A Study of the Sufficiency of Naterials In a One Story Residence

Fuilt to Withstand Furricane Winds

A Thesis Submitted to The Faculty of

HICHIGAN ST TE COLLEGE
of
AGRICULTURE AND APPLIED SCIENCE

By

John A. McGall

Candidate for the Degree of Bachelor of Science
c. 1

Acknowledements
The writer wishes to acknowledge his appreciation to members of the Civil Engineering Department, particularly Professor C. A. iiller, for their kind assistance in this study.

Dedication

To my wife.
Introduction 1
Roof Cverhang: 7
Floor Thzcness 13
Tind Velocity and Pressure 14
Distribution of iind Forces 17
Transverse Strencth of talls 21
Strencth of :ortar Joints 26
:oof Streneth 27
Design or Li:.tels 20
Doors 28
Mester reuroom indow 34
Utility Room ilindow 38
Laundry and reanfäst Alcove Windows 39
Kitchen lindow 41
Diaine Roon vindow 43
Gallery indows 46
Livine room inciow 49
Investication of iindows 52
Raster Bedroom. 53
:Tility Room. 55
Laundry unc reukfast Alcove 55
Kitchen. 55
Dinine Room. 56
I.ivinc room E7
Gallery 58
Chimney Footing Desien. 58


```
    ..........................
    . ........................
    .... .............
    ............................
```



```
...................................
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    ...........................
    .............................
...........
    .................................
    ........ ....................
...................................
................................
.............................
............. .... .............
.........................................
....................
.... . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
```



```
..... ........ .................. ...
.......... . . . . . . . . . . . . . . . . . . . . . . . .
................................
```


Table of Contents

Wall Footing Design 61
تorms for noof Slab. 62
leat Transaission Losees. 64

Symbols and Notation

a	: coefficient used in $A_{s}=\frac{M}{a d}$
A	: cross sectional area
A.C.I.	: American Concrete Institute
As	: area of tensile reinforcement or of column bars
A_{5}^{\prime}	: ares of compressive reinforcement in flexual members
A_{2}	: area of web reinforcement
b	: width of rectangular beam
B.M.	: bending moment
c	: coefficient used in $A_{s}^{\prime}=\frac{M-K F}{c d}$; also distance from neutral axis to extreme fiber of a section
C	: resultant of compressive stresses
d	: effective depth of flexual members
d^{\prime}	distance from extreme fiber to compressive reinforcement
δ	: declination (degrees)
f_{c}	: compressive stress in extreme fiber
f_{s}	: stress in tensile reinforcement
ft.	: foot
for	: stress in web reinforcement
$\mathbf{f}_{\boldsymbol{w}}$: allowable working stress
F	$\frac{\mathrm{bd}}{}$; used in determination of resisting moment of concrete sections
H.B.C.	: Building Code, City of Houston, Texas
I	: moment of inertia
in.	: inch
j	: ratio of distance (jd) between resultants of com-

pressive and tensile stresses to effective depth
$k \quad: \quad$ ratio of distance (kt) between extreme fiber and neutral axis to effective depth
$K \quad: \frac{1}{2} f_{c} j k$
1 : length of span
lb. : pound
Mi : external moment (ft. kips)
$m \quad: \quad \operatorname{npt}(n-1) p^{\prime} ;$ used in determination of k
n : ratio of modulus of elasticity of steel (E_{S}) to that of concrete (E_{c})
i.C.M.A. : National Concrete Masonry Association
$N \quad: \quad$ number of stirrups
$\phi \quad: \quad$ latitude (degrees)
$p^{\prime} \quad: \quad$ ratio of compressive reinforcement in beams
psf : pounds per square foot
q. $: n p+(n-1) p^{\prime} \frac{d^{\prime}}{d}$; used in determination of k
$\Sigma_{0} \quad:$ sum of perimeters of bars
s : spacing of stirrups (in.)
$S \quad: \quad$ base length of shear diagran (ft.)
T : resultant of tensile stresses
u : bond stress
v : shearing stress
$v^{\prime} \quad$: shearing stress taken by web reinforcement
V : total shear
$V^{\prime} \quad$: the total external vertical shear in excess of that allocated to the unreinforced web

: unit load per lineal ft.
: ratio of distance (zkd) between extreme fiber and resultant of compressive stresses to distance kd
: meridian zenith distance--angular distance from a point directly overhead (zenith) to the sun and measured along a meridian.

Introduction

In tinese days of the ever present housing shortape everyone has a drean house. One day that dre:n will come true.

But lone before this, tie wise ruilder did a lot of thining and planning. It is wh this idea in mind that the writer approaches the subject.

The first consideration is a floor plan which will eive the physical measurements necessary to carry on an investigation. Features that were to be included were an entry, breakfiast alcove, laundry room, sewine room, heater room, cold storage room, dressing room off master bedrooin, and all rooms opening on a gallery. Since no such plen wias availaile it Was necessary to act as iy own architect. The reader is reminded at this point that it is bad business to try to maice your own workine drawines in case yu are nlannine to build your own home. All construction should ie supervised by a competent builier. For instance, to leave out one small detail such as roof flashincs around a chimney would be a very costly de:ail indeed.
mo satisfy the requirement that all rooms open on a gallery surgested a U-shaned floor plan with the rallery opening on an interior cortyard.

Start with the kitchen since most of the fixtures are standardized as to size and aeciding on an arrancement of the fixtures will deterine the size of the room. it was decided to inciude a comination sin: and dishwasher, gas stove, \&as refrieerator separated by a tase cabinet 18 inc:es wide, desk
to hold a telephone and file recipes, corner base cabinets, and other base cabinets such as are necessary to fill out the circumference of the room. Base cabinets are 19 inches deep and 30 inches high. Wall cabinets extend along the outside wall over the sink-dishwasher combination and along one interior wall over the stove and refrigerator. The north wall is open over the base cabinets. The base cabinets act as a serving counter for the breainfast alcove in the next room. A door on the east wall opens off the gallery.

The breakfast alcove has built-in seats alone the outside wall and along the back of the kitchen base cabinets. There are three chairs on the north side of the table.

The laundry and sewing room has a Bendix washer and dryer, clothes hampers for the three classifications of soiled clothing, a desk to hold the sewing machine and store buttons, paterns, etc., wall cabinet storage space for other sewing aids and necessities, laundry sink, rotary ironer, ironing board that folds up to fit into a wall cabinet. There is also storage space in wall cabinets for pottery and this room can also act as flower arranging center. A door opens onto the gallery.

The utility room contains the hot water boiler and automatic hot water heater. Both use natural gas. The valves for the adjustment and control of the radiant heatine panels are also in this room. The east wall is taiken up by a refriegerated cold storage room. It is not intended to heat the utility room. Wall. cabinets could be built to provide additional
K゙フTCH-HEN

$-\cdots \cdots 0^{(4)}-\cdots-\cdots \frac{1}{3}$

(8)
$---\infty-\infty-\infty-\infty$

(9)

$\cdots-\cdots-\ldots-\ldots-\cdots-\cdots$

(9)

FLOOR PLAN
SCALE: $1 \subset M=5^{\prime}$
FI6. 9
until it reaches its lower culmination on December 21. We know that the slant rays of a December'sun have very little warmth and so we want all of the sun to enter the windows. These sun angles are best shown by the diacram of FiE. 14. The clear distance from floor to ceiling is 7 ft .6 in . Figure the overhang by usine the tan of the ancle of the suns rays. This ancle varies with different localities. Since Houston, Texas is in the hurricane area, calculations will be for that locality. Houston is located at 29 north latitude. From Astronomy is given the formula

$$
\begin{aligned}
& \mathrm{z}_{m}=\phi-\delta \text { for a heavenly body south of the zenith } \\
& \delta=23^{\circ} 26.5^{\prime} \quad(1946 \text { Ephemeris) } \\
& \therefore 0 \text { :. } \\
& z_{m}=\phi-\delta=29^{\circ}-23^{\circ} 26.5^{\prime}=5^{\circ} 33.5^{\prime} \\
& \text { Overhang }=7.5 \text { tan } 5^{\circ} 33.5^{\prime}=7.5 \times 0.09731=0.73 \mathrm{ft} .
\end{aligned}
$$

Use a one foot overhang as was used on all other sides of the house.

Floor Thickness
Next check to see if the floor is thick enough. Standard thickness for floors with pipes embeded for radiant heating is six inches. Assuming one inch of cover coat over the tension reinforcement would give an effective depth of 5 inches. Table 2 of the American Concrete Institute Peinforced Concrete Design Handbook gives a resisting noment of a rectangular section one foot wide with an effective depth of 5 inches as 6.2 ft . kips.
storage space.
The master bedroom has a dressing room with built-in wardrobe closet. Future proposed additions to this wing are three smaller bedrooms for the children. A bathroom would serve two bedrooms.

Access to the dining room is by means of a swing door off the kitchen. The west side of the room was left entirely open.

The living room has a mirror that runs the full width of the room above the fireplace mantel. Below the mirror and flanking the fireplace are two bookcases.

Future proposed additions to this wing are a study room, a large recreation room, and a guest room with bath.

Both the front and the side entrances have storage space for clothing as you come from the outside. The two halls running east and west will have doors at their far ends when the proposed additions are completed.

It will only be necessary to investigate the original construction since conditions are representative in this part of the house.

Roof Overhang

The first step is to calculate the roof overhane on the south side of the house. This overhung acts as a sun shede for the windows on this side of the house. This sun shade is needed when the sun reaches its upper culmination or its hich point in the sky. Upper culmination occurs on June 21 . Then the sun eradually travels southward a small amount each day

Sec. 2612, H.iB.C. Eives other values as

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{c}}^{\prime}=3,000 \mathrm{psi} . \\
& \mathrm{f}_{\mathrm{s}}=20,000 \mathrm{psi} . \text { for billet-steel bars } \\
& \mathrm{f}_{\mathrm{c}}=0.40 \mathrm{f}_{\mathrm{c}}^{\prime}=1,200 \mathrm{psi} . \\
& \mathrm{n}=10
\end{aligned}
$$

The bending inoment is calculated to see that it does not exceed the resisting noment.

Span= 18 ft . 11 in. use 19 ft .
Live load= 40 psf. Sec. 2304, H.B.C.
Dead load $=\frac{6}{12} \times 150=75$ psf.
$B \cdot M_{0}=\frac{1}{8} \mathrm{wl}^{2}$ where $\mathrm{w}=115 \mathrm{lb}$. per lineal ft .
B.M. $=\frac{1}{8} W l^{2}=\frac{1}{8}(115)(19)^{2}=5,200 \mathrm{ft} . \mathrm{lb}$.
$5,200<6,200$, therefore the floor meets the code specifications. Figure the tension steel required for the floor slab.
$M=T j d=A_{s} f_{s} j d$
From Table l, A.C.I. Desien Handbook
$j=0.875$
$A=\frac{M}{f_{s} j \mathrm{~d}}=\frac{6,200 \times 12}{20,000 \times 0.875 \times 5}=0.851 \mathrm{sq} . \mathrm{in}$.
Table 3, ${ }^{4}$.C.I. Design Handbook Eives 0.88 sq . in. for $\frac{3}{4} \mathrm{in}$. round bars spaced 6 in. center to center. Use $\frac{2}{2}$ in. round bars spaced 1 ft . center to center as spacers.

Wind Velocity and Pressure
Before designing for stresses set up in the building an equivalent wind loading must be decided upon.

Hurricane winds frequently attain velocities of 100 miles per hour. Records indicate that these strongest winds often reach and, for 5 minutes or more, maintain velocities
of 100 miles per hour, and occasionally even 125 to 150 miles per hour with gusts of still greater velocity. No state along the South Atlantic and Gulf Coasts has an average of one tropical storm of full hurricane force in a year. According to engineers, Coral Gables, Florida was centrally located in the path of the hurricane of September 18, 1926. This storm, in the opinion of R. W. Gray, weather observer at Miami, exceeded all prior hurricanes in the lnited States from the standpoint of severity. The wind velocity was 125 miles per hour. A deluge of rein amounting to between 8 and 15 inches in 16 hours fell durine the storm.

At the time of the hurricane coral Gables contained some 2,500 residences, apartments and other buildings, all of which had concrete masonry walls. These buildings erected in accordance with provisions of the local building code, came thru the storm without a single case of destruction and with but slieht damage.

Geore E. Nerrici, president, Coral Gables Corporation, in commenting on the storm, wrote: "Coral Gäbles, wisely restricted to concrete construction, withstood the force of tre gale.......The total damage to the entire city of Coral Gables will not exceed $\$ 1,500,000$ or about 1 per cent of the amount of money that has been spent in coral cables in construction and development."

Mir. Merrick was speaking of concrete misonry when he said concrete construction because at the time concrete masonry had been used in 93% of the buildings in coral cables.

The buildinc code that was adopted was in practical conformity with the recomendations of the uilding Code Cominittee, U.S. Depurtment of Commerce. The quality of mortar was definitely regulated, the specification for portland cement mortar requiring 1 part portland cement and not to exceed 3 parts sard, by volu:ie; for portland cement-lime mortar, 1 part portland cement, 1 part slined lime, and not more than 6 parts sand, by volume. Under the provisions of the code, anchoring of roofs and tying-in of flo:rs are required.

Pressure exerted on a building by wind is governed by many factors, such as wind velocity, atmospheric pressure and temperature, height aoove ground, shape of building, and its orrientation towards the air stream.

In these investigations use velocity pressure P, in pounds per square foot equals 0.0033 V , where $\mathrm{V}=$ velocity of wind in miles per hour. Based on the foregoine iormula with $Y=125$, the approxinate velocity pressure is 50 pouncis per square foot.
H. L. Whittemore, accordine to unpublished dicta on strenEth of low-cost houses of the National uresu of Standards, worked out velocity pressures that could be anticipated at 30 feet a:ove ground in any loc lity in the United States. Pressures at 2 feet would ie approximately 10 per cent less. His pressure curves are based on the maxi un averace wind velocity for a 5 -minute interval as reported by the $U . S$. Weather Bureau plus 50 per cent cust. The formula
($\mathrm{P}-0.0033 \mathrm{~V}$) used above wis the Weather Bureau formula.
On the strength of ithittemore's diata, it seems reasonable to assume for design purposes a velocity pressure of 45 lb. per sq. ft. after a 10 per cent reduction.

Distribution of Wind Forces
Table 1 shows the aver ge distribution in terns of velocity pressure P on walis, roof, and eaves.

Table 1
Averace Distribution in Terns of
Velocity Pressure P, on Valls, Roofs, and Eaves
Building Element

Nalls	Vindward	0.80 P pressure
Walls	Leeward	0.50 P suction
Nalls	Parallel	0.58 P suction
Roof	Windward (0 to 20 deg. slope)	0.77 P suction
Roof	Leeward, flat	0.77 P suction
Roof	Parallel, any slope	0.77 P suction
Eaves	Naxinum pressure up	1.57 P
Eaves	Naxinum pressure down	1.16 P

The wind forces shown above are based on a windicht building. Loads from internal wind forces must be added for buildings with openines or potential openings such as windows or doors. For buildings heving 30 per cent or more wall openines in windward side add 0.77 P pressure outward on rof and walls, and for openings in leeward or parallel sides add 0.58 P suction in. For openings between 0 and 30 per cent of wall area, assume proportionsl acditional loads.

The percentage of openines on each side are as follows:

East side

$$
\frac{18.8+48.2+10.6+20.9+20.9}{62 \times 7.5}=\frac{119.4}{465}=25.7 \%
$$

South side

$$
\frac{2.6+116.6}{33 \times 7.5}=\frac{119.2}{248}=48 \%
$$

West side

$$
\frac{42.0}{7.5 \times 62}=\frac{42.0}{465}=9.0
$$

North side

$$
\frac{13.9+18.8+31.4}{7.5 \times 38.5}=\frac{64.1}{289}=22.1 \%
$$

Wind from east
For openings in windward side add
$\frac{25.7}{30} \times 0.77 \times 45=29.7 \mathrm{lb}$. pressure out on roof \& walls
For openings in leeward side and parallel walls add $\frac{119+42+64}{248+465+289} \frac{1}{30} \times 0.58 \times 45=19.6$ lb. suction in on roof ind walls

This gives a net result due to wall openings of 10.1 lb . pressure out on walls and roof.

If the roof slab were poured using 2 x 6 in . ede forms its thickness would be $5 \frac{5}{8} \mathrm{in}$. and would weigh $\frac{5.625}{12} \times 1 \times 1 \times 150=70.3 \mathrm{lb}$. per sq. ft.

Pressure on east wall
$0.8 \times 45-10.1=25.9 \mathrm{lb}$. pressure in
Pressure on west wall
$0.5 \times 45 \times 1-10.1=32.6 \mathrm{lb}$. suction out

Pressure on north and south walls
$0.58 \times 45+10.1=32.6 \mathrm{lb}$. outward suction
Pressure on roof
$70.3-0.77 \times 45-10.1=25.5 \mathrm{lb}$. pressure down
Max. pressure up on eaves $=1.57 \times 45-70.3=0.3 \mathrm{lb}$.
pressure up
Nax. pressure down on eaves $=1.16 \times 45+70.3=122.5 \mathrm{lb}$. pressure down

Wind from west

For openincs in windward side add
$\frac{9}{30} \times 0.77 \times 45=10.4 \mathrm{lb}$. pressure out on roof and walls
For openings in leeward side and parallel walls add
$\frac{119+119+64}{465+248+289} \times \frac{1}{30} \times 0.58 \times 45=26.1 \mathrm{lb}$. suction in on
walls and roof
This gives a net result due to wall openings of 15.7 lb
pressure in on walls and roof
Pressure on west wall

$$
0.8 \times 45+26.1=62.1 \mathrm{lb} . \text { pressure in }
$$

Pressure on east wall

$$
26.1-0.5 \times 45=3.6 \mathrm{lb} . \text { pressure in }
$$

Pressure on north and south walls

$$
26.1-0.58 \times 45=0 \mathrm{lb} . \text { pressure }
$$

pressure on roof

$$
70.3+15.7-0.77 \times 45=51.3 \mathrm{lb} \text { pressure down }
$$

Wind from north
For openings in windiward side add
$22.1 \times 0.77 \times 45=25.5 \mathrm{lb}$. pressure out on roof $\&$ walls For openings in leeward side and narallel walls add
$\frac{119+119+42}{248+465+465} \times \frac{1}{30} \times 0.58 \times 45=10.21 b$. suction in on walls and roof

This gives a net result due to wall openings of 15.3 lb . pressure out on roof and walls.

Pressure on north wall

$$
0.8 \times 45-15.3=20.7 \mathrm{lb} \text {. pressure in }
$$

Pressure on south wall

$$
0.5 \times 45+15.3=37.8 \mathrm{lb} . \text { suction out }
$$

Pressure on east and west walls

$$
0.58 \times 45+15.3=41.4 \mathrm{lb} \text {. suction out }
$$

Pressure on roof

$$
70.3-15.3-0.77 \times 45=20.4 \mathrm{lb} \text {. pressure down }
$$

ilind from south
For openings in windward side add
$0.77 \times 45=34.7 \mathrm{lb}$. pressure out on walls and roof
For openings in lesward side and parallel walls add
$\frac{64+119+42}{289+465+465} \times \frac{1}{30} \times 0.58 \times 45=1610$. suction in on
roof and walls
This gives a net result due to wall operings of 18.7 lb .
pressure out on walls and roof
Pressure on south wall

$$
0.8 \times 45-18.7=17.31 \mathrm{~b} . \text { pressure in }
$$

Pressure on north wall -
$0.5 \times 45+18.7=41.2 \mathrm{lb}$. suction out
Pressure on east and west walls
$0.58 \times 45+18.7=44.8 \mathrm{lb}$. suction out
Pressure on roof
70.3-18.7-0.77 x $45=16.9$ lb. pressure down Wind loadings are sumarized in Table 2.

From Table 2 the ε reatest velocity pressure exerted was 62.1 psf. pressure on the west wall with wind from the west. Modulus of rupture as given by the Portland Cement Association is 130 psi. for course construction of dry tamped concrete as in a double hollow wall. The Underwriters' Laboratories' Standard for Concrete Masonry Units defines hollow units as having average core areas in excess of 25 per cent of gross volume. The unit used in these walls was a 3-oval core 8 x 8 x 16 in. cinder block. This unit falls within the Underwriters' Standard for a hollow unit. The units alone will not rupture.

Transverse Strength of Nalls
The University of Illinois conducted tests for determining the modulus of rupture of walls. Results in psi. for 3-oval core 8 x 8 x 16 in. cinder blocks were $34,42,18,22$, and 23.

The flexure test was made on large walis. These walls, which failed by cracking along a horizontal joint near midheight, were later tested in compression, and developed as good compressive strenth as the uncracked walls.

Table 2

The flexure test was made by placing the wall against a vertical structural steel frizmework and applying a lateral concentruted load along the horizontal center line with the slab supported along the too and bottom edees. The span was 9 feet. The load was applied by means of a l0-ton screw jack, a spring dynamometer and a steel I-beam.

Values of modulus of runture were computed on the basis of a beam of solid rectangular section, with a width equal to the length of the wall and a depth equal to the wall thicknese. This assumption is used to faciliitate computation and gives values that err on the side of conservatism. The failure of the walls was in all cases a failure in adhesion of mortar to unit. In all of the oval core units, molded on a metal pallet, the failure wes between the smooth, molded lower surface of the block and the mortar. The walls with face-shell bedding gave about as good results, considering the mortar strengths, as do corresponting walls with full bedding. This is logical, since the area occupied ky cross webs should have little effect on flexual resistance. The low values for modulus of rupture were for low strength nortars. Therefore we are safe in throwing out the low vilue which eives an averace for the modulus of rupture as 30 pounds ner square inco.
The yontland Jeuent ssocictio, in their puilication,

Reinforced Concrete Houses, calculate the resistance of a dwelling wall to wind pressure io assumine the minimum horizontal section with openines deducted and the wind load carried on the vertical span.

From Table 2 the wind load on the west wall is 62.1 psf. The clear span between the roof and floor is 7.5 ft .

$$
M^{M}=\frac{1}{8} w 1^{2}=\frac{62.1}{8} \times 7.5^{2}=436 \mathrm{ft} . \mathrm{lb}
$$

For combined bending with axial load

$$
\begin{aligned}
& \mathrm{f}=\frac{\mathrm{P}}{\mathrm{~A}} \pm \frac{\mathrm{Mc}}{\mathrm{I}} \text { where } \mathrm{c}=4 \mathrm{in} . \\
& \mathrm{P}=51.3 \times \frac{21.583 \times \frac{16}{12}+32.5 \times 6=934 \mathrm{lb} .}{\mathrm{A}}=0.60 \times 15.75 \times 8=75.7 \mathrm{sa} \mathrm{in.} \\
& \mathrm{I}=\frac{1}{12} \times 15.75 \times 8-4 \times 0.0491 \times 3.21 \times 5^{5}=592.4 \mathrm{in} . \\
& \mathrm{f}=\frac{934}{75.7} \pm \frac{436 \times 12 \times 4}{592.4}=12.3 \pm 35.3=23 \text { psi. tension }
\end{aligned}
$$

Even though the tests indicate that a wall could be expected to rupture at an averace of 30 psi. , the wall will be desismed so there is no resulting tension in the mortar joint. If the cinder units above the ridpoint of the vertical span are filled with concrete, it will ε ive additional compressive forces. All cores arove the midnoint are filled in sections of the west wall that are unbroien ky openings. The cores of the first course can be filled on the ground and allowed to set before the blocks are placed in the wall. Cores of the other four courses a ove this one can be filled in place in the wall.

Core volumes in each block when filled with concrete eive additional weight as figured below

$$
4 \times \frac{0.7854 \times 3.21 \times 5 \times 7.75}{1728} \times 150=34 \mathrm{lb} .
$$

This added weicht eives stresses in the wall due to combined compressive and tending forces as follows:

$$
f=\frac{1104}{126} \pm \frac{436 \times 12 \times 4}{671}=8 . \overline{8} \pm 31.2=22.4 \text { psi. tension }
$$

It is apparant that there is no advantage in filling the cores with concrete. In fact it is a definite disadvantage as far as the insulatine properties of the wall are concerned and mazes a damp wall.

The wall can be desicned with tension steel spaced 6 ft. center to center and anchored in mortar placed in the cores. Use an $8 \times 8 \mathrm{in}$. bond beam along the top of the wall and use hooked bars. Embed hooked dowels in the footing and cut them off two feet above the top of the footing. These dowels are of the same size as the vertical steel. The vertical reinforcement is placed $1 \frac{1}{2}$ in. in from both the outside and the inside wall surfaces on 6 ft . centers.

With a stress intensity of 23 psi . at the extreme fiber, the stress intensity liz in. in (thickness of face shell), by similar triancles is

$$
\frac{2.5}{4}=\frac{x}{23} \quad x=14.4 \mathrm{psi} .
$$

Then the tension in the mortar joint along the length of one block is

$$
\frac{14.4+23}{2} \times 1.5 \times 15.75=4421 \mathrm{~b} .
$$

Tension over 4.5 blocks or 6 ft . is
$442 \times 4.5=1,985 \mathrm{lb}$. tension

$$
A_{s}=\frac{T}{f_{s}}=\frac{1,985}{20,000}=0.0994 \mathrm{sq} . \mathrm{in} .
$$

A for \bar{z} in. round rods is 0.20 sq . in. This method of reinforcing is used in the west wall only.

Strength of Nortar Joints
No wall is stronger than its mortar joints. The amount of bedding area is important because the ereater the area provided for mortar bedding, the stronger the wall. Full mortar bedding results in a stronger wall than face shell bedding, as the load is distributed over a ereater area. The design of the unit also is an imoortant factor, as it governs the bedding area, the shell and web thickness of the units, and their alignment in the wall.

With face shell bedding of the 3 - oval core, 8 x 8 x 16 in. unit, the mortar bedding area is 45 per cent of the gross area as given in Table 8, Facts About Concrete Nasonry.

The unit stress under a loading of 80 psi . on the wall is 178 psi. To provide a factor of safety of 4 , the mortar should have a strength of 4×178 or 712 psi. A 1:1:6 portland cement-lime or stronger mortar is recommended for all masonry wall construction. The 1:1:6 portland cement-lime mortar has a strength of $1,000 \mathrm{psi}$.

The National Concrete lasonry Association figures that for face shell bedding of mortar the wall strength is 42 per cent of the strensth of the units.

The Houston Building Code requires a hollow concrete unit to test in compression to 1,000 psi. over the gross area. This would give a wall strength of 420 psi . gross area and a factor of safety of 5.25 for allowable loads of 80 psi . A factor of safety of 4 is usuilly required.

Roof Streneth

The greatest velocity pressure exerted on the roof during the hurricane wäs 51.3 psf. pressure. This pressure was a combination of the live and dead loads. The dead load alone was 70.3 psf. Part of this weight was cenceled by suction from the wind. Therefore the design will be for the deal load and a live load of 25 psf. as required oy the Houston Buildinc Code.

Effective depth is 4.5 in. with a 1 in. cover coat over the tension reinforcement. Table 2 of the A.C.I. Design Handbook eives a resisting moment of a rectangular section 1 ft. Wide with an effective depth of 4.5 in . as 5 ft . kips. Other data used was

$$
\begin{aligned}
f_{s}= & 20,000 \text { psi. for reinforcement bars of structural } \\
& \text { grade } \\
f_{c}^{\prime}= & 3,000 \text { psi. } \\
f_{c}= & 0.40 f_{c}^{\prime}=1,200 \mathrm{psi} . \\
n= & 10
\end{aligned}
$$

The bending moment is now calculated

$$
\text { Span }=19 \mathrm{ft} .7 \mathrm{in} .=19.58 \mathrm{ft}
$$

$$
\mathrm{w}=95.3 \mathrm{psf}
$$

$$
\text { B.M. }=\frac{1}{8} w 1^{2}=\frac{1}{8} \times 95.3 \times 19.58^{2}=4,570 \mathrm{ft} \cdot \mathrm{lb}
$$

This moment neglects the overhang and gives results that are conservative.
$4,570<5,000$, therefore the roof meets the code specifications. Tension steel required for the roof slab is now figured

$$
\mathrm{M}=\mathrm{Tjd}=\mathrm{A}_{s} \mathrm{f}_{s} \mathrm{gd}
$$

From Table l, A.J.I. Design Hand $\bar{b} o o k$

$$
\begin{aligned}
& J=0.875 \\
& A_{3}=\frac{M}{f_{3} J d}=\frac{5,000 \times 12}{20,000 \times 0.875 \times 4.5}=0.761 \mathrm{sq} . \text { in. }
\end{aligned}
$$

From Table 3, A.C.I. Desien Yandbook, 0.75 sq . in. call for $\frac{3}{4}$ in. round bars soaced 7 inches center to center. Use $\frac{1}{2}$ in. round bars spaced 1 ft . center to center as spacers.

Steel is also required for stresses developed due to negative moment where the roof slab passes over the outside wall.

$$
\begin{aligned}
& M=T j d=A_{s} f_{s} j d \\
& A_{s}=\frac{M}{f_{s} j d}=\frac{84.3 \times 12}{20,000 \times 0.875 \times 4.5}=0.0129 \mathrm{sq} . \mathrm{in} .
\end{aligned}
$$

Use a $\frac{3}{8}$ in. round bar ($A_{s}=0.11 \mathrm{sq}$. in.) two feet lone and spaced 21 in . center to center around the outside walls. When the soffit forms for pouring the roof slab are placed, quarter round moulding is placed around the circumference of the roof and three inches in from the edge, to be later removed and form a drip. The roof does not need anchoring as it has sufficient weight.

> Design of Lintels

Door lintel
The National Concrete Nasonry Association calls fior a lintel $5 \frac{3}{4}$ in. high and eight inches wide for clear spans up to 7 ft . It uses two $\frac{3}{8} \mathrm{in}$. round deformed bars placed lī in. above the bottom and 2 in . in from the sides.

FIG. 10

SCALE: $1 \mathrm{CM}=3^{\prime}$
FIG. II

F16. 12

FIG. 13

DIAGRAM CF SUN ANGLES FIG. 14

DOOR LINTEL
no scale
FIG. 15

With a clear opening of 33 in . and a bearing area extending 4 in . on each side use a design span of 37 in . and design as a simple beam. Roof load is 70.3 psf.

Sugcested design by N.C.M.A. is shown in rig. 15. The design will be investigated as shown on pace li, A.C.I. Design Handbook.

Unit load per running foot of lintel is
$70.3 \times \frac{21.583}{2}+\frac{8}{12} \times \frac{8}{12} \times 1 \times 150=827 \mathrm{lb}$. per ft.
$M=\frac{1}{8} w 1^{2}=\frac{827}{8} \times 3.08^{2}=983 \mathrm{ft} . \mathrm{lb}$.
Given:

$$
\begin{aligned}
\mathrm{b} & =8 \mathrm{in.} ; \mathrm{d}=6 \frac{1}{4} \mathrm{in.} ; \mathrm{A}_{5}=0.22 \mathrm{sq} . \mathrm{in.} ; \mathrm{n}=10 \\
\mathrm{M} & =983 \mathrm{ft} . \mathrm{lb} . \\
\mathrm{m}=\mathrm{q} & =\frac{\mathrm{nA}}{\mathrm{bd}}=\frac{10 \times 0.22}{8 \times 6.25}=0.044
\end{aligned}
$$

From Table ll
$k=\sqrt{m+2 q}-m=\sqrt{0.044+0.088}-0.088=0.212$
From Table 13
for $z=0.33$ and $k=0.212: \quad j=0.93$
$\mathrm{f}_{s}=\frac{12 \mathrm{M}}{\mathrm{jdA}}=\frac{12 \times 983}{0.93 \times 6.25 \times 0.22}=9,240 \mathrm{psi}$.
Sec. 2613, H.B.C.: allowable $f_{s}=20,000$ psi.
$f_{c}-\frac{f_{s}}{n} \times \frac{k}{1-\mathrm{k}}=\frac{9,240}{10} \times \frac{0.212}{1-0.212}=249 \mathrm{psi}$.
Sec. 2613, H.D.C.: allowable $f_{c}=1,200 \mathrm{psi}$.
The design is acceptable.
Master bedroom Window Lintel
Suggested design by in.C.M.A. is shown in Fig. 16. The design will be investigated as shown on pace 17, A.C.I. Design

ROOM LINTEL
FIG. 17
NO SCALE

Handbook. The openine is $6 \mathrm{ft} .10 \mathrm{in}^{-}$and the design span is 7 ft .6 in .

Given:

$A_{s}^{\prime}=1 \mathrm{sq}$. in.; $n=10 ; w=827 \mathrm{lb}$. per ft.
$M=\frac{1}{8} w 1^{2}=\frac{827}{8} \times 7.5^{2}=5,820 \mathrm{ft} . \mathrm{lb}$.
$m=\frac{n A_{s}}{b d}+\frac{(n-1) A_{s}}{b d}=\frac{10 \times 1}{8 \times 6.25}+\frac{9 \times 1}{\varepsilon \times 6.25}=0.20+0.18$
≤ 0.38
$q=\frac{n A_{s}}{b d}+\frac{(n-1) A_{s}^{\prime}}{b d} \times \frac{d^{\prime}}{d}=\frac{10 \times 1}{8 \times 6.5}+\frac{9 \times 1}{8 \times 6.5} \times \frac{1.5}{6.25}=0.20+$ $0.043=0.243$

From Table 11 , for $m=0.38$ and $q=0.243: k=0.414$
For entering Table 12 determine
$\frac{1}{k} \times \frac{(n-1) A d}{b d}=\frac{1}{0.414} \times \frac{9 \times 1}{8 \times 6.25}=0.434$
$\frac{1}{k} \times \frac{d^{\prime}}{d}=\frac{1}{0.414} \times \frac{1.5}{6.25}=0.579$
From Table 12:

$$
\begin{aligned}
z= & \frac{1}{6}+\frac{(n-1) A_{j}^{\prime}}{k b d} \times \frac{d^{\prime}}{k d} \times\left(1-\frac{d^{\prime}}{k d}\right) \\
\frac{1}{2}+\frac{(n-1) A_{1}^{\prime}}{k b d} \times \frac{1-\frac{d^{\prime}}{k d}}{k d} & =\frac{0.167+0.434 \times 0.579}{0.5+0.434 \times 0.421} \\
& \times 0.421=\frac{0.167+0.0758}{0.5+0.18}=0.359
\end{aligned}
$$

From Table 13, for $z=0.359$ and $k=0.414: j=0.853$
$\mathrm{f}_{3}=\frac{12 \mathrm{M}}{j \mathrm{dA}}=\frac{12 \times 5,820}{0.853 \times 6.25 \times 1}=13,100 \mathrm{psi}$.
Sec. 2613, H. .C.: allowable ff $=20,000 \mathrm{psi}$.
f_{s}^{\prime} always less than $n f_{c}$ or less than 9,280 psi. When
$f_{2}=\frac{f_{2}}{n} \times \frac{k}{1-k}=\frac{13,100}{10} \times \frac{0.414}{1-0.414}=928 \mathrm{psi}$.

Shear $=\frac{w l}{2}=\frac{827}{2} \times 7.5=3,1001 \mathrm{~b}:$
Sec. 2618, H.B.C.
$v=\frac{v}{b j d}=\frac{3,100}{8 \times 0.853 \times 6.25}=72.7$ psi.
Sec. 2613, H.B.C. Eives ellowable $v=0.02 f_{c}^{\prime}=0.02 \times 3,000=$ 60 psi. with no web reincorcement. Requires web reinforcement. Allowable siear with web reinforcenent $=0.06 \times 3,000=180$ psi. Stirruns are made of No. 6 gace cold drawn steel wire with a tensile streneth of 16,000 psi. Sec. 3613, H.B.C. Formerly stirruos were allowed to carry 20,000 psi. Desien will be by the method on pare 30, A.C.I. Design Handbook. The shear diagram is triangular.

Given:
$v^{\prime}=12.7 \mathrm{psi} . ; \quad b=8 \mathrm{in}. ; \quad \mathrm{d}=6.25 \mathrm{in} . ; \mathrm{f}_{\mathrm{v}}=16,000 \mathrm{psi}$.
$f_{c}^{\prime}=3,000$ psi.; 0. 6 wire stirrups; $A_{2}=0.0648 \mathrm{sq}$. in.
$\frac{S}{3.75}=\frac{12.7}{72.7} \quad S=0.656 \mathrm{ft}$.
$\mathrm{A}_{\boldsymbol{q}} \mathbf{f}_{\boldsymbol{v}}=16,000 \times 0.0648=1,040$
$\frac{1}{s}=\frac{v^{\prime} b}{A_{v} f_{v}}=\frac{12.7 \times 8}{1,040}=0.098$
$\mathrm{N}=6 \mathrm{~S}\left(\frac{1}{\mathrm{~s}}\right)=6 \times 0.656 \times 0.098=1$ stirrup
Index $=\frac{1.5 \mathrm{~S}}{\frac{1}{9}}=\frac{1.5 \times 0.656}{0.098}=10$
Fron diagram 17, l stirrup is required.
Stirrups cin be securely fastened to compression steel
and hence will not require any minimu depth ombedment. The suecested desien by the N.C.M.A. is shown in Fic. 16 and will be adopted.

Utility Room Lintel
Clear opening is 3 ft . 8 in. and the design span is 4 ft . 4 in. Suggested design by the N.C.M.A. is shown in Fig. 17. The design will be investi§ated by the method shown on page 17 , A.C.I. Design Handbook.

Given:

$$
\begin{aligned}
b & =8 \text { in.; } d=6.25 \text { in. } ; d^{\prime}=1.5 \mathrm{in.} ; A_{s}=0.40 \text { sq. in. } \\
A_{s}^{\prime} & =0.22 \mathrm{sq} \cdot \text { in.; } n=10 ; w=827 \mathrm{lb} . \text { per ft. } \\
M & =\frac{1}{8} \times 827 \times 4.25^{2}=1,865 \mathrm{ft} . \operatorname{lb} . \\
m & =\frac{n A_{s}}{b d}+\frac{(n-1) A_{s}^{\prime}}{b d}=\frac{10 \times 0.40}{8 \times 6.25}+\frac{9 \times 0.22}{8 \times 6.25}=0.08+0.0397 \\
= & 0.120 \\
z & =\frac{n A_{s}}{b d}+\frac{(n-1) A_{s}^{\prime}}{b d} \times \frac{d^{\prime}}{d}=0.08+0.0379 \times \frac{1.5}{6.25}=0.08+0.0091 \\
= & 0.0891
\end{aligned}
$$

From Table 11, for $m=0.12$ and $q=0.0891: k=0.318$ For entering Table 12 determine
$\frac{1}{k} \times \frac{(n-1) A_{s}}{b d}=\frac{1}{0.318} \times \frac{9 \times 0.22}{8 \times 6.25}=0.125$
$\frac{1}{k} \times \frac{d^{\prime}}{d}=\frac{1}{0.318} \times \frac{1.5}{6.25}=0.756$
From Table 12: $z=0.377$ determined as follows

$$
\begin{aligned}
z & =\frac{\frac{1}{\sigma}+\frac{(n-1) A_{s}^{\prime}}{k b d} \times \frac{d^{\prime}}{k d} \times\left(1-\frac{d^{\prime}}{k d}\right.}{\frac{1}{2}+\frac{(n-1) A_{s}}{k b d} \times\left(1-\frac{d^{\prime}}{k d}\right.}=\frac{0.167+0.0125 \times 0.756 \times 0.244}{0.5+0.0125 \times 0.244} \\
& =\frac{0.167+0.023}{0.5+0.003}=\frac{0.190}{0.503}=0.377
\end{aligned}
$$

From Table 13, for $z=0.377$ and $k=0.318: j=0.87$ $f_{s}=\frac{12 M_{1}}{3 d A_{s}}=\frac{12 \times 1,865}{0.87 \times 6.25 \times 0.40}=10,300 \mathrm{psi}$.
$f_{e}=\frac{f_{s}}{10} \times \frac{k}{1-k}=\frac{10,300}{10} \times \frac{0.318}{0.582}=482 \mathrm{psi}$.
f_{s}^{\prime} is alwys less than $n f_{c}$ or less than 4,820 psi.
Sec. 2613, H.B.C. : allowale $f_{s}=20,000$ psi.
allowable $f_{c}=1,200 \mathrm{psi}$.
Shear $=\frac{W I}{2}=\frac{827}{2} \times 4.25=1,760 \mathrm{lb}$.
Sec. 2618, H.D.C.
$v=\frac{v}{b j d}=\frac{1.760}{8 \times 0.67 \times 6.25}=40.4 \mathrm{psi}$.
Sec. 2613, H.B.C. Cives allowable $v=0.02 \mathrm{f}_{c}^{\prime}=60 \mathrm{psi}$. without web reinforcenent. Stirrups shown in Fis. 17 are not necessary.

Laundry and Breakfast Alcove Lintels
Clear opening is 5 ft .7 in . Desisn som is 6 ft .3 in . Suggested desien y N.C.M.A. is shown in Fig. 18. The desien will be investigated by the metiod sin wn on pace 17, A.C.I. Desien Handbook.

Given:

$$
\begin{aligned}
& b=8 \mathrm{in} . ; d^{2}=6.25 \mathrm{in} . ; \mathrm{d}^{\prime}=1.5 \mathrm{in} . ; \mathrm{A}_{5}=0.88 \mathrm{sq} . \mathrm{in} . \\
& A_{s}^{\prime}=0.88 \mathrm{sq} . \text { in. } ; n=10 ; w=827 \mathrm{lb} \text {. per fit. } \\
& \pi=\frac{827}{8} \times 6.25^{2}=4,030 \mathrm{ft} \text {. } 10 . \\
& m=\frac{n A_{s}}{b d}+\frac{(n-1) A_{s}^{\prime}}{b \tilde{d}}=\frac{10 \times 0.88}{8 \times 6.25}+\frac{9 \times 0.88}{8 \times 5.25}=0.176+0.159 \\
& =0.335 \\
& q=\frac{n A_{s}}{b d}+\frac{(n-1) A_{j}^{\prime}}{b d} \times \frac{d^{\prime}}{d}=0.176+0.159 \times 0.24=0.214 \\
& \text { From Table 11, for } m=0.335 \text { and } q=0.214: k=0.40 \\
& \text { For enterinc Table } 12 \text { determine }
\end{aligned}
$$

2- $\frac{3}{4} \phi$ BARS $2-\frac{3}{4}$ " \varnothing BARS

$$
\begin{aligned}
& \frac{1}{k} \times \frac{(n-1) A^{\prime}}{b d}=\frac{1}{0.4} \times \frac{9 \times 0.88}{8 \times 6.25}=0.396 \\
& \frac{1}{k} \frac{d^{\prime}}{d}=\frac{1}{0.4} \times 0.24=0.60 \\
& z=\frac{\frac{1}{6}+\frac{(n-1) A_{l}^{\prime}}{k b d} \times \frac{d^{\prime}}{k d} \times\left(1-\frac{\left.d^{\prime}\right)}{k d}\right.}{\frac{1}{2}+\frac{(n-1) A_{5}^{\prime}}{k b d} \times\left(1-\frac{d^{\prime}}{k d}\right.}=\frac{0.167+0.396 \times 0.50 \times 0.40}{0.5+0.390 \times 1.40} \\
& =\frac{0.157+0.095}{0.5+0.159}=0.397
\end{aligned}
$$

From Table 13, for $z=0.397$ and $k=0.40: j=1-z k=$ $1-0.40 \times 0.397=0.841$

$$
f_{s}-\frac{12 M}{j d A_{s}}=\frac{12 \times 4,03 u}{0.84 \times 6.25 \times 0.88}=10,500 \mathrm{psi} .
$$

$f_{c}-\frac{f_{s}}{n} \times \frac{k}{1-k}=\frac{10,500}{10} \times \frac{0.4}{1-0.4}=701 \mathrm{psi}$.
f's is always less than $n f_{c}$ or less than 7,010 psi.
Sec. 2613, H.B.C.: allowable $\mathrm{f}_{s}=20,000 \mathrm{psi}$ allowable $\mathrm{f}_{\mathrm{c}}=1,200 \mathrm{psi}$.

Shear $=\frac{W I}{2}=\frac{827}{2} \times 6.25=2,580 \mathrm{lb}$.
Sec. 2618, H.B.C.
$v=\frac{v}{\mathrm{bjd}}=\frac{2,580}{8 \times 0.841 \times 6.25}=61.4 \mathrm{psi}$.
Sec. 2613, H.B.C. gives allowable $v=60 \mathrm{psi}$. without web reinforcement. Since our span is 5 in. less than the span of the suggested design the stirrups will be considered as unnecessary.

Kitchen Lintel
Clear openine is 5 ft . Design span is 5 ft .8 in . Suggested design by N.C.M.A. is shown in Fig 19. The design will be investigated hy the method shown on pace 17, A.C.I.

Design Hancioook.
Given:

$$
b=8 \mathrm{in.} ; \quad d=6.25 \mathrm{in.} ; d^{\prime}=1.5 \mathrm{in} . ; A_{s}=0.62 \mathrm{sq.} \text { in. }
$$

$$
A_{s}^{\prime}=0.22 \mathrm{sq} \cdot \text { in.; } n=10
$$

$N=\frac{827}{8} \times 5.67^{2}=3,320 \mathrm{ft} . \mathrm{lb}$.
$m=\frac{n A_{c}}{b d}+\frac{(n-1) A_{j}}{b d}=\frac{10 \times 0.62}{8 \times 6.25}+\frac{9 \times 0.22}{3 \times 6.25}=0.124+0.0198$
$=0.144$
$q=\frac{n A_{s}}{b d}+\frac{(n-1) A_{j}}{b d} \times \frac{d^{\prime}}{d}=0.124+0.0198 \times 0.24=$

$$
=0.124+0.005=0.129
$$

From Table 11, for $m=0.144$ and $q=0.129: k=0.384$
For entering Table 12 deterinine
$\frac{1}{k} \times \frac{(n-1) A 5}{b d}=\frac{1}{0.384} \times \frac{9 \times 0.22}{50}=0.103$
$\frac{1}{k} \times \frac{d}{d}^{\prime}=\frac{1}{0.384} \times 0.24=0.625$
From Table 12
$z=\frac{\frac{1}{\sigma}+\frac{(n-1) A_{1}^{\prime}}{k b d} \times \frac{d^{\prime}}{k \bar{d}} \times\left(1-\frac{d^{\prime}}{k \bar{d}}\right.}{\frac{1}{2}+\frac{(n-1) A^{\prime}}{k b d} \times\left(1-\frac{d^{\prime}}{k d}\right.}=\frac{0.167+0.103 \times 0.625 \times 0.375}{0.5+0.103 \times 0.375}$
$=\frac{0.157+0.024}{0.5+0.039}=0.354$
From Table 13, jor $z=0.354$ and $k=0.384: j=0.868$
$\mathrm{f}_{s}=\frac{12 \mathrm{M}}{j \mathrm{~A}_{s}}=\frac{12 \times 3,320}{0.868 \times 6.25 \times 0.62}=11,860 \mathrm{psi}$.
$f_{c}-\frac{f_{s}}{n} \times \frac{k}{1-k}=\frac{11,860}{10} \times \frac{0.384}{0.616}=7,410 \mathrm{psi}$.
Sec. 2613, H.B.C.: allowable $\frac{f}{5}=20,000$ psi. ailowacle $\mathrm{f}_{\mathrm{e}}=1,200 \mathrm{psi}$.

Shear $=\frac{w l}{2}=\frac{827}{2} \times 5.67=2,340 \mathrm{lb}$.

Sec. 2618, H.B.C.
$v=\frac{v}{b j d}=\frac{2,340}{50 \times 0.800}=53.8 \mathrm{psi}$.
Sec. 2613, H.B.C. eives allowable $v=0.02 \mathrm{f}_{\mathrm{c}}^{\prime}=60 \mathrm{psi}$. witbout web reinforceiaent. Stirrups shown in Fig. 19 are not necessary.

Dining Room Lintel
Cleur openive is 8 ft .6 in . Design span is 9 ft .2 in . The N.C.i.A. Eives no sugcested designs for spans over 7 ft . Design will be by the method on pace 9, A.C.I. Design Handbook. Given:

$$
\begin{aligned}
& \quad f_{s}=20,000 \mathrm{psi} . ; \mathrm{n}=10 ; \mathrm{f}_{c}=1,200 \mathrm{psi} . ; \mathrm{b}=8 \mathrm{in} . \\
& \mathrm{d}=6.25 \mathrm{in.} ; \mathrm{d}^{\prime}=1.5 \mathrm{in} . \\
& \mathrm{M}=\frac{\varepsilon_{27}}{\delta} \times 9.167^{2}=8,680 \mathrm{ft} . \mathrm{li} .
\end{aligned}
$$

From Table 1, for 20,000/10/1,200: k=197
From Table 4, for $b x d=6 \times 6.25: F=0.026$ then

$$
\begin{aligned}
& \mathrm{K}= \\
& \mathrm{KF}=197 \times 0.026=\frac{8.12}{3.56} \\
& \mathrm{M}-\mathrm{KF}=
\end{aligned}
$$

Compressive reinforcenent is required when ($M-K F$) is positive, since this is tiae residual moment not taiken by the concrete.

From Table 7, for $20,000 / 10 / 1,200$ and $\frac{d^{\prime}}{d}=0.24$

$$
\begin{aligned}
c & =\frac{f_{s}(n-1)\left(1-\frac{d}{d}\right)\left(k-\frac{d}{d}{ }^{\prime}\right)}{12,000 n(1-k)}=\frac{20,000 \times 9(1-0.24)(0.375-0.24)}{12,000 \times 10(1-0.375)} \\
& =\frac{180,000 \times 0.76 \times 0.135}{120,000 \times 0.625}=0.246
\end{aligned}
$$

F1G. 23

$A_{3}^{\prime}=\frac{M-K F}{c d}=\frac{3.56}{0.246 \times 6.25}=2.32 \mathrm{sq} . \mathrm{in}$.
From Table 1 , for $f_{s}=20,000: a=1.44$, therefore
$A_{s}=\frac{A}{a d}=\frac{8.68}{1.44 \times 6.25}=0.967 \mathrm{sq}$. in.
With $u=$ allowable bond stress, compute $\boldsymbol{K}_{0}=\frac{8,000 \mathrm{~V}}{7 \mathrm{ud}}$ select
bars from Table 5, and check :idth of web required to accommodate bars from Table 6.

Sec. 2613, H.3.C., $u=0.04 \mathrm{fl}=0.04 \times 3,000=120 \mathrm{psi}$.
$V=\frac{w l}{2}=\frac{827}{2} \times 9.167=3,780 \mathrm{lb}$.
$=\frac{8,000 \times 3.78}{7 \times 120 \times 6.25}=5.78 \mathrm{in}$.
From Table 5, use two $1 \frac{1}{8}$ in. square bars at the top of the lintel and two $\frac{7}{8}$ in. round bars at the bottom of the lintel to give 3.74 sq . in. and $\boldsymbol{K}_{0}=14.5 \mathrm{in}$. From Table 6, minimum web widths for these two combinations are 8.5 in. and 8 in. respectively. lith special anchorage minimum web width is 8 in . In accordance with Sec. 2619, H.E.C., the two $1 \frac{1}{8} \mathrm{in}$. bars will be bent down to form a semi-circular hook of minimus radius of 4 bar diameters.

Sec. 2618, H.B.C.
$\mathrm{v}=\frac{\mathrm{v}}{\mathrm{bjd}}=\frac{3.780}{50 \times 0.875}=85.5 \mathrm{psi}$.
Sec. 2613, H.Z.C. gives allowable $v=0.02 \mathrm{f}_{c}^{\circ}=60 \mathrm{psi}$. without wei reinforcement.

Stirrup design will be as shown on page 30, A. ©.I. Design Handbook.

Given:

$$
\begin{aligned}
& \mathrm{v}^{\prime}=26.5 \text { psi.; } \quad b=8 \text { in.; } d=6.25 \text { in. } ; f_{v}=16,000 \text { psi. } \\
& \mathrm{f}_{\mathrm{c}}^{\prime}=3,000 \text { psi.; 10. } 6 \text { wire U-stirrups; } A_{2}=0.0648 \\
& \text { sq. in. }
\end{aligned}
$$

$\frac{S}{4.583}=\frac{25.5}{86.5} \quad S=1.41$
From diasrain 17 , for $f_{r}=16,000$ and No. 6 wire U-stirrups:
$A_{2} f_{r}=1,040$
$\frac{1}{s}=\frac{v^{\prime} b}{A_{2} f_{2}}=\frac{25.5 \times 6.25}{1,040}=0.16$
$N=6 S \frac{1}{8}=6 \times 1.41 \times 0.16=2$ stirrups
Index $=\frac{1.5 \mathrm{~S}}{\frac{1}{\mathrm{~s}}}=\frac{1.5 \times 1.41}{0.16}=13.2$
From diagram 17, 2 stirrups are needed. The report of the A.C.I. Joint Committee on Sta dard Specifications for Concrete and Reinforced Concrete \&ives the spacine of vertical stirrups as
$s=\frac{A_{v} f_{v} j d}{V^{\top}}$, where $V^{\prime}=v^{\prime} b j d=26.5 \times 0 . \varepsilon 75 \times 50=1,16010$. $s=\frac{1,040 \times 0.075 \times 6.25}{1,160}=4.9 \mathrm{in}$. $S=1.41 \times 12=15.9$ in.

Use 7 stirrups, soaced $2,3,3,3,3,3,3$ in. as shown in FiE. 20 . Stirrups are to be securely fastened to compression steel. Gallery Window Lintels

Lintels extend over tiwo double window units and have a 8 in. bearing width at each end. clear opening of each double unit is 10 ft .8 in . Two identical designs will be used to elininate the necessity of adidionil steel at the top of the

Intel to take care of the nerctive mont which would result with a lintel continuous over two soins. Design span is 11 ft . 4 in. Design will be by the method on page 9, A.C.I. Design Handbook.

Given:
$f_{s}=20,000$ psi.; $n=10 ; f_{c}^{\prime}=3,000$ psi.; $b=8 \mathrm{in}$. $f_{c}=1,200$ psi.;
$M=\frac{827}{8} \times 11.33^{2}=13,200 \mathrm{ft} .1 \mathrm{~b}$.
From Table 1, for 20,000/10/1,200; $k=197$
From Table 4, for $b \mathrm{x} d=8 \mathrm{x} 5.25: \quad \mathrm{F}=0.026$
$\because=\quad 13.26$
$K F=197 \times 0.026=5.12$
$M-K F=\quad 8.14$
Compressive reinforcenent is required since ($\mathrm{H}-\mathrm{KF}$) is positive. Fron Table 7, for $20,000 / 10 / 1,200$ and $\frac{d^{\prime}}{d}=0.24: c=0.246$
$A_{s}^{\prime}=\frac{Y-K F}{c d}=\frac{8.14}{0.246 \times 6.25}=5.3 \mathrm{sq}$. in.
This would require $4-1=$ in. square bars and a minimum web width of 9 in. without special anchorase or 8.5 in. With suecial anchorace. Fedesisn with an 8 in. width and $11 \frac{3}{4}$ in. depth.
$w=827+\frac{8}{12} \times \frac{4}{12} \times 1 \times 150=8601 b$. per ft.
From Tasle 4, for bxa=8x 10.25: $F=0.0705$
$M=\frac{860}{8} \times 11.332^{2}=13.80$
$K F=197 \times 0.0705=13.90$
$\mathrm{M}-\mathrm{KF}=\quad-0.10$

Compressive reinioreenent is not required since (N-KF) is negative.

From Table 1 , for $f_{s}=20,000: a=1.44$, therefore $\mathrm{A}_{\boldsymbol{s}}=\frac{\mathrm{k}}{\mathrm{ad}}=\frac{13.8}{1.44 \times 10.25}=0.935 \mathrm{sq}$. in.

Sec. 2613, H.B.C., $u=0.04 f_{c}^{\prime}=120 \mathrm{psi}$.
$V=\frac{w 1}{2}=\frac{860}{2} \times 11.33=4,8^{\prime} 70 \mathrm{lb}$.
$\xi_{0}=\frac{8,000 \mathrm{v}}{7 \mathrm{ud}}=\frac{8,000 \times 4.87}{7 \times 120 \times 10.25}=4.51 \mathrm{in}$.
From Table 5, for $\Sigma_{0}=4.51 \mathrm{in}$. and $\mathrm{A}_{\mathbf{s}}=0.935 \mathrm{sq} . \mathrm{in}$. :
Two $\frac{i}{2}$ in. square bars give $A_{s}=0.94 \mathrm{sq}$. in. and $\boldsymbol{\Sigma}_{0}=6.4 \mathrm{in}$. From Table 6, minimum web width is 6.5 in .

Sec. 2618, H.B.C.
$\mathrm{v}=\frac{\mathrm{v}}{\mathrm{bjd}}=\frac{4,870}{8 \times 0.875 \times 10.25}=68 \mathrm{psi}$.
Sec. 2613, H.B.C. gives allowable $v=0.02 f_{c}^{\prime}=60$ psi. without web reinforcement. Stirrups are needed.

Stirrup design will be as shown on page 30, A.C.I. Design Handbook.

Given:

$$
v^{\prime}=8 \text { psi.; } b=8 \text { in.; } f_{\imath}=16,000 \text { psi.; } f_{c}^{\prime}=3,000 \text { psi. }
$$ No. 6 wire U-stirrups; $A_{\omega}=0.0648 \mathrm{sq}$. in.

$\frac{S}{5.66}=\frac{8}{68} \quad S=0.666 \mathrm{ft}$.
$A_{2} f_{2}=16,000 \times 0.0648=1,040$
$\frac{1}{8}=\frac{v^{\prime} b}{A_{r} f_{v}}=\frac{8 \times 8}{1,040}=0.0615$
$\mathrm{N}=6 \mathrm{~S}\left(\frac{1}{\mathrm{~s}}\right)=6 \times 0.666 \times 0.0615=1$ stirrup
Index $=\frac{1.5 S}{\frac{1}{s}}=\frac{1.5 \times 0.666}{0.0615}=16.3$

Froin diagrain 17-, 1 stirrup is required.
The A.C.I. Joint Cominttee gives the suacing of vertical sitrrups as
$s=\frac{A_{r} f_{v} j d}{V}$ where $V^{\prime}=v^{\prime} b j d=8 \times 0.875 \times 8 \times 10.25=573$ lo.
$s=\frac{1,040 \times 0.875 \times 10.25}{8} \times 15.3 \mathrm{in}$.
$\mathrm{s}=0.66 \mathrm{x} 12=8 \mathrm{in}$.
Use 5 U-stirrups spaced $2,3,3,3,3$ in. It will be necessary to use two $\frac{3}{8}$ in. round bars at the top of the lintel to anchor
the stirmups. Desien is shown in Fig. 21.
Living Koom Lintel
Clear opening is ' 20 ft . Desien span is 20 ft .8 in . Design will be by methods of paces 8 and 9, A.C.I. Design Handbook.

Given:

$$
\begin{aligned}
& f_{s}=20,000 \text { psi.; } n=10 ; f_{c}=1,200 \text { psi. } ; b=8 \text { in. } \\
& f_{c}^{\prime}=3,000 \text { psi.; } w=827 \text { lo. per ft. }
\end{aligned}
$$

The value of w is only approxinate since it is the loading due to comined dead and live loads on a lintel $7 \frac{3}{4}$ in. deep. $M=\frac{827}{8} \times 20.667^{2}=44,100 \mathrm{ft} .1 \mathrm{~b}$.

From Table 1, for $20,000 / 10 / 1,200, \quad K=197$
$\frac{\mathrm{M}}{\mathrm{K}}=\frac{44.1}{197}=0.224=\mathrm{F}$
From Tasle 4, select b $\mathrm{x} \mathrm{d}=6 \times 18.5 \quad(\mathrm{~F}=0.228$)
An overall depth of 20 in . would be required with no compressive reinforcement.

NOSA!

Redesign with a depth of $15 \frac{3}{4} \mathrm{in}$.
$w=827+\frac{8}{12} \times \frac{8}{12} \times 1 \times 150=894 \mathrm{lb}$. per ft .
$\mathrm{M}=\frac{894}{8} \times 20.667^{2}=47,750 \mathrm{ft} .1 \mathrm{~b}$.
$\mathrm{d}=14.25 \mathrm{in}$.
From Table 4, for $\mathrm{b} \times \mathrm{d}=8 \times 14.25: \mathrm{F}=0.1355$
$M=\quad 47.75$
$K F=197 \times 0.1355=26.7$
$\mathrm{M}-\mathrm{KF}=\quad 21.05$
Compressive reinforcement is required since ($\mathrm{M}-\mathrm{KF}$) is positive. From Table 7 , for $20,000 / 10 / 1,200$ and $\frac{d}{d}-0.105: c-0.59$
$A^{\prime}-\frac{\mathrm{K}-\mathrm{KF}}{\mathrm{cd}}-\frac{21.05}{0.59 \times 14.25}-2.5 \mathrm{sq}$. in.
From Table l, for f - 20,000: a - 1.44
$A-\frac{1}{a d}-\frac{47.75}{1.44 \times 14.25}-2.33 \mathrm{sq}$. in.
Sec. 2613, H.B.C., u - $0.04 \mathrm{f}^{\prime}-120 \mathrm{psi}$.
V - $\frac{\mathrm{wl}}{2}-\frac{894}{2} \times 20.667-9,230 \mathrm{lb}$.
乏. $-\frac{8,000 \mathrm{~V}}{7 \mathrm{ud}}-\frac{8,000 \times 9.23}{7 \times 120 \times 14.25}-6.18 \mathrm{in}$.
From Table 5, use two $1 \frac{1}{8}$ in square bars at both the top and bottom of the lintel to Eive A - 5.08 sq . in. and $\boldsymbol{\Sigma}_{0}=18 \mathrm{in}$. From Table 6 , minimun web width is ε in. with snecial anchorace. Sec. $2619, \mathrm{H} .3 . \mathrm{c}$. requires that the two $\frac{1}{8}$ in. top bars be bent down to form a semi-circular hook of mininum radius of 4 bar diameters. The bottom bars will be bent up to the same radius.

Sec. 2618, H.B.C.
$\mathrm{v}=\frac{\mathrm{v}}{\mathrm{bjd}}=\frac{9,230}{8 \times 0.075 \times 14.25}=92.5 \mathrm{psi}$.
Sec. 2613, K.E.C. Eives allowable $v=0.03 f_{c}^{\prime}=90$ psi. with no web reinforcement ut with anchorace of loncitudinal reinforcenent.

Use 5 U-stirrups made of No. 6 wire and spuced at $2,3,3,3,3$ in. as stown in Fig. 22. Investication of Iindow Areas
the next step is an investicution to see if the windows will withstand the force of the wind. Don Graf's rechnical. Sheets give a formula to exaraine a eless pane on the pressure side for streneth as
$P A=3.48 \mathrm{Nt}^{2} \mathrm{~F}$ where
M - modulus of rupture which is taken as 6,000 pounds per sq. in. The formula now cecomes approximately

$$
P=\frac{21,000 t^{2} F}{A S} \quad \text { in which }
$$

$P=$ the pressure in pounds per sq. ft.
$\mathrm{t}=\mathrm{the}$ thiciness in inches
$A=$ the area in square feet
$F=$ the factor for ritio of width to height of the pane
$S=$ Safety factor. Safety factor of either E to 10 is recommended, dependine on elass application. For example, for fliss suojected to pressures less than 40 pounds per square inch, a safety factor of 5 is used. Then the pressure exceeds 40 psi., a safety factor of 10 arbitrarily is used.

Ratio	Factor
Width-Feigrt	(F)
10:10 (square)	1.000
$9: 10$	1.005
$8: 10$	1.02
$7: 10$	1.07
6:10	1.14
$5: 10$	1.25
$4: 10$	1.45
$3: 10$	1.8
$2: 10$	2.6
$1: 10$	5.0

The Libbey-Owens-Ford Glass Also makes a tempered plate glass called Tuf-flex which has a modulus of rupture of 30,000 psi.

Master Bedroom ilindows
This winow is shown in Fig. 13. The center unit is a Thermopane unit 36 in. or 3 ft . wide and $48 \frac{3}{4}$ in. or 4 ft . hieh. Thernopane is a factory-built transparent insulating glass unit for windows composed of two or more lichts of glass separated oy $\frac{1}{4} \mathrm{in}$. or $\frac{\frac{1}{2}}{} \mathrm{in}$. of dehydrated air space and hermetically sealed around the edees at the factory with a patented metal-to-glass bond. The ond between the metal seal and the Elass will withstund a shearin: force greater than 1,000 psi.

From Table 2 with wind from the suth there is 41.2 psf.
suction on the north side. If we assure that elazine methods will anchor the glass sufficiently to keep the panes from poppine out, we can use this pressure to investigate. The thickness necessary to withstand the pressure is expressed by

$$
t=\sqrt{\frac{\text { PAS }}{21,000 F}}=\sqrt{\frac{41.2 \times 12 \times 10}{21.000 \times 1.07}}=0.468=\frac{15}{32} \mathrm{in} .
$$

The thickest glass made for Thermopare units is 4 in. The $\frac{7}{32}$ in. sheet glass is double strength. ifith double streneth Elass the thickness required would be $\frac{15}{64} \mathrm{in}$. This elass can be considered as safe since the factor of safety might have been taken as 5 with the consideration that the pressure was so near the 40 psf . recommended for a safety factor of 5 .

The swinsing casements on esch side of the picture window have lights $16 \frac{5}{16} \mathrm{in}$. or 1.36 ft . wide and 12 in . or $1 \mathrm{ft} . \mathrm{hich} . \mathrm{A}=1.36 \mathrm{sq} . \mathrm{ft}$.
$\frac{1}{1.35}=\frac{7.4}{10} \quad F=1.07$ with width and height dimensions reversed
$t=\sqrt{\frac{\text { PAS }}{21,000 \mathrm{~F}}}=\sqrt{\frac{41.2 \times 1.36 \times 10}{21.000 \times 1.07}}=0.157=\frac{5}{32} \mathrm{in}$.
$\frac{3}{16}$ in. sheet glass satisfy the requirenents for area and thiceness.

The swinging casements are double elazed. The double glazing is essentially an inside storm window that can be replaced by screens in the sumner. This is a very desirible feature from the standpoint of reducinc heat losses thru the glass areas.

Utility koom Window
This window has 6 lights $16 \frac{5}{16}$ in. or 1.36 ft . wide and 1 ft. high as shown in Fig. 13. Again we can use $\frac{3}{16}$ in. thick sheet elass. It is a dousle elazed horizontal eliding unit. Laundry and Breakfast Alcove Vindows

Fig. 11 shows these dou'ile Elazed horizontal Eliding units. Both windows have 6 Iights $27 \frac{5}{8}$ in. or 2.3 ft . wide and 1 ft . hich. Area of 1 light is 2.3 sq . ft. $\frac{1}{2.3}=\frac{4.34}{10} \quad F=1.45$ with width and heicht dimensions reversed From Table 2, with wind from the suth, the maximum velocity pressure on the east wall is 44.8 psf. suction. Aeain assunins that the elazing methods will prevent the panes from popping out, the 44.8 psf. can be used as a desien factor.

$$
t=\sqrt{\frac{\text { PAS }}{21,000 F}}=\sqrt{\frac{44.8 \times 2.3 \times 10}{21,000 \times 1.45}}=0.184=\frac{3}{16} \text { in. }
$$

Use $\frac{3}{16}$ in. thick sheet Elass.
Kitchen Window
This double Elazed horizontal हlidine window is pictured in Fig. 11. There are 4 lights $24 \frac{5}{8}$ in. or 2.05 ft . Wide and 10 in. or 0.833 ft. high. The area of one 11 ht is $1.71 \mathrm{sq.ft}$. $\frac{0.833}{2.05}=\frac{4.06}{10} \quad F=1.45$ with wiath and heisht dimensions reversed

$$
t=\sqrt{\frac{\text { PAS }}{21,000 \mathrm{~F}}}=\sqrt{\frac{44.8 \times 1.7 \times 10}{21,000 \times 1.45}}=0.1595=\frac{11}{64} \mathrm{in}
$$

Use $\frac{3}{16}$ in. thick sheet class.

Dining Room Vindow
The unit as shown in Fie.ll consists of a picture window of Thermopane with swinging caserent windows on each side with double elazing. The swineine caserient lichts are 164 in . or 13.5 ft . wide and 1 ft . hich.

$$
t=\sqrt{\frac{\text { PAS }}{21,000 F}}=\sqrt{\frac{44.8 \times 13.5 \times 10}{21,000 \times 1.07}}=0.164=\frac{11}{64} \mathrm{nn} .
$$

Use $\frac{3}{16}$ in thick sheet Elass
The picture window is 55 in . or 4.56 ft . wide and $60 \frac{7}{8} \mathrm{in}$. or 5.07 ft . high. Area $1 \mathrm{~s} 5.07 \times 4.56=23.1 \mathrm{sq}$. it.

$$
\begin{aligned}
& \frac{4.56}{5.07}=\frac{9}{10} \quad F=1.005 \\
& t=\sqrt{\frac{\text { PAS }}{21,000 F}}=\frac{44.8 \times 23.1 \times 10}{21,000 \times 1.005}=0.686 \mathrm{in} .=\frac{11}{16} \mathrm{in} .
\end{aligned}
$$

The thickest elass made for Thermopane units is $\overline{4}$ in. Neither the double strength sheet Elass nor the Tuf-flex heat treated عlass are fabricated in this width.

The i in. plate elass will stand
$P=\frac{21,000 t^{2} F}{A S}=\frac{21,000 \times 1.005}{16 \times 23.1 \times 5}=11.44 \mathrm{psf}$.
The wind velocity in miles per hour (V) which is eqivalent to given pressures in pounds per square foot may be found from the formula

Pressure $\sim 0.004 \mathrm{v}^{2}$

$$
V=\sqrt{\frac{P}{0.004}}=\frac{\overline{11.44}}{0.004}=53.4 \text { miles per hour }
$$

This window can be expected to rupture. From Table 2, it cen be seen that the window will pop out with wind from the south with 44.8 psf. suction and also pout with wind from the
north with 41.4 osf. suction. With wind from the east, the window will rupture inward under a pressure of 25.9 psf. Living Room ilindow

This window is shown in Fig. 10. The center unit is $75 \frac{9}{16} \mathrm{in}$. or $6.29 \mathrm{ft} . \mathrm{hich}$ and $48 \frac{\mathrm{ll}}{16} \mathrm{in}$. or 4.05 ft . wide. The unit is a Thermopane unit and hes an area of 25.5 saft f. With the wind from the north, the maximum velocity pressure is 37.8 psf. suction. Assuming that glazine methods are adequate to keep the elass from poppine out the 37.8 psf. cun be used as a design criterion.

$$
\begin{aligned}
& \frac{4.05}{6.29}=\frac{6.43}{10} \mathrm{~F}=1.14 \text { with the width and heisht dimensions } \\
& \text { reversed } \\
& t=\sqrt{\frac{\text { FAS }}{21,000 \mathrm{~F}}}=\sqrt{\frac{37.8 \times 25.5 \times 5}{21,000 \times 1.14}}=0.458=\frac{15}{32} \mathrm{in} .
\end{aligned}
$$

Again the thickest elass made is in. and douvle streneth sheet glass and heat treated Tuf-flex are not fabricated in this width. With 4 in. plate elass, the window will stand

$$
P=\frac{21,000 t^{2} F}{A S}=\frac{21,000 \times 1.14}{16 \times 25.5 \times 5}=11.73
$$

The aporoximate equivalent wind velocity is

$$
V=\sqrt{\frac{P}{0.004}}=\frac{11.73}{0.004}=54.1 \text { miles per hour }
$$

From Table 2, it is aparant thet with wind from the east the window would pop out with a velocity pressure oi 32.6 psf. suction. With wind from the nrth, the window w uld akain pop out with a velocity pressure of 37.8 psf. suction. With wind from the south, the window would rupture inward under a pressure of 17.3 psf .

The compunion units on eich side of the picture window are dou le clazed horizontal Elidinc units. These are units haviñ panes $30 \frac{5}{8} \mathrm{in}$. or 2.55 ft wide and 1 ft . high. Area is 2.55 sq. ft.

$$
\begin{aligned}
& \frac{1}{2.55}=\frac{3.92}{10} F=1.45 \text { with width and heicht dinensions } \\
& \text { reversed } \\
& t=\sqrt{\frac{\text { PAS }}{21,000}}=\sqrt{\frac{37.8 \times 2.55 \times 5}{21,000 \times 1.45}}=0.1255=\frac{1}{8} \mathrm{in} .
\end{aligned}
$$

Use $\frac{3}{16}$ in. sheet \&less
Galler' Windows
As shown in Fie. 12, panes are $24 \frac{5}{8}$ in. or 2.05 ft . wide and 10 in . or 0.834 ft . hich. These units are double elazed horizontal elidine units. The area of one pane is 1.7 sq . ft. $F=1.45$ with width and height diaensions reversed With wind from the west a pressure of 62.1 psf. is exerted.

$$
t=\sqrt{\frac{\text { PAS }}{21,000 F}}=\sqrt{\frac{62.1 \times 1.71 \times 10}{21,000 \times 1.45}}=0.188=\frac{3}{16} \text { in. }
$$

Use $\frac{3}{16}$ in. sheet elass
All small panes will withstand a 125 mph. wind. Eicture windows on the south and west sides will rupture and have an equal chance of popping out. These windows should be insured with windstorm insurance.
Chimney Jooting

The footing will have its bse five feet below the floor slab to duplicate the worst conditions that micht be encountered such as soft soil bearing areas or a slope that would require a fill to the level of the floor slab. Weichts of the
concrete blocks will averace approximately 40 pounàs with mortar joints where concrete blocks are used below grade and cinder clocks above erade.

Firenlace dimensions approximate 32 in . by 56 in . The footing is δ in. thick and 8 in. wider tran the widh and leñth of the fireplace makine its dinensions 40 in . x 64 in . Weicht of the footine is

$$
\frac{40 \times 64 \times 8}{1,728} \times 150=1,5451 \mathrm{~b} .
$$

Above the footine sre 4 tiers with 9 blocks around the circurference of each tier. The wei ht of these blocks are $40 \times 9 \times 4=1,440 \mathrm{lb}$.

On these blocks is a 4 in . concrete slab which is the floor of the esh pit. This siab weight is

$$
\frac{32 \times 56 \times 4}{1,728} \times 150=6221 \mathrm{l}
$$

Above the slab are 2 tiers of blocks with 9 slocks ar und the circumference of each tier. These blocks form the ash pit. One olock will be left out of the outside wall to remove the asies. lei ht of the elocks is

$$
17 \times 40=680 \text { pounds }
$$

Assume that the weicht of one half the filor span across the wiuth of the ireplace is curried down to the footin. Then this weieht is

$$
\frac{6 \times 56 \times 9.5}{144} \times 150=3,32010 .
$$

The top of the fireplice mantel is 6 blocis hith. There are 5\% blocks on the back side and the ends in each tier. They weith

$$
5.5 \times 6 \times 40=1,320 \mathrm{lt} .
$$

The s:noike shelf weiths approxinately

$$
\left(\frac{8 \times 8 \times 40}{1,728}+\frac{8 \times 16 \times 40}{2 \times 1,728}\right)(150)=44410
$$

The precist concrete mantel and concete forming the smoke chumber weigh

$$
\left(\frac{8 \times 8 \times 56}{2 \times 1,720}+\frac{8 \times 4 \times 56}{1,728}\right)(150)=36010 .
$$

There are ten more tiers to the top of the chinney. There are two 8 x 8 in. flue linines. One tier consists of 9 masonry units and 8 concrete brioks with 4 hollow units 4 in. thick. The bricks weigh 5.5 lio. The weichts of these units are

$$
10 \times 11 \times 40+10 \times=.5 \times 8=4,84010 .
$$

For details of fireplace aid chimney construction reer to F1E. 38, Facts About Concrete Kasonry by the National Concrete Rusonry Association.

The total weicht bearing on the soil is $1,545+1,440+622+3,320+444+360+4,840$ =12,571 10.

Sec. 2802, H.B.C. Eives the allowable bespine capacity of soft clay, sandy loan or silt $\mathrm{a}=\mathrm{l}$ l ton per sq. ft. This section also says that the footine shall be desiened so thet the allowable bearine capacity specified for the particular soil shill not be exceeded. Pressure exerted on the soil is

$$
\frac{12,571}{3.33 \times 5.55}=708 \text { lb. per sq. ft. }
$$

The allowable soil pressure is not exceeded.
 stresses in footins as 0.25 fe without reinforceinent.
$+$
\div
,

This is $0.25 \times 3,000=750$ psi. Pressure exerted on the footing with eross area of each hlock equal to 128 sq . in. is

$$
\frac{11,026}{9 \times 128}=9.6 \mathrm{psi} .
$$

This does not exceed the allowaile.

wall Footing

The heaviest load the could be oroucht on the footine would e the case where the core areas of cil blocks e.cove the floor slab were filled with concrete. Roef slab his a dead wei ht of 70.3 psf. and a span of 21.58 ft . includieg the overhane. The floor slaj has a span of 19 ft . and a dead load of 75 psf . Load along a 16 in . lencth of will is

$$
\begin{aligned}
& 1.33 \times 70.3 \times \frac{21.58}{2}+\frac{8 \times 16 \times 7.5}{144} \times 150+75 \times 1.33 \times \frac{19}{2} \\
& +6 \times 32=3.15210 .
\end{aligned}
$$

The footing extends out 4 in . on each side of the wall and is 8 in. thick. Its weicht per 16 in. leneth is

$$
\frac{16 \times 16 \times 8}{1,720} \times 150=17810 .
$$

The compression in the footin: is

$$
\frac{3,152}{128}=24.6 \mathrm{psi} .
$$

Sec. 2622, H.S.C. ives the aliowable compressive unit stress as $0.25 \mathrm{f}_{\mathrm{c}}^{\prime}$ without reinforcenent. This is $i .25 \times 3,000=$ 750 psi.

Pressure exerted on the soil is

$$
\frac{(3,152+17 \varepsilon)}{16 \times 16} \times 144=1,875 \mathrm{psf} .
$$

Sec. 2002, $n .3 . c$. Eives allowaile bearine cupecity of soft clay, sandy loan or silt as l ton per sq. ft. This ailowable bearing capacity is not exceeded.

Forms for Roof $31 u \mathrm{~b}$
Forms for the roof slab will be designed as suggested on oses 50 to 60 , reinforced Joncrete Design. For soffit forms use 1 x 8 in . square edge timber. Finished size is $\frac{3}{4} \times \frac{7}{8}$ in.

Live load of pouring crew
It. Of concrete slab
Formwork, etc.
$\mathrm{f}_{\boldsymbol{\omega}}=\frac{\mathrm{C}}{\mathrm{I}}$ and $\frac{\mathrm{I}}{\mathrm{c}}=\mathrm{S}$
$\because=f_{\omega} S$ where S for a rectangle $=\frac{1 h^{3}}{\frac{12}{\frac{h}{2}}}=\frac{b h^{2}}{6}$
$\therefore=\frac{f_{w} b h}{b}$
f_{ω} is commonly tarim is 1,800 psi. and
$\vdots=\frac{i_{1}^{2}}{12}=f_{\omega \frac{b d}{}}^{6}$
As the stringers will probubly require closer spacing than the she thin, beck their capacity first. Tr 4×10 in. stringers and compute the maxi un spacing from wii $\frac{1}{\delta} 2=f_{w}$ with a 19 ft. sown.

$$
\begin{aligned}
& 155 \mathrm{~s} \times 19 \times 19 \times 1.5=1,800 \times 55.41 \\
& \mathrm{~s}=\frac{1,800 \times 55.41}{155 \times 361 \times 1.5}=1.21 \mathrm{ft} . \text { or } 14.5 \mathrm{in} .
\end{aligned}
$$

The flexual stress oi the decking, usia - wi for full continuity is

$$
\begin{aligned}
& 155 \times 1.21^{2}=12 \times \frac{3}{4} \times \frac{3}{4} \times \frac{1}{6} \times \mathrm{f}_{\omega} \\
& \mathrm{f}_{\omega}=\frac{155 \times 1.45 \times 96}{1 \longleftarrow \times 9}=202 \mathrm{psi}
\end{aligned}
$$

 Ine decking can be left with spaces between the boards since corkooard is placed on the decking beiore the concrete is poured. The ceiline forms are constructed 1 in. deeper than the thickness of the concrete slab. Sefore placin the reinforcing steel and the pourin: of the concrete, ne course of coriboard 1 in. thick shall be laid down in the orns. All tranguerse joints shsill be broken and all joints made ticht. Galvanized wire nails shall be driven obliquely into the corkoard-two to the square foot-the heads to be left protruding approximitely $1 \frac{7}{2}$ in. 'he reinforcing steel shall then be put in and the concrete poured.

Nith 4×4 in. shorin spaced 6 ft . apart, the load on a shore with the slab weighine 70 psf. and forms, etc. weighing 2 psf., is

$$
95 \times 6 \times \frac{14}{12}=65510
$$

Cross sectional area of the shoring is 13.14 sq. in. and the shorins is stressed to

$$
\frac{655}{13.14}=51 \text { psi. }
$$

Allowable stress is

$$
1,200\left(1-\frac{L}{80 D}\right)=1,200\left(1-\frac{76}{80 \times 4}\right)=916 \mathrm{psi}
$$

411 lumber must be graded No. 2 or better to use these stresses. Shorine has 4×4 in. tee-head raced with 1×6 in. boards. In erecting provide a sill piece under the shores to diatribute the weight over the slab. I x 4 in. ribibon rracin: is placed hich enouch above the floor to permit walkine below.

Heat Trans.ission Losses

Heat transmission of the various materials wiil be iven as a matter of comparative efficiency as an insulating material. Yeating and ventilating eafineers mensure heat losses in terms of ritish thermal units (3.t.u.)-units used to nesure heat in much the same amner as we use pounds to measure weight. Standard wood frame construction with $\frac{3}{4}$ in. plaster on metal lath has a heat loss of 0.26 E.t.u. per sq. ft. per hour per derree F^{\bullet} difference in temperature. This firure, 0.26 B.t.u. loss, is considered by reutin and ventilating encineers as not excessive as fur as efficiency is c^ncerned. In fact, it is quite generally ascepted as the basinc noint on wich efficiency or inefficiency of heat losses may be messured. The Univers ty of $\operatorname{linnesota}$ in tests concucted, found that fillinc the cores of a standara 3-oval core $8 \times 8 \times 16$ in. unit with re:ranilated cori, rock wool, or similar ranular or loose fill material wi亡h equivalent insulation values would reduce the heat losses throufh the plain concrete masonry wall substantially 50 per cent. The coefficient of heat trunsinsion of \dot{u} of a plain wall, either with or withov* olester a.d with loose or eranular fill in cores is O. 20 B.t.u. per sq. ft. per hour per deeree F^{0} difference in temperature. Two coats of portland cement viint reduce the vilue of U on plain concrete masonry wails 0.03 B.t.u. Without cores filled U is 0.40 B.t.u.

While a certin amount of wall insulation is desiruble in all types of mosern builanes, in generial the i:mportance of adaitionel wall insulation in reducine fuel costs has been
over-emphasized. The increisine use of lareer indow areas in buildines of all types is placing ereater emphasis on window insulation than on wall insulation. If the wirdow area of a vilaing is increased only 3 per cent, the relative importance of wall insulation in reduci:e fuel costs is reduced σ per cent. This is true because ordinarily a wreater amount of heat is lo through the windows than through the wall of each buileire.

The coefficient U for dible Thermopane is 0.57 and U for double glazing is 0.61 As a coiparison a single glass pane has a U of 1.07 E.t.u.

Heat losses of a $27 \times 34 \mathrm{ft}$. unirisulated $1 \frac{\bar{⿺}}{2}$ story house built with light-weicht concrete masonry exterior walls, furred metal lath and plastered interior finish, with 25 per cent of the wall area in windows and doors, will be approximately

35 per cent through windows and doors

| 30 " " " | " | |
| :--- | :--- | :--- | :--- |
| 20 " | " | the walls |

15 " " around all wall openincs
Heating encineers eenerally asree that little is to be gained by reducing the heit loss beyond 0.15 B.t.u. In other words, the cost of insulation to provide a wall with a heat loss below this point may be out of proportion to the fuel saved. To secure this condition in ε in. concrete masonry or exterior frame walls requires the adiltion of 1 in . of ricid insulation or its equivilent. This amount of insulation in the above typic:l house would reduce the actual fuel bill only 8 per cent.

Frovidine storn windows and doors for this house would reduce the fuel cost a'out 18 per cent and crovidinc insulation in the roof equivalent to 3 in. of rock wool or similar material would reduce the heatin: cost 15 per cent.

The floor slab is poured on a layer of Foamelas 4 in. thick which has a thermal coefficient of $0.40 \mathrm{~B} . \mathrm{t} . \mathrm{u}$. at 50 F . Foamclas is class made in celiular form a d cut into accurately sized blocks. Jach cell is clos三d and impervious to air or water. Foamelas is permanent and firenroof and has a crushine streagth of 150 psi.

The roof slab with 1 in. corkboard and standard roofinc has a heat transmission coeificient U of 0.20 .

The refrigerated cold storace room wili require 4 inches of corkboard to keep the room at the recommended 30 F . FINIS

1. Nolander, 玉.G., "Incineering Analysis of Wind Loads on Far! $u i l a n g s, "$ Arricultural Encineering, Jan. 1947.
2. "Reinforced Conorete Houses," Portlad Cement Acsociation, 33 West Grand Avenue, Chice,
3. "Buildine Code," City of touston, Texac.
4. "Reinforced Concrete Design :"andboon," American Concrete Institute, Detroit, ichican.
5. Sutherland, Eale and reese, Raymond C., "Reinforced Concrete Desien," John Wiley \& Sons, Inc.
6. "Report oi Joint Comittee on Standard Specifications for Concrete and Reinforced joncrete jumattins iecomended Practice and Standard Sue aifications for Soncrete and Reiniorced Concete," thira printine, AUE. 1944, American Concrete institute, Ietroit, : ichiexan.
7. "Don Sraf's Technical Sheots on Thernopane," Liobey-CwenFord lass Company, Toiedo 3, Chio.
8. Richart, F.E., Jooaworth, B..., Dorman, R. "Tests of the Staoility or Concrete Nasonry ifalls," A.E.T. Proceedines, Yol. 3l, part 2.

ROOM USE ONLY

M12? McCall
c. 1

