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ABSTRACT

OPTIMIZATION OF ELECTROMAGNETIC DEVICES AND MATERIALS

By

Kazuko Fuchi

Topology optimization is a computational design methodology that is used to find topolo-

gies of optimal design, that match design goals. Application of topology optimization in the

area of electromagnetics is extremely interesting, since for many electromagnetic design prob-

lems the topology of inclusion structures in materials or components in devices can have a

dramatic effect on the interaction of the designed structure with the electromagnetic waves.

The success of the use of topology optimization for design of metamaterials, antennas, waveg-

uides, etc. reported in literature suggests the importance of research into effective uses of

topology optimization in electromagnetic design problems.

The purpose of this dissertation is to investigate efficient electromagnetic analysis meth-

ods that can be combined with the method of topology optimization, as well as to develop a

new way of using topology optimization to design electromagnetic devices with transformable

complex surface geometry, using the concept of origami.

The first part of the dissertation focuses on the investigation of a topology optimization

framework for design of periodic structures for electromagnetic applications, using a rigorous

and efficient finite element analysis method. The second part introduces a topology opti-

mization based design method for origami folding patterns. To illustrate its use, the origami

design method is employed to design frequency selective surfaces for electromagnetic applica-

tions, that can transform in their surface geometry to alter their working frequency through

folding and unfolding.
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Chapter 1

Introduction

Topology optimization is a computational design methodology that is used to find topologies

of optimal designs that match design goals. It was first introduced in the context of structural

design by Bendse and Kikuchi in [1]. Optimal topologies of structures are found through

indicator functions, used to represent the effective “density” of a material in each element

in the finite element formulation. In [1] effective material properties of each element are

computed using a homogenization method and used in the constitutive equations. Within

the last two decades, the use of topology optimization has been extended to material design

[2] with target properties involving many different physics [3], including thermal [4] and fluid

mechanics [5] [6] [7], acoustics [8] [9], photonics and electromagnetics [10]-[26].

Application of topology optimization in the area of electromagnetics is extremely interest-

ing, since for many electromagnetic design problems the topology can have a dramatic effect

on the interaction of the designed structure with the electromagnetic waves. An example of

such instance is design of metamaterials. Metamaterials are engineered materials composed

of metallic or dielectric inclusions within a unit cell of a periodic array, and they exhibit
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Figure 1.1: Design of an SRR

extraordinary electromagnetic properties. A particular type of metamaterial is known to ex-

hibit negative index of refraction, a property that is not possessed by any natural occurring

material. The negative index of refraction material is theorized by Pendry in [27], and a com-

posite design in the radio frequency (RF) range was proposed by Smith [28] and fabricated

and tested in [29] where the possibility of synthesizing such materials was demonstrated.

In [28] and [29], a combination of metallic elements; a wire for negative electric permittiv-

ity and a split ring resonator (SRR) for negative magnetic permeability, is used to achieve a

negative index of refraction. One example of SRRs is the concentric rings with gaps, shown

in Fig.1.1. The topology of such an element is of crucial importance, and a small variation

to its topology could alter the design’s electromagnetic behavior dramatically. For instance,

filling the gaps of the SRRs and closing the rings would create a short, and the negative

magnetic permeability will no longer be observed. The ability to find the topology of one

design with such a unique character is of significant value, as the design can be modified

through e.g., parametric or shape optimization, to be incorporated into various applications.

In case of the negative index refraction metamaterial in [28] and [29], the topology of the

original design was found through physical insights. Topology optimization can be an effi-
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cient alternative to finding the starting point of a design process. The work done by Diaz and

Sigmund in [19] revealed that metamaterials with negative permeability can be designed via

topology optimization, and not all the negative permeability elements have to have a similar

geometry as the SRRs.

A popular choice of a design optimization algorithm for electromagnetic problems is a

genetic algorithm (GA). Its main advantage is simplicity in implementation, especially for

design of advanced electromagnetic devices that requires complex analysis. An introduction

to GA for electromagnetic problems and details on the implementation of sample problems

are provided in [30]. In [31] Ouedraogo et al. use a GA-based topology optimization method

to design a miniaturized antenna. A rectangular section placed above a loop antenna is

treated as a design domain, which is divided into rectangular subdomains. Each subdo-

main is assigned a 1 or 0, which indicates whether copper should be placed(1) or not(0). A

combination of 1’s and 0’s constitutes a chromosome, and a best fit chromosome is selected

by means of natural selection through mating, mutation and selection of best performing

chromosomes at each iteration. Similar approaches have been used to design frequency selec-

tive surfaces, metamaterials and antennas in [32]-[34]. A notable disadvantage of designing

electromagnetic devices using GA-based topology optimization is that many iterations are

necessary to obtain an acceptable design. Moreover, the stopping criteria are not based on

optimality conditions, and the solution is not guaranteed to be optimal.

Rigorous topology optimization methods using gradient-based algorithms have also been

used to design electromagnetic devices in [10]-[26]. Gradient-based topology optimization

methods can lead to faster convergence, and solutions satisfy optimality conditions. The

challenge in using gradient-based methods is the computation of sensitivity of the perfor-
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mance with respect to the design. Special care needs to be taken in choosing the design

control and performance measure, and analysis methods that allow for efficient computation

of sensitivity need to be selected. Finite element methods (FEM) and finite difference time

domain (FDTD) methods are the two common analysis methods that have been used for

analysis in the frequency domain and time domain, respectively, when using topology op-

timization as the design method. Earlier works employ the finite element method for the

availability of an efficient sensitivity analysis method based on an adjoint variable problem

formulation. A typical choice of the design variable is an indicator function used to describe

the constituent dielectric or conducting material distributed within the design domain. Ex-

amples of the use of topology optimization in conjunction with the finite element analysis

include the design of patch antenna substrates by Kiziltas et al. [11], photonic waveguides

by Jensen and Sigmund [12], [14], and periodic structures for transmission power control by

Nomura et al. [20]. In those works the density function describing the dielectric material

distribution is defined over two-dimensional domains and used to control the design through

an interpolation scheme. Aage et al. [25] and Erentok and Sigmund [26] used a similar for-

mulation but with the density function defined over a three dimensional domain describing

the distribution of conducting material for design of antennas. Development of the adjoint

variable method for the sensitivity analysis for FDTD in [35]-[37] let us to choose FDTD as

an analysis method when appropriate. In [16] Nomura et al. designed dielectric antennas

via topology optimization using a density function as the design variable that describes the

dielectric distribution within a 3D design domain, and the FDTD method to find the electric

and magnetic fields, which are used in the performance measure.

Increasing demand for an improved performance in advanced electromagnetic devices
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and materials indicates the importance of the development of topology optimization methods

suited for electromagnetic design problems. To work with state of the art systems, an efficient

use of the available computational resources is essential. The purpose of this dissertation

is to investigate efficient electromagnetic analysis methods that can be combined with the

method of topology optimization, as well as the effective use of topology optimization in

solving electromagnetic design problems e.g., a good choice of design variables.

This dissertation consists of two parts. Chapters 2-4 focus on the investigation of a

topology optimization framework for design of periodic structures for electromagnetic appli-

cations, using a rigorous and efficient finite element analysis method. Chapters 5-6 discuss a

new design method that incorporates topology optimization and the concept of origami for

design of electromagnetic devices involving a complex 3D geometry. A short description of

each chapter is given below.

In chapter 2, the finite element framework for the electromagnetic analysis is discussed.

The focus is on the analysis of the electromagnetic wave propagation through periodic media.

The discussion extends to the implementation of a rigorous and efficient mesh truncation

technique based on plane wave expansions.

In chapter 3, topology optimization problems for design of two dimensional periodic di-

electric structures are discussed. Two variations of the topology optimization problem solved

in [20] are solved using alternative formulations. The goal of the problem is to find peri-

odic dielectric structures that exhibit desired electromagnetic wave transmission/reflection

characteristics in the frequency domain. The first variation uses a level set function for the

representation of the material distribution, and the second variation uses a different type of

mesh truncation method in the finite element formulation.
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In chapter 4, topology optimization problems for design of three dimensional periodic

dielectric structures are discussed.

In chapter 5, a new approach to designing tunable electromagnetic devices is introduced,

which makes use of a transformation of complex surface geometry through folding. Sample

designs of frequency selective surfaces (FSSs) that can be tuned in the working frequency

through a folding and unfolding motion are provided.

In chapter 6, a method to design origami folding patterns based on topology optimization

is introduced. The mathematics of origami is used to carry out the analysis of the trans-

formation of a foldable sheet from its flat configuration to the folded configuration. The

design method follows the “ground structure” approach of structural topology optimization,

where optimal folding patterns are found by assigning presence and type of folds to a set of

lines drawn on a two-dimensional domain. The origami design method is then applied to the

design of origami-based tunable FSSs. Folding patterns with desired geometric properties for

the design of tunable FSSs are obtained using the origami design method, and conducting

elements are added as a decoration to the foldable surface to achieve FSSs that can be folded

and unfolded to tune the working frequency.
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Chapter 2

Finite Element Formulation for Time

Harmonic Electromagnetic Waves

Finite element methods can be used to analyze many complex systems and to efficiently

compute the sensitivity of the performance of the system with respect to the design, which

is essential in topology optimization. In this chapter a finite element formulation for the

analysis of electromagnetic wave propagation in the frequency domain is discussed, with an

emphasis on the mesh truncation method based on a plane wave expansion for periodic prob-

lems. There are books available on finite element analysis of time harmonic electromagnetic

waves with details of the formulation and implementation, for example, refer to [38]-[40].

2.1 Constitutive Equations

The electromagnetic wave behavior is governed by Maxwell’s equations:
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∇× E = −∂B
∂t

(2.1)

∇×H =
∂D

∂t
+ J (2.2)

∇ •D = ρ (2.3)

∇ •B = 0 (2.4)

∇ • J = −∂ρ
∂t

(2.5)

where E and H are the electric and magnetic fields, D and B are the electric and magnetic

flux density, J is the electric current density, and ρ is the electric charge density.

When the time dependency is assumed to take the form exp (jωt), Maxwell’s equations

reduce to vector wave equations

∇× E+ jωµH = 0

∇×H− jωǫE = 0 (2.6)

where j =
√
−1 and ω is the angular frequency. Relevant material properties are described

by µ and ǫ, which denote magnetic permeability and electric permittivity, respectively. These

equations can be decoupled and solved as a problem of finding either the electric field or

magnetic field. If the electric field is taken as unknown, the governing equation becomes

∇×
(

1

µr
∇× E

)

− k20

(

ǫr −
jσ

ωǫ0

)

E = 0 (2.7)

where k0, σ, ǫr and µr are the wavenumber in vacuum, electrical conductivity, relative
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permittivity and relative permeability such that ǫ = ǫrǫ0 and µ = µrµ0 with

ǫ0 ≈ 8.854× 10−12F/m

µ0 ≈ 4π × 10−7A ·m (2.8)

For a polarized wave, Maxwell’s equations can be simplified to a scalar Helmholtz equa-

tion. For a TMz (transverse magnetic to z) polarization, the z−component of the electric

field Ez can be taken as the unknown variable and found by solving the Helmholtz equation

∇2Ez + k20ǫrEz = 0 (2.9)

Other electric field components can be expressed in terms of Ez and found by postpro-

cessing.

2.2 Analysis of Periodic Media

Numerical analysis of electromagnetic wave propagation through periodic media has a great

importance as its applications are found in various areas such as modeling of radar, commu-

nication and sensing systems as well as design of engineered materials such as metamaterials.

Analysis setup of structures with 1-D and 2-D periodicity are described here.

2.2.1 Two-dimensional domain, 1-D periodicity

A dielectric medium with a periodicity in one direction (1-D periodicity) can be described by

a distribution of electric permittivity ǫ in a two-dimensional representative domain Ω shown
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Figure 2.1: A two-dimensional representative cell

in Fig.2.1. The material is assumed periodic in the x-direction with a tiling vector e =(d, 0).

A transverse magnetic polarization can be assumed with the electric field component Ez

taken as the unknown variable. The constitutive equation is the scalar Helmholtz equation

in Eq.2.9. To describe a field distribution in a periodic medium with a tiling vector e =(d, 0),

Ez is constrained to follow a Bloch-Floquet condition:

Ez(x+md, y) = Ez(x, y)e
−jmα0d, m ∈ Z (2.10)

where α0 = k0sinθ is the x-component of the propagation vector k of the incident field

Ezin = exp(−jα0x).

2.2.2 Three-dimensional domain, 2-D periodicity

A medium with a periodicity in two directions (2-D periodicity) can be described by a

distribution of constituent materials in a three-dimensional representative domain Ω shown in

Fig.2.2. The structure is periodic in the x- and y-directions with tiling vectors ex =(Tx, 0, 0)

and ey =(0, T y, 0). Constituent materials are described by values of electric permittivity ǫ,

magnetic permeability µ and conductivity σ.

For the 2-D periodic structure, the full-wave analysis is necessary. The electric field

10
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Figure 2.2: A three-dimensional representative cell

formulation of Maxwell’s equations can be adopted, and the vector wave equation in Eq.2.7

can be solved for the electric field E = Exx̂+Eyŷ+Ez ẑ. The Bloch-Floquet condition for

the electric field in this case is

E
(
x+mTx, y + nTy, z

)
= E (x, y, z) exp

(
−jmα0Tx − jnβ0Ty

)
, m, n ∈ Z (2.11)

where α0 and β0 are x− and y−components of the propagation vector k of the incident field

Ein = exp[−j(α0x+ β0y)].

2.3 Finite Element Mesh Truncation Techniques

In the numerical formulation discussed above, an incident electric field is applied at the input

boundary and exits at the output boundary, where no physical boundary exists. To avoid

11



artificial reflections at the input and output boundaries, a mesh truncation technique with

appropriate boundary conditions must be used. Some of the frequently used mesh truncation

techniques are discussed in [39].

2.3.1 Absorbing boundary condition

A relatively simple method is to use an absorbing boundary condition, in which boundary

conditions ensure that any plane wave normally incident to the boundaries is absorbed.

Absorbing boundary condition is formulated as an approximation to Sommerfeld radia-

tion condition as

n̂× (∇× E) + jk0n̂× (n̂× E) ≈ 0 (2.12)

where n̂ is the unit vector normal to the truncation boundary.

When choosing absorbing boundary condition as the mesh truncation technique, the

corresponding (input and output) boundaries must be placed far enough from scatterer or

sources inside of the analysis domain. A rule of thumb is to place the input or output

boundary at least a half wavelength from any scatterer or sources.

For the scalar formulation with the Ez as the unknown variable, Eq.2.12 can be written

explicitly as

n̂ • Ez + jkEz = jk (1 + cos θ)Ezin (2.13)

at the input boundary, with the incident electric field Ezin and

n̂ • Ez + jkEz = 0 (2.14)

at the output boundary.
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Figure 2.3: PML setup for 1-D and 2-D periodic structures

2.3.2 Perfectly matched layer

Another commonly used mesh truncation technique is to place layers of theoretical materials

called perfectly matched layers (PMLs) at boundaries. Examples of PML setups for 1-D and

2-D periodic structures are illustrated in Fig.2.3, where PMLs are placed at the input and

output boundaries, shown in gray.

A PML is a theoretical material designed so that reflection is reduced for a wide range of

frequencies, polarizations and angles of incidence. Reduction of absolute value of reflection

coefficient

|R (θ)| = exp

[

−2kx

∫ L

0
s (z)dzcosθ

]

(2.15)

can be achieved by increasing the integral
∫L
0 s (z)dz. For analysis with a wide range of

frequencies, choosing

s (z) =
σ (z)

ωǫ
(2.16)
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will eliminate the frequency dependency of the PML. PMLs can be combined with a perfect

electric conductor boundary condition

n̂× E = 0 (2.17)

at the outer ends of the PML regions to truncate the mesh. In the case of a TM polarized

formulation with Ez as the variable, Eq.2.17 can be written simply as:

Ez = 0 (2.18)

2.3.3 Plane wave expansion

A rigorous mesh truncation technique is to use a plane wave expansion at the truncation

boundaries, a method discussed in [41] and used to solve an inverse problem.

In this approach, the electric field E at the input boundary is expressed as a combination

of the incident and reflected field as

E
(
x, y, zin

)
= Ein + Eref (2.19)

where the incident field is written in terms of the propagation vector k0 = α0x̂+β0ŷ+γ00ẑ

and a constant unit vector p̂ along the polarization direction of the electric field as

Ein = exp
{
−j
[
α0x+ β0y + γ0

(
z − zin

)]}
p̂ (2.20)

The reflected field is expressed as a Fourier series as
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Eref =
+∞∑

m=−∞

+∞∑

n=−∞
rmn exp

[
jγmn

(
z − zin

)]
exp [−j (αmx+ βny)], n,m ∈ Z

(2.21)

At the output boundary, there is only the transmitted field

E (x, y, zout) = Etr (2.22)

which is also expressed as a Fourier series as

Etr =
+∞∑

m=−∞

+∞∑

n=−∞
tmn exp[−jγmn (z − zout)] exp[−j (αmx+ βny)], n,m ∈ Z

(2.23)

In the three-dimensional formulation, the coefficients rmn and tmn are constant vectors,

and they become scalars for the two-dimensional formulation.

The propagation constant for each mode γmn can be found by

γmn =







√

k20 − α2m − β2n ; α2m + β2n ≤ k20

−j
√

α2m + β2n − k20 ; α2m + β2n > k20

(2.24)

where

αm = α0 − 2πm

Tx

βn = β0 − 2πn

Ty
(2.25)
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It can be seen that only a finite number of modes are propagating modes, and higher modes

will be evanescent. This mesh truncation technique is rigorous since higher modes as well as

the dominant (m = n = 0) mode are included in the analysis. In particular, it is important

to include higher propagating modes, if there are any, as those modes can potentially have

a significant effect. All the propagating modes and some of the evanescent modes should be

included, but in practice any higher modes may be eliminated from the computation of the

sums in Eq.2.21 and 2.23, as they will have a negligible effect on the analysis accuracy.

In the two-dimensional formulation, a similar expansion can be used to truncate the

mesh. At the input boundary Ez can be expressed with reflection coefficients rm as

Ez(x, y) = exp[−jχ0(y − yin)] exp(−jα0x)

+
∞∑

m=−∞
rm exp[jχm(y − yin)] exp(−jαmx) (2.26)

Similarly, at the output boundary, Ez can be expressed with transmission coefficients tm as

Ez(x, y) =
∞∑

m=−∞
tm exp[−jχm(y − yout)] exp(−jαmx) (2.27)

Coordinates yin and yout are the y-coordinates of the incidence and exit boundaries, and

αm and χm are defined as

αm = α0 +
2πm

d

and
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χm =







√

(nLk0)
2 − α2m ; (nLk0)

2 − α2m ≥ 0

−j
√

α2m − k20 ; k20 − α2m < 0, m ∈ Z

(2.28)

2.4 Finite Element Formulation

The finite element equations can be obtained, following [42], by deriving the weak form

associated with Eq.2.7 or 2.9 and using an approximation

Ee ≈
Ne∑

i=1

NeiE
e
i (2.29)

within each element e. The details of the derivation of the weak form and the finite element

equations are given in appendices A and B.

In the following chapters, finite element formulations will be used to analyze electromag-

netic wave propagation in periodic structures.
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Chapter 3

Topology Optimization of 2D Periodic

Dielectric Structures

In this chapter, topology optimization methods are used to design structures with period-

icity in one direction. The goal is to find 1-D periodic structures that exhibit desirable

transmission and reflection characteristics by distributing two dielectric materials of distinct

electric permittivity values over a rectangular representative cell. The wave propagation is

along the orthogonal direction of the direction of periodicity, and the material is assumed

to be uniform in the third direction. For a polarized time-harmonic electromagnetic wave,

the analysis reduces to finding a two-dimensional distribution of one of the electric field

components by solving a scalar Helmholtz equation. This is a problem solved in [20] for

minimum power transmission using a density function to describe the design and the finite

element method as the analysis method. The problem can be solved as a minimization or

maximization problem of transmission (or reflection) to design structures that can be used

for many potential applications, e.g., frequency selective surfaces and radomes.
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Figure 3.1: Design Domain

In this chapter, variations of the problem are solved using different design description

and analysis methods to investigate an efficient way to solve this relatively simple prob-

lem. In section 1, an approach based on a level set function to describe the distribution of

the constituent materials is used, combined with the finite element method with absorbing

boundary condition for the mesh truncation. The analysis method employed here is the

same as in [20]. In section 2, a standard density approach is used to describe the material

distribution, combined with the finite element method using the plane wave expansion at

the mesh truncation boundaries.

3.1 Problem Setup

The optimization problem is set up as follows. The objective of the problem is to find a 1-D

periodic structure, described by the distribution of a material with relative electric permittiv-

ity ǫa in a background material of relative electric permittivity ǫb, that minimizes/maximizes

the electromagnetic power flow. The problem is modeled on a 2D rectangular domain Ω

shown in Fig.3.1. An incident field Ezin enters the domain from the left at Γin, and the

power flow through the structure is measured at the right boundary Γout.
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3.2 Level Set Approach

First, a level set function is used to represent the material distribution. Allaire, et al. [43]

and Wang, et al. [44] are among the first authors that proposed a formulation of topology

optimization problems based on level set methods. Level set methods use a so-called level

set function to assign a material at each location in the problem domain. While a “classical”

density approach permits the use of a mixture of two constituent materials in regions of

intermediate density (“gray” regions), a level set function is combined with a step function

to express material distribution, permitting no regions with intermediate material properties.

However, in computations, even in level set methods there will be mixtures of the two phases

near material interfaces, as a smoothed approximation of a step function is used. To facilitate

convergence to binary solutions while avoiding complex designs, the work here follows the

phase-field method introduced by Bourdin and Chambolle in [45], using a density approach,

combined with a level-set representation of the design.

3.2.1 Material distribution

A level set function Φ(x, y) : Ω → ℜ is used to describe the distribution of dielectric material

ǫr within domain Ω as

ǫr(Φ) = ǫb +H(Φ)
(
ǫa − ǫb

)
(3.1)

Here H is the Heaviside function defined as

H(Φ) =







1 if Φ ≥ 0

0 if Φ < 0

(3.2)
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In summary, we have ǫr = ǫa wherever the value of the function Φ is positive and ǫr = ǫb

wherever the value of is negative. The zero-level set of Φ defines the interfaces between ǫa

and ǫb. In computation, a smooth approximation of the Heaviside function is used to avoid

numerical difficulties.

3.2.2 Optimization problem

The goal of the optimization problem is to find a structure that minimizes power flow through

it. The problem is stated as follows: Find Φ(x, y) : Ω → ℜ that

minimizes

J (Ez) =
1
2

∫

Γout
EzE

∗
z dΓ

subject to

A (Φ) =
∫

ΩH (Φ) dΩ = A0

(3.3)

where E∗z is the complex conjugate of Ez , A (Φ) is the total area covered by material ǫa and

A0 is the prescribed area specifying the amount of material where ǫa is used.

A penalty term is added to the objective function to facilitate convergence to binary

solutions while avoiding rapid variations in Φ that may result in complex shapes and poor

convergence. The augmented objective function J̄ is defined as:

J̄ = J +
1

2

∫

Ω
τ |∇Φ|2 + τ

π

4
√
2
H (Φ) (1−H (Φ)) dΩ (3.4)

The penalty parameter τ is adjusted according to the relative importance of the penalty

term. A larger value of τ will result in a solution with simpler features or a slower variation

in a material distribution. The Lagrangian associated with the optimization problem using
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J̄ as the objective is:

L = J̄ + λ

{∫

Ω
H (Φ) dΩ− A0

}

(3.5)

where a Lagrange multiplier λ associated with the are constraint is introduced. A gradient-

based method is used to evolve the level set function Φ as

∂Φ

∂t
= −K δL

δΦ
= −K

[

β + λ
∂ǫr
∂Φ

− τ∇2Φ + τ
π

4
√
2
(δ(Φ)− 2δ(Φ)H(Φ))

]

(3.6)

where K > 0 is a proportionality constant that may be used to control the step size, and β

is

β = k20
∂ǫr
∂Φ

EzW = k20 (ǫa − ǫa) δ(Φ)EzW (3.7)

Here W is the solution of the adjoint problem

−∇2W − k20ǫrW = 0 (3.8)

with boundary conditions:

n̂ • ∇W + jk0W = 0 (3.9)

on the input boundary Γin and

n̂ • ∇W + jk0W = Ez (3.10)

on the output boundary Γout, and δ is the Dirac-delta function.
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Time evolution corresponds to an iterative scheme if the derivative of Φ is discretized as

∂Φ

∂t
≈ 1

∆t

(

Φt+∆t − Φt
)

(3.11)

with time increment ∆t. The discretized version of Eq.3.6 is then:

1

∆t

(

Φt+∆t − Φt
)

=

−K

[

β + λ∆ǫδ
(

Φt
)

− τ∇2Φt+∆t + τ
π

4
√
2

(

δ
(

Φt
)

H
(

Φt
))]

(3.12)

Collecting terms with Φt+∆t on the left-hand side, we obtain an equation to update Φt+∆t:

− α∇2Φt+∆t + Φt+∆t =
{

−K∆tβ − απ

4
√
2

(

δ
(

Φt
)

− 2δ
(

Φt
)

H
(

Φt
))

+ Φt
}

− λ
(

K∆t∆ǫδ
(

Φt
))

(3.13)

with the Dirichlet boundary condition:

Φt+∆t = c0 (3.14)

on the left and right boundaries of the design domain, where c0 is a constant, fixing the

material on the left and right boundaries of ΩD and the periodicity condition

∇Φt+∆t(x, y = 0) = Φt+∆t(x, y = d) (3.15)

and α = Kτ∆t controls the step size.
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To solve Eq.3.13 for Φt+∆t, first f0 and f1 are defined as follows.

f0 = −K∆tβ − απ

4
√
2

(

δ
(

Φt
)

− 2δ
(

Φt
)

H
(

Φt
))

+ Φt

f1 = K∆t∆ǫδ
(

Φt
)

(3.16)

The solution of Eq.3.13 can be expressed as

Φt+∆t = Φ0 − λΦ1 (3.17)

where Φ0 and Φ1 are the solutions to:

− α∇2Φt+∆t
0 + Φt+∆t

0 = f0

− α∇2Φt+∆t
1 + Φt+∆t

1 = f1 (3.18)

The Lagrange multiplier λ is determined by finding λ that satisfies

A
(

Φt+∆t
)

= A0 (3.19)

3.2.3 Numerical examples

The governing equation Eq.2.9 is solved for the electric field component Ez . The problem

is modeled and solved using the finite element method in a commercial software COMSOL

[46] using the absorbing boundary condition, as described in Sec2.3.1. In all of the numer-
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Table 3.1: Parameters for example 1
Parameter d D ǫa θ A0

Value 0.3λ0 4d 5.0 0° 40%

ical examples investigated here, vacuum is used as the background material i.e. ǫb = 1.

Homogeneous regions with ǫr = ǫb and depth 0.5d are placed to the right and left of the

design domain ΩD, so that any waves scattered off of a dielectric inclusion in ΩD may be

approximated as normally incident waves at Γin and Γout. The parameter τ is adjusted so

that the relative magnitude of the phase-field term and the electromagnetic power flow term

stays between 1/50 and 1/100. The parameter K∆t is adjusted according to the mesh size.

3.2.3.1 Example 1

This example uses parameters shown in Tab.3.2.3.1, where λ0 is the wavelength of the

incident electromagnetic wave in vacuum, corresponding to the prescribed incident frequency

of 100GHz. A structure with uniform permittivity is used as an initial guess. Normal

incidence θ = 0° is used, and 40% of the area is allowed to have the inclusion material

(ǫr = ǫa).

The optimal structure and the electric field distribution through it are shown in Fig.3.2. In

Fig.3.2(b) the red and blue regions correspond to high and low electric field strength. The

power transmitted J is computed as in Eq.3.3, and compared to the value of J through

vacuum, J0. The ratio

RJ =
J

J0
(3.20)

is used to report the performance of the optimum structure. The structure shown in Fig.3.2

achieves RJ = 2.24× 10−3.
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(a) Optimum structure

(b) Electric field magnitude through the optimum structure

Figure 3.2: Optimal structure and the field distribution for example 1. For interpretation
of the references to color in this and all other figures, the reader is referred to the electronic
version of this thesis (or dissertation).

Table 3.2: Parameters for example 2
Parameter d D ǫa θ A0

Value 0.3λ0 4d 11.56 0° 19.6%

3.2.3.2 Example 2

Parameters shown in Tab.3.2.3.2 are used for this example. Normal incidence is used, and

this time only 19% of the area is allowed to have the inclusion material (ǫr = ǫa), but a

higher dielectric constant is used. A structure with uniform permittivity is used as an initial

guess again.

The optimal structure is shown in Fig.3.3, through which RJ = 1.04× 10−4 is achieved.

The objective function J is plotted over a range of incident frequencies in Fig.3.4. The

plot shows that the solution has the characteristics of a band-gap structure, with a gap of low

transmission in a frequency range between 70-120GHz. The structure shown in Fig.3.3(a)

indeed resembles a known photonic band-gap, discussed by Sigmund and Hougaard in [47].

See Fig.3.5(a) and (b) for the photonic band-gap structure and its performance, computed
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(a) Optimum structure

(b) Electric field magnitude through the optimum structure

Figure 3.3: Optimal structure and the field distribution for example 2.
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Figure 3.4: Frequency sweep for the optimum structure for example 2.
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(a) Band-gap structure
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(b) Frequency sweep for the band-gap structure

Figure 3.5: A known band-gap structure and the frequency sweep.

using the parameters displayed in Tab.3.2.3.2.

Comparing the performance of the two structures, we observe that the solution obtained

through optimization performs better than the band-gap structure at the prescribed target

frequency of 100GHz (RJ = 2.44 × 10−3 for the band-gap structure). In this example,

the algorithm found a structure that resembles a photonic band-gap structure with high

performance. Looking at the structure in Fig.3.3(a), we also observe that the structure is

not symmetric across the middle of the design domain, even though the incident angle is 0°,

and the domain is periodic in the vertical direction. We suspect that this lack of symmetry

may be caused by small numerical discrepancies in the periodic boundary conditions applied
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during the finite element analysis.

3.2.4 Conclusion

In computations, smoothing of the level set function is necessary when using a gradient-based

optimization algorithm, and in the end solutions still suffer from having mixture (gray)

regions at interfaces. It was also observed that several parameters affecting the analysis

accuracy and optimization algorithm need to be adjusted in an ad hoc manner but with

great care to avoid numerical instability.

3.3 Density Approach

Next, an interpolation scheme similar to the SIMP approach [48], [49], [50] is used to charac-

terize the material distribution. This is a “classical” approach used in topology optimization

problems. To facilitate convergence a filter is used.

3.3.1 Material distribution

The relative permittivity at location (x, y) in Ω is expressed as

ǫr(ρ) = ǫb + (ǫa − ǫb)ρ
p (3.21)

where ρ = ρ(x, y) ∈ [0, 1] is the effective density of material ǫa and p ≥ 1 is a coefficient

used to facilitate convergence. The effect of the parameter p is explained later. Upon

discretization, ρ is piece-wise constant, taking a constant value ρe within each element e.

The computational domain Ω may include a subdomain Ω0 where ρ is fixed, i.e., where the
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material is not designed.

3.3.2 Optimization problem

The analysis of the electric field distribution is done using the plane wave expansion at the

input and output boundaries (Γin and Γout in Fig.3.1), as described in Sec.2.3.3. Details of

the finite element formulation are given in Appendix A. Using this formulation, one obtains

the modal transmission and reflection coefficients as a part of the solution. That is, the

solution to the finite element equation (Eq.3.22)
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(3.22)

includes not only the field distribution Ez but the reflection r and transmission t coefficients

associated with all the modes included in the analysis. The objective of the optimization

problem can be defined by extracting the relevant reflection/transmission coefficients. The

optimization problem is stated as follows: Find ρ that

minimizes

J = J(z(ρ), z∗(ρ)) = z∗TAz

subject to

0 ≤ ρ ≤ 1

(3.23)

where A is a diagonal matrix with constant coefficients
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Akk = { 0, · · · , 0,
︸ ︷︷ ︸

Nn terms

a−Nm, · · · , a0, · · · , aNm,
︸ ︷︷ ︸

2Nm+1 terms

b−Nm, · · · , b0, · · · , bNm
︸ ︷︷ ︸

2Nm+1 terms

} (3.24)

Matrix A is used to accommodate different design goals by selecting different values for the

coefficients ak and bk. For instance, setting ak = 1 and bk = 0 sets the objective function J

to be the sum of absolute values of reflection coefficients rm. If reflection coefficients of only

the propagating modes are included in the sum, the value of the objective function becomes

the reflection coefficient at the incident boundary. Similarly, setting ak = 0 and bk = 1

corresponds to minimization of transmission at the exit boundary.

3.3.3 Optimality condition

The Lagrangian L associated with (4.6) with non negative multipliers µ1 and µ2 is

L = J(ρ) + µ1(ρ− 1) + µ2(−ρ) (3.25)

If ρ∗ is a local optimum, the KKT conditions require that for each design variable ρ∗e

∂L

∂ρ∗e
=

∂J

∂ρ∗e
+ µ1 − µ2 = 0 (3.26)

If ρ∗e = 0, µ1 = 0 and µ2 > 0, then from (3.26) ∂J
∂ρ∗e

= µ2 > 0. If ρ∗e = 1, µ1 > 0 and

µ2 = 0, then ∂J
∂ρ∗e

= −µ1 < 0. Otherwise, µ1 = µ2 = 0 and ∂J
∂ρ∗e

= 0. In summary, if ρ∗ is

a local optimum, then for all e = 1, · · · , Ne
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dJ
dρe

> 0 if ρe = 0

dJ
dρe

< 0 if ρe = 1

dJ
dρe

= 0 if 0 < ρe < 1

(3.27)

where Ne is the number of elements.

3.3.4 Sensitivity analysis

Gradients of the objective function J are computed using a standard adjoint variable ap-

proach, starting from

dJ

dρe
=

∂J

∂z∗
∂z∗
∂ρe

+
∂z

∂ρe

T
(
∂J

∂z
)
T

= λTe Pe + λ∗Te P∗e (3.28)

for all e = 1, · · · , Ne. The adjoint variable λe is obtained by solving the adjoint problem

KT λ = (
∂J

∂z
)
T

= AT z∗ (3.29)

Vector Pe is computed using

Pe = −∂Ke
∂ρe

ze (3.30)

Note that the portion of the stiffness matrix that corresponds to the area integral, KEE , is

the only component of K that depends on the design variable ρ and therefore
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∂Ke
∂ρe

=










∂KEEe
∂ρe

0 0

0 0 0

0 0 0










with

∂K
ij
EEe
∂ρe

=
∂K

ij
EEe
∂ǫr

∂ǫr
∂ρe

= k0
2pρe

p−1(ǫa − ǫb)

∫

Ωe
φe
i ˜φ
j
e dxdy

3.3.5 Influence of parameter p

The factor p in Eq.4.5 does not have the same effect as in a typical topology optimization

problem with a volume constraint. Here the factor is used only to speed up convergence

to a binary solution. In numerical experiments, it is observed that convergence in regions

of elements with high values of ρ (near ρ = 1) is faster than convergence of elements with

low ρ values (near ρ = 0). What is also notable is that a strictly binary solution has better

performance for a minimum transmission problem than a solution of similar topology where

a thin layer of intermediate permittivity (0 < ρ < 1) is present at the interface between the

two phases. This can be explained using an analogy to camera lens design. Often, a camera

lens is coated with a matching layer of material with permittivity value between air and

the lens material to improve transmission of light into the lens. Without the intermediate

layer, the large mismatch between the indices of refraction would cause a strong reflection

at the interface. For a minimum transmission problem the opposite is true, a high contrast

is desirable and thus removing “gray” elements at the interface improves performance.

Based on those observations, the following scheme is implemented to speed up conver-
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gence to a binary solution. The value p = 1 is used until the optimality conditions (Eq.3.27)

are satisfied. If the solution is not essentially binary (less than a small percentage of elements

is “gray”), p is increased e.g. up to p = 3. Iterations continue until a maximum number

of iterations is reached or until convergence to an essentially binary solution is achieved. In

most problems, setting p = 1 is sufficient. Occasionally faster convergence is achieved by

using p = 3. No instance was observed where the final solution depends on the value of p.

3.3.6 Numerical examples

The use of the approach is illustrated using simple examples that focus on different features

of the problem. A material with relative electric permittivity ǫa = 12 (Si) is distributed in a

background material with ǫb = 4.5 (SiO2). The permittivity of a vacuum is assumed for the

material outside of the analysis domain Ω. Without loss of generality, the magnitude of the

excitation |Ezin| is set to unity for convenience. Other parameters such as the wavelength

of the incident wave λ, angle of incidence θ, the dimension of the cell in the propagation

direction D, and the highest mode order Nm used in modal expansions are chosen in each

case to highlight different features of the problem or its solution. All examples are solved

using the MMA (Method of Moving Asymptotes) [51]. Except as noted, the initial design

has uniform permittivity with ρ = 0.2 throughout the design domain. A filter is used to

avoid complex designs and facilitate convergence to binary solutions. A “cone” filter [52],

[53] with rmin = 1.5 is used. Iterations start with p = 1 and may increase to p = 3.
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Table 3.3: Parameters used in Example 1
D λ/d θ Nm
4d 3.7 40 ° 9

3.3.6.1 Example 1

In this example we explore the solution of the problem solved in [20]. Slabs of non-designable

material of width d0 = 0.5d and fixed permittivity ǫb are placed at the incidence and exit

boundaries. The objective is to find a configuration that minimizes transmission, which

corresponds to setting ak = 0 in Eq.3.24. Coefficients bk are set as follows:

bk =







1 if χk is real

0 if χk is imaginary

Mode numbers k take integer values in [−Nm,Nm]. χk can be computed for each mode k

as in Eq.A.4, based only on design independent parameters d, k0, and θ. Note that a real

χk corresponds to a propagation mode and an imaginary χk corresponds to an evanescent

mode.

An electromagnetic wave with wavelength λ = 3.7d (k0 = 2π
λ

in Eq.2.9) is incident at the

boundary Γin at θ = 40°. The highest mode order included in the wave expansion Nm is set

to 9. This is the maximum value allowed under the Nyquist condition so that the wavelength

of mode Nm is larger than the length of two elements. Values of other parameters used in

this example are shown in Table 3.3.6.1.

The optimum material layout and the iteration history are shown in Fig.3.6(a) and (b).

The solution is feasible and satisfies optimality conditions (Eq.3.27) within a prescribed
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(a) Optimum structure

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

iteration

J

J0 = 8.78×10-1

J50 = 3.69×10-3

(b) Iteration history

Figure 3.6: Example 1. Optimum solution and iteration history

36



Figure 3.7: Example 1. Optimum solution with vacuum background material

tolerance, i.e., replacing Eq.3.27 by

dJ
dρe

> 0 if ρe ≤ δ

dJ
dρe

< 0 if ρe ≥ 1− δ

| dJ
dρe

| ≤ δ otherwise

with a threshold δ = 0.001. In this problem the same solution is obtained if only one term

is kept in the plane wave expansion, i.e., if the problem is solved with Nm = 0. This is

not surprising since higher modes become less significant when homogeneous slabs of length

0.5d are placed at the incidence and exit boundaries. Moreover, in the design in Fig.3.6(a)

all the material interfaces are parallel to the tiling vector. As a result, only the dominant

mode is present, i.e. there is no coupling into higher modes. This confirms the validity

of the single mode assumption used in [20] and [21]. However, the authors in [20] report

an instability in the optimization procedure when transmission at the boundary is used as

the objective function. Because of this instability the authors are forced to use a surrogate

objective function based on an area integral of the field. In the present work, however,

no such instability is observed, as verified by the iteration history in Fig.3.6(b). It should

also be noted that the material layout found here is qualitatively different from the solution

obtained in [20].

To investigate the influence of the host medium, the problem is now solved setting the

background material to vacuum. Figure 3.7 shows the optimum solution. The two have
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Table 3.4: Parameters used in Example 2
D λ/d θ Nm
2d 2.5− 3.3 40 ° 10

qualitatively similar features (straight bands parallel to the tiling vector), but a much lower

objective function value of J = 4.98×10−5 (compared to J = 3.69×10−3) is achieved when

vacuum is used. The improvement in performance is due to the higher contrast in indices of

refraction, which causes stronger reflection.

3.3.6.2 Example 2

In this example we seek a configuration that minimizes transmission for wavelengths in the

range λ/d = 2.5 − 3.3. Material can be designed everywhere in Ω. The function J(i) =

z∗T (i)A(i)z(i) is computed for each (λ/d)(i) in the interval [2.5,3.3] at 7 equally spaced

sample points. Terms are then added up to obtain the total objective J = 1
7(J

(1) + J(2) +

· · · + J(7)). Coefficients ak and bk are set as in Example 1 for each (λ/d)(i). Values for

other parameters used in this example are shown in Tab.3.3.6.2.

After 200 iterations, a solution that satisfies the optimality conditions with δ = 0.001 is

obtained. The solution has a small number of gray elements near the interfaces between the

two materials, which are removed by applying a simple threshold at ρ = 0.5 with negligi-

ble effect on performance. Figure 3.8(a) shows the solution after postprocessing. For this

solution the total transmission coefficient is calculated as

T =
∑

k̃

|t
k̃
|2 (3.31)

where the sum is over all modal transmission coefficients of propagating modes k̃. T is
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(a) Optimum solution after postprocessing

2.5 3.3 4 5
0

0.2

0.4

0.6

0.8

1

λ/d

target  λ /d  = 2.5−3.3

T

(b) Wavelength sweep

Figure 3.8: Example 2. Solution and its wavelength sweep
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plotted in Fig.3.8(b) for a range of wavelengths. Note that T = 1 corresponds to total

transmission while T = 0 corresponds to total reflection of the incident wave. A drop in

transmission is apparent in the range λ/d = 2.5 − 3.3, verifying that the solution has the

propagation characteristics set as the target of the optimization problem.

3.3.6.3 Example 3

In the preceding examples solutions achieve optimum performance through the use of ma-

terial arranged in straight bands of varying widths and spacing parallel to the tiling vector.

One can change the number, width and spacing of the bands of material to achieve the

desired transmission characteristics. The preceding examples show that the optimization

algorithm essentially uses this strategy to find optimum combinations of the band parame-

ters. Coincidentally, the configurations found have homogeneous slabs at the incidence and

exit boundaries, as well as a simple overall material distribution inside the computational

domain. As a result, a single mode assumption turns out to be sufficient in the analysis of

these problems.

In this example, an instance where the single mode assumption is not valid, is shown. This

solution is obtained by biasing the optimization algorithm with a non uniform initial guess.

A number of arbitrary starting layouts were tested, and a layout that yielded a qualitatively

different optimum layout was used. This starting design converges to a more complicated

material layout that requires a higher number of modes be included in the analysis.

In this example, the goal is to achieve a low transmission configuration at any angle of

incidence between 0°and 90°. A weighted sum of the objective function J evaluated over a

finite number of angles is used in computations. The objective function J(i) is computed for
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Table 3.5: Parameters used in Example 3
D λ/d θ Nm
2d 3.0 0°, 20°, 40°, 45°, 60°, 80° 10

(a) Initial design

(b) Optimum solution after postprocessing

Figure 3.9: Example 3. Initial design and optimum solution after postprocessing

each angle θ(i), and the total objective is calculated as J = 1
Na

(J(1) +J(2) + · · ·+J(Na)),

where Na is the number of angles included. It should be noted that the angles should be

selected with some care. For instance, the set 0°, 20°, 40°, 60°and 80° yields an undesirable

peak in transmission at 45°(the remedy is straight forward: simply add 45° to the set). The

coefficients ak and bk are set as in Example 2 when computing each J(i). Values for other

parameters used in this example are shown in Tab.3.3.6.3.

The initial guess and the optimum solution after postprocessing are shown in Fig.3.9(a)

and (b). Again, the solution (before postprocessing) satisfies the optimality conditions with

a threshold δ = 0.001. Figure 3.10(a) shows the total transmission coefficient T averaged

over all angles of incidence, plotted for wavelengths in a range around the target wavelength
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(a) Wavelength sweep
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Figure 3.10: Example 3. Wavelength and angle sweeps (Nm = 10)
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Figure 3.11: Example 3. Angle sweep computed using one mode only (Nm = 0)

λ = 3.0d. The solid and dashed lines show the wavelength response curves of the solution

before and after postprocessing, respectively. There is no significant difference between the

two curves, and in both cases transmission is suppressed at the target wavelength λ = 3.0d,

as desired. Objective function values are J = 1.32×10−2 and J = 1.28×10−2, respectively

(The solution after postprocessing is better. Note that a filter was used and this prevents

the algorithm from reaching a binary solution). Figure 3.10(b) shows the response of the

optimum configuration for various angles. T is plotted in the range 0°-90° with λ = 3.0d for

the solution before (dashed) and after (solid) postprocessing. Again, no significant difference

is observed between the two designs. In both cases, even though transmission is not uniform

for all angles, it is suppressed over the entire range of interest 0°-90°.

With the more complex material distribution in Fig.3.9(b), one must be careful to ac-

count for higher modes in the analysis. Complexity of the material distribution, especially

inhomogeneity near the incident and exit boundaries, may result in significant deviations
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Figure 3.12: Example 3. Optimum structure starting from a homogeneous material distri-
bution

from the single mode assumption. This is illustrated by Fig.3.11, where the response for

different incidence angles is shown for the design in Fig.3.9(b), computed now using only

one mode (Nm = 0). The figure clearly shows that using only a single mode analysis the

predicted response is quite different from that obtained when Nm = 10 is used (Fig.3.10(b)).

Using a single mode expansion in this case could lead to convergence to erroneous results.

To conclude this example the problem is solved again, starting now from a homogeneous

initial design with ρ = 0.2. Figure 3.12 shows an optimum solution starting from such

design. This solution has an objective value of J = 1.08 × 10−2, compared to the value

J = 1.28 × 10−2 obtained using the non uniform initial design. The new configuration in

Fig.3.12 differs from the one in Fig.3.9 in that it allows for analysis using a single mode

assumption, simply because of the homogeneous material placed at the incidence and exit

boundaries.

3.3.7 Designs with parallel bands

In most instances, layouts with bands parallel to the tiling vector were found as optimum

solutions. As the incoming wave arrives at the first “black” band, the magnitude of the

transmitted wave is reduced due to reflection (see Fig.3.13 (a)). At the next interface the
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inter-

ferenceEinc

reflection

(a) Bands parallel to the tiling vector

Einc

scattering

(b) Bands perpendicular to the incidence

Figure 3.13: Wave propagation through vertical and inclined bands

magnitude of the wave is reduced further due to reflection as well as destructive interference

with a wave that is reflected off of an adjacent interface. Going through multiple bands in

this manner, the transmitted wave at the exit boundary will be of reduced magnitude. This

explanation applies to any angle of incidence.

In contrast, a layout with slanted bands has sharp corners at the incidence boundary

(see Fig.3.13 (b)). As the incoming wave enters the domain, reflection at each band reduces

the magnitude of the wave as before. However, as the incident wave scatters at a corner,

the overall wave propagation behavior is significantly altered. In particular, electromagnetic

power flow into the direction parallel to the bands is allowed in the form of surface wave

modes, thus the wave may have high transmission at the exit boundary.

To investigate the effectiveness of a layout with bands parallel to the tiling vector, a

45



(a) Initial guess

(b) After 10 iterations

(c) Optimum structure

Figure 3.14: Optimization using slanted bands for the initial guess
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Figure 3.15: Angle dependency of the path length dL

Table 3.6: Parameters used for the angle dependency
D λ/d θ Nm
1.9d 1.4 variable 11

minimum transmission problem is solved using as the initial guess a slanted grating perpen-

dicular to the incident wave at angle of incidence θ = 45°(Fig.3.14 (a)). A layout with bands

parallel to the tiling vector is obtained (Fig. 3.14 (b) and (c)) as predicted from the earlier

discussion.

Even though qualitatively very similar designs are effective for any angle of incidence θ,

optimum solutions do depend on θ. The number of bands and the spacing between them are

adjusted depending on the angle of incidence. To illustrate this point, a problem is solved

with the parameters shown in Tab.3.3.7 for angles of incidence in the interval [0°,80°] with

a 5° increment. Lower electric permittivity values ǫb = 1 and ǫa = 1.5 are used to amplify

the angle dependency.

The optimum structures for θ = 0°, θ = 30°, θ = 60°are shown in Fig.3.15. The length
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of the path that the refracted wave travels inside each band in the optimum layout, dL, is

plotted over angles of incidence in Fig.3.15. For this simple geometry, dL can be computed

analytically from the material properties and Snell’s law. The solid and dotted lines show

the path length inside “black” (ǫa = 1.5) and “white” (ǫb = 1) bands respectively. As the

angle of incidence increases, the spacing between the bands is adjusted and the path length

increases. The curves are continuous even though the number of bands in the optimum

solution is not. The number of bands decreases as the spacing between bands becomes too

large to fit within the domain (the number of bands depends on D).

3.3.8 Conclusion

For minimum transmission problems the solution strategy proposed is stable and robust,

even when only boundary terms are included in the objective. The formulation presented

can accommodate complex material distributions near boundaries by considering a variable

number of modes kept in the wave expansion at the boundaries. The problem has potentially

many local optima. Straight bands of material were found as optimum configurations when-

ever uniform initial configurations were used. In those cases a single mode approximation is

sufficient for accurate analysis: the same result would be obtained whether higher modes are

included or not. More complex material distributions appeared in optimum configurations

when iterations started from non uniform designs. In such cases it is crucial to include higher

modes in the analysis, as the single mode assumption could result in inaccurate evaluations

of performance. An advantage of the method introduced here is that it does not rely on an a

priori knowledge of how many modes should be kept to maintain accuracy. The optimization

method works equally well and with only marginally different effort whether one or more
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modes are used in the analysis.
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Chapter 4

Topology Optimization of 3D Periodic

Structures

In this chapter, a topology optimization method is used to design structures with periodicity

in two directions. The problem is setup in a similar manner as in chapter 3, for the design

of 1-D periodic structures. The goal of the design problem is to find periodic structures

that exhibit desirable transmission and reflection characteristics. Dielectric materials are

distributed in a 3D design domain by assigning an effective density at each location within

the domain.

4.1 Problem Setup

The optimization problem is set up as follows. The objective of the problem is to find a

2-D periodic structure, described by a distribution of a dielectric material within the design

domain shown ΩD in Fig.4.1, that minimizes/maximizes the electromagnetic power flow.

The electromagnetic propagation is analyzed within a 3D domain Ω, which is a representative
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Figure 4.1: Design Domain

cell of a periodic structure with periodicity in the x− and y−directions with tiling vectors

ex =(Tx, 0, 0) and ey =(0, T y, 0). An incident field Ein enters the domain from the bottom

at Γin, and the power flow through the structure is measured at the top boundary Γout.

The finite element method is used to carry out the analysis, with a plane wave expansion

at the truncation boundaries (Γin and Γout in Fig.4.1), as described in Sec.2.3.3. Details of

the finite element formulation are give in appendix B.

The electric field is assumed to take the form

E (x, y, z) = Ein + Eref

= exp
{
−j
[
α0x+ β0y + γ0

(
z − zin

)]}
p̂

+
+∞∑

m=−∞

+∞∑

n=−∞
rmn exp

[
jγmn

(
z − zin

)]
ψmn (4.1)
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at the input boundary Γin and

E (x, y, z) = Etr

=
+∞∑

m=−∞

+∞∑

n=−∞
tmn exp[−jγmn (z − zout)]ψmn (4.2)

at the output boundary Γout. In Eqs.4.1 and 4.1 ψmn = exp [−j (αmx+ βny)], αm and βn

are x− and y−components of the propagation vector, and γmn is the propagation constant.

Infinite sums in the expansion are truncated in computation, as in the 2D structure case.

The modal transmission and reflection coefficients (tmn and rmn) can be computed as

tmn =
1

TxTy

∫

Γout
Eψ∗mndΓ (4.3)

and

rmn =
1

TxTy

∫

Γin
(E− Ein)ψ

∗
mndΓ (4.4)

where tmn and rmn are complex constant vectors.

4.2 Material distribution

The relative permittivity at location (x, y, z) in ΩD is expressed as

ǫr(ρ) = ǫb + (ǫa − ǫb)ρ (4.5)
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in terms of relative permittivities of constituents, ǫa and ǫb. Here ρ = ρ(x, y, z) ∈ [0, 1] is the

effective density of the inclusion material ǫa. Upon discretization, ρ is piece-wise constant,

taking a constant value ρe within each element e.

The effective density ρ may be controlled through a piece-wise constant mapping X. One

choice is to consider a material distribution that only varies in the x− and y−directions and

is uniform in the “thickness” (z−) direction, so that ρ(x, y, z) = X(x, y). A more complex

case would be a variable material distribution in all three directions. Only the former

case is considered here, and the latter case is not investigated for its excess complexity in

computation and fabrication.

4.3 Optimization problem

The objective function of the optimization problem can be defined in terms of reflection or

transmission coefficients. The optimization problem is stated as follows: Find X(x, y) that

minimizes

J = J(S(ρ(X)),S∗(ρ(X))) = S∗TAS

subject to

0 ≤ ρ(X) ≤ 1

(4.6)

where S refers to either tmn or rmn, and A is a constant diagonal matrix of size (2Nm +

1)(2Nn + 1) such that
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A =














a1 0 0 0

0 a2 0 0

0 0
. . . 0

0 0 0 a(2Nm+1)(2Nn+1)














(4.7)

where Nm and Nn denote the highest modes included in the sums in Eqs.4.1 and 4.2. In

essence, A is used to collect only the modal reflection or transmission coefficients corre-

sponding to the propagating (energy carrying) modes by setting

ak =







1 ; if k corresponds to a propagating mode

0 ; otherwise

(4.8)

in Eq.4.7. Note that for a mode with indices m and n, a real γmn indicates a propagation

mode and an imaginary γmn indicates an evanescent mode.

4.3.1 Sensitivity analysis

Gradients of the objective function J with respect to the element material effective density

ρe are computed using an adjoint variable approach as

dJ

dρe
=

∂J

∂S∗
∂S∗
∂ρe

+
∂S

∂ρe

T
(
∂J

∂S
)
T

= λTe Pe + λ∗Te P∗e (4.9)

dJ

dρe
= λTe Pe + (λTe Pe)

∗ (4.10)

Adjoint variable λ can be obtained by solving the adjoint problem
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KTλ =

(
∂J

∂E

)T
=

[

∂J

∂S∗
∂S∗
∂E

+

(
∂S

∂E

)T
(

∂J

∂S

T
)]T

(4.11)

and

∂J

∂S∗ = S∗TA,
(
∂J

∂S

)T
= AS (4.12)

where

∂S

∂E
=

1

TxTy

∫

Γin
φψ∗mndΓ (4.13)

if S = rmn and

∂S

∂E
=

1

TxTy

∫

Γout
φψ∗mndΓ (4.14)

if S = tmn.

Vector Pe is computed using

Pe = −∂Ke
∂ρe

Ee = k20pρ
p−1
e (ǫa − ǫb)

∫

Ωe
φ̃eφedΩEe (4.15)

Gradients with respect to the design variable X are computed using the chain rule as

dJ

dX
=
dJ

dρ

∂ρ

∂X
(4.16)

where
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∂ρe
∂Xi

=







1 ; if ρe is controlled by Xi

0 ; otherwise

(4.17)

4.3.2 Projection of the effective density

To facilitate convergence to a binary solution, a projection technique is used [54], [55]. The

effective density ρ is projected to ρ̄ using a smooth Heaviside function Hβ :

ρ̄ = Hβ(ρ) =
tanh(βη) + tanh(β(ρ− η))

tanh(βη) + tanh(β(1− η))
(4.18)

which approaches a step function as β −→ ∞. Parameter β is used to control smoothness

and, and η is used to control the threshold value. The projection function is plotted for

various values of β and η in Fig.4.2(a) and (b), respectively, to illustrate the effect of β and

η.

The projected density ρ̄ is used to describe the material distribution in the analysis.

4.3.3 Numerical example

The use of the approach is illustrated using a simple example. A material with relative elec-

tric permittivity ǫa = 2.25 is distributed in a vacuum background (ǫb = 1), within a design

domain ΩD that occupies the entire computational domain Ω. Domain Ω is described by

tiling vectors ex = (Tx, 0, 0) = (1.5µm, 0, 0) and ey = (0, T y, 0) = (1.5µm, 0, 0) and thick-

ness 1.0µm, in the z−direction, and discretized by 20x20x20 brick elements. The material

below the input boundary Γin in Fig.4.1 is vacuum, and the space above the output bound-

ary Γout is assumed to be filled with the inclusion material with ǫa. Normal incidence with

the vacuum wavelength λ = 0.6µm = 0.4Tx and the magnitude |Ein| = 1 is applied. Values

56



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

ρ

 

 

β=1
β=5
β=10

(a) η=0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

ρ

 

 

η=0.2
η=0.5
η=0.8

(b) β=5

Figure 4.2: Projection function
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Table 4.1: Parameters used in the example
Parameter Tx Ty λ ǫa ǫb

Value 1.5µm 1.5µm 0.6µm 2.25 1

of the parameters used in the example are summarized in Table 4.1. The highest mode order

included in the wave expansion Nm is set to 2.

The initial design has uniform permittivity with ρ = 0.5 ∀(x, y) ∈ ΩD. The projection

function in Eq.4.18 is used to facilitate convergence to a binary solution. Parameter η is set

to 0.5, and β is set to 1 and is increased gradually during the optimization iterations.

The objective is to find a configuration that minimizes transmission, which corresponds

to setting S = tmn, and an optimal solution is found using the MMA [51].

The optimal solution, the 3x3 tile associated with the optimal solution and the iteration

history are shown in Fig.4.3(a), (b) and (c), respectively, where black color corresponds to

material with ǫa and white is vacuum in Fig.4.3(a) and (b). The peaks at 51, 101, 151, etc.

iterations seen in the iteration history in Fig.4.3(b) are due to the increased value of param-

eter β used in the projection function in Eq.4.18. As β increases, the projection function

becomes closer to a step function, allowing a smaller number of effective densities to take

intermediate values. The rate at which β changes should be adjusted carefully; increasing β

too slowly will require many iterations until convergence is achieved, and increasing β too

quickly will push intermediate effective densities (ρ) towards 0 or 1 too aggressively, leading

to poor convergence. Since Hβ for a large β has small gradients near ρ = 0 and ρ = 1,

once ρ is pushed to a value close to either 0 or 1, it will get “stuck” at that value. Parame-

ter β is increased by multiplying the previously set value by 1.355 whenever the maximum

change in design variables is smaller than 0.01 and the change in the objective function is

smaller than 10 × 10−4. The transmission coefficient of the binary solution obtained by
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Figure 4.3: Optimal solution and iteration history
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T = 0.056 T = 0.128 T = 0.093

(a) Optimal solution (b) 12 pixels altered (c) 3 pixels altered

T = 0.077 T = 0.081 T = 0.076

(d) 1 pixel altered, case1 (e) 1 pixel altered, case 2 (f) 1 pixel altered, case 3

Figure 4.4: Processed solutions

applying a threshold at ρ = 0.5 is shown for every 50 iterations, using an asterisk (∗) in

Fig.4.3(c). It can be observed that the objective value of the thresholded design approaches

that of the unprocessed design towards the end of the optimization process. After 800 itera-

tions, β = 4.08× 1011, and we obtain an optimal solution with no “gray” regions, with the

transmission coefficient T = 0.056.

In Fig.4.3(a), we observe that several pixels are surrounded by pixels of a different color.

To evaluate the performance of simpler designs in the neighborhood of the optimal solution,

some designs are obtained by altering some of the pixels that are surrounded by a different

color, indicated by red squares, and the transmission coefficient is measured. The optimal
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solution with its transmission coefficient is shown in Fig.4.4(a) again. The alternate designs

and their transmission coefficients are shown in Fig.4.4(b)-(d). It can be seen that as a

larger number of pixels is altered, performance becomes worse. To obtain simpler designs,

one needs to use a filtering technique during the optimization process instead of relying on

image processing after obtaining an optimal solution.

4.3.4 Conclusions

A topology optimization method was used to design a 3D structure with periodicity in the

x− and y−directions. The material distribution is controlled by a mapping that varies in

the xy-plane and uniform in the z−direction. A structure that minimizes transmission for

an incidence of a prescribed frequency was found. The effective density ρ was projected,

using a smooth Heaviside function, to ρ̄ to be used in the analysis. Use of the parameter β

to adjust the sharpness of the projection function needs great care, in order to achieve a fast

and stable convergence.
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Chapter 5

Origami Tunable Surfaces for

Electromagnetic Applications

The use of the concept of origami for engineering applications is gaining interest as an integral

part of innovative design processes. Origami is a Japanese word for “art of paper folding”, a

tradition that appears in many cultures [56]. In origami design, the construction of a 2D or

3D geometry from a flat, usually square sheet is achieved through a combination of simple

folding steps.

Today, use of origami in engineering includes collapsible structures, structures that can be

folded to take up only a small fraction of the space taken by the final, unfolded configuration

of the structure. Examples from the aerospace industry include foldable satellite structures

such as solar panels [57][58].

In this chapter, the use of the concept of origami in design of electromagnetic devices

in [59] and [60] is discussed. In particular, shifting of resonance frequencies of frequency

selective surfaces and tunable metamaterials is discussed.
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5.1 Origami Tunable Frequency Selective Surfaces

Frequency selective surfaces (FSSs) are used as band-pass or band-stop surfaces to filter

electromagnetic signals to enhance the operation of various electromagnetic systems such

as radar, communication and sensing systems. The capability of adjusting the working fre-

quency of FSSs while in operation expands the utility of devices in advanced applications.

Tuning is commonly achieved using lumped components such as varactors [61], [62]. Another

method is to use special types of substrates such as liquid crystals [63]-[65] or ferrites [66],

wherein a 15-20% shift of a resonance frequency can be achieved by altering the properties

of the substrate through the application of an external excitation. Concepts based on chang-

ing the geometric configuration of metallic inclusions by means of switches have also been

proposed [67]. A drawback of such designs of tunable FSSs is that they require continuous

excitation from an external source, which increases the energy consumption of the system.

A new approach to designing tunable FSSs based on the concept of origami is introduced

in [59]. A layer of a conventional FSS, composed of a periodic array of conducting or

dielectric elements printed on a flat substrate, is folded into a periodic pattern in an origami-

like fashion. The transformation of the surface geometry of the layer through a process of

folding and unfolding is applied to invoke tuning of the working frequency of FSSs. Such an

FSS requires an external energy input only at instances when the working frequency is to be

adjusted.

5.1.1 Miura-ori

An example of a folding pattern that can be used to design a tunable FSS is the well known

Miura-ori, shown in Fig.5.1(a). This pattern has one control parameter that determines a
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Figure 5.1: Miura-ori
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Figure 5.2: Unit cell of Miura-ori

folding state that ranges from flat to highly folded and remains periodic throughout the

motion. Varying this parameter changes the relative location of the prints of conducting

material, and thus the frequency of resonance. Computer simulations and experiments are

conducted to test the performance of the origami tunable FSS.

The unit cell of the chevron origami structure of Fig.5.1(a) consists of four parallelogram-

shaped facets, as shown in Fig.5.1(b). The cell is repeated periodically along two tiling

directions x̂ and ŷ with lengths lx and ly. The angle β determines the folding state. The

other geometric parameters, a, b and α, describe the parallelogram that forms the unit cell.
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When β = 0° the sheet is flat. As β is increased, lengths lx and ly change, as do the

orientations of elements printed on the sheet. The length parameters are expressed in terms

of β as:

lx = 2a cos γ

ly = 2b(sin γ cosα + cos γ cos β sinα)

(5.1)

where γ = tan−1 [1/ (tanα cos β)] is an intermediate value defined for convenience. Each

facet (a parallelogram plane in case of Miura-ori) within the unit cell may be decorated, for

example, with an element made of a thin conducting print to make the folded surface into a

working FSS in the radio frequency (RF) range.

5.1.2 Performance evaluation

Performance of the designed FSSs is done by analyzing the electromagnetic wave propaga-

tion within the representative cell of a periodic structure and computing the reflection and

transmission coefficients (|S11| and |S21|) using a full-wave solver HFSS [68], based on finite

element analysis. An example of a setup is shown in Fig.5.3.

For Miura-ori, the projection of the representative cell follows a chevron shape. The

periodic boundary conditions are used at all six sides. At the input (top) and output (bot-

tom) boundaries, PMLs described in 2.3.2 are used. A thin dielectric sheet as well as the

conducting prints are modeled using the impedance boundary condition.
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Figure 5.3: Analysis setup
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Figure 5.4: Concentric ring conducting element

5.1.3 Choice of conducting element types

Variations of commonly used conducting prints are evaluated for their performance in terms

of the amount of shift in the resonance frequency and the strength of resonance.

5.1.3.1 Concentric double ring copper prints

First, concentric rings, shown in Fig.5.4 are considered.

Consider a design with a unit cell described by a = 25mm, b = 20mm and α = 60°.

Copper elements with Ro=5.45mm, Ri=4.8mm and w=0.4mm are placed on facets of the

folded sheet. The sheet is assumed to be very thin, and the dielectric constant of unity is

used in simulations. The FSS is illuminated by a normally-incident plane wave with the

electric field polarized along the x-axis and the propagation vector along the z-axis. The

transmission responses of an FSS in folded states described by β = 0°, 20°, 40° and 60° are

plotted in Fig.5.5. Computation of the transmission coefficient S21 was undertaken using

HFSS.
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Figure 5.5: Simulated transmission coefficient |S21| for concentric rings at normal incidence
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Figure 5.6: Skewed cross-shaped conducting element

The amount of frequency shift that occurs as β is changed between angles β1 and β2 is

computed as

∆f

fmid
=

∣
∣
∣fβ1 − fβ2

∣
∣
∣

0.5
(

fβ1 + fβ2

) (5.2)

where fmid is the midpoint between frequencies fβ1 and fβ2. Using this formula, the shift

in resonance observed in Fig.5.5 is 1.4%, as β is changed from 0° to 60°. The value of

transmission coefficient is kept under -10dB, except at β =40°.

5.1.3.2 Cross-shaped copper prints

Skewed cross prints, shown in Fig.5.6 are considered next, where the arms of the crosses are

aligned with the sides of the parallelogram.

Consider a design with a unit cell described by a = 19.6mm, b = 14.7mm and α = 45°.

Copper elements with Wa = Wb = 7.3mm and Ca = Cb = 2.2mm are placed onto the

facets of the cells. A sheet of paper is chosen as the substrate, and a dielectric constant of 3

and thickness 0.1mm are used in simulations. The FSS is illuminated again by a normally-

incident plane wave with the electric field polarized along the x-axis and the propagation

vector along the z-axis. The transmission responses of an FSS in folded states described by
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Figure 5.7: Simulated (Sim.) and measured (Exp.) transmission coefficient |S21| at normal
incidence

β = 15°, 30° and 45° are plotted in Fig.5.7. As β increases, the resonance shifts continuously

to a higher frequency, with a shift of 19% occurring as β changes from 0° to 60°. The value

of transmission coefficient is kept well under -10dB at all values of β examined. Both in

terms of the amount of shift in resoance frequency and the strength of resonance, skewed

cross-shaped elements are more desirable, compared to concentric rings.

5.1.3.3 Summary

The frequency shift observed is due both to the changes in interactions between the inci-

dent field and the metallic structures caused by the change in unit cell size, and to mutual

interactions between the structures. The interactions and thus the resonance behavior are
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highly dependent on the type of folding pattern, the shape of the conducting elements, and

the properties of the substrate. It has been shown that a sheet folded into Miura-ori and

decorated with concentric rings does not show much tunability. This is because with circular

rings, the location of the resonance depends primarily on the circumference of the rings, but

the spacing between the printed elements is not as important as with cross-shaped prints.

5.1.4 Angle dependency

To investigate the resonance frequency dependency on angle of incidence, the performance of

the folded FSS is evaluated for oblique incidence. The transmission responses of an oblique

incidence case are plotted in Fig.5.8. Here the original z-directed propagation vector is

rotated to lie in the y-z plane plane at an angle θ = 30° to the z-axis, with the electric

field still polarized along the x-axis. A similar trend as in the normal incidence case is

observed; the resonance frequency increases as the folding angle β increases. The three

curves shown in Fig. 5.9 summarize the dependency of resonance frequency on β for three

different angles of incidence θ= 0°, 30° and 60°. One can observe the same trend of increasing

resonance frequency with β in all three curves. It is worth mentioning that there is a band of

frequencies shared by all three curves. Within this frequency band, there is a β that brings

the resonance frequency to a desired location for any (of the three) angles of incidence. This

range of frequencies is indicated as a gray band in Fig.5.9.

5.1.5 Polarization dependency

Next, polarization dependency of a folded FSS is investigated. An incidence with the electric

field polarized along the y-axis is used in simulation. In this case, much weaker resonances
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Figure 5.8: Simulated and measured transmission coefficient |S21| at oblique incidence at
θ=30°
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Figure 5.9: Simulated and measured resonance frequencies, fres in GHz
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Figure 5.10: Fabricated origami tunable FSS

are observed, and therefore the usability of the folded FSS is significantly degraded for the

orthogonal polarization. A different design strategy using symmetric designs may resolve

this problem.

5.1.6 Experiment

A prototype FSS with an origami geometry identical to that used in simulations was con-

structed and its performance was measured to validate the origami tuning concept. The

folding crease pattern of a 40 by 40 element array was printed on a sheet of paper, and the

sheet was folded by hand, producing the chevron structure of Fig.5.1. When flat (β=0°),

the array measures 55.3 cm by 58.7 cm. Cross-shaped elements were chemically etched on

strips of copper tape, and one element was attached to each facet of the folded pattern.

The fabricated foldable FSS is shown in Fig.5.10. A more sophisticated fabrication method

relying on automated procedures is envisioned for eventual manufacture of foldable FSSs.

Measurement of the transmission properties of the prototype FSS was undertaken as

follows. The surface was folded to a desired angle β and attached to a foam sheet using

removable pins. For small values of β, clamps were used to hold the sheet in place, as
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Figure 5.11: Experiment setup for normal incidence

shown in Figs.5.11 and 5.12. The sheet was placed on an adjustable stand in the center

of an anechoic chamber of size 12 by 12 by 24 feet (3.66 by 3.66 by 7.32 m). American

Electronics Laboratory model H-1498TEM-horn antennas were placed against opposite walls

and attached through rigid coaxial cable to an HP 8510C vector network analyzer, which

was used to measure the transmission coefficient S21 through the surface. Nylon dielectric

lenses were placed in front of the antennas to create a focused beam with a roughly Gaussian

profile at the position of the FSS; at 10 GHz the spot diameter of the beam is about 20 cm,

and the phase across the spot is approximately uniform. Focusing of the beam is important

to eliminate termination effects, such as edge diffraction, and interaction of the beam with

the supporting structures. Calibration was accomplished using a through-measurement with

the surface absent, first subtracting the background response measured with a metal plate

blocking the beam.
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Figure 5.12: Experiment setup for oblique incidence at θ = 30°

Transmission responses measured using normal incidence (experimental setup shown in

Fig.5.11) and an oblique incidence angle of θ=30° (experimental setup shown in Fig.5.12) are

plotted in Fig.5.7 and Fig.5.8, respectively. The measured resonance frequencies for various

folding angles β are very nearly those predicted by simulation, as summarized in Fig.5.9.

Note that the measured resonance curves are not as sharp and pronounced as predicted

by simulations. This could be because the focused incident field used in the experiment

illuminates only a portion of the FSS array, and simulations assume the array is infinite and

plane-wave illuminated. Also, the loss in the paper used to construct the surface and in the

glue used to hold the crosses in place may lead to resonances with a lower quality factor than

predicted in simulation. Measurement at an incidence angle of θ=60° was not undertaken

because the FSS profile presented to the incident beam is too narrow at this angle to ignore

edge effects. Also, the orthogonal polarization state was not measured since it was shown in
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simulation that in this case resonances are not strongly excited.

5.1.7 Conclusions

The feasibility of tuning an FSS by simple mechanical means is demonstrated using a Miura-

ori structure with cross-shaped metallic prints in simulations and experiments. By changing

the folding angle from 0° to 60°, the resonance frequency may be shifted by 19%. Tunability

performance was observed to be dependent on the type of conducting prints.

5.2 Origami Tunable Metamaterials

A well-known realization of metamaterials is achieved using SRRs, proposed by Pendry [27].

For instance, edge-coupled SRRs are formed by two concentric, coplanar split rings made of

a thin layer of conducting material printed on a dielectric substrate. It is possible to arrange

SRRs in a three-dimensional array to make a metamaterial that exhibits resonance behavior

when excited by an electromagnetic wave with a magnetic field oriented normally to the

plane of the rings. This resonance is enabled by a capacitance dominated by the proximity

of the inner and outer edges of the rings, and by a loop inductance. The frequency at which

the resonance occurs can be determined based on the geometry of the rings, the material

properties of the conducting prints and the substrate, and on the thickness of the substrate.

One disadvantage of metamaterials based on SRRs is a narrow bandwidth. To expand

the utility of these types of metamaterials, researchers have investigated various ways to tune

the resonance frequency of metamaterials in response to changes in environment or operating

mission. Similar to the design of tunable FSSs, incorporation of lumped components such

as varactors, diodes and potentiometers, in an array of resonating structures is a common

77



Figure 5.13: Corrugated sheet with SRRs, α = 0°

approach to achieve tunability [69]-[74]. For example, a varactor loaded split ring resonator

has been used to achieve a 30% shift in resonance in an RF range [70]. A wider range of

tuning (65%) has been achieved by using a combination of multiple switches and a varactor

placed in a spiral resonator [75]. Another approach is to use a host medium whose dielectric

properties can be altered [76]-[79], again, in a similar manner as in the design of FSSs.

A new approach to designing tunable metamaterials based on the concept of origami

([60]) is introduced here, where SRRs are printed on a surface folded into a periodic pattern

that can be un-folded by controlling one free folding parameter. The inner and outer rings are

printed on different surfaces so that when the folding parameter is varied, the gap between

the rings, and thus the capacitance of the resonators, is altered.

5.2.1 Design of an origami tunable metamaterial

A simple example of an arrangement that can be used for the design of tunable metamaterials

is illustrated in Fig.5.13. The folding pattern is that of a sheet folded in a corrugated

arrangement, which may be unfolded to form the surface shown in Fig.5.14.
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Figure 5.14: Corrugated sheet with SRRs, α = 10°

A thin dielectric sheet is decorated with SRRs, with each ring in an SRR pair placed on

opposite faces of the corrugation. When the structure is completely folded, the rings lie on

the same plane and form an SRR centrally embedded within a dielectric sheet of thickness

2d. As the sheet unfolds, an air gap opens between the adjacent dielectric surfaces and the

rings separate. A unit cell containing a single ring pair is shown in Fig.5.15, and this cell

is repeated in the direction perpendicular to the corrugation. Thus the folding pattern is

periodic in one direction and uniform in the other, perpendicular direction. The pattern

has one free parameter, represented here by the angle α, that can be varied to change the

capacitance of the rings. When α = 0◦, the array of SRRs is oriented vertically to the plane of

the corrugation. When the edges of the folded sheet are pulled apart along the corrugation

direction, the angle α increases (Fig.5.14) and the separation between the two split rings

increases. Excitation is by a plane wave incident from above such that the magnetic field is

aligned along the axis of the fully folded rings (α = 0◦).
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Figure 5.15: Origami metamaterial unit cell design

5.2.2 Demonstration of tuning of a metamaterial

The full-wave solver HFSS was used to analyze the electromagnetic behavior of the origami

metamaterial, using periodic boundary conditions and PMLs as in Sec.5.1.2. An incident

plane wave with propagation direction perpendicular to the sheet was used to excite the

rings, with its magnetic field oriented normal to the plane of the rings in the α = 0◦

configuration. The transmission coefficients (S21) were computed using the field solution

found in simulations.

A sample design was analyzed where the resonance frequency of the fully folded (α = 0°)

structure is placed in the lower portion of the F-band, at 5.29 GHz. The unit cell parameters

from Fig.5.15 are given in Tab.5.1, while the spacing in Fig.5.13 is set to s = 4mm. Note

that Wg is the separation of the ring edges when α = 0◦. Both rings were assigned the

conductivity of copper, and the substrate was chosen to be 0.5 mm thick with the properties

of Rogers Duroid 5870 (dielectric constant ǫr = 2.33 and loss tangent tan δ = 0.0012.)

Transmission and reflection coefficients are plotted in Figs.5.16 and 5.17, respectively, for

α=0°-10° in 2◦ increments. The transmission and reflection curves show that the resonance
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Table 5.1: Parameters used in sample F-band design
Parameter Value (mm)

w 7
Ro 2.2
Ri 1.82
Wr 0.2
Wg 0.18
G 0.25

4 5 6 7 8 9
−25

−20

−15

−10

−5

0

Frequency in GHz

S
2
1
 in
 d
B

α=0°
α=2°

α=4°

α=6°

α=8°

α=10°

Figure 5.16: Transmission coefficient, |S21|
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Figure 5.17: Reflection coefficient, |S11|
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Table 5.2: Resonance frequencies found using HFSS
α (deg) fr (GHz) fr (GHz) fr (GHz)

ǫr = 10.2 ǫr = 2.33 ǫr = 1

0 2.56 5.29 7.97
1 3.79 6.32 8.22
2 4.12 6.78 8.53
3 4.33 7.13 8.82
4 4.50 7.46 9.11
5 4.62 7.68 9.38
6 4.73 7.87 9.64
7 4.82 8.07 9.87
8 4.90 8.09 10.03
9 4.97 8.26 10.19
10 5.02 8.37 10.18
11 5.07 8.45 10.29
12 5.12 8.51 10.44
13 5.16 8.59 10.47
14 5.21 8.67 10.59
15 5.24 8.69 10.62

frequencies shift upwards as α is increased. Resonance frequencies for α between 0◦ and 10◦

are tabulated in Tab.5.2.

The shift in resonance frequency resulting from unfolding the sheet from its fully folded

state (α = 0◦) to an angle α can be quantified using the formula

δ(α) =
fr(α)− fr(α = 0)

fr(α = 0)
=
fr(α)

fr(0)
− 1 (5.3)

A 2◦ change in α produces a resonance shift of 28%, a 5◦ change produces a shift of 45%,

and a 10◦ change produces a shift of 58%. Thus, the upward shift in resonance frequency is

quite rapid as the sheet begins to unfold, with the magnitude of the shift tapering off as α

increases. The result is a metamaterial that can be tuned mechanically over a wide band of

frequencies with only slight physical movement. The principle behind this effect is explored
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in the next section.

5.2.3 Principle of operation

The proposed origami-based tunable metamaterial can be broadly tuned with small move-

ments because the resonance frequency of the split-rings is highly sensitive to folding angle

when the angle is small. To understand the origin of this effect, recall that the resonance

frequency of a set of concentric split rings may be described using a simple series RLC circuit

model [80]. Using the circuit shown in Fig.5.18, the resonance frequency is computed using

fr =
1

2π
√
LeqC

(5.4)

For a coplanar SRR, the inductance, Leq, is the inductance of a loop with a radius that

is the average of the two rings, r0 = Ri +Wg/2, while the capacitance, C, is due in part to

the capacitance between the ring edges and in part to the capacitance of the gaps. Usually,

the capacitance of the gaps is neglected, but the presence of the gaps causes the ring edges

to act like two capacitors in series, each with the capacitance of a half ring:

C =
CeqCeq

Ceq + Ceq
=
Ceq

2
(5.5)

where

Ceq = πr0CPUL (5.6)

Here CPUL is the per-unit-length capacitance of the ring pair, which depends on the prop-

erties of the dielectric substrate as well as the geometry of the rings. When the rings are used
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Ceq Ceq

Leq

Figure 5.18: Equivalent circuit of an SRR

in the construction of an array of unit cells, Eq.5.4 can be used to compute the resonance

frequency of the resulting structure, if the effects of the mutual interaction between the array

elements are included.

When the sheet is completely folded (α = 0°), each unit cell consists of a set of coplanar

rings centrally embedded in a dielectric sheet. Because the capacitance is dominated by the

field lines extending between the adjacent edges of the rings, the majority of the electric flux

is within the dielectric, and the capacitance of a single set of rings may be approximated

by assuming that the rings are embedded in an unbounded dielectric. As the surface is

unfolded and the adjacent dielectric sheets move apart, the capacitance changes for two

distinct reasons. First, as the coplanar rings separate the capacitance decreases due to both

the change in alignment of the adjacent ring surfaces and to the increase in distance between

the edges. Second, as the dielectric surfaces unfold, an air gap appears between the surfaces,

and the electric flux begins to concentrate in this air gap region. This effect can be seen

in Figs.5.19-5.22, which are three-dimensional plots of the electric field strength computed

using HFSS for the parameters of Tab.5.1 and a folding angles of α = 0°-8°. Strong field

is shown in red color. The field is clearly strongest in the air region immediately adjacent

to rings, at a point 90◦ from the gaps in the rings. Because the dielectric constant of
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Figure 5.19: Electric field magnitude in one unit cell for α = 0°

Figure 5.20: Electric field magnitude in one unit cell for α = 2°

air is significantly smaller than that of the substrate on which the rings are mounted, the

capacitance decreases rapidly as the extent of this region increases. An accurate computation

of how this effect compares with the reduction in capacitance due to caused by the increase

in distance between the rings requires a full wave simulation of the type already described

in Sec.5.2.2. However, it is possible to assess the significance of the contribution of the air

gap effect to the tunability of the structure using some simple analysis.

Of predominant importance is the change in resonance frequency with folding angle,

described by equation Eq.5.3. Assuming that the inductance is not seriously affected by

small changes in α, the change in fr may be described entirely in terms of the change in

capacitance by employing Eq.5.4:
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Figure 5.21: Electric field magnitude in one unit cell for α = 8°

Figure 5.22: Electric field magnitude in one unit cell for α = 10°
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δ(α) =

√

Ceq(α = 0)

Ceq(α)
− 1 (5.7)

For small folding angles the array effect shouldn’t change significantly as α changes, so

the change in capacitance can be studied by observing a unit cell. To determine the effect

of the ring separation on capacitance, consider a set of concentric rings immersed in an

unbounded dielectric. As the rings unfold, an estimate of the capacitance of the inclined

rings can be made using the per-unit-length capacitance, CPUL, of the simple canonical

structure shown in Fig.5.23. Here two infinite parallel conducting strips of width Wr are

offset in both the x and y directions, and CPUL can be computed as a function of ∆ and

h using simple numerical techniques [81]. Ignoring the slight angle between the strips, the

capacitance of each half of the inclined rings shown in Fig.5.24 can be found by assuming

that ∆ = Wr +Wg and that CPUL only depends on h:

Ceq(α) =

∫ π

0
CPUL(h)r0dφ (5.8)

where

h(φ, α) =
[w

2
+ (2Ro − 2Wr −Wg) cosφ

]

cosα. (5.9)

Fig.5.25 shows plots of δ(α) found using Eq.5.8 in Eq.5.7 for the geometrical parameters

in Tab. 5.1. It is seen that as α is increased from zero, δ(α) increases at a fairly constant rate

due to decreasing capacitance. In comparison, when δ(α) is plotted from Eq.5.3 by using the

resonance frequencies from the HFSS simulations described in Section 5.2.2, a much more

rapid increase is seen for small α. This suggests that at small folding angles, the decrease in

capacitance is dominated by the appearance of the air gap rather than the separation of the
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Figure 5.23: Geometry of offset parallel conducting strips

Figure 5.24: Geometry of unfolded origami metamaterial unit cell
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Figure 5.25: Relative change in resonance frequency (dashed curves are best-fit lines)

rings. However, for larger α most of the electric flux resides in the air gap, and thus as α

is increased from larger values, the rate of increase in resonance frequency should approach

that of two rings separating in free space. Observing the two curves it is seen that the slopes

begin to resemble each other as α approaches about 8 degrees. To verify this, the derivative

of δ(α) with respect to α was computed for both the capacitance model and the full-wave

analysis by finding the slope of the δ(α) curves. Because slight variations in the HFSS results

preclude using a simple finite-differences derivative, the data was first fit using the empirical

model

δ(α) =
4∑

n=1

Anα
1/n (5.10)

and then this expression was analytically differentiated. The resulting derivatives are plotted

in Fig.5.26. Clearly the relative changes in resonance frequency begin to coalesce above
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α = 8◦, and thus above this angle the change in resonance frequency is due primarily to the

separation of the rings and not to the increasing air gap.

To study the capacitance effect further, the HFSS simulations were repeated for the

same geometrical configuration as shown in Tab.5.1 but with the dielectric parameters of

the substrate set first to those of free space (ǫr = 1, tan δ = 0) and then to those of

Rogers Duroid 6010 (ǫr = 10.2, tan δ = 0.0023.) The resulting resonance frequencies are

shown in Tab.5.2, and δ(α) found using Eq.5.3 is plotted in Fig.5.25. When the dielectric

constant is set to that of free space, the effect of the opening air gap is not present, and the

increase in resonance frequency is due entirely to the decrease in capacitance caused by the

separation of the rings. The resulting change in resonance frequency, shown as the crosses

in Fig.5.25, follows closely that predicted by the capacitance model for rings opening in free

space, even though the resonance frequencies found from HFSS with ǫr = 1 are significantly
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higher than those found by HFSS with ǫr = 2.33. This result also validates the assumption

that the resonance behavior of the unfolding origami metamaterial array can be deduced by

observing a single unit cell, making it easier to devise the experiment described in Sec.5.2.4.

Finally, when the dielectric constant is increased to ǫr = 10.2 from ǫr = 2.33, the contrast

between the permittivity of the substrate and that of the air gap that opens as the rings are

unfolded increases, and the impact of the opening air gap on the capacitance of the system

is magnified. This results in a more rapidly rising value of δ with increasing α at low values

of angle, as is clearly seen in Fig.5.25, and a greater overall fractional change in resonance

frequency at any value of α. Even so, as with the ǫr = 2.33 substrate, the rate of change

levels out and becomes the same as two rings opening in free space, as shown in Fig.5.26.

5.2.4 Experiment

An experiment was conducted to test the validity of the design concept. Two copper rings

were etched on separate 0.38 mm-thick sheets of Rogers Duroid 5870 (dielectric constant

ǫr = 2.33 and loss tangent tan δ = 0.0012) as in Fig.5.27 to form an origami metamaterial

unit cell when placed together. The unit cell has dimensions w = 6.85, and the etched rings

have the geometry values shown in Tab.5.1. The dielectric sheets were glued along an edge

to form a hinge, and the sheets were opened to a set angle α by placing a small spacer

between the sheets at the open edge. The origami metamaterial unit cell was then placed

onto a piece of Styrofoam and inserted into a section of WR-159 F-band (4.90-7.05 GHz)

waveguide (Fig.5.28.) The hinge was oriented vertically in the guide so that the horizontal

magnetic field of the dominant TE10 mode is along the axes of the rings, thus exciting

the ring resonance. Finally, the transmission parameters |S21| of the waveguide section
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Figure 5.27: Two halves of fabricated origami metamaterial unit cell with the unit cell width
w = 6.85 mm

Figure 5.28: Origami metamaterial unit cell placed into an F-band waveguide sample holder

were measured to determine the frequency of resonance. Because the unit cell behaves

as a negative permeability metamaterial near resonance, the propagation constant of the

dominant mode becomes imaginary and the wave becomes evanescent. Resonance is thus

indicated by a stop band with a dip in |S21|.

Fig.5.29 shows the measured values of |S21| for several values of folding angle α. It is

clearly seen that as the unit cell is unfolded, the resonance frequency quickly increases. A

plot of resonance frequency versus α is shown in Fig.5.30, indicating that the resonance
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frequency may be shifted across nearly all of F-band with a slight increase in α from 0◦

to 2◦. As a comparison, the unit cell placed into a waveguide with perfectly conducting

walls was simulated using HFSS, and values of |S21| are shown for several values of α in

Fig.5.31. A similar trend upward in resonance frequency with increasing α may be seen

in this figure. The resonance frequencies from the simulations are plotted in Fig.5.30 and

compared to the measured resonance frequencies. Interestingly, it appears that the measured

resonance frequencies increase with α at a rate even greater than predicted by simulation.

This is probably due to a slight unintended gap near the hinge which exists even for very

small α. As the sheets are unfolded, this small gap becomes less important compared to

the gap opening between the sheets, and the curves agree more closely. The case of α = 0°

was measured last, with the two sheets glued togther to ensure no gap. At this angle the

resonance frequencies from experiment and simulation are nearly identical.

5.2.5 Conclusions

The reflection and transmission characteristics of a corrugated sheet decorated with SRRs

were investigated using full-wave simulations. When the folding angle α is increased, res-

onance is shown to shift rapidly to higher frequencies. A simple analysis reveals that the

dominant effect on resonance at small values of α is the decrease in capacitance due to the

air gap that opens between the rings as α is increased from zero. Experimental results us-

ing a unit cell placed into a waveguide section verify this effect. These results suggest the

possibility of tuning folded metamaterial structures using slight mechanical manipulations.
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Chapter 6

Topology Optimization for Origami

Design

The use of the folding and unfolding motion of origami for resonance frequency tuning in

electromagnetic applications was introduced in chapter 5. In the designs used in chapter

5 and most of other applications of origami in engineering design, such as self-assembly of

microdevices such as biomedical devices [82], electronics [83], and microfluidics [84], simple

folding patterns with well-known geometric properties are used.

The development of design algorithms and the mathematics of origami in the last two

decades allows for systematic design of quite intricate folding patterns [56], [85]-[91]. For

example, Lang ( [86] [87]) developed a computer program where the origami design is de-

composed into two processes: design of a base and design of the complete model. An origami

designer draws a stick figure in the program indicating, e.g., the number and lengths of legs.

The algorithm then finds a crease pattern that provides the desired base, and the designer

completes the design using artistic skills. This is called the tree method. Such methods
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are commonly used for art work that may involve very complex geometry. Using a different

approach, Tachi [89] [90] developed an origami design method aimed at industrial applica-

tions based on tuck-folding. The method systematically finds a folding pattern that follows

a prescribed polyhedral surface by tucking some part of the sheet under another to adjust

the surface geometry.

The work presented in this chapter introduces an optimization-based method for origami

design. The method used here is similar to an origami design technique that involves the use

of a sheet of paper with lines drawn on it. The lines act as a guideline for origami designers

to decide where to create folds; some of the lines become folds and some remain flat. The

idea is that, if one starts with a sheet with many lines, many different origami designs

can be constructed by creating folds along some of those lines. This is analogous to the

ground-structure approach to topology optimization of truss structures [92] [93] . The idea

there is to start from a ground structure, a potential structure that includes a sufficiently

rich set of truss elements, and eliminate unnecessary elements based on an optimization

algorithm. In this work we present an origami design counterpart of a ground structure for

truss design, constructed by drawing a set of lines on a 2D domain, and an optimization

strategy to find patterns with folds along these lines that result in a folded geometry with

desirable, target geometric properties. Examples of target properties include a prescribed

distance between two points on the sheet and a prescribed angle between two planes, in the

folded configuration. Origami designs considered here are restricted to those that may be

constructed using only simple folds, namely, those made by folding a sheet along a line to

make a mountain or a valley shape. More advanced folding techniques, such as sliding a flap

into a pocket, are not considered.
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The proposed origami design method can be incorporated into the existing folding design

problems such as the design of deployable structures, packaging materials, self-assembled mi-

crodevices and dynamically alterable electromagnetic devices to improve their performance.

Using sheet materials with customized properties, which may be achieved through the in-

clusion of nano-particles, the use of the origami deign method can be extended to material

design, e.g., for the design of thermoelectric materials, membranes, peristaltic porous media,

battery or fuel-cell microarchitectures.

6.1 Construction of the Ground Structure

There are several types of grids traditionally used as a guideline for origami design. One

simple example is a square or triangular grid system, used in [94] for design of origami

tessellations, formed by a repetition of folded patterns that make up a flat or curved surface.

For instance, an origami waterbomb, an example of origami tessellation that follows a curved

surface, can be constructed using the triangular grid system shown in Fig.6.1(a). A grid

system that results in a more intricate design is the angular grid system studied in [91]. This

grid is constructed by drawing lines through reference points, defined as either the corners

of the sheet or intersections of lines already drawn. At each reference point, 2n lines with

a separation angle 90°/n are drawn, creating new intersection points. Fig.6.1(b) shows an

example of angular grid systems for n = 4, where lines at each reference point are drawn

22.5° apart from each other. Maekawa constructed very complex and popular origami designs

such as a peacock, a dinosaur and a devil (shown in [95] with instructions), using this type

of grid system.

In this work, ground structures similar to those used in structural design are used. A
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(a) Triangular grid system (b) 22.5° grid system

Figure 6.1: Origami grid systems

(a) (b)

(c) (d)

Figure 6.2: Variations of ground structures
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ground structure is constructed by placing points along the boundary of the design domain

and drawing connections between all point pairs, creating new vertices at intersections. This

is a simple method that provides full control of where vertices appear at the boundary. It

is advantageous to have such control for origami design problems where constraints (e.g.,

periodic boundary conditions for tessellations) are applied at the boundary. Using this tech-

nique, one can construct symmetric ground structures such as the one shown in Fig.6.2(a).

This structure is appropriate for design of origami tessellations, since it can be tiled in the

horizontal and vertical directions with vertices and lines consistent with the periodicity as-

sumption at the boundary. Asymmetric ground structures can be constructed as well, for

example, by adding a point to the grid shown in Fig.6.2(a), to construct a structure shown

in Fig.6.2(b). The ground structure can be refined to accommodate more complex designs

by adding points as in Fig.6.2(c). Ground structures on a non square domain can also be

created, as in Fig.6.2(d). Miura-ori, an origami tessellation used for engineering applications

in [57][59][96] and several other engineering designs found in literature, can be constructed

from the ground structure shown in Fig.6.2(a).

6.2 Crease Type Assignment and a Folded State

Here we consider a rigid origami. A rigid origami is a developable surface made of origami

facets and foldlines that can be replaced by rigid panels and hinges, respectively, and can

be flattened without distorting the sheet. The model in [88] is used to analyze the geometry

of folding patterns in rigid origami. The process of creating a fold in this model can be

considered as a rotation of a facet by an angle with respect to its adjacent facet. This

angle of rotation is called a folding angle. Fig.6.3(a) shows a circular section of a ground
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Figure 6.3: Flat and folded states of a single-vertex crease

structure around a vertex, called a single-vertex crease, with n = 5 lines extending from

it. An example of a folded geometry is shown in Fig.6.3(b) for a given set of n = 5 folding

angles, denoted ρ. The type of fold at each segment is determined by the value of folding

angle: zero, negative and positive folding angles correspond to flat, mountain and valley

fold, respectively, as shown in Fig.6.3. Assignment of fold type on the entire domain is done

by assigning folding angles to all segments in the ground structure.

The folding angles will be used as design variables to find a folding pattern that meets

the target geometric properties. A ground structure with folding angles assigned to all

segments represents a folded state: the configuration of the folded geometry of a sheet.

One can process information encoded in the folding angles and connectivity of the ground

structure to find the geometry of the folded surface. Geometric features relevant to the

specific design problem can then be extracted and used within an optimization framework

to search for folding patterns with the target properties. The use of continuous variables as

design variables allows the use of gradient based optimization algorithms.
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6.3 Foldability Conditions

An important constraint in origami design is that the designed pattern is in fact foldable.

Necessary conditions for foldable origami design were investigated by belcastro and Hull in

[85] and require that the sheet does not stretch or rip during the folding process, and that

each face remain flat. The condition to avoid a sheet intersecting itself and penetrating to the

other side (self-intersection) is not addressed in [85] (this is still an open problem in origami

design). The necessary conditions for foldability in [85] were used to simulate a motion of

rigid origami in [88]. A similar approach is used in this work. The foldability condition of a

crease around the kth vertex, having n crease lines, is expressed as

Fk
(

ρk, θk
)

= Rρk1Rθ
k
1Rρ

k
2Rθ

k
2 · · ·RρknRθkn = I (6.1)

Matrices Rθk’s and Rρk’s are rotation matrices

Rθki =











cos θki − sin θki 0

sin θki cos θki 0

0 0 1











(6.2)

Rρ
ik

=











1 0 0

0 cos ρki − sin ρki

0 sin ρki cos ρki











(6.3)

and
{

θk1 , θ
k
2 , · · · θ

k
n

}

are angles of rotation about the axis perpendicular to the (flat) sheet,

measured between adjacent crease lines, while
{

ρk1 , ρ
k
2 , · · · ρ

k
n

}

are folding angles, as shown

104



θ1

θ2
θ3

θ4

ρ3

ρ1

ρ2

ρ4

l1l4

l3 l2

Figure 6.4: Single-vertex crease

in Fig.6.4. For a multi-vertex crease Eq.6.1 has to be satisfied at all vertices k = 1, 2, · · ·M ,

whereM is the number of vertices. Note that the notation ρki refers to the ith crease around

vertex k i.e. indexing used in Eq.6.1 is local. It has to be mapped to the global indexing

going from 1 to N , where N is the total number of design variables. For design of origami

tessellations, foldability conditions for vertices along the edge need to account for crease lines

connected to their periodic pairs in neighboring tiles.

6.4 Optimization of Origami Design

The goal of the optimization problem is to find a combination of folding angles that results

in a folded state with target geometric properties. Examples of target properties include

a prescribed distance between two points on the sheet and a prescribed angle between two

planes, in the folded configuration.
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6.4.1 Geometric properties

Each geometric property to be controlled is expressed in terms of the coordinates X of

vertices in a folded state as

J = J (X) (6.4)

The coordinates X in a folded state are computed for a given combination of folding angles.

For instance, the orientation of the crease line l2 in a single-vertex crease shown in Fig.6.4

can be found through a rotation of l1 about the axis of the circle by θ1, followed by a rotation

about the axis along l1 by ρ1. One can work around one vertex at a time, computing the

coordinates of crease ends relative to the vertex. This process can be repeated for all vertices

to find X.

6.4.2 Objective function

A simpler design has fewer foldlines and a larger number of “off” foldlines that remain flat

(ρ = 0) throughout the folding process. It is our interest to design a folding pattern that

achieves the target geometric properties using only a small number of “on” foldlines. This

way, any device that is designed based on the folding pattern requires a small number of

components and less effort during the fabrication process.

To find folding patterns with a small number of “on” foldlines, one may use in the

optimization problem an objective function that favors designs with larger number of “off”

foldlines. One such function is f , defined as
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Figure 6.5: Objective function f

f =
∑

i

ρ2i w
(
ρi
)

(6.5)

Here w
(
ρi
)
is a weight function that takes the form

w
(
ρi
)
= Ce−

(
ρi/a

)2
(6.6)

with a constant C = e/a2 and a parameter a ∈ (0,∞). Curves in Fig.6.5 show ρ2w(ρ) for

a = 0.5 and a = 1. As maxima occur at ρ = ±a, their location can be adjusted by choosing

a. The objective function penalizes folding angles near ρ = ±a, forcing ρ away from ±a,

towards zero or towards larger values.

6.4.3 Optimization problem

If a folding process is considered as a time evolution of geometry of a sheet, an optimal

solution should describe the geometry of a folded sheet at one instant during the folding

process. To specify the instant at which the geometric properties of a folded sheet are

examined, one of the folding angles ρr is prescribed to take a fixed value ρ0r , r ∈ {1, 2, · · ·N}.
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After ρr is fixed, the optimization problem is

Optimization Problem Pr0 :

Find ρi for i ∈ Ur0 that

Minimizes f(ρ)

Subject to gk = 0 for k = 1, 2, · · ·M

hi = 0 for i = 1, 2, · · ·Meq

−π ≤ ρi ≤ π for ∀i ∈ Ur0

(6.7)

where Ur0 = {1, 2, · · ·N} \ r is the set of indices of the free folding angles in Pr0 . In Problem

Pr0 ,

• Constraints gk express the foldability condition. gk is a measure of the deviation of

a given design from a foldable design, computed by collecting the three independent

components of a 3x3 matrix Gk as

gk =
(

Gk23,G
k
31,G

k
12

)T
(6.8)

where

Gkij =
1

2

(

Fkij

(

ρk, θk
)

− Iij

)2
, i, j = 1, 2, 3 (6.9)

• Constraints hi are used to express how well the design meets a target property Ji.

They are defined by setting
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hi =
1

2

∣
∣Ji − J∗i

∣
∣2 (6.10)

for each geometric specification Ji and corresponding target value J∗i .

Clearly, there is no guarantee that a feasible solution to Pr0 exists for a given target

property and fixed ground structure. If no feasible solution to Pr0 is found for any fixed

angle (r and ρ0r), the problem setting must be reconsidered, possibly by modifying the

ground structure.

If there is a feasible solution to Pr0 , let ρ
∗ be the solution. Note that ρ∗ may still have

many small but nonzero folding angles. A sequence of optimization problems is used to set

these angles to zero while retaining foldability.

To find a feasible solution with a reduced number of “on” foldlines near ρ∗, the foldline

with the smallest folding angle

∣
∣ρq
∣
∣ = mini∈Ur0

∣
∣ρ∗i
∣
∣ (6.11)

is eliminated. A new set of free folding angles Ur1 = Ur0 \ q is defined and ρq is set to zero.

A new optimization problem is solved, using now the reduced set of design variables. The

process is repeated until no feasible solution is found. The pth step in this process solves
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Optimization Problem Prp :

Find ρi for i ∈ Urp that

Minimizes f (ρ)

Subject to gk = 0 for k = 1, 2, · · ·M

hi = 0 for i = 1, 2, · · ·Meq

−π ≤ ρi ≤ π for ∀i ∈ Urp
∣
∣
∣ρi − ρ

∗p−1
i

∣
∣
∣ ≤ δ ∀i ∈ Urp

(6.12)

where Urp = Urp−1 \ qp−1 is the set of indices of the free folding angles in Prp . Note that an

additional constraint
∣
∣
∣ρi − ρ

∗p−1
i

∣
∣
∣ ≤ δ has been added to restrict the search within a box

of width δ centered at the previous solution ρ∗p−1.

If there is no feasible solution to Problem Prp , ρ
∗p−1 is a solution to the problem for the

given choice of fixed fold angle ρr. The algorithm is summarized in the flowchart in Fig.6.6.

6.4.4 Sensitivity analysis

To facilitate numerical implementation, gradients based on analytical expressions may be

computed and provided to the optimizer. The foldability constraint depends explicitly on

folding angle ρ, and the gradients of Gkij can be computed as

dGk

dρki

=
(

Fk − I
) dFk

dρki

=
(

Fk − I
)

Rρk1Rθ
k
1Rρ

k
2Rθ

k
2 · · ·

dRρki

dρki

Rθki · · ·Rρ
k
nRθ

k
n (6.13)
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Solve optimization problem P
r
0

End

Identify smallest foldline q

Fix ρq=0 

Is there a 

solution?

N

Y

ρ∗p-1 is the solution

Start

Is there a 

solution?

N

Y

End

No solution

Solve optimization problem P
r
p

p ←  1

p ← p+1

Figure 6.6: Flowchart of foldline elimination algorithm
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if the ith crease is connected to the kth vertex and set to 0 otherwise. The constraints h

associated with the geometric properties are implicit functions of X, which depends on ρ.

First gradients of vertex coordinates with respect to ρ are computed, then the chain rule is

applied to find the gradients of the constraints as

dh

dρi
=

∂h

∂X

dX

dρi
(6.14)

The gradients of f are

df

dρi
=







0 ; i /∈ Urp

2Ca−2x
(

a2 − ρ2i

)

e−
(
ρi/a

)2
; i ∈ Urp

(6.15)

6.5 Numerical examples

Two origami tessellations are designed to test the method. The ground structure shown in

Fig.6.2(a) with N = 88 design variables is used. Note that the periodicity condition requires

that folding angles corresponding to foldlines on the right boundary are the same as those

on the left boundary, and those on the top boundary are the same as those on the bottom

boundary. The number of design variables in this particular ground structure equals the total

number of segments minus four. The optimization problem is solved using the interior-point

approach described in [97]-[99], implemented in the optimization tool fmincon in MATLAB

[100].
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Xn4

Xn1 Xn2

Xn3

Xa1 Xa2

Xb2

Xb1

Figure 6.7: Labeled vertices

6.5.1 Example 1

The first example seeks a folding pattern that changes the size of the tessellation tile as it

folds, while maintaining the aspect ratio. This property is expressed using

J =
1

2

(

Xa1 −Xa2

)T (
Xa1 −Xa2

)

− 1

2

(

Xb1
−Xb2

)T (
Xb1

−Xb2

)

(6.16)

with target value J∗ = 0. The locations of midpoints Xa1, Xa2, Xb1
and Xb2

in the flat

configuration are shown in Fig. 6.7.

A random initial guess ρ0 with a small magnitude (< π/3000) is used. The problem is

solved multiple times, each time using a different fixed folding angle ρr = ρ0r , choosing r

from the segments in Fig.6.8. Due to symmetry, only the 13 segments highlighted in Fig.6.8

need to be investigated.
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Figure 6.8: Candidates of fixed folding angles

(a) Crease Pattern (b) Tessellation

Figure 6.9: Design 1, Example 1

(a) Crease Pattern (b) Tessellation

Figure 6.10: Design 2, Example 1
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Figures 6.9 and 6.10 show crease patterns and folded tessellations corresponding to two

of the 13 solutions found, which satisfy constraints g and h within the specified tolerance

ǫ = 0.05. Parameters a = π/4, δ = π/12 and ρ0r = π/4 are used. The dotted and solid lines

in the crease patterns represent mountain and valley folds, respectively.

6.5.2 Example 2

For the second example, additional constraints are used to ensure that the projected shape

of the folded sheet follows a flat, square surface. The first geometric property J1 is the same

as before (as in Eq.6.16). To keep the tile shape square,

J2 =
1

2

∣
∣
∣
∣

(

Xa1 −Xa2

)T (
Xb1

−Xb2

)
∣
∣
∣
∣

2
(6.17)

should be maintained at J∗2 = 0. To design a tessellation that follows a flat surface (non

conforming) as it is folded and unfolded, it is also necessary that

J3 =
1

2

∥
∥
∥
∥
∥

(
Xb1 −Xa1

)
×
(
Xb2 −Xa1

)

∣
∣
(
Xb1 −Xa1

)
×
(
Xb2 −Xa1

)∣
∣
− (Xa2 −Xa1)×

(
Xb2 −Xa1

)

∣
∣(Xa2 −Xa1)×

(
Xb2 −Xa1

)∣
∣

∥
∥
∥
∥
∥

2

(6.18)

J4 =
1

2

∥
∥
∥Xa2 −Xa1 −Xn2 +Xn1

∥
∥
∥
2

(6.19)

J5 =
1

2

∥
∥
∥Xa2 −Xa1 −Xn3 +Xn4

∥
∥
∥
2

(6.20)
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(a) Crease Pattern (b) Tessellation

Figure 6.11: Design 1, Example 2

(a) Crease Pattern (b) Tessellation

Figure 6.12: Design 2, example 2

J6 =
1

2

∥
∥
∥Xb2 −Xb1 −Xn4 +Xn1

∥
∥
∥
2

(6.21)

J7 =
1

2

∥
∥
∥Xb2 −Xb1 −Xn3 +Xn2

∥
∥
∥
2

(6.22)

be maintained at J∗3 = J∗4 = · · · J∗7 = 0.

Figures 6.11 and 6.12 show crease patterns and folded tessellations corresponding to two

of the solutions found, which satisfy the constraints within the specified tolerance ǫ = 0.05

as before.
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6.6 Application: design of polarization insensitive tun-

able FSS

In this section, the usability of the origami design method is demonstrated in an electromag-

netic problem. Frequency selective surfaces (FSSs) that can be tuned in frequency based

on the folding and unfolding motion are designed. The origami design method is used to

design folding patterns than can be used to construct polarization insensitive tunable FSSs.

Designs considered are thin substrates decorated with conducting elements and folded into

tessellations. The representative unit of periodicity is designed, using appropriate boundary

conditions.

The goal of the optimization problem is to find a folding pattern that changes the size of

the tessellation tile as it folds, while maintaining the aspect ratio, which correspond to the

geometric constraints used in Sec.6.5.2. Two sets of rectangular strips are placed orthogonal

to each other on a square sheet of substrate to make a unit cell of an FSS that is symmetric to

two orthogonal polarizations as shown in Fig.6.13(a). The the mechanism of resonance tuning

of the design here is similar to the one used in [59], in which cross-shaped conducting elements

are printed on each facet of a substrate folded into Miura-ori, and the change in the length of

periodicity as a result of folding shifts the resonance frequency. The main difference is that

the design used here is perfectly symmetric for the x- and y-directions in its flat configuration,

while in [59] the layout of decoration is asymmetric even in its flat configuration, and thus

the FSS’s performance dramatically changes for different polarizations. By requiring that

the substrate folds in a way that changes the lengths of periodicity in the x- and y-directions

by the same amount, the resonance behavior is expected to be nearly symmetric for incidence
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(a) Two orthogonal sets of coupled strips (b) One set of coupled strips

Figure 6.13: Conducting decoration for FSS

with the electric field polarized along both x- and y-directions.

The full evaluation is done by computing the transmission and reflection coefficients

using HFSS. In simulations, the tile size in the flat configuration is set to 200mm, and

the conducting elements illustrated in Fig.6.13 with w = 20mm and l = 120mm and the

conductivity of copper are used. Since the strips are larger than the areas of the triangles

and quadrilaterals enclosed by lines in the ground structure, the strips will have crease lines

through them in the FSS’s folded states. The substrate is assumed to be very thin, and

the properties of air are used in simulations. A plane wave incidence with the propagation

directed normally to the plane of the sheet is used.

Figure 6.14 shows the transmission coefficients |S21| for the polarization-insensitive FSS

that satisfies the geometric constraints. The solid and dotted curves show |S21| for the

incidence with the electric field polarized along the x-direction in their flat and folded con-

figurations, and circles and squares show the data for the orthogonal polarization where the

electric field is in the y-direction. One can observe that the performance is nearly the same

for the two orthogonal polarizations. In both polarizations, the resonance shift of 8% - 9%
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Figure 6.14: Transmission coefficient

is observed, covering nearly the same range of frequencies.

The decoration is designed such that current is induced on the coupled strips along the

direction of the electric field with the first resonance occurring near λ/2 = l, where λ is

the vacuum wavelength of the incidence. Strip width w, separation of the elements and the

folding pattern will determine the exact location of the resonance. As the sheet is folded,

size of the periodic cell decreases by 9%, changing the coupling of elements, resulting in a

shift in resonance frequency. A large shift in resonance can be achieved when strips are small

compared to the size of the cell, because the change in the cell size is more significant relative

to the size of the strips. However, use of very small strips will degrade the strength of the

resonance. The decoration was designed in an ad hoc manner based on those considerations,

such that a strong resonance with a large shift is achieved.

An alternative design is to use two layers of sheets decorated with one set of strips shown

in Fig.6.13(b), rotated 90° from each other. The transmission coefficients are computed for

such a design and shown in Fig.6.15. It is seen that the performance is again nearly the
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Figure 6.15: Transmission coefficient for the two-layer design

same for the two orthogonal polarizations.

6.7 Conclusions

A method to design origami patterns based on topology optimization is introduced. Folding

patterns with desired geometric properties are found by assigning presence and fold types

to crease lines in a “ground structure”, using a topology optimization method with folding

angles as design variables. Usability of the proposed origami design method is demonstrated

in design of tunable FSSs that are insensitive to polarization of the incident electromagnetic

wave, which can be tuned in frequency by 8%.

One of the challenges in implementing the origami design method was to eliminate small

folds. The technique used in the proposed method involves an objective function designed to

aid the selection of a small fold to eliminate. It is required that the optimization problem is

solved many times, once after one fold is eliminated. The selection of a proper combination
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of unnecessary folds may be made more efficiently through a formulation involving integer

programming.

Another potential issue is that for a given set of geometric constraints, an inappropriate

choice of the ground structure or the value of the fixed fold may lead to a problem with no

feasible solution. In the future work, an investigation of the relation between the existence

of a solution for a certain set of geometric constraints and the ground structure, as well as

the value of the fixed folding angle is needed.

The usability of the origami design method is demonstrated in an electromagnetic prob-

lem, where tunable FSSs based on the folding and unfolding motion are designed. The

origami design method is used to design folding patterns than can be used to construct

polarization insensitive tunable FSSs.
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Chapter 7

Conclusions

In the first part of this dissertation, methods of topology optimization were used to design

periodic structures, composed of dielectric materials, with prescribed transmission/reflection

characteristics. Two dimensional and three dimensional design problems were solved.

A formulation using the level set function to describe the material distribution was de-

veloped for design of 2D structures, in an attempt to develop a formulation that results in

solutions with no mixture (gray) regions. In computation, smoothing of the level set func-

tion was necessary for a gradient-based optimization algorithm, and in the end solutions

still suffered from having mixture regions at interfaces. It was also observed that several

parameters affecting the analysis accuracy and optimization algorithm need to be adjusted

in an ad hoc manner but with great care to avoid numerical instability. Another formulation

based on the density approach was investigated. A rigorous mesh truncation method using

a plane wave expansion was applied at the input and output boundaries in this formulation.

The solution strategy proposed was stable and robust, and the formulation presented could

accommodate complex material distributions near boundaries by including higher modes
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into consideration.

A similar formulation based on the density approach was used to design a 3D structure

with periodicity in the x− and y−directions. A periodic structure with the material varying

in the xy-plane and uniform in the z−direction was considered. A structure that minimizes

transmission for an incidence of a prescribed frequency was found. The effective density was

projected, using a smooth Heaviside function, to a near binary density in the analysis. It

was found that use of the parameter, that adjusts the sharpness of the projection function,

needs great care, in order to achieve a fast and stable convergence.

In the second part of this dissertation, a new design method based on topology opti-

mization and the concept of origami was introduced for design of electromagnetic devices

involving transformations of complex 3D geometries for tuning of their working frequencies.

First the feasibility of tuning the working frequency of electromagnetic devices via a

folding and unfolding motion was demonstrated using two sample designs. An FSS based

on a Miura-ori structure with cross-shaped metallic prints was shown to shift its resonance

frequency as the folding configuration was altered, mainly due to the change in the periodic

cell size. A metamaterial based on a corrugated dielectric sheet decorated with SRRs was

also shown to achieve tunability in resonance frequency as an unfolding motion was applied.

The two split-rings are arranged vertically on the same plane in the initial configuration, and

as an unfolding motion is applied, the planes hosting the rings become separated, shifting

the resonance frequency rapidly. A simple analysis revealed that the main cause of the rapid

shift was the decrease in capacitance due to the air gap that opened between the split-rings.

A method to design origami patterns based on topology optimization was then intro-

duced. Folding patterns with desired geometric properties were found by assigning presence
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and fold types to crease lines in a “ground structure”, using a topology optimization method

with folding angles as design variables. Usability of the proposed origami design method was

demonstrated in design of tunable FSSs that are insensitive to polarization of the incident

electromagnetic wave. An appropriate folding pattern was designed by finding a pattern

that changes the size of the tessellation tile as the sheet is folded, while maintaining the as-

pect ratio. Copper strips were placed symmetrically on the sheet to construct a polarization

insensitive tunable FSSs. In the optimization formulation, finding desirable folding patterns

without having many small folds was found to be challenging. The proposed method re-

quires that the optimization problem is solved many times in order to avoid many small

folds. Development of a more efficient approach for removing unnecessary small folds is

needed. Another potential issue with the proposed formulation is that for a given set of

geometric constraints, an inappropriate choice of the ground structure or the value of the

fixed fold may lead to a problem with no feasible solution. In the future work, investigation

of the relation between the existence of a solution for a certain set of geometric constraints

and the ground structure, as well as the value of the fixed folding angle is needed.
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Appendix A

Finite Element Equations for 2D

Periodic Structures

The governing equation is the scalar Helmholtz equation in Eq.2.9:

∇2Ez + k20ǫrEz = 0 (A.1)

The field is assumed to take the form

Ez(x, y) = exp[jχ0(y − yin)] exp(−jα0x) +
+∞∑

m=−∞
rm exp[−jχm(y − yin)]ψm (A.2)

at the input boundary Γin and

Ez(x, y) =
+∞∑

m=−∞
tm exp[−jχm(y − yin)]ψm (A.3)

at the output boundary Γout, where rm and tm are modal reflection and transmission
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coefficients, respectively, and ψm = exp(−jαmx). The propagation vector components αm

and χm are computed as

αm = α0 +
2πm

d

and

χm =







√

k20 − α2m ; k20 − α2m ≥ 0

−j
√

α2m − k20 ; k20 − α2m < 0, m ∈ Z

(A.4)

Consider fields Ez and w that satisfy Bloch-Floquet boundary conditions such that

Ez ∈ S1 := {Ez ∈ H1(Ω) : Ez(x+ nd, y) = Ez(x, y)e
−jnα0d}, n ∈ Z

w ∈ S2 := {w ∈ H1(Ω) : w(x+ nd, y) = w(x, y)e+jnα0d}, n ∈ Z (A.5)

The weak form can be obtained by multiplying both sides by a test function w and integrating

as

∫

Ω

(

w∇2Ez + k20ǫrwEz

)

dΩ = 0

=⇒
∫

Ω

(

−∇w∇Ez + k20ǫrwEz

)

dΩ +

∫

Γ
∇Ez • n̂wdΓ = 0 ∀w ∈ S2 (A.6)

The boundary terms are
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∫

Γ
∇Ez • n̂wdΓ =

∫

Γin
∇Ez • (−ŷ)wdΓ +

∫

Γout
∇Ez • ŷwdΓ

+

∫

Γa
∇Ez • (−x̂)wdΓ +

∫

Γb

∇Ez • x̂wdΓ (A.7)

and the terms from the periodic boundaries (Γa and Γb) vanish as

−
∫

Γa
∇Ez • x̂wdΓ +

∫

Γb

∇Ez • x̂wdΓ

= −
∫

Γa
∇Ez • x̂wdΓ +

∫

Γa
exp(+jα0d) exp(−jα0d)∇Ez • x̂wdΓ = 0 (A.8)

since w|Γb = exp(+jα0d) w|Γa and ∇Ez |Γb = exp(−jα0d) ∇Ez |Γa .

The term from the input boundary (Γin) is

∫

Γin
∇Ez • (−ŷ)wdΓ = −

∫

Γin

∂Ez
∂dy

wdΓ =

∫

Γin



jχ0ψ0 − j
+∞∑

m=−∞
χmrmψm



wdΓ

(A.9)

using Eq.A.2. The term from the output boundary (Γout) is

∫

Γout
∇Ez • ŷwdΓ =

∫

Γout

∂Ez
∂dy

wdΓ =

∫

Γout



−j
+∞∑

m=−∞
χmtmψm



wdΓ (A.10)

using Eq.A.3. Substituting Eq.A.8-A.10 into Eq.A.6, we obtain
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∫

Ω
(−∇Ez(x, y) • ∇w(x, y) + k20ǫrEz(x, y)w(x, y))dΩ

− j
+∞∑

m=−∞
χmrm

∫

Γin
ψm(x)w(x, yin)dΓ− j

+∞∑

m=−∞
χmtm

∫

Γout
ψm(x)w(x, yout)dΓ

= −jχ0
∫

Γin
ψ0(x)w(x, yin)dΓ (A.11)

Equations for the reflection and transmission coefficients rm and tm are obtained by

multiplying both sides of Eq.A.2 and A.3 by ψ∗m̃ and integrating as

∫

Γin
Ezψ

∗
m̃dΓ =

∫

Γin
ψ0ψ

∗
m̃dΓ +

+∞∑

m=−∞
rm

∫

Γin
ψmψ

∗
m̃dΓ and

∫

Γout
Ezψ

∗
m̃dΓ =

+∞∑

m=−∞
tm

∫

Γout
ψmψ

∗
m̃dΓ (A.12)

Using the orthogonality relationship

∫

Γ
ψmψ

∗
m̃dΓ =







0 ; m 6= m̃

d ; m = m̃

(A.13)

we obtain

rmd−
∫

Γin
Ez(x, yin)ψ

∗
m(x)dΓ = −δ0md and

tmd−
∫

Γout
Ez(x, yout)ψ

∗
m(x)dΓ = 0 (A.14)
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Equations A.11 and A.14 will be discretized, following a finite element formulation with

linear rectangular elements, to find an approximate electric field component Ez and reflection

and transmission coefficients (rm and tm). Using linear shape functions { φm} Nnm=1, where

Nn is the number of degrees of freedom, Eqs.A.11 and A.14 are approximated by finite

element equations

Kz = F (A.15)

where z = [Ez, r, t]
T , and F =

[
fE, fr,0

]T and

K =










KEE KEr KEt

KrE dI 0

KtE 0 dI










(KEE)sn =

∫

Ω
(−(∇φn) · (∇φ̃s) + k20ǫrφnφ̃s)dΩ

(KEr)nm = −jχm
∫

Γin
ψm(x)φ̃n(x, yin)dΓ

(KEt)nm = −jχm
∫

Γout
ψm(x)φ̃n(x, yout)dΓ

(KrE)mn = −
∫

Γin
φn(x, yin)ψ

∗
m(x)dΓ

(KtE)mn = −
∫

Γout
φn(x, yout)ψ

∗
m(x)dΓ

(fE)n = −jχ0
∫

Γin
ψ0(x)φ̃n(x, yin)dΓ

(fr)m = −δ0md
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where s, n ∈ {−Nn,−Nn+1, · · · , 0, · · · , Nn−1, Nn} andm ∈ {−Nm,−Nm+1, · · · , 0, · · · , Nm−

1, Nm}. Here φ and φ̃ are bilinear shape functions associated with Ez and w, and the cor-

responding DOFs on the periodic boundaries at x = 0 and x = d are enforced to satisfy

conditions Ez ∈ S1 and w ∈ S2.
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Appendix B

Finite Element Equations for 3D

Periodic Structures

The governing equation is the vector wave equation in Eq.2.7:

∇×
(

1

µr
∇× E

)

− k20

(

ǫr −
jσ

ωǫ0

)

E = 0 (B.1)

The electric field is assumed to take the form

E (x, y, z) = Ein + Eref

= exp
{
−j
[
α0x+ β0y + γ0

(
z − zin

)]}
p̂

+
+∞∑

m=−∞

+∞∑

n=−∞
rmn exp

[
jγmn

(
z − zin

)]
ψmn (B.2)

at the input boundary Γin and
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E (x, y, z) = Etr

=
+∞∑

m=−∞

+∞∑

n=−∞
tmn exp[−jγmn (z − zout)]ψmn (B.3)

at the output boundary Γout, where ψmn = exp [−j (αmx+ βny)] and rmn and tmn are

modal reflection and transmission coefficients that can be computed as:

rmn =
1

TxTy

∫

Γin

(
E(x, y, z)ψ∗mn − p̂ψ00ψ

∗
mn
)
dΓ (B.4)

and

tmn =
1

TxTy

∫

Γout
E(x, y, z)ψ∗mndΓ (B.5)

The propagation constant for each mode γmn can be found by

γmn =







√

k20 − α2m − β2n ; α2m + β2n ≤ k20

−j
√

α2m + β2n − k20 ; α2m + β2n > k20

(B.6)

where

αm = α0 − 2πm

Tx

βn = β0 − 2πn

Ty
(B.7)

Consider fields E and V that satisfy Bloch-Floquet boundary conditions such that
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E ∈ S1 := {E ∈ H1(Ω) : E(x+mTx, y + nTy)

= E(x, y, z) exp(−jmα0Tx − jnβ0Ty)}, n,m ∈ Z

V ∈ S2 := {V ∈ H1(Ω) : V(x+mTx, y + nTy)

= V(x, y, z) exp(+jmα0Tx + jnβ0Ty)}, n,m ∈ Z (B.8)

The weak form is obtained through multiplying both sides by a test function V and

integrating as

∫

Ω
V • (∇× 1

µr
∇× E)dΩ−

∫

Ω
k20

(

ǫr −
jσ

ωǫ0

)

V • EdΩ = 0 ∀V ∈ S2 (B.9)

This can be organized as

∫

Ω

[
1

µr
(∇×V) • (∇× E)− k20

(

ǫr −
jσ

ωǫ0

)

V • E
]

dΩ

+

∫

Γ

1

µr
V • (n̂×∇× E) dΓ = 0 ∀V ∈ S2 (B.10)

using the first vector Green’s theorem (see pp. 711 [39]):

∫

Ω
a • (∇× u∇× b)dΩ =

∫

Ω
u(∇× a) • (∇× b)dΩ−

∫

Γ
un̂ • (a×∇× b)dΓ (B.11)
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and the vector identity

a • (b× c) = −c • (b× a) (B.12)

The boundary terms in Eq.B.10 are

∫

Γ

1

µr
n̂ • (V ×∇× E) dΓ

=

∫

Γleft

1

µr
(−x̂) • (V ×∇× E) dΓ +

∫

Γright

1

µr
x̂ • (V ×∇× E) dΓ

+

∫

Γfront

1

µr
(−ŷ) • (V ×∇× E) dΓ +

∫

Γback

1

µr
ŷ • (V ×∇× E) dΓ

+

∫

Γin

1

µr
(−ẑ) • (V ×∇× E) dΓ +

∫

Γout

1

µr
ẑ • (V ×∇× E) dΓ (B.13)

and the terms from the periodic boundaries (Γa and Γb) vanish, similarly to the 1-D peri-

odicity case. The weak form will then become

∫

Ω

[
1

µr
(∇×V) • (∇× E)− k20

(

ǫr −
jσ

ωǫ0

)

V • E
]

dΩ

+

∫

Γout

1

µr
V • (ẑ ×∇× E) dΓ−

∫

Γin

1

µr
V • (ẑ ×∇× E) dΓ = 0 ∀V ∈ S2 (B.14)
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The term from the input boundary (Γin) is

∫

Γin

1

µr
V • (−ẑ ×∇× E) dΓ

= −
∫

Γin

1

µr
V • ẑ ×∇×



exp[−j (α0x+ β0y + γ0)]p̂+
+∞∑

m=−∞

+∞∑

n=−∞
rmnψmn



 dΓ

=
+∞∑

m=−∞

+∞∑

n=−∞

∫

Γin

1

µr
VψmndΓ • 1

TxTy
ẑ ×∇×

∫

Γin
Eψ∗mndΓ exp[+jγmn(z − zin)]

+

∫

Γin

1

µr
V • ẑ ×∇×

{
exp[−jγ00(z − zin)]ψ00p̂

}
dΓ

−
∫

Γin

1

µr
V • ẑ ×∇×

{
exp[+jγ00(z − zin)]ψ00p̂

}
dΓ (B.15)

using Eq.B.2 and B.4.

The term from the output boundary (Γout) is

∫

Γout

1

µr
V • (ẑ ×∇× E) dΓ

=

∫

Γout

1

µr
V •



ẑ ×∇×
+∞∑

m=−∞

+∞∑

n=−∞
tmnψmn



 dΓ

=
+∞∑

m=−∞

+∞∑

n=−∞

∫

Γout

1

µr
VψmndΓ • 1

TxTy
ẑ ×∇×

∫

Γout
Eψ∗mndΓ exp[−jγmn(z − zout)]

(B.16)

using Eq.B.3 and B.5.

Equation B.14 will be discretized, following a finite element formulation using brick edge

elements as in [39], where the electric field components within each element e can be expressed

as
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Eex =
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i=1

φeiE
e
i , Eey =

8∑

i=5

φeiE
e
i , Eez =

12∑

i=9

φeiE
e
i (B.17)

and φi is a shape functions that corresponds to the tangential field component along edge i,

as numbered in Fig.B.1.
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(B.18)

The finite element equations corresponding to Eq.B.14 are

KE = F (B.19)
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in which the element matrices are

Keij =

∫

Ωe

[
1

µr

(

∇× φ̃i

)

•
(

∇× φj

)

− k20

(

ǫr −
jσ

ωǫ0

)

φ̃iφj

]

−
+∞∑

m=−∞

+∞∑

n=−∞

∫

Γein

1

µer
φ̃iψmndΓ • 1

TxTy
ẑ ×∇×

∫

Γein

φjψ
∗
mndΓ

+
+∞∑

m=−∞

+∞∑

n=−∞

∫

Γeout

1

µer
φ̃iψmndΓ • 1

TxTy
ẑ ×∇×

∫

Γeout

φjψ
∗
mndΓ (B.20)

and

Fei =

∫

Γein

1

µer
φ̃ei • ẑ ×∇×

(

exp[−jγ00(z−zin)]ψ00p̂
)

dΓ

−
∫

Γein

1

µer
φ̃ei • ẑ ×∇×

(

exp[+jγ00(z−zin)]ψ00p̂
)

dΓ (B.21)

where φ and φ̃ are shape functions associated with the electric field E and the test function

V, respectively, and the corresponding DOFs on the periodic boundaries are enforced to

satisfy the conditions E ∈ S1 and V ∈ S2.
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