cubic foot) The cinders were room dried and thoroughly mixed. The measure was filled 1/3 full and the toe leveled off with the fingers. The mass was then rodded 25 times, distributing the strokes ev— 1'73". 0 v IJ-‘n ‘Q 5 ‘ 1 x.‘ d" v '1‘ " y .1 ail; over the surface. rne Jeasure was tied filled j l‘ to 2/5 full end again rodded 25 times. The contain- er was now filled overflowing and for the third T time rodded. he surplus w 11) ,s struck off leaving a level surface. The container was then weighed and the net weight determined. From this net weight the weiiht per cubic foot was calculated.(tahle 5) 111. E. Stecific Gravity k) In this test the following pieces of esuip- ment were used-- 1. Balance (sensitive to .1 gram) 2. Graduated flask The flask was filled to the 200 c.c. Hark. A 500 gram, surface dry sample was slowly poured in- to the flask, and the combined volume read and re- corded. The increase in volume is the difference in the tw readings and is also equal to the approx— imate volime of the cinders. The wéight divided by the volume will give the approximate saecific grav— ity (table 6). CINDER CONCRETE TESTS A. Driving and pulling of nails. In this experiment six-penny nails were driven into 21 day and 28 day cinder concrete. It was found to be readily nailable, and moisture increased the ease of driving. B. Sound Absorption Cinders which are porous are efficient in ab- sorbing sound. The Portland Cement Association has made tests for the coefficient of absorption by using the Sabine reverberation method in which the time that elapses when various standard sounds die out in a Specially constructed room, both with and without the sound absorbing samples, are measured. Calculations based on these periods give coefficients of ab- sorption that can be used to determine the area or amount of sound absorbent surface that will be needed to control the sound in any room. Calculations showing the a sorption coef- ficients made on walls built of standard 4 x 8 X 16 inch, 3-core concrete masonry partition unit is found in table 7. It can be observed that con- crete masonry units made of porous aggregate such as haydite and conders are efficient from a sound- absorbing stand point. 0. Strength Cinder concrete is used in making hollow cin— der concrete building units. The Specifications call for a 700 p.s.i. gross area at 28 days. It was observed in the following test that a water-cement ratio of 1.0 or higher had to be used to get 875 pounds net area which is equivalent to the 700 p.s.i. gross area. However these tests were only 21 day tests and higher water-cement ratio could be used. A water-cement ratio of 1.0 means that 7.5 gallon of water is used per sack of cement. 1V. Tables 8 and 3 show the data as to the mix and compressive strength. Figure 4 shows a curve plotting water—cement ratio against compressive strength. D. Comoarative Costs Suppose that it is desirable to determine the relative Costs of cinder blocks (8 x 8 X 18 inch units), clay tile (8 x 12 x 12 inch units}, and clav brick for the construction of a building requiring 2000 scuare feet of 8 inch wall. Tables 10 and 11 Show the calculations for this wall. It will be noticed that cinder units are a good deal less expensive. SUMKARY Cinders, when used as an aggregate for concrete, do not give a strength c mparable to that of stone and sand concrete, but it does have other pronerties \. which favor it as a.bui1ding material. One of the principle factors for the use of cin- der concrete is its light Weight. Its weiiht is less than one half of that of stone concrete. This proner— ty makes it an encellent material for partitions in buildings where weight is incortsnt. 1 _ o adsorotion $4.: OJ T1 15 0 (DJ Cinder concrete has go scun. gives a high degree of satisfaction on nsnv jobs like hotels, hospitals, or apartments, where sound insul- ation is 'mpcrtant. Cinders are readily nailable which is an added good feature. Cinder units make a inexpensive wall when com— pared to clay tile or brick walls. ts fire resist— ance also equals that of these other walls. A bad feature of cinder concrete is that it is highly absorbant and should not be used where it i c.nstantly in contact with moisture unless a (I) l water proofing is used. 0n the whole we can say that cinders as an ag- gregate for concrete has its place in building mat— erials. 9NlSSVd LNHDUEd luk‘“ <35... 2. 25.3-2220 miss" . Now mousse? a ...z\k\mmum2:z m>u_.m}omm_m omzou n_m>..m=m 55.5 2932,23 99.25 m)!» ZO_.r<._.m ...(EMEEUQXM OZEMMZEZU jammmeDZ w>u_m omh C r 9 9 e 9 7 O om52 u>u.m omm:m Mmu.m ZO_._.<._.m ...(Lxrrugmudxu OZEMMZBZU I... 77/4645]. - - V _¢‘~ ‘ .../31* TEE 7' 1. 5’9”. “’7‘ ”chi/74's In .9015 %R‘*°”"°’:g’°"'3 42:, 2:;Aycs:{:e 'F—JI-‘J/ /. o /4 o 0 9/2 H93 2.9 / 2.9 is 288 20.3 33 .2 '2 264 /8 6 5/ .8 *8 /8o / a. 7 64.5 "if/4 I30 9.2. 74 .2 "28 I32 9.3 93 . o ‘23 / / a 7.9 80.9 a“/00 8 3 5.8 96.8 pa ’7 4 6 3.3 / 0 0. 0 762‘0/ l4/8 /00.0 60 7.3 T5572. - 32;? wr Rafe/009’ m y,” XIPefvrocl On 51".; A55°J3£é,?:e //.’_a' . , o 0 030 a, 9;; I78 H .30 H. 3/8 . 386' 24.46 35.76. #4 3/0 /9. 7g 55:46 *8 A95 /2.38 678%- #/¢ «50 /0. /a 729.00 #28 /02 6.49 84.49 tr48 /// 7.0.5“ 9/54 "700 88 $59 9730 Am 45 2.89 /oo.oa 1 7557'3 -- , sea/6“ i112. thfci;crq.¢l In 90,. “$0757”: 00/ on 5/och Agcucl: f’y‘J’i/S. ‘ //a 0 ‘ o - o 1 34? are 8.87 8.87 3/8 a 70 + . I813 a 7.90 “4 238 16.25 - 43.35 4’29 A98 A383 fl $6.38 ‘74. /56‘ IQJB 66.96 4 ‘88 I2 7 8.6 7 75. 63 #43 /32 k . gm . ,8¢.64 37.90 x73 1.11.74. 4 96.38. . For, A 53 : 3,52 l 55.5157 ._.\b\.o.m 96m ohm ooMm omdbmkoxém, .Bmk 9.?wa . ._._.S.o. um. . msmm 09% 83.0% chk..., 030...". . mask "3&1.“ EQon um .omfifi. 09m. . 5587 ax“... 3V6“. bkdm . 96%. .tbnx .3 $3va kkfi SYN bmxm .0wa .353 86k; om.o\_¥.-nfirwioma.. Nmfi wmd mmcm mwfim. K. Nd...» ..wdk lf 8 Run. .056 -8 kka. 0%.? ..WKhGV...“ 33.. .. N5...” 536 HEM 5V6” RN83. amfim._.o.wm.x 1%k. 090- ofifik 9.6%. ..QSNQ _. wawx. . 1W 9th .. 3...“: , \k Wk...€xt\m\ \myww SEQ. ‘ m.N\ _ No.3 , ..mKBQx . kmkmf ....mkfixx . ..thx . X9? 3.: _ «N83: kmvg «.....flwox .9n.§\.ym§~.\ ‘1‘ mtmyx 09“: ohmdx a .ObfixQ. 00.9? . MHVDV. .m_.\\ omVM ..wvamm. U5..N.m..$. va3. N69... NH\\\ .33 was... \bNmm. .WV6K$,..W.V%mm mug?” . \.\\. chum. ....ofimxm QQN.N§.0~N3...RW\W .Ni «\\ ti Nth‘w‘O ‘0‘ka .. {VMQSPB- h I\“.Q I\ONUMW§.¢D 06w. .. .- «.904 95V “O Q\_ “toq Qs. “J5“. j. “QQQWOQ MthtQflw 0695.3.” \“HWVKMHW.. ._ - - .. - 1. . . . .J PHR . (Ox‘nOnxOHW—x . . . ...- . 1...... .NquVXk o\m mm .\\« 63. 3.8.6 wmm..\\ .Xv tx toxkkuxomflv Viva“ Mum . rill! IL Ii!!! \ L Qruwb\ . . 1 ...III Cs (QXO\3 Mn” .3} \Oko 1 ml“)\ Qlfia\ m..W\ . . Rx». OVA hutfixocxu «\x. 1.9.39} KM “W! \Wm. 05m 370 9.3 n? .\\ .SFQFX (N CoxmooowQY n19 Wk! ka Wufim. .erm. . M390 wckb 0.3; 33:3ro «\00\ QSIxWQO\l. V)0\.W‘.‘* USOxhr‘xI. Uwahwt $13. ”\QthQzW: §Q\MI\V .m. k WNK. $.be {xx x? a... [ n f .. 'fllllflllJ. L 0\m\\\. r 41 o\o (x CO\ Rafi“ QOKNN k ¥k\ ell-l 1.! III ,L III C\ ....Vukcli u‘Q {A} \OKNK. .. . . . . . gnu NH? ..HHA . Q Q \%\ ““k VMJK mm“ y MN“ Q‘QXVP‘\bV «\\ QGKSAMQXOKB . .u \qu \ 5N . on m. muffi 063 .33 Exgvnwko “m. c\ (3‘0833. . N uxw fl. . L ..ou. mm Mi hhm, «3% thG . «......» {a 538‘ ‘ h\°0\ 039\h10°\\d.u ”\OAWJ3 Vitfim: ¥\M\ 03.503 .NH- Q\Q\k\§.hl maxxhas .Nkth $Ak< ukxx \oxmk { .T 41’ . \Sm ML fi0$ M) \\ * «Rx CO\.\ RAW“. T \AWNOO . _ «I... .II. I! .II \9 mulfilmvb\ . UNanMx “WHOMEQWOMKOAx \QONLMKII _ . .. u. m.\ mm..k w? >3. 0mm ..-...bco S ......Qkoxmfl ”...“.wk 3mm 9n m. Quiw th< .2 5. x3 9% \o .x. (N (Statowww . N..."\VWK “Wt mm V‘N Q\m. “Wk. 05.0 Ok\\b\\»£bbbv\ SQ {in cox». 23¢. 3...... o:o®.\\t 9:3,“, mm. \n. {033% fishiv . .NKWNK. m. .wuflmuvflk ..Eo. %\\\ux\x \oxmm ~15— U/V/ 7‘ Wg/G‘HT 7:45;: 4 7287‘] Mofcno/s , C/flo’ers Dofe ’ , 1 Aprx/é: A943 5,23 Of Conic/aer- .536“ Ff: A/et‘ W 2'.- 0f C/no’érs ' _ /3,844 3 m5, ’ Wt IansJOoJ-Cu. F7.- 3 6(0AL‘6; 7-5573. MoIéifo/ C/n-d.¢rs ~ ' Dal-e ' L_ 5/2: Of Co~nf01ner.5-CU.F7‘. N137“ Wf'Of (Ina/pris'. /3,86/‘y 67$. >Win-J‘l(‘.\415$.._i°_or Cu.*:F2’: ,. .. 641465 e 7557:; ‘_ ”Mfleézo/ 7 ” — owns, T ‘ ~ ‘ * ~C m Dofe Apr-I/ 3; 1:9{5’ W 512:.- .ofLC‘oh fizz/nigh“? .5' CU. F2‘ Mr . H“ 1 #1 I3 8923:»: 67/ Lbs. fifi Ff wh‘ 7245/5 ‘57"- 5/06C If/C' Grow/fig 7.25215 7795721. Mote-::/~—_UH -___. 1 _-__-____C:.::' f:::5 Wye o; 5007,“; (9,”) ; 5‘09 .____+ fn/f/o/ Peed/n3 (CC)i 806' com 6mm z/o/wmav?)w 495' Vo/. of A?9reyo/e (CC) 895- 5’""”“ C55”"”"5’ fl _.;_.{'_f::?_'_5—____w “Mm Tesr‘ 2. Mofcr-zo/ ‘C/n def-5 Wf or" Som/o /e (SIMS) 500 [m 7‘10/ Rec 0049 (cc) 2 o 0 Como/”ed Vo/ (c.c.) 49$ Vo/. of Ayyr-cyo/e (CC) 893‘” S/OQC/f/C‘ Grow 7’7 H K695" ’7'85‘7‘3 Mo/eI-xo/ Cinders W7“ Ofsdmp/c (9025-) 6‘00 fon‘xo/ Peed/n5; (c.c.) 200 Comélrfeo’ Vo/(CC) 4.96 Vo/. 0704573 r—eyofe (CC) 296 Spec/fie Grow 7‘5, /. 705' -/7_... 7-2; 5/9 6 5' ‘Aésorfiv‘lin Co eff/C] err/5’ . M0 fer/o/ Fregucncy 0f 500/74 250 I00 /ooo 20.00 4' 000 fir ‘4vc. Co cf: C/n def Aggreyov‘e (“Oder-e749 . C‘/“5 (”n/Odin M‘ 0.4 7 05/ 0.6/ 0.6/ . 0.552 0.53" (“-4.3000103‘30’} 0.44 1 0.44 0.52. 00:2“ ad‘a : 0.49 C. 2:5(Vzwoun M 0.58 0.44- 0.36. 0.58 015? ' n— 0.07 0.58 0.3.9 { 0.33» 2204;5- 0.4!? >Q44’, .4 )- "C‘2T5(P0/n‘f¢/) L 5°54 6“ Grove/ Jéyr'eyofeCO/iérc/él' 9:5(a:m’;;ed ; 0.28 “ 0.3:)" 0.50 203.44 0.30 0.3 7‘ 5/5/P01nfeo/j 0.25 0. 20 0.20 0.2; 0.127" 0.07‘ {3523(00/001127‘1‘4) 0.26_ 0,35 £5.35 0.2/ 1 0/6; OZGJ 525(po,,,¢._.¢/ 0.20 0,23 0,49 0.1/3. O./6_ o/a Limes/One 4yyreyo7‘ e COfl Cr- 07‘": mfg; 4/3 02/ 0.26 0.2/ .019 -0.20 02/ L25 0.23 0.82 0.23 0.23 0/0’ 0.2/ #03 o’xr‘e AyfI-eyo'fe (Oncre/e T H/5 0.58 0.55 0.33 0.07 0.50 0.50 H25 0.48 0.70 0.33 0.6—4 0.67 0.60 .48... \0. $3. I! I! ..\.w fix mm = NV \ w. m .V $kk< O 0%.me \N m x = mm \\ Q»? \m. m .V . wmkx ookkoh \N m; : Mm . . m “V \b. 01‘ Whfi< 000$“. \N m \ = MN \. ha? \b. 0 .V 0%:V\ 00.0 Wu. \N m.\ = MN : \Wll \w. 0.». h me,\ ooQNm \N N\ : NN : km. new. $6 4. 9%.? 0080“,} \N N\ ; MN . 9% WV. mam: ‘ Ghbx 000$». \m N\ : MN : Qh mar. w M. Whao< 000$ m‘ x N N\ : NN : Tm. .Illll III... .Ill.‘ ..Iunl. \ N \\ z \N I [WNW Ox; him: L. \Qd ofihwx \N t . \m .. QM Q v.\ uflsx " PFC ohm. NC \ m t : \N : U N 0 mix .93 _ mmx omhwm \m \\ \N a WM 0 V.\ thin: WMK 00%WN \N I \. \N : TN Mxx mtmv ovum. Qkx‘Qx \m. b OM ‘km N\ .\ .1... 1t! .1? \N 9v o< : INN. .N\.\ w.% owm 000$m. \N o\ m\ \ fQN N\ .\ «(my N55, 00k Wm; \N 0\ @x : 4 UN. N\.\ V .% tummy 09k vm \ m. 08 0 9 .. .mVN M\.\ Vm» va oomwm, \m 0\ . mx : WM 0m.\ NR 6 k mm .mexhw \N h, ho? Vx \ZQV K N $Mw‘nmmw teem, .Qx Gm. \000% Eoomioxoxx ‘03“qu \ook$\ LUQ€Q< 3:10}; {wo\\§m kvnvx xx \oxmk Qx utxmk UXOQ. OXQQ 0\9&«\o,m. k WVQVR -49.. \0. 000\ 3&0 200\ .. B. 00 .\\ .x. .20 0.3 4 \0. mm.\\ Xkfi m.o.\ { \0. Wm .\\ X. N .m 90 \ «flax . 2 ‘ \0 mm .\\ X50 00< _ 0.02 NW .4 ...0\ .w.\ \0. Mm§ X50 00 .\ . .00. LENNQ Xx .0 00.x. 00.. mex X; 000 r 0%. , 0m. .\\ R50 00 .\ 0..\ EN mdm. 0 u .\ Wm.\\ Xkav 00.\ 4 0: 0m .\\ N50 00.\ . 00.x mum.\\ X50 063 x 00» 00$ RR .0 000 A . 3» .\ 00.: x50 00.\ :02 0.0.0 \VNJ. 1.00,: i .- mi 00.: X3 000 o: 0 .00 00.5..» 4 20.0% . km. Nxx mm.\\ X50 0.00 4.14 4 f. . MN, 1 N .\ rum \\ X k .m 000 t ,.0\ m< .\ mm .\\ RN .0 00 .\ 4 .0 \w m.\ .\ Wm .\\ vwk .0 00.\ mum m\.\ mex $50 00.\ 0 ..\ 0.0m 00.00 0.0.3 . \m 0 m..\ MN.\\ R0 00.x 00 ..\ MN \ .0.“ ..0 .....MN fr ...NK. 0x$0mx \to\ C09 \hXxxfikb O\\. 0% \003t0\0\$ \QEWU 01061m9Vx .. .0\< . . . LanQLthV . beOCxU A . .- . $I£¢vsuxox3 otfihB‘R us\.vo°s,ml \Qukva \0 *3 KO *5) \fi \\3 @Nwmwvflk. 0m 0000 0.0.000 .3 0x.» 0\ o \ ck 00.0mm 00K ONN OQVQ 00m $0; 00.0% 00.\ Oh. .7501 .0000... 00.00% 00.N QmC 00.N\N COM 00\ 00.0m< 00.“. 5.0 .m nLao\\ C000? 9 00 me \m: 00$ $0.0m: \m: %0 .0390 \m. . '00 KKK beévx Loxax Vmbym: “<0. 000mm omwxm , Rx. 00%\ 00005 0.x. 000m. bxl~§ waCC N. \ \~ 0‘, \a 036.0 Knob mu: knob \nov 5.: \000 «~on 0: $32K fits .2330 tips «.200 x530 EEK ‘50 42850 *0me W\K \00\U §.0\*\mu\~\mv xLQOWWQ .Lflanxxrv W‘DOr‘u 03\\nb\v&\l..Q\ 0\VDIN 00m. 0m< 0.000.. 000 V0 0930.300 wuzmq $0, .00\ 0.00, 000\ ..kakm. 3K \«30 00 5.0 05.0 0000 m .0\k0\_\0 bcoéxfmbcc p \ o \\ LOVfi.‘ K0 C090\.\ *0 {K 5U W\\Q\~ ” W\.Q\V Q0\\.vbk\DQ0b .5&\\ nLOQfiQ WktLOVDV Qx \OXLO‘ *0 .0>\ *0 wam1 *0 MOCMN ox 3.003%. nonwow ”W; \atmx,§\:.. m 30? ..2/._ m m m H w 0.\\.\0n—u\n *NKWEUWUvLWXfla)“ 0.x . 21.x . . m0 fix a. . w. ”a?“ Jr-fi- . 22 2-- 2! 2 W . p H _2 iv; T fl 2 a “I 0 .2 .2. , , Q . _ r _ _ I— “ —-‘—.-o—. ~— 2. , - 3’1' 2!..1I 'l'l '. " 5— ° "]F"“" ”’5“; 7 ’ "‘ | T l . ! —2 _ _- w -.1 -_ m.— .-«mawfiuwfi-h4fi-_ ......4 . . . 2 . . . . u i > s I . x l - _ -—.--—r__-....._.fl.—- -———~-———.—.—~—.-——lf- -._—_... _.—_ 2 . c . ' u I ' I I I — i 1 7 .1! I+ I In. I .1 . .__ '1 ~ I -0001 ... . . . a . _ . w _ . 2 . _ . . . _ . . 7 . 2 . a . if; ‘ _ _ / . _ _ * If _ l 4 II 1 Lu‘ 1 ‘30 -r 0.! '11 «I ‘ln'ltlv1tbv l l'iitll. its" .nllnl I ilv .D I pl- .1 7 I A . r I . r .Ava . . 2 fl . A 2 . . .. . j 2 , _ w . . . .. w W . _ . . . . H . . 2 . , f k 0 . -..—...,- “ _ . g ..--f. ._ 2 ,- . ._ 66$ 2. m .. . m fl>thULQEi. In. Oxibnwx icosbflchWXDE . _ . " “'01.!lt'ui I .IIIII. .V‘lfii.l|ll'92 '2‘ lo\§'¥.ll l x'Al Isl 22.!Y22 ! .5.\ 2 . |’ QUUiXNV 0\2\n.CflxX.Q\U%7$—\V§.Qa\m{{>L3U. . m . H w w _ , .. _ . . . . . u a . . _ . _ rill o 2 21 . . . . . rl fll l’lilf‘t l. .t!. .E! '122 .nl2l . - 1:2: I222 2" 22' i I. .‘Inlb 2 -2 20. \u L v-tl. ‘ . . A . 2t 2ov A- I2 I 1.! o: .2 ..u r2lf2 I2. . n 22!. . 21'221' (:11 .L’.“ II.’ r-v \‘ I -L. --..-. . . . Lfia.-._._._.2..-_M- a