117 540 THS CONSOLIDATION OF GRANULAR SOILS BY VIBRATION Thai: for the Doom 0! B. S. MHIGAN STATE COM-.56! Robert Mundio McGinnis 1948 Iii-'1'}: III I I m. m / H T CONSOLIDATION OF GRANULAR SOILS BY VIBRATION By Robert Mundie McGinniS Candidate for the Degree Of Bachelor Of Science A Thesis Submitted to the Faculty of Michigan State College of Agriculture and Applied Science July, 1948 Cl :7/ f) N N. Page Acknowledgment Introduction ‘ 1 Conclusions 4 Description of Tests 5 Computations 7 Data Discussion of Results 14 Bibliography 201327 ACKNOELEDGMENT The author is greatly indebted to Mr. G. C. Blomguist, Assistant Soils Professor with the Michigan State College Civil Engineering Department, and Professor C. L. Allen, Head of the Civil Engineering Department, for their guidance and suggestions in connection with this report, and to the Michigan State Highway Department for the use of equip- ment, laboratory facilities and for providing the photographs contained in this thesis. INTRODUCTION The consolidation of structural backfills has been a prime problem to the engineer since ancient times, but until recent years most consoli- dation was done by allowing the soil to consolidate over a long period of time due to natural rainfall seepage. Obviously, most present day con— struction cannot be held up for long periods; therefore, ways were found to do the job quickly by means of rollers or by running over the backfill with heavy machinery. However, in many cases there is insufficient space to permit rolling. Hand or pneumatic tampers have been used although they are slow devices for any extensive amount of backfill. This has led to the development of other means of compaction. It has long been known that vibration influenced compaction but, until recently, little work has been done along this line. At the present time vibrational compaction machines are being developed and used with very good results. Besides consolidating soil at a much faster rate than by use of hand tampers, the machines consolidate a much thicker layer of soil and the effects of the vibration on each layer continues consolida— tion of the lower layers so that very high densities are attained. At the present, little is known about the factors governing consoli— dation by vibration and the Optimum conditions to give the best results. It is known that the speed of vibration has a definite effect, the best results being given by frequencies of 60 to 70 V.P.S. Increasing the weight of the machine has the effect of increasing the depth and also the rate of compaction. Various types of vibrating surfaces are being tested at the present time. The purpose of this study is to determine the effect of the mois— ture content of granular soils on their compaction by vibration and to find an Optimum moisture content to obtain the fastest and most dense con— solidation. This information should aid in producing more efficient results in the field, and since this objective was followed, tyoes of granular materials likely to be found in the field rere used. host of the testing was done on 2N8 sand and 6A gravel, although tests were also run on pea gravel and blast furnace slag (5). The test procedure followed in this work was developed by the Michigan State Highway Department laboratory at the University of Michigan with slight variations as were considered feasible for testing the materials used. Vibration is merely a means of rearranging soil particles in a much more dense condition than in loose backfill. This is done in vibration by setting the individual soil grains in motion enough to overcome the inter— nal friction. The resistance to diaplacement is due first to sliding of grain on grain and second to the interlocking of grains (1). The inter— locking becomes more important as the material becomes denser, and this is especially true of natural or 2N5 sand since the grains are angular in shape. When the grains are set in motion by means of vibration, accor— panied by a compressive force or weight, the particles have a tendency to fill the large voids in the loose backfill and to rearrange themselves in a dense mass. This will be especially true of a graded material since the small particles work into the voids between the large particles. However, in this case excessive vibration has been found to cause the fine particles ‘I K J’ to sift downward through the coarse particles, resulting in a less dense consolidation at the top of the soil layer. The actual time to achieve _2_ consolidation by vibration is very short. Several time-consolidation tests are contained in this report to give an indication of the time of compaction. In this thesis careful laboratory technique has been used with the purpose of obtaining as accurate data as possible so that the results may add to our present knowledge of soils and especially to the problem of consolidation of granular soils by vibration. CONCL"SIONS At near zero moisture content comuaction by vibration is almost instantaneous. From zero moisture content to between 4 and 5% moisture the rate of compaction by vibration decreases in sands. From between 4 to 5% moisture to the saturation point the rate of com— paction increases for 2N8 sand. The optimum moisture contents for compaction of 2N8 sand by vibration is at or near zero per cent moisture and at the saturation point. Prolonged vibration will have the effect of producing densities approaching those Obtained by vibration at the optimum moisture contents. Moisture content has no effect on compaction of pea gravel by vibration. A large cylinder of at least 12 inches inside diameter is recommended for testing 6A gravel. Slag will not compact to a high density unless a high percentage of fines particles is present. DESCRIPTION OF TESTS The apparatus used in the vibration tests is a vibrometer located in the concrete laboratory in the Engineering Building. This machine con— sists of a table set on springs. Attached to the bottom of the table is the vibrator, motor driven by a 5/4 H.P. electric motor at 1425 R.P.m. On top of the table is a disk set up on legs to hold the sample cylinder. A piston machined to fit the cylinder subjects the sample to a 50 pound load. The inside diameter of the cylinder is 8.125 in. and the length 10 in. (See Figure l and photographs.) The tests were run in the following manner: An air dry soil sample was first weighed. (4,000 g. of ZNS sand; 4,000 g. pea gravel; 7,000 g. 6A gravel; 5,000 g. slag, except test g No. 5 which is 5400 g.) Sample was put in 8 inch cylinder on vibrometer and leveled. ”I,mt Thirty pound piston was inserted in cylinder and turned 180° to insure an even bearing. Sample was vibrated for two one-minute periods and then for as many two-minute periods as were necessary to show no further consolidation for a four-minute time of vibration. A measurement of the protruding piston was made for each period. Piston was removed and a portion of the sample was weighed and then dried in an oven for 24 hours, cooled to room temperature and then reweighed. Soil sample was removed from cylinder and put in a pail. A small amount of water was sprinkled over the soil and then the soil was mixed until a homogeneous moisture content was Obtained. -5- 7. Moist sample was reweighed and procedure repeated. 8. Moisture content of samples was gradually increased to cover range from air dry to complete saturation. Fig. I Front view Vibrometer showing piston and cylinder disassembled- ---'-.: : . ' '— w- 9"- ‘ -4:- .m- ""M"” ‘t ' 9 ' t .', u; -. 7 1“" . fir. m...“ i x. , «I. “’"~:=:::. Fig. 2 Front view Vibrometer showing piston and cylindar in test position. Side view of vibrometer COMPUTATIONS The consolidation range, moisture content, and dry densities were computed for each test in the following manner with sample computations from test No. 1, Table III (2). Consolidation Range Loose volume: Length of sample = L1 Volume of sample = V Weight of sample = W Dry weight of sample = W0 Per cent moisture = M Dry bulk specific gravity =-%Q = Go Apparent Specific gravity = Ga Per cent voids 100(1 - $9) = O a Compacted volume: Length of sample = L; Volume of sample = Vc Dry bulk specific gravity = ¥§ Per cent voids 100(1 — g:) = oc Consolidation range = 0 ample Comp. 5.10 in. 2650 cc. 4102 g. 5985 g. 2.98% 2.55 in. 2160 cc. 1.85 58.0% 11.2% The length of the soil sample in the cylinder is computed as follows: .X '____ H P fl / xi / 4 5 / 7 ////////////xj t /o ““3; . “I: ~ ‘ s ‘1 ‘3 .. ‘ Z ‘ :5 / .‘ . .. “ ‘.‘"/ /.:~.-,._..‘,;-_.‘ .t/ A; .. ~ ,.‘.f:/ L. C / -\‘..' ‘ r "..: s. '. \ ‘:“.-‘-‘ . / ~‘.‘::.'~- .‘u :. jg» J /////////// : I V r ’ H / / / / r/7/////////nfl] C = cylinder length = 10 in. X = reading of protruding piston P = piston length = 6.5 in. L = depth of soil in cylinder H = cylinder holder = 5.75 in. C + X = P + L + H L = (C + X) — (P + H) L = 10 + x - 6.5 - 5.75 L = X — .25 in. Note: In the case of the 6A gravel a 7,000 g. sample was used and it was necessary to put a 7/8 in. block under the cylinder. This would make the cylinder (c) equal to 10.875, changing the equation to: H L X + .625 Moisture Content MLgpfln.x 100% No M where M = moisture content in per cent of dry weight W = weight of wet soil obtained by subtracting the weight of the container from the weight of the wet soil and the container. W0 = weight of dry soil obtained by subtracting the weight of the container from the weight of the dry soil and the container. Sample computation: a : 4102 g - 5385 g z , O a m 5983 g X 100 Zou8p Dry Density _ W , D — x 100 , cu. ft. vc(n + 100) #/ where D = dry density for compacted volume W = wet weight of sample. Vc = compacted volume of sample. M = moisture content in per cent of dry weight. Sample computation: u : 4102Mg : 5 lb : 2160 cc. = 6 f H 455.6 900 0 VC 16.39 x 1728 .07 5 CU. to D = 9-05 = 115.1 #/cu. ft. .0765(2.98 + 100) On the 2N8 sand and the 6A gravel sieve analysis tests were run and on the 2N8 sand, pea gravel, slag and 6A gravel specific gravity deter- minations were made. Following is an outline of these tests (4). Sieve Analysis: This test is for the determination of particle size and gradation of a soil. The samples are dried to a constant weight and placed on a nest of sieves using such sieves as are necessary to determine compliance with the specifications for the material under testg5)The sieves are then vibrated and jarred by a mechanical vibrator for twenty minutes. The weights of soil retained on each sieve are then found. The results are reported as total percentages passing each sieve or total percentages retained on each sieve. Specific Gravity: Dry bulk specific gravity (Go) is found by use of the following: cor—3512 where GO = dry bulk specific gravity. W — weight of dry sample. 6' I <: I ’ volume of sample, does not take into account the per- meable voids. Sample computation: 5985 2650 0— 21.5 Apparent specific gravity (Ga) is found by use of the formula: Ga = <15 where Ga = apparent specific gravity. Vs volume of soil particles including permeable voids. W0 weight dry sample. The volume VS is found for fine aggregates by surface drying and weighing the sample and placing it in a 500 cc volumetric flask. Water is then poured into the flask nearly up to the 500 cc mark and the flash is rotated between the hands to remove all air bubbles in the sample. The flask is allowed to stand for one hour in water at 20° 0. Water is then -10- added up to the 500 cc mark and the weight recorded. Considering the weight or volume of water added to the flask as V, then Vs will equal (500 — V). In the case of coarse aggregate a specific gravity overflow can is used. This is filled to overflowing and all excess water is allowed to run out the spout. A container is then put under the spout and the sample is slowly poured into the can. After all the water has been caught in the container the weight of this water is found and is equal to V5. Sample computation: Refer to Table II, Sample 1. _ 412.9 ‘ 158.4 Ga = 2.98 -11- 6A Gravel Slag 2N8 Sand Pea Gravel TABLE I SIEVE ANALYSIS 2NS Sand — 2,000 g. Sample Weight Per Cent Standards S1232. Retained Passing g Passing 5/8 0 100 100 NO. 4 50 98.5 95-100 NO. 8 176 89.8 65—95 NO. 16 576 70.9 55—75 NO. 50 446 48.6 15—55 NO. 50 672 ° 15.0 10—50 NO. 100 288 0.6 0-10 Pan 12 0 6A Gravel - 1992 g. Sample Weight Per Cent Standard §fi§3§_ Retained Passing % Passing 2" 0 100 100 1—1/2" 0 100 95—100 1" 102 94.9 60-90 1/2" 480 69.8 25—55 No. 4 716 35.8 0—8 Pan 694 03 NIVL3U .LNSOUSd 026‘” WZN alldluc lllll I III I I I l I l l I II II I III I I IIIIII I I l.mm(JO J<¢thuh IIIII 10.P(b.h_wm(40 04—Om 'lll'l'llllllll'l|||ll'llllll'l'll||Il'lllll ' l"ll||llllll'Il'lll'lll'.llllllll'llllll'l'l'l'l'lll'll'l ’IIIIII'lII"I' Ill"! cuzofiflzzou 15:510.: unis «uncufi .2 3.3210 .rzwsCthmD ><>>IO_I uk(km Z<0_IU_Z OO— 00 .wozmmmu—mwhz. mJor—kda no >10m1k m.IkDOZ>w3 zo owmdm mozadmo 44%: my; 23073.. mm>mDo 130... 00 ON 00 On 0' on ON 0. mum“ 024m 33.0w! 4mg “2.“. dime umnflmx. zeioifimflo 3.3 (In 3 ICOu >0 DuhGUk IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII llllllllllllllllllllll bank to Uhdollllllllllllllllllllllll 0m 00 02¢» qu ma... >¢w> no aducam dd IO..P<>>ImxI mbm3 zo owmmno moo... 00 Oh on on 0' on 00 O. "' ' Vol.7 9 M oz<¢o 9:... 024m Ju><¢o ummdoo zo_.r¢o_u_mm<..o mic...“ 72o axon .om(40 44:3...qu >0 embowh llllll llllllllllllllllllllll hawk to UPCOIIIIII I I I I I I I I I zo_h(b_u_wm¢w> no Ddu can 6.: wrasva 'Iuaauad APPARENT SPECIFIC GRAVITY TABLE II height Weight Vol. Soil Sample Dry Con. + Con. + Weight + Per. Apparent Weight Soil Soil+H20 H20 Voids Specific Gr. 1. 2N8 Sand 412.9 669 1050.6 561.6 158.4 2.98 2. 6A Gravel 4898 5562 7245 1881 1881 2.60 5. Pea Gravel 2071.0 2529.4 5545.1 781.5 781.5 2.66 4. Slag 2204.1 2862.5 5749.5 887 887 2.49 TABLE III 2NS SAND VIBRATION TESTS Test No. 1 2 5 4 5 . 8 7 8 9 10 11 Initial | Reading 5.55 15.20 5.55 5.15 5.10 5.00 5.55 5.55 5.05 5.10 5.52 I I I I Init. Length: ' Sample I5-10 2.95 5.10 2.90 2.85 2.75 5.10 5.10 2.80 2.85 5.07 I I I Initial Vol.32650 2510 2850 2480 :2420 .2550 2850 2850 2580 {2420 2810 III I I wet weight i4102 .5887 4000 4000 4000 4000 34000 ,4000 4000 :4000 I4000 I I I II I I I Dry weight {5985 5885 $5770 5882 5850 5992 I5984 5947 5982 {5959 5952 I _ - I 5 Moisture 32.98 ,4.95 36.12 I8.60 .10.20 0.20 0.92 1.55 0.45 10.98 1.74 I I I Dry I. I It Bulk Sg. 1.52 1.47 ‘1.45 1.50 I1.50 1.71 1.51 1.50 1.87 Il.85 1.57 I App. Sg. 2.98 2.98 2.98 2.98 '2.98 2.98 2.98 2.98 2.98 2.98 2.98 % Initial ‘ ‘ Voids .49.2 50.5 .52.0 49.7 349.8 42.8 49.4 49.7 .44.0 45.5 49.5 I I I Final 1 I I ‘ Reading 12.80 :2.60 2.85 i2.65 2.55 I2.85 2.75 12.80 32.75 ‘2.85 2.74 I I I I ' Final LengthI2.55 £2.55 l2.40 £2.40 2.50 2.40 2.50 “2.55 12.50 2.40 $2.49 Final Vol. !2l60 31995 2040 2040 £1950 2040 I2120 2182 2120 2040 2110 I , Dry I I I Bulk Sg. £1.85 1.85 .l.85 l1.78 {1.88 1.96 1.87 1.82 1.88 1.94 1.88 I % Final i ‘ I Voids 158.0 558.0 i58.0 40.4 57.8 54.4 57.2 58.7 57.0 55.5 57.8 I % Consolid. 11.2 I12.5 14.0 9.5 12.0 8.2 12.1 11.0 7.0 10.5 11.9 Dry Density 115.1 118.2L115.:ill2. 115.9 122.0L112.0 115.8 117.1 121.2 118.0 TABLE III (continued) 2N8 SAND VIBRATION TESTS Test N0. 124._“15 14 15 16 17 “‘18_r‘ 19 r 20 21 22 Initial , Reading 5.52 5.52 5.52 5.52 5.25 5.25 5.20 5.15 5.20 5.20 5.20 Init. Length 5.07 5.07 5.07 5.07 Sample 1 Initial V01. 2610 2610 2610 I2610 2545 2545 2500 2460 Wet Weight 4000 4000 I4000 4000 4000 4000 4000 4000 4000 ‘4000 4000 Dry Weight 5924 5894 I5880 5864 5822 5788 5728 5595 .7 .m..—----.—.——--—. M % Moisture 1.74 2.72 5.10 5.66 7.97 5.71 7.52 11.4 9.29 7.26 7.26 Dry ‘ Bulk Sg. 1.51 1.49 1.49 1.48 1.50 1.49 1.49 1.46 1.46 1.49 1.49 App. Sg. 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 5 Initial I Voids 49.8 50.0 50.0 50.5 49.7 50.0 50.0 51.0 [51.0 50.0 50.0 .. I Final I I Reading 2.75 2.78 2.77 12.78 2.80 2.75 2.75 2.55 2.65 2.70 2.65 Final Length 2.48 2.55 2.52 12.55 2.55 2.50 2.50 2.50 2.40 2.45 {2.40 I I I Final V01. 2105 2145 2140 l2145 2160 ‘2120 2120 1950 2040 I2080 I2040 I I I I ' Dry ‘ 1 Bulk Sg. 1.87 1.81 1.81 1.80 1.76 1.79 1.76 1.84 IlO79 11.80 1.85 % Final I I Voids 57.5 59.4 59.4 159.6 40.8 40.0 41.0 58.2 59.8 59.7 I58.6 I % Consolid. 12.5 10.6 10.6 10.7 8.9 10.0 ‘9.0 12.8 11.2 ‘10.5 I11.4 I Dry Density 118.2 115.01115.1I112.0 110.2 111.5I109.5Lll4.6 112.1[111.4I114.0 U‘Ln-‘qco‘- m.— ‘fl—‘u- “-— -7“ TABLE III (concluded) 2N8 SAND VIBRATION TESTS Test No. Initial Reading Init. Length Sample Initial Vol. Wet Weight Dry Weight a p Moisture Dry Bulk Sg. % Initial Voids Final Reading Final Length Final V01. Dry Bulk Sg. % Final Voids 95 Consolid. Dry Density 2510 I 4000 5775 6.00 1.51 2.98 49.4 al.81 59.5 '10.1 115.1 24 26 27 I (N; 5.00 2545 4000 5829 1.81 59.5 10.2 112.5 5.10 2650 4000 5845 4.05 40.5 10.6 110.9 5.10 2650 4000 5905 2.42 1.43 2.98 50.0 2.80 2.55 2160 1.81 59.5 10.7 112.2 5.55 5.10 2650 4000 5962 0.95 2120 1.87 57.4 12.1 115.2 5.07 2610 4000 5854 5.79 1.47 2.98 50.5 2.78 2.55 1.79 59.8 10.7 111.7 5.07 2610 4000 5821 50.8 2.69 2.47 2100 1.82 58.9 11.9 115.4 2610 4000 5790 1.45 2.98 51.2 2.45 2080 1.82 (N o (N N. 5.07 2610 4000 5744 6.85 1.44 2.98 1 4000 5702 8.06 1.42 2.98 2.48 2.55 1980 (N IN Fifteen PROLONGED VIBRATION TESTS TABLE IV Minute Vibration — 4000 g., 2N8 Sand 1?. D 3 Final Length 2.41 . 2.40 %_Moisture DryADensity 5.85 6.92 8.06 117.5 119.4 117.5 116.2 118.7 115.7 From the data of Table III, a curve was drawn on the following graph using mean values of dry density and per cent moisture. This curve represents thirty—two tests using moderate vibration on 2N8 sand. From the data of Table IV a curve was drawn on the following graph using mean values of dry density and per cent moisture. This curve represents six tests using prolonged vibration of 15 minutes on 2N8 sand. .dv \hygj TABLE V RATE OF COMPACTION TESTS 2N6 SAND Test No. 1 — % Moisture 1.21% Time Readingi Length Dquggnsity O 2.90 5.05 95.7 5 2.51 2.64 111.1 10 2.46 2.59 112.2 15 2.45 2.56 115.1 20 2.42 2.55 115.5 50 2.41 2.54 114.1 40 2.41 2.54 114.1 60 2.40 2.55 114.8 Test No. 2 - % Moisture 2.82% Time Reading Length Dry Dengigz 0 2.90 5.05 94.2 5 2.61 2.74 104.4 10 2.56 2.69 106.4 15 2.55 2.66 107.8 20 2.52 2.65 108.5 50 2.50 2.65 109.0 40 2.50 2.65 109.0 50 2.49 2.62 109.7 60 2.49 2.62 109.7 Test No. 5 - % Moisture 5.79% Time Reading Len. h Day Dgggity O 2.90 5.05 95.4 5 2.65 2.76 102.7 10 2.57 2.70 105.0 15 2.54 2.67 106.2 20 2.52 2.65 106.9 40 2.51 2.64 107.5 50 2.50 2.65 108.0 60 2.49 2.62 108.4 ‘17-“ fiw-f TABLE V (concluded) RATE OF COMPACTION TESTS 2N5 SAND Test No. 4 - % Moisture 5.56% Time Reading Length DrygDensity 0 2.90 5.05 91.7 5 2.50 2.55 105.7 10 2.45 2.58 108.0 15 2.45 2.58 108.0 20 2.44 2.57 108.5 50 2.45 2.58 108.9 40 2.42 2.55 109.4 50 2.42 2.55 109.4 80 2.40 2.55 110.0 From the data of Table V, four curves were drawn on rate of consoli— dation of 2N6 sand with time plotted against dry density. This graph is on the following page. . WMn‘Kr-fl— .II. 1 1 1 1 1 1 I I . o 1‘ . .I ‘4‘“ - -+.—+—.—.1. . t 1 a a 4 s 1 ,. i . . PEA GRAVEL VIBRATION TESTS TABLE VI Test No. l 2 5 4 5 6 7 Initial Reading 5.54 5.55 5.55 5.19 5.19 5.19 5.15 Initial Length 5.09 5.10 5.10 2.94 2.94 2.94 2.88 Initial Volume 2620 2650 2650 2495 2495 2495 2445 Wet Weight 4000 4000 4000 4000 4000 4000 4000 Dry Weight 5981 5971 5949 5950 5918 5885 5868 % Moisture 0.20 0.72 1.26 1.77 2.08 5.02 5.40 Dry Bulk Specific Gravity 1.52 1.51 1.50 1.57 1.57 1.56 1.58 App. 6. 6. 2.66 2.66 2.66 2.66 2.66 2.66 2.66 % Initial Voids 42.9 45.5 45.6 41.0 41.0 41.4 40.6 Final Reading 5.05 5.00 5.00 2.97 2.97 2.97 2.88 Final Length 2.78 2.75 2.75 2.72 2.72 2.72 2.65 Final Volume 2560 2555 2555 2510 2510 2510 2252 Dry Bulk Specific Gravity 1.69 1.70 1.69 1.70 1.69 1.68 1.74 % Final Voids 56.6 56.0 56.6 56.0 56.4 56.8 54.6 % Consolidation 6.5 7.5 7.0 5.0 4.6 4.6 6.0 Dry Density 105.5 104.9 104.2 106.1 105.9 104.9 108.0 0n the following page is a graph with a possible curve for the mois- 'ture-density relation on vibration of pea gravel. Due to the diversion of “the points this curve is only a possible one and may be proved or dis— proved by the results of more tests. However, it seems to be a logical curve since it is a mean of all points except the point plotted from test No. 7. This result presumably is in error and it is likely that a straight line curve showing no effect of moisture would seem to be the most conclusive from the data available. This curve, moreover, is in accord with the theory that due to the size of the voids and the weight of the individual particles the effects of moisture would be negligible. -15- ‘m. urn. $31.1 1.1.- . 1.. Kw... ~1 -..- . . . 4 .. . - i . . ._ - d 4 . . ... . . ._ . . .1. 4... .. ..... ......o . . .. .. .. .o . .. . .. . .....a .... . .. .. .. .. ....H . ... fi.. ....¢ .— .. ... ... ....+ . ...... ..... .v.... . ..... . H... ..... ... .... ... ...... . .. ... . . . ...‘ . . .. .. . ... .. ..... .. ..a.. ....F... ..... ..... .. . .. _ .. ... . 4 ... M.. ...ii .. ...._ . .. .... .... . +. _ . .. «.... ..... .. ... .. H . ...~ . . .... ..... .. .... . a . .... ... ...... .... ... .... .. ...h . .1 .. k.. .. ...... v. I I I > I 10.7% I I IIIIv.I|- .911YII.I I I o.I.I.I.Ii1III1? I. I III . I I I III.I. I. ..I I I +1I1III.I..I.I I. QJ VI I 117?. I I. IIIIIITIIIII I +1 IIIIIIIIIII-.?4+I.I I1 LYIIII1II. I III I v I IIIIIII. I I...’ I. .111I Pr . I I I .I IIIIII I I I . v I I-» II I.I I I 1.. I I I OIIII I II II I ILII I.I I1 ....... ... . v ..w v. . o ...o. . ......,. .. . . . . .... ... . .. . . .. .. . . ...... .... .. .. . .. .. ...* ... ... .. ....k .... . . ... ... . ..... ....... ... w.... ......h. ....... ......... .... .. ..h .. ...... . m. .. ..... .. ...4.... ....» . . T...” .. o ... . . .. e.. . . . . .u. .. .. .*. .. ........ ......... ... . ...... . . ... ...k. . j... .. .... . . w... .1. .. . ... v.... ...... ........ . ..... ... I” ... . . ... II. ... ........ . ...I .... . . . . .... .. ...... . _ I A I I . I 0 I I 1 t 1 I I 1164 1 . A a 4 . . ... .. . .1. .. ..... . ... . ...... ........ ..... .. ... .. ..... H .. .. .. .. ... .. ... ..... ...H .. _ . .. ..... .. . ...... ... ... ... ....... ....«I .. .... ... .. ... ...- ... . .. ... ..... .... .. .. .. ....... ...... .... .H... .... .. ..«. .. .... ..... a». .. .*.... .. . ... .... .. I ... .... ..I .. . ... ......... ... ... .. . ..... . ..... I. .. .... II I O I.FII.OI1I|.ri ,9I 1.0.4.0. v A III.I % L1 IOIYQII I I I ivl‘oIII' .fi IiIIIl IIIIVII 9.910 II III4 15 ‘IOL 1011.1! '19.: I I. I I 1v 0... lIdIIIIII. 1 . .IIII. IlriIIII .101 OIIIIIII. .... ... ..... ..H. . . . fi.. ....1.... a... . ..... .... .... .....g . ....... . .. .... ... . . . ... .. ... ....w. . ... ~.I.. ...*. .. ..... ..I.. «.... . I.«II.. .II.H.. ....a..I. .... .... .....r ... . I ..... ..Io.o.. .... ... .. I... ..... . ... h... ... . .. . .... .. ...~.... ....+ . . .. .... .... .. «.... ... .. . ....... .... I.. .. .. .. .. .. .... ... ... .. .. . .... I...... . «... . . . . . .. .. .. v. . ... ... . . I. . ..... ...... .. ..... . ...»... .. . ...“ ... .... . .... ... ... .. . . . . . . u ........ I I I I . 4 4 . 4 4 . . L . . .. .... .... ... ... n. . ....... . .. ... ....... . . ... ,. I...... .. ..... ... .. . . .. .. . ...I . 2... . ... .. .... .. . 4.. ....H.... .. .4.... .. 4.. . . . ... ... . ........ II...... ..I...... L. .. ........ 2.4.. ... ”.... .... .... ...... . ...... . ...k .. .. ... ... I... .. .... ........ .... .. . ... ..... ....... ......... I... ... ... . .. ..... . ...... ... F... .. .. ....... ..... ... .... .... a... ....W.... ....o .I ...“ ... .... .... +... .. ..... I...F.... .... .... . ...... ......... ....~1.. ... .... vI I I I v I VIIILVI I I I FIIIII..I r151.o.+ I I4 I 1IIII+ II I I HI .1. I 1101. fIIYIiTII'I I *1 III.LYIIITIII.O.I|I|IIII1VIQII1IIQ.1IIIII.YI III.II. $19.1I II ..IIII1I.I v I v .-..I I.I|£1.IYI I I I14- ..II- I III I I III II .... .... .. ..fl ...” ....fi.... .... .. ... ..-. ....a.... .... .... ....» ... . ....... I. .4.... .... .... ..... ........ .. I .. ... .... . ... ... . ... ... .. .. H.. «.... ...vv.... ... I .. ....»II.I .... .... .... ... ....... .I...o... .... ....~ .. ...r.... ... . .. .... .. .I . ..v........ .. * a. .. ......-.. ...... ... ....... .... .... ... ...... . ...... . -.. .... .. . .. ... . . H .. I . . y I I . I I. a . a 4 . 1 I 4 ...“. . . .. . .. . a. . .. ... o.... ... ....I... ... ... . .. .. . . ..I.. ... .II. ... . ... . ...... ....4.... .. .. ... . ... ..... ....I.... .. . .... ...}.-.. .... .... ... ...... ......... .I....-.. ..-. ... .. . . ..- .... .. .... .. . . . ., ..." . . ..H I. .. ...... +.... ....+II.. ....f-... .....I.... I... ... .....-.. ........ ......... ... .... . .m. ..... . ...“... .... ... .... ... . ... . . .... ... ...... .... .. .....H. .. . ...-1... .... -.I . ......I. .... ... .. .. .. . .. .. a . .. + _ TI-II1II.I.I I . v..I1.I v LIII I I.T1III II.I .. +1... . 11* 1Ill I». . 41v .1 III. IIIII I66 IIIIIfiolIIIIIII 01" I11 I. 1 . .-....IIIII I I II1411II... II I.I.I.~IIII . I w. I . . 4111? a... . . ...v ........ . . . .... . .. ....fi... ...... .. I... I... I. I*.. . .... .. .... ... .....+... .II. ... .. ... ...... .. .... .... I .. .... . ... ... ...._... I .. .... .... ... WIII. .....v...» ... ....LI... .... ..I. ... I.. ... ..... ... ..I. .. . ... .... ....H... . .... .... .. ... ..H .. . _. ... . . . ..*.I.. .... ... . . ...I.... .... ... v .. ... v ._ ......... .. . .... .....w.... ..... _ . 1 - 1 i 4 . H . . . .. ....... .1.. .. . ..... .. ... ... ..... . . . ... 1.. ..H . .... ..... .... ..... ....... ....fl. _. ..... ... ...*... .-..... .1....... I.. . ....... -........ ..+... .. *..I _ . I. . . ... .... ... .I+.... ..-. .. .........fi.... ... .I..... . ... .. . I-.. .... . . ~ . ..I..... .... . ....-. .. .. ....~ . ..... I .. . ... ....... . ....... .... .... ...... .. ... . . .. ...... .... . .. . .. . .I . . . r... ..II.VII..9 IIII. 1rvI..i.I.III$|I|IIIIAIIII.¢.IIII IIIIAIII.I19I.1I..O.IYAvIIII.v.1IV...mIIoI1vIv.I.II I III-IIViIIIIII T. I .II. .I...II.I I.I. YII I.I.+1IJIII.V.II.«. I.1 _ . . II. I v. . ....... ....... .... .... .. .. 4....v ........ ... ... ... ..... I I...... . . .. ...». . .. .... .. . ........ .. . I. . .. ....+. . . .... I... .. .....4 ........ .... .. . .... ... ...... .. I-..... I. .. .... .. ....+... . . .... . . 1 H... .... .. ...H... I . ... I... .. ....... .. . .. .... .... .... ... . .... . ...k....fi.... ... ....4 .. ...I.... ....... .. ... _ 1 F I I ..r I a < I H 1 4 «.... .. ... .....I... 9... . ..... ... .. ...- .... .I.. ....o ..... ... ......... .... ... ...... ...».... ....4... .. .. ..... .. .P .. ........ ... ....»..-. ... . .... .... ... .... ...... . . ...h. . . p ... .. . .. .. .w.... . . .. ..... .... ....«..I. ... r... ...A....I... ..... .... .......o . ....... ... . y I.. IliifIII I Ii 1. 1I III.II. .1 I I . IIIIIIIIIIIIIiwI III YIIIIIILII IIIII I114LI1I|IIII+IIIII1IIITIIIII II I-. -1 11.111... 1 I 1 IIIITIII - ...- It-19-1...1I1 I. I- I I .L 4.. . . .... . ....... .+... .. F.I-. . ...I. ..H .. .. . -...«. .. ...... 1. . .... ....+.. .. .. ... 1...... ...I.. .. +.. . ..w..-. .... ..-. ... .. .... ......... ... . .. ....... ..4... ... a a ...d . I.... .. I.... .. IVII. ..I*..I. ... . . . ..H..I. ....1 .. ....‘.. ... .... 1.... ...H .. .... .. .. ..... ...,a ...... ...E. _ .... ....v-.... .. ...v.. .. . ... h _ 4 9 a L I . » m 4 1 4 I a I... .. ..... ... ..Ia..,. ......... .. o.... ..H. .. ... . . ........ ......u. .. .. .. .... ... .... .. ...h . .A . . .. . .. . ......... . . .... ....iI... ....+.... ...H..II ......... .. . ....+... . ... .. ... .... .-. -....... ......... . ..... ... .. ... . .. .... I... H.. ......I... .I.I+.... .. .9 ... ...I..-I.r.... . . .. ..... .I..o... . . .. I....... ......» . ... ...”... ... ..fi . . .... . ....... ... ..... .... ...I.... .. o . . .. o . . . .4.. .. .... .I..I... ... I .. .4... ...+.... V1 III II 1.1. . I O . I.v . I . I 6.1101. IIIII 4 I .IIIQIIIIIII I17..I.II+IIIIIII . I IIIIIIPIIII IJTI 1 I III, I .9 I I.I.I III.» I III.I1fi III ....I III.I .TiolIiI .rolI.IIIIIII 99 In I 1 .110 III. . . a 4.I. I..H . ....... .. ... ..a... ...III. .. . I .... .... ....* .. ......... . I. .. . .. ... ....¢.. . ... . .. .... . _ ...a ....r .. ..... ....a.... ..fi. ... 4.1- .. .. ...... .... ... .... ... ..I.>.... . .. ... .... . .. ...Iv.... ..... .. .. .... . . I. .. . ..... ... ... ...v.... . 4.. ... .... ...... . ... v... .... ....... .... . . . . . .. I. .. ..... .. _ .. L I . r . . F . H 111 . A A H — 1 1 a A .1 4 .... .. .. ..... .. ...... .. ..... ... ... 1 .. ..... .... .. .. . ..... . v.... . . . .. . .... .. .... . .... ..... .. A .. . ..... . .. .a.... ....4.... . I. .... o...¢.... ... o .. .... I.I.9 ... ......I. .... ... ..o.. ...»I... ....o I. . ... _ . . . ... . . . ... . .... .. . ...w. , I....... . .... . ....... .... .. ... .. .. o. . ... . ....... .. I .. «..I. .. v . . . I I In? . . . .11}: I II. I I II II . . A I. I I I o 1.01.11 wI IltlII? I I III wI I . I 0 1011' TI I I I filo I1I. I.I 9 I I . I IIYII I I IILHII VIIIITI III. II I1 I I1I.I.Ig . I |.I 9 III I . I v I I 9 iIII I IIIIIIIIIO I I I I I . IIII I . . ~ .. . o . . . . ... . ..a.... .1. ... 9.... .. ....... . . . . ... .. . ... .... . . I. .. . _ a i F . ..... .. fl . . . . .... . . .4.... ......a . ..... .... . ...... .. ...... .. . ... .. ... . . . .. ... ... .. ..... . ..... .. ..... .... .... .. A . ..... .. .. .... .. .... . ... I, y . 1 4 .. . .. ¢ 9 .. 1 _ . ... O o * o . o . . . . r n A .. H _ o p . H i . o. _ .. . ... . 1 . I _. 1 a I _. . .. . ..«.. .. . . ... . . F .. . . . .. . . .. . .... . . ..... . .... .... ... . . . .. ......d... .. ... .... ... .‘. . . ...... . J .. _ .. ... . . . i . ...... ... . . ... .. ....a.. .. . .1.... . .. .... .. .. .. .. . . . . . .... .. fl .. ..... .. .. .. . . .. h.... .. . . . . ..+. .. .. . . 4... IIIII YIIIII I. . I I IIIIVIII.III VII I . a II III . io.IloLVVII I I I II vIII1F1II1IlIJI11I IfII1.II vI1I I I111lw IIIIIIIL IIII1 i. I IITIII.1I11I|I|I IloI .II1.IIII IVI I 91 II.III|F1I|I|OII1I1.IIIII.FI1IIIIA II.I I1I 11. I.|II.|+|IIIII.I« I111Iw IIII IL .. . .. ......... . ...... .. . .. o.... ... ........ . . . .. ..... . .. . ...* . fi.... . .. .. ..... . a .. .. ...... .. . . . . . ........ . .. . . . . . .... .. . .. . . . ... ..... ... . . . .. .. 1 1 t. I I H _ . m a . n H. ....* ... .. .. ...... .. . . ... .. . . . .... . . . .. . . . . . ..1‘.. .... .. .. . . . W. .. . . .. »..I. ... ... . ... ... ... . ..... .. ..._.. . .... .... . . .... I..._.... .. k .. ....+... ... * .. ... HE. .. .o .. .. . ... ....H... ... . . .... II“. ._ . +...I1 .. . .. .... .... . . ... . .. ... . .. .. . . . . .. . .. . . .... .. . . ... .. ._ . .. .. .. .. ... h . . ..... . . ... ...1 ... .. .I‘.... ... «.. . ... .... . ... ..M .. o. +... . . . .. ... .. ... ...... . a ... .I.+ . .... .. . M... .. . . . . ... IIIIIIIAV .lYIIIo . . I . I III16I I 1.I17I5..I.I$It vI . 9v I.h . I I I. I !.I64.QIIO . . . I a a 01111.. IIVHI vIlI. Y. I . I H . I IIIYIIIIIIO*VIII '4rI III I+I I I I 110.... ..II . 01114. . I I . tbl‘lfllI ‘61 YIIIIIIIIOIICI o I - I4'II'I III.I.II+|I1‘IO «Iv: III.I IQIIJ .. i. . .. . 1. . ... ... . .. .1 .- .. ... . . .... _. .. ..... L... . . ... a... ... .. ........ . . . .... .. . .b . .... . . ..... .. . . I .. I. .a.. . c . ...». . _ I.~... .. 2 .. ........ ..... ... . p. . ...... . .... . 1.... ... . .. o . + .. . . .... . . .*... ......I. ........ ..... ........ . . ...... _ . . . . . i. .. .. . . .. ... *. . . . .... . a . .. . I w . I. o .2 .... . . . ..... . .. . . . . . . . .. . h . . ......d . . ..H . . .. . .. . . .._ ... ... h. .... ... ... . .... .. . .... .. * .. .. .. .. . . . . ....“ ... ...2. ....... . . .. . ....... ...._.. . ...... .. ..+.. . ..... .. .... .. . .u... . . . ... .... . . .. ...“ .. .. . ... .. ... .. . .~.. ...... .II.vIII¢II I1II I I I . . II ... VIIIIIIII o.leII.I.4.lII|II o I I . . . 67.1.4111. OI II.IL.II I. OII IIIILwIIIOIA . I I I vIII . 911701711 I I.. .I1I Ii. 1‘ I917I . I IAT1III1II6|1III§I4 I I. I+1I I I IIiIIOIIIIIOI .. ..... ...H .. ... .. . ..F ...... .... + .. ... . . .I . . . .. . .... .. . I... .. . . fi . .... . . . . .....w. .. ...... . . .. .. ..... a .. . ... .. . .... .. . ...».... .. . ...I... . . .... . . ... u .. ..... . . . . . . . .p .. ..... .. . .. .... . .. . ..... .... . .. 2.... . .H . . . ... ... I . . . .. . .... . .... .... . . .. . .. ... . J ... . .. . ..‘ . . . . . ... .. .- . .. . .. .. . . .. . I I... I . . 1 - II 4 I . . .I w . .. .. q . . ¢ . . . . .. . .... .. . . . .. . ...I.-.. .... . .. . . . . .. . .. . ...._ ... . ..1. ... ..... .... . 1. . .. ....... . 1... .. ¢ .. . . ... .. ... .. . ..+ o .. ... . . .. .. I...*. . .. .. ..I...... . ...... _ ....... ... ._ I. .. .1 . ..E . ._ .. h . ..... .. . . ... . . _. . .... .4 .. a .. .. 1 ..... . . .. ...... .. VIII. . . .v . II . . I . I .. 11.11 IIVIII I I . . I1. ... F . I I . I1I11I +1 I1. I ..III I III .LIIII..II.II..I|I IIIIIA . . I. + I I 11.11.5104 I . 7.4I . OI: .IIIIIIII .1 'I I I I.I¢ I a..II . I ... a II II 7. IIIII!TI III Ii .._ .... . . .. . . ...”. .. .. . . ... . . . . .. . .. . .I ... . .. . ...... *. . ...: .. ~... . .... ... . .-....... ...... a I .. . . . . ..... .. . ... ... . . .. ....... ... . .. +. . . ... . . .. .. ... . .. .... .. . ... . .... .. .. .. I... . . o. . ... .... . ... . o . .. . .. . k ... .. .... . . . . .. . .. . . ... . . .. . . . . .. . . . . o. . . . . . . .. . . .. .. .r t I I I F I . 4 1 d 1 1 1 I . . . .. . . . . . .. .. .. . .. . . . . . .. .. ,. .... . . . .... .. . .. . .. H .. . . . 4....N.. v .. . . . . .... ... . _ . ..... .. .. .. .. .. . ..H . ... . .... . ..-. . . ... .. .... .... .... ... .... ... ... ..... . .k . .. ... .. r .. . A .. ....4... . . .I.I.. .. ‘ . . . ¢.I.. . . .. .. m... w ... .... .. . . _ . . ._ 2.... .... ... . . . ..fi . ... . ...a.... .... ... .. .... ... .._.. ... ... —.... I. I v . I . . .. .I I I H II .I. 76111150113 YVIIIIII . I I . y . II I ..«v . «I116... I‘LIO 411.9. VIIIIIII. I riIVIIILTIIIIOJVA I I .‘IILII I.II|.¥ I III.I .I IliIIifIIIIIIvlvoIII+..IIfI'ILIIIII — . . . . . . .... . . .. .... ........ . . .. .. .. . . . . .... ....... .. .. .. .. H . . ..... ........ . . . .+.... .... .... ....’ .....o.o. ... ......I ... .... ..... .I. .... . ....a. .. .... ... ......... ......... ....... ....~.. .5“ . . ......1.... .. . ....w . ........ . . ...... . q .. I..’ . . .. n ....v.... ..w. . . .. ....... . . .1. .. .. . . .... . .. .... ....+ . . ... a .. ...... .. . * ..-... .. ...... . .. . ..... ......... ...¢.. . . m . II VI- 1 L4 0 IJIIIIIIIL b I 00 I1 I Q .1 II W1 ...... ....... . . #3.... ......I... ..... . . .. ...H ... .1-.. .. . .... .. ... ..~I.. I. .. . . o ..H. . ...‘.. . .. .. ..... .. . ..w... ...I .. . I. . . .. . I... ....o... .I... ... . I. ... .... .4 ... .... . o .. ... .. . . .. .II.*.... .. ..... ... .. .. .. ... .. . . ... .... .. .. .. . ... ..I .... . .... .. . ....... ....fi... . .. .. _ .... ...... . ..... .. .. . . ........... ...“ ...”. ...H...... I 0.90 I. + IIIYIIIIII Ivor II-III¢ .I.II v.1.iéi . -.IIIAIIDI... I a I I II.I0IIIIv .o .... ... ... a .. 1 . ...»... ... .. . . ..w I I _ .... ... ."w. . ... .... H _ .. .. ... .... ..1. ... .... .. ... . .... ....‘ 4... n. . .. . .... ........ ...... .. . II .. ... . .MI. ... .. . .. .. .II . H . ..“.H 4H1..H... .... . .1 ..... I ..N.... ... ....... ..a. .. . .. ...f....._....~ ..w: ....H ...l A: 1. . ....-.ilii... . . . ...».. . .. ..... . . ....‘ ..I..+....‘.... .. . .. . . . .. . . r _ . . .. .. . ...fi ._ .. ... 1 . . . . .. WI: . ... m . .. . . F . . . .. .. . .... . ....... .... . fi . . .. . . .. I. . . . . . . . . . I . o . I I . . . .o . . . 1 .I. . . . I. . . . . o I . I -11.VIII IIIIvITII 11I1I . . . . . . . . . .. . . . . . . .1111 I .I III1III . . . . . . . . . _ . . _. . .. 4 . .... .. _ . . . .. 1.. . . _ . h Q ._ . h u. ~.. . ... . . ... . .. .. .. x . . . _ . . . . .F.... ....—. ... H _. , m _. . ... . . y n * ... . TABLE VII GRAVEL VIBRATION TESTS Test No. l 2 5 4 5 8 7 8 9 gygy Initial Reading 2.90 2.90 5.82 4.12 4.12 4.12 4.12 4.12 4.12 4.12 Initial Length 5.55 5.55 4.45 4.50 4.50 4.50 4.50 4.50 4.50 4.50 Initial Volume 2995 2995 5780 5820 5820 5820 5820 5820 5820 5820 Wet Weight 8000 8000 7000 7000 7000 7000 7000 7000 7000 7000 Dry Weight 5780 5885 8782 6784 8987 8985 89l8 5784 8885 6674 5 Moisture 5.84 2.54 5.52 5.28 0.20 0.55 1.78 5.19 4.74 4.90 Dry Bulk Sp. Gravity 1.95 1.95 1.79 1.78 1.85 1.85 1.81 1.77 1.75 1.75 App. Sp. Gr. 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 % Initial Voids 25.7 25.0 51.0 51.5 29.5 29.5 50.5 52.0 52.8 52.8 Final Reading 2.25 2.25 2.92 2.98 2.95 2.95 2.77 2.70 2.85 2.70 Final Length 5.25 5.25 5.92 5.98 5.95 5.95 5.77 5.70 5.85 5.70 Final Volume 2740 2780 5520 5580 5540 5540 5200 5140 5080 5140 Dry Bulk Sp. Gravity 2.11 2.12 2.04 2.01 2.09 2.09 2.18 2.16 2.18 2.12 5 Final Voids 18.8 18.5 21.5 22.8 19.5 19.5 17.0 17.0 18.4 19.5 % Consolidation 8.9 8.5 9.5 8.9 10.0 10.0 15.5 15.0 16.0 15.1 Dry Density 127.8 152.2 128.5 125.0 150.4 150.0 154.1 154.2 155.1 152.2 \WidQUL .nu .‘um- _- -;- . 2 ._* / ‘ ‘ 11355:. r I11. TABLE VII (concluded) 6A GRAVEL VIBRATION TESTS Test No. 11 12 15 14 15 Initial Reading 4.12 4.12 4.12 4.12 4.12 Initial Length 4.50 4.50 4.50 4.50 4.50 Initial Volume 5820 5820 5820 5820 5820 Wet Weight 7000 7000 7000 7000 7000 Dry Weight 6857 6825 6780 6711 6691 % Moisture 2.40 2.56 5.25 4.52 4.62 Dry Bulk Sp. Gravity 1.79 1.79 1.77 1.76 1.75 App. Sp. Gr. 2.60 2.60 2.6? 2.60 2.60 % Unitial Voids 51.0 51.0 51.7 52.4 52.6 Final Reading 2.88 2.97 2.75 2.86 2.84 Final Length 5.88 5.97 5.75 5.86 5.84 Final Volume 5290 5570 5180 5280 5260 Dry Bulk Sp. Gravity 2.08 2.02 2.15 2.04 2.05 % Final Voids 20.0 22.4 18.0 21.5 21.0 % Consolidation 11.0 8.6 15.7 10.9 11.6 Dry Density 129.2 126.2 152.2 127.6 128.0 0n the following page is a moisture density graph giving a possible curve from data in Table VII. Conclusive results are not available due to the wide diversion of the points. Kore tests on 6A gravel are neces- sary to obtain more specific results. TABLE VIII SLAG VIBRATION TESTS Test No. 1 2 5 Initial Reading 4.42 4.42 2.00 Initial Length 5.10 5.10 2.68 Initial Volume 4525 4525 2270 Weight 5000 5000 5400 Dry Weight % Moisture Dry Bulk Specific Gravity 1.16 1.16 1.50 App. Sp. Gr. 2.49 2.49 2.49 % Initial Voids 55.4 55.4 59.8 Final Reading 5.61 5.65 1.55 Final Length 4.29 4.55 2.01 Final Volume 5640 5670 1705 Dry Bulk Specific Gravity 1.57 1.56 1.99 % Final Voids 45.0 45.4 20.0 % Consolidation 8.4 8.0 19.8 Dry Density #/ft.5 85.7 85.0 124.1 Note: Test No. Retained Test No. Retained Test No. Retained 1 - Slag on .742" sieve. - Glag on .571" sieve. 5 - Slag on Pan. DISCUSS 0N OF RESULTS Pi .2318 Sand The results attained with the 2N8 sand were very satisfactory. Thirty-two tests were run and the dry densities of the compacted volumes were plotted against the moisture contents for each test. The curve, Table III, indicates that there are two optimum moisture contents for this sand, they being zero moisture content and complete saturation, which occurs at approximately 10 per cent moisture content. The density of the vibrated mass decreases from zero to around 5% moisture and then increases to the saturation point. However, at the saturation point the densities obtained were still below the densities at zero moisture content. Five tests were run using prolonged vibration of 15 minutes and a moisture density curve drawn (Table IV). This curve shows greatly increased densities between zero and the saturation point and seems to indicate that prolonged vibration tends to equalize all densities regard- less of the moisture content. However, even with 15 minute vibration, densities at 5% moisture could not be brought up to the zero moisture density. Four tests were run to determine how the moisture content effects the rate of consolidation. Readings were taken every five seconds up to 20 seconds and every twenty seconds up to one minute. Dry densities for these tests were plotted against time, and the moisture content was deter— mined for each sample (Table V). From these curves it is evident that the dry sample compacts at a much faster rate than the samples with a moisture content up to 4%. However, the 5.6% moisture sample compacts at a faster -14- pl .“~ ‘J rate than the 5.8% sample, so it aioears that increasing the moisture con— tent over 4% increases the speed of compaction. From a study of the moisture density curve, Table III, it is evi— dent that a slight amount of moisture in the sand decreases the rate of vibrational compaction. This is probably due to the effects of surface tension which, at a low moisture content, tends to hold the individual particles in place. however, at a moisture content of from 4 to 5% the lubricating effect of the water tends to overcome the holding effect of the surface tension plus the internal friction and so consolidation increases to the saturation point. Pea Gravel The results of seven tests on pea gravel of 1/8 to 1/2 inch grada— tion seems to indicate that the moisture content has no effect upon com— paction by vibration (Table VI). This can be explained by he fact that there are no fine particles under 1/8 inch in this gradation. Because of this the voids are very large and no matter how high the water content is short of complete saturation, the voids will not be filled. This, together with the large size of the particles, makes surface tension have little or no effect upon the rate of consolidation. Cfi Gravel The results of 15 tests on CA gravel gave such an indefinite arrange- ment of points on the density-moisture graph, Table VII, that no valid conclusions could be obtained. This is probably due to the fact that the 6A gradation contaigs stones over 1 inch in size, and when aggregate of I) this size is dlaced in such a small volume as an 8 inch cylinder, the 0 various arrangements of these large stone- would effect the results of the -15.. tests. For testing aggregate of this size it would be advisable to obtain a cylinder of at least 12 inches inside diameter and long enough to take an 8 to 10 inch sample. This would give enough volume so that the arrangements of the large stones would have much less effect upon the results. C‘ n L‘ 4’7 ..aua Three tests were made on three gradations of dry slag, the first being retained on the .742 sieve; the second, on the .571 sieve; and all the rest passing the .571 sieve. The .742 slag and the .571 slag gave approximately the same comjacted densities of 85—86 #/cu. ft., but the smaller gradation passing the .571 sieve compacted to 124 #/cu. ft. This is due to the fact that many fine particles were present to fill the voids. -15- CH O BIBLIOGRAPhY 3 "Soil hecha.ics vnd Foundations" C by Plummer and Dore "Applied Soil Mechanics" Laboratory Manual of Soil Testing Procedures by William S. Housel Michigan State Highway Department Standards for Road and Bridge Construction American Society of Testing Materials T*- '3: .6“? “i -- ‘ .fir‘”.fl 54’ J“ 05““ n My; ‘2’." $194 5 . 'U j 5% . n " L5" 1,19 1 2.7 ‘ ,- \ 1‘ 1 :3» Y swan Sui-AH; UN'VERSI’: memes: H I II 312 1“i W > H H l 0314 ‘ ‘ ‘l 93 5 50 Ill! 52