A Check of the Design of an
I-Beam Highway Bridge
A Thesis Submitted to
The Faculty of
MICHIGAN STATE COLLEGEof
AGRICULTURE AND APETIED SCIENCE
by
Charles Victor Klepac Jr.
Candidate for the Degree of
Bachelor of Science
September 1948

THESIS

$$
c \cdot 1
$$

Acknowledgement

The author wishes to acknowledge his indebtedness to Mr. W. A. Bradley, Departmont of Civil Engineering, Michigan State College for his generous donation of time and knowledge without which the preparation of this thesis would not have been possible.

$$
\frac{\sin x}{2}
$$

Outline of Procedure

V Girder Design (con't)
B Size of Beam Required
C Size of Diaphragms Required
D Size of Hitchangles Required
E Spacing of Rivets
VI Abutment Design
A Loading
1 Live Load
2 Dead Load
B Files
1 Resistance
2 No. of Piles
C Footing
1 Toe Reinforcing Steel and Concrete

2 Heel Reinforcing Steel
and Concrete
D Wall
1 Stem Reinforcing Steel
and Concrete
VII Summary and Conclusions

Introduction
The purpose of this thesis is to check the design of a single span simply supported highway bridge.

This bridge as proposed will be constructed on the relocation of U.S. highway number 31 , also to be known as the Muskegon East Belt Road, where it crosses Black Creek in Fruitport Township, Muskegon County, in the state of Michigan. Previous to the opening of this new highway it has been necessary for all thru traffic to travel over the already congested streets of Muskegon. Thus, by the construction of the East Belt Road this situation will be greatly alleviated.

The centerline of this highway makes a 56 degree angle with the abutment wall which runs parallel to the flow of the Black Creek. The span length from center to center of bearings is 57'-1" exact and the overall width of roadway from curb to curb is 42'-0" exact.

The drainage area tributary in this crossind is 56 square miles and the waterway area required based on Talbot's formula (using $c=0.1$) is 260 square feet.

The existing bridge one mile downstream has a tributary drainage area of 57.5 square miles, provides 246 square feet and appears adequate. The proposed structure provides 238 square feet.

All of the above mentioned conditions concerning the site and the river were taken into account both in the analysis and the design of the bridge.

The specifications and maximum unit stresses used are those of the Michigan State Highway Department published in 1944 and from the specification for highway design published by the American Association of State Highway Officals in 1944.

	fc'	3000 psi
	fc	1200 psi
	fs	18000 psi
	j	. 867
	k	. 400
	n	10
	V	60 psi
	v	90 psi
	u	150 psi
	u	300 psi (where special anchorage
		is provided)
Piles		20 ton per square foot supported
Loading		H 20 S 16-44
Shear		13500 psi power driven rivets
Shear		10000 psi unfinished bolts

Design of Railing

Substantial railings shall be provided along each side of the bridge for the protection of traffic. The top of railing shall not be less than $31-0$ " above the top of curb and when on a sidowalk, not less than 31-0" above the top of the sidewalk. Railings shall contain no opening of greator width than oight (8) inchos. Ample provision shall be made for inequality in the rate of movement of the railing and the supporting superstructure, due to temperature or erection conditions.

$$
\text { (M.S.H.D. Spec. } 25 \text { p. 10) }
$$

Railings shall be designed to resist a horizontal force of not less than 150 pounds per lineal foot, applied at the top of the railing, and a vertical force of not less than 100 pounds per lineal foot. For railings adjacent to the roadway, the bottom rail shall be designed for a horizontal force of 300 pounds per lineal foot of rail.

$$
\text { (M.S.H.D. Spec } 35 \text { p. 14) }
$$

Railings:
Bolts $3 / 4^{\prime \prime} \varnothing$ in single shear capacity 4420 \# (for $10,000 \mathrm{psi}$ steel)

Load $300 \times 8.167 / 2=1225 \#$
Strap shear capacity

$$
(13 / 4-13 / 16) 5 / 8 \times 10000=5860 \#
$$

Design of Railing

Using 50 pounds per lineal foot as the dead weight of the railing
(M.S.H.D. Standard Design of Railing)

Load: $304 \times 8.167 / 2=1240 \#$

Bolts control as they have minimum capacity

$$
1(\max) \quad 17 / 8^{\prime \prime}+3 / 8^{\prime \prime}=2 \frac{1}{4}{ }^{\prime \prime}
$$

f (horizontal)	$\frac{1225 \times 2.25 \times 6}{0625 \times(1.75)}$	8650 psi
f (vertical)	$\frac{1225 \times 2.25 \times 6}{6 \times 1.75 \times(6.25)}$	4050 psi
f (total)	12700 psi	
$f($ (allowable)		18000 psi

Design of Railing

Rail: Lower rail only considered (max. case) For the first computation only the two side channels are considered to simplify the computations.

$$
\begin{aligned}
& \text { Horizontal bending } \quad 8.167-2 \times 15 / 8=7.901 \\
& M=w l^{2} / 8=\frac{300 \times(7.90)^{2} \times 12}{8}=28100 \mathrm{in} \cdot \mathrm{lbs} \cdot \\
& A=2 \times 1.46=2.92 \mathrm{sq} \cdot \text { in. } 0=2.06 \mathrm{Ig}=2 \times .25= \\
& I=\mathrm{Ae}+I g=2.92 \times(2.06)+.50=12.89 \mathrm{in} . \\
& \mathrm{I}=\mathrm{Mc} / \mathrm{I}=\frac{28100 \times 2.5}{12.89}=5450 \mathrm{psi} \\
& 18000 \mathrm{psi} \text { allowable }
\end{aligned}
$$

Since the stresses are so low we may nerlect the top channel of the lower railing in the design. This top channel would increase the strength at the railing which is already 330% over designed.

Posts

RC 3 Intermediate Posts

b $16^{\prime \prime}$
d $9 \frac{1}{2}{ }^{n}$
As $2 \times .44 \quad 0.88$ sq. in.
(2 bars in compression)
(2 bars in tension)

$$
\begin{aligned}
& k=\frac{1}{\mathrm{f} / \mathrm{nfc}+1}=\frac{1}{1800 / 10 \times 1200+1}=.400 \\
& j=(1-k / 3)=(1-.400 / 3)=.867
\end{aligned}
$$

Bending moments:

$$
\begin{aligned}
150 \times 9.54 \times 32 & =45800^{\prime \prime} \# \\
300 \times 9.54 \times 5 & =\frac{14300^{\prime \prime} \#}{60100^{\prime \prime} \#} \\
\text { Total } & =10
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{d}=\sqrt{60100 / 2880 \times .867}= & 4.92 \text { inches required } \\
& 9.50 \text { inches actual }
\end{aligned}
$$

$$
f s=M / A s j d=60100 / .88 \times .867 \times 9.5=8300 \mathrm{psi}
$$

$$
18000 \text { psi all. }
$$

Posts

The posts are able to bear a far greator load then that to which they are subjected. The actual stressin the steel of the post is only 46% of the allowable stress.

The railing and posts are greatly over designed, however, a large post of this greater size is obviously to produce a more massive appearance and greater architectural beauty throughout.

Design of Sidewalk and Curb

Curbs shall be designed to resist a force of not less than five hundred (500) pounds per lineal foot of curb applied at the top of the curb.

$$
\text { (M.S.H.D. Spec. } 36 \text { p. 14) }
$$

The specified roadway loading shall apply to all sidewalks constructed without guard rails between the sidewalk and roadway to prevent encroachment of roadway loads.

As this sidewalk is fully supported the use of this part of the bridge serves only as an adifitional safety measure for pedestrians and gs a more or less decorative measure. The only steel actually required is temperature steel with the other being more or less superfulous.
-

Design of Concrete Slab

Calculate bending moment by A.A.S.H.O. art. 3.2 .2 p. 138 Main reinforcing perpendicular to center line of roadway. Distribution of wheel loads

For span $2-7 \mathrm{ft}$.

$$
E=0.6 s+2.5
$$

Bending moment for freely supported span

$$
\begin{array}{r}
M=0.25 \times P / E \times s \times(100+I+10 \% \text { for } \\
\quad \text { longitudional forces })
\end{array}
$$

Bending moment for continuous span

$$
\begin{array}{r}
M=0.2 \times P / E \times s \times(100+I+10 \% \text { for } \\
\quad \text { lonitudional forces })
\end{array}
$$

Where,
$E=$ width of slab over which wheel load is distributed
$P=$ maximum wheel load in pounds
$s=$ distance between flances plus $\frac{1}{2}$ width of sirder flanges
$I=\frac{L+20}{6 L+20}$

Design of Concrete Slab
The forces due to traction or sudden braking of vehicles shall be considered as longitudinal forces having a magnituae of 10% of the gross live load that can be placed in one traffic line.This load shall be assumed as acting in the direction of traffic movement and applied at the top of pavement.

$$
\text { (M.S.H.D. Spec. } 38 \text { p. 15) }
$$

Design
$E=0,6 \times 5+2.5=5.5 \mathrm{ft}$.
$M=0.25 \times 16000 / 5.5 \times 5 \times 1.31=4760 \mathrm{ft}$. 1 lbs.
$d=\sqrt{M / R b}=\sqrt{(4760 \times 12) /(208 \times 12)}=4.78 \mathrm{in}$.
For slabs the distance from the surface of the concrete either top or bottom, to the center of the nearest bar shall be not less than one and one-half times the diameter of the bar nor less than one and one-half inches.

Thickness required:		$4.78+1.50=$	$6.28 \mathrm{in}$.
Actual:		7.00 in.	

As $=M / \mathrm{fs} j \mathrm{~d}=(4760 \times 12) /(18000 \times 7 / 8 \times 5.5)=$ $.663 \mathrm{sq} \cdot$ in. requived I. 000 sq . in. actual

Steel at bottom of slab for lateral distribution.
Percent of main steel required

$$
\begin{aligned}
& 100 / \sqrt{8}= 100 / \sqrt{5}=44.8 \% \\
&(\text { A.A.S.H.O. art. } 3.2 .2 \mathrm{p} \cdot 140) \\
& \text { As }=.663 \times .448=.296 \mathrm{sq} \cdot \text { in. } / \mathrm{ft} \cdot \text { required }
\end{aligned}
$$

-
-

Design of Concrete Slab

Slabs designed for bending moment in accordance with the foregoing shall be considered satisfectory in bond and shear.

$$
\text { (A.A.S.H.O. art. } 3.2 .2 \text { (d) p. 140) }
$$

Diaphragm Design
The forces due to wind and lateral vibrations shall consist of a horizontal moving load equal to 30 pounds per square foot on $1 \frac{1}{2}$ times the area of the structure as seen in elevation, including the floor system and railing and on one-half the area of all trusses and girders in excess of two in the span.

$$
\text { (M.S.H.D. Spec. } 38 \text { p. 15) }
$$

(a) Size, Rivets shall be of the size specified but generally shall be $3 / 4$ inch or $7 / 8$ inch in diameter.
(b) Pitch of Rivets, The minimum distance between centers of rivets shall be three times the diameter of the rivet but preferably shall be not less than the following:

For 3/4 inch diameter rivets - $2 \frac{1}{2}$ inches

$$
\text { (M.S.H.D. Spec. } 92 \text { p. } 39-40 \text {) }
$$

Diaphragms shall be provided at the third points of all I-beams apans of forty feet or more.

$$
\text { (M.S.H.D. Spec. } 124 \text { p. 48) }
$$

(a) Design, Lateral, longitudinal and transverse bracing shall be composed of angles or other shapes and shall have riveted connections.

$$
\text { (M.S.H.D. Spec. } 123 \text { p. 48) }
$$

The end connections angles of floorbeams anc stringers shall be not less than $3 / 8$ inch in finished thickness.

$$
\text { (M.S.H.D. S pec. } 120 \text { p. 47) }
$$

Diaphragm Design
Area of structure as seen in elevation
$7.833 \times 59.582 \quad 468$ square feet
$1.5 \times 468 \quad 702$ square feet
$.5 \times 6 \times 3 \times 57 \quad 512$ square feet
Total effective area 1214 square feet
Moving load $30 \times 1214=36420$ pounds
Area required End diaphragm
$36420 / 18000=2.02$ square inches required Area furnished

4" $24^{\prime \prime} \times 3 / 8^{\prime \prime}$ furnishes 2.86 square inches

The intermediate diaphragms meet all the necessary specifications provided by the M.S.H.D. for depth of web, size of angles, pitch of rivets, depth of hitchangles, and number of stiffeners.

Girder Design

Main trusses and girders shall be space a sufficient distance apart center to center to be secure against overturning by the assumed lateral and other forces.

$$
\text { (M.S.H.D. Spec. } 76 \text { p. } 36 \text {) }
$$

For the calculation of stresses, span lengths ahall be assumed as follows:

Beams and girders, distance between centers of bearings.

$$
\text { (M.S.H.D. Spec. } 77 \text { p. } 36 \text {) }
$$

Rolled beams shall be proportioned by the moments of inertia of thoir net sections.

$$
\text { (M.S.H.D. Spec. } 80 \text { p. } 36 \text {) }
$$

For structures with concrete slab floors without soparate wearing surface, a minimum allowance of 20 pounds per square foot of roadway shall be made, in addition to the weight of any monolithically placed concrete wearing surface, to provide for future wearing surface.

$$
\text { (M.S.H.D. Spec. } 30 \text { p.12) }
$$

When provision is made for three or more lanes of traffic, the design shall provide for the following percentages of the simultaneous maximum loading of all lanes;

For four or more traffic lanes-a-s----80\%

$$
\text { (M.S.H.D. Spec. } 33 \text { p.13-14) }
$$

Using H-20 s l6-14 loading from appendix A. AASHO page 229

Girder Design
Dead Load:

Slab $4.98 \times 7.5 / 12 \times 1 \times 150$	$467 \# / 1$ span	
Girder \quad (assumed 36 WF 230)	$230 \# / 1$ span	
Future wearing surface 20×4.98	$-100 \# / 1$ span	
	Total Dead Load	$797 \# / 1$ span

Dead Load Moment
$M=w 1^{2} / 8=\left(797 \times 12 \times 57^{2}\right) / 8=3885000$ in. Ibs.
Live Load Moment
$M=385400 \times 12 \times .80=3600000$
Impact $3600000 \times .21=757000$
Total live load moment 4357000 in lbs.
Total moment 8242000 in. lbs.
Z required $\quad 8242000 / 18000=456$ in. ${ }^{3}$

Deck plate girders with compression flanges continuously stayed in a concrete slab may have a depth not less than $1 / 20$ span.

$$
\text { (M.S.H.D. Spec. } 79 \text { p. 36) }
$$

$(57.08 \times 12) / 20=34.2$ in.

It is therefore necessary to use a 36 inch beam.
Z furnished by 36 WF 230 is 835.5 in.

Girdor Design
Check deflection
Beam loaded as max. bonding moment.

deflection $@$ midpoint $(x \quad 1 / 2)=\frac{\mathrm{Pbx}(1-\mathrm{b}-\mathrm{x})}{6 E I l}$
$\frac{16(16.85 \times 12)(28.54 \times 12)(467000-41000-117500)}{6 \times 30 \times 10 \times 14990 \times(57.08 \times 12)}=.186$ in.
$16(26.21 \times 12)(28.54 \times 12)(467000-99000-117500)$ $6 \times 30 \times 10 \times 14990 \times(57.08 \times 12)$

$\frac{4(12.21 \times 12)(28.54 \times 12)(467000-21500-117500)}{6 \times 30 \times 10 \times 14990 \times(57.08 \times 12)}$.038 in.
Total L.L. Deflection	
Impact (21\%)	
Total Deflection	.459 in.
	.096 in.

Live load plus impact deflection $1 / 1000$ span length
Allowable deflection $\quad(57.08 \times 12) / 1000=.684$ inches
A 36 WF 230 beam is the smallest beam which does not
exceed the allowable deflection.

Abutment Design
Retaining walls, abutments and structures built to retain fills shall be designed to resist pressures determined in accordance with the "Rankine" theory of pressure distribution in noncohesive granular material, provided that no structure shall be designed for an equivalent fluid pressure of less than 30 pounds rer square foot.

Loading
Dead Inad (superstructure)
Total concrete $194 / 2 \times 27 \times 150 \quad 210500$ pounds
Total steel $144100 \times \frac{1}{2}$
Total
72050 pounds
282550 pounds
Out to out of wings 86.875
Then $28.550 \times 1 / 86.875=3250 \# / 1$
Live load
One lane reaction 50400 \#
Total live load $60400 \times 4 \times .8=193000$ pounds
Then $19300 \times 1 / 86.875=2220$ \#/1
Surcharge
Face to face of rail 45' $0^{\prime \prime}$
Then $(45 \times 40) / 86.875=210 \# / 1$
Trial section:

Toe projection	$2^{\prime} 0^{\prime \prime}$
Wall	$2^{\prime} 4^{\prime \prime}$
Heel projection	$2^{\prime} 8^{\prime \prime}$

Abutment Design

	Ovorturning		Thrust		Moment
P)	$342 \times 10.25 / 2$	$=$	1750 \# x	3.42	6000^{\prime} \#
P)	138×10.25	$=$	1415 \# \times	5.12	7240'\#
			$M(O I)=M(O$	II)	13420'累
P)	70×10.25	$=$	717 \# x	5.12	3670 '\#
			M	II)	16910'\#

Stability
a) $7 \times 2.5 \times 150$
b) $7.75 \times 2.33 \times 150$
c) $7.75 \times 2.67 \times 100$
d) $2.67 \times 4.15 \times 100$

Weight
Moment 2620 \# x $3.50=9180^{\prime} \#$ 2710 \# x $3.17=86001 \#$ 2070 \# x $5.66=11720^{1 \#}$ 1110 \# x $5.66=\underline{6270^{\prime} \#}$ $W(I)=8510 \# M(S I)=35770$ $\#$

Dead Load 3250 \# x $3.17=\underline{10600^{\prime} \#}$ $W(I V)=11760$ \# $\pi M(S I V)=46370^{1 \text { 男 }}$ Surcharge $2.67 \times 2.1=561 \#$ x $5.66=3170$ \#

$W(I I)$	$=12321 \#$	$M(I I)=49540^{\prime} \#$
$W(I V)$	$=11760 \#$	$M(S I V)=46370^{\prime} \#$

$\underline{2220 \# x} 3.17=7040^{\prime} \#$ $W(I I I)=13980 \# \quad M(S I I I)=53410^{\prime} \#$

Abutment Design

Case I
No load or live load surchage
M(SI) 35770'\#
M(OI) 132401\#
$M(I) \quad 22530^{\prime} \# \quad R(I)=22530 / 8510=2.65^{\prime} 0 K$

Case II
Superstructure dead load and live load surcharge
M(SII) 49540 $\#$
M(OII) 16910'\#
$M(I I) \quad 32630 \cdot \# \quad R(I I)=32630 / 12321=2.6510 \mathrm{~K}$

Case III
Superstructure dead load and live load, no surcharge
M(SIII) 53410'\#
M(OIII) 13240'\#
$M(I I I) \quad 40170^{\prime} \# \quad R(I I I)=40170 / 13980=2.87^{\prime} \quad 0 K$

Case IV
Superstructure dead load, no live load or surcharge

$$
R(I V)=46370 / 11760=3.95 \quad 0 K
$$

Note: Case IV assumes that theearth exeets no horizontal force against the abutment wall.
-

Abutment Design

Center of gravity of piles
$\begin{array}{ll}\text { Back } & 5.5 \times 1=5.5 \\ \text { Front } \quad 1.5 \times 2=\frac{3.0}{8.5}\end{array}$
$8.5 / 3=2,83$ feet from face of footing
$I=A d$
Back $\quad 1 \times 2.67=7.12$
Front $2 \times 1.33=\underline{3.56}$

$$
I=10.68^{\prime \prime}
$$

Load on pile $P / A \pm M c / I$

Case II $\frac{12321 \times 7}{3}+\frac{12321 \times 7 \times .18 \times 1.33}{10.68}$	
$28750+1935=30685 \# \quad$ OK Front row	
$28750-\frac{12321 \times 7 \times .18 \times 2.67}{10.68}$	
$28750-3880$	$=24870 \# \quad$ OK Back row

Abutment Design

Case III $\frac{13980 \times 7}{3} \pm \frac{13980 \times 7 \times .06 \times 1.33}{10.68}$
$32500-730=31770$ \# OK Front row
$32500+1470=33970 \#$ OK Back row

Case IV $\frac{11760 \times 7}{3} \pm \frac{11760 \times 7 \times 1.12 \times 1.33}{10.68}$
$27400-11500=15900$ \# OK Front row
$27400+23000=50400$ \# overstressed 26%
Note: Case IV, back row is overstressed by 26% but this does not consider the horizontal Porce exerted by the earth.(M.S.H.D. allows 33% overstress in this case.)
-

Abutment Design
Reinforcement
Too: Case II

$$
\begin{aligned}
\text { As }=\mathrm{M} / \mathrm{fs} j \mathrm{~d}= & \frac{3625 \times 12}{18000 \times 7 / 8 \times 21}=.132 \mathrm{sq} \cdot \text { in. } \\
& \text { use } 3 / 4^{\prime \prime} \varnothing \text { bars@ } 1^{\prime}-0^{\prime \prime} \text { centers } \\
& \text { As }=.44 \mathrm{sq} \cdot \text { in. } \quad \text { Fo }=2.4 \mathrm{in} . \\
& p=.44 / 12 \times 21=.00175 \\
& j=.944 \quad \mathrm{k}= \\
& \mathrm{fs}=\frac{3625 \times 12}{.44 \times .944 \times 21}=
\end{aligned}
$$

$$
\mathrm{fc}=\mathrm{fsk} / \mathrm{n}(1-\mathrm{k})=\frac{4440 \times .169}{8.31}=91 \mathrm{psi}
$$

$$
v=\mathrm{v} / \mathrm{bjd}=\frac{8000}{12 \times .944 \times 21}=33 \mathrm{psi}
$$

$$
u=v / \text { Eojd }=\frac{8000}{2.4 \times .944 \times 21}=\quad \begin{aligned}
& 165 \mathrm{psi} \\
& 300 \mathrm{psi}
\end{aligned}
$$

Abutment Design
Heol: Case IV (bottom steel)

Abutment Design
Heel: Case II (top steel)

Abutment Design

Wall:

1070×3.87	$4140^{\prime} \#$
1000×2.58	$2580^{\prime} \#$
2070 \# Moment	$6720^{\prime} \#$

As $=\frac{6720 \times 12}{18000 \times 7 / 8 \times 25}=.205$
Try 3/4" \varnothing @ 2'-0" centers As $=.22 \mathrm{sq}$. in. $E O=1.2$ in.
$j=.857 \quad k=.429$
$p=\frac{.22}{12 \times 25}=.000733$
$\mathrm{fs}=\frac{6720 \times 12}{.22 \times .857 \times 25}=17100 \mathrm{psi} \quad 0 \mathrm{~K}$
$\mathrm{fc}=\frac{17100 \mathrm{x}_{2} 429}{5.71}=1280 \mathrm{psi} \quad 0 \mathrm{~K}$
$V=\frac{2070}{12 \times .857 \times 25}=8.07 \mathrm{psi} \quad$ oK
$u=\frac{2070}{1.2 \times .857 \times 25}=80.7 \mathrm{psi} \quad 0 \mathrm{~K}$

Use 3/4" \varnothing @ 2'-0" centers

Abutment Design

Wing Vall

Overturning
$383 \times 11.5 \times \frac{1}{2}$
$103 \times 7.69 \times \frac{1}{2}$

Thrust Moment

$$
\begin{aligned}
2200 \# \times 3.83 & =8420^{\prime} \# \\
\mathrm{M}(\mathrm{OI}) & =8420^{\prime} \# \\
396 \# \times 2.56 & =1013^{\prime} \# \\
\mathrm{M}(\text { OII }) & =9432^{\prime} \#
\end{aligned}
$$

a) $2.5 \times 7 \times 150$
b) $1.5 \times 7.75 \times 150$
c) $7.75 \times .83 \times 150 \times \frac{1}{2}$
d) $7.75 \times 2.67 \times 100$
e) $7.75 \times .83 \times 100 \times \frac{1}{2}$
f) $1.25 \times 2.67 \times 100 \times \frac{1}{2}$
g) $3.79 \times 2 \times 100$

Weight Moment
2620 \# x $3.50=9200^{\prime} \#$
1745 \# x $2.75=4800^{\prime} \#$ 482 \# x $3.78=1825^{\prime} \#$ 2070 \# x $5.67=11750^{\prime} \#$ 321 \# x $4.05=1300^{\prime} \#$ 167 \# x $6.11=1020^{\prime} \#$ 758 \# x $1.00=758^{\prime} \#$ $W=8163$ \# $M\left(S I^{\prime} I I^{\prime}\right)=$

Abutment Desion

Wing Wall Stability:
Case I'
No live load surcharge
M(SI') 30653'\#
M(OI') 8420'\#
M(I') $22233^{\prime} \# \quad R\left(I^{\prime}\right)=\frac{22233}{8163}=2.72^{\prime} \quad O K$

Case II'
With live load surcharge
M(SII') 30653'\#
M(OII') \quad 9432'\#
M(II') 21221'\# $R\left(I I^{\prime}\right)=\frac{21221}{8163}=2.58^{\prime} \quad O K$

Case IV'
No earth thrust

$$
R\left(\text { IV }^{\prime}\right)=\frac{30653}{8163}=3.75^{\prime} \quad O K
$$

Wing Wall Reinforcing Steel:
By a comparison of main wall and wing wall loads it
is seen that the main wall is designed for a more severe condition of loading than would come on the wing. Further, it can also be seen that the same steel is used in the wall of the wing as that used in the wall of the main wall; therefore, the stresses in the wing wall are OK by inspection.

As the thesis progressed remarks were inserted in their related sections; however, it may be well to call attention to several items which are of standard design. Such items as the railing, posts, curb, concrete slab, and diaphragms are of Michigan State Highway Department standard; therefore, it will be noted that because they are designed for the most severe conditions they are overdesigned for this structure. The Highway Dopartment through years of experience has found that the labor saving in design work far overshadows that saving in material if each item is to be designed separately.

As an overall conclusion it may be said that the entire structure is adequately designed and the above named sections are well overdesigned.
+

Bibliography

"Specifications for the Design of Highway Bridges"Michigan State Highway Department
"Standard Specifications for Highway Bridges"American Association of State Highway Officals
"Reinforced Concrete Design Handbook"American Concrete Institute
"Steel Construction Manual"

- American Institute of Steel Construction

Sutherland and Reese, "Reinforced Concrete Design" Second Edition.

SUPPLEMENTARY
MATERIAL
Shelved Separately

