THE RATE OF SPERM TRAVEL IN CATTLE

Thesis for the Degree of M, S. MICHIGAN STATE COLLEGE Ralph May

1940 $8+5$

TUE RATE CF SFER! TRATEL
In CATMIE

THE PAME CF SFED TPATEI IN CATMIE

by
 PAIDY : AY

A THESIS

Surmitted to the Graduate School of l:ichi gin State Collece of Acriculture and Applied Science in partial fulfilment of the requirements for the degree of
 VASTER CF SCIEMCE

Department of Animal Husbandry

Ackicmiedraves

The witer wisies to exress lis sireene forecatinn to

 in tie prearntinn of this manuscript.

The witer also emreser ris ampeciation to Doctor G. X. Devis

Enge
 1
RETET CF IITEDTRE 3
Pate of Syem Trars？ 3
Yianility of Sierm 3
‥ntility of Snorm in the Tract 4
 4
Efenet of rut on Vionility 5
Gonital Corditions 5
Tisconity of Ma0\％s 5
Effect of Mew enture on Vianility 5
Efect of Sminget6
Cutimal Dosage of suera 5
Dilution of Sierm 7
Erfect of Cestans on the oritsu Fret 7
Costrol Ciclic Conces 7
Time of Crilation ε
Viabiliะ \because of OVm $?$
Uterine Contractions 10
SOCTE CF IMTESTGAMTC：T 11
コニERTMTMAL FRCCEDTPE 12
Animalョ U゙sod 12
Exaling of Semen 12
l：ethod of Incominetion 12
Amont of Sern Ned 12
Collection of inteles 13
Exumotion of Funchings 13
CESERVATIC: S 15
Rอรัมร 22
Efeect of Aco of Cattie 21
Effect of Five of Cattle 22
Enfect of sting of Cestmas 22
Efenct of Ferturition 23
Effect of Anomneities ond fonditus of the Govitnt Trect 23
Effect of Trterire Contractions 55
Avoreg Fontin of Gowtol Tracts from Cowe and Erifers 25
DISUUSOTM: 27
 31
IINEATMTR CIT: D 33

The rate of mammalian sperm travel is a question of both scientific and direct practical importance. The extablishment of this fact is fundarental to a more thorough understanding of the physiology of reproduction. The apparent short functional life of the mamalian reproductive cells indicates that the optimum time for mating is relatively short. The increasing practice of artificicily inseminating female animals as a means of controlling certain genital diseases, increasing the rate of conception, and extending the influence of proven sires has created an additional need for information regardirg the physiolo \mathbb{O} of reproduction. Few observations have been made concerning the time of ovulation or the rate at which spermatozoa travel in the genital tract of the female.

Through experience, animal breeders have arrived at a variety of opinions as to the opportune time for mating animals. Many breeders have practiced multiple servicing of the female as a means of insuring concertion. This practice tends to exhaust the sire and limit his use to fewer females. With improved concention rates the animal producer may plan the lamb or calf crop to a greater economic adventage. Kany valuable animals are discarded from the herd as s'y breeders. A better understanding of the factors governing fertility and those causing irregularities in breeding animals will lessen this economic loss. A knowledge of the optimum time for breeding females would enable the animal breeder and inseminator to spread the utility of sires to the maximum extent. Shy and uncertain breeders might be made to reproduce regularly. There exists considerable divergence of opinion in regard to the factors
affecting fertility and conception. This study was conducted in an effort to obtain further fundamertal information regarding the rate of sperm travel and the factors affecting it.

Rate of Sperm Travel

The literature contains much discussion but little information concerning the speed at which mamalian sperm travel. Widely different rates have been observed in the time required for sperm to reach the infundibulum. Beshlebnov (3) found bull sperm in the ovarian end of the fallopian tubes 4 hours after insemination and in one case only $13 / 4$ hours were required. Hartman and Ball (17) reported rat sperm in the distal end of the horn 100 seconds after copulation. Parrer (27) stated that 4 hours were required for the rabbit sperm to reach the infundibulum. Evans (9) found dog sperm in the oviduct 25 seconds after ejaculation by the male. Fhillips and Andrews (28) located sheep sperm in the ovarian end of the fallopian tubes, in a minimum time of 30 minutes after insemination. Green and Tinters (13), in studies on sheep, reported the time required for sperm to traverse the tract to be 5 to 6 hours. Lewis (23) obtained sperm from the oviduct of the sow 7 hours after corulation. Long and Evans (24) state that 4 hours are required for the mouse sperm to reach the distal end of the oviduct.

Viability of Sperm

The ability of sperm to survive in the genital tract as well as in vitro is a problem of practical importance. Inasmuch as the rate of sperm travel and the time of ovulation seem quite variable, it is of prime importance to know how long after ejaculation the sperm cells will remain capable of fertilizing the ovim. The factors which affect the viability of sperm have long been the subject of controversy.

Motility of Srerm in the Tract: Feiling (10) cortends that motility of sperm is the only criterion of fertility. Eeshlennov (j) found 50 ver cent of the spermatozoa to be motile in the cow after 24 hours, a few motile sermatozoa after 30 hours, and none motile after 40 hours. Lemis (23) found life snerm in the som after 41 1/2 hours. Fowever, the average time of survival was 18 to 25 hours. Parter (27) reported live rabbit spern in the ferale tract after 30 hours. Green and Winters (13) state that, in eeneral, sheep srerm do not live rore than 24 hours in the tract, and Ardreev (1) found live bull seerm in the female tract after elt hours.

Xomboloy and Viability: Fienons moroholoficel abnormalities have been observed in snerm. Some morters have eviluated sperm samples on the rasis of the per cent of nomal spernatozoa present. Voloshov (35) renorted 13 different momhological abnormalities in horse sperm. He stated that 70 ver cent normal sperm gave a concention rate of 58 to 80 per cent while samies having 43 to 52 per cent noral sperm gave a conception rate of only 40 to 53 per cent. He belleves that abnomal s?erm heads are due to excessive semal activity while abnormal tails are due to patholosical corditions ir the testes. Rodolfo (31) isolated 3 types of sperm from the boar. Type I had a normal head and tail, type II had a protoplasmic drop on the neck, and type III had the drop situated on the middle of the tail. He believes these 3 types represent 3 stages of development. He stated that type I predominated in the semen. Studies on sheep sperm by Comstock and Brady (6) revealed a siznificant positive correlation of the liveability of sperm with the length of head and the number of spematozoa per cibic m.m.

Effect of pH on Piability: Forkers have endeavored to ascertain the optimum pH range for the survival of soern. The pH of the sperm sample is thought by some, to be an indication of tie viability of the sperm therein. Fatziolos (15) found bull soerra samples ranging in pH from 6.39 to 7.81 with a mean of $6.89 \pm .06$. He reports a negative correlation between high pH and the number of spermatozoa in the sample, and a slightly positive correlation between high pH and duration of life. Schneerson (32) concluded that the optinum vitality of bull sperm is attained at a pH of 5.8 to 5.5. Using a potentioneter, Serain (33) reported the average pH of sperm as follows: bull, 6.74; ram, 7.08; rabbit, 7.20; stallion, 7.23; boar, 7.57; and man, 7.79. He also stated that the buffering canacity of sperm is lower than that of blood. Fammond (15) believes that high acidity is an indication of a greater number of spematozoa per volune unit due to the CO2 given off by sperm. He also states that the semen is usually much higher in acidity than the female tract.

Genital Conditions: Wejer (35) found blood and urine to have a harmful but non-toxic effect on seerm. Hanmond (15) reports that retention of the placenta causes inflanation of the uterus and in turn the spermatozoa are attracted to the leucocytes and becomes acsiutinated. He also states that inflamation of the os. uteri may prevent the onening of the cervix during oestrus, and cause incomplete liquifaction of the mucous, thereby making sperm travel difficult or impossible. Seymour (34) found live but slugeish hunan sperm in the cervix 111 hours after insemination. Kozlova (20) and others conterd that normal varinal secretions have an unfavoracle influence on the longevity of spermatozoa.

Viscosity of lucous: Noticeable differences in the viscosity of
mucous from the female tract have been observed. Torlers have atterrted to ascertain the effect this factor exerts on serratozoa. Beshlecnov (3). worling with cows not in heat, found cherm in the ovarian end of the fal- lopian tubes, but all mere imobile and arnormal after 10 to 15 hours. lovoselov (26) made viscosimeter reaings on sarmes of cull sperm and mucous from the cerviz of cows in dioestmis. He fourd tre averoue viscosity of the mans to ke much greater then that of the semem and concladed that srem introdaced into the cervix durine dioestrus would cease progressive motion are die. Harond (15) reports that 72 hours after the erd of the heat reriod the mucous becomes orauye with lexcoctes and corpusles. Wiber (30), worrine with a 20 per cent agar solution, ford a. viscore zaintion to be more suitaile than a fluid solution for raintaining the nomality ard motility of serm.

Effect of momeratire on Yiaviuty: It has been denonstrated by some that temerature shoch are to de avoided in handing srem. 6uservations on tie ortimal termerature for sem survival have ceen quite consistent. Studies on the effect of temerciure o: cull seem by Heber ($\bar{C} C$) gave survival resilts as follows: $0^{\circ} \mathrm{C}-90$ hours, 5 to $12^{\circ} \mathrm{C}$ 209 hours, 18 to $22^{\circ} \mathrm{C}-10$ hours, and $33^{\circ} \mathrm{C}-8$ hours: Gunr (14) concluded that $4^{\circ} \mathrm{C}$ was the optimal termerature for the survival of sheep sperm; Atabek (2) revorted gat serm to be very sersitive to temperam ture ard recommended that it should be kept at body heat.

Effect of Sunlict: Leris (23) demonstrated thet surifent had a detrimental effect on boar sperm.

Cotimal Dosere of Soner: There is sone information in the literature regarding the amount of semen necessary to insure concextion.

Kozlova (20) reports that .2 c.c. of semen placed ir the cervix gave the same conception rate in cows as 4.0 c.c. placed in the vacira. Kifarey (21) using . 5 c.c. of bull semen in the cervix ottained conception results equal to that of natural matire, however, when only oc.c. of semen was used the conception rate decreased 8 per cent.

Dilution of Snerm: liost worlers are of the opinion that the viability of sperm is decreased with dilation, hovever, some have obtained desireble results with ciluted sperm. Toring with 52 't mares, Kedrov (19) obtained the followine results: Undiluted sem geve a conception rate of 57.25; diluted 4 times ave a rate of 59.0 © diluted ε times gave a rate of 46. 57 . Hatziolos (1E) found that undiluted bull sperm survived longer than srerm diluted with Fingers, Trode or Rassian flucose. Fortina with piss, Rodin and Ligatov (jo) ojtained the best resuls with a 4 times dilution. Teber (35) found the Eussian filuco-rhos: ate diluent to be the most satisfactory for bull sierm.

Effect of Cestrus on the G_{e} nital Iract

Vumerous investigators have exressed the ir belief that the condition of the genital tract is a major factor affecting the fertility
 on fertility have bean observed. Groen a:d Winters (13) report that the staze of oestral cycle has no effect on the rate of syerm travel in sheep. Cestral Cycle Chanmes: The nomal oestral cucle of the cow is about 20 days. The duration of oestims is lmown to vary. Hammond (15) reported coms remoinine in heat from 6 to 30 kours with an averade of 15 hours. linsiraja and Salzmon (25) found the arerage duration of heat in
mares to be 5.65 dag . Corner ard Amsiagh (c) fourd that the duration of oestrus in the sov wes ahort 3 dars. Ermond (15) revortad eves in hest from 3 to 51 hours with an averare of 27 hours.

According to Fammond (15), the mechanism of the oestral cycle consists of a delicato Valance betmeen the intarrel secretion of the anterion pituitary and the 2 ovarian secretions, oestrin and rrosestrone, produced from the follicle and cormus lateun, respectively. The follicle stimulatine hormone and the lutenizing homone secreted $i y$ the pituitary cause follicle development, omation and the formation of the corpus luterm.

Cestrin fives rise to heat smatoms, which are srollen vilva, dilated cervix and mucous production in the uterus and cervix. Under the influence of progestrone the cervix becomes tichtiy ciosed and the secretion of the mucoso becomes dry and stichy, a condition presumably unfavorable for the ascent of sperm.

The lime of Cvilation

We time at winch the follicle empts and the ova is released is of great imortance in determining the oportine tine for metire. Althorgh there are sone variations in the renorts as to the time of ovalation, most rorivers are in asrement that it occurs just before or soon after the end of oestrus. Gotze (12) contends that orilation raj occur in the mare without hest, and hent may occur without oviation.

Prenster (! 1) fomd ovilation occurring in cattle on the averase $131 / 2$ hours aftor the end of heat. According to Eamond (15), Gerasimova (11) found orulation oceurring in cows about 27 hours after the tesinming of heat. Workine with coms, Andreev (1) found ovilation occurrint

30 to 40 hours after the onset of heat. Eeshieonov (3) mated cows while in hent and reported ovilation in 4 cases fron 21 to 25 hours followinz service and in 5 cases from 22 to 30 hours after service. Worling with datry heifers, Wemer, Casida, and pupel (37) observed the averace ti:.e of ovilation to be $111 / 2$ hours after the end of oestrus with a range of $21 / 4$ to 22314 hours. Remorts on the nave by :.irstaja and Salzmann (25) indicate ovulation on the average 3.84 dars after the onset of heat. Lewis (23) states that the sow ovalates near the end of oestrus. Green and Tinters (13) renort that ovalation in the ewe occurs late in the heat period, as the animal is passing from heat. Stadies on humans by Kararok (22) indicate that oralation usuall:y ocours 13 to 15 days after the onset of menstruation. Long and Evars (2' +) revorted ovalation in rate as ocouring just trior or soon after the end of oestrus. Yowne, Kevers and Demsey (35), wor:ine witil ciinea riss, state that ovilation occurs within 1 hour of the end of the heat perind.

Viability of Crum

A knomledge of the viability of the ova after liberation is equally as important as the survival of the sperra cells in deternining the optimun time for mating. Little is known reardiry the physiolocy of the onm, due to the difficuity of obtaining ora from the gonital tract ond the inability to observe its physiological processes after possession is accomilished. Concliusions regarding the viability of the ovem cannot be made until techniques have been improved and mmerous observations rade.

Cbscrvations to date, indicate considerable variation in differ-
ent species resardin the duation of life of the unfertilized ege. Farker (27) rearted the duration of life of the rabsit onm to be 2 to 4 hours. Corner (7) states that deseneration of the fin ovm began about 7 days after ovilation while Lewis (23) states that the sow ovm retains its viability only a fow hours after being liberated. Fartman (15) eives the following leneth of time as the duration of iffe of the ovam after liberation: Rabbit, 4 or 5 hours; humen, 24 hours; and the mouse and opposum, 2^{2} hours.

Uterine Contractions

It is generally agreed among workers that the mamalian spermatozoon travels through the female genital tract under it's orn motile power. Fowever, Eyans (9), by the use of a uterine fistula, found that the bitch forced syer:a through the tract by a series of abdominal strainines at the time of conulation. Beshlehnov (3) suceests that the mizration of serm in the cow is aided by uterine contractions. He inserinated cows in heat with cead (heated) syerm and was able to recover some of the spem in the horns and tubes.
 of spermatozoon travel in cattle ard the factors affecting spermatozoan travel. Data was owtained with the followirg otjectives:
(a) To coternine the effect of the following factors on semato zoan travel in the cenital tract of cattie:
(1) Erfect of age of cattle:
(2) Effect of tjpe of cattle:
(3) Erfect of staje of oestrus:
(4) Effect of revimenartuitions:
(g) Effect of nhommities and corditions of the genital tract:
(б) Effect of uterine contractions.
(b) To ietornine the averase lencth of the genital tract in:
(1) Cons
(2) He:fors

Animan neek: The cows used in this experiment were obtained from the college herds of beef and dairy cattle. dil of the animis used were koun to be nemtive reactors to tiverculosis and Eanc's cisease teste. All cows rere artificially inseminated with the semen from one bull. The 10 year old Jersey bull used was mown to produce a hige per cent of motile ard rornal sametozoa.

Enaline of Semen: All samles of semen vere collected in a sterile artificial vacina to revent contamination. Jach sample, with the exception of Case no. 15, was checied soon after collection and ouserved to te ajove goper cent nomal ard motile. Inceninations were made in every case within 1 lour from the time of collection of the semen. The semen was nert at bony teroerature from the time of collection until used. The semen samples usod for determining the effect of uterine controctions were killed by heating at $55^{\circ} \mathrm{C}$. for 5 minutes.

Iotiod of Inomination: All of the cors renorted in this investication were inseminated by the use of a glass seculun, capillary tiobe, and a ribber rressure bulb. Frecautions were tainen to insminate all cows alize. In so far as possible the semen was placed in the varinal half of the cervix. Cases 20,21 , and 22 were inseminated by placing the spermatozoa into the uterine body. The classware mas werned to body teraperature befcre beine used.

Amont of semand The amount of semen used varied with different cases. The sombes used averaged 2.7 c.c. ith the lower limit being l. 0 c.c. Tris variation was not inteational but due to the amount of semen availale for the incominotion. So attemet was made to comare
results with dosage of serm used as previous work rerorted by kiarev (22) indicate that 0.5 c.c. of semen rlaced in the cervir suve maximum conception rates.

Colyention of Sames: The time allowed for semmazoa travel varied from 155 to 533 minutes. The time revorted was the interval of time between insemination and sectioning of the tract. Each tract was sectioned as soon as positile after slanghtering and in every case within 45 minutes after slaghter and before the body temerature of the aninal had materially decreased.

The entire gonital tract was ronoved from the body and the excess tissue cut away allowine the tract to attoin it's maximum length in a horizontal position on a toble. Data mas recorded on the lenzth of the fallopian tuke, uterine horn, uterine body and cervix. Cne tupe nas sectioned into 3 equal lengths and one horn into 2 equal lencths. The remarine horn and tube was retained whil the other samples had been cheched satisfactorily under the microscone. All anarent abnorminities of the tract were recorded.

Each section was funchod thoromghy rith a 0.9 . phenological saline solution. Flushincs were mate $b y$ incerting the tip of a finely pointod slass tube in the end of the section ard forcine the flushing solution through rith the nid of a mber bulh. Flushines were collected in sterile test trkes, labeled and soaled at once.
Encmation of Plagige: Extersive rreliminary experiments were
carried out prior to the berimins of this investication, in an effort to separate the spermatozoa from the flusting solution and tho tract devris. It was found that faustuas conld be contrifoged at the rate of

3100 R. P. K . or at a relative centrifucal force of 2933.4 for 12 minutes, therevy forcing the sematozoa and the devis into the lorer tip of the centrifuge trie. A finciy pointed criviry the ras used to outain the material from the tin of the contrifne tribe. Mis metorial was surad thiny over the surface of a s?ide ard olserved microsconically for the presence of spematozia. Fositire identificatior of each sormatozan was azcertoined ousorvation under 40 tines macmification. Io attermets were maie to estimate the rer cont of live sammatozoa or the total raber in the samat The resonce of a singro sermatozon was considered as Zositive evidence of anmatozan travel. Positive idertificotion of trichomoads mas made by Dr. C. F. Chark of the Fothonog acction.

Case no. 1. This Guernsey, age 72 months, was off-heat when in seminated. The sperm had traveled 48.0 cm . (center $1 / 3$ of fallopian tube) in 200 minutes or at the rate of 1:4.16. Her breeding record showed one calf dropped 27 months prior to slaughter. She was mated to 4 different fertile bulls during 11 regular heat periods following her last and only calf. She was treated for severe granular vaginitis 43 months prior to slaughter. Trelve months before slaughter she was treated for a mild case of cervicitis. This cow had no history of retained corpus luteum.

Case no. 2. This Shorthorn, age 112 months, was in heat when inseminated. The sperm had traveled 55 cm . (center $1 / 3$ of fallopian tube) in 208 minutes or at the rate of 1:4.87. Records showed her to be a regular breeder, having dropped 6 calves. The last calf came 54 days prior to slaughter and was 6 weeks premature.

Case no. 3. This Hereford (virgin), age 15 months, was in heat when inseminated. The sperm had traveled 51.5 cm . (ovarian $1 / 3$ of the fallopian tube) in 255 minutes or at the rate of 1:4.95.

Case no. 4. This Brown Swiss, age 48 months, was in heat when inseminated. The sperm had traveled 58.0 cm . (ovarian $1 / 3$ of fallopian tube) in 330 minutes or at the rate of $1: 5.66$. Breeding records showed that she had dropped one calf 18 months prior to slaughter. A large cyst was ruptured on the right ovary 12 months prior to slaughter.

Case no. 5. This Jersey, age 69 months, was in heat when inseminated. The sperm had traveled 54 cm . (uterine $1 / 3$ of fallooian tube) in 310 minutes or at the rate of 1:5.74. She had dropped 5 calves, the third of which was a 5 months aborted fetus. She was a remular breeder. This
cow was culled due to mastitis infection.
Case no. 6. This Shorthom (virgin), aze 18 months, was off-heat When inseminated. The sperm had traveled 57 cm . (ovarian $1 / 3$ of fallopian tube) in 350 minutes or at the rate of $1: 6.31$.

Case no. 7. This Shorthorn (virgin), age 16 months, was in early heat when inseminated. The sperm had traveled 40 cm . (uterine $1 / 3$ of fallopian tube) in 265 minutes or at the rate of $1: 6.62$.

Case no. 8. This Angus, age 60 months, was in heat when inseminated. The sperm had traveled 45 cm . (ovarian $1 / 2$ of uterine horn) in 345 minutes or at the rate of 1:7.65. Ereeding records revealed 3 calves, the last of which was dropped 2 months before slauchter. Xo breeding attempts had been made following the last calf.

Case no. 9. This Hereford, age 144 months, was off-heat when inseminated. The sperm had traveled 71.5 cm . (center $1 / 3$ of fallopian tube) in 551 minutes or at the rate of $1: 7.70$. Her breeding record showed 9 calvings with one pair of twins. The last calf ras cropped 14 months and 13 deys prior to slaughter and the last breeding date was $61 / 2$ months prior to the slaughtering date. The left horn was enlarged and contained the residue of a re-absorbed fetus.
. Case no. 10. This Shorthorn, age 156 morths, ras off-heat when inseminated. The sperm had traveled 19 cm . (os. $1 / 2$ of uterine horn) in 155 minutes or at the rate of 1:8.15. Her breeding record showed 11 calves, the last of which was dropoed 28 days prior to slauchter. The uterine walls were somewhat thick ard distended and contained a bloody fluid having an obnoxious odor.

Case no. 11. This Angus (virgin), ace 12 months, was off-heat

When inseminated and the sperm had traveled $2 \mathcal{c m}$. (uterine $1 / 3$ of fallonian tube) in 240 minutes or at the rate of $1: 8.57$.

Case no. 12. This Ayrshire, age 42 months, was in heat when inseminated. The sperm had traveled 23 cm . (os. l/2 of uterire horn) in 200 minutes or at the rate of $1: 8.69$. Records revealed this cow was a refular breeder, having dropped 2 calves, the last of which came 4 nonths prior to slaufiter. Flushings from the uterine body and horns were quite bloodi. She was bred 39 days prior to slaughter, conceived, and the corpus luteum was squeezed out 5 days prior to the slauchtering date. The uterus was quite bloody and indications of recent abortion were obviously apparent. Case no. 13. This Hereford (virgin), age 13 months, was off-heat when inseminated and the sperm had traveled 35 cm . (ovarian end of uterine horn) in 307 minutes or at the rate of $1: 8.77$. This heifer had occupied the same lot as no. 16. No breeding atterpts had been rade. These samiles were slightly infested with trichomonads.

Case no. 14. This Shorthorm (vircin), age 20 months, was off-heat when inseminated. The sperm had traveled 39.9 cm . (uterine $1 / 3$ of fallopian tube) in 355 minutes or at the rate of $1: 8.89$.

Case no. 15. This Hereford (virgin), age 11 months, was off-heat when inseminated and the sperm had traveled 14.5 cm . (os. $1 / 2$ of uterine horn) in 352 minutes or at the rate of $1: 24.27$. The absence of a corpus luteum, follicle or follicle scar mas noted on the ovaries. This beef heifer had been on full-feed and was showing a high degree of finish.

Case no. 16. This Shorthorn (virgin), ase 13 months, was in heat when inseninated and the sperm was found only in the os. uteri after 172 minutes. Records revealed that no breeding attermts had been made. The
heifer occupied a lot with several youns steers and heifers. The sarples were heavily infested with living orcanisms wich were positively identified as trichomonads by 3 members of the Patholozy Department.

Case no. 17. This Ayrshire, ase 36 months, showed no signs of heat when inseminated. The syerm were found only in the os. uteri and uterire body after a time of 593 minutes. This heifer had never calved and ovulated only after repeatedly massacing the ovaries. The ovaries were massaged regilarly and the corpora lutea squeezed out when fourd over a period of 22 months. Then ovulation did occur, oestral symptoms were not apparent. The left ovary was cystic. The left horn of the uterus was totally absent. The os. uteri and uterine body were full of a heary, viscous, gelatin-like mucous.

Case no. 15. This Shorthorn, age 10 months, was off-heat when inseminated. Soerm could not be found in any of the samples. The time between insemiration and the sectioning of the genital tract was 323 minutes. This sample of sperm was not observed for motility and normality until 5 hours after collection. It had been kept at body termerature. The spermatozoa were dead but of normal morphology.

Case no. 19. This Shorthorn, age 110 months, was off-heat when inseminated. Sperm could not be found in any of the flushings after 265 minutes were allowed for travel. Her breeding record showed 6 calves, the last of which mas dropped 91 days before slaushter. A heavy, viscous mucous was found in the os. uteri and uterine body when examined after slaughter.

Case no. 20. This Jersey, age 95 morths, was in heat when inseminated. The sperm sample was killed by heatirs at 55° for 5 minutes before inseminating the cow. Sperm could not be found in any of the samples after

435 minutes were allowed for travel. This cow had dropped 5 celves, requiring an average of 3 services per conception. An extremely heavy flow of watery mucous was observed at the time of insemination, otherwise she was normal. This cow was culled due to mastitis infection.

Case no. 21. Tnis crossbred heifer, ace 16 months, ras off-heat When inseninated with dead (heated) sperm. The sperm were found only in the os. uteri after a time of 240 minutes. The tract appeared to be normal and no previous breeding attemts had been made.

Case no. 22. This Angus cow, ase 129 months, was in heat when inseminated with dead (heated) sperm. Sperm could not be found in any of the samples after 230 minutes mere allowed for travel. Records revealed that she had been a regular breeder until 10 morths before slaughter, at which time she dropied a dead calf. During this 10 months period she had come in heat and been bred resularly, but failed to conceive. Flushings from the uterine horn, uterine body, and os. uteri were heavily contaminated with a firm, lumpy pus. The left ovary was custic and there was no indication of a follicle or empted follicle pit on either ovary.

RESTITS

Table 1. The Results of Sperm Travol Studies.

* x incicates hent: - indicates off-reat.
** Time from insemination to sectioning of the tract.
*** linutes rosuired for snerm to travel 1 cm .
(a) Full-fed beef heifer with no previous heat.
(b) Heavy trichomonad infestion.
(c) Abnormel enital iract. (Absence of 1 uterine horn)
(d) Sperm sarrie not checked prometly. (Dead after 5 hours)
(e) Heary mucous flom observel at time of insomination.
(f) F̈ated srerm used. (Uterine contraction studies)
(g) Hented snem used. (Uterire cortraction sturies)
(h) Heated sporm used. (Uterine contraction stucies)

Erect of A en of Cottle: In an erfort to study the erfect of ago on the rate of somatozon trovel, accrate ases bu monthe, vere recorded for ench crims. Aonrmin cases, 15 to 22 incluoiv, are oucuded from Table 2. The correlatinn rotween age (x) and the rato of sumatozoa trovel (\because) res found to bo rar $=-.223$ for the animals in leat and rxe $=$ -.Il? for those met in hent. Theze corrention ceefficionts sion that ace has $\because \cdots y$ little if any fefect on the rate of sematozonn trovel.

Tole 2. Eifect of A ge on the Rote of Sperm Travel.
Ar:mes in inat

A:Man Ecforat

 diference botwon tor tres zom. Caso m. İ mas excunad due to a

 in C=ッシ.

Erfost of Sto af Costmas: Animals of manious ages rere sloughterd in hoat and offonat in an attemt th deternine the erfect of the stage of oestras ou the rato of arentaza traren. Eere agin the whers are smin but marod afforences are som in tho novor

 tho entire gron mo in case l., 6 eren old on rot in hont. Table 4
indicates that heat my be rowoncicle for an increase in the rote of travel in heifers and has littio or moffot in mature cors.

Dible 4. The Eifect of Costras and Erevions Purturition on the Rate of Suerm Trovel

arnue $=0$.		ma		$\begin{aligned} & 3,7 \\ & , 12,13,14 \end{aligned}$		Et		Average Rate	
II II		:	$\stackrel{2}{4}$			x	-	5.65	7.29
		:				-	:	2.13	
		:			:		:		
Cows	III	:	5	2,4,5, 2,72		x	:	6.52	
1	IV		3	1,9,10		-	:	6.67	
									5.57

 facl ded.

Efect of farturtiar: Tho average rate of germ trevel in 5 heifers mas 7.32 mile ton rote onerven in E cows ws E.j7. Theze
 faster rate for the cow grow. Homever, ance ofstras las bery siont to
 the cous, it argars ant rarturition has a hinderizg effect on the rate of sporratozea travel when the animis con ored ara ail in foet. Fhen the orirale were mot in hot the genital tract in tho hofers we less

Sevorl sontri anmranities and irreguarities were observed. In thas
 Gritul twet. On attempt was made to ascertain the eanct predensing factors resoncibie for the imonlar conditions found. Envere, all of tie aparent wusurl condinons of the eenitol tract were recoriod in an effort to deterning rat effect theu might lave on tie rate of sermitozoa
trave？．

 azequat offoct on the rato or zerm trave．

 tran ：as 8．1シ．

 fotus．The mote of suern trevel was T．Tこ．

 slảiter．The itoms was irritated and boody ond inuications of

 Serm wore amod onv in the os utcri．

Case m．27．This 3 vear ola heifer oviated only after rereateiny mossacine the ovaries and then gave no suptons of ofstmas．Tie lert

Sperm were found orly in the os uteri ard uterine bouj.
Case ro. 20. This aged con was a resior breder and her last colf was dorged 91 dive prior to slmehter. A heav, viecous mans
 Somatozo conit rot ie found in any of the flustige.

Efect of Utenigecontreting: An atterpt mas waie to determine if uterire contractions occured in cattle and if so wat effect thoy ad or the rate of ayermazoa travel. Tree animals rere insominated with dead (heated) sxom and ouserved in the sane waner as were the other ceses. The tise reqorted inciades the time interval between insemination and slawter. TSle 5 indicates that uterire contractions proaiy do nois occur in cattie. Further studies must be conducted before the prezence or effect of this factor con re definitely estainished.

Table 5. The Effect of Uterine Contractions on the Eate of Simatozoa
Travel

*Cystic ovary ard pas formation ir genital tract.

Avorno Ionath of Gnatill Tracte from Cows and Heifers: The

 a froximate length of the gexital tract of an animi should ie ?mow Refore attemoting to rodict the cptimal time for breedinc. Tarle l shows the lencth of the genital tract of each anjol sauntored. In Tatle 6 the animis have veen growed acoorang to parturition. A wide rance of lenths were coserved for each orow. Fron these values it was


```
thon the tracta fom tre tafers.
```


 infuns ailum.

What oy has vory inthe if auy efrect ou the rate of sperm trater
 all of the mowal caser, reorless of the staje of ofstrus mere com:ind

Whe recults chow that the rate of sherm travel in beef tive cows was $5 \overline{0} .47$ per cent as fest as that of the dany tife cows. Che factor which nay have benn responsile for this differewe was the himer bacure of finist: of the beof tope aninus. It wa mota, mon slaugher, that
 that the forital orge vere wsoly insaina in fatty tisene.

Frow these deta it scems tiat the stace of pestrus has no effect on the rate of sym trava in cons, wich is in areoment with results reportca in ewos green awa minters (13). Fewever, in heifers out of heat tie seerm travel was 69.56 por cant as fast as that observed for the heifors in heat. The my be atarmater to the fact tiat the gental tract in heifers is dilated orly during heat, therev permittine the spera to travel in a more cacious tract. Cnce wrtarition has occured the jenitul treet of the cow becomes fully doveloped and the tract remans

The reants shom in Tate 4 concerming the effect of parturition on the rate of sern travel, are meace but indicate that wer animals are in leat tie rate of travel is faster in heifers. The rate of travel for cows in heat was 07.11 rer cent as fast as was observed for the correcrondive croup of heifers. Inasmuch, as cestrus hes bece shom to le resensible for an increase in rate in the heifers, and to have no
effect in cows, the aifference chom between grows II and IV is attriruted to oestrus rather tion garturition. The differerce ietween gous I and ITI ray be the result of a chance in toxicity, aciotu, or mucous viscosity due to partwition. Further wor: is recessary to cetermine the influence of parturition on axerm trovel and whet factors are resoncirie for the different recults.

The results com arevinsiy in this naver incionte the irrenlarities and the rature of the ser:tal anoralities observed and their pfect on sere trevel.

Cre beef heifer in high condition on? wont previnus heat gave an unasaluy slow rate of trove. It is possinic tiat the sorm nad reretrated the cenital tract as for as moid be rossible even thoush more
 imature, non-functional tract.

Anotrer tract contained an unsual amont of bloodi fivid, rot tre rate of travel wes anout nomel, wich beare out Teber's (30) contention that blond has only a slight effect on the viability of smerm.

The left verine horn of caso 10 . 9 contoined the reaidue of a re-aisorted fetis, homever, the rate of travel wis comarable to that of the rormal cows and semmotozoa were isolated from the central section of the Folymion tube. This moud indicate, in the event that ovrian function ras nommal, that fertilization wist occur raile the rocidue of a dend fetios wos boine corried.

In cose no. 12, recent ahortion ard the rresence of excessive 1102d in the tract did not reace the rate of travel atarialiy from thet of the normil cows. Thus, it sems rossible for semetozoa to
ascend in a enital trect that is in a hinn irritated and distured coneitior.

Two ceses of trichomorad infestion were found in supposedy virEn heifers. The heavily frifested tract was not cond:cive to sperm travel. However, the other tract, fiendins ondy few live orgerisns gave almost averoe ravite. Roes and Geric': (2う) report that sevore infestion of trichomorade my rewent crncertion hat tho majoritu of infested animals conceive nomally na arort the fetris later.

In case no. 17, the lert uterine inno was aicont ana the left owry critic. A waxy, elatin-lise yhg was found in the os uteri and the uterine ody. It was aprarerty imossiole for sermatoza to ponetrate tioe penital tract of this arimal. Crse mo 2n, also exinitok an wasuly viscous ancous in the os uteri and uterine body. Here again, it ameared that the semi-snad, wey machs of the genitel troct res ursuitale for serrotozco movewent.

Thus it wos form that any disenced or abnormal condition of the genital truct that resulted in severe irritation, intoxicotion, or
 trovel of er arratozoa.

Surficion animols wore mot avilule to sotisfoctorily determe the ocorrence or effect of uterine controctionc. Eesuts shom in Taile 5 incicate that atorino controctirs a not occur in cattle. mis
 wrle is necessary before the oresonce or influence of this factnr con be definitely estalishea.
Drata outained in this stury indicete that the geritai tract in
 siderale variation was cbserve for the difforent agos, however, the averaje leneths of the tracts from the cus wewe sizuficantiy longer than the average lengh of the trects from the hefers. These finuthe

Uov factors affecting the ratc of sematoza trari in animals
 the two clipf factors ere, the activitu of supratozod ond tio conaition of the eraitol tract. In tivis ererimat the activity of the serratosoa

 ranges from 4.5 to 0.5 loure. In a sinilar maner, it is eztimetot thet
 lefifers out of hat rewta from 5.5 to 7.5 hours. Theco figurs auc rot

 at about l. 5 hours. Zuever, a wide rane of rriatiors wore ruorted
 to resen tor irfundron in emos.

SNMAEY A:D COMCLUSIC:S

1. Data indicate that abo has no effect on the rate at mich somen trovals in the eanitnl tract of cattle.
2. The rate of travel in beef trpe coris is considerably cioner than that oiserved in the diary trase cows.
3. Th: mate of travel in heifers off-heat was 0.0 . as fast as that coserved for the heifers in hont.
4. Snerm travana aloot as fact in the officet coms es it uad in the cowe in beat. Eron tus it is concladed thet tho ramodetive troct of the mature onv gives no secial rewonge aring heat that mimed terd to accelemate tio adance of sem.
5. It was foma that mavedu diseased or aibromel comietions

ك. Tie presence of excesive cloodin tie tract exerted only a slifht influnce on the zo wess of tion sperp.
7. Results fran the 3 coses obaerved incicate that uttrine contractions either do not occur or have no effect or the rate of guorn traver.
E. The shortest time in wich serm were found in the unper cud of the tuive ras 5 hours and 70 mimites in wature cons.
 of the tute wos 4 :ours and liz nimutes in leifers.
20. On tie araige, anomintely 7 hours is reunted for sorm to raid: the infuncione of tion cow acomaine to this dota.
13. On the average, ampocimately 6 hours is required for sern

Sumay an couczuacers (Cornt)

 the heifors offieet accoraine to tris dotn.

 gravity for 12 mimtes.
 Znerer ir aniwas havin bad at lenst one parturition.
14. From this stan, it is cacludod that the cordition of the femie fontal trect is a wor actor arecting the rate of serm trevel in catile.

1. Andreev, F. L.

1937 Drukratnoe osemenenie korov ∇ odnu ohotu. (Insemination of cows twice during one heat period.) Probl. Zivotn. No. 5: 134-138. Ani. Breed. Abst. vol. 5: 277.
2. Atabek, Ao

1936 Experiments on Artificial Insemination of Angora Goats. Turle. baytarlat birligi dergisi, No. 2: 275-285. (Iurkish) Ani. Breed. Abst., vol. $5: 287$.
3. Beshlebnov, A. ∇.

1938 (Lab. Art. Insem. Inst. Anim. Breed., Moscow) Ob optimaljnky srokah osemenenija korov ∇ period ohoty. (The optimal time of inseminating cows during oestrus.) Probl. Zovotn. No. 2 : 73-88. Ani. Breed. Abst., vol. 6 : 291.
4. Brewster, J. H.

1940 The Time of Orulation in Cows. (Unpublished data Michigan State College.
5. Cole, C. L.

1940 The Rate of Sperm Travel in Sheep. (Unpublished data Michigan State College.
6. Comstock, R. I. and D. E. Brady

1937 A Study of the Characteristics of Normal and Abnormal Semen of the Sheep. Amer. Soc. of Ani. Prod., 1937 : 253.
7. Corner, G. F.

1921 Cyclic Changes in the Ovaries and Uterus of Swine, and their Relations to the Mechanisms of Implantation. Carnegie Inst., Washington. Pub. No. 276 : 117.
8. Corner, G. W. and A. F. Amsbaugh

1917 Oestrus and Orulation in Swine. Anat. Rec., vol. 12 : 287.
9. Erans, E. J.

1933 Transport of Sperm in the Dog. Am. Jour. Physiol., vol. 105 : 287.
10. Feiling, 0 .

1935 (Vet. Klinik, Giessen) Gewinnung und kranker Bullen zum Zwecke der kunstlichen Besamung des Rindes. (Collection and examination of sperm of healthy and infected bulls for artificial insemination.) Dissertation, Giessen. (Bulletin). Ani. Breed. Abst., vol. 4 : 188.
11. Gerisamova, A. A.

1938 Duration of Oestrus and time of Ovulation in Cows. "Problems in Animel Husbandry", Moscow, No. $12: 126$.
12. Gotze, R.

1935 (Tieraztl, Hochsch, Hannover) Rosse und Unfruchtbarkeit der Stuten. (Heat and sterility of mares.) Dtsch. Tieraztl. wschr., No. 43 : 161-163. Ani. Breed. Abst. vol. 4 : 10.
13. Green, F. F. and L. M. Finters

1935 Studies on the Physiology of Reproduction in the Sheep. III. The Time of Orulation and the Rate of Sperm Travel. Anat. Rec., vol. 61, no. 4 and Supplement , March 25.
14. Gunn, R. M. C.

1936 (Univ. Sydney) Fertility in Sheep. Artificial Production of Seminal Ejaculation and the Characters of the Spermatozoa Contained therein. Bull Coun. sci. industr. Res. Aust. No. 94. Ani. Breed. Abst., vol. 4 : 316.
15. Hammond, John

1939 Physical Aspects of Bovine Sterility. Report to National Vet. Med. Ass'n. of Gr. Brit. and Ireland. 59th Congress. July 23-28, 1939.
16. Hartman, Carl G.

1932 Ovulation and the Transport and Viability of Ova and Sperm in the Female Genital Tract. Sex and Internal Secretions, edited by Edgar Allen, Chap. 14, p. 647.
17. Hartman, C. G. and J. Ball

1930 On the almost Instantaneous Transport of Spermatozoa through the Cervix and Uterus in the Rat. Proc. Soc.Exp. Biol. and Med., vol. 28 : 312.
18. Hatziolos, B.

1937 (Univ. Giessen) Untersuchungen uber Konservierung von Bullensperma zum Zwecke der kunstlichen Besamung. (Studies on the conservation of bull soerm for the purpose of artificial insemination.) Z. Zucht., B, 38 : 199-254. Ani. Breed. Abst., vol. $6: 14$.
19. Kedrov, V. K.

1938 (Lab. Art. Insem. All-Un. Inst. Anim. Breed., Moscow) Osemeneni Kobyl razbovlennoi spermoi. (The insemination of Mares with undiluted snerm.) Probl. Zivotn. No. 4 : 151-155. Ani. Breed. Abst., vol. 6 : 282.
20. Kozlova, V. M.

1935 (Lab. Art. Insem., Moscow) Optimaljnye dozy celjnoi spermy pri esemenenil karov. (The optimal dosage of whole sperm in artificial insemination of cows.) Probl. Zivotn., No. 4/5: 233-234. Ani. Breed. Abst., vol. 4 : 35.
21. Kufarev, A. P.

1935 (Siberian Inst. Animal Breeding) Osemenenie korov nerazbovlennoi spermoi. (Insemination of cows with undiluted sperm.) Probl. Zivotn., No. $6: 107-108$. Ani. Breed. Abst., vol. 4 : 35.
22. Kurzrok, R.

1928 The Combination of a Short Kenstrual Cycle and Delayed Coitus as a Factor in Sterility. Amer. Jour. Obst. and Gynec., vol. 15 : 546.
23. Lewis, L. L.

1911 The Viability of Renroductive Cells. Bulletin No. 96, Oklahoma A. and M. College.
24. Long, J. A. and H. M. Evans

1922 The Oestrus Cycle in the Rat and its Associated Phenomena. Memoirs of Univ. of Calif., vol. 6.
25. Mirskaja, L. M. and A. A. Salzmann

1935 (Lab. Art. Insem., Moscow) Ohota 1 ovuljacija u lasadi. (Heat and ovulation in the mare.) Usp. zooteh. Nauk., 1 : 157-168. Ani. Breed. Abst. vol. 4 : 285.
26. Novoselov, S. I.

1935 Vjazkostj slizistogo sekreta seiki matki u krupnogo rogatoga skota ∇ stadii pokoja. (The viscosity of the mucous secretion of the cervix in cattle during the resting stage.) Sborn. Rab. Leningr. vet. Inst. (92-95). Ani. Breed. Abst., vol. 5 ; 23.
27. Parker, G. H.

1930 The Passage of the Snermatozoa and Ova through the Oviducts of the Rabbit. Proc. Soc. Exp. Biol. and Med. vol. 27 ; 826.
28. Phillips, Ralph W., and F. N. Andrews

1937 The Speed of Travel of Ram Spermatozoa. Anat. Rec., vol. 28 No. 1, April 25.
29. Rees, Chas. W. and George G. Garlick

1939 Experimental Transmission of Bovine Veneral Trichomoniasis. Jour. Agri. Research; vol. 59, No. 10, : 769.
30. Rodin, I. M., and V. I. Lipatov

1935 (Lab. Art. Insem., Moscow) Iskusstrennoe osemenenie suinei. (Artificial insemination of pigs) Probl. Zivotn., No. 9 ; 108-113. Ani. Breed. Abst., vol. 4 : 205.
31. Rodolfo, A.

1934 (Inst. Swine Husb., Poltava) The Physiology of Reproduction in Swine. III Preliminary Study of the Morphology of Soermatozoa. Phillip. Jour. Sci., 55 : 165-173. Ani. Breed. Abst., Vol. 4 : 205.
32. Schneerson, S. S.

1936 Znacenie opredelnija pH spermy dlja praklike iskusstuennogo osemenenija korov. (The importance of determining the pH of sperm for artificial insemination of cattle.). Sborn. Trud. zooteh. Kaf. s. h. Shol. Kirov. 1 : 142-147. Ani. Breed. Abst., vol. 4 : 388.
33. Sergin, N. P.

1935 (Lab. Art. Insem., Moscow) Kislotnostj spermy. (The acidity of Sperm.) Probl. Zivotn. No. 12 : 100-122. Ani. Breed. Abst. vol. 4 : 270.
34. Seymour, F. I.

1936 Viability of Spermatozoa in the Cervical Canal; Prel. Report, Jour. Am. Med. Assoc., 106 : 20 ; p 1728.
35. Voloskov, P. A.

1936 (Inst. Exp. Vet. Science, Moscow) Rolj zerebcaproizvoditelja ∇ etiologil steriliteta kobyl. (The role of the stud stallion in the etiology of sterility of the mare.) Probl. Zivotn., No. 2 : 69-78. Ani. Breed. Abst., vol. 4 : 285.
36. Weber, H

1936 (Inst. Tierz., Leipzig) Zur Physiologie des Bullensnermas. (Im Hinblick auf die kunstiiche Besamung.) (The physiology of bull sperm with reference to artificial insemination.) Vet.-med. Dissertation, Leipzig. Ani. Breed. Abst., vol. $6: 16$.
37. Werner, G. M., L. T. Casida, and I. W. Rupel

1939 The Best Time for the Insemination of Dairy Cows. Univ. of Wisconsin, "What's New in Farm Science", Bul. No. $446: 15$.
38. Young, Wm. C., H. I. Kyers, and E. W. Dempsey

1933 Some Data from a Correlated Anatomical, Physiological, and Behavoristic Study of the Reproductive Cycle in the Female Ganinae Pig. Am. Jour. Physiol., vol. 105 : 393.

ROOM USE ONLY

