THE EFFECT OF SEEDING RATE
ON THE YIELD OF ALFALFA
IN ASSOCIATION WITH GRASS

Thesis for the Degree of M. S.

MICHIGAN STATE COLLEGE

Kuo, Chun-Yen

1950

This is to certify that the

thesis entitled

"The Effect of Seeding Rate on the Yield of Alfalfa in Association with Grass".

presented by

Chun Yen Kuo

has been accepted towards fulfillment of the requirements for

MS degree in Agriculture

Omfaru Major professor Date May 3, 1950

THE EFFECT OF SEEDING RATE ON THE YIELD OF ALFALFA IN ASSOCIATION WITH GRASS

 $\mathtt{B}\mathbf{y}$

KUO, CHUN-YEN

A THESIS

Submitted to the School of Graduate

Studies of Michigan State College of

Agriculture & Applied Science in

partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE IN AGRICULTURE

Department of Farm Crops

1950

ACKNOWLEDGEMENT

The writer wishes to express his thanks to Dr. Carter M. Harrison for his valuable advice and encouragement in making this thesis possible.

CONTENTS

~	TATO	רזה	A151	1/1	11 T	137.1
I.	IN	اکدا	ועט	ノし	TT	\cup N

- II. LITERATURE REVIEW
- III. EXPERIMENTAL PROCEDURE
 - IV. EXPERIMENTAL RESULT
 - V. DISCUSSION
- VI. SUMMARY
- VII. BIBLIOGRAPHY

THE EFFECT OF SEEDING RATE ON THE YIELD OF ALFALFA IN ASSOCIATION WITH GRASS

I. INTRODUCTION

The development of the livestock and dairy industries in the United States has brought about the extensive growing of forage crops for hay and pasture in the last few decades.

Because of the wide range of climatic and soil conditions in the United States, a great variety of forage crops is required. In many situations a single species is grown. On the other hand, certain mixtures have been found to be of great value. It has been clearly shown that a legume in association with grass possesses numerous advantages over straight seeding. However, the rate of seeding of the legume in relation to the seeding rate of the grass must frequently be worked out for different species and for different regions. Likewise, the competitive relationships between the species in the mixture in comparison to either grown alone should be studied and seeding rates selected which will give the desired amount of grass and legume in the mixture.

This experiment was designed with the purpose of studying the effects on the yield of alfalfa when in association with four different grasses at various

rates of seeding. The four grasses used were brome-grass, timothy, orchard grass and tall fescue.

TT. BEVIEW OF LITERATURE

Wagner and Wilkins (18) reported that legumes in mixture with orchard grass and smooth bromegrass improve the quality of pasture through an increase in the protein content of the mixed herbage.

Fulleman (9) reported that the chemical composition of a forage crop as expressed in terms of protein, calcium, phosphorus and magnesium is generally considered to be closely related to its palatability. The protein content of alfalfa and alfalfa-grass mixtures was much higher than that of the grass alone, the calcium content of the alfalfa and the alfalfa-grass mixtures was very high, and bromegrass showed a higher protein content than orchard grass.

Evans (7) discovered in 30 of 31 comparisons that the percentage of protein contained in the green leaf of timothy grown in mixture with clover was higher than in the leaves of the same grass grown alone. Lawn clippings from plots where the grass was grown in mixture with a legume were found to be composed of a large proportion of green leaves and a correspondingly small proportion of dry and brown leaves when compared with a plot where no legume was grown. When timothy was cut at

an early stage of growth and ensiled, it produced a silage higher in protein than corn silage.

Churchill (5) reported that the association of the bromegrass with the alfalfa increased slightly the percentage protein of the bromegrass regardless of strain. He reported that the decrease in the protein content of alfalfa when grown alone in comparison to that of alfalfa grown with bromegrass was probably due to greater loss of leaves.

Harrison and Rather (15) reported that bromegrass is substantially higher in protein content than timothy and many other grasses, especially at the advanced stage of maturity. Pure stands on upland soils are limited in vigor because of lack of sufficient nitrogen. When grown in the presence of well nourished alfalfa, the bromegrass remains vigorous, productive, palatable and rich in nutrients.

Evans (8) reported that the yield of timothy was highest of the grasses followed by tall fescue, orchard and brome grass with 5309, 4307, 3938 and 3532 pounds of hay per acre, respectively. Alfalfa sown alone in comparison to an alfalfa timothy mixture yielded 7540 and 8180 pounds per acre, respectively.

Churchill (5) found that growing bromegrass and alfalfa in mixture reduced the acre yield of each individually when compared with yields of each grown alone.

Aberg and associates (1) found that the yield of bromegrass was lower when grown in association with orchard grass and timothy than when grown alone, whereas there was an increase in yield when its partner was alfalfa. Both orchard grass and timothy proved to be better producers when grown in mixtures with alfalfa.

Wiggan (19) found that any seed in excess of 20 pounds per acre used in seeding meadow and pasture was wasted. In a large proportion of cases 15 pounds is probably adequate when conditions are favorable.

Evans (7) found in his timothy seeding test that with each increment of timothy seed, there was a gradual increase in the percentage of timothy and a corresponding decrease in the percentage of clover in the hay. The effect of different rates of seeding tends to diminish as the stand becomes older, but may persist for at least three years. In 16 rates of seeding tests in which timothy was sown in the fall, the rates varied from 1.25 pounds to 20 pounds per acre. The results indicated that three or four pounds per acre may be regarded as satisfactory rate of seeding.

Fuelleman (9) observed that the best seeding rate depends on the way the crop is to be used. When wanted mainly for seed, bromegrass planted alone should be seeded at the rate of about 12 to 18 pounds per acre.

When it is to be used for hay and pasture 15 to 20 pounds is the best rate. Alfalfa and bromegrass should be seeded in a ratio of two parts alfalfa to three parts of bromegrass, for example six pounds of alfalfa and nine pounds of bromegrass.

Rather and darrison (15) recommended seedings of alfalfa-brome at eight pounds of alfalfa and seven pounds of smooth brome. In many of the more recent seedings, only five pounds to the acre of smooth brome seed have been used. Michigan farmers using the mixture have suggested that an even lower rate of brome seed, if evenly distributed, is desirable to prevent the bromegrass from dominating the mixture too rapidly.

Hutcheson (12) showed that the seeding rate had little influence on the yield of alfalfa or of alfalfa-orchard grass mixtures.

Effect of Seeding Rate on Total Yield of Hay in Virginia

	seed sown Orchard	Yield of field Cured hay per acre, lbs. av.
10 20 30 20 10	 14 14 14 10	6,340 6,890 6,660 7,300 6,490 6,500

Schotch (16) reported that no significant yield differences with various seeding rate whether drilled

or broadcasted.

Methods of Seeding	Rate of seeding per acre, lbs.	<pre>3 yrs. av. acre yield, tons.</pre>
Broadcasting	10 15 20	5.58 5.31 5.57
Drilled	8 12 16	5.30 5.17 5.51

May (13) found that each plant in hay meadow or pasture mixture is influenced in some way by the presence of other plants, the relative abundance of any one species in the mixture may not remain the same seasonally or annually. The change, often described, may in time result in a community very unlike the original one. His experiments indicate that alfalfa will be replaced by Johnson grass if grown in an alfalfa Johnson grass mixture.

Ahlgren and Ammodt (2) showed that the development and activity of roots of certain species of plants may be affected by the plant metabolism of adjoining roots and that some species of plants may have a specific effect on other species which follow on rotation. Toxic secretion, deficient oxygen, excessive carbon dioxide and moisture, harmful pH and nitrogen starvation are among the more important factors listed as being involved in specific root interactions.

III. EXPERIMENTAL PROCEDURE

The experiment was conducted in the greenhouse at Michigan State College, East Lansing, Michigan during the fall of 1949. Four grasses were used in various combinations with alfalfa at different rates of seeding. They were bromegrass (Bromus inermis), timothy (Phleum pratense), orchard grass (Dactylis glomerata) and tall fescue (Festuca elatior). Each of the grasses and the alfalfa were seeded alone as pure species at four, eight and sixteen pounds per acre to serve as checks. Then each grass was seeded at four, eight and sixteen pounds per acre with alfalfa at the same three rates. Thus there were nine possible combinations for the rate of seeding treatments within each species of grass in mixture with alfalfa. Each mixture, and the pure species, was replicated three times, making a total of 153 pots.

The seed was sown in 10-inch clay pot on September 12, 1949, using quartz sand instead of soil. With proportion to the acreage area, it was found that .0228 gram, .0456 gram and .0912 gram of seeds should be planted in a 10-inch pot to equal four, eight and sixteen pounds to the acre, respectively. Since the forage crop seeds are so variable in size and weight, a seed count determination was made for each grass and alfalfa at different rates of seeding. The result is given as follows:

Crops	Rate of Seeding Per acre	Wt. of seed to be planted in 10" pot in grams	to be sown
Alfalfa	4 π/7	.0228	11
	8 π/7	.0456	22
	16 π/7	.0912	44
Brome	4 #	.0228	11
	8 #	.0456	22
	16 #	.0912	44
Timothy	4 #	.0228	69
	8 #	.0456	138
	16 #	.0912	276
O rc hard	4 #	.0228	30
	8 #	.0456	60
	16 #	.0912	120
Fescue	4 #	.0228	9
	8 #	.0456	18
	16 #	.0912	36

After sowing, the cultures were watered regularly and supplied with a nutrient solution to secure the best growth under fall greenhouse conditions. The nutrient solution contained the following concentrations and was applied once or twice per week.

Nutrient	Partial volume molecular Conc.
KH ₂ PO ₄	0.0045
Ca(NO3)2 4H2O	0.0090
MgSO ₄ 7H ₂ O	0.0045

The greenhouse temperature ranged between 70 to 80 degrees F. and no artificial light was used. The plants were left to grow until December 18th, 1949. At that time the first replication of the experiment was harvested. The sand was washed from the roots and the species in each mixture were separated. Roots and tops were weighed separately, both green weight and oven dried weight being recorded. This harvest extended over a period of ten days because of the time required to separate the species within a mixture.

IV. EXPERIENTAL RESULTS

Yield Comparison Between Mixtures

Despite the different rates of seeding, all cultures of the same mixture were grouped together to determine the yield differences between mixtures. The green weight of root and top for both components in the mixture was used for this study. Table 1 indicates that the orchard grass-alfalfa mixture had the highest yield of the mixtures studied. The differences in yield between orchard grass-alfalfa and the other three mixtures was very significant, a difference of 357 grams being required for significance at the 5 per cent level. There are no significant yield difference between alfalfa-brome, alfalfa- timothy, and alfalfa-tall fescue.

Table 1. Total Green Wt. of Grasses and Alfalfa in Different Mixture (Grams)

Mixtures	Alfalfa &	Alfalfa &	Alfalfa &	Alfalfa &
	Brome	Timothy	Orchard	Fescue
Replication I	1463	1605	2565	1965
Replication II	1618	1688	2320	2110
Replication III	1987	1695	2305	1915
Total	5068	4988	7190	5990
Average	1689	1662	2396	1996

The mixtures under this experiment were grown for a period of three months, but this data proves that orchard grass begins growth earlier and continues more vigorously especially under greenhouse conditions.

A Split Plot Design Analysis on The Yield Of Lixtures at Different Rates of Seeding

Since this experiment was originally designed as a split plot, the analysis of yield differences, here presented, between rates of seeding and mixtures was based on this design, using the rates of seeding and different mixtures as the main treatment and sub treatment. Total oven dried weight of top and root growth for both components in the mixture was used for this study.

Table 2. Dry Weight of Both Top and Root Growth of Mixtures at Different Rates of Seeding (Yield in Grams From the Average of Three Pots)

Alfalfa Seeding	Grass Seeding		Grass in	Mixture		
Rate	Rate	Brome	Timothy	Orchard	Fescue	Aver.
4#/A	4#/A 8#/A 16#/A	19.5 31.6 37.8	33.6 35.6 41.8	48.0 58.3 73.5	30.8 47.5 53.0	33.0 43.3 51.5
8 _# /A	4#/A 8#/A 16#/A	17.3 31.0 31.5	23.0 28.8 26.3	28.8 31.8 53.1	15.3 23.3 43.5	21.1 28.7 38.6
16#/A	4#/A 8#/A 16#/A	20.1 30.1 42.0	23.3 19.0 42.3	37.1 28.0 50.6	19.0 25.6 42.5	24.9 25.7 44.5
Total		7 85.5	822.0	1228.5	903.0	
Average		29.0	30.4	45.5	33.4	

It was found that yield required for significant difference at 5% level between rates of seeding and mixtures were 7 grams and 4.6 grams, respectively. Comparing the average yield between different rates of seeding regardless of its mixture, it is clearly shown in Table 2 that with each increment in seeding rates of grasses there is a notable increase in yield. Though the seeding rate of grass is doubled the yield does not respond proportionately. It is worthy to note that there is no slight indication of increase in yield when the seeding rate of alfalfa is increased. This can be explained by further analysis on the proportion of alfalfa in each mixture at

different rates of seeding. Since alfalfa is not so aggressive in growth as the grasses, each increment in seeding rate does not influence the yield greatly. So far as the yield as a whole is concerned, it seems that four pounds of alfalfa sown with sixteen pounds of grass has the highest average yield.

It is noted in Table 2 that the average yield differences between the mixtures are substantially the same as we found in Table 1. This further proves that there is a close and positive correlation existing between green weight and oven dried weight of the yield of alfalfa and grasses.

With each increment in seeding rate of bromegrass in the alfalfa brome mixture, there was a significant response in the differences of yield. This statement also holds true in the alfalfa-orchard and alfalfa-fescue mixtures when the rate of seeding of orchard grass and fescue were increased. However, there are a few exceptions in these comparisons, as no difference in yield was observed between alfalfa and brome, each seeded at eight pounds to the acre and eight pounds of alfalfa seeded with sixteen pounds of brome grass. There was a significant decrease in yield when eight pounds of orchard grass were sown with sixteen pounds of alfalfa when compared to four pounds per acre of orchard grass. These variations may be due to experimental error or other causes. In the alfalfa

timothy mixture, there was no significant difference in yield when the rate of timothy seeding was doubled. In each individual mixture, no notable yield differences were observed when the rate of alfalfa seeding was increased.

Yield Comparison Between Mixture and their Components seeded alone at Various Rates of Seeding

The total green weight in grams of top and root of individual mixtures and their components seeded alone were used for this analysis. In the alfalfa brome mixture, as shown in Table 3, when alfalfa and bromegrass were each seeded alone it seems that there was significant increase in yield with each increase in rate of seeding. By comparing the straight seedings with the mixture, the straight alfalfa and straight brome at high rate of seeding yielded more or less the same and a little bit higher than the highest yield of alfalfa brome mixture.

Table 4 indicates that a straight seeding of timothy yielded a little better than the alfalfa-timothy mixture. The highest yield was found by sowing 8 pounds of timothy alone. With regard to the mixture it seems that there was no striking differences among various rates of seeding.

Brome Grass in Association With Alfalfa and Brome Grass and Alfalfa Sceded Alone at Various Rates of Seeding. Table 3.

Rate of Seeding	eding	•	Lfa	Alfalfa 8,	.fa	Alfalfa 16,ř	ø	Straig	ht.	Straight Alfalfa	Straight Brome Grass	ight irass	
		Brome Gr 4# 8#	irass 16#	Brome (4,f 8,j	irass 16#	rass Brome Grass Brome Grass 16# 4.f 8_ii 16_if 4_ii 8_ii 16_ii	.ass 16//	4,1 8,1 16,	<i>4</i> ′8	16,	#91 <i>#</i> 8 ##	191	
Average	7	122 207	234	103 210	161	234 103 210 194 139 212 263	263	97 138 207	38		148 212 298	298	
		09	grams	needed	for s	grams needed for significant difference at 5,3 level.	ıt dij	ferenc	e at	, 5,5 lev	el.		

Timothy in Association with Alfalfa and Timothy and Alfalfa Seeded Alone at Different Rates of Seeding. Table 4.

Rate of Seeding	ing	Alfalfa 4//	Alfalfa 8,/	ot !	Alfa 1c	Alfalfa lof	Stra	ight	Straight Alfalfa	St	Straight Timothy	ht y
		Limotny 4,f 8,f 16,f		16#	1.11110 4./F	$i_{\vec{t}}^{\rm cny}$	// †	4# 8# 16#	16 %	<i>†</i> ' <i>†</i>	4,7 8,7 16,7	16,
Average		187 217 246	246 150 191 166 154 127 224	166	154 12	7 221		97 138 207	207	208 2	298 268	268
		50 grams	grams found to be significant at 5% level.	be s:	ignifi	cant	it 5,6	level	٠			

The orchard grass seeded with four pounds of alfalfa gave the best yield (Table 5). Increasing the rate of alfalfa seeding when sown in mixture with orchard grass, decreased considerably the total weight harvested. Doubling the rate of seeding of orchard grass in mixture did not increase the yield accordingly. This is why orchard grass seeded alone at four pounds per acre showed no differences in yield when compared to its high rate of seeding. It seems that the mixture had a better yield than straight alfalfa seeding but no difference in yield was observed between the mixture and orchard grass seeded alone.

Table 6 indicates that both yields of alfalfa-fescue mixture and straight fescue were increased when a high rate of seeding of fescue was used. It was also found that increasing the rate of alfalfa seeding in the mixture did not increase its yield. On the contrary, it was observed that a significant decrease in yield occurred when four or eight pounds of fescue were seeded with eight or sixteen pounds of alfalfa when compared to four pounds of alfalfa. The mixture in which fescue was seeded at sixteen pounds showed a notable increase in yield over that of straight alfalfa seeding. No significant difference in yield could be seen between the mixture and straight fescue at same rate of seeding.

Orchard Grass in Association with Alfalfa and Orchard Grass and Alfalfa Seeded Alone at Various Rates of Seeding. Table 5.

Straight Orchard Grass	7, 8, 16,	336 352 342	evel.
ålfalfa	16,	207	at 5% 16
Straight Alfalfa	#8 #7	97 138 207	fference
Alfalfa 16 ई	Orchard Grass $\mu_{h'}$ 8. $16.$	254 187 297	ignificant di
Alfalfa 8÷	rass Orchard Grass Orchard Grass 16# 4# 8# 16# 4# 8# 16# 4# 8# 16#	6 187 216 277 254 187 297	grams needed for significant difference at 5% level.
Alfalfa	Orchard G 4.7 8.4	280 340 356	72 gram
Seeding	0		
Rate of		Áverage	

Fescue in Association with Alfalfa and Fescue and Alfalfa Seeded Alone at Various Rates of Seeding. Table 6.

120 17
99 120 172 293 144 201 318 97 138 207 159 22 uns needed for significant yield difference at 5% level.

Determination of Alfalfa Yield in Various Mixtures at Different Rates of Beeding

Table 7 indicates that total alfalfa yield in the alfalfa-brome mixture was decreased even when compared with the lowest rate of seeding of straight alfalfa. In straight alfalfa, as mentioned before, by increasing the rate of seeding the total yield was significantly increased. In the mixture it seems that alfalfa yield was but slightly affected by varying the rate of seeding of bromegrass. In other words, regaraless of the rate of bromegrass seed being used, the alfalfa showed an increase in yield with each increment in alfalfa seeding rate although the difference was not so promising.

In the alfalfa-timothy mixture the same statement can be made that straight alfalfa seeding had a much better yield than the alfalfa yield in the mixture. No clear indication was observed that the alfalfa yield was increased with each increment of alfalfa seeding in this mixture. It is clearly shown that with each increment of timothy seeding there was a marked decrease in the alfalfa yield. So, four pounds of timothy seeded with eight or sixteen pounds of alfalfa seems to give the best yield of alfalfa (Table 8).

A considerable reduction in alfalfa yield was observed with each increment of orchard grass seeding, while alfalfa yield in the mixture was increased by increasing the rate of alfalfa seeding. It seems that sixteen pounds of alfalfa seeded with four pounds of

Alfalfa Yield in Combination with Brome Arass at Different Rates of Seeding. (av. Green At. in Grams of 3 Pots) Table 7.

Total Alfalfa Yield		686
Straight Alfalfa	16,	207
Straisht	4,7 8,7 16,7	97 138 207
Alfalfa 16,	Brone Grass 4,, 8,, lo,	71.3 84 87.6
Alfalfa β _π	ló, 4, 8, 16,	59.6 56 50
Alfalfa 4,,	Brome Grass $4.7 + 8.7 + 16.7$	36.3 32 20
Seeding		σ
Rate of Seeding		Average

Alfalfa Yields in Combination with Tinothy at Different Rates of Seeding. (Av. Green Wt. in Grams of 3 Pots) Table 8.

Total Alfalfa Yield	703
3h t 1fa 16	207
Straight Alfalfa 4/ 8/ 16	54.3 36.6 32 97 138
16#	35
Alfalfa 16, Timothy	36.6
Al Ti	54.3
16,	
Alfalfa 8 _{ir} Timothy 8 _{ir}	26.6
A1 Ti	5.6 37.6 26.6
ilfa ithy 16/	5.6
Alfalfa 4 rimothy	
4	27 20
Rate of Seeding	დ ზე
Rate	Average

orchard grass gave the best yield of alfalfa. Mone of the mixtures in Table 9 snows an alfalfa yield as high as obtained in straight alfalfa seeding.

Alfalfa yield in association with fescue showed the same responses as in the timothy and orchard alfalfa mixtures. But the decrease in alfalfa yield was not so distinct as the rate of fescue seeding was increased. The best alfalfa yield was observed by sowing sixteen pounds of alfalfa in the mixture. No difference in alfalfa yield could be seen when alfalfa was seeded with four pounds to the acre as compared to that seeded at eight pounds in the mixture.

By comparing the total alfalfa yield in these four mixtures, it is clearly shown that the alfalfa-brome mixture ranks first in terms of total alfalfa yield followed by alfalfa-fescue, alfalfa-orchard and alfalfa-timothy in the order of production.

Determination of Grass Yield in Association with ALFALFA at Different Rates of Seeding

A similar analysis was made of the grass yield in association with alfalfa at different rates of seeding. A composite table was made with G denoting the grass seeding rate in the mixture.

In general, all the grass yields in mixtures were lower than their respective rate of seeling in straight seeding. But, a few exceptions such as orchard grass, and fescue seeded with four pounds of alfalfa to the acre

Alfalfa Yields in Combination with Orchard Grass at Different Rates of Seeding. (Av. Green Wt. in Grams of 3 Pots) Table 9.

Total Alfalfa Yield	723
$\frac{10}{10^{-1}}$	207
Straight Alfalfa "8"	97 133
St A	26
Alfalfa 16,7 Orchard Grass 4,7 8,7 16,7	
Alfalfa 16,ř shard Gr 8,ř 10	34
Orc	81
Alfalfa 8// Orchard Grass 4// 8// 16//	5 20.6 81 34 37.3
Alfalfa 8,7 hard Gr 8,7	25
Orch 4,7	29.6 25
Grass 16#	3 9.3
Alfalfa $\mu_{\mu}^{\prime\prime}$ Orchard G $\mu_{\mu}^{\prime\prime}$	9
,	27 1
Seeding	
Rate of	werage
Kate	Aver

Alfalfa Yield in Association with rescue at Different Rates of Seeding. (Av. Green Wt. in Grams of 3 Pots) Table 10.

Total Alfalfa Yield		855
Straight Alfalfa	4,7 8,7 16,7	97 138 207
Alfalfa 16,/ Fescue	8,1 16,1	79.3 59.6 63.6
Alfalfa 8 /f Fescue	$\pi = 8\pi = 16\pi = 4\pi$	20 40.3 32 31.9 79.
·	4,1 8,1 16,1 4	55.6 31 20 40
Rate of Seeding		Average

•

-21-

Grass Yield in Association with Alfalfa at Different Rates of Seeding (Green Wt. in Grams) Table 11.

ທ		-21	_		
Total Grass Yield		1848	2176	3145	2295
Grass	16/	298	268	345	324
ght G	8	212	298	352	229
Straight	4,1	148	208	336	159
ರ	g 16//	176	192	259	254
Alfalfa 16 ₁ ř	0 % **	126	90	152	141
¥	G ##	89	66	173	79
๙	$_{16\#}^{\rm G}$				
Alfalfa 8#	G 8#	154	164	161	140
¥	G G 16, 4,#	77	112	157	4
ಡ	G 16, <u>4</u>	214	240	346	279
Alfalfa 4#	G G 4# 8#	86.3 175	196	324	210
	0. 1.	86.3	160	253	150
Seeding					
Rate of Seeding		Вгоме	Timothy	Orchard	Fescue

had almost the same grass yield as their straight seeding.

In the brome-alfalfa mixture it seems that the brome yield was increased with each increase of brome seeding rate. No increase in brome yield was observed by increasing the rate of alfalfa seeding in the mixture. However, a slight decline in brome yield could be noted when eight or sixteen pounds of alfalfa was used in the mixture instead of four pounds. The best combination for producing more brome was found to be sixteen pounds of brome seeded with four pounds of alfalfa.

In the timothy-alfalfa mixture, the timothy yield was consistently decreased with each increment of alfalfa seeding. No consistent increase in timothy yield was shown, however, by increasing the timothy seeding in the mixture. Sixteen pounds of timothy seeded with four pounds of alfalfa gave the best timothy yield in the mixture.

Orchard grass seeded with four pounds of alfalfa gave the best yield of orchard grass. Increasing the rate of orchard in the mixture did not increase its yield much. Eight pounds of orchard grass seeded with four pounds of alfalfa was found to be a good combination as far as the yield of orchard grass in the mixture was concerned.

Fescue yield was markedly increased in the mixture with each increase in rate seeding. But the fescue yield

was not affected by increasing the rate of alfalfa seeding. Sixteen pounds of fescue seeded with four pounds of alfalfa was the best combination.

So far as the total grass yield is concerned orchard grass showed a significantly nigher yield than other grasses in the mixture.

Root Growth of Grasses & Alfalfa as Influenced by Their Lixtures at Different Rates of Seeding

The green weight of roots in each culture and the average per culture for the various treatments are given in Table 12.

The average green weight of brome roots in the alfalfa-brome mixture was increased with each increment of brome seeding rate. A slight decrease in weight of brome was observed by increasing the rate of alfalfa seeding in the mixture. In the same mixture, the weight of alfalfa root was not affected by the various rates of brome seeding. However, it indicates a considerable increase in the weight of alfalfa root when high rates of alfalfa seeding were applied. The weight of brome roots in the mixture was slightly decreased by the presence of alfalfa when compared with the straight seeding.

By varying the rate of timothy seeding, the root weight of timothy in the mixture showed a very inconsistent response. Still a general tendency of increase in timothy root weight could be observed with each increment of

Root and Top Growth of Grasses and Alfalfa and their Mixtures at Different Mates of Seeding (In Grans) Table 12.

Total	79.8 129.1 127.1 133.1 111.1 95.8 164.7	85.1 118 161.6	128.3 136.3 111 130.6 112.3 91.8	130 175 157.8
Top Alfalfa Av. of 3 Pots	22 22 24 24 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	111	22 23.4 23.5 24.5 26.1 26.1 26.5 1	
drass Av. of 3 Pots	105.6 1114.6 27.5 73.3 99.3	85.1 118 161.6	107.5 121.8 147.8 110.6 97.1 63.5	130 175 157.8
fotal	107.85 31.18 63.65 99.81	63.3 94.6 137	286 200 200 200 200 200 200 200 200 200 20	78.1 123.1 110.6
Root Alfalfa Av. of 3 Pots	2007 2007 2007 2007 2007 2007 2007 2007	1 1 1	0000004000 5000000000000000000000000000	1 1 1
Grass Av. of 3 Pots	34.5 100.6 16.8 67.8 77.3	63.3 94.6 137	220 220 220 220 220 220 220 220 220 220	78.1 123.1 110.6
atment		8 8# 16#	1	148 16 17

Table 12. (con't)

Av. of 3 Pots Top 67-85s Alfalfa Total Total Av. of 3 Pots Total Total <th></th> <th></th> <th></th> <th></th> <th>-27</th> <th>) -</th> <th></th> <th></th> <th></th>					-27) -			
Grass Alfalfa Total Acrass Alfalfa 6 Av. of 3 Pots Av. of 3 Pots Av. of 3 Pots Av. of 3 Pots 82.1 7.3 89.5 171.6 19.8 100.1 5.1 105.3 224.1 11.3 103.1 6.8 56.3 14.1 20.8 6.8 5.3 14.1 20.8 22.8 6.8 5.3 14.1 20.8 22.8 6.8 17.6 77.5 111.6 22.8 6.8 17.5 177.3 22.1 131.6 - 119.3 23.3 23.1 119.3 - 119.3 22.3 23.1 119.3 - 119.3 22.8 23.1 119.3 14.1 56.5 108.3 41.5 60.6 9.16 59.8 150.1 22.8 19.3 8.5 109.1 22.8 109.1 17.8 18 30.1 46.6		ot	91. 35.	31.	75 29. 06.	0 M	49. 72. 09.	90000000000000000000000000000000000000	17. 21. 67. 11.
Av. of 3 Pots Av. of 3 Pots Av. of 3 Pots Res. 1 Res. 1 Res. 2 Res. 3 Res. 2 Res. 3 Res. 3 Res. 3 Res. 3 Res. 4 Res. 5 Res. 6 Res. 7 Res. 6 Res. 6 Res. 7 Res	Top	Alfalfa • of 3 Pot	619	80%	940	1 1 1	4.4%	44440,	
Av. of 3 Pots Av. of 3 Pots 82.1 82.1 100.1 113.1 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8		Grass of 3 Pots	71. 24.	08 41 85	11. 04. 77.	000	08 50 96	60. 09. 91. 97.	71. 21. 67. 11.
Grass Alfalfa Av. of 3 Pot Av.		ot	89. 05.	000	25.1	31. 19. 29.	900	68998 68998	37. 61. 13.
Grass Av. of 3 Pots 100:1 113:1 62:1 62:3 129	Root	Alfalfa v. of 3 Pot	• •	95.41	~ 0.∞	111	444	0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %	
1		Grass of 3 Pots	82. 00. 13.	604	N m N	31. 19. 29.		• • • • •	
H		Treatment	4	88 18 16 11 6 11 6 11 6 11 6 11 6 11 6	16# 4# 16# 8# 16# 16#		~	1 L	16/f 16/f F 4/f 8/f 16/f

Table 12. (con't)

	Total ts			64.5	€	134
Top	Alfalfa Av. of 3 Pots			64.5	ზ ზ 0	134
	Grass Av. of 3 Pots			1	1	•
	Total ts		,	32.8	6.64	73.3
	Alfalfa Av. of 3 Pots			32.8	49.3	73.3
	Av. of 3 Pots			•	•	ı
		Treatment	¥	#4	÷,′∕	16,

A - Alfalfa

B - Brome Grass

Fescue

0 - Orchard Grass

T - Timothy

timothy seeding in the mixture. Sixteen pounds of timothy seeded with eight pounds of alfalfa and eight pounds of timothy seeded with sixteen pounds of alfalfa were the exceptions to this statement. When the alfalfa seeding rate was increased from four pounds to eight pounds to the acre, a marked decrease of the weight of timothy was observed, but no difference in timothy root weight was shown when alfalfa seed was increased from eight pounds to sixteen pounds. It is also true that timothy seeded alone had a greater weight of roots than that in the mixture at the same rate of seeding. The alfalfa root weight in the mixture showed a distinct decrease as the rate of timothy seeding was increased. Positive response on the weight of alfalfa roots was obtained with each increment of alfalfa seeding in the mixture.

In the orchard-alfalfa mixture, the orchard grass showed an increase and alfalfa roots a decrease in weight when the rate of orchard seeding was increased. As the rate of an alfalfa seeding was increased from four pounds to eight pounds, it was odd to note that the weight of orchard roots in the mixture was markedly decreased. At the same time there was not the least indication that alfalfa root weight was affected by this change. With each increment of the seeding rate of orchard grass seeded alone, there was no difference in root weight. It also outyielded considerably the orchard roots in the mixture.

With each increment of fescue seed in the mixture and in the straight seeding, the fescue root weight was also increased. Although there was some variation, a general tendency could be observed that fescue roots showed a decrease in weight when the alfalfa seed was increased in the mixture.

Alfalfa seeded alone showed an increase in root weight with each increment of seeding rate and also outyielded several times that of the alfalfa roots in the
mixtures under the same rate of seeding.

so far as the weight of alfalfa roots in the various mixtures is concerned, it seems that alfalfa had its best root growth when seeded with brome grass. The alfalfafescue mixture also furnished very favorable conditions for alfalfa root growth. The weight of alfalfa roots was decreased to one half when seeded with orchard or timothy.

Alfalfa-orchard mixture had a better total root growth than the rest of the mixtures.

Top Growth of Alfalfa and Grasses and Their Fixtures at Various Rates of Seeding

Table 12 also indicates that a close relationship existed between root growth and top growth of the grass and the legumes in the mixtures when their rates of seeding were changed. Mowever, a striking difference can be observed in that the alfalfa brome mixture gave the best top growth of alfalfa among the mixtures.

V. DISCUSSION

In discussing the results of this experiment, it should be noted that the plants were grown under green-house conditions. Sand culture with nutrient solution was applied to all plants in this experiment and no artificial inoculation was made. So, the findings in this experiment were solely based on the botanical interactions of different grasses with alfalfa as affected by varying the rates of seeding. When the sand was washed from the roots during the harvest, the nodules on the alfalfa roots were very seldom seen. So, the yield of grass in this experiment was not benefited by the presence or absence of a legume for furnishing the nitrogen to the mixture as each pot received the same amount of nutrient.

This experiment was only grown for a period of three months. The total yield of the different mixtures at various rates of seeding found in this experiment might not be the same as under field conditions. However, many differences have been observed between different mixtures at various rates of seeding in this experiment under green-house conditions.

The experimental error in this type of experiment is always quite a problem and is hard to control. The

location of steam pipes with regard to the position of pots, differential lighting and improper handling in washing sand from the roots and many others were sources of error in this experiment. The analysis of variance was applied in this experiment with the purpose of presenting the result with the least amount of error. It was found that more replications should be used for this sort of experiment.

From all the data presented in the preceeding paragraphs, the alfalfa-orchard mixture had the highest yield among the mixtures. This can be best explained by orchard grass having a quick growth characteristic and by growing more vigorously, especially under greenhouse conditions. It further proves the above statement as orchard grass seeded at four pounds to the acre had the same yield as at high rate of seeding. This is why four pounds of orchard seeded with sixteen pounds of alfalfa gave the best result.

It was clearly shown in this experiment that with each increment of grass seed used in mixture that it increased the proportion of grass yield accordingly and at the same time the proportion of alfalfa decreased. This statement did not hold true in the alfalfa-timothy mixture. This is due to the fact that timothy seed are so small in size and at four pounds to the acre, a total

of 69 seeds were planted in each 10-inch pot. So, the size of the seed should be considered as one of the factors in determining the proper rate of seeding. Using timothy as an example, the increase in the seeding rate simply caused increased competition for nutrients and light, thus resulting in a very small proportion of alfalfa in the mixture.

By increasing the rate of alfalfa seeding in the mixture, it did not affect the total yield of the mixture. A distinct difference in alfalfa yield in mixture was observed when compared with a straight alfalfa seeding. It is especially true when the mixture is grown with a culture solution. However, if one examines the proportion of alfalfa in the mixture, the presence of alfalfa was increased with each increment of alfalfa seeding.

With regard to the root growth in the mixture, the same statement can be drawn as with the total yield. The grass root growth was increased with each increment of grass seeding, while at the same time the alfalfa root growth in the mixture was decreased. By increasing the seeding rate of alfalfa the grass roots were not influenced very much but the alfalfa root was undoubtedly increased.

It is an observed tendency that the yield of a mixture is increased by increasing the rate of seeding

of both components. But due to the different specific plant growing characteristics, the limited space of light and moisture and the limited supply of available nutrients, the increase in yield did not respond proportionately as the rate of seeding was increased. In many cases the yield was decreased by using an excessive amount of seed. However, this might well be explained on the basis of increased growth per plant at the reduced seeding rates.

Dominance of any given species of the mixture in any particular environment has usually been attributed to different moisture, temperature, light and fertility requirement.

Apparently, the grass mixture relationship is complicated by many environmental factors. This makes it most important to study mixtures in order to determine their adaptations to local condition.

VI. SULTIARY

Alfalfa was combined separately in mixture with brome grass, timothy, orchard grass and tall fescue. These mixtures were grown in quartz sand in the green-house in 10-inch clay pots using nutrient solutions, and seeded at various rates. Three levels of seeding rates, four, eight and sixteen pounds to the acre, were used for each grass and for the legume in the mixture, thus forming nine possible combinations of rates of seeding for each mixture.

There were differences between the yields of the mixtures. Orchard grass in association with alfalfa had the highest yield in this experiment, while the rest of the three mixtures were about equal in yield.

With each increment of seeding rate there was, in nearly every case, an increase in total yield, but such responses in yield were not in proportion to the amount of seed applied.

The differences obtained in the various mixtures at different rates of seeding indicates that plant competition was present between various grasses with alfalfa. These competitions or interactions are no doubt profoundly influenced by environmental conditions such as light, nutrient, moisture and temperature.

Seeding two species together, a legume and a grass tended to restrict the top and root growth of both species when compared to either grown alone.

VII. BIBLIUGRAPHY

- 1. Aberg, Associations between species of grasses and legumes. Jour. Amer. Soc. Agron. Vol. 35, pp. 357-369, May, 1943.
- 2. Ahlgren, H. L., Harmful root interaction as a possible explanation for effects noted between various species of grasses and legumes. Jour. Amer. Soc. Agron. Vol. 31, pp. 982-985, Nov. 1939.
- 3. Ahlgren, H. L., Brome grass and alfalfa. Wisc. Agr. Ext. Circ. Vol. 344, 1944.
- 4. Benedict, H. M., Inhibiting effect of dead root on the growth of brome grass. Jour. Amer. Soc. Agron. Vol.33, pp. 1108-1109, Dec. 1941.
- 5. Churchill, B. R., Productiveness of brome grass strains from different regions when grown in pure stand and in mixture with alfalfa in Michigan. Jour. Amer. Soc. Agron. Vol. 39, pp. 750-761,1947.
- 6. Churchill, B. R., Smooth Brome grass seed production in Michigan. Mich. Agr. Expt. Sta. Cir. Bul. 192, 1944.
- 7. Evans, Some effects of legumes on associated non legumes. Jour. Amer. Soc. Agron. Vol. 8, pp. 348-357, Nov. 1916.
- 8. Evans, Timothy Culture. Ohio Agr. Expt. Sta. Bul. 603, pp. 1-54, 1939.
- 9. Fulleman, R. F., Brome grass and brome grass mixtures. Ill. Agr. Expt. 3ta. Bul. 496, 1943.
- 10. Harrison, C. M., Seed production of smooth brome grass as influenced by applications of nitrogen. Jour. Amer. Soc. Agron. Vol. 33, pp. 643-651, July, 1941.
- 10A Harrison, C. M. and Erdmann, Kentucky Bluegrass and Chewing Fescue in Lawn and Mixtures. Jour. Amer. Soc. Agron. Vol. 39, Aug. 1947.

- 11. hollowell, E. A., The effect of rate of planting on yields of adapted and unadapted red clover. Jour. Amer. Soc. Agron. Vol. 33, pp. 569-571, June, 1941.
- 12. Hutcheson, T. B. and Mc Vickar, M. H., Alfalfa production in Virginia. Va. Agr. Expt. Sta. Bul. 393, April, 1946.
- 13. May, D. W., Changes in the proportion and yield of alfalfa and Korean lespedeza in mixture with grassès. Jour. Amer. Soc. Agron. Vol. 34, pp. 856-859, Sept. 1942.
- 14. Rather, H. C. and Harrison, C. II., Alfalfa management with special reference to fall treatment. Fich. Agr. Expt. Sta. Sp. Bul. 292, 1938.
- 15. Rather, H. C. and Harrison, C. M., Alfalfa and smooth brome grass for pasture and hay. Mich. Agr. Expt. 3ta. Cir. Bul. 189, 1944.
- 16. Schotch, H. A. and Hyslop, G. R., Alfalfa in Western Oregon. Oregon Agr. Expt. Sta. Bul. 246, May, 1929.
- 17. Torrie, J. A., Methods of evaluation of red clover strains grown alone and with timothy in small plots. Jour. Amer. Soc. Agron. Vol. 37, pp. 852-857, Oct. 1945.
- 18. Wagner, R. E., Effect of Legumes on the Percentage of crude protein in orchard grass and brome grass. Jour. Amer. Soc. Agron. Vol. 39, pp. 141-145, 1947.
- 19. Wiggans, R. G., Studies of various factor influence the yield and the duration of life of meadow and pasture plants. Cornell Agr. Expt. Sta. Bul. 424, 1923.

ROOM USE ONLY FE 22 'SE ROOM USE ONLY My 29 '52

