PRESONALITY VARIABLHE IN PROBLEM SOLVING

Thesis for the Deqree of M. A. MCRIGAN STATE UXIVERSITY
 Hannah Lerman
 1961

Ti:Es!

PERSONALITY VARIABLES IN PROBLEM SOLVING by Hamnah Lerman

This etudy was deaigned primarlly to explore the relationshipe between personality variables which include a wide range of the aspecte of "normal" paychological functioning and problem-solving behavior on three problem taske: the Luchine Water Jar Problems, the Cowen Alphabet Mases and the Wiaconsin Card Sorting Test. The California Personality Inventory wae the personality inntrument utilised. It yielde eighteen scoren covering a variety of personality factors. Forty-eight atadente In the introductory paychology course at Michigan State University served ae aubjecte. The offect of the eax of the eubjects and the order of presentation of the task were also atudied.

Few if any of the relationshipe that are auggeated by the results could be confidently stated to represent real rather than chance relationchips. Since, however, E \&ew atatiatically aignillcant reaulte were obtained, this atudy cannot be aaid to have ohown that there are no rolationships between pertonality and teat variables. Replication of the etudy would be necessary before thi could be ascertained. Posaible meaninge for those relationshipe which were lound were discussed.

Sex differencee in problem solving were found only in the time to colution for the "set" probleme on the LWJ and on no other of the varions meamure derived from the problem-solving tanke. The order of the presentation of the take did not affect the resulte eignificantly.

PERSONALITY VARLABLES IN PROBLEM SOLVING

By

Hannah Lerman

A THESIS

Submitted to
Michigan State Univeraity
in partial fulfillment of the requiremente
lor the degree of
MASTER OF ARTS
Department of Paychology

TABLE OF CONTENTS

Page
INTRODUCTION 1
Problem Solving and Rigidity 1
Problem Solving and Personalsty Variables other
than Rigidity. 2
Statement of Problem 3
METHOD OF INVESTIGATION 6
California Permonality Inventory 6
Luchins Water Jar Probleme 8
Cowen Alphabet Mases 9
Wisconain Card Sorting Test 10
Intellectual Meacuree 13
RESULTS AND DISCUSSION 15
Effects of the Sex of Subjects and the Order of Test
Presentation. 13
Intellectual Vaxiablea 20
The Callfornia Personality Inventory and Problem.
Solving Variables 23
SUMMARY 31
REFERENCES 32

LIST OF TABLES

TABLE
Page

1. The Significance of F Teate of the Sex and Order Effocts on Five Scozes Obtained from the Luchins Water Jar Problema and the Cowen Alphabet Mases. 16
2. The Significance of Sex Differences on Seven Scoree Obtained from the Wiaconsin Card Sorting Teat 19
3. The Significance of \bar{F} Teots of the Effecte of Sexs and Test on Entrance Scerea 20
4. The Significance of Cortelation Between Intellect- ual Measures and Thirteen Mosmures Dorived from the Problem-Solving Taske (Total Sample). 21
5. The Significance of Chi Square Relationahips
Between Scorea on the California Pereomelity Inven- tory and Total Time Scoren. 24
6. The Signiflcance of Chi Square Relationehipe Between
Scoren on the Caltfornia Peraonality Inventory and the Number of "Sat" and "Ambiguose" Problems Solved on the Luchins Water Jar Probleme and the Cowen Alphabet Masea Combned. 26
7. The Sigruficance of Chi Square Rolationohips Between Scores on the California Personality Inventory and the Subjecte' Awarences of Shifte on the Winconein Card Sorting Teste 28

LIST OF APPENDICES

APPENDIX Pege
1 LWJ Probleme 38
2 CAM Problem: 39
3 WCST Cards 40
4 Converuion Table for Entrance Examination Scoree 41
5 Corrolation Between Intellectual Meamres and Measures Derived from the Problem-Solving Tanke 42
6 Correlationa Betwrea Problem-Solving Scores and Personality Variables 43

INTRODUCTION

Problem Solving and Ripidity

Many attempte have been made to relate mucceet or fallure in one type of problem-colving oltuation to performance in other aftreations by inventigeting the posedbility of the codetence of a generalized personality trait of rigidity (Appleswelg, 1954; Cattell, 1946; Cowen and Thompson, 1951; Cowen, Wiener and Hess, 1953; Fieher, 1950; Torater, Vinacke and Digman, 1955; Pitcher and Stacy, 1954; Rokeach, 1948; Schmidt. Fonda and Wesley, 1954). Dee to procedural differences among the atudiee, the various bind of problom aituatione used and the different waye of defining rigidity, the reaults of these Lavestigations are difficult to analyae (Applemwodg, 1954).

Out of them, however, Vigorous proponents of the two oppesing viewpointe have merged. Rokeach (1948, 1949, 1950) believee that rigidity ie not an icolated phenomenon when it appearic, bat io an aspect of a general factor which will manifent itaelf in the colution of any problem. Billinge (1934) had carller foned problem-acolving ability in one field to be rolated to an individual's ability to doal with problemn in other arcan. Cowen and Thompeon (1951) and Schmidt, Fonde and Wealey (1954) are also in accord with the viow.

On the negative side, factormanalytic otnedies have falled to find a generalised sigidity or Iexdbility factor when the interrelationchipe of verious problem taske have been etudied (Cuilford, Frick, Chrietensen and Merrifield, 1957; Jesper, 1931; Kleceneler and Dudek, 1950; Notcutt. 1943).

Shevach (1937) augzested that perseveration, seamingly an aspect of problem- 0 olving ability simallar if not identical to rigidity, exists as a functional unity for some individuals while thile unity is weak or non-exdetent for other individuals and the different populatione uned in the various studiee might explain the contradictory resulte recelved.

Forster, Vinacke and Digman (1955) uggest the use of more restricted terms than flexdbility-gigidity, terms which can be more closely tied to the epecific task. Chown (1959), atter an extensive review of the literature, offers a aimiler euggention.

Problem Solving and Personality Variables Other than Riqidity

While there has meen s widospread intercet in rigidity as it is related to problem-solving behavior, few attempte have been made to inventigate other personality variables an they are manifented in problem taske. Almoat all of the current pernomality theories postue Inte that the internal conaistency of the individual persenality should reveal itself in consiatency of some obervable nort among the various behavior: ach individual manifecte under differing circumstances (renichol, 1945; Goldatein, 1939; Murphy, 1947; Rogere, 1951). The Aitration is complicated by the tact that the theoriate seam to mean consistency of the meaning of ach ftem of bohavior as It applies to a opecific individual rather than a more objective and oandy obearvable conointency. Nevertholese, deapite the fact that the axdetence of personnility coneletency is aceopted almost asomatomeally, few empirical inveatigations have been made in which attempts have been made to relate it to observable behaviors mach as performance on problem-solving tasks.

Where variables other than rigidity were atudied, personality meabures have been sought which would differentiate subjects who were fadged rigid or flexible in terme of their behavior on problem taske (Applezweig, 1954; Cowen, 1954; Cowen and Thompion, 1951; Maltman, Foz and Morrisett, 1953; Pitcher and Stacy, 1954; Sehmidt, Fonde and Wealey, 1954). The hypotheses, even in these atadies, concerned the validity of the problem-solving aituation as a rigidity moature, the pertonality meamare serving at critertion by meane of which validity could be aecertained.

A fow studios do relate sigidity or persoveration to other personality traite. Pimerd (1932) found the perseverator to be nervore, seneltive, offeminate and centimental while the nomperseverntor wat inconoiderate, tactieee and critical. Moderate perseveratore were conolderate, hermonioun, reflective, and moderate nomperseverators were courageoms, jovial and good mixers. Cuilford, Christonsen, Frick and Merrifield (1957) found that thoee individuals who were highly tolerant of ambulty also acored high on the ablity factore of ascociational Ilemey, originality and rerbal comprehenaion; k.e.. non-rigid individual were tolerant of ambigudty.

There have been only a fow stadies in which problem solution wate laventigated in relation to per conality variablee other than rigidity or equivalent traite (Galer, 1952; Nakamura, 1958). These dealt primarily with one or two relatively isolated variahlee and were not concerned with the range of pereomality factore that might be related to an individual' level of problem-solving abdity.

Statement of Problem

The present atudy exploret the heretofore neglected poseibility that personality variables other than rigidity might be rolated to
problem-solving ability. While it would be poseible to make predictions about how pereonality variables are related to problemcolving behavior from within the framework of any number of theorien, the expectation according to the different theories would not necealarily coincide. Becamse of the lack of theoretical consengus as to what relationshipa could be expected and the paucity of previous empirical investigation of personality in its relationship to problemsolving abllity, no apecific hypotheces have been formulated.

Three problem tanke were used so as to make it possille to discuse the generality of any relatsonohip: between problem performeance and personality factors which might be obtained:

The Lachine Water Jar problems (LWJ) (Lechine, 1942) have been exteneively atudied in connection with the investigation of sigidity of personality es it ralates to Einstelinng phenomena (Appleawedg, 1954; Bakan, 1955; Brown, 1953; Cowea, 1952; Cowen and Thompson, 1951; Cowen, Wiener and Hees, 1953; Forater, Visecke and Digraan, 1955; Goodotein, 1953; Laching, 1951a, 1951b; Maltmana, For and Morrissett, 1953; Rokench, 1948, 1950). The tiret probieme of the serien can only be solved by a two stop axithmetic procedure. These are "Set" problems, so labeled becanee the subject is axpected to build up eet or Einstellung for colving probloms via thit mothod. Subaequent probleme (called "Ambiguous" in thic atudy and "Critical" by some other investigatora) can be soived by the long method ueed in the "Set" probleme or by a ahorter procedare (Other studios have also included "Entinction" probleme which cen only be solved by the ghort method and in which the long method cannot be made to work. The third type of problern is not included in the present etudy). Subjecte who eolve the "Ambiguous" problems or the long or "Set" method have often been called "rigid" and their seeponces on other

Inutruments have been contrasted with the "mom-sigld" Individuals. those who used the chort method where ft wae appropriate. The LWJ has rarely been ased to atudy charactestetics of bohavior other than "Set" and rigidity.

The second task lavolved here, the Cowen Alphabet Masea (CAM) (Bakan, 1955; Cowen, Wiener and Hese, 1953) wae deaigned to be a verbel parallel to the LWJ probleme, and contains both "Set" and "Ambiguoug" probleme.

The Wisconaln Card Sorting Test (WCST) is, however, of a different type. The eortag task from which it was developed was Introduced by Weigl (1941) who atudied the differeatial performance of children, normal adulte and adulte with cerebral damage. Studies involving this inatrament, however, have primarily aimed at exploration of eituational Influences upon performance (Berg, 1948; Grant, 1951; Grant and Berg, 1948; Grant, Jones and Tallantic, 1949; Jones and Grant, 1948; Rose, Rupel and Grant, 195, Wohlwill, 1957).

The Callfornia Parsonality Inventory (CPI) (Gough, 1957) was the personality meamired used. It includes many acalee which are designed to aseese varicty of areas of functioning in the normal individual. It wat standardised on young adulte, many of whom were of college age, thas meleing it eepecially appropriate for use with the college popealation aampled in this atudy.

NETHOD OF INVESTIGATION

Fifty-seven studente enrolled in Peychology 201 at Michigan State Univeraity during Winter Cuarter 1960 were the aubjecte used in this experiment. Of these, data from nine eubjecte was discarded and not used in computing atatistics because of axperimental errore or omisaions. The final sample of forty-nine included twenty-soven males and twenty-one females whose range in age wan from eighteen to twenty-six years.

The scores on the college entrance teate that the oubjecte had taken were obtained from the Office of Evaluation Services. In addition, the etudents' cumulative grade-point averages were aleo obtained. The aubjects took the California Personality Inventory during class sesalons and then were seen individually. The individual testing sessions consisted of administration of the Luchine Water Jar problame, the Wisconsin Card Sorting Test and the Cowen Alphabet Masea. The atudente were told only that they would be taking part in a problem-solving experiment. They were requested to give iwo houre of time to the experiment. Mont, bowever, completed the three taske within thirty to fifty minates.

Callfornia Pereonality Inventory

The CPI was administered according to ingtrections given in the manual (Gough, 1957) during regular clase periode to two clase sections of Paychology 201. Most of the oighty-nine clase membera completed the teat in leas than one and one-hali houre. Later. volunteere were solicited from these sections for participation in individual testing sescions.

The CPI is an untimed test consisting of 468 statemente. The subject replies to each of the numbered statement by indicating which are "true" about himself and which are "false." The tent contains eighteen meales which represent aspecte of personality tunctioning. These are as follow:

Group I - Meanuree of Poise, Aecendency and Sell-Aseurance
1- Domianace (Do)
2. Capacity for Statue (Cs)
3. Sociability (Sy)

4- Social Preconce (Sp)
5. Self-Accoptance (Sa)

6-Sense of Well-Being (Wb)
Group II - Meapuree of Socialisation, Matmrity and Reaponability
1- Responsibility (Re)
8- Socialisation (So)
1- Self-Control (Sc)
10. Tolerance (TO)
11. Good Impreseion (Gi)
12. Commanality (Cm)

Group III - Meadures of Achiovement Potential and Intellectual Efficioney

13- Achievement via Conformance (Ac)
14. Achievement via independence (Ai)
15. Intellecteal Efficiency (1e)

Group IV - Meacures of Intellectual and Interet Modec
16- Peychological-Mindednese (Py)
17. Flaxiblity ($5 x$)

18- Femininity (F)
Dotailed deecriptions of the varione emion are available in Gough (1957). Their alguficance will alse be diecuesed below where it is relevant to the remalte obtalned.

Luching Water Jar Problems

This task consisted of sixteen arithmetic proheme, of which the first two were practice problems. The LWJ and CAM problems were alternated so that the LWJ problem: were the firat task adminiatered to even-numbered subjects and the last given to oddnumbered aubjects, while the reverse wae true for the CAM problems.

The problems were printed on separate sheets of $8 \boldsymbol{1}^{n+1} \times 11^{n}$ paper which the experimenter handed to the aubject. If a aubject took longer than two minutes on either of the two practice probleme or indicated that he was unable to solve the problem, the experimenter demonstrated the appropriate method of solution. No help wat fure nished to the subject on mubsequent probleme. For each problem attempted by each mubject, the experimenter recorded the subject' time to completion. Il a aubject falled to work a problem, the time recorded wat the time antil the subject indlcated that he wished to go on to the next problem. The first time a eubject spent over three minutes working on a given problem, the experimenter maid, "You may go on to the next one if you wish" but did not prese the eubject further if he chose to continue.

Problems 1-6 were "Set" problems soluble by the B-A-2C method alone. Probleme 7-14 were "Ambiguous" proNems noluble both by the B-A-2C method and elther A+C or A-C. In addition, problem 11 was soluble by C alone. Moet of the probleme were taken from Lachine (1951a, 1951b) and R. Bakan (1955). The problems used may be found in Appendix 1.

The ecoren derived from this tent includeds $\mathrm{S}_{\text {, the mumer of }}$ "Set" problems solveds As, the mumber of "Ambiguous" problems solved in the "eet" manner; TT, the total time for solution of all
problems; $T / 14$, the average time for solution of the total probiem eeti $T / S_{\text {, }}$ the averege time for colution of the "Set" probiemes $T / A_{\text {, }}$ the average time for solution of the "Ambiguoug" probleme.

Cowen Alphabot Mazen

This tank involved Anding pathwaye through mases of lettere of the alphabet arranged $\ln 6: 6$ grids so that combining the lettera as they were found along thit path would yield meaningtul worde or phrases. The probleme were arpanged so that their secquence paralleled the eequence of the LWJ probleme. They were given ac the firot tack to odd-numbered rubjecte and laet to even-mambered oubjecte. At in the LWJ tesk, there were aixteen problems, of which the firot two were practice problems. Probleme lob were "Set" probleme whose eclution wat via an indirect path. Probeme 7-14 were comparable to the "Ambiguount prohleme of the LWJ tack. Fach of these could be solved via either a direct or an indirect peth through the mase. The probleme used may be foand in Appendix 2.

The problema were printed on eeparate ehecte approximately ef" x st" in oise which the experimentor handed to tho mbject. Aethe experimenter gave a abject she firet practice prohlun, bhe inatracted the subject as follows, pointing cut eppropriate eections on the grid at ohe opoket
"Thie experiment involved working out masec. In ach of these mases, the iden is to move from the upper Eight-hand corner to the Lower lietmhand cormer, opolling ont words ac gre go. Yon are allowed to move one boz at a time in any direction, fact ad long an the move you make helpe te opell out a word. The colutione are elther moaningful worde or phracen. In cese there io more than one path
that will take you from atart to finioh, the correct colution is the path that used the fewest number of boxes. This one in practice; try it. " With absequent probleme, the only inatructions were "Try this one."

If the aubject took longer than two mimutes on oither of the two practice probleme or indicated that he was unable to solve the problem, the experimenter indicated the path through the mase, repeating the instructions in an informal way as ohe did so. No help was provided on the other probleme. For each problem attempted by a oubject, the experimenter recorded the eubject' time to completion. If a mubject failed to work a problem, the time recorded was the time until the abject indicated a wish to proceed to the next problem. The firat time a subject spent over three minatee working on a given problem, the experimenter indicated "You may go on to the neat one if you wish" but did not press the aubject further if he chose to contime. The ecoren derived from this teat are equivalent to those derived from the LWJ probleme.

Wisconsin Card Sorting Teat

The WCST was the second problem task for all mubjecte. It involved sorting a pack of aixty-four cards. The cards were $3^{\prime \prime} x^{\prime \prime} 3^{\prime \prime}$ squeres of white coated cardboard upon which figuree had been painted. The figures on these cards could be stars, crosace, triangles or circles. A card could contain one to lour idontical agures in one of the following four colora: red, yellow, blue or green. The pack thne contained one each of all combinations of the four Aysures, four colors and four numbere that could be devieed under the reatriction that only one color and one type of Agure could appeaz on a given card.

In addition to the sixty-fonr Reaponce cards, there were fous Stimulue cards which were placed before the aubjoct. These weres one red triangle, two green stars, three yollow croseen and lour blue circlos (Cards containing these figures were also included within the pack of Reaponce earde). It was thae poasthe to sort the Response carde according to thalr color, or the mamber or type of Aguree they contained.

Where a single figure appeared on a card, it was centered with the $3^{\prime \prime}$: $3^{\prime \prime}$ equare. Where two figurea appeared on a card, they were always placed so that one wae in the mpper left-hend gaarter of the card and the ocher in the lower ifghbhand quarter. Three figuree were alwaye placed so that there was one each in the lower inat and right-hand guartert and one figure centered above thom in the upper half of the card so that the three together formed atxiangle. When a card contained four ligurec, there wan one in each quarter of the cerd, the forming a egane. This placement of Agures is the eame ee that given by Grant, Jonee and Tallantie (1949).

The carde were given to all mbjecte in atandard order. They were arranged so that neither the eame figure, color nor mamber of Agures appeare on any two coneecutive carde in the pack. The order in which the carde were used at well ae the configuration which appeared on ach is available in Appendix 3.

The four stimulut carde wore placed from laft to zight, in the order in which they were mentioned above, before the aubject. The subject wat given the pack of sixity-iour Remponse cards with the Lollowing instructiones
"I want you to pat these cmarde into four groupe beneath the ones on the table. I will tell you whother you are right of wrong. 4 If the mubject asked any queations about the task, the expertmenter only
repeated: "I will tell you whether you are right or wrong." The Instructions are esentially those used by Berg (1948).

Initially, the experimenter reaponded to a anbject'e sorting by uaing color as the bais for determining whether a placement was correct. When a mbject had placed five consecutive carde correctly, the experimenter shifted to using number as the basie of her responses to the aubject. After the mbject achieved five aucceseive auccessee with number ta the correct category, the expermenter shifted again, this time using type of figure (hereafter apoken of as form) as correct. These categories were used again in the same order, malding atolal of aix categories. Each mubject morted the cards until he had completed the eix categories or had sorted all sixty-four cards. The time that was apent by the aubject on the entire task was recorded. After the cards had been sorted, each eubject was asked; "What were you trying to do or what did you think you were aupposed to do ${ }^{\prime \prime}$ and his response noted.

Scores derived from this test included Total Correct Reaponees (TCR) made by the aubject, Total Errore (TE) which were further divided into Perseverative Errore (PE) and Non-Perseverative Errore (NPE) according to whether the response classified as an error would have been correct for the immediately preceding eategory, Total Time (TT) for completion of aix categories or sorting aixty-fone cards, Average Time per card eorted (T/Card), Average Time per category completed (T/Cate.), Number of Categories completed (iCate. I, and Number of Cards nsed in completing six categories ("Card). Where the aubject did not complete six categorien, $64+$ wae considered to be the Number of Cards used.

Intollectual Measuree

Prior to 1958, Michigan State University bad administered the American College Eramination (ACE) to all incoming freshmen and tranefer atudents. Beginning in that year, however, the College Quallifeation Test (COT) wat used in the entrance examinations.

Of the atudente in this experiment, thirty had entered Michigan State Univeraity in 1958 or later and had taken the CQT. Thie group consieted of sixteoz females and fourteen males. Eighteen others had entered Michigan State Univeraity between 1953 and 1957 and had been teoted with the ACE. This group contained five females and thirteen males. These scores along with the rebjecto' gradepoint averages were ued as measures of intellectal fanetioning.

The ACI yielde two part scores and a total score. The acores are $\underline{L}_{\text {, a }}$ a score on the verbal or Unguintic section, and \underline{Q}, quantitative score. The CQT, on the other hand, yiolds three past scoree and a total, Ite parte are $\underline{V}_{\text {, }}$ vocabalary, $\underset{f}{ }$ information, and N , numerical. V wee conoldered equivalent to $\underline{\underline{L}}$ of the ACE on the beais of probliohed correlations betwoen the two, and N was used as the oquivalent of Q on the same basis. The total scores of the ACE and the CQT were also concidered at comparable (Jwola, 1960). The 1 score of the CQT was not ueed aince a score on thle variable was avallable for ouly a portion of the oubjecte in the experiment.

Prior to 1959, publiched scoree wore avaliable frem the Office of Evaluation Services in the form of ranke of 1 through 10 which had beea derived from the percontile rating of all the otudents who had taken the teat at a given time. In 1959, however, the pablication liated the ecorea directly as percentile satinge. On the bacie of the information available on the method proviously naed to obtain "derived scores,"
the percentile ratinge of the fifteen subjecte who taken the entrance oxaminations in Fall 1959 or later were converted into auch "derived ecores." A table illuetrating the converaion method is available in Appendix 4.

The comparability of the acoren of the ACE and the CQT, and the converalon method used were both suggested by Dr. A. E. Juola of the Office of Evaluation Services at Michigan State Univeraity to whom the experimenter wishes to exprese har apprectation for his kind aseiatence.

Effecte of the Sex of Subjects and the Order of Test Presentation

Since mall of the aubjects recelved LWJ tirnt and the others worked on CAM first, the queation of the effect of the order of the test has to be conoidered. This is especially pertinent becanse of the difference in the leval of difficulty of the two teate. Thirty-one subjects (thirteon fomales. Aghteen males) cosrectly solved all the "Set" problems of the LWJ. while only lourteen eubjects (fire femalee, nine males) colved all the "Set" probleme of the CAM. Seventeen individuale solved all the "Ambguous" LWJ proweme in a direct manner while only one person accomplsehed thi on the CAM. Is there an offect of solving the leas difficult problema apon iater performance of the more dificult onee? Is the second problem oet casier If the more dificult one came firat?

Along with the poseibility of teat order affecting performance, the posaibility of differences in the performance of malea and females alno has to be conoldored. Blllinge (1934), Crutchileld (1960), Nakamura (1958) and Sweeney (1953) heve reported eex differences in various binde of problem solving aituations inciuding numerical and arithmetic reamoning teete. Guetskow (1951) reported sexf dicierencee favoring males in extinction probleme of the LWJ fthis type is not included in the present atudy), and no eex differences in the critical problame (called "Ambiguous" in the present atndy). There is no pabliched information with regard to eer differencee in performance on elther the CAM or the WCST.

Table 1. The Significance of F Teate of the Sax and Order Effecte on Five Scoren Obtained from the Lachine Water Jar Problems and the Cowen Alphabet Mases.

Score	Effect	LWJ	CAM
\mathbf{S}			
		- *	-
	order	1.0	1.93
	Int'n	-	-
An			
	eex	2.26	-
	order		-
	int'n	2.75	-
T/14			
	eex	8.15**	-
	order		2.07
	Int'n	-	-
T/S			
	eex	7.87**	-
	order		2.09
	int'n	-	-
T/A			
	cex	-	-
	order	-	-
	int'n	-	-

*Dashes represent cases where $F<1$
** significant beyond .01 zevel of conflence

Table 1 shows the resulte of significance teste of the effecte of the ear of the aubject and the order in which the LWJ and CAM were adminiatered. These analysee were computed according to Walker and Lov (1953) who anggest the use of an approximate feat for an analyais of variance where the N in the celle are unequal. Teate of
heterogencity of variance had been competed previons to these analyees. In those, the atatietical teot used initially wat the Fmax teat, tested with dif from 10 to 15. Where the reculte changed in algnificance leval within theee dif Bartlett' teat was performed. The only cases in which these tests reached eignificant lovele were $T / 14$ and T / S of the LWJ. These were aignificant at $.01(B=13.66)$ and $.05(5=10.21)$ reapectivaly.

Nelther eex nor order veriablee seem to affect performance eignificantly on the CAM. The order of adminiatration also does not have an important effect upon LWJ. Malee and females, however, are ilgnificantly difforent from each other on LWJ in their mean Times to Solution for the "Set" probleme as well ac of the total group of probleme. The mean time for fomales is significantly longer than the mean time for the males, and the fomnlee in the sample also ohow themselves to be aignificantly more variahe in their average timesi l. e., while some worked as fant at the malee, othert took much longer timee to solve the probleme. Thit difference in vartability and average time doea not appear in the time acorea for the "Ambiguoue" problems. It secm likely that the eignificant recelt on sex differences in $T / 14$ is due primazily to the lerge differonce in the means and variance of the time to solution of the "Set" problems.

Chown (1959) indicated that the number of probleme colved on LWI had not proven to be valuable in the atady of rigidity and auggeoted that time acoren might be more helpful. The females In the aample managed to nolve the anme manber of probleme at the men, but, ae a group, did thetr probleme more clowly. This perhape indieates that they expertenced greater difficulty with the "Set" probleme. Thi hypothesie is in accord with the Information evalable, 1.e. women do lese well than men on quantitative take (Blllings,1934). II, going
beyond available data, we wish to conoider longer time acoren an indicative aleo of greater "Set" and rigidity, it is neceseary to note that the difference in time scoree between men and women does not appear in the "Ambiguous" problern on which "Set" or Eingtallung Is cuatomarily meamured. Since the "Get" probleme alone meraly represent a series of manerical probleme that happen to have a common mothod of solution and in witich no meacure of Einctollung is included, it seams more partimonione to conelder the time differance between the sexes, aince they occur on the "Set" probleme alone, as being due to differences in facility of dealing with quantitative problems. If there is a difference in munerical ability between the eazes, the question arisec as to why there were not time differencen on the "Ambiguous" probleme as well.

A posalble anower to this question lies in the infuence of practice on previoue probleans on aubecquent problem-solving behavior. Time ecoras on the frat "Set" probleme were generally longer than on later problems. As aubjects became aware that there wae a common method, thedr timet to molution decreased. When the "Amblguoue" probleme were presented, those individuale who meed the "Set" method contimed to decrease their solution times as they gained further prectice with this method. Those Individuale who changed from using the Indirect "Set" mothod of solmation to miling the more disect method of nolution also worked facter on the "Ambignone" probleme, the direct eolntion involving fewer etepa and therefore tabing lees time than the "Set" method.

Therefore, the initial differences in time scores between malee and fomalos, which implies differencee in quantitative ability, lessened with each prohem regardless of the method usedi i. e, there were no differences between the two groups in their ability to benefl
from practice on the problems and their awarences of a communality in method among the probleme despite a difference in facility with quantitative taske.

Table 2. The Significance of Sex Differencee on Seven Scorea Obtained from the Wisconain Card Sorting Test

Score	t betw. meana ${ }^{\text {a }}$	variance ratios ${ }^{2}$
TCR	. 32	$B=1.76$
TT	. 003	1.31
I/Card	. 36 (df= 1)	4.27**
T/Cate.	. 44	1.92
TE	. 64	1.42
PE	. 20	1.99
NPE	1.35	2.07

**
Significant beyond . 01 leval of confidence
${ }^{2}$ Except where indicated, di for the t teste $=46$. In the cace where $e^{2} \neq 0^{2}$, the correction $\delta 0 r$ di suggested by Walker and Lev (1933) was made and di 1.
a The etatintical test noed wat the $F_{\text {max }}$ tent, uing both $d f=21$ and
 formed and thit reault appenrs in lieu of the recult of the Fman tent.

Table 2 showe the remults of teats of the difference between male and females with respect to their performance on the WCST. Neither the variance nor the meane differ algnificantly between males and females except for the variance on T/Card. The femalee were more variable than the malee were bet ae aroup were not slower. Teste of sex differencea on \#Cards and \#Cate. do not appear in the table because the ascumption of normality required for uaing t,
which applied to the other WCST variables, could not be juetified for these two meamuran because of their skewed distributions. A non-parametric aubstitute for t, the Mann-Whitney \mathbb{U} test with the eppropriate correction for thed ranks were employed instead (Siegel, 1956). The renulte for both rariables also support the hypotheale of no differences between the sexen.

Intellectual Variablea

Table 3 show: the retulte of the effecte dae to the subjecte' sex and the entrance examination taken. It feveale that malee and femalee do not perform in a mifificantly difierent manner on thece examinetions. Only with regard to the meamercment of arithmetic ebilities do the two teste differ. The CQT for both malee and fomales yielde lower ucores for this appect of academic fanctioning than does the ACE.

Table 3. The Significance of F teste of the Effecte of Sen and Test on Entrance Sicore:

Teat	Means			Vestance \dagger
	Eex	Teet	Interaction	
Lelnguletic or Verbal	-*	-	-	2.45
Quantitative or Numertcal	-	4.90**	-	1.56
Total	-	-	-	2.44
${ }^{4}$ mmax teat used				
Dashee represent cases where $\overline{5}<1$				
Significant beyong . 05 leval of comfidence				

The possibility of sex differences in Grade-Point average in our sample wae also investigated. The avẹrage GPA for malen wan 2.46 and the average was 2.53 for females. Theae were not eignificantly different from one another ($\mathbf{t}=.43$).

Teble 4 thows the correlations for the total sample between the intellectual measures and various meatures dorived from the problem-solving taske. The corresponding correlations formales and femalos separately may be found in Appendix 5.

Table 4. The Significance of Correlatione Between Intellectan Meamures and Thirteen Manauree Derived from the Problem-Solving Tanke (Total Sample)

Tent	Score	L or V	Q or N	T	GPA
LWJ					
	T/S	-. 238	-. 324*	-.405**	. 2621
	I/A	.. 069	-. 474**	-. 299	. .070
	T/14	. . 232	-. 413**	-. 432**	.. 259

CAM

T / S	-.093	-.018	. .103	-.029
I / A	-.274	-.037	-.208	-.166
$\mathrm{~T} / 14$	-.194	-.017	-.154	-.120

west

TT	-.234	. .197	-.255	$-.328 *$
T/Card	0.152	-.209	-.202	-.241
T/Cate.	-.242	-.010	-.104	-.130
TCR	.208	.165	.257	.214
TE	-.260	-.182	$-.288 *$	$-.352 *$
PE	.038	-.211	-.120	-.244
NPE	$-.421 * *$	-.054	$-.304 *$	-.273

[^0]All the measuree shown, with the exception of TCR, are time or error scores for which high scores represent long times or a large number of errors. Negative relationehipe with the intellectual meagures would therefore be expected if intellectual ability is ree lated to performance on problem-solving tasks. For TCR, however. high scores are indicative of the total number of correct reeponsee made by the aubjecte. It therefore abould show positive relationshipe with the intellectual meanures. Except for the correlation between PE and Lor V which is a positive one, the correlations are all in the expected direction.

It is intereating to note that none of the CAM variabee ohow significant relationshipe to the intollectan meamaree. Conoidering the nature of the taek, it is surprioing that there is no eignifleant relationehip to L or V. It muet be noted, however, thece CAM measuris are the time scoree and not the number of "Set" or "Ambiguous" problems and that the number of probleme solved might well show relationshipe with L or V or other of the measures. Unfortunately, these correlatione were not computed.

The LWJ variables, however, chow algnificant relationships to the Q or N and T scores of the entrance cumminations. Numerical ability therefore is a contributing factor to the apeed of performance on these problema. Grade-Point average ie not aignificantly related to any of the LWJ variables.

Grade-Point average is aignificantly correlated with TT and TEg two variablee derived from the WCST. Scholastic ability as meagured by GPA is significantly related to the total time taken by the mbjects on the WCST. Speed of concept-formation can be considered as heving some relationship to the ability to comprehend concepts which, presumably, is one factor of academic performance.

TE which is aignificantly related to GPA ts aleo afgnificantly correlated with the T acore on the entrance examinations. The WCST is set up 00 that the aubject is immediately aware of the correctness of his reaponses. Continuing to make errorn, at is implied in ahigh ecore on TE showe an inability to benefit from paet mistakes. This type of difficulty is preamably penalised in an acaderaic aetting and on academic teste.

The same reasoning perhape can be aeed in explaining the aignificant relationshipe betweon NPE and the L or V and T ecores of the entrance examinations. It could be more casily applied If PE chowed significant relationships instead of NPE, as PE is a perseverative meacure. However, non-perneverative errore were pare in our sample. They usually occurred where the aubject did not complete any categories or perhape completed only one. His reaponses could not be ciassified ae perseverative errors according to the customary usage of that term on the WCST, bust he noverthelese perisisted in making the aame kinds of errore time after tme and domonstrated an inability to profit from previoue miataken.

The California Pereonality Inventory and Problem-Solving Variables

Time Scores

The diutributions of the personality acores from the CPI and of the total time ecores from the three problem tacke separately and combined were each dicotomiaed at thed r median and X^{2} computed. Table 5 showe the relationship between the dghteen scalee of the CPI and the time acores on the problem-solving taske. LWJ, CAM and the combined total time ecores demonetrate no algnificant relationship

Table 5. The Significance of Chi Sqaare Relationahipe Between Scores on the California Personality Inventory and Total Time Scores

$\begin{array}{r} \text { CPI } \\ \text { Score } \end{array}$	LWJ	CAM	WCST	Combined Timea
Do	1.40	. 084	. 084	1.29
Cs	. 091	1.34	. 334	. 774
Sy	. 334	. 083	. 75	0
Sp	2.06	. 334	1.34	. 077
Sa	. 365	. 755	2.10	. 365
Wb	. 701	. 339	3.05	. 828
Re	. 365	2.10	. 765	2.94
So	2.13	. 334	3.34*	. 732
Sc	. 334	. 083	4.08*	0
To	. 774	3.01	1.34	2.06
Gi	. 334	. 084	2.08	. 334
Cm	. 309	. 753	. 084	1.29
Ac	. 334	. 083	2.08	. 334
Ai	2.94	. 755	. 753	. 365
Ie	1.72	0	1.334	. 091
Py	. 001	. 084	6.797**	. 001
$F \mathrm{~F}$. 732	. 334	0	. 774
Fe	2.94	. 084	6.797**	. 001

[^1]to any of the personality variablec. The relationahip between the CPI ecores and the total dime scores on the WCST, howover, reached a Eignificant level with four of the persomality scores. The chance expectatione for a statistic to be eignificant at the .05 level when eighteen independent atatistics are computed is one. The variaben listed are not independent; the effect of this on the probablify of the occurrence of aignificance is unknown. We may aesume that one or two of the aignificant remulta here represent real difforencee in the population. It it more likely that the real differences occurred where
the level of confidence is beyond . 01. These were Py, PaychologicalMindedness, and Fe, Femininity. In both cases, the longer time ecoree were associated with low cores on the personality variables, both of which are clanified as intallectuat and interest modes (Gough, 1957).

Fy is deacribed as meaenring'the degree to which the individual is interested in, and reaponaive to, the inner needs, motives, and experiences of othern." Those who core low on thie variahle are described as "apathetic, serioue and unsamming; low and daliberate in tempos overly conforming and conventional. "The description of the low ecorer might well predict cur resuit; that he would be siow perforraing a task for which one requirement is eufficient alertmese and awarenese to percelve that the task domande have been shifted by the experimenter.

Fe fe a measure of the masculinity or femininity of intereate, with low scores indicating more maseuline interents. The low scorer here ia described at "hard-headed, ambitions, masculine, active, robent and rentlone. manipulative and opportuniatic in dealing with othera; blunt and drect in thinking and action; impatient with dolay, indecision, and zeflection." This description could eacily go with reculte opposite to the one obtained here. The asmociation of this description with long time scores on the WCST is not easy to explain. Hopefully, it represente a relationohip beeed on chance alone.

Number of Probleme Solved

Because E and As yielded narrow ranges of possible acoren $\left(\underline{S}=0\right.$ te $\epsilon_{;} \underline{A}=0$ to 8) on both $L W J$ and $C A M$, it was decided that \underline{S} for LWI and CAM be combined so as to widen the possible range of diatribetion of scores and facilitate comparisons with CPI, and that
the eame procedure be followed with As. These comparisons: X^{2} performed in 2×2 tables with both variables dicotomised at theiz medians, are shown in Table 6. Only three resulta reached a aignificant leval out of the thirty-six atatiatice computed. This does not appear to be different from what the expectatione according to chance would be.

> Table 6. The Signiffeance of Chd-Square Relationehipa Between Scoret on the California Pormonality Inventory and the Number of "Set" and "Ambiguous" Problomes Solved on the Lachine Water Jar Probleme and the Cowen Alphabet Manes Combined

CPI Score	S	As
Do	. 26	. 084
C:	. 11	1.34
Sy	. 34	. 75
Sp	2.23	8.35**
Sa	. 26	. 084
Wb	2.48	. 33
Re	2.82	. 084
So	1.95	1.34
Sc	3.05	2.08
To	6.68**	. 504
Gi	. 34	. 084
Cm	8.10**	2.10
Ae	0	. 084
As	3.33	2.10
Le	2.02	. 504
Py	1.54	. 084
Fx	. 107	. 33
F	3.33	. 084

[^2]If the relationship between Ep and A : ia not accidental, it comald be amsily accounted for on the basis of Gough' information about thene teat ecoree (Gough, 1957) and information aboat the taske. Those who ecored high on Sp received low acoree on As. High scorert on Sp are dencribed by Gough as: "clever, enthusiastic, imaginative, quick, informal, epontaneone, active and vigorous." Low scorere on As, which represente the number of "Ambiguces" problema aulved in the "Set" manner, ware those individuals who sulved more of these problums via the ahort method. They can be considered to be less "rigid" or more "flexible" in their períormance than the others were. The deccription of the high ecorere on Sp can readily be considered ae descriptive of these individuale.

The algnificaut relationships between S and Cm and To could be less easily esplained. The relationship is in the ame direction for both; high scorert on the perounality variables obtained lower scoret on S_{0}. \underline{S} is the measure of the number of "Set" probleme solved and is therefore a measure of mamerical skill. Eelow are Gough's deecriptions of high ecorers on Te and Cms
high on To, Tolerance - "enterprieing, informal, quick, tolerant, clear-thinking, recourcotul; Intellectually ables having broad and varied intereats."
high on Cm, Communailty - "moderate, tacten, rellable, sincere, patient, eteady and reallatics honeat and conscientions; having common amse and good frodgrent."

It is difficult to see how these deacriptions can be releted to low ecores on S. From the description of high scorere on Ta one would expect them to possess good numerical ablity rather thas the reveree while the description of hgh scorere on Cm does not clearly ouggeat ofther good or poor numerical okille.

Awarences of Shifta
All subjecte were questioned after they completed the WCST as to their perception of the task which had been required of them. They were classified as Aware or Not Aware of the ohifing nature of the criteria which the experimenter had need to determine what wore correct reaponses. The groups were compared by X^{2} on their personality ecores. Theee reaults appear in Table 7. Only two of the oighteen atatistics reach the . 05 level of significance, and therelore it is most probable that theee represent chance relationohipe.

Table 7. The Significance of Cht Square Relationehipy Between Scores on the California Personality Inventory and the Subjects' Awarenees of Shifte on the Wieconain Card Sorting Teat.

CPI 8core	X^{8}
Do	2.26
Cs	. 001
8y	. 084
Sp	1.40
Sa	. 678
Wb	. 26
Re	. 85
So	3.49*
Sc	2.10
To	1.40
Gi	. 084
Cm	. 85
Ac	. 76
A1	6.59*
Ie	. 001
Py	1.97
Fx	2.94
Fe	. 059

[^3]If these represent more than chance relationahipt, the relationchip between Al and awarenese of the shift could be explained more eanily than that between So and awarenese of chifte. In both caees, the high scorerson the percomality variablen were more likely to be aware of the ohifing nature of the exiteria for correctneat than were the low ecorere. High corert on Ai, which is a measure of Achieve. ment Vis Independence, ere described by Gough aifi "mature, forceful, dominant, demanding and foreaighted; independent and self-rellant; having ouperior intellectual ability and judgment, N Insofar as thase Individuals rely upon tholr judgront regardlese of whether thedr judgments accord with the nounl or yield information requiring them to reapond in some umenel manner, they might be eappected to do well on such a task an the WCST. The WCST Mot atrick" in lif the experimenter ohite criteria. This it mameual and not in eccerd with otudonts' expectatsone. High ecorere on Al were mafitionty celfreliant and precumably nom-andoue to perceive this.

High ecorert on So are dencribed at 'monet, inchatrione. obliging, aincere, modest, otendy, consciontlom, and reoponaibles sell-donying and conforming," Contrary to our zowlte, one would not expect anch individuals to be willing or ahe to percetve unuoreal changes in the experimental task.

Correlations

Before the reanits chown in Tablee 5 and 6 were comppeted, corralatione were comprated with Peareon's y theweca all the veriablea derived from the problem-colving taske and the personality ecoren of the CPI. Thit wae done eepretely for malee and fomalea and for the ontire eample. It wae lelt that these results would be even more
difficult to discuse than the X^{2} resulte without replication of the experiment to determine which resuite represented real relationohipe and which had occurred on the basia of chance alone. These correlationg can be found in Appendix 6.

This atudy was dealgned primazily to auplore the relationohipe between periconality variablee which include a wide range of the sepects of "normal" paychological functioning and problem-solving bebavior on three problun tacket the Lachine Water Jar Probleme, the Cowen Alphebet Mases and the Wieconein Card Sorting Tant. The California Personality Inventory wes the pereonallty inatrument utilised. It yielde dghteen scorea covering a variety of pereomality factore. Forty-Aght etudente in the introdectory paychology couree at Michigan State Univeraity eerved a mubjecta. The effect of the mex of the mabjecte and the order of presentation of the tacke wore also etradied.

Few if any of the relationchipe that are auggented by the reoulte could be conflently otated so represent real rather than chance reladonohipe. Since, however, a fow atatiatically ofgnificant reselte were obthinod, the otucy eannot be aald to heve shown that there are no relationahip: between percomality and teat vaxiahies. Roplication of the etredy would be necesany before this conid te ascertained. Possible moaninge for those relationohpe which wore found were diecmesed.

Sex differencen in prokem colviag were foand oaiy in the time to colution for the "Sat" problems on the LWJ and on mo other of the varions measures derived from the problem-solving taske. The order of presentation of the taeke did not affect the reoults aignificantly.

REFERENCES

Applesweig, Dee G. Some Determinante of Behavioral Rigidity. J. abnorm. soc. Psychol. . 49, 1954, 224-228.

Bekan, Rita. An Analyais of Two Instruments Used to Menmure Rigddity In Solving Problems. Unpablished Manter'e Theets. 1935. Michigan State College.

Borg. Esta A. A Simple Objective Technique for Meamaring Flexdulity in Thinking. J. gen. Paychol. 59, 1948, 15-22.

Billings, M. L. ProblemaSolving in Different Fielde of Findeavor. Amer. J. Paychol. 46. 1934, 259-272.

Brown, R. W. A Doterminast of the Reladonahip Between Rigidity and Authoritarianimm. J. abnorm. ooc. Paychol.. 48. 1953. 469-476.

Cattell, R. B. The Riddle of Perseveration: II Solution in Terme of Peroomality Structure. J. Pere. . 14, 1946, 239-267.

Chown, Shoils M. Rigidity-oA Fleadble Concept. Paychol. Bull. . 56, 1959. 195-223.

Cowen, E. L. The Infuence of Varying Degrees of Poychological Strean on Problem-Solving Rigidlty. J. abnorm, soc. Perchol.. 47, 1952, 512-519.

Cowen, E. L., and Thompion, G. G. Problem Solving Rigidity and Permonality Stracture. J. abnorm. ooc. Paychol. 46. 1951, 165-176.

Cowen, E. L., Wiener, M., and Hess, Judtit. Generalimation of Problem Solving Rigidity. J. conmit. Prychol. . 17. 1953. 100-109.

Crutchileld, R. S. Male Supertosity In "Intuitive" Probiem Solving. Paper read At Amer. Paychol. Assoc., Chicago, sopt, $1 \% 6$.

Fenichel, O. The Peychoanalytic Theory of Nearobie. Now Yorks W. W. Norton, 1945.

Fleher, S. Petterne of Personality Rigidity and Some of Thetr Determinante. Paychol. Monogr., 64, No. 1 (Whole No. 207), 1950.

Forster, Norn Chang, Vinacke, W. E., and Digman, J. M. Flexibility and Rigidity in a Variety of Problem Stbations. J. abnorm. soc. Paychol. ${ }^{\text {50, }}$ 1955, 21.1-216.

Gaier, E. L. Salected Personality Variables and the Learning Process. Paychol. Monogr. . 66, No. 17 (Whole No. 349). 1952.

Goldotein, K. The Organism. New York: Amer. Book, 1939.
Goodotein. L. D. Intellectual Rigidity and Social Attiteden. J. abnorm. soc. Peychol., 48, 1953, 345-353.

Gough. H. G. Callfornia Paycholorical Invontory Mamal. Palo Alto, Callf. 1 Conomiting Paychologista Prees, 1956.

Grant, D. A. Perceptual verane Analycal Reaponees to the Number Concept of a Weigl-Type Card Sorting Tent. J. eap. Paychol., 41. 1951. 23-29.

Grant, D. A. and Berg, Eata A. A Bohavioral Amalyuie of Degree of Relnforcement and Ease of Shifing to New Remponsees in WefglType Card-Sorting Problam. J. Enp. Paychol., 38. 1948, 404-411.

Grant, D. A., Jones, O. R. and Tallantie, B. The Relative Dificulty of the Number, Form, and Color Concepts of a Waigl-Type Problem. J. exp. Parchol. . 39. 1949, 552-557.

Gnetekow, H. An Analyaie of the Operation of Set in Problem-Solving Bohavior. J. gen. Pyychol. . 45. 1951. 219-233.

Guiliford, J. P., Chrietencen, P. R., Frick, J. W., and Merrifiald, P. R. The Relations of Creadve-Thinkdng Aptitudee to NonAptitude Permonality Tralte. Report No. 20, Peychological Laboratory, Univ. of So. Callf., 1957.

Guilford, J. P., Frick, J. W., Christencen, P. R. and Merrifeld, P. R. A Factor-Analytic Study of Fleadbility in Thiniding. Report No. 18, Psychological Laboratory, Univ. of 8o. Calif., 1937.

Jasper, H. H. Is Perseveration a Functional Unit Perticipating in All Behavior Processes? J. soc. Pgrchol.. 2. 1931, 28-51.

Joaec, O. R., and Girant, D. A. Category Dificulty Study on the Univeraity of Wieconsín Card Sorting Teat. Amer. Poycholoriet, 3. 1948, 372 (abstract).

Juola, A. E. Predictive Validity of Five College-Level Academic Aptitude Teste at One Institution. Permonnol and Guidanee I., 38. 1960, 637-641.

Klemeler, R. W. and Dedek, F. J. A Factorial Inveatigation of Flaxibility. Educ. peychol. Meamnt. 10, 1950, 107-118.

Levine, D. Problum-Solving Rigidity and Dectalon Time. J. abaorm. soc. Paychol., 50, 1955, 343-344.

Lachino, A. S. Mechanisation in Problem Solving. Paychol. Monogr.. 54. No. 6 (Whole No. 248). 1442.

Luching, A. S. On Recuat Ueage of the Einotollung-Effect as a Text of Rigidity. J. congelt. Peychol., 15. $1951 \mathrm{a}, 89-94$.

Lachinc, A. S. The Enotelleng Teat of Rigidity Ito Relation to Coneretences of Thinbing. J. congult. Paychol.. 15. 195ib, 303-310.

Malisman, I., Fox, J. and Moryiectt, L. Jr. Some Effocte of Manifect Andety on Montal Set. J. exp. Psychol., i6. 1953, 50-54.

Marphy, G. Peraonality: A Blosocial Approach to Origine and Stmecture. New York: Harper, 1947.

Nakaraura, C. Y. Conformity and Problem Solving. J. abnorm. Boc. Paychol. . 56, 1958. 315-320.

Notcutt, B. Pereeveration and Fiuency. Brit. J. Paychol. . 33, 1943, 200-208.

Oliver, J. A. and Fergueon, G. A. A Factorial Study of Teate of Rigidity. Canad. J. Peychol. . 3, 1951, 49-59.

Pinard, J. W. Tests of Perseveretion. Il. Their Relation to Paychopathic Conditiong and to Introverioion. Brit. J. Peychol., 23. 1932, 114-126.

Pitcher, Barbara and Stacy, C. L. Le Elamellung Rigidity a Gomeral Traif? J. abnorm, soc. Peychol. . 49. 1954, 3-6.

Rogere, C. Client-Centered Therapy. Boatom Houghton Mifilin, 1951.

Rokeach, M. Generalimed Mental Rigidity as a Factor In Ethnocentriam. J. abnorm, soc. Paychol., 43, 1948, 259-278.

Rokeach. M. Rigidity and Ethnocentrioma A Rejoinder. J. Pers. 17. 1949, 467-474.

Rokench, M. The Effect of Perception Time Upon Rigidity and Concretenese of Thinking. y. exp. Paychol. . 40, 1950, 206-216.

Rose, B. M., Rupel, J. W. and Grant, D. A. Effects of Pariona, Impereonal, and Physical Strese upon Cognitive Behevior in a Card Sorting Problem. J. ebnorm. soc. Pgyehol. . 47, 1952. 546-551.

Schmidt, H. O., Toada, C. R.. and Wealey, Elianbeth L. A Note on Conctatency of Rigldity at a Perconallty Variable. J. congult. Peychol. : 18, 1954, 450.

Shevach, B. J. Etwate In Perceveration: Vil. Experimental Reculte of Tente for Sensory Perseveration. J. Paychol. 3. 1937. 403-427.

Slegel. S. Nonparametric Statistics for the Behavioral Sciencen. New Yorky McGraw-Hill, 1956.

Sweeney, F. J. Sex Differences in Problem Solving. Tech. Report No. 1, Contract N60ry 20125 (NR 153-149) Office of Naval Research, Dept. of Peychology, Stanford Univ., 1953.

Walker, Helen M. and Lev, J. Statietical Inference. New Yorks Henry Holt, 1953.

Weigh, E. On the Peychology of So-Called Processes of Abetraction. J. abnorm, ooc. Psychol., 36, 1941, 3-33.

Wohlwill, J. F. The Abstraction and Conceptualimation of Form, Color and Number. J. exp. Peychol., 53. 1957. 304-309.

APPENDICES

APPENDIX 1

LWJ Problem:
given get molution

practice 1	29 qt.		3	20	A - 2C
practice 2	39		4	31	A - 2C
1- eet	21	127	3	100	B-A-2C
2-set	12	32	3	14	B-A-2C
3. eet	22	89	4	59	B-A-2C
4- set	14	163	25	99	B-A-2C
5-at	18	38	7	6	$B-A-2 C$
6- set	14	59	10	25	B-A-2C
7- ambiguoue	18	48	4	22	$\begin{aligned} & B-A-2 C \\ & \text { or } A+C \end{aligned}$
8- ambiguous	9	36	6	15	$\begin{aligned} & B-A-2 C \\ & \text { of } A+C \end{aligned}$
9- amblguous	23	49	3	20	$\begin{aligned} & B-A-2 C \\ & \text { or } A-C \end{aligned}$
10. ambdguous	20	47	7	13	$\begin{aligned} & B-A-2 C \\ & \text { or } A-C \end{aligned}$
11- ambiguore	34	85	17	17	$\begin{aligned} & B-A-2 C \\ & \text { or } A-C \text { or } C \end{aligned}$
12- ambiguens	18	39	3	15	$\begin{aligned} & B-A-2 C \\ & o z A-C \end{aligned}$
13- ambiguors	14	36	8	6	$\begin{aligned} & B-A-2 C \\ & \text { of } A-C \end{aligned}$
14- minguous	15	39	3	18	$\begin{aligned} & B-A-2 C \\ & \text { or } A+C \end{aligned}$

CAM Problems

4- eet
ENBROW BOSXIU HLGNQC PBVZFG DZYKOL MEHTRM

7- ambiguous
YYNGEY NAYHOR BRHUWC NVSZMV GASOAD WARDYR

10- ambiguous
SEDMPT
LOYDWA
UPVOMF $X P D Z P B$ 1 GOZEX STACTC
practice 2
SKLNW
EBIKH
CWYZO
SIJIX
TISGQ

2-set
NBIXDM
LOPMEF
SCJNQI
HUKJAJ
Y Z WQRB
DLOBES

> 5- eet

GMSDSF
Q1 TMIK
ISUXYC
REMXTR
GBOJHV
TAOBEI
8- ambiguous
GMOEYL
ZTUKES
QSHTQE
AVTCHF
BEFZIC
RAEHMR
11. ambiguous

QCRBLE
AVTMIV
LPJENQ
KMDQ1K
CALBUV
YTILAZ

3-set
LSOKNR
E ZMQUC
HEONYB ZJNZAU MPXONX EDIHDA

6- set
OLBRIB
NUCVUH WXJYED TTXQTM YLNZHE EKACEO

9- ambiguoue
EPMHLT KQSTRX GQKYSZ RSNUTO EOVIHF WETSEN
12. ambiguous

PWRLRN
LZVPOK
$V X M T Q H$
OKIZEV
WCYXOQ ERUSRS
13. ambiguoua

1 OBCLH
MNTQEZ
HGERZO
DVHYRJ XAGQEV TIUSDW

14- ambiguous
SGCARY
FRHEOB
DNAUZN
XPSKCG
NEJEAF EMOCNW

APPENDEX 3

WCST Carde

1-	$2 R C$ $1 G T$	17.	$2 Y S$ $4 G C$	33-	$3 R C$ $+B S$	49-
3-	4 YS	19.	1 RT	35.	270	51.
4-	180	20.	3 CS	36.	$3 G C$	52-
g.	3 Y	21.	4 BO	37.	2 BS	83-
6	1 GC	22-	3 GT	38-	160	54.
7.	4 Y 0	23-	1 RS	39.	2 RS	55.
8.	3 BC	24.	2 BO	40.	4 CT	56.
9	40^{40}	25.	4 YT	41.	1 BS	57.
10-	3 RT	26.	3 RS	42.	360	58-
11.	200	27-	$2 \mathrm{CT}^{\text {T }}$	43.	$27 C$	59.
12.	4 ns	28-	3×0	44.	4 RO	60.
13.	3 BT	29.	1 BC	45.	271	61.
14.	$1 G S$	30-	2 RO	46.	4 BC	62.
18.	$3 \times C$	31.	4 YC	47.	2 RT	630
16.	1 10	32.	2 BT	48.	198	64.

Code

1. 8, 3. 4 seler to the mumber of figures on the eard.

T = triangle; $S=$ tar; $C=$ crone; $O=$ circle.

APPENDDX 4

Convardion Table for Entrance Examination Ecoree

Derived ecore	Percentage taking test who scored higher than a given ecere	Percentage recalving a given ecore	Percentage telding teat who ecored lower than given ecose
10	0	1	99
9	1	3	16
8	4	8	88
7	12	16	12
6	28	22	50
5	50	22	28
4	72	16	12
3	88	8	4
2	96	3	1
1	99	1	0

APPENDIX 5
Correlations Between Intellectual Measuren and Measures Derived from the Problem-Solving Taske

L OPV	Q or N	T	GPA
-. 30%	-. 309	-. 400	-. 373
-. 054	-. 567 ${ }^{\text {\% }}$	-. 260	-. 214
-. 305	-.438	-. 448 *	-. 410
. 121	-. 025	-. 126	-. 143
-. 464	. $0 \% 6$	-. 345	-. 331
-. 306	-. 084	-. 248	-. 339
-. 278	-. 394	-. 409	-.461*
. .116	-. 389	-. 275	-. 308
-. 244	-. 352	-. 382	-. 329
.177	. 398	. 412	.132
-. 420	-. 331	-. 551事	-.473*
-. 262	-. 378	-.480*	-.455*
-.520 ${ }^{\text {a }}$	-. 201	-. 508*	-. 385

	Lorv	Q OXN	T	GPA
T/S	-. 306%	-. 163	-. 481 \%	. 211
T / A	. .132	-. 321	-. 281	.099
T/14	-.452*	. 218	-.458	. 126
T/S	.0 .102	.032	-. 069	.075
T / A	.. 167	.. 036	-. 135	. .033
T/14	-. 146	. 039	. 089	. 049
$\mathbf{T T}$. 231	.081	-. 060	-. 128
T/Card	. 266	.140	. 090	. 1335
T/Cate.	. .232	.189	.050	. 008
TCR	-222	-. 038	.122	. 381
T 5	-. 139	-. 087	. 060	-. 210
PE	- 204	. 0.073	.174	. 0.055
NPE	-. 358	-. 040	-. 234	. 2208

LWJ
CAM
WCST
*Significant beyond . 05 leval of confidence

* Significant beyond. 01 level of confidence

Correlations Between Problem－Solving Scores and Personality Variables
Total Sample

CPI	LWJ				CAM				Wisconsin Card Sorting Test								Intellectual Measures			
Score	S	As	T／S	T／A	5	As	T / S	T / A	TCR	TT	T／Card	T／Cate	e TE	PE	NPE	\＃Cate＇s	LorV	Qor N	T	GPA
Do	.130	． .011	－． 181	－． 199	． 138	－． 071	－． 026	． 220	． .122	． 0.074	． 104	.169	． 068	－． 050	． 151	． 016	－． 006	． 140	． 075	． 230
Cs	－． 010	－． 028	． 078	－． 154	． 126	－． 076	－． 053	． 243	－． 205	． 100	． 038	． 197	.197	． 068	． 222	－． 152	．． 046	． 002	． 074	－． 024
Sy	． 131	． 042	．． 129	－． 057	． 063	－． 042	． .011	． 182	． .129	． 068	.057	.109	． 069	－． 006	.108	． 108	． .018	． 078	． 025	． 129
Sp	． 114	． 194	． 100	－． 268	－． 004	－． 029	． 045	． 344%	－． 188	． 251	． 234	． 309	． 126	－． 080	.266	．． 029	．． 194	． 139	．． 047	．． 040
Sa	． 179	－． 104	． 252	－． 252	． .004	． 041	． 153	． 361%	．．063	． 184	． 143	． 188	． 152	． 084	． 136	－． 133	． 022	． 122	． 047	． 033
Wb	． 429 \％	＊＊＊ 149	． 260	． 163	． 198	．． 031	． 056	． 152	－． 068	－． 020	． 060	．． 110	－． 234	－．297＊	－． 045	． 381 \％${ }^{\text {采 }}$	．． 189	．． 081	． 207	． 022
Re	－． 213	． 136	． 216	． 136	． 068	． .130	．073	－． 130	． 116	－． 088	．． 067	．． 178	－． 151	－． 141	． 080	．． 090	． 218	－． 084	． 061	． 110
So	－． 285	． 212	． 233	． 185	． 050	． 145	． 043	．． 088	－． 033	．． 131	－． 094	．． 056	－． 167	．． 218	． .026	． 200	． 048	．． 094	．． 059	． 110
Sc	－． 436	絃． 208	． 256	． 281	． 070	－． 035	．． 012	－． 113	－． 043	－． 224	－． 154	－． 230	－． 240	－． 208	－． 141	． 267	． .121	－． 132	． 191	． 081
To	－． 373	年宗－． 014	． 189	． 034	． 014	． 016	． 050	．． 017	－． 042	－． 143	－． 112	．． 147	． 101	．． 118	－． 029	． 176	．． 028	－． 106	．． 128	－． 012
Gi	－．393＊	＊＊． 279	． 197	． 247	.163	． 082	． 041	－． 023	－． 149	．． 183	．． 145	．． 096	．． 082	．． 095	－． 025	． 120	－． 282	－． 151	－． 287	．． 098
Cm	－． 199	－． 054	． 111	－． 144	． .064	－． 115	． 140	． 154	． 111	． 038	－． 029	．． 134	． 010	． 153	－． 140	． 150	． 005	－． 049	．． 021	－． 092
Ac	－． 234	． 277	． 166	． 189	． 365	． 065	－． 084	－． 036	．． 038	－． 076	－． 020	． 005	－． 180	． .225	0.037	． 224	． 112	．． 082	． .026	． 239
Ai	－． 345%	\％－． 167	． 292	－． 013	． 028	－． 126	． 079	． 032	． 067	．． 043	． 031	．． 177	．． 199	．． 131	－． 160	． 156	． 104	．． 035	． 017	． 128
Ie	－． 083	． 060	． 025	－． 093	－． 029	－． 177	． 055	． 028	． 064	． 0002	2．034	．． 137	．． 177	－． 047	． 212	． 264	． 022	． 008	．． 026	． 079
Py	－． 145	． 092	． 061	－． 011	． 191	.079	－． 053	． 127	－． 108	－． 318	－． 224	．． 166	． 241	． 244	－． 110	． 030	． 045	． 056	． 060	． 248
Fx	． 044	－． 090	－． 098	． 066	－． 076	． 064	－． 059	． 118	． 097	． 103	． 124	．． 079	－． 045	． 076	－． 143	． .017	． 118	－． 002	． 081	－． 129
Fe	．． 036	－． 013	． 274	． 028	．． 189	． 011	． 074	－． 098	.142	－． 077	－． 070	．． 060	．． 126	． 317 \％	－． 218	－． 066	． 308 \％	－． 121	． 083	． 271

[^4]
Males

Wisconsin Card Sorting Test							
TCR	TT	T/Card T/Cate	TE	PE	NPE	\#Cate's	
.099	.079	.061	.180	-.044	-.064	.004	.069
-.098	.194	.185	.158	.092	.002	.111	.128
.161	.290	.249	.117	.019	.060	-.032	.093
-.071	$.500 * *$	$.478 *$	$.390 *$.184	.030	.199	-.112
.145	$.381 *$.289	.190	.134	.177	.001	-.081
.000	-.109	.106	-.127	$-.447 *$	-.375	-.205	$.435 *$
.010	-.233	-.169	-.121	-.240	-.220	-.093	.192
-.341	-.233	$-.678 * * .043$	-.186	-.209	.055	.141	
-.082	$-.471 *$	-.254	-.310	$-.477 *$	$-.433 *$. .189	$.386 *$
.056	-.270	-.126	-.281	-.344	-.250	-.194	.311
-.137	$-.447 *$	-.270	-.220	-.373	-.334	-.152	.311
.171	.024	-.010	-.140	-.011	.302	-.292	.121
-.041	-.108	-.050	.091	-.190	-.238	-.015	.168
.142	-.344	-.262	-.313	-.299	-.089	-.286	.167
.156	-.180	-.059	-.237	-.355	-.057	$-.385 *$.374
.090	$-.410 *$	-.234	-.285	$-.459 *$	-.286	-.302	$.420 *$
-.125	-.078	-.104	-.117	.136	.284	-.094	-.078
.118	-.087	-.108	-.046	-.041	.047	-.094	-.198

Intellectual Measures
Lor V QorN T GPA

.057	. .084	.068	.251
.041	.090	.109	.034
-.020	.006	.060	.110
-.249	.041	. .114	-.245
.048	.002	.064	-.014
. .093	-.037	. .117	.037
$.388 *$.004	.296	.315
.073	-.120	-.039	.029
. .076	-.016	-.131	.212
.070	-.162	-.061	.045
. .226	-.076	-.244	.078
.135	.011	.177	-.094
.136	-.008	.076	.255
.167	-.058	. .046	.160
.058	-.046	.012	.139
.064	-.049	-.053	-.074
.138	-.082	-.025	-.284
.273	-.019	-.174	$.427 \%$

[^5]| CPI | LWJ | | | | CAM | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Score | S | As | T/S | T/A | S | As | T/S | T/A |
| Do | -. 013 | .. 232 | . . 170 | -. 434\% | . 100 | -. 236 | -. 096 | . 152 |
| Cs | -. 142 | -. 089 | . 143 | -. 229 | . 054 | -. 389 | . 137 | . 291 |
| Sy | . 029 | .. 118 | -. 066 | -. 132 | . 055 | -. 043 | -. 044 | . 065 |
| Sp | . 088 | -. 287 | . 061 | -. 209 | -. 256 | -. 262 | . 294 | . 320 |
| Sa | . 142 | . .139 | . .237 | -. 186 | -. 145 | . 022 | . 151 | . 109 |
| Wb | -. 506* | -. 016 | . 354 | . 049 | . 215 | . . 211 | . 070 | . 244 |
| Re | -.571* | . 011 | . 264 | . 010 | . 006 | . . 063 | . 322 | . 030 |
| So | -. 353 | . 028 | . 115 | . .067 | . 037 | . . 060 | . 086 | . 107 |
| Sc | -. 386 | . 016 | .116 | . 024. | . 159 | .. 194 | -. 128 | . 130 |
| To | -. 317 | -. 181 | . 108 | -. 174 | -. 084 | . . 131 | . 323 | . 163 |
| Gi | -. 345 | . 211 | . 164 | -. 017 | . 194 | . 026 | -. 049 | . 093 |
| Cm | -. 408 | -. 189 | . 479 | -. 078 | . 261 | . 117 | . 487 \% | . 170 |
| Ac | -. 363 | . 081 | . 148 | . 085 | . 421 | . . 127 | -. 090 | . 061 |
| Ai | -. 246 | -. 296 | . 243 | . 127 | -. 083 | -. 243 | . 290 | . 376 |
| Ie | - 109 | -. 087 | -. 089 | -. 268 | -. 211 | -. 384 | . 245 | . 284 |
| Py | . 223 | .. 179 | . 038 | -. 219 | . 165 | -. 046 | -. 035 | . 090 |
| Fx | . 096 | -. 063 | -. 275 | . 134 | -. 304 | -. 068 | . 219 | . 235 |
| Fe | . 462 \% | - -.228 | -. 112 | -. 383 | . 068 | . 172 | -. 293 | . 001 |

Wisconsin Card Sorting Test

Wisconsin Card Sorting rest							
TCR	TT	T/Card	T/Cate	TE	PE	NPE	\# Cate's
. 389	-. 228	-. 234	. 123	. 192	-. 018	. 413	-. 048
-. 314	. .030	. .044	. 273	. 309	. 152	. 434 *	-. 183
-. 515	-. 148	-. 071	. 077	. 125	. . 110	. 393	-. 021
-. 284	. 086	. 144	.164	. 024	. 2111	. 314	3
-. 255	. 047	. 080	. 185	. 157	-. 014	. 335	-. 188
.. 133	. 045	-. 039	.. 092	-. 024	-. 206	. 211	. 322
. 099	. 046	-. 025	-. 284	. 016	-. 024	. 062	. 216
. 265	. .079	-. 180	. 192	-. 092	-. 151	. 004	. 260
-. 027	-. 035	.. 126	.. 066	. 065	. 089	. 019	. 098
-. 133	-. 064	-. 115	. 036	. 125	. 015	. 235	. 029
-. 155	. 012	-. 081	. 096	. 212	. 205	. 170	-. 115
. 028	. 054	-. 053	-. 113	. 052	-. 081	.209	. 190
. 069	. . 061	-. 024	. 107	-. 139	. . 233	.013	. 281
-. 029	. 210	. 219	. 088	. 071	-. 202	. 112	. 130
-. 046	. 164	.105	. 060	. 043	. .032	. 128	. 097
-. 291	-. 259	. 231	. 003	0.035	-. 196	. 178	. 090
. 355	. 260	.291	-. 025	-. 267	-. 206	-. 281	. 202
. 157	. 2111	-. 284	. 055	. 160	-. 043	-. 269	-. 103

Intellectual Measures
$\frac{\text { Lor V QorN T GPA }}{\text { T }}$
. $.063 \quad .361 \quad .053 \quad .241$ $\begin{array}{lllll}-. & -.091 & -. & .082 & -.079\end{array}$

| $.028 \quad .147$ | -.047 | .175 |
| :--- | :--- | :--- | :--- |

$-.028 \quad .127 \quad-.030 \quad .186$
$.023 \quad .201 \quad .012 \quad .087$
$\begin{array}{lllll}-.341 & -. & .32 & -.305 & .009\end{array}$
$\begin{array}{lllll}-.241 & -.092 & -. & 247 & -.184\end{array}$
$\begin{array}{llll}-.169 \quad .139 & -.003 & .171\end{array}$
$\begin{array}{llllll}-. & 284 & -. & 187 & -.237 & -.076\end{array}$
$\begin{array}{llllll}-.181 & -.037 & -.182 & -.064\end{array}$
$\begin{array}{lllll}-.368 & -.259 & -.346 & -.259\end{array}$
$-.270-.091-.273-.103$
$.003 \quad .061 \quad . .100 \quad .212$
$-.033 \quad .030-.001 \quad .088$
$\begin{array}{llll}-.043 & .072-.077 & .013\end{array}$
$\begin{array}{cccc}.025 & .150 & .173 & .532 \% \\ .120 & .049 & .195 & .038\end{array}$
$\begin{array}{llll}.120 & .049 & .195 & .038 \\ .334 & .331 & .395 & .278\end{array}$
*Significant beyond . 05 level of confidence
**: Significant beyond .01 level of confidence

$$
x
$$

[^0]: ${ }_{*}^{*}$ Significant beyond .05 level of confidence
 ** Significant beyond .01 level of confidence

[^1]: ** Significant beyond. 05 level of confideace
 Significant beyond. 01 level of confidence

[^2]: *

 Significant beyond. 01 level of confidence

[^3]: *Signilficant beyond. 05 level of confidence

[^4]: ＊Significant beyond． 05 level of confidence
 ${ }^{\text {章＊}}$ Significant beyond． 01 level of confidence

[^5]: Significant beyond . 05 level of confidence
 *\% Significant beyond .01 level of confidence

