AND PHOTOREACTIVITY OF RETONES

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
JOSEPH MICHAEL MCGRATH
1972

This is to certify that the

thesis entitled

$\alpha\text{--}SUBSTITUENT$ EFFECTS ON ENERGY TRANSFER AND PHOTOREACTIVITY OF KETONES

presented by

Joseph Michael McGrath

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Chemistry

Major professor

Date September 13, 1972

O-7639

Harry

α-TRANSI

Photoche
ketones, a,amethylvalerop
determine whe
solution is s
objective was
substituted h
excited state
abstraction,
photoreaction

The ster

with the type

from the exci

k_γ = 8.6 x 10

ABSTRACT

α-SUBSTITUENT EFFECTS ON ENERGY TRANSFER AND PHOTOREACTIVITY OF KETONES

By

Joseph Michael McGrath

Photochemical studies of two α -substituted phenyl alkyl ketones, α , α -dimethylvalerophenone (DMVP) and α -chloro- α -methylvalerophenone (CMVP) were conducted primarily to determine whether exothermic triplet energy transfer in solution is subject to steric effects. The other major objective was to investigate the photochemistry of α -substituted ketones, including inductive effects on triplet excited state reactivity, steric effects on γ -hydrogen abstraction, behavior of the 1,4-biradical intermediate, and photoreactions of α -substituted ketones which are competitive with the type II processes.

The steric effect of the α -methyl groups on exothermic energy transfer is very small, since quenching of DMVP is "diffusion-controlled." With DMVP, the type I and type II photoprocesses compete and values for their rate constants from the excited triplet state are $k_{\alpha} = 1.4 \times 10^7 \text{ sec}^{-1}$ and $k_{\gamma} = 8.6 \times 10^7 \text{ sec}^{-1}$. The rate constant for the α -cleavage

reaction
aliphat
in the entrypes of
apparent
intersys
apparent;
of chlori
y-hydroge
sec-1).
Products.

Y-hydrogen due to the less elect reactive to withdrawing

More electr γ-hydrogen

The geo

abstraction

interactions
effect on the

is however, s

cyclization/c

the 0.22 valu

reaction of phenyl t-alkyl ketones is much smaller than for aliphatic t-alkyl ketones, probably because of the differences in the enthalpies for α -cleavage reactions from those two types of ketones. With CMVP, the n,π^* singlet state apparently loses chloride ion rapidly enough to compete with intersystem crossing. The triplet excited state of CMVP apparently undergoes two competitive reactions, homolytic loss of chlorine forming a radical $(k_{\alpha hom} = 3 \times 10^9 \text{ sec}^{-1})$ and γ -hydrogen abstraction yielding a 1,4-biradical $(k_{\gamma} = 1 \times 10^9 \text{ sec}^{-1})$. Those intermediates give rise to several photoproducts.

The small decrease in reactivity of excited DMVP in γ -hydrogen abstraction relative to valerophenone is likely due to the α -methyls making the triplet n,π^* benzoyl slightly less electrophilic by induction and therefore slightly less reactive toward γ -hydrogen abstraction. The electron-withdrawing α -chlorine of CMVP makes the triplet benzoyl more electrophilic and correspondingly more reactive toward γ -hydrogen abstraction.

The geometry of the transition state for γ -hydrogen abstraction is probably staggered to minimize eclipsing interactions since the α -methyls of DMVP have only a small effect on the rate constant for this process. The 1,4-biradical intermediate resulting from γ -hydrogen abstraction, is however, subject to significant steric effects, since the cyclization/cleavage ratio in DMVP is increased to 1.8 from the 0.22 value of valerophenone.

TRA

in pa

α-SUBSTITUENT EFFECTS ON ENERGY TRANSFER AND PHOTOREACTIVITY OF KETONES

Ву

Joseph Michael McGrath

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

To my famij

for their e

inspiration.

GAAA

To my family and friends, especially my parents, for their encouragement, patient understanding, and inspiration.

For himextensive kapparefully

Thanks
excellent for development

The ferwhom I have

appreciated.

The aut

ACKNOWLEDGMENTS

For his guidance, support, confidence, enthusiasm, extensive knowledge, and perceptive insight, this author gratefully thanks Professor Peter J. Wagner.

Thanks is due the rest of the Chemistry Department's excellent faculty who have also helped to shape my development as a scientist and a human being.

The fellowship of the many truly fine people with whom I have studied, worked, relaxed, and philosophized during my stay at Michigan State University is deeply appreciated.

The author is also appreciative for financial support from the Petroleum Research Fund administered by the American Chemical Society, via grants to Professor Wagner.

TABLE OF CONTENTS

		Page
INTRODUC	TION	1
1.	Ketone Photochemistry	1
2.	Photophysical Processes	2
3.	Type II Photoprocesses	4
	a. Preliminary investigations	4
	b. Multiplicity of reactive excited state.	5
	c. The 1,4-biradical mechanism	6
	d. Effects of substituents on type II processes	8
4.	Type I Photocleavage	10
5.	Photochemistry of α -Substituted Ketones	11
6.	Energy Transfer	15
7.	Stern-Volmer Kinetics	17
8.	Objectives	19
RESULTS		21
1.	α , α -Dimethylvalerophenone	21
	a. Quantum yields of photoproducts	21
	b. Radical trapping experiments	24
	c. Quenching of DMVP photoreactions	24
	d. Effect of solvent viscosity on quenching constants	26

		Page
2.	α -Chloro- α -methylvalerophenone	31
	a. Photo and thermal products	31
	b. Products from type II photoprocesses	36
	c. Radical trapping experiments	36
	d. Quenching of CMVP photoreactions	37
DISCUSSI	ON	43
1.	Photoreactivity of α , α -Dimethylvalerophenone.	43
	a. Competitive type I and type II processes	43
	b. γ -Hydrogen abstraction by triplet DMVP .	48
	c. Behavior of the 1,4-biradical from DMVP.	49
2.	Photoreactivity of α -Chloro- α -methylvalero-phenone	53
	a. Competitive photocleavage and cyclization reactions	53
	b. Photoreactivity from the unquenchable excited state	57
	c. Photoreactivity of the n,π^* triplet state	60
3.	Inductive Effects on Triplet State Reactivity of Ketones	62
	a. Effect of α -dimethyl substitution	62
	b. Effect of α -chloro substitution	63
4.	Sterically Indifferent Triplet Energy Transfer	63
5.	Summary	70
6.	Suggestions for Further Research	71

		Page
a.	Effects of α -substituents on energy transfer, triplet state reactivity, and reactivity of the 1,4-biradical intermediate	. 71
b.	Investigations using CMVP and other $\alpha\text{-haloketones}$. 73
с.	Effect of ortho-substituents on exothermic triplet energy transfer	. 74
EXPERIMENTAL.		. 75
A. CHEMICAI	LS	. 75
1. Keton	nes	. 75
a.	α , α -Dimethylvalerophenone	. 75
b .	α-Methylvalerophenone	. 77
c.	α -Chloro- α -methylvalerophenone	. 77
d.	Valerophenone	. 78
e.	Isobutyrophenone	. 79
f.	α -Chloropropiophenone	. 79
g.	Methyl ethyl ketone	. 80
h.	Acetophenone	. 80
2. Solve	ents	. 80
a.	Acetonitrile	. 80
b .	Benzene	. 80
c.	n-Hexane	. 81
d.	Cyclooctane	. 81
e.	1-Propanol	. 81
f.	t-Butyl alcohol	. 81

																			P	age
	g.	1-Pe	entan	ol.	•					•		•						•	•	81
	h.	1-Не	ptan	01.											•					
3.	Quen	chers	· · ·		•	•	•				•		•	•	•		•	•	•	82
	a.	ois-	Pipe	ry1	ene	· .		•					•						•	82
	Ъ.		- Dime	-				ut	ad	ie	ne	•	•					•		82
	c.	•	Dime	•		-								•	•			•	•	82
	d.	Naph	thal	ene	•	•	•	•	•	•	•	•								82
	е.	1 - Ch	loro	napl	nth	a1	.en	е		•						•			•	82
	f.	2 - Ch	loro	- napl	nth	al	en	.e							•					82
4.	Inte	rnal		_					•											82
	а.		cano		•		•											•	•	82
	b.		lohex		_		•	•				•		•				_	•	83
	c.	·	radec					_	•		•		•	•	•	•	•	_	•	
	d.		adec			_	•	•					•	•	•	•	•	•	•	83
	е.		adec			•	•	•	•	•		•	•		•	•	•	•	•	
	f.	-	ideca			•	•	•					•	•	•	•	•	•		
			sane		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	83
_	g.				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
5.	Othe																•	•	•	83
	a.	-	dine							•	•	•	•	•	•	•	•	•	•	83
	b.		ıty1m		•					•	•	•	•	•	•	•	•	•	•	
	с.	1-Do	odeca	netl	nio	1	•	•	•	•	•	•	•	•	•	•	•	•	•	84
	d.	Benz	alde	hyde	∍.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	84
	е.	2-Me and	thy1 2-me	-1- thy:	en lpe	te	ne an	, e	2 - •	me •	th •	y1 •	- 2 •	- p	en •	te •	ne •	•	•	84

B. TECH

1. P

2. I

3. A

C. PHOTO

1. α,

b

С

2. a-(а,

Ъ.

c.

d.

e.

f.

]	Page
В.	TE	CHNIQI	JES.		•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	84
	1.	Prepa	arati	ion	of	Sa	mp	les	f	or	P]	ho	to	1y:	si	s.		•		•	84
	2.	Irra	diati	ion.	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	85
	3.	Analy	yses	of	Ph	oto	lys	at	es	•	•	•	•	•	•	•	•	•	•	•	86
		a.	Gas	1iq	ui	d p	arı	tit	ioı	n (ch:	ro	ma	to	gr.	аp	hy	•	•	•	86
		ь.	Sta:	nda: nda:					ac •					i •			na •	1		•	87
		с.	Act	inon	net	ry	an	d q	ua	nt	um	у	ie	1d	S	•	•	•	•	•	88
		d.	Mea	sure	eme	nt	of	k _q	τ	•	•	•	•	•	•	•	•	•	•	•	90
C.	PH	OTOPR	oduc	TS.	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	90
	1.	α,α-	Dime	thy1	lva	1e:	rop	hen	.on	е	•	•	•	•	•	•	•	•	•	•	90
		a.	Pro	pene	€.	•		•	•	•	•	•	•	•	•	•	•	•	•	•	91
		b.	2 - m	ethy ethy buty	/1-	2-1	pen	ten	e,	me b	th en	za	110	-p eh	yd	le,	ene , a	nd		•	91
		c.		ns- meth												•	•	•	•	•	91
	2.	a-Ch	1oro	- o 1	net	hy:	lva	1er	ор	he	no	ne		•	•	•	•	•	•	•	91
		a.	Pro	piop	phe	noi	ne	(PP)		•	•	•	•	•	•	•	•	•	•	92
		b.	1-P	heny	11-	2 - j	pro	py1	pr	op	- 2	- e	n-	1-	on	е	(P	PF	')	•	92
		c.		heny γ-U)													•	•	•	•	93
		d.	α-M	ethy	/1 v	al	ero	phe	no	ne	(MV	P)	•	•	•	•	•	•	•	93
		е.		heny β-U)													•	•	•	•	94
		f.	α-H	vdro	οχν	-α	-me	thv	·1v	a1	er	or	he	no	ne	: (HM	(V I)		94

D. PHOTO

1. α,

2. α-

BIBLIOGRAPH

	Page
g. 1-Pheny1-1,2-dihydroxy-2-methylpentane (PDHMP)	94
h. γ - and β -Chloro- α -methylvalerophenone $(\gamma$ - and β -CMVP)	94
D. PHOTOKINETIC DATA	96
1. α, α -Dimethylvalerophenone	96
2. α -Chloro- α -methylvalerophenone	117
RIRI IOCRAPHY	124

LIST OF TABLES

TABLE	Pag
1	Quantum Yields for DMVP Photoproducts 22
2	Quenching Constants Obtained from Quenching Photocyclization of DMVP in Various Solvents
3	Quenching Constants for DMVP and Valerophenone in Similar Solvents of Varying Viscosity
4	Quantum Yields for CMVP Photoproducts 35
5	Stern-Volmer Quenching Constants from Photolyses of $0.100M$ CMVP, M^{-1} 42
6	Type II Cyclization and Elimination Quantum Yields and Ratios in Benzene 50
7	Standardization Factors 89
8	Photolysis of 0.250 M DMVP in Benzene 97
9	Photolysis of 0.100m DMVP in Benzene 98
10	Photolysis of 0.100M DMVP in Benzene 98
11	Disappearance Quantum Yield Determination from Photolysis of 0.100M DMVP in Benzene 99
12	Photolysis of 0.100m DMVP in Benzene, n-Hexane, and Cyclooctane 100
13	Photolysis of 0.100 M DMVP in Benzene, t -Butyl Alcohol, and Wet Acetonitrile 101
14	Photolysis of 0.0500 M DMVP in 1-Pentanol 102
15	Photolysis of 0.0500M DMVP in 1-Heptanol 102
16	Photolysis of 0.100M DMVP in Benzene: Effect of 1-Dodecanethiol

P

P)

P)

PH 2,

Ph ci

Ph 0.

TABLE

LIST OF TABLES (Continued)

TABLE	Page
17	Photolysis of 0.100M DMVP in Cyclooctane: Effect of 1-Dodecanethiol 104
18	Photolysis of 0.100M DMVP in Benzene: cis-Piperylene Quencher 105
19	Photolysis of 0.100 <i>M</i> DMVP in Benzene: 2,3-Dimethyl-1,3-butadiene Quencher 106
20	Photolysis of 0.100 <i>M</i> DMVP in Benzene: 2,5-Dimethy1-2,4-hexadiene Quencher 107
21	Photolysis of 0.100 <i>M</i> DMVP in Benzene: 2,5-Dimethy1-2,4-hexadiene Quencher 108
22	Photolysis of 0.100M DMVP in Benzene: 2-Chloronaphthalene Quencher 109
23	Photolysis of $0.100M$ DMVP in n -Hexane: 2,5-Dimethy1-2,4-hexadiene Quencher 110
24	Photolysis of $0.100M$ DMVP in n -Hexane: 2-Chloronaphthalene Quencher
25	Photolysis of 0.100 <i>M</i> DMVP in Cyclooctane: 2,5-Dimethy1-2,4-hexadiene Quencher 112
26	Photolysis of 0.100M DMVP in Cyclooctane: 2-Chloronaphthalene Quencher
27	Photolysis of 0.100 <i>M</i> DMVP in 1-Propanol: 2,5-Dimethyl-2,4-hexadiene Quencher 114
28	Photolysis of 0.100 <i>M</i> DMVP in 1-Pentanol: 2,5-Dimethy1-2,4-hexadiene Quencher 115
29	Photolysis of 0.0500M DMVP in 1-Heptanol: 2,5-Dimethy1-2,4-hexadiene Quencher 116
30	Photolysis of 0.100M CMVP in Benzene: cis-Piperylene Quencher
31	Photolysis of 0.100M CMVP in Benzene with 0.50M Pyridine: cis-Piperylene Quencher 119

TABLE

LIST OF TABLES (Continued)

TABLE	Page
32	Photolysis of 0.100M CMVP in Benzene to ∿15% Conversion: 2,5-Dimethy1-2,4-hexadiene Quencher
33	Photolysis of 0.100 M CMVP in Acetonitrile: Effect of t -Butylmercaptan
34	Photolysis of 0.100M CMVP in Acetonitrile: 2,5-Dimethyl-2,4-hexadiene Quencher
35	Photosensitization of CMVP by and in Methyl Ethyl Ketone

LIST OF FIGURES

FI GURE	Page
1	Photophysical transitions between electronic states in a typical organic molecule 3
2	Photolysis of valerophenone in hexane 7
3	Effects of t-butanol on valerophenone photolysis
4	Homolytic and heterolytic cleavage pathways for loss of α -substituent
5	Quenching of excited DMVP in benzene by 2-chloronaphthalene ((a), cis-piperylene ((a), 2,5-dimethyl-2,4-hexadiene ((a)), and 2,3-dimethyl-1,3-butadiene ((a))
6	Quenching of excited DMVP by 2,5-dimethyl-2,4-hexadiene in n -hexane (\spadesuit), 2-chloronaphthalene in n -hexane (\spadesuit), 2,5-dimethyl-2,4-hexadiene in cyclooctane (\blacksquare), and 2-chloronaphthalene in cyclooctane (\spadesuit) 27
7	Quenching of excited DMVP by 2,5-dimethyl-2,4-hexadiene in 1-propanol (♠), 1-pentanol (♠), and 1-heptanol (♠)
8	Quenching constants for DMVP versus quenching constants for VP-diene system in same solvent: DMVP-ArC1, hydrocarbon solvents ((a); DMVP-diene, hydrocarbon solvents ((a); DMVP-diene, alcohol solvents ((b))
9	Stern-Volmer plots for CMVP photolysis in benzene; quenching formation of β, γ -U (and α, β -U (with cis -piperylene 38
10	Stern-Volmer plots for CMVP photolysis in benzene with $0.50M$ pyridine; quenching formation of $\beta, \gamma-U$ (\bullet), $\alpha, \beta-U$ (\blacktriangle), and CCB (\blacksquare)

FIGURE

LIST OF FIGURES (Continued)

FIGURE	Page
11	Quenching formation of α,β -U from CMVP by 2,5-dimethy1-2,4-hexadiene in acetonitrile 40
12	Plot of reciprocal quantum yield versus [Quencher] for quenching of formation of CCB in benzene by 2,5-dimethy1-2,4-hexadiene. 41
13	Photoreactions of DMVP in hydrocarbon solvents
14	Potential energy diagram for α -cleavage of the n,π^* triplets of methyl and phenyl t -alkyl ketones
15	Photoreactions of CMVP in wet acetonitrile 55
16	Photoreactions of CMVP in benzene 56

INTRODUCTION

1. Ketone Photochemistry

Extensive research has recently been conducted in the area of ketone photochemistry. 1-6 As a result, the chemical and physical properties of ketones in their electronically excited states are becoming quite well understood so that ketone photoreactions are the models for many other systems. Especially significant in mechanistic studies are the type II photoprocesses of ketones. 1 Upon electronic excitation, a carbonyl compound having a γ carbon-hydrogen bond undergoes a characteristic 1,5-hydrogen shift to yield cleavage and cyclization products. 1 Type I photocleavage, the homolytic

scission of is the other

ketones. α -loss of the

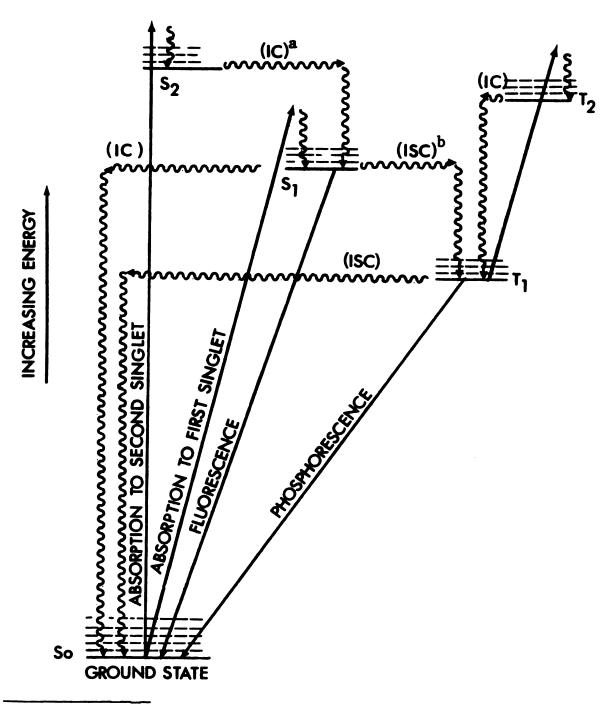
studies of competitive

2. Photoph A brie

a typical o

of the chem is a modifi

scission of the bond between the carbonyl and the α -carbon, is the other major unimolecular photoreaction of saturated


ketones. α -Haloketones are known to undergo photoinduced loss of the halogen. ⁶⁻¹¹ There have been very few careful

studies of compounds in which these major reactions are competitive. 12

2. Photophysical Processes

A brief description of the photophysical processes of a typical organic molecule is essential to an understanding of the chemistry of electronically excited ketones. Figure 1 is a modified Jablonski diagram¹³ where various lower

Figure 1.

aInternal conversion.

Figure 1. Photophysical transitions between electronic states in a typical organic molecule.

^bIntersystem crossing.

electronic rotational arrows reputhe wavy a require the conserved states are the direct relaxation excited states the direct relaxation excited states are between st

3. Type II
a. Pr

more rapid:

vibrational

In 193.

to discover

propylene.16

compounds in in the hydro

positions a a

and a simpler

electronic states and their associated vibrational and rotational levels are schematically depicted. 14 The straight arrows represent possible physical radiative transitions and the wavy arrows non-radiative transitions. Selection rules require that spin angular momentum of the ground state be conserved in the light absorption process, 15 so that triplet states are generally populated by intersystem crossing from the directly excited singlet. Because of rapid vibrational relaxation in solution, only the lowest singlet and triplet excited states generally participate in chemical reactions. Theory predicts that the rate of radiationless crossing between states will generally decrease as the energy difference between the states increases; thus the more closely spaced upper excited states decay to the S₁ and T₁ states much more rapidly than the S_1 and T_1 states themselves cross to vibrationally excited ground state. 15

3. Type II Photoprocesses

a. Preliminary investigations

In 1934, while examining photodecarbonylation of carbonyl compounds in the gas phase, Norrish was surprised to discover that 2-hexanone is converted to acetone and propylene. Further investigation with other carbonyl compounds indicated that this reaction involves cleavage in the hydrocarbon chain between the carbon atoms lying in positions α and β to the carbonyl group to give an olefin and a simpler carbonyl compound. Norrish designated this

 β -cleavage reaction t cleavage r The type I products i and produc are produc Noyes intramolec and an eno compound. 1 establishe generally compounds aliph atic increasin

b. , Conji

states but type II e: aliphatic

the ratio

the unque $^{\text{th}_{\text{e}}}$ $q_{\text{uen}_{\text{C}}}$

shows tha ^{states}, p

 β -cleavage reaction of carbonyl compounds as the type II reaction to distinguish it from the previously known α -cleavage reaction which received the designation type I. The type I reaction yields carbon monoxide and free radical products in the gas phase; 17 in solution, aldehyde products and products due to hydrogen abstraction from the solvent are produced in addition to the gas phase reaction products. 18

Noyes suggested that type II photocleavage proceeds by intramolecular transfer of a γ -hydrogen yielding an olefin and an enol; the enol then rearranges to the carbonyl compound. The involvement of a γ -hydrogen has been firmly established. Yang found that cyclobutanols are generally formed together with the type II cleavage products. 22

b. Multiplicity of reactive excited states

Conjugated dienes and certain small polynuclear aromatic compounds are very efficient quenchers of triplet excited states but inefficient singlet quenchers. Only part of the type II elimination reaction can be quenched in the case of aliphatic ketones. Cyclobutanol formation from aliphatic ketones occurs mostly from the triplet state; increasing the concentrations of triplet quencher decreases the ratio of cyclization to elimination. Comparing the unquenchable portion of the type II photoprocesses to the quenchable portion with a variety of aliphatic ketones shows that the reactions are due to two different excited states, presumably the lowest excited singlet and triplet

n,π* state
reactions
triplet st
which are
generally

c. The t

an alkoxy
molecular
a 1,4-bira
type II el
the 1,4-bi

provided by effects on

experiment:

Pheny I from the si unity, and reactions.

Valerophenon

solvents.30

n,π* states.^{1,25-28} The type II cyclization and elimination reactions of aromatic ketones apparently occur only from triplet states since intersystem crossing quantum yields, which are determined from energy transfer experiments, are generally unity.²⁴

c. The 1,4-biradical mechanism

The triplet n,π* state of a carbonyl compound resembles an alkoxy radical.^{1,29} Yang has suggested that an intramolecular hydrogen abstraction by an n,π* ketone produces a 1,4-biradical intermediate for the formation of both type II elimination and cyclization products.²² Support for the 1,4-biradical mechanism for ketone triplets has been provided by analyses of solvent effects, 1,27,30,31 substituent effects on reactivity, 1,32-35 isotopic labeling experiments, 36,37 and optically active systems.^{1,36}

Phenyl alkyl ketones usually undergo intersystem crossing from the singlet to triplet manifold with an efficiency of unity, and so are convenient for studying triplet state reactions. Figure 2 indicates the photochemistry of valerophenone, V, in the absence of quenchers or reactive solvents. 30

o <u>h</u>

Ph

Figure :

In the pre

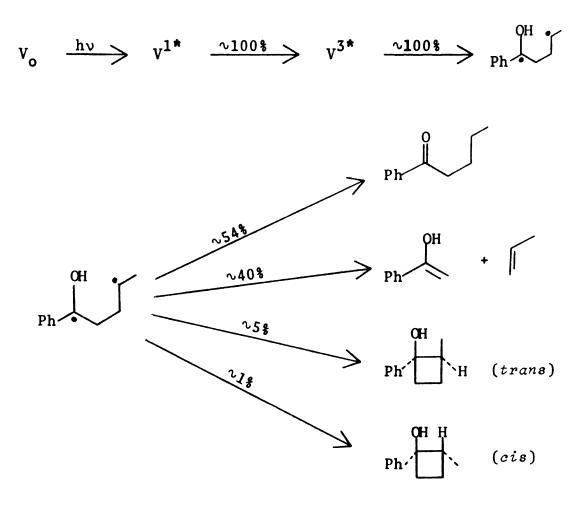


Figure 2. Photolysis of valerophenone in hexane.

In the presence of a polar solvent, the biradical behaves quite differently as seen in Figure 3.30

Figure 3

The enha

Quantum

suppress This dis

the low

reaction

d.

The reactivi

Figure 3. Effect of t-butanol on valerophenone photolysis.

Quantum yields for total photoreaction of valerophenone rise from 0.40 in hydrocarbons to 1.00 in alcohols.^{27,30,31} The enhanced quantum yields with polar solvents can be explained by hydrogen bonding of the hydroxy biradical suppressing disproportionation back to the starting ketone.³⁰ This disproportionation of the biradical is responsible for the low quantum yields characteristic of type II reactions.^{24,27,38}

d. Effects of substituents on type II processes

The effects of assorted substituents on triplet state
reactivity and on quantum yields continue to be investigated,

notably the aron formation electro Strong triple : effect (In Phcor, v Electron polarity causing State. 1 triplets molecul; reaction Y-hydro; an eleci alkoxy : between explana. of cert;

Ph:

triplet

reactivi

bonds.1,

have enh

notably with phenyl ketones. Electron-withdrawing groups on the aromatic ring decrease the probability for product formation from the biradical by enhancing disproportionation; electron-donating groups have the opposite effect. 33 , 34 Strong electron-withdrawing ring substituents double the triple state reactivity, apparently by a simple inductive effect on the electrophilic 3 n, π^* carbonyl moiety. 33

In all cases so far examined, phenyl alkyl ketones, PhCOR, where R is any alkyl group, have n,π^* lowest triplets. Electron-donating ring substituents or solvents of high polarity can invert the order of triplet state energies, causing the $^3\pi$, π^* state to be more stable than the 3n , π^* state. 1,39 All of the phenyl ketones with lowest π , π^* triplets show substantially reduced reactivity in intermolecular 40 and intramolecular 32 hydrogen abstraction reactions. Direct decay of the π , π^* triplet can compete with γ -hydrogen abstraction. 1,32 It should not be surprising that an electron-rich $^3\pi$, π^* carbonyl does not behave like an alkoxy radical. Wagner has considered thermal equilibrium between close lying 3n , π^* and $^3\pi$, π^* states as a reasonable explanation for the observed spectroscopy and photochemistry of certain phenyl ketones having lower $^3\pi$, π^* states. 35,39

Phenyl ketones having γ - and δ -substituents show relative triplet state reactivities corresponding to the known reactivities of the various kinds of γ carbon-hydrogen bonds. Vetones with γ and δ electron-withdrawing groups have enhanced quantum yields in spite of their diminished

reactivity. Apparently the reduced disproportionation of the biradical reflects the reduced nucleophilicity of the γ -radical site of the biradical intermediate. Quantum yield decreases with electron-donating γ - and δ -substituents indicate enhanced disproportionation of the 1,4-biradical. The length of the alkyl chain produces no great alteration in the reactivity of ketone triplets 2 but about 5% δ -hydrogen abstraction may be occurring in hexanophenone and longer ketones. 1,36

4. Type I Photocleavage

The type I processes of ketones involve α -scission to give acyl and alkyl free radicals ¹⁸ which go on to form various stable products. It is known that t-butyl phenyl ketone (pivalophenone) undergoes α -cleavage in solution by way of its triplet excited state. ⁴³ Many investigations of type I reactions have been conducted using cycloalkanones. ⁵ The solution phase photochemical ring-opening, hydrogentransfer, and epimerization reactions of various cyclic ketones proceed by way of the acyl-alkyl biradical obtained from α -cleavage. ⁴⁴, ⁴⁵

In the case of ketones with differing degrees of α -alkyl substitution, type I cleavage generally results in the formation of the more stable alkyl radical and the corresponding acyl radical. The introduction of either α -methyl substituents, or ring strain to cyclic alkanones increases the rate constant for α -cleavage from the triplet

for α-clear ketone und 6 x 10⁷ se constant of analogous also obser

excited st

Irrad

state; it

cleavage ar also. 12 Ty states of t occur almos straight ch the type II Straight ch type II pro-

5. Photoche

I processes

The pre
reaction inc
photoprocess
substituents

ketones incre

slowing inte

state; it is likely that this also increases the rate constant for α -cleavage from the singlet excited state. Bi-t-butyl ketone undergoes the type I process with a rate constant of $6 \times 10^7 \text{ sec}^{-1}$ from the singlet excited state and with a rate constant of 7-9 x 10^9 sec^{-1} from the triplet state. An analogous difference of at least two orders of magnitude is also observed in the reactivities of the singlet and triplet excited states of cyclic alkanones toward α -cleavage.

Irradiation of t-butyl alkyl ketones produces type I cleavage and, if γ -hydrogens are present, type II processes also. Type I cleavage occurs mainly from the triplet states of t-butyl alkyl ketones, while the type II processes occur almost entirely from the singlet excited state. In straight chain ketones such as 2-hexanone, large fractions of the type II processes occur from the triplet state. The straight chain aliphatic ketones with γ -hydrogens undergo the type II processes predominantly, if not exclusively; t-butyl alkyl ketones with γ -hydrogens, however, undergo mainly type I processes when photolyzed in solution.

5. Photochemistry of α-Substituted Ketones

The preceeding discussion of the type I photocleavage reaction included the effect of α -methyl substitution on that photoprocess. An additional observation regarding α -alkyl substituents is that fluorescence quantum yields of aliphatic ketones increase with α -alkyl substitution, perhaps by slowing internal conversion to the ground state or intersystem

crossing t
substituen
type II pr
seem to en
Photo
results in
aryloxy gr
a bond bet
a process
diradical a
carbonyl, 5:
a-substitue
4 represent

- c - c

which may b

Figure 4. H

crossing to the triplet state.⁵⁰ It is not known how α -substituents affect either the rate or quantum yields of the type II processes. Electronegative groups at the α -carbon seem to enhance the photoreactivity of carbonyl triplets.^{1,51,52}

Photolysis of α -aryloxy ketones having no γ -hydrogens results in cleavage of the bond between the α -carbon and the aryloxy group. ^{53,54} This is an example of photocleavage of a bond between the α -carbon of a ketone and a substituent in a process other than type II cleavage. Consistent with the diradical and zwitterionic resonance model of the n, π^* excited carbonyl, ⁵⁵ there is the a priori possibility of ejecting such α -substituents as either free radicals or anions. ^{6,56} Figure 4 represents the homolytic and heterolytic modes of cleavage which may be operative for certain α -substituted ketones. ^{56,57}

Figure 4. Homolytic and heterolytic cleavage pathways for loss of a-substituent.

photolytic some other observed. Sis though bond. So photoclear products products products reaction; cleavage sundergo futhere is sof the Ca

Various a-dichlorol a-dichlorol a-dichlorol a-dichlorol and a dichlorol and a

triethy1 pho

acetone. 9

homolysis.

With certain β -ketosulfides the C_{α} --SR bond cleaves photolytically, but the mechanism is not known. With some other β -ketosulfides, type I photocleavage has been observed. Photolysis of dimethylphenacylsulphonium bromide is thought to proceed by way of homolysis of the C_{α} -- \dot{S} Me₂ bond. The free radical mechanism is also invoked for the photocleavage of the C_{α} --SO₂R bond of β -ketosulphones. The photorearrangement of α,β -epoxyketones to β -dicarbonyl products provides another example of this type of cleavage reaction; it apparently proceeds by homolytic C_{α} --O bond cleavage⁶, S6, 62-66</sup> to give a biradical intermediate which can undergo further rearrangement. With α -sulfonyloxyketones, there is some evidence suggesting that heterolytic cleavage of the C_{α} --OSO₂R bond may be occurring together with homolysis. S7, 67

Various α -chloro and α -bromo⁶, eketones, including an α -dichloroketone, undergo photocleavage of the C_{α} --Cl or C_{α} --Br bond. Photolysis of chloroacetone in the vapor phase yields no type I cleavage products as acetone does. Instead, homolysis of the C_{α} --Cl bond occurs and the resulting radicals react to give a variety of products. When photolyzed in ethyl ether with triethyl phosphite, chloroacetone appears to lose its α -chloro substituent by both ionic and free radical pathways as determined from the nature of the products. The ionic product may however result from a concerted reaction of triethyl phosphite and the electronically excited chloroacetone. The photolysis of ring-substituted α -chloroaceto-

phenones group, in to the α

The mecha but it is para posi as a prod

propyl α-s
to a π* as:
group, 55, 69

of ketones

some cases

Photolytic o

group but no

phenones in ethanol gives products which have lost the chloro group, including an ester where the aryl group has migrated to the α -carbon.⁶⁸

$$X - \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}} C - CH_2 - C1 \xrightarrow{hv} +$$

$$X - \underbrace{\begin{array}{c} \\ \\ \\ \\ \end{array}} CH_2 - CI - OCH_2CH_3$$

The mechanism for this migration is a matter for speculation, but it is known that electron-donating groups in ortho or para positions are required to obtain the rearranged ester as a product. 68

The photolytic cleavage of bonds attached to the α -carbon of ketones has been observed with electronegative and cyclopropyl α -substituents. ⁶⁷ The reaction has been attributed to a π^* assisted process of the n, π^* excited carbonyl group, ⁵⁵, ⁶⁹ perhaps with the antibonding orbital extending in some cases to the bond attaching the leaving substituent. ⁶, ⁶⁷ Photolytic cleavage of the C_{α} --NMe₂ bond in a cyclohexanone system occurs in the isomer with an axial α -dimethylamino group but not in the isomer with the equatorial α -substituent. ⁷⁰

A related phenomenon occurs with α -halogenated cyclohexanones, where the axial but not the equatorial halogen causes increases in the wavelength and intensity of the n,π^* transition.

6. Energy Transfer

One very important reaction of excited states is energy transfer, whereby a donor molecule in an electronically excited state transfers its excitation to a ground state acceptor (quencher).

$$D^* + Q_0 \xrightarrow{k_q} D_0 + Q^*$$

The acceptor ends up in an electronically excited state, the donor in its ground state. Energy transfer processes include: 1) the so-called "trivial" process of reabsorption by a ground-state molecule of light emitted by a fluorescent donor; 15 2) the dipolar or quadrupolar interactions between excited donor and ground-state acceptor molecules known to account for singlet-singlet energy transfer over relatively long distances; 15 and 3) exchange interactions which are responsible for triplet-triplet energy transfer. 15,71

The mechanism of this third process, collisional energy transfer, is thought to involve a resonance exchange interaction which requires spatial overlap of the orbitals of donor and acceptor. 15,71-77 Since energy transfer studies

are widely knowledge transfer

The solution
It has or transfer between energy to limited to donor and or paraficonstant.

In less v
increases
kdif, the
is enough
diffusion
transfer di
theoretical

according

thermic tri

the donor an

are widely used to determine reaction mechanisms and kinetics, knowledge of factors which influence the rate of energy transfer is essential.

The rate of exothermic triplet energy transfer in solution is influenced by the viscosity of the solvent. 71 , 74 , $^{78-80}$ It has often been assumed that exothermic triplet energy transfer is so efficient that every encounter in solution between excited donor and acceptor molecules results in energy transfer, so that the rate of energy transfer is limited by and equal to the rate of diffusion together of donor and acceptor. In moderately viscous alcohols, glycols, or paraffin oil - hexane mixtures, the quenching rate constant constant, k_q , is inversely proportional to viscosity, η , according to equation 1, a slightly modified Debye equation. 71 , 81

$$k_q = k_{dif} = 8RT/2000 \eta$$
 (eq. 1)

In less viscous solvents, the quenching rate constant still increases as the viscosity decreases but becomes lower than $k_{\rm dif}$, the rate constant for diffusion, indicating that there is enough inefficiency in the energy transfer process that diffusion apart of donor and acceptor can compete with energy transfer during the lifetime of a solution encounter. The theoretical implication of k_q being less than $k_{\rm dif}$ for exothermic triplet energy transfer in solvents of low viscosity may be that there is a preferred relative configuration of the donor and acceptor molecules. 71 , 82

In b quenching excitation that of transfer donor is of quenc is only which ho of donors that a co the rate together. that in t of the don further wo energy tra

7. Stern-v

acceptors

exploited i
which excite
photochemica

states, and

reactions. 66

state lifeti

In benzene at room temperature, the rate constant for quenching is $(5 \pm 1) \times 10^9 \, \text{M}^{-1} \, \text{sec}^{-1}$ when the triplet excitation energy of the donor is ≥3-4 kcal/mol higher than that of the acceptor. 71,75,83,84,85 When reverse energy transfer from the excited acceptor back to the original donor is taken into account, it appears that this same rate of quenching holds even where the energy transfer process is only 1 kcal/mol exothermic. 71,76 This one rate constant which holds for exothermic energy transfer between dozens of donors and acceptors of different structures suggests that a common process is rate determining, that process being the rate which excited donor and acceptor molecules diffuse together. 71 The work of Wagner and Kochevar shows, however, that in the low viscosity solvents, the rate of energy transfer of the donor-acceptor pair competes with diffusion apart; further work is needed to determine why exothermic triplet energy transfer between so many different donors and acceptors occurs at such similar rates in benzene. 71

7. Stern-Volmer Kinetics

The phenomenon of electronic energy transfer has been exploited in quenching and sensitization studies to determine which excited states of a given molecule are intermediates in photochemical reactions, to measure lifetimes of excited states, and to obtain rate constants for excited state reactions. Ouenching studies provide estimates of excited state lifetimes which together with quantum yields allow

calculat
yield is
reaction
condition

• repres

such as

\$\phi_{ES}\$ is the requestion intermedian state, the cover all equation is such as the cover all equation in the cover as the cover all equation is the cover all equations are equations.

absence of

process in

concentration

between \$\phi_0 / k_0^T, k

calculation of excited state rate constants. ⁸⁶ The quantum yield is the only kinetic parameter associated with a photoreaction which is directly measureable under steady state conditions. It may be defined as follows. ⁸⁶

$$\Phi = \phi_{ES} \phi_R P \qquad (eq. 2)$$

 Φ represents the quantum yield for a particular photoprocess, such as formation of a certain product or emission of light. Φ_{ES} is the probability that absorption of light will produce the requisite excited state, Φ_R is the probability that that excited state will undergo the necessary primary photoreaction, and P is the probability that any metastable intermediate will complete the desired process. If the photoprocess in question can arise from more than one excited state, the right hand side of equation 2 becomes a summation over all reactive states. The Stern-Volmer expression, equation 3, has been derived elsewhere. $^{8.6}$

$$\Phi_{O}/\Phi = 1 + k_{Q}\tau[Q] \qquad (eq. 3)$$

 Φ_{0} is the quantum yield for a particular process in the absence of quencher, Φ is the quantum yield for the same process in the presence of some quencher, and [Q] is the concentration of the quencher. There is a linear relation between Φ_{0}/Φ and the quencher concentration, with slope $k_{q}\tau$, k_{q} being the bimolecular rate constant for quenching and

the production of the producti

8. Objection Students of Students Stude

The prima energy transfer to the tween do that bulky acceptor shammond and

demonstrate are five-fol

methide chej

phenones pro

τ being the lifetime, in the absence of quencher, of the quenchable state. Stern-Volmer plots for each of several competing reactions have the same slope provided that all the products come from the same excited state and that the quencher does not react with any of the products or intermediates. 86

8. Objectives

Studies of α , α -dimethylvalerophenone (DMVP) and α -chloro- α -methylvalerophenone (CMVP) were undertaken for several widely different reasons.

The primary reason for studying DMVP was to determine whether energy transfer in solution is subject to steric effects. Efficient triplet energy transfer requires close contact between donor and acceptor, 77 so it is reasonable to expect that bulky substituents appropriately located on the donor or acceptor should sterically hinder triplet energy transfer. Hammond and his co-workers have investigated many systems to demonstrate such steric hindrance. Acetoacetonate chelates are five-fold better as triplet quenchers than dipivaloylmethide chelates. 87,88 Quenching of ortho-substituted benzophenones probably reflects steric hindrance but is

complicated by photoenolization. Asymmetric induction is observed in the sensitized isomerization of 1,2-diphenyl-cyclopropane by an optically active substituted naphthalene compound but apparently involves a chemical complex between singlet sensitizer and the 1,2-diphenylcyclopropane. Several workers have performed Stern-Volmer quenching studies to determine the excited state lifetimes of t-alkyl ketones; have performed state lifetimes of t-alkyl ketones; have excited state lifetimes of t-alkyl ketones; have constants for energy transfer. This assumption of negligible steric effects on energy transfer warrants investigation in view of the steric effects which have been found for certain other excited state processes. 77,87,89,91

In order to use DMVP as a monitor for energy transfer studies, its photochemistry had to be first understood. The observed photochemistry of DMVP suggested study of CMVP, with the inductive effect of the α -chlorine on the triplet state reactivity being of particular interest. Introduction of an α -chloro substituent also allows investigation of reactions involving cleavage of the carbon-chlorine bond. The effect of α -substituents on excited state carbonyl reactivity is relatively unknown.

Included in this study is an investigation of the steric and inductive effects of α -substituents on the rate of γ -hydrogen abstraction. Also studied is the competition between type I cleavage and the type II processes of DMVP and with CMVP, the competitive reactions, photocleavage of the carbon-chlorine bond and type II photocyclization.

1. α,α-

a.

Pho

solution producti 2-methy1

benzalde

isobutyr

trans-1-

pheny1-2

of the la

and Hilli

There are with solv

these pro

and coupl: the variou

of solvent

analyses t

the BA phot

processes,

RESULTS

1. α, α -Dimethylvalerophenone

a. Quantum yields of photoproducts

Photolysis of α,α -dimethylvalerophenone, DMVP, in solution with either 313 nm or 366 nm light results in the production of type I cleavage products, 2-methylpentane (IH), 2-methy1-1-pentene (MP-1), 2-methy1-2-pentene (MP-2), and benzaldehyde (BA); type II cleavage products, propene and isobutyrophenone (IBP); and type II cyclization products, trans-1-pheny1-2,2,4-trimethylcyclobutanol (t-CB) and cis-1pheny1-2,2,4-trimethylcyclobutanol (c-CB), the stereochemistry of the latter two photoproducts being established by Lewis and Hilliard, 92,93 in their independent investigation of DMVP. There are also a few unidentified photoproducts which vary with solvent and additives and are usually formed in low yield; these products presumably are an assortment of radical addition and coupling products. Table 1 lists the quantum yields for the various photoproducts of DMVP as obtained with a variety of solvents and additives. It was noticed during the vpc analyses that the areas of the IBP and, to a lesser extent, the BA photoproduct peaks diminish slowly by some thermal processes, likely condensation reactions. Where there is a

Benzene, 0.1M RSH

Benzene, 0.5M RSH

Benzene, 1M t-C₄H

Benzene, 3M t-C₄H

Benzene, 5M t-C4H n-Hexane

Cyclooct

Cyclooct 0.1M RSH

Cyclooct 0.5M RSH t-Butyl

1-Propan

1-Pentan 1-Heptan

Acetonit:

Acetonit:

Acetonitr 2% H₂O

Acetonitr 5% H₂₀

CToo low b dl-Dodecane

e0.0500M DI

 $^{^{}a}_{MP-1}$ and 0.250M DN 0.100M DM

Table 1. Quantum Yields for DMVP Photoproducts

Solvent, Additive	Propene	IH	MP ^a	ВА	IBP	t-CB	c-CB
Benzene				0.028 ^b	0.028 ^{b,0}	0.053 ^b	0.040
Benzene	0.032	0.020	0.026	0.029	0.050	0.051	0.037
Benzene, 0.1M RSHd	0.000	0.053	0.000	0.053	0.020 ^c	0.053	
Benzene, 0.5 <i>M</i> RSH	0.000	0.054	0.000	0.069	0.036 ^C	0.111	
Benzene, $1M t-C_4H_9OH$					0.066	0.063	
Benzene, $3M t-C_4H_9OH$					0.049	0.068	
Benzene, 5 <i>M</i> t-C ₄ H ₉ OH					0.064	0.093	
n-Hexane				0.025	0.040	0.047	0.035
Cyclooctane	0.042	0.034	0.021	0.029	0.059	0.056	0.033
Cyclooctane, 0.1 <i>M</i> RSH	0.000	0.044	0.000				
Cyclooctane, 0.5M RSH	0.000	0.045	0.000				
t-Butyl Alcohol	l			0.015	0.138	0.115	
1-Propanol					0.177	0.123	0.144
1-Pentano1					0.131^e	0.104	0.118
1-Heptanol						0.122	
Acetonitrile, 1% H ₂ O				0.012	0.135	0.155	
Acetonitrile, 2% H ₂ O				0.017	0.169	0.163	
Acetonitrile, 2% H ₂ O				0.013	0.174	0.161	
Acetonitrile, 5% H ₂ O				0.014	0.098	0.149	

a_{MP-1} and MP-2

 $^{^{}b}$ 0.250M DMVP. Other photolyses in this table done with 0.100M DMVP except as noted

^CToo low because of thermal reaction prior to analysis

d₁-Dodecanethiol

e_{0.0500M} DMVP

choice of data from more than one photokinetic run, the higher values for the BA and IBP quantum yields are considered the more reliable and so are reported in Table 1; for the other photoproducts, averages are reported.

The disappearance quantum yield for photolysis of 0.100M DMVP in benzene is 0.225. This is somewhat larger than the 0.17 value obtained by adding the quantum yields for BA, IBP, t-CB, and c-CB, indicating that the unidentified products are formed with about 5% total quantum efficiency in benzene. Added t-butyl alcohol enhances the quantum yields for the type II cleavage and cyclization products; however, the effect is gradual and the expected leveling off of quantum yields with increasing amounts of alcohol30,34 is not observed even with neat t-butyl alcohol. Other alcohols also enhance the type II quantum yields and, as seen for the photocyclization products, 1-dodecanethiol has the same effect. Wet acetonitrile increases the quantum yields for the type II processes with the optimum amount of water being 2-3% by weight. The total quantum yields for the identified products are 0.46 in 1-propanol and ~ 0.52 in acetonitrile with 2% $\rm H_2O.$

The absence of quenching impurities is shown by the expected slight increase in quantum yields when DMVP concentration is raised from 0.100M to 0.250M; this increase is due to the increased polarity of the solution with increased ketone concentration. The cis/trans ratio of the cyclobutanol products varies from 0.7 in hydrocarbon solvents to 1.2 in alcohols. In either polar or non-polar solvents, the

of MP-1 of the

b. 1-

radical identic and 0.5 2-methy

would n

the iniquenche

thiol r

c.

Qu 72 kcaj

conjuga naphtha quencha

the BA

quenche

cyclobu contain

cyclobu

cyclization to elimination ratio is nearly 2 to 1. The ratio of MP-1 to MP-2 is about 5 as estimated from the vpc traces of the overlapping peaks.

b. Radical trapping experiments

1-Dodecanethiol was employed at concentrations which would not directly quench the triplet⁹⁵ to trap the free radicals produced from type I cleavage. The virtually identical quantum yields of 2-methylpentane with both 0.100M and 0.500M thiol together with complete quenching of the 2-methylpentenes indicates trapping of all radicals escaping the initial solvent cage. Propene formation is also totally quenched with these concentrations of thiol, however, so thiol radicals probably add quite efficiently to these olefins.

c. Quenching of DMVP photoreactions

Quenching of the triplet excited state of DMVP (E_T = 72 kcal mol⁻¹)³⁹ was conducted with several different conjugated dienes (E_T = 58-60 kcal mol⁻¹)⁹⁶ and 2-chloronaphthalene (E_T = 60 kcal mol⁻¹).⁹⁷ All of the products are quenchable; however, because of the gradual diminishing of the BA and IBP peak areas, Stern-Volmer plots of Φ_0/Φ versus quencher concentrations were made using the data from the cyclobutanol products, except as otherwise noted. Figure 5 contains Stern-Volmer plots for quenching production of cyclobutanols from excited DMVP in benzene.

Figur

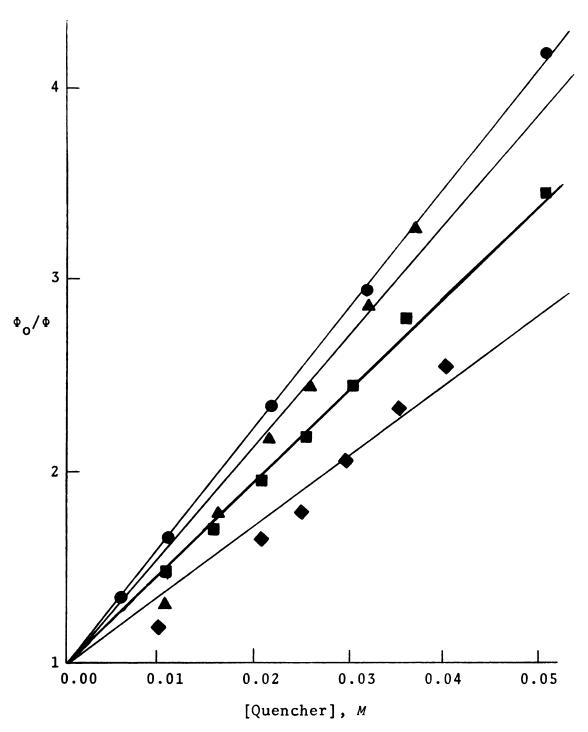


Figure 5. Quenching of excited DMVP in benzene by 2-chloronaphthalene (♠), cis-piperylene (♠), 2,5-dimethyl-2,4-hexadiene (♠), and 2,3-dimethyl-1,3-butadiene (♠).

1,3-penta concentra destructi type I cl

2,4-hexad

behavior

For

Figure seed hydroundetermidata for

As d

Figure 7

contains preceding quenchers

d. 1

It is similar so determined be independent increasing

controlled dimethy1-2

For 2,3-dimethyl-1,3-butadiene and cis-piperylene (cis-1,3-pentadiene) low Φ_0/Φ values are observed with low quencher concentrations, presumably because there is significant destruction of quencher by its reaction with radicals when type I cleavage is only slightly quenched. 2,5-Dimethyl-2,4-hexadiene and 2-chloronaphthalene do not exhibit similar behavior; they are known to be poor radical traps. 98

Figure 6 graphically illustrates quenching studies which used hydrocarbon solvents other than benzene. For undetermined reasons, there is considerable scatter in the data for quenching by 2-chloronaphthalene in n-hexane. Figure 7 exhibits the effect of primary alcohol solvents on the quenching of excited DMVP by 2,5-dimethyl-2,4-hexadiene.

As discussed in the introduction, the slope of a Stern-Volmer plot, the quenching constant, is $k_q\tau$. Table 2 contains the values of $k_q\tau$ obtained graphically from the preceding quenching plots for DMVP with a variety of quenchers, solvents, and additives.

d. Effect of solvent viscosity on quenching constants It is of interest to compare $k_q\tau$ values measured in similar solvents of differing viscosities since τ , which is determined solely by rates of intramolecular reactions, should be independent of solvent viscosity and k_q would decrease with increasing solvent viscosity if energy transfer is "diffusion-controlled". Table 3 compares $k_q\tau$'s obtained using 2,5-dimethy1-2,4-hexadiene and 2-chloronaphthalene to quench

Figu

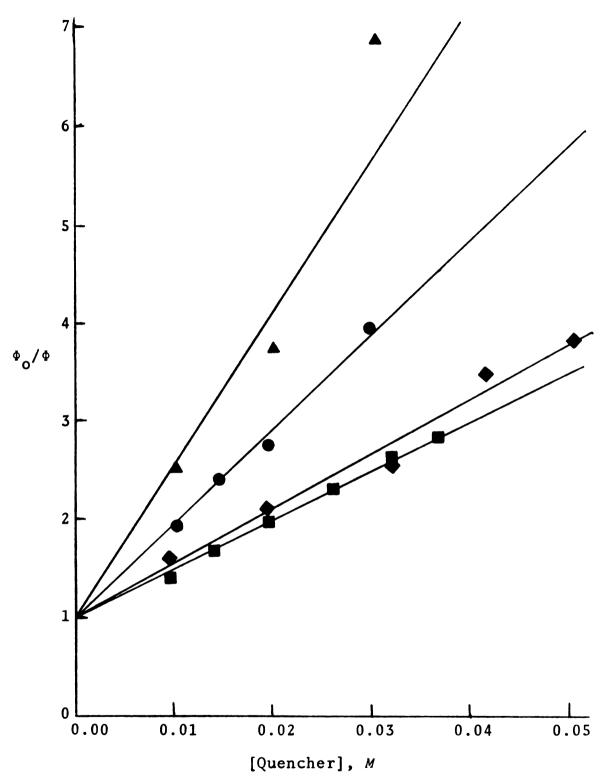


Figure 6. Quenching of excited DMVP by 2,5-dimethy1-2,4-hexadiene in n-hexane ((a)), 2-chloronaphthalene in n-hexane ((a)), 2,5-dimethy1-2,4-hexadiene in cyclooctane ((a)), a and 2-chloronaphthalene in cyclooctane ((a)).

^aAverage of values for both IBP and t-CB used.

3

Φ\φ

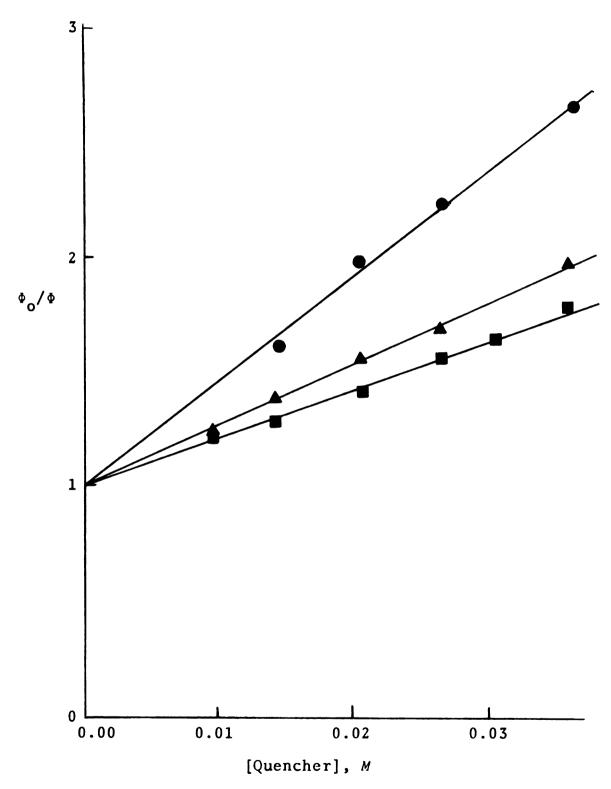


Figure 7. Quenching of excited DMVP by 2,5-dimethy1-2,4-hexadiene in 1-propanol (♠), 1-pentanol (♠), and 1-heptanol (♠).

Tab

<u>So1</u>

Ben

Ben Ben

Ben

n - Н е

Сус

Cyc]

1-Pr

1-Pe

1-He

 $[\]frac{}{a_{\text{Stat}}}$

Table 2. Quenching Constants Obtained from Quenching Photocyclization of DMVP in Various Solvents

		. a
Solvent	Quencher	$\frac{k_q^{\tau}, M^{-1}}{M}$
Benzene	cis-Piperylene	59 ± 2
Benzene	2,5-Dimethy1-2,4-hexadiene	49 ± 1
Benzene	2,3-Dimethy1-1,3-butadiene	38 ± 1
Benzene	2-Chloronaphthalene	64 ± 1
n-Hexane	2,5-Dimethy1-2,4-hexadiene	97 ± 1
n-Hexane	2-Chloronaphthalene	150 ± 9
Cyclooctane	2,5-Dimethy1-2,4-hexadiene	51 ± 1
Cyclooctane	2-Chloronaphthalene	56 ± 2
1-Propanol	2,5-Dimethy1-2,4-hexadiene	46 ± 1
1-Pentanol	2,5-Dimethy1-2,4-hexadiene	28 ± 1
1-Heptanol	2,5-Dimethy1-2,4-hexadiene	22 ± 1

^aStandard deviations indicated.

n-Hexane

Benzene

Cycloocta

1-Propano

1-Pentano

1-Heptano

aRef. 71

^b0.100_M _{DM}

c₀.100M DM

d0.100m Va Quencher,

Table 3. Quenching Constants for DMVP and Valerophenone in Similar Solvents of Varying Viscosity

Solvent (n, cP) a	DMVP-ArC1 ^b	DMVP-diene C	<u>VP-diene</u> d
n-Hexane (0.33)	150 ± 9	97 ± 1	79
Benzene (0.63)	64 ± 1	49 ± 1	36
Cyclooctane (2.2)	56 ± 2	51 ± 1	31
1-Propanol (1.9)		46 ± 1	52
1-Pentano1 (3.1)		28 ± 1	36
1-Heptanol (5.5)		22 ± 1	23

aRef. 71

b_{0.100M} DMVP with 2-Chloronaphthalene Quencher

C_{0.100M} DMVP with 2,5-Dimethy1-2,4-hexadiene Quencher

d_{0.100M} Valerophenone with 2,5-Dimethy1-2,4-hexadiene Quencher, Ref. 71

ex o

va:

in

the obt

CO

a g

res

to DM/

٧a]

dis

2.

com

pro

are

cer

abs

the

thar

rete

The

solu

excited DMVP in hydrocarbons and primary alcohols with $k_q\tau$'s obtained using 2,5-dimethy1-2,4-hexadiene to quench excited valerophenone in the same solvents. As solvent viscosity increases, $k_q\tau$ values do in fact decrease. Figure 8 compares the $k_q\tau$'s obtained from quenching excited DMVP against those obtained from quenching valerophenone with each point corresponding to measurements in a particular solvent. For a given quencher of DMVP and in similar solvents, the respective $k_q\tau$'s for DMVP and valerophenone-diene are close to being directly proportional. The consequences of "hindered" DMVP being quenched in parallel fashion to "unhindered" valerophenone in solvents of differing viscosities will be discussed later.

2. α -Chloro- α -methylvalerophenone

a. Photo and thermal products

Photolyses of α-chloro-α-methylvalerophenone, CMVP, are complicated by a large number of products, many of which are produced thermally. Some of the photo and thermal products are solvent dependent, some occur only in the presence of a certain quencher, and some are observed only when quencher is absent. In benzene with no quencher, at least 16 photo and thermal products are present with retention times shorter than that of CMVP and 5 products are observed with longer retention times. In acetonitrile, fewer products result. The large extent of thermal reactions in the photolysis solutions was unexpected since <0.2% of the neat CMVP thermally

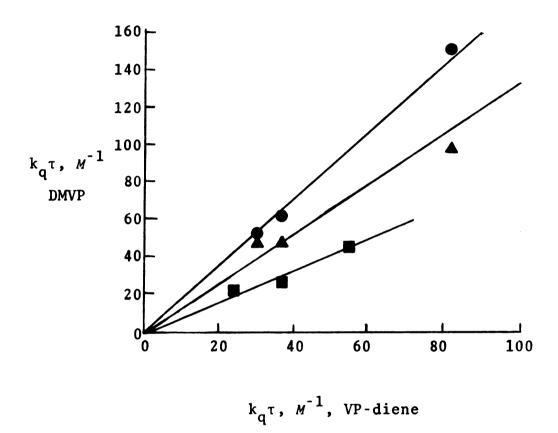


Figure 8. Quenching constants for DMVP versus quenching constants for VP-diene system in same solvent: DMVP-ArC1, hydrocarbon solvents (•); DMVP-diene, hydrocarbon solvents (•); DMVP-diene, alcohol solvents (•).

decomposed during a 6 month period at $\sim 0^{\circ}$. The thermal reactions occurred appreciably even in the refrigerated photolysis sample solutions, so it was necessary to run blanks and substract the thermal product relative vpc peak areas from the relative vpc peak areas of the photoproducts with similar, though often not identical retention times.

The major and some minor photo and thermal products present at high conversion in both benzene and acetonitrile have been determined by mass spectral analyses and, where preparative scale vpc separations were successful, verified by nmr analyses. In order of increasing vpc retention times on analytical vpc columns using QF-1 and Carbowax 20M liquid phases, these products are: propiophenone, PP; 1-pheny1-2propylprop-2-en-1-one, PPP; 1-phenyl-2-methylpent-3-en-1-one, β, γ-U; α-methylvalerophenone, MVP; 1-phenyl-2-methylpent-2en-1-one, α,β -U; α -hydroxy- α -methylvalerophenone, HMVP; 1pheny1-1,2-dihydroxy-2-methylpentane or an isomer of it, PDHMP; and 2 rearranged ketones which are isomers of CMVP. These rearranged ketones probably are γ -chloro- α -methylvalerophenone, γ -CMVP, and β -chloro- α -methylvalerophenone, β-CMVP. At high conversion in both benzene and acetonitrile solvents, β, γ -U is the major product. β, γ -U is especially dominant in benzene, suggesting a possible synthetic route to certain β,γ -unsaturated ketones from α -chloroketones. Smaller but significant amounts of PP, α,β -U, and β -CMVP are also observed, with the remaining products accounting for only a small portion of the product mixture at high conversion.

Most of the many photo and thermal products seen at low conversion disappear into the vpc baseline at high conversion. Unfortunately it was not possible to obtain spectral data on a certain product having a retention time just slightly less than that of CMVP since it is present to only a small extent at low conversion and it gets completely quenched at high conversion. This product is assumed to be a stereoisomer of 2-chloro-1-pheny1-2,4-dimethylcyclobutanol, CCB, based not only upon its vpc retention time, but also that it is formed in the three solvent systems studied and that it is produced only from a quenchable excited state. The correction for thermal reaction applied to the CCB vpc peak area is due to a thermal product having a slightly shorter retention time.

Table 4 lists the quantum yields for the CMVP photoproducts. At very low conversion, the rearranged ketones, γ -CMVP and β -CMVP, are not formed to any appreciable extent in benzene or acetonitrile; these products probably result from addition of HCl to the unsaturated ketones, β,γ -U and α,β -U, and therefore would show up more at the higher conversions where the HCl concentrations and concentrations of unsaturated ketones would be greater. Pyridine apparently enhances the yields of these rearranged chloroketones at the expense of β,γ -U and α,β -U. The HMVP product is formed thermally to a great extent, and photochemically to a small extent. In samples containing cis-piperylene, HMVP is still formed thermally, but its photochemical formation is almost completely quenched.

Table 4. Quantum Yields for CMVP Photoproducts^a

Solvent, Additive	ddd	β,γ-U	α, β-υ	CCB	HMVP	B-CMVP
Benzene	0.000	0.133	0.141	0.018	0.046	∿0.00
Benzene, 0.50M Pyridine		0.100	0.083	0.034	0.011	0.032
Acetonitrile ^b	0.029	0.040	0.342	0.014	900.0	00.00
Acetonitrile ^b , 0.2 <i>M</i> t-BuSH	0.011	0.071	0.253	0.013	0.007	00.00
Acetonitrile ^b , 0.5 <i>M</i> t-BuSH		0.113	0.168	0.012	0.013	∿0.00
MEK 0.0100M CMVP ^C	0.012	0.030	0.064	0.012	0.015	0.008d 0.008d
MEK 0.0200 <i>M</i> CMVP ^C	0.013	0.050	0.095	0.014	0.032	0.016

 $^{^{\}rm a}$ CMVP concentration is 0.100 $^{\rm M}$ in all solvents except methyl ethyl ketone, which was used to study photosensitization of CMVP.

 $^{^{}m b}$ The acetonitrile contains $^{\sim}$ 1% water (weight basis).

^CMethyl ethyl ketone is used as both solvent and sensitizer with the specified concentrations of CMVP.

 d_{γ} - CMVP

b. Products from type II photoprocesses

Among other reasons, CMVP was studied to investigate the competition between the type II processes and the relatively poorly understood reactions involving loss of an electronegative a-substituent. No propene, which would be a type II elimination product, was observed; this could be the result of HCl addition to the olefin, however. The other type II elimination product, α-chloropropiophenone, was also not observed; though, since its retention time would put it under the unsaturated ketone peaks in the vpc traces, the inability to find it does not rule out the possibility of it being a minor product. The unexpected presence of propiophenone as a product apparently would require the intermediacy of either α -chloropropiophenone or MVP (α -methylvalerophenone). presence of a small amount of MVP was verified by mass spectral analysis of a high conversion sample; unfortunately this product occurs under the β,γ -U peak when using the analytical vpc columns, but it does appear to be a minor product. It seems that the type II photoprocesses of CMVP just barely compete with those photoreactions primarily involving loss of HCl since not very much more than the CCB product is likely to be a result of type II elimination or cyclization reactions.

c. Radical trapping experiments

The effects of t-butylmercaptan on CMVP photolyses in acetonitrile are reported in Table 4. The PPP and α,β -U photoproducts are diminished by increasing amounts of the thiol while the size of the β,γ -U peak increases, possibly because of some MVP beneath it. The CCB quantum yields remain

essentially constant though those of HMVP appear to increase with added thiol. Only 10-20% of the HMVP is photochemically produced in acetonitrile with or without the thiol. It is possible that the fraction of HMVP, in any of the solvents, which appears to be photolytic in origin is actually due to the thermal reaction being accelerated by a photoproduct.

d. Quenching of CMVP photoreactions

Figures 9, 10, and 11 contain Stern-Volmer plots for quenching various photoproducts of CMVP in 3 different solvent systems. Figure 12 is a plot of Φ^{-1} versus quencher concentration for quenching formation of CCB in benzene; this kind of plot is used here because o is so high that a Stern-Volmer plot would not intercept at 1. Dividing the slope of such a plot by the intercept gives $\boldsymbol{k}_{\boldsymbol{q}}\boldsymbol{\tau}$. Table 5 lists the $\boldsymbol{k}_{\boldsymbol{q}}\boldsymbol{\tau}$ values obtained from the plots in Figures 9-12. In benzene and benzene with 0.50M pyridine β, γ -U is quenched >5 times faster than α,β -U; but in acetonitrile, β,γ -U formation is actually enhanced by the diene quencher while a, \(\beta \)-U is quenched 20-30% faster than in the benzene systems. Formation of CCB is quenched at approximately the same efficiency in the three solvent systems. Attempts to measure ϕ_{isc} by sensitizing the photoisomerization of cis-piperylene were unsuccessful since the low $k_0 \tau$ for quenching excited CMVP requires such large quantities of quencher for any significant quenching that the amount of trans-piperylene formed by the sensitized isomerization is only slightly larger than the 0.19% initially present as an impurity.

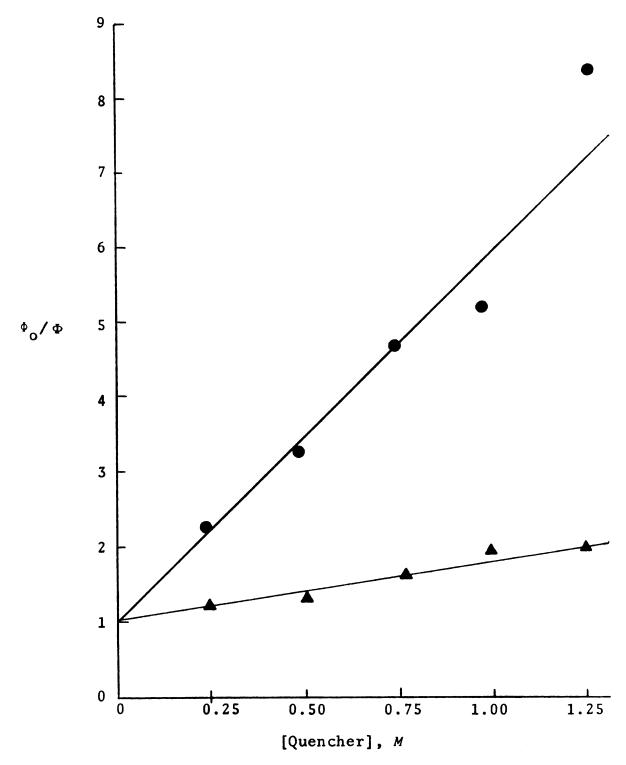


Figure 9. Stern-Volmer plots for CMVP photolysis in benzene; quenching formation of β, γ -U (\blacksquare) and α, β -U (\blacksquare) with cis-piperylene.

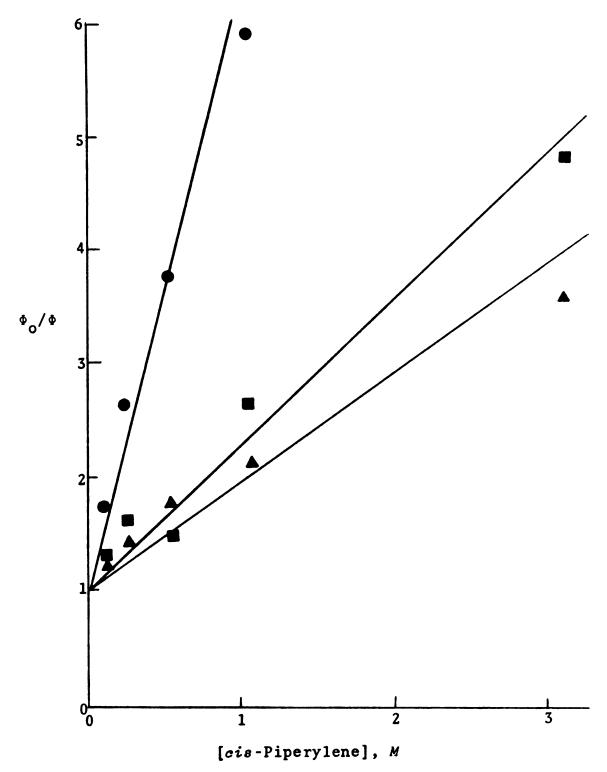


Figure 10. Stern-Volmer plots for CMVP photolysis in benzene with 0.50M pyridine; quenching formation of β, γ -U (\bullet), α, β -U (\triangle), and CCB (\blacksquare).

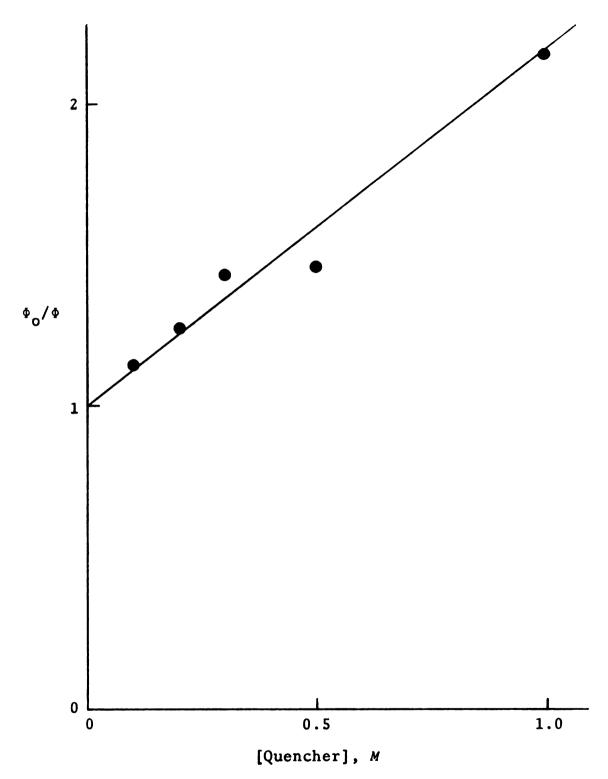


Figure 11. Quenching formation of α,β -U from CMVP by 2,5-dimethy1-2,4-hexadiene in acetonitrile.

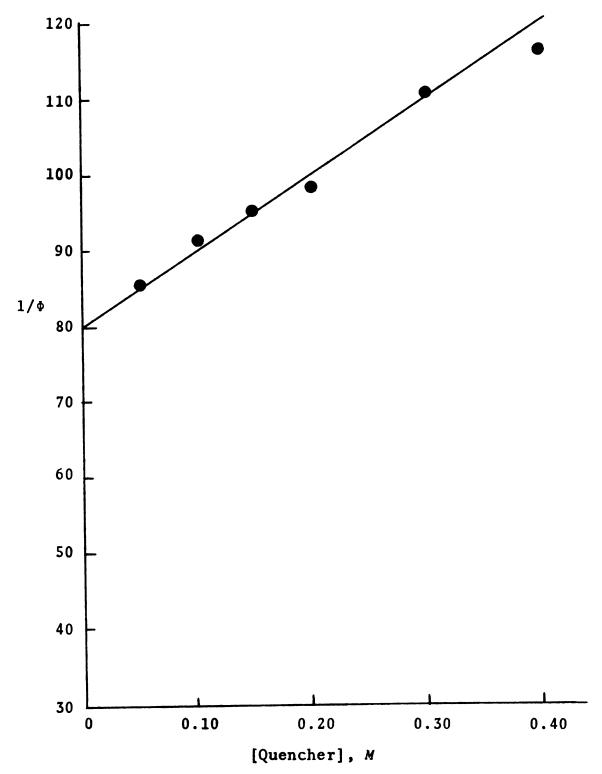


Figure 12. Plot of reciprocal quantum yield versus [Quencher] for quenching of formation of CCB in benzene by 2,5-dimethy1-2,4-hexadiene.

Table 5. Stern-Volmer Quenching Constants from Photolyses of 0.100M CMVP, M^{-1}

	Product	Quenched:	<u>β,γ-U</u>	<u>α,β-U</u>	<u>CCB</u>
Solvent					
Benzene			5.1 ^a	0.9 ^a	1.3 ^{b,c}
Benzene, 0.50M Pyridin	e		5.4 ^a	1.0ª	1.3 ^a
Acetonitrile, ∿1% H ₂ O			d	1.2 ^b	∿1.2 ^b ,e

acis-Piperylene quencher

b2,5-Dimethy1-2,4-hexadiene quencher

^CPhotolysis carried out to relatively high conversion

d_{Not quenched}

 $^{^{\}textbf{e}}\text{Vpc}$ peaks are too small to accurately integrate, however; CCB is quenched to approximately the same extent as $\alpha,\beta\text{-U}$ in acetonitrile.

DISCUSSION

- 1. Photoreactivity of α, α -Dimethylvalerophenone
 - a. Competitive type I and type II processes

As determined by the thiol trapping experiments, free radical products from type I photocleavage of DMVP account for 5-7% of the triplet excited state reactivity. Since a significant portion of the radicals produced would recombine in the solvent cage, $^{9.9}$ $\sim 10-15\%$ of triplet DMVP undergoes α -cleavage. The quantum yields for the type II processes are $\sim 45\%$ in 1-propanol and $\sim 52\%$ in wet acetonitrile; the usual leveling off of quantum yields at a near maximum value in polar solvents $^{4.1}$ was not observed for DMVP, perhaps indicating a steric effect on solvation of the biradical.

The ratio of excited state rate constants for α -cleavage and γ -hydrogen abstraction can be calculated using the data for DMVP and that found by Lewis and Hilliard for α, α -dimethylbutyrophenone, DMBP. 92,93 The α -dimethyl substituion of either valerophenone or butyrophenone can be viewed as introducing two unknowns into the triplet state lifetime: an inductive and/or steric effect on the rate constant for γ -hydrogen abstraction, k_{γ} ; and competitive α -cleavage with rate constant k_{α} . 100

$$\frac{1}{\tau} = k_{\alpha} + k_{\gamma} = k_{\alpha} f k_{\gamma}^{0} \qquad (eq. 4)$$

In equation 4 k_{γ}^{0} is the known triplet state rate constant for γ -hydrogen abstraction by the corresponding unsubstituted ketones, valerophenone ($k_{\gamma}^{0} = 1.4 \times 10^{8} \text{ sec}^{-1}$) $^{4.1}$ and butyrophenone ($k_{\gamma}^{0} = 7.5 \times 10^{6} \text{ sec}^{-1}$), $^{4.1}$ as determined by diene quenching experiments in benzene. The unknown rate factor on γ -hydrogen abstraction introduced by the α -methyls is f. Stern-Volmer studies in benzene yield $k_{q}\tau$ values of 49M^{-1} for DMVP and 260M^{-1} for DMBP 92 indicating $\frac{1}{\tau}$ values of 1.0 x 10^{8} sec $^{-1}$ and 1.9 x 10^{7} sec $^{-1}$ respectively for these two ketone triplets, assuming $k_{q} = 5 \times 10^{9} \text{ M}^{-1}$ sec $^{-1}$ in benzene. The intering these values into equation 4 and solving the pair of simultaneous equations gives f = 0.61 and $k_{\alpha} = 1.4 \times 10^{7} \text{ sec}^{-1}$.

The fraction of type I cleavage, $k_{\alpha}/(k_{\alpha}+k_{\gamma})$, is 0.14 for DMVP and 0.74 for DMBP. This agrees well with Lewis' estimate of five times the type I product yields from DMBP as from DMVP.¹⁰¹ The low type II quantum yields for DMVP are only partially due to competing triplet state α -cleavage; dimethyl substitution of the α -position has lowered k_{γ} only slightly.

The percentage of α -cleavage of triplet DMVP suggests $\sim 50\%$ cage recombination of the radicals formed. The competition between the type I and type II photoprocesses of DMVP is presented in Figure 13.

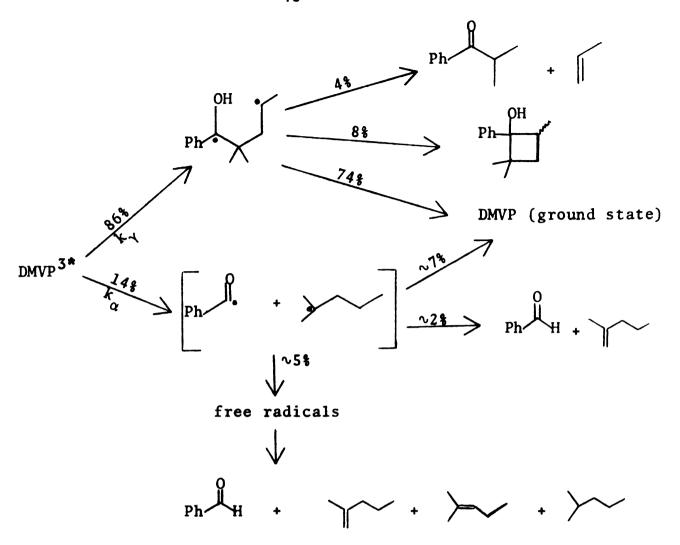


Figure 13. Photoreactions of DMVP in hydrocarbon solvents.

Polar solvents produce slight changes in the partitioning of the biradical. In the initial solvent cage, some disproportionation of radicals is assumed since it is the most likely route to benzaldehyde in unreactive solvents. The absence of the olefinic product in the thiol trapping experiments does not rule this out because thiol also completely quenches propene formation under conditions where its co-product, isobutyrophenone, is not quenched.

The value of k_{α} , 1.4 x 10⁷ sec⁻¹, is even lower than the reported values of 2.3 x 10⁷ sec⁻¹⁹¹ and 3.0 x 10⁷ sec⁻¹⁴³ for phenyl t-butyl ketone. The rate constant for α -cleavage of phenyl t-alkyl ketones, $\sim 2 \times 10^7 \text{ sec}^{-1}$, is only 0.004 as large as that for aliphatic t-butyl ketones; 12,40 this fact has apparently escaped previous attention. Triplet phenyl ketones resemble triplet aliphatic ketones in rates of hydrogen abstraction and singlet aliphatic ketones in rates of α -cleavage. 12,102

The reduced reactivity for α -cleavage of phenyl ketone triplets is not due to any increased π,π^* character in the lowest triplet state since α -dimethyl substitution stabilizes the n,π^* triplet of phenyl alkyl ketones. ³⁹ Furthermore, it would be hard to rationalize why the rate of γ -hydrogen abstraction would not also be similarly affected. The relative rates of cleavage and intramolecular hydrogen abstraction in alkoxy radicals ¹⁰³, ¹⁰⁴ are very similar to those for triplet aliphatic ketones; the cleavage reaction in excited ketones is likely also to be triggered by the free electron on oxygen. The fact that the excited electron is in a primarily benzene-like π^* orbital in a phenyl ketone triplet probably does not reduce the reactivity of that state.

The lower reactivity of phenyl ketones to α -cleavage is probably due primarily to energetic differences and possibly also to differences in geometry. Recent epr¹⁰⁵ and kinetic¹⁰⁶ studies indicate that the free electron of the benzoyl radical is not conjugated with the benzene ring. Thermochemical

data^{107,108} indicate that α -cleavage of t-alkyl ketones is 72 kcal/mol endothermic whether Y is alkyl or phenyl.

Conjugation of ketone triplets with the phenyl ring does provide extra stabilization to ketone triplets, the excitation energy of acetophenone being 72.5-75.6 kcal/mol compared with 78-80 kcal/mol for acetone. 109 α -Dimethyl substitution stabilizes the n, π * triplet of phenyl ketones 39 and the n, π * singlet of aliphatic ketones, 110 but apparently does not stabilize the n, π * triplet of aliphatic ketones. 110 Therefore, as Figure 14 shows, α -cleavage of DMVP is nearly thermoneutral while α -cleavage of pinacolone is \sim 5 kcal/mol exothermic. 100

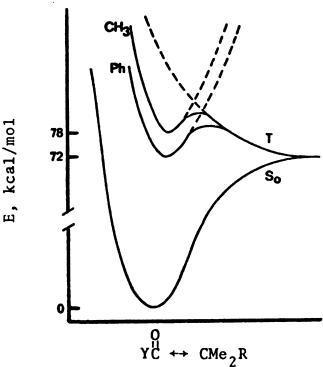


Figure 14. Potential energy diagram for α -cleavage of the n, π^* triplets of methyl and phenyl t-alkyl ketones.

Both reactions proceed with loss of free energy because of the large positive change in entropy, but the difference in enthalpy is a reasonable explanation of the large difference in rates of α -cleavage for the two kinds of ketone triplets.

A geometric factor may be partially responsible for the rate difference between phenyl and aliphatic ketone triplets. Conjugation with a phenyl ring likely keeps the triplet carbonyl planar. If aliphatic ketones imitate formaldehyde, their excited singlets are nearly planar and their triplets nearly tetrahedral. α -Cleavage from n, π^* states of formaldehyde has been proposed to be a direct result of state mixing caused by nonplanarity of the excited state, the further theoretical justification for this idea has not been presented.

b. Y-Hydrogen abstraction by triplet DMVP

The previously discussed quenching studies with DMVP and DMBP indicate that DMVP has a $\frac{1}{\tau}$ value of 10 x 10⁷ sec⁻¹ with $k_{\alpha} = 1.4 \times 10^7 \text{ sec}^{-1}$ and $k_{\gamma} = 8.6 \times 10^7 \text{ sec}^{-1}$. Valerophenone's k_{γ} is 14 x 10⁷ sec⁻¹ indicating a small decrease in reactivity toward γ -hydrogen abstraction results with α -dimethyl substitution. The reactivity of triplet acetophenone in intermolecular hydrogen abstraction also slightly decreases with α -methyl substitution. These decreases are likely due to a weak inductive effect on the triplet n, π^* benzoyl rather than to any steric effect. Strong electron-withdrawing groups on the α -carbon greatly enhance the reactivity of phenyl ketone triplets, 52 , 113 so methyl-

substitution should produce a weak effect in the opposite direction.

Steric hindrance in an intramolecular reaction reflects extra torsional strain or nonbonded interactions which develop during rotation of the molecule into its transition state conformation. In an acyclic system, a transition state geometry which requires even partial eclipsing of one carbon-carbon bond would make the reaction subject to significant steric effects. Since α -, β -, 114 and δ -substituents 114 produce essentially no steric hindrance to type II γ -hydrogen abstraction, Wagner has proposed that the conformation of α , β and β , γ C-C bonds must be totally staggered in the transition state for γ -hydrogen transfer. 115

c. Behavior of the 1,4-biradical from DMVP

The biradicals produced by γ -hydrogen abstraction by excited triplet carbonyls of phenyl alkyl ketones undergo competing type II cleavage, cyclization, and reverse hydrogen atom transfer; α -methyl groups cause significant changes in these competitive processes for the DMVP biradical. The large cyclization to cleavage ratio for DMVP and the low quantum yields for the type II cleavage and cyclization products are of considerable mechanistic interest. As with other phenyl alkyl ketones, the trans-cyclobutanol is the major isomer in hydrocarbon solvents and in polar solvents the trans/cis ratio is reduced; 116 however, DMVP shows much less stereoselectivity for cyclization than is typical.

Substituents, especially in the α - and β - positions, apparently affect the ease with which the biradicals reach the necessary conformations for cyclization and cleavage. 1,41,92,93 With α -dimethyl substitution, the conformation of the biradical which leads to cyclization is favored relative to that for cleavage; β -dimethyl substitution has the opposite effect. Lewis and Hilliard have observed this effect for α,α -dimethylbutyrophenone, DMBP, also. 92,93 Table 6 compares some kinetic data relevent to elimination and cyclization for valerophenone (VP), DMVP, butyrophenone (BP), DMBP, and β,β -dimethylbutyrophenone (β -DMBP).

Table 6. Type II Cyclization and Elimination Quantum Yields and Ratios in Benzene

Ketone	Фсу	$\frac{\Phi}{ t elim}$	$k_{\rm cy}/k_{\rm elim}$
VP ¹¹⁴	0.075	0.33	0.23
DMVP	0.088	0.05	1.8
BP114	0.033	0.35	0.094
DMBP 9 3	0.032	0.004	8.0
β-DMBP	0.00593	0.19114	0.026114

Table 6 shows that α -dimethyl substitution of valerophenone increases the cyclization to elimination ratio, $k_{\rm cy}/k_{\rm elim}$, by a factor of 8. The large decrease in the quantum yield for elimination accounts for most of this change. α -Dimethylation of butyrophenone diminishes the quantum yield for type II cleavage by a factor of over 80 while leaving the quantum yield for cyclization unchanged. These results indicate that changes in the cyclization to elimination ratio caused by α -dimethyl substitution are primarily due to diminished efficiency of elimination from the biradical.

Wagner has suggested that elimination requires continuous overlap of the σ bond being cleaved with both of the radical p orbitals.

1,41 Support for this hypothesis comes from several cyclic ketones in which the 1,4-biradicals cannot assume such a conformation.

117-121 Hoffman's calculations

122 indicate for tetramethylene that conformations having all four carbon atoms planar promotes cleavage by optimizing the mixing of π and σ molecular orbitals, a hypothesis similar to that of Stephenson.

123-125

The reduced efficiency of type II cleavage with α -dimethyl substitution is very likely due to the steric repulsion of ortho-hydrogens of the phenyl group and the hydrogens of the α -methyl groups, impeding attainment of the optimum geometry for cleavage. Molecular models show this interaction to be quite severe if we make the reasonable assumption of the benzylic p-orbital being conjugated with the phenyl π -system.

Additional steric interaction between the hydroxyl and α -methyl groups would also contribute to the impairment of the cleavage process.

For cyclization, stereoelectronic requirements are looser than for cleavage since only the radical centers need overlap in the transition state. The four-membered cyclic transition state is most likely puckered to minimize 1,2-eclipsing interactions. 93,126

The above structure corresponds to the cyclization transition state for biradicals from either DMVP or DMBP. The α -methyls are so orientated that virtually the only extra steric interactions, compared to the unsubstituted cases, are the small 1,3-pseudodiaxial interactions between an α -methyl and a γ -H or γ -CH₃. This accounts for the negligible change in cyclization yields with α -dimethyl substitution. This mechanism for photocyclization not only accounts for the observed α - and β - substituent effects, but in phenyl alkyl ketones in general, where R \neq H, the trans-cyclobutanol predominates in nonpolar solvents, as would be predicted by the model.

- 2. Photoreactivity of α -Chloro- α -methylvalerophenone
- a. Competitive photocleavage and cyclization reactions
 Quenching studies and radical trapping experiments show
 that the photoreactions of CMVP proceed largely from a triplet
 excited state via radical intermediates. In a polar solvent,
 wet acetonitrile, a portion of the photoreaction is
 unquenchable requiring the involvement of some short lived
 upper excited state whose photoreactivity is low in nonpolar
 media. Heterolytic cleavage, giving ionic intermediates, is
 suggested for this unquenchable upper excited state since
 such a process would be suppressed or rapidly reversed in
 nonpolar solvents. Attempts to measure the intersystem
 crossing quantum yield were unsuccessful in this preliminary
 investigation of CMVP photochemistry because of experimental
 complications.

Phosphorescence of trifluoroacetophenone, a ketone with α -halogen substituents, indicates that the π , π * triplet state lies very close to, and slightly lower in energy than, the 3n , π * state. It is likely, then, that the π , π * triplet of CMVP lies only slightly above the n, π * triplet state; perhaps the two states are in thermal equilibrium. The $^3\pi$, π * state, with increased electron density on the oxygen and diminished electron density on the carbonyl carbon, does not seem a good candidate for facile loss of chloride ion, however. The singlet n, π * state is a much better candidate because of the shift in electron density away from the oxygen as indicated in the zwitterionic resonance representation below. 6 , 5 , 5 , 6 , 12 , 7

Ejection of chloride ion from an excited singlet state gives product ions which would be in their ground electronic states; however, with an excited triplet state one ion would have to be in a triplet excited state when formed. For these reasons, the unquenchable excited state is assumed to be the n,π^* singlet of CMVP.

In Figure 15, the photoreactions of CMVP in a polar medium are presented with approximate quantum efficiencies indicated as percentages. The photoreactions of CMVP in a nonpolar medium are indicated in Figure 16, again with approximate quantum efficiencies for low conversion photolysis indicated as percentages.

Figure 15. Photoreactions of CMVP in wet acetonitrile.

Figure 16. Photoreactions of CMVP in benzene.

As the percent conversion of CMVP increases, either in acetonitrile or benzene, formation of photoproducts from the triplet excited state is strongly quenched and the unquenchable formation of β, γ -U becomes the major photoreaction with its quantum yield remaining low. In nonpolar solvents, the polarity of the medium increases with increasing percent conversion and so the heterolytic cleavage pathway becomes operative. The "photochemically" produced hydrolysis product, HMVP, is most likely a thermal product catalyzed by the photogenerated hydrochloric acid since pyridine and dienes quench the "photoproduction" of HMVP, probably by trapping the HCl. Formation of γ - and β -CMVP is insignificant at very low conversion, but at high conversion are a modest portion of the reaction mixture. Most likely these products are due to thermal addition of HCl to the corresponding unsaturated ketone products. Propiophenone, a very minor product at ∿5% conversion, is apparently present as the type II elimination product of MVP.

b. Photoreactivity from the unquenchable excited state It is of interest that the unquenchable reactive state of CMVP yields essentially only ground state CMVP and the geometric isomers of β,γ -U within the limits of the measurements. High stereospecificity in a loss of chloride ion from an unquenchable photoexcited α -chloroketone has been reported for the following reaction, 10 admittedly a special case.

With CMVP, the specificity may be due to reactions following the heterolytic cleavage of the carbon-chlorine bond so rapidly that the two ions do not leave the solvent cage. The following representation is of this close ion pair immediately after heterolysis with the arrows indicating the major reaction,

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

production of ground state CMVP. This ionic coupling reaction of the ion pair is virtually the exclusive reaction from the excited singlet state in nonpolar solvents, providing this mechanism is correct.

In the more polar solvents, the production of ground state CMVP from the excited singlet state occurs along with a competitive process, formation of HCl and the enol of β,γ -U. The solvent effect may be due to stabilization of the ion pair by partial solvation in the solvent cage. Transfer of a γ -hydride to the oxygen portion of the cation, either followed by or concerted with β -proton transfer to the chloride anion in the solvent cage accounts for the observed specificity of the unquenchable excited state. Production of HCl and the enol of β,γ -U is shown below in a concerted manner.

The failure to observe any other unquenchable photoproducts is taken as evidence that the enol of β,γ -U is formed in the solvent cage from a close ion pair, since if the ions diffuse apart, the other unsaturated ketones, PPP and α,β -U, would also be produced in significant amounts.

Another mechanism for the loss of hydrochloric acid from the unquenchable excited state of CMVP involves a 1,2-hydride shift immediately following heterolysis of the carbon-chlorine bond.

Loss of a γ -proton gives β, γ -U. Facile loss of the α -proton to produce α, β -U would also be expected from this intermediate; however, none of the α, β -U produced can be attributed to the unquenchable excited state and therefore this latter mechanism is less likely than the former.

c. Photoreactivity of the n,π^* triplet state

The major portion of CMVP photoproducts at low conversion is produced from a quenchable excited state by pathways involving radical intermediates. This state apparently is the n,π^* triplet which competitively forms two discrete intermediates, the radical resulting from homolytic cleavage of the carbon-chlorine bond and the biradical produced by γ-hydrogen abstraction. The biradical from triplet CMVP, BR, apparently yields only a small amount of type II cyclization products and an unmeasurably small amount of the type II cleavage product. There may be a fair amount of the radical intermediate, γR , formed by loss of the chlorine atom from BR; however, in the mechanistic schemes this pathway is arbitrarily assumed to be relatively unimportant. The estimate of 20% for the quantum efficiency of biradical formation is a rough but reasonable one considering its various possible reactions, especially reverse hydrogen transfer.

The major intermediate in the photochemistry of CMVP, having a quantum efficiency of about 60%, is the radical resulting from homolysis of the carbon-chlorine bond, αR . This radical can revert to CMVP, lose a hydrogen atom to a suitable acceptor thereby forming PPP and α,β -U, abstract a hydrogen atom to form MVP, and rearrange by γ hydrogen transfer followed by intermolecular hydrogen atom transfer to form β,γ -U. All of these processes are solvent and additive dependent. Consistent with this mechanism, the large number of very minor products indicate that a vast assortment of other radical addition, coupling, and disproportionation processes are occurring.

The radical intermediate γR leads to β, γ -U from the triplet excited state of CMVP. The high value for $k_q \tau$ obtained from monitoring the production of β, γ -U with added piperylene quencher likely is an artifact which reflects piperylene trapping of the unhindered, secondary free radical, γR . The other radical, αR , may be too hindered or too short lived to be trapped by piperylene. If αR prefers to transfer a hydrogen to piperylene rather than add to it, the slightly lower $k_q \tau$ obtained for quenching α, β -U with piperylene relative to 2,5-dimethyl-2,4-hexadiene as quencher is explained. The most reliable values of $k_q \tau$ are $1.2 M^{-1}$ for 2,5-dimethyl-2,4-hexadiene quenching of triplet CMVP in acetonitrile and $1.3 M^{-1}$ for cis-piperylene quenching of triplet CMVP in benzene.

The quenching data yield a $\frac{1}{\tau}$ value for triplet CMVP of 3.8 x 10⁹ sec⁻¹ (assuming the usual value for k_q , 5 x 10⁹ M^{-1} sec⁻¹, in benzene).⁷¹ This can be broken into $k_{\gamma} = 1 \times 10^9$ sec⁻¹ and $k_{\alpha hom} = 3 \times 10^9$ sec⁻¹ using the approximate quantum efficiences for these processes as previously indicated. Rate constants are not available for the reactions from the excited singlet state since its lifetime is unknown.

3. Inductive Effects on Triplet State Reactivity of Ketones a. Effect of α -dimethyl substitution

The rate constant for \u03c4-hydrogen abstraction from the triplet n,π^* state of valerophenone is 1.4 x 10⁸ sec⁻¹, 41 determined in benzene with diene quencher. The corresponding k_v for DMVP is 0.86 x 10⁸ sec⁻¹, indicating a reduction of $\sim 40\%$ in the rate constant with α -dimethyl substitution. The reactivity of triplet acetophenone toward intramolecular hydrogen abstraction is also slightly lowered with α -methyl substitution. 91 Investigations by Wagner and coworkers have shown that electron donating groups on the β , γ , δ , and ϵ positions modestly enhance the reactivity of the \u03c4-hydrogen abstraction reaction of triplet phenyl alkyl ketones, 1,114 presumably because the electron donation by induction to the γ C-H bond makes it more attractive to the very electrophilic triplet benzoyl group. 1 The inductive effect of methyl groups on the α -position, however, would tend to make the triplet benzoyl group slightly less electrophilic and therefore slightly less reactive to \gamma-hydrogen abstraction.

b. Effect of a-chloro substitution

The effect of an electron withdrawing α -substituent is a large enhancement in the reactivity of triplet benzoyl groups, as observed for α -alkoxyacetophenones⁵² and α -trifluoroacetophenone. Consistent with these reports, CMVP probably undergoes γ -hydrogen abstraction from its triplet state with $k_{\gamma} = \sim 1 \times 10^9$ sec; this is a 7 fold rate enhancement relative to valerophenone and over 11 times the k_{γ} for DMVP. Electron withdrawing groups on the α position would be expected to make the triplet benzoyl group more electrophilic and therefore more reactive in hydrogen abstraction reactions.

4. Sterically Indifferent Triplet Energy Transfer

This investigation of DMVP was undertaken primarily to determine the extent of steric hindrance to triplet energy transfer caused by the partial blocking of the excited carbonyl by α -dimethyl substitution. Since t-alkyl ketones are known to be resistant to nucleophilic attack on their carbonyl groups, and in view of the steric effects on energy transfer reported by Hammond, 77 , 87 - 89 it is reasonable to expect some steric hindrance to energy transfer from excited t-alkyl ketones. However, as described in Table 3 and Figure 8, exothermic energy transfer from triplet DMVP is just as "diffusion-controlled" as for the unhindered valerophenone. This same result has been also observed for a hindered diketone, β , β -dimethyl- α -ketobutyrophenone,

DMKBP

As reported by Wagner and Kochevar, so-called "diffusion-controlled" energy transfer is not completely diffusion-controlled in low viscosity hydrocarbon solvents but approaches being so in viscous alcohols. The Energy transfer within an encounter pair competes with diffusion apart, with α in equation 5 decreasing with decreasing viscosity of the solution.

$$k_q = \alpha k_{dif}$$
 (eq. 5)

The proportionality constant, α , is defined in equation 6.71

$$\alpha = \frac{k_{\text{et}}}{k_{\text{et}} + 1/\tau_{\text{o}} + k_{\text{-dif}}} \approx \frac{k_{\text{et}}}{k_{\text{et}} + k_{\text{-dif}}}$$
 (eq. 6)

In the light hydrocarbon solvents, even unhindered triplet energy transfer is only partly diffusion controlled showing that k_{et} and k_{-dif} are similar in size; this fact is of crucial importance in demonstrating the paucity of steric hindrance in exothermic energy transfer involving triplet

DMVP. If $k_{\rm et}$ were much larger than $k_{\rm -dif}$, a sterically induced decrease in $k_{\rm et}$ could be unnoticed since α would be near unity as long as $k_{\rm et}$ remained much larger than $k_{\rm -dif}$. If $k_{\rm et}$ were much smaller than $k_{\rm -dif}$, $k_{\rm q}\tau$ values would be essentially independent of solvent viscosity. Since $k_{\rm q}\tau$ values show a parallel dependence on solvent viscosity for the hindered ketones, DMVP and DMKBP, compared with valerophenone, an unhindered ketone, the rate constant for energy transfer between adjacent donor and acceptor molecules, $k_{\rm et}$, cannot be subject to significant steric hindrance. Let $k_{\rm et}$ and the small amount of steric hindrance is involved in quenching triplet DMVP, since different dienes have slightly different quenching efficiencies; no such difference has been reported in the quenching of unhindered phenyl ketone triplets. Let

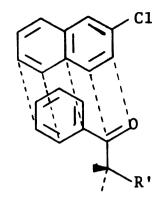
The lack of substantial steric effects in the quenching of triplet DMVP is not likely a result of the π^* orbital including the benzene ring, with which quenchers could overlap and avoid the hindered carbonyl. In DMKBP the triplet n,π^* excitation is mostly located on the α -dicarbonyl chromophore, yet it is also quenched without large steric effects. 128 Intramolecular γ -hydrogen abstraction by triplet t-butyl n-butyl ketone is calculated as $1 \times 10^8 \ \text{sec}^{-1}$ where "diffusion-controlled" quenching is assumed; the same value is measured for γ -hydrogen abstraction in 2-hexanone, the corresponding unhindered ketone. Therefore partial delocalization of electronic excitation into the benzene ring,

which cannot be possible in these other systems, is probably not responsible for the prevention of steric hindrance in quenching triplet DMVP either.

In ground state reactions, a t-alkyl group impedes the approach of moderate-sized reagents to the carbonyl. Furthermore, the triplet excited state of phenyl t-butyl ketone abstracts hydrogen from 2-propanol at 1/30 the rate of triplet acetophenone. 91 , 129 Since the bulky t-alkyl group does not interfere significantly with energy transfer from triplet carbonyl compounds, donor and acceptor must not need to approach bonding distance to attain the necessary orbital overlap for energy transfer. In equation 7, the theoretical dependence of rates of exchange-induced energy transfer on the distance R between donor and acceptor is presented. 72

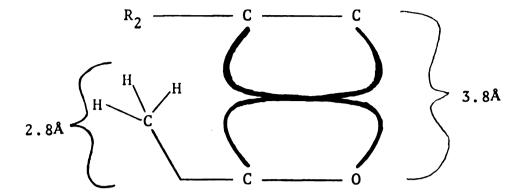
$$k_{et} = Y \exp(-2R/L)$$
 (eq 7)

L is an unspecified fixed distance which may be thought of as an "average effective Bohr radius." Y includes a number of parameters such as spin statistics and orbital overlap.


Energy transfer between triplet ketone and a diene acceptor in a solvent cage has been estimated as 8 x 10^{10} sec⁻¹.⁷¹ In this instance, R should be close to 3.5-4Å, the sum of the van der Waals radii of the molecules. Energy transfer between ketones and acceptors where R varies from 3-5Å has been measured with $k_{et} = 3 \times 10^9 - 1 \times 10^{11} \text{ sec}^{-1}$. 130

In an intramolecular energy transfer process from a benzophenone to a naphthalene held 14-15Å apart in a substituted steroid, $k_{\rm et}$ = 25 sec⁻¹.¹³¹ Static energy transfer between the same two chromophores located 13Å apart in a rigid matrix occurs with $k_{\rm et}$ = 200 sec⁻¹.⁷³ If we assume that in these four cases the Y values are similar since each donor and acceptor can freely rotate relative to each other, equation 7 can be solved for L. A value of 1.0Å is obtained which holds for triplet energy transfer at both close and medium range.

In the gas phase, 50-100 collisions are required for triplet energy transfer from ketones to dienes. 132-134


The fact that every collision between donor and acceptor does not produce energy transfer, even when energy transfer is highly exothermic, suggests an orientational requirement for orbital overlap. Ullman has proposed orbital symmetry requirements for triplet energy transfer. 15,135-137 Dexter's formulation of equation 7 for exchange-induced energy transfer contains a factor accounting for orbital symmetry or an orientational requirement. 72

It is possible to construct a geometric model for triplet energy transfer which assumes maximum π -overlap, preferred orientation, and R being close to the sum of the van der Waals radii of π -systems of donor and acceptor; this model accounts for the observed steric effects in triplet energy transfer. Representations for quenching triplet DMVP with 2-chloronaphthalene and with diene quenchers are shown below.

In the case of 2-chloronaphthalene or cis-1,3-pentadiene ($R_{1-5} = H$, $R_6 = CH_3$), only hydrogens need lie above the t-alkyl group and for these quenchers the highest values of $k_q\tau$ are measured. With 2,5-dimethyl-2,4-hexadiene ($R_{2,3} = H$, $R_{1,4-6} = CH_3$), a methyl group (R_1) must lie over part of the t-alkyl group and a lower $k_q\tau$ is observed. Using 2,3-dimethyl-1,3-butadiene ($R_{1,4-6} = H$, $R_{2,3} = CH_3$), a still lower $k_q\tau$ value results and a methyl group (R_2) must lie squarely over the t-alkyl group in the optimum geometry predicted by the model.

An edge-on view provides a better perspective of the distances involved in this model. Considering bond lengths, bond angles, and atomic van der Waals radii, the α -methyls of DMVP extend 2.8Å above the carbonyl plane. When R_2 = H, excited triplet DMVP and the quencher can approach to within 3.8-4.0Å, which is close to the van der Waals diameter of a π -system. If R_2 = CH $_3$ which has a 2Å van der Waals radius,

either the distance between donor and acceptor must increase or, more likely, the molecules tilt somewhat from their preferred orientation which decreases k_{et} by a $\cos^2\phi$ factor. This model presumably presents the optimum orientation of donor and acceptor for energy transfer. At longer distances and less favorable ϕ 's, steric effects would be even less significant.

The one published example of significant steric hindrance in triplet energy transfer is neatly explained by the Wagner model. The efficiency of stilbene quenching of the triplet of a substituted 2,6-diisopropylbenzophenone relative to its 2,6-dimethyl analog is lowered by a factor of 15.77 In this system, the large isopropyl ortho-substituents force the phenyl ring out of planarity with the carbonyl and thereby would prevent a quencher from approaching anywhere near the preferred distance of approximately the van der Waals diameter of the carbonyl π system.

5. Summary

The studies conducted with the α -substituted phenyl alkyl ketones, DMVP and CMVP, have significant implications for several photoprocesses. With DMVP, the type I and type II processes compete, $k_{\alpha} = 1.4 \times 10^7 \ \text{sec}^{-1}$ and $k_{\gamma} = 8.6 \times 10^7 \ \text{sec}^{-1}$. The rate constant for the α -cleavage reaction of phenyl t-alkyl ketones is only about 0.004 of that for aliphatic t-butyl ketones, a difference which is largely explained by the differences in enthalpy for α -cleavage processes of the two types of ketones. With CMVP, the n, π^* singlet state apparently loses chloride ion rapidly enough to compete with intersystem crossing. A further competition is present with the triplet n, π^* state which can lose its chlorine to form a radical or abstract a γ -hydrogen to yield a biradical intermediate.

The small decrease in reactivity of excited DMVP toward γ -hydrogen abstraction is likely due to the α -methyls inductively making the triplet n,π^* benzoyl slightly less electrophilic and therefore slightly less reactive toward γ -hydrogen abstraction. The electron-withdrawing α -chlorine of CMVP makes the triplet benzoyl more electrophilic and correspondingly more reactive toward γ -hydrogen abstraction.

The geometry of the transition state for γ -hydrogen abstraction is probably staggered to minimize eclipsing interactions since the α -methyls of DMVP have only a small effect on the rate constant for this process. The resulting 1,4-biradical intermediate from DMVP is subject to significant steric effects in the conformation of the transition state

required for cleavage, which has the radical p-orbitals overlap with the α,β bond, but not in the puckered ring configuration required for cyclization.

The steric effect of the α -methyl groups on exothermic triplet energy transfer is very small as indicated by quenching being "diffusion-controlled." Those small differences found between different diene quenchers can be explained by a geometric model which, for the optimum orientation favoring energy transfer, incorporates maximum π system overlap, preferred orientation, and the distance between donor and acceptor being close to the sum of the van der Waals radii of the two π systems, this distance being about 4Å. This geometric model for exothermic triplet energy transfer represents the fulfillment of the original purpose of this study, the investigation of steric effects on such energy transfer.

6. Suggestions for Further Research

a. Effects of α -substituents on energy transfer, triplet state reactivity, and reactivity of the 1,4 biradical intermediate

Investigation of the photochemistry of compounds such as α -(trifluoromethyl)valerophenone (TFMVP) and α , α -diphenyl-valerophenone (DPVP) should yield further information on inductive effects and the various steric effects on energy transfer and biradical reactivity.

TFMVP would probably undergo the type II photoprocesses without other competing reactions and thereby simplify study of the inductive effect of the trifluoromethyl group. DPVP would be interesting because its triplet benzoyl group should be less electrophilic than that of valerophenone and therefore less reactive toward γ -hydrogen abstraction. The large steric bulk of the α -phenyl groups would enable testing the geometric model for exothermic triplet energy transfer, especially with appropriately substituted quenchers. Incidently, further study of DMVP with such sterically hindered quenchers should also be enlightening.

DPVP should exhibit a strong tendency to α -cleave based upon the stability of the resulting radicals. The biradical resulting from γ -hydrogen abstraction of DPVP should show an extremely large preference for cyclization relative to cleavage, thereby providing a test of the hypotheses regarding the configurations of the transition states for these processes.

b. Investigations using CMVP and other α -haloketones

The study of CMVP was of a preliminary nature and there remain some details which deserve further work. These include the intersystem crossing quantum yield, a number which appears to be experimentally difficult to determine, the definite identification of type II photoproducts, and a careful investigation of the unquenchable photoreaction, thought to be heterolysis of the carbon-chlorine bond from the n,π^* singlet state.

The photoreactivity of α -haloketones has not been studied much and further work employing simpler α -chloroketones than CMVP ought to be quite productive. The dechlorination reactions of α -chloropropiophenone (CPP) or α -chloro- α -methylpropiophenone (CMPP) would lead to only one unsaturated ketone product without the complication of competing γ -hydrogen abstraction, however; with CMPP, type I photocleavage may possibly occur.

$$\begin{array}{c|c}
 & C & CH \\
 & C & C$$

The photoreactivity of similar α -bromoketones should also be interesting.

c. Effect of ortho-substituents on exothermic triplet energy transfer

Blocking the excited carbonyl group to close approach of a suitable quencher molecule through the use of bulky ortho-substituents was attempted but subsequently discarded because of the synthetic difficulties encountered in each of many attempts involving ortho-t-butyl groups. If a suitable di-ortho-substituted phenyl alkyl ketone could be prepared, it would provide a further way of testing the geometric model proposed for exothermic triplet energy transfer. Again, quenching studies of such a hindered ketone with appropriately substituted quencher molecules should be informative.

EXPERIMENTAL

A. CHEMICALS

1. Ketones

a. α, α -Dimethylvalerophenone

 α, α -Dimethylvalerophenone (DMVP) was prepared by several methods: from phenyl Grignard reagent and α, α -dimethylvaleryl chloride, 138 from the Grignard reagent of 2-bromo-2-methylpentane and benzoyl chloride, 138 from phenyl lithium and α, α -dimethylvaleric acid, 117 from n-propyl tosylate and the magnesium salt of the t-butylimine of isobutyrophenone, 139 and by the dialkylation of valerophenone with sodium hydride and methyl iodide. 12, 140 Dimethylation of valerophenone gave the best yield of DMVP.

An ether slurry of 1.8 mol of sodium hydride was added, with stirring, under a nitrogen atmosphere, over a 1 hr period, to 300 ml of dry ether containing 0.6 mol valerophenone and 1.5 mol methyl iodide. Prior to use, the mineral oil dispersion of sodium hydride was washed with 3 successive portions of dry ether. The reactants were refluxed for 40 hr and then cooled to 0°; 150 ml of water was then slowly added to destroy excess sodium hydride. The ethereal layer was washed twice with aqueous sodium chloride and dried. Vacuum

distillation gave a 91% yield of DMVP which was still contaminated by a small amount of some unidentified impurity. DMVP was purified via its oxime since distillation was ineffective in removing the impurity which was present regardless of the synthetic route employed. The oxime of DMVP was prepared by refluxing 0.17 mol of the impure ketone and 0.93 mol of hydroxylamine hydrochloride in 200 ml of ethanol and 400 ml of 7% aqueous sodium hydroxide solution for 5 hr. Upon cooling a nearly quantitative yield of the oxime was obtained as a white solid. Recrystallization from ethanol gave white needles (mp 131-133°, uncor.). Hydrolysis of 50 g of the oxime by refluxing with 600 ml of 12% aqueous hydrochloric acid for 2 hr was followed by steam distillation. The DMVP was extracted into ether, dried, and vacuum distilled (bp 70° at ~0.3 torr.). Analysis by glpc indicated >99.9% purity. The success of this novel purification procedure depended upon the absence of enolizable hydrogens since otherwise aldol condensation would occur. 141

The mass spectrum (70eV) of DMVP includes peaks with m/e 190 (parent), 105 (benzoy1), and 77 (pheny1). Proton nmr chemical shifts measured in CCl₄ are: δ 7.55 (m, 2, o-H), 7.20 (m, 3, m-H, p-H), 1.52 (m, 2, methylene β -H), 1.22 (s, 6, α -CH₃) and 0.78 (m, 5, γ -H, γ -CH₃). The carbony1 band is at 1670 cm⁻¹ in the ir spectrum. The instruments used for these analyses are indicated in part C of the experimental section. Using a Cary 14 Spectrometer, the ultraviolet λ_{max} in cyclohexane are found at 235.5 nm (ϵ = 8,000), 273.5 nm (ϵ = 492),

and 323.0 nm (ε = 100). The earliest reference to DMVP which could be found in the literature is in a communication on the phosphorescence of several phenyl alkyl ketones.³⁹ This paper includes measurements on a sample of DMVP which was prepared by this author.

b. α-Methylvalerophenone

Friedel-Crafts acylation of benzene, carried out by slowly adding 0.3 mol of α -methylvaleryl chloride in the presence of 0.75 mol anhydrous aluminum chloride to 2 mol of benzene, yielded α -methylvalerophenone. The reactants were refluxed 2 hr, then poured into a stirred mixture of 200 g of ice and 200 ml of concentrated hydrochloric acid. The ether extract was washed 3 times with aqueous sodium chloride, dried, and vacuum distilled (bp 69° at \sim 0.3 torr), giving an 82% yield. Further distillation using a Nester Faust stainless steel spinning band column yielded >99% pure α -methylvalerophenone as determined by glpc.

Chemical shifts from the nmr spectrum of α -methylvalerophenone in CCl₄ are: δ 7.92 (m, 2, o-H), 7.36 (m, 3, m-H, p-H), 3.43 (m, 1, α -H), and 2.1-0.6 (m, 10). This 10 proton multiplet includes δ 1.15 (d J = 6.6 Hz, 3, α -CH₃), 0.86 (distorted triplet J = 5.4 Hz, 3, γ -CH₃), and the 4 methylene protons.

c. α -Chloro- α -methylvalerophenone

The chlorination of α -methylvalerophenone by sulfuryl chloride 142 gave α -chloro- α -methylvalerophenone (CMVP). Sulfuryl chloride (0.34 mol) was added to 0.17 mol of α -methylvalerophenone in 200 ml of carbon tetrachloride and

stirred for 2 days in a flask equipped with a calcium chloride drying tube. The more volatile components of the reaction mixture were distilled away at water aspirator pressure. Since glpc analysis showed incomplete reaction, 0.17 mol of sulfuryl chloride was added and stirring was resumed for 3 days, this time without solvent. Again the relatively volatile compounds were removed at water aspirator pressure. Vacuum distillation (bp 75° at ~0.1 torr) followed by washing the petroleum ether solution with aqueous sodium bicarbonate twice, washing with water once, drying, and redistilling gave >99.5% pure CMVP as determined by glpc.

Mass spectrometry (70eV): m/e 212 (C1³⁷ parent), 210 (C1³⁵ parent), 105 (benzoy1), and 77 (pheny1). Proton nmr in CC1₄: δ 8.10 (m, 2, o-H), 7.35 (m, 3, m-H, p-H), 2.16 (m, 2, methylene β -H), 1.76 (s, 3, α -CH₃), 1.30 (m, 2, γ -H), and 0.78 (distorted triplet J = 6.2 Hz, 3, γ -CH₃). The ir carbonyl band occurs at 1680 cm⁻¹. The uv λ_{max} in cyclohexane are: 248.5 nm (ϵ = 11,000), 277.0 nm (ϵ = 945), and 326.5 nm (ϵ = 113). A literature search reveals no references to the prior preparation or use of CMVP.

d. Valerophenone

Valerophenone (Aldrich Chemical Co.) was vacuum distilled, passed through activity I neutral alumina, and redistilled. A relatively large amount of the valerophenone used was prepared by acylating 3.4 mol of benzene by slow addition of 1.7 mol of valeryl chloride with 2.0 mol of anhydrous aluminum chloride as the catalyst. After refluxing for 2 hr, aqueous

hydrochloric acid was added at 0° followed by ether extraction, washing, drying, and distillation. The valerophenone so obtained was then treated in the same manner as the commercial material.

e. Isobutyrophenone

Commercial isobutyrophenone (Alrich Chemical Co.) was used as received to calculate the standardization factors for the type II cleavage product of DMVP relative to the glpc internal standards used in this study.

f. α-Chloropropiophenone

The anticipated type II cleavage product from CMVP, α -chloropropiophenone, was prepared by monochlorinating 0.74 mol of Matheson Coleman and Bell propiophenone using 0.49 mol of sulfuryl chloride in 200 ml of carbon tetrachloride. 142 The reactants were stirred overnight in a flask equipped with a calcium chloride drying tube. The more volatile materials were removed by distillation at aspirator pressure yielding an oil which was approximately a 1:1 mixture of α -chloropropiophenone and propiophenone. Distillation at reduced pressure gave α -chloropropiophenone (bp 70° at \sim 0.1 torr) which glpc analysis indicated as >95% pure.

Nmr chemical shifts in CCl₄ are: δ 7.97 (m, 2, o-H), 7.42 (m, 3, m-H, p-H), 5.31 (AB quartet J_{AB} = 6.4 Hz, 1, α -H), and 1.68 (d J = 7.0 Hz, 3, α -CH₃).

g. Methyl ethyl ketone

Methyl ethyl ketone (J. T. Baker Co.) was distilled through a 1.5 cm x 40 cm glass-helix packed column at atmospheric pressure (bp 78.9°, uncor.). The middle cut was passed through activity I neutral alumina and analyzed by glpc as >99.9% pure.

h. Acetophenone

Acetophenone supplied by Matheson Coleman and Bell was distilled under reduced pressure (bp 55° at 3 torr).

2. Solvents

a. Acetonitrile

Fisher Scientific Co. acetonitrile was purified by distillation from potassium permanganate at atmospheric pressure.

b. Benzene

Fisher Scientific Co. 99 mole %, thiophene free benzene was purified by stirring gallon quantities with ~300 ml portions of concentrated sulfuric acid several times. The sulfuric acid was discarded and a new portion added on a daily basis until the sulfuric acid layer remained colorless after being stirred for a day in contact with the benzene. The benzene was washed with water, 10% aqueous sodium hydroxide, and aqueous sodium chloride. After drying, the benzene was distilled at atmospheric pressure from ~100g of phosphorus pentoxide through a 45 cm glass-helix packed column with the still head adjusted to give a high reflux ratio. The first and last 10% of the distillate was discarded.

c. n-Hexane

n-Hexane (J. T. Baker Co.) was purified in the same manner as benzene, except on a smaller scale.

d. Cyclooctane

Previously distilled Aldrich Chemical Co. cyclooctane was stirred overnight twice with fresh portions of concentrated sulfuric acid, washed with aqueous sodium chloride solution, dried, and distilled from phosphorus pentoxide, the middle 80% of the distillate being retained.

e. 1-Propanol

Fisher Scientific Co. 1-propanol was distilled from calcium hydride at atmospheric pressure.

f. t-Butyl alcohol

The t-butyl alcohol (J. T. Baker Co.) used in this study was distilled from freshly cut sodium at atmospheric pressure by A. E. Kemppainen.

g. 1-Pentanol

1-Pentanol (Fisher Scientific Co. *n*-amyl alcohol) was purified by distillation from calcium hydride at atmospheric pressure.

h. 1-Heptanol

Matheson Coleman and Bell 1-heptanol was purified by atmospheric pressure distillation from calcium hydride, discarding a larger than usual forecut which contained several impurities.

3. Quenchers

a. cis-Piperylene

High purity cis-piperylene (Chemical Samples Co. cis-1,3-pentadiene) was used as received. Glpc analysis indicates 99.8% cis.

- b. 2,3-Dimethy1-1,3-butadiene
- 2,3-Dimethy1-1,3-butadiene from Aldrich Chemical Co. was purified by distillation at atmospheric pressure.
 - c. 2,5-Dimethy1-2,4-hexadiene

Sublimed crystals of Chemical Samples Co. 2,5-dimethyl-2,4-hexadiene were used. This sublimation at $\sim 0^{\circ}$ and atmospheric pressure conveniently occurred in the refrigerated bottle.

d. Naphthalene

Matheson Coleman and Bell naphthalene was recrystallized from absolute ethanol prior to use.

e. 1-Chloronaphthalene

Fisher Chemical Co. "Reagent Grade" 1-chloronaphthalene was used as received.

- f. 2-Chloronaphthalene
- 2-Chloronaphthalene (Eastman Organic Chemicals) was recrystallized first from absolute ethanol and then from pentane prior to use.

4. Internal Standards

- a. 1-Decanol
- 1-Decanol from Eastman Organic Chemicals was distilled at atmospheric pressure prior to use.

b. Cyclohexane

"Spectroquality" cyclohexane, supplied by Matheson Coleman and Bell was used as received.

c. Tetradecane

Tetradecane (Columbia Organic Chemicals) was purified by stirring over concentrated sulfuric acid, the acid being replaced daily until it no longer became discolored. The tetradecane was then rinsed with aqueous potassium hydroxide solution, dried, and distilled at reduced pressure.

d. Pentadecane

The pentadecane (Columbia Organic Chemicals) was purified the same way as the tetradecane.

e. Heptadecane

Aldrich Chemical Co. heptadecane was treated in the same way as tetradecane and pentadecane. These alkane internal standards were purified by Professor P. J. Wagner.

f. Nonadecane

Nonadecane supplied by Chemical Samples Co. was purified by recrystallization from petroleum ether at -78°.

g. Eicosane

Matheson Coleman and Bell eicosane was purified by recrystallization from absolute ethanol.

5. Other Chemicals

a. Pyridine

Baker Chemical Co. "Analyzed Reagent Grade" pyridine was used as received.

b. t-Butylmercaptan

The t-butylmercaptan (Aldrich Chemical Co. 2-methyl-2-propanethiol) was used as received.

c. 1-Dodecanethiol

Aldrich Chemical Co. 1-dodecanethiol was used as received.

d. Benzaldehyde

For photoproduct identification, Matheson Coleman and Bell benzaldehyde was used as received.

2-Methy1-1-pentene, 2-methy1-2-pentene, and2-methy1pentane

Samples of these compounds from Aldrich Chemical Co. were used as received for photoproduct identification.

B. TECHNIQUES

1. Preparation of Samples for Photolysis

Using Pyrex and Kimax Class A volumetric glassware and a Sartorius analytical balance sensitive to tenths of milligrams, solutions containing the requisite amounts of ketones, internal standards, quenchers, solvents, and other additives were prepared at room temperature (about 25°). Generally, duplicate 2.8 ml samples of each solution were syringed into Pyrex photolysis tubes. These photolysis tubes were prepared from carefully sorted and cleaned 100 x 13 mm Pyrex culture tubes by heating them \sim 3 cm from the neck and drawing out the softened tubes to a length of approximately

18 cm. The samples were attached to the stopcocks of a vacuum line using 1 hole rubber stoppers and degassed by freezing them in liquid nitrogen followed by evacuating them to 1×10^{-3} torr for 5 to 10 min; the samples were then isolated from the vacuum pump by closing the stopcocks and allowed to thaw. This freeze-pump-thaw sequence was carried out an additional 2 times, the tubes being sealed with a torch before the final thawing. Each tube was inverted several times after being degassed to ensure adequate mixing.

2. Irradiation

The sample tubes constituting a run were irradiated in a "merry-go-round" turntable apparatus so constructed as to give each sample a virtually identical amount of light. 143 The "merry-go-round" apparatus was immersed in a 25° water bath. A Hanovia 450 watt medium-pressure mercury lamp contained in a water-cooled quartz immersion well was the light source. A cylindrical Pyrex jar containing 0.002M potassium chromate in 1% aqueous potassium carbonate solution provided a 1 cm path of filter solution which transmitted the 313 nm radiation. Light of wavelength 366 nm was obtained by using Corning N-7-83 glass filters around the light source. The samples were generally irradiated until ~5% of the starting ketone was converted to products.

- 3. Analyses of Photolysates
 - a. Gas liquid partition chromatography

All of the analyses of the photolysates for product formation or ketone disappearance were carried out by gas liquid partition chromatography (glpc), also known as vapor phase chromatography (vpc) or more simply as gas chromatography (gc). Two different Varian Aerograph Model 1200 Hy-Fi III gas chromatographs equipped with several different 1/8" diameter columns and an Aerograph Hy-Fi Model 600D gas chromatograph fitted with a 1/8" x 25' 25% 1,2,3-tris(2-cyanoethoxy)propane (on 60/80 mesh acid washed Chromosorb P) column were used. The following analytical vpc columns were used with the Varian Model 1200 gas chromatographs:

- 5' 5% SE-30 on dimethyldichlorosilane (DMCS) treated acid washed Chromosorb W,
- 9' 4% QF-1, 1% Carbowax 20M on 60/80 mesh acid washed Chromosorb P,
- 6' 4% QF-1, 1.2% Carbowax 20M on DMCS treated 60/80 mesh acid washed Chromosorb G,
- 9' 5% QF-1, 1.2% Carbowax 20M on DMCS treated 60/80 mesh acid washed Chromosorb G, and
- 12' 5% QF-1, 1.2% Carbowax 20M on DMCS treated 60/80 mesh acid washed Chromosorb G.

The 3 analytical gas chromatographs used in this study all had flame ionization detectors, on-column injection, and nitrogen as the carrier gas. Hydrogen and nitrogen gas flow rates were adjusted to optimize separations; they were

generally in the 20-30 ml/min range.

The vpc traces were obtained using Leeds and Northrup Speedomax recorders equipped with DISC integrators. Some of the vpc peak areas were integrated with an Infotronics Model CRS-208 Automatic Digital Integrator. Further information regarding the glpc conditions employed to analyze a particular run may be found in the tables of photokinetic data.

b. Standardization factors for internal standards
In order to obtain the concentrations of the various
photoproducts by glpc, known concentrations of internal
standards were used in the photolysis solutions. These
internal standards were so selected as to not overlap any
other peaks in the vpc traces and were used at concentrations
which would make the internal standard peak similar in height
to the larger product peaks after photolysis. The response
of the vpc detector to a given compound relative to some
internal standard is expressed by means of the relevant vpc
standardization factor (SF). The SF's for the various photo
and thermal products relative to the internal standards
used in this study were calculated by equation 8 from solutions
prepared with known concentrations of products and internal
standards (IS).

$$SF = \frac{[Product]}{[IS]} \times \frac{Area of IS Peak}{Area of Product Peak} (eq. 8)$$

Knowing the SF, the concentration of a given photoproduct was calculated according to equation 9, which is simply a rearranged form of equation 8.

[Product] = SF x [IS] x
$$\frac{\text{Area of Product Peak}}{\text{Area of IS Peak}}$$
 (eq. 9)

The standardization factors for cyclobutanol photoproducts and rearranged ketones were approximated by those for the isomeric ketones. The SF's for the unsaturated ketone products were approximated by those for the corresponding saturated ketones and the SF's of CMVP were used for α -hydroxy- α -methylvalerophenone. Table 7 contains the SF's which were determined for this study.

c. Actinometry and Quantum Yields

To determine a quantum yield the amount of the photoproduct formed and the amount of light absorbed by the parent ketone are needed. All of the samples for which quantum yields were determined absorbed >99% of the incident 313 nm light. Parallel irradiation of duplicate 0.100M samples of valerophenone in benzene, generally with 0.00250M tetradecane as the internal standard, provided the actinometry. For long irradiation times, several sets of these actinometer tubes were employed. Under these conditions, acetophenone formation is known to proceed with $\Phi = 0.33^{32}$ so vpc analysis to obtain the concentration of acetophenone produced in a given amount of time provided a simple way to measure the

Table 7. Standardization Factors

Internal Standard	SF	Product
Cyclohexane	2.0	Propene
	1.0	2-Methylpentane, 2-Methyl-1- pentene, 2-Methyl-2-pentene
n-C ₁₀ H ₂₁ OH	1.53	Benzaldehyde
	0.984	Isobutyrophenone
	0.844	α -Methylvalerophenone
	0.786	DMVP
	0.811	CMVP
$n-C_{14}^{H}_{30}$	2.00	Acetophenone
$^{n-C}$ 15 H 32	2.40	Benzaldehyde
	1.54	Isobutyrophenone
	1.23	DMVP
^{n-C} 17 ^H 36	1.51	α -Methylvalerophenone
	1.40	DMVP
	1.46	CMVP
$^{n-C}19^{H}40$	1.67	DMVP
$^{n-C}20^{H}42$	1.84	α-Methylvalerophenone
	1.79	CMVP

concentration of photons in einsteins 1^{-1} (equivalent to mol 1^{-1}) absorbed by each sample in that amount of time. The quantum yield for each photoproduct of the ketone was found by dividing the concentration of that product by the concentration of photons which were absorbed by the photolyzed ketone.

d. Measurement of k_{q}^{τ}

A Stern-Volmer plot of Φ_0/Φ versus the quencher concentration gives a line having slope $k_q\tau$ as previously discussed. In one instance, the value of Φ_0 was too high as indicated by the intercept of a Stern-Volmer plot being substantially greater than 1. In this case, a plot of $1/\Phi$ versus quencher concentration was made. As seen from equation 10, a rearranged Stern-Volmer equation, $k_q\tau$ is the slope of such a plot divided by the intercept.

$$\frac{1}{\Phi} = \frac{1}{\Phi_0} + \frac{k_q \tau [Q]}{\Phi_0} \qquad (eq. 10)$$

C. PHOTOPRODUCTS

1. α , α -Dimethylvalerophenone

Identification of the various photoproducts of DMVP relied heavily on comparisons of retention times of the photoproducts with those of known compounds on the 1,2,3-tris(2-cyanoethoxy)propane analytical vpc column, for the more volatile products, and on several QF-1, Carbowax 20M analytical vpc columns for the other photoproducts.

a. Propene

Propene was identified as a DMVP photoproduct by its identical vpc retention time to the propene obtained from the photolysis of valerophenone.

b. 2-Methylpentane, 2-methyl-1-pentene, 2-methyl-2-pentene, benzaldehyde, and isobutyrophenone

Commercial samples of these compounds were used to verify the identities of these photoproducts by comparing vpc retention times.

c. trans- and cis-1-Pheny1-2,2,4-trimethy1cyclobutanol
These two photocyclization products were expected from
previous studies of the type II photoprocesses. The
cyclobutanol photoproducts from DMVP were isolated and their
stereochemistry determined with the aid of a nmr shift reagent
by Lewis and Hilliard. 93

2. α -Chloro- α -methylvalerophenone

The photo and thermal products of CMVP were determined from the spectral data of the products present after irradiation to high conversion in degassed and sealed photolysis tubes. The brown colored solutions obtained using both acetonitrile and benzene as solvents were separated into fractions corresponding to product peaks on either a 1/4" x 5' 15% Carbowax 20M column or a 1/4" x 5' 20% SE-30 column, both columns being installed in an Aerograph Model A-350-B Gas Chromatograph. Those fractions which were sufficiently large were analyzed on a Hitachi Perkin-Elmer RMU-6 Mass

Spectrometer operated by Mrs. Lorraine A. Guile, Chemical Spectroscopist, a Varian A-60, A-56/60, T-60, or HA-100 Nuclear Magnetic Resonance (nmr) Spectrometer, and a Perkin-Elmer Model 237-B Infrared (ir) Spectrometer. The 100 MHz nmr spectra were run by Mr. Eric T. Roach, Chemical Spectroscopist. In addition to these analyses, the solvent and very high retention time components of CMVP photolysis mixtures in both benzene and acetonitrile were removed and the resulting cleaned-up reaction mixtures analyzed using a vpc/mass spectrometer/computer system 144 which enabled identification of several minor products. This system consisted of a LKB 9000 Gas Chromatograph-Mass Spectrometer, a Digital Equipment Corporation PDP8/I On-Line Digital Computer, an incremental plotter, and a KSR35 Teletypewriter and was operated by Mr. Jack E. Harten, Biochemistry Department Mass Spectrometer Technician. A 1/8" x 4' 3% SE-30 vpc column was used for these analyses. The CMVP photo and thermal products follow in order of increasing vpc retention times.

a. Propiophenone (PP)

Mass spectrometry (70eV for all analyses): m/e 134 (parent), 105 (benzoyl), and 77 (phenyl). The vpc retention time of this product matches that of commercial propiophenone.

b. 1-Pheny1-2-propy1prop-2-en-1-one (PPP)

This is a minor product, the mass spectrum of which shows peaks at m/e 174 (parent), 105, and 77. This identification is assigned as that most likely based upon the molecular formula consistent with the mass spectrum and

ruling out the β,γ -U and α,β -U isomers since they are known to correspond to other CMVP products. Another possibility not involving rearrangement of the side chain is 1-phenyl-2-methylpent-4-en-1-one, but formation of this product is not as likely as PPP.

c. 1-Pheny1-2-methylpent-3-en-1-one $(\beta, \gamma-U)$

The mass spectrum indicates ions with m/e 174 (parent), 105, and 77. Nmr chemical shifts in CCl₄ are: δ 7.93 (m, 2, o-H), 7.45 (m, 3, m-H, p-H), 5.75 (m, 1, vinyl H), 5.53 (m, 1, vinyl H), 3.42 (m, 1, α -H), 1.15 (d J = 6.6 Hz, 3, α -CH₃), and 0.94 (m, 3, γ -CH₃). The stereochemistry of the double bond is not definitely known but analysis of the nmr multiplets indicates that both the cis- and trans- pairs of enantiomers are probably present. The carbonyl-stretch occurs at 1680 cm⁻¹.

d. α -Methylvalerophenone (MVP)

Using a sample, collected by preparative vpc from a Carbowax 20M column, of the β,γ -U product from a high conversion photolysis of CMVP in benzene, an extra peak occurred in the mass spectrum with m/e 176. This peak was not present in the mass spectra obtained for β,γ -U when SE-30 columns were used, suggesting that a small amount of MVP is present as a product of CMVP, which on SE-30 columns goes unnoticed, probably hidden in the baseline. The retention times of authentic MVP are close to those of β,γ -U on several QF-1, Carbowax 20M analytical vpc columns.

e. 1-Pheny1-2-methy1pent-2-en-1-one $(\alpha,\beta-U)$

Peaks with m/e 174 (parent), 105, and 77 are observed in the mass spectrum of this product. Nmr chemical shifts in CCl₄ are: δ 7.65 (m, 2, o-H), 7.48 (m, 3, m-H, p-H), 6.23 (2 overlapping triplets, 1, vinyl H), 2.31 (m, 2 overlapping quartets, 2, γ -H), 1.93 (s, 3, α -CH₃), and 1.07 (t J = 8.0 Hz, 3, γ -CH₃). Apparently both pairs of diastereomerically related enantiomers are produced.

f. α -Hydroxy- α -methylvalerophenone (HMVP)

Significant peaks at m/e 192 (parent), 174 (P-H₂O), 105, and 77 are found in the mass spectrum. Nmr chemical shifts in CCl₄ are: δ 8.00 (m, 2, o-H), 7.45 (m, 3, m-H, p-H), 4.37 (s-broad, 1, α -O-H), 1.86 (m, 2, methylene β -H), 1.56 (s, 3, α -CH₃), 1.28 (m, 2, γ -H), and 0.93 (m, 3, γ -CH₃). Infrared spectroscopy discloses the carbonyl band at 1670 cm⁻¹ and the hydroxyl band at 3460 cm⁻¹.

g. 1-Pheny1-1,2-dihydroxy-2-methy1pentane (PDHMP)

The evidence of PDHMP or an isomer of it as a product from CMVP is the presence of a peak with m/e 194 in the mass spectrum of the HMVP vpc peak when benzene is the photolysis solvent. When acetonitrile is the photolysis solvent, the HMVP vpc peak does not have the m/e 194 peak in its mass spectrum.

h. γ - and β -Chloro- α -methylvalerophenone (γ - and β -CMVP)

There are two products at high conversion whose mass spectral peaks at m/e 212 ($C1^{37}$ parent), 210 ($C1^{35}$ parent),

105, and 77 indicate they are phenyl ketones isomeric with CMVP. The nmr chemical shifts in CCl₄, for the product having the longer retention time, are: δ 8.00 (m, 2, o-H), 7.50 (m, 3, m-H, p-H), 3.74 (m, 2, α -H, H α to C-Cl), and 2.5-0.6 (m, 8). This 8 proton multiplet can probably be broken into the following: δ 1.60 (m, 2, methylene H), 1.20 (2 overlapping doublets, 3, α -CH₃), and 0.93 (d or t J = 6.0 Hz, 3, γ -CH₃). If this compound has a chlorine γ to the carbonyl, the terminal methyl group protons should have a chemical shift of about 1.53 ppm¹⁴⁵ instead of 0.93 ppm. The product with the longer retention time is most likely a mixture of stereoisomers of β -CMVP and the other rearranged CMVP is probably γ -CMVP.

D. PHOTOKINETIC DATA

1. α, α -Dimethylvalerophenone

Tabulations for each kinetic run of the DMVP photoproduct vpc peak areas relative to an internal standard, the corresponding concentrations, and the resulting quantum yields, when actinometers were employed, follow. The concentrations of DMVP, internal standards, quenchers, and any other additives, along with a description of the analytical vpc column and the column temperature used are included in each table. Actinometry was not conducted during those irradiations using 366 nm light because the DMVP is then not absorbing all of the light incident to each sample tube; the amount of light absorbed by each photolysis sample is indicated for the 313 nm irradiations.

The reproducibility of the relative vpc peak areas and consequently of the concentrations of the major photoproducts is on the order of $\pm 5\%$. The quantum yields incorporate an additional $\pm 3\%$ uncertainty in reproducibility because of the precision of the actinometry. Errors in actinometry, either in the precision or the accuracy, do not affect $k_q\tau$ since they cancel out in the ratio Φ_0/Φ . The $k_q\tau$ values obtained by quenching production of DMVP photoproducts are reproducible to within $\pm 5\%$.

Table 8. Photolysis of 0.250M DMVP in Benzene

	ваа	I B P b	t-CB ^C	c-CB ^d
Relative vpc Areas:	0.323	0.505	1.22	0.900
Concentrations x 10^3 , M:	1.55	1.56	2.99	2.21
Φ:	0.028	0.028	0.053	0.040

Internal Standard: $0.00200M n-C_{15}H_{32}$

313 nm Radiation: $0.0561 \xi/1$

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 115°

a Benzaldehyde

biso-Butyrophenone

ctrans-1-pheny1-2,2,4-trimethy1cyclobutano1

dcis-1-pheny1-2,2,4-trimethylcyclobutanol

Table 9. Photolysis of 0.100M DMVP in Benzene

	ВА	IBP	t - CB	c-CB
Relative vpc Areas:	0.344	0.407	1.23	0.875
Concentrations x 10^3 , M:	1.65	1.25	3.02	2.15
Φ:	0.029	0.022	0.054	0.038

Internal Standard: $0.00200M \ n-C_{15}H_{32}$

313 nm Radiation: 0.0561 $\xi/1$

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 115°

Table 10. Photolysis of 0.100M DMVP in Benzene

	ВА	IBP	t-CB	c-CB
Relative vpc Areas:	0.631	1.22	2.34	1.62
Concentrations $\times 10^3$, M :	3.03	3.75	5.77	4.00
Φ (Photon output estimated):	0.028	0.034	0.052	0.036

Internal Standard: $0.00200M \ n-C_{15}H_{32}$

366 nm Radiation: 0.11 $\xi/1$ (Estimate from preceding

313 nm photolysis)

vpc Column: 6' 4% QF-1, 1.2% Carbowax 20M at 150°

Table 11. Disappearance Quantum Yield Determination from Photolysis of 0.100 M DMVP in Benzene

	Before Photolysis	After Photolysis
Relative vpc Areas:	0.928	0.827

Concentration of DMVP Which Reacted: (0.100)(0.928-0.827)/(0.928) = 0.0109M

Disappearance Φ : 0.225

Internal Standard: $0.060M n - C_{19}H_{40}$

313 nm Radiation: $0.0484 \xi/1$

vpc Column: 6' 4% QF-1, 1.2% Carbowax 20M at 160°

Table 12. Photolysis of 0.100M DMVP in Benzene, n-Hexane, and Cyclooctane

	Solvent	BA	IBP	t-CB	c-CB
Relative vpc Areas:	Benzene	0.236	0.281	0.857	0.64
	n-Hexane	0.228	0.313	0.870	0.699
	Cyclooctane	0.217		0.880	0.59
Concentrations x 10^4 , M:	Benzene	10.8	8.30	20.2	15.1
	n-Hexane	10.5	9.24	20.5	16.5
	Cyclooctane	10.0		20.8	13. 9
Φ:	Benzene	0.026	0.020	0.048	0.036
	n-Hexane	0.025	0.022	0.049	0.039
	Cyclooctane	0.024		0.050	0.033

Internal Standard: $0.00300M \ n - C_{10}H_{21}OH$

313 nm Radiation: $0.0420 \xi/1$

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 133°

Table 13. Photolysis of 0.100M DMVP in Benzene, t-Butyl Alcohol, and Wet Acetonitrile

	Relati Ar	ve vpc eas	Conc. x	10 ⁴ , M		Ф
	IBP	t-CB	IBP	t-CB	IBP	t-CB
Benzene	0.185	0.281	5.46	6.63	0.040	0.048
1.0 <i>M</i> t-C ₄ H ₉ OH in Benzene	0.304	0.364	8.97	8.58	0.066	0.063
$3.0M t-C_4H_9OH$ in Benzene	0.226	0.395	6.67	9.31	0.049	0.068
5.0 <i>M</i> t-C ₄ H ₉ OH in Benzene	0.298	0.544	8.80	12.8	0.064	0.093
$t - C_4 H_9 OH (10.6M)$	0.640	0.672	18.9	15.8	0.138	0.115
1% H ₂ O in CH ₃ CN	0.625	0.899	18.5	21.2	0.135	0.155
2% H ₂ O in CH ₃ CN	0.786	0.946	23.2	22.3	0.169	0.163
3% H ₂ O in CH ₃ CN	0.810	0.939	23.9	22.1	0.174	0.161
5% H ₂ O in CH ₃ CN	0.454	0.864	13.4	20.4	0.098	0.149

Internal Standard: $0.00300M \ n - C_{10}H_{21}OH$

313 nm Radiation: 0.0137 $\xi/1$

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 145°

Table 14. Photolysis of 0.0500M DMVP in 1-Pentanol

	IBP
Relative vpc Area:	0.639
Concentration x 10 ⁴ , M:	9.84
Φ:	0.131

Internal Standard: $0.00100M n-C_{15}H_{32}$

313 nm Radiation: $0.00749 \xi/1$

vpc Column:

9' 5% QF-1, 1.2% Carbowax 20M at 130°

Table 15. Photolysis of 0.0500M DMVP in 1-Heptanol

	t-CB
Relative vpc Area:	0.636
Concentration x 10^4 , M:	8.90
Φ:	0.119

Internal Standard: $0.00100M n-C_{17}H_{36}$

313 nm Radiation: $0.00749 \xi/1$

vpc Column:

9' 5% QF-1, 1.2% Carbowax 20M at 130°

Table 16. Photolysis of 0.100M DMVP in Benzene: Effect of 1-Dodecanethiol

$[n-C_{12}H_{25}SH]$	Propene	IH ^a	MP ^b	ВА	IBP	t-CB	c-CB
Relative vpc A	reas:						
none	0.965	1.57	2.00	0.465	1.00	1.79	1.25
0.100 <i>M</i>	0.000	4.56	0.00	0.939	0.549	1.85	
0.500 <i>M</i>	0.000	4.57	0.00	1.23	0.990	3.84	
Concentrations	$\times 10^3$, M	':					
none	1.93	1.57	2.00	2.23	3.09	4.39	3.07
0.100 <i>M</i>	0.00	4.56	0.00	4.51	1.69	4.55	
0.500 <i>M</i>	0.00	4.57	0.00	5.90	3.05	9.44	
Φ:							
none	0.023	0.018	0.024	0.026	0.036	0.051	0.03
0.100 <i>M</i>	0.000	0.053	0.000	0.053	0.020	0.053	
0.500 <i>M</i>	0.000	0.054	0.000	0.069	0.036	0.111	
Internal	Standards		100 <i>M</i> Cy and MP	clohexa	ne for	Propen	е,
		0.00 t-CB	200M n - 6, and c	C ₁₅ H ₃₂ :-CB	for BA	, IBP,	
313 nm Ra	diation:	0.0854	ξ/1				
				(0.0	. •		

25' 25% 1,2,3-tris(2-Cyanoethoxy)propane at 60° vpc Columns:

6' 4% QF-1, 1.2% Carbowax 20M at 140°

aiso-Hexane (2-Methylpentane)

b2-Methy1-1-pentene and 2-Methy1-2-pentene

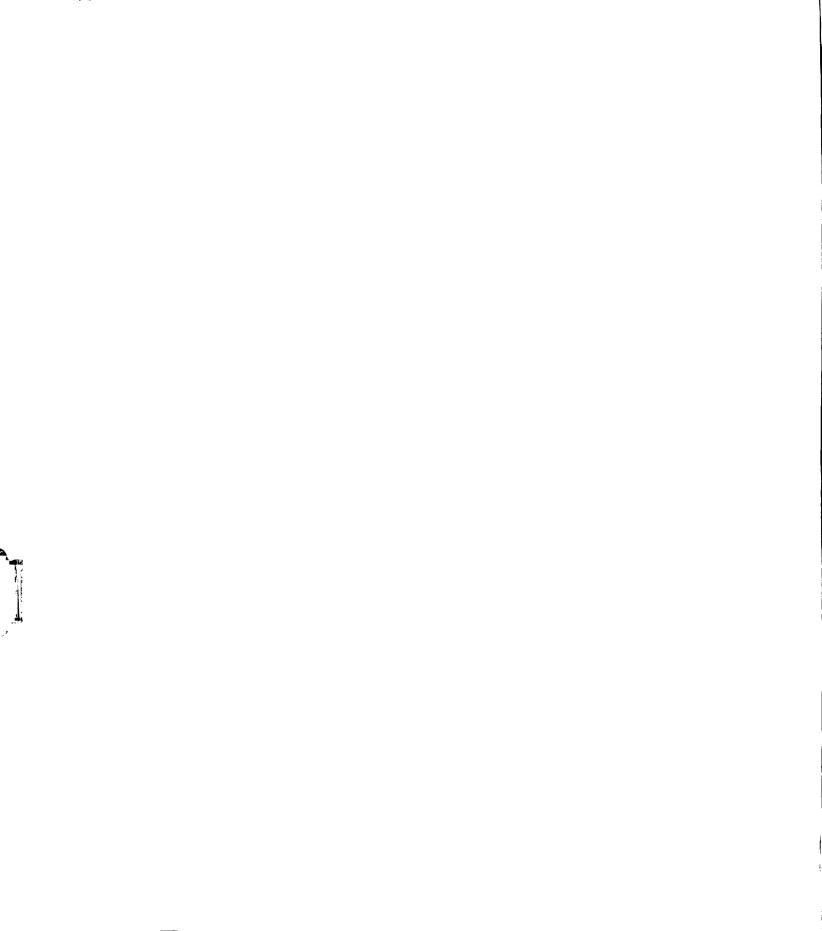


Table 17. Photolysis of 0.100M DMVP in Cyclooctane: Effect of 1-Dodecanethiol

[n-C ₁₂ H ₂₅ SH]	Propene	IH	MP
Relative vpc Areas:			
none	1.51	2.59	1.19
0.100 <i>M</i>	0.00	3.80	0.00
0.500 <i>m</i>	0.00	3.86	0.00
Concentrations x 10 ³ ,	М:		
none	3.02	2.59	1.19
0.100 <i>M</i>	0.00	3.80	0.00
0.500 <i>m</i>	0.00	3.86	0.00
Φ:			
none	0.035	0.030	0.014
0.100 <i>M</i>	0.000	0.044	0.000
0.500 <i>m</i>	0.000	0.045	0.000
Internal Standard	: 0.00100M Cyc	lohexane	

313 nm Radiation: $0.0854 \xi/1$

vpc Column: 25' 25% 1,2,3-tris(2-Cyanoethoxy)propane at 60°

Table 18. Photolysis of 0.100M DMVP in Benzene: cis-Piperylene Quencher

[Quencher], M:	none	0.0100	0.0150	0.0200	0.0250	0.0300
Relative vpc Areas	s:					
IBP	1.67	1.42	1.10	0.914	0.787	0.683
t-CB	2.09	1.60	1.22	1.02	0.868	0.762
c-CB	1.56	1.19	0.873	0.708	0.614	0.531
Concentrations x	10 ³ , M:					
IBP	5.13	4.36	3.38	2.82	2.42	2.10
t-CB	5.14	3.95	3.00	2.50	2.14	1.87
c-CB	3.83	2.93	2.15	1.74	1.51	1.31
Φ:						
IBP	0.050	0.042	0.033	0.027	0.024	0.020
t-CB	0.050	0.038	0.029	0.024	0.021	0.018
c-CB	0.037	0.028	0.021	0.017	0.015	0.013
Internal Star	ndard: 0	.00200 <i>m</i>	n-C ₁₅ H	3 2		
313 nm Radia				. -		
vpc Column:	6' 4% QF	-1, 1.2	% Carbo	wax 20M	at 125	0

Table 19. Photolysis of 0.100M DMVP in Benzene: 2,3-Dimethy1-1,3-butadiene Quencher

[Quencher], M:	none	0.0100	0.0200	0.0250	0.0300	0.0350	0.0400
Relative vpc Ar	eas:						
IBP	1.58	1.48	1.06	0.971	0.874	0.710	0.671
t-CB	2.03	1.81	1.27	1.14	0.978	0.864	0.794
c-CB	1.51	1.30	0.906	0.809	0.700	0.616	0.568
Concentrations	x 10 ³ ,	M:					
IBP	4.88	4.54	3.26	2.99	2.69	2.19	2.07
t-CB	4.99	4.46	3.13	2.80	2.41	2.13	1.95
c-CB	3.72	3.21	2.23	1.99	1.72	1.52	1.40
Φ:							
IBP	0.050	0.046	0.033	0.030	0.027	0.022	0.021
t-CB	0.051	0.046	0.032	0.029	0.025	0.022	0.020
c-CB	0.038	0.033	0.023	0.020	0.018	0.016	0.014
Internal S	tandar	d: 0.00	0200M n	-C ₁₅ H ₃₂			

313 nm Radiation: $0.0980 \xi/1$

vpc Column: 6' 4% QF-1, 1.2% Carbowax 20M at 125°

Table 20. Photolysis of 0.100M DMVP in Benzene: 2,5-Dimethyl-2,4-hexadiene Quencher

[Quencher], M:	none	0.0100	0.0150	0.0200	0.0250	0.0300	0.0350
Relative vpc Ar	eas:						
Propene IH MP BA IBP t-CB c-CB	2.03 2.05 2.64 0.586 1.22 2.15 1.48	0.948 1.47 1.03	0.854 1.27 0.888				
Concentrations	$x 10^3$,	<i>M</i> :					
Propene IH MP BA IBP t-CB c-CB	4.06 2.05 2.64 2.81 3.75 5.29 3.64	2.92 3.62 2.53	2.63 3.13 2.18	2.37 2.72 1.83	2.17 2.64 1.66	1.94 2.16 1.44	1.82 1.97 1.32
Φ:							
Propene IH MP BA IBP t-CB c-CB	0.041 0.021 0.027 0.029 0.038 0.054 0.037	0.030 0.037 0.026	0.027 0.032 0.022	0.024 0.028 0.019	0.027	0.022	0.018 0.020 0.013
Internal S	Standar		00100 <i>M</i> (xane fo	r Prope	ne,
		0.0 and	00200 <i>M</i> 1 d c-CB	n-C ₁₅ H ₃ ;	or B	A, IBP,	t-CB,
313 nm Rad	liation	: 0.09	83 ξ/1				
vpc Column	ns: 25 at	' 25% 1 60°	,2,3-tr	is(2-Cy	anoetho	xy)propa	ane
	6 '	4% QF-	1, 1.2%	Carbowa	ax 20M a	at 135°	

Table 21. Photolysis of 0.100M DMVP in Benzene: 2,5-Dimethy1-2,4-hexadiene Quencher

0.415	0.327	0.231	0.099	
0.550	0.527	0.457	0.299	0.223
1.44	1.24	1.02	0.637	0.448
4, M:				
19.9	15.7	11.1	4.8	
16.9	16.2	14.1	9.21	6.87
35.4	30.5	25.1	15.7	11.0
0.027	0.021	0.015	0.0065	ı
0.023	0.022	0.019	0.012	0.0093
0.048	0.041	0.034	0.021	0.015
	0.550 1.44 4, M: 19.9 16.9 35.4 0.027 0.023	0.550 0.527 1.44 1.24 4, M: 19.9 15.7 16.9 16.2 35.4 30.5 0.027 0.021 0.023 0.022	0.550 0.527 0.457 1.44 1.24 1.02 4, M: 19.9 15.7 11.1 16.9 16.2 14.1 35.4 30.5 25.1 0.027 0.021 0.015 0.023 0.022 0.019	0.550 0.527 0.457 0.299 1.44 1.24 1.02 0.637 4, M: 19.9 15.7 11.1 4.8 16.9 16.2 14.1 9.21 35.4 30.5 25.1 15.7

313 nm Radiation: $0.0742 \xi/1$

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 140°

Table 22. Photolysis of 0.100M DMVP in Benzene: 2-Chloronaphthalene Quencher

[Quencher], M:	none	0.0050	0.0100	0.0200	0.0300	0.0500
Relative vpc Ar	reas:					
BA	0.649	0.453	0.368	0.214	0.161	0.083
IBP	1.26	0.937	0.770	0.552	0.435	0.297
t-CB	2.43	1.92	1.62	1.13	0.887	0.65
c-CB	1.70					
Concentrations	x 10 ⁴ ,	<i>M</i> :				
ВА	29.8	20.8	16.9	9.8	7.4	3.8
IBP	37.2	27.7	22.7	16.3	12.8	8.8
t-CB	57.3	45.3	38.2	26.6	20.9	15.
c-CB	40.1					

Internal Standard: $0.00300M \ n - C_{10}H_{21}OH$

366 nm Radiation

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 133°

Table 23. Photolysis of 0.100M DMVP in n-Hexane: 2,5-Dimethy1-2,4-hexadiene Quencher

[Quencher], M:	none	0.0100	0.0150	0.0200	0.0300
Relative vpc A	reas:				
ВА	0.387				
IBP	1.26	0.723	0.568	0.489	0.338
t-CB	1.84	0.950	0.748	0.640	0.471
c-CB	1.25	0.652	0.502	0.444	0.310
Concentrations	x 10 ⁴ , A	1 :			
ВА	18.6				
IBP	39.0	22.3	17.5	15.1	10.4
t-CB	45.2	23.4	18.4	15.7	11.6
c-CB	30.7	16.0	12.3	10.9	7.63
Φ:					
ВА	0.019				
IBP	0.040	0.023	0.018	0.015	0.011
t-CB	0.046	0.024	0.019	0.016	0.012
c-CB	0.031	0.016	0.012	0.011	0.008
Internal S	Standard:	0.0020	0м n-C ₁₅ H	32	
313 nm Rac	diation:	0.0983	ξ/1		

vpc Column: 6' 4% QF-1, 1.2% Carbowax 20M at 135°

Table 24. Photolysis of 0.100*M* DMVP in *n*-Hexane: 2-Chloronaphthalene Quencher

[Quencher], M:	none	0.0100	0.0200	0.0300
Relative vpc Areas	:			
ВА	0.536			
IBP	1.21			
t-CB	2.03	0.797	0.549	0.293
c-CB	1.40			
Concentrations x 1	.0 ⁴ , M:			
BA	24.6			
IBP	35.7			
t-CB	47.9	18.8	12.9	6.91
c-CB	33.0			
Internal Stan	dard: 0.0	0300M n-C ₁₀	H ₂₁ OH	
366 nm Radiat	ion			
vpc Column:	9' 5% QF-1	, 1.2% Carb	owax 20M at	133°

Table 25. Photolysis of 0.100*M* DMVP in Cyclooctane: 2,5-Dimethyl-2,4-hexadiene Quencher

[Quencher], M:	none	0.0100	0.0150	0.0200	0.0250	0.0300	0.0350
Relative vpc A	reas:						
Propene IH MP BA IBP t-CB	2.45 3.78 2.75 0.588 1.88 2.51	1.75	1.04	0.912 1.25			
Concentrations	$\times 10^3$, M:					
Propene IH MP BA IBP t-CB	4.90 3.78 2.75 2.82 5.80 6.17	3.97 4.30	3.20 3.61		2.53	2.30	2.12 2.15
Propene IH MP BA IBP t-CB	0.050 0.038 0.028 0.029 0.059 0.063	0.040 0.044		0.029 0.031			
Internal	Standa	II	H, and I	MP		or Prope	·
		0 aı	.00200 <i>M</i> nd t-CB	<i>n</i> -C ₁₅ H	32 for 1	BA, IBP	,
313 nm Ra	diatio	n: 0.09	983 ξ/1				
vpc Colum	ns: 2:	5' 25% : t 60°	1,2,3-t	ris(2-C	yanoeth	oxy)proj	pane
	9	' 4% QF	-1, 1%	Carbowa	x 20M a	t 160°	

Table 26 Photolysis of 0.100M DMVP in Cyclooctane: 2-Chloronaphthalene Quencher

[Quencher], M:	none	0.0100	0.0200	0.0300	0.0400	0.0500
Relative vpc Ar	eas:					
ВА	0.368	0.194	0.148	0.105	0.082	0.066
IBP	1.19	0.799	0.605	0.493	0.366	0.278
t-CB	1.85	1.15	0.871	0.748	0.539	0.489
c-CB	1.27					
Concentrations	x 10 ⁴ ,	<i>M</i> :				
BA	16.9	8.9	6.8	4.8	3.8	3.0
IBP	35.2	23.6	17.9	14.6	10.8	8.2
t-CB	48.0	29.8	22.6	19.4	14.0	12.7
c-CB	33.0					

Internal Standard: $0.00300M n-C_{10}H_{21}OH$

366 nm Radiation

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 133°

Table 27. Photolysis of 0.100*M* DMVP in 1-Propanol: 2,5-Dimethy1-2,4-hexadiene Quencher

[Quencher], M:	none	0.0150	0.0200	0.0250	0.0350
Relative vpc A	reas:				
IBP	1.72	1.09	0.999	0.852	0.718
t-CB	1.51	0.940	0.817	0.702	0.585
c-CB	1.76	1.05	0.919	0.786	0.657
Concentrations	x 10 ³ ,	м:			
IBP	5.30	3.34	3.08	2.62	2.21
t-CB	3.70	2.31	2.01	1.73	1.44
c-CB	4.33	2.57	2.26	1.93	1.62
Φ:					
IBP	0.177	0.111	0.103	0.087	0.074
t-CB	0.123	0.077	0.067	0.058	0.048
c-CB	0.144	0.086	0.075	0.064	0.054
Internal S	tandard	.: 0.002	00M n-C ₁	5 ^H 32	
313 nm Rad	liation:	0.0300	ξ/1		

vpc Column: 9' 4% QF-1, 1% Carbowax 20M at 110°

Table 28. Photolysis of 0.100*M* DMVP in 1-Pentanol: 2,5-Dimethyl-2,4-hexadiene Quencher

[Quencher], M:	none	0.0100	0.0150	0.0200	0.0250	0.0350
Relative vpc Ar	reas:					
t-CB	1.27	1.02	0.902	0.820	0.781	0.649
c-CB	1.44	1.15	1.01	0.910	0.868	0.707
Concentrations	x 10 ³ ,	<i>M</i> :				
t-CB	3.13	2.50	2.22	2.02	1.92	1.60
c-CB	3.53	2.83	2.49	2.24	2.14	1.74
Φ:						
t-CB	0.104	0.083	0.074	0.067	0.064	0.053
c-CB	0.118	0.094	0.083	0.075	0.071	0.058
Internal S	Standard	l: 0.002	00м n-С ₁	.5 ^H 32		
313 nm Rad	liation:	0.0300	ξ/1			
vpc Column	n: 9'4	% QF-1,	1% Carbo	wax 20M	at 110°	

Table 29. Photolysis of 0.0500M DMVP in 1-Heptanol: 2,5-Dimethyl-2,4-hexadiene Quencher

[Quencher], M:	none	0.0100	0.0150	0.0200	0.0250	0.0300	0.0350
Relative vpc Ar	eas:						
t-CB	2.60	2.10	2.00	1.86	1.67	1.57	1.44
Concentrations	x 10 ³ ,	м:					
t-CB	3.64	2.94	2.80	2.61	2.34	2.20	2.02
Φ:							
t-CB	0.122	0.098	0.094	0.087	0.078	0.074	0.067

Internal Standard: $0.00100M n-C_{17}H_{36}$

313 nm Radiation: $0.0300 \xi/1$

vpc Column: 6' 4% QF-1, 1.2% Carbowax 20M at 120°

2. α -Chloro- α -methylvalerophenone

The tabulation of data for each photokinetic run using CMVP includes relative vpc peak area data for the photo and thermal products and, where measured, the relative vpc peak area data for the thermal products only. This thermal product data was determined by use of blanks, samples treated identically to the photolyzed tubes except for the irradiation step, when the blanks where kept in the dark at room temperature. The tables contain the concentrations of CMVP, internal standards, quenchers, other additives, if any, and products, together with the vpc analysis conditions, irradiation wavelengths, actinometer results, and quantum yields.

For the major CMVP photoproducts, the reproducibility of the relative vpc peak areas and concentrations is approximately $\pm 15\%$, this large range being a result of the many minor products which complicate the analyses and of the need to adjust for the thermal products. As with the DMVP photokinetic runs, the precision of the actinometry introduces an additional $\pm 3\%$ uncertainty in the reproducibility of the quantum yields. The $k_q^{\, T}$ values obtained from the CMVP data are reproducible to within $\pm 15\%$.

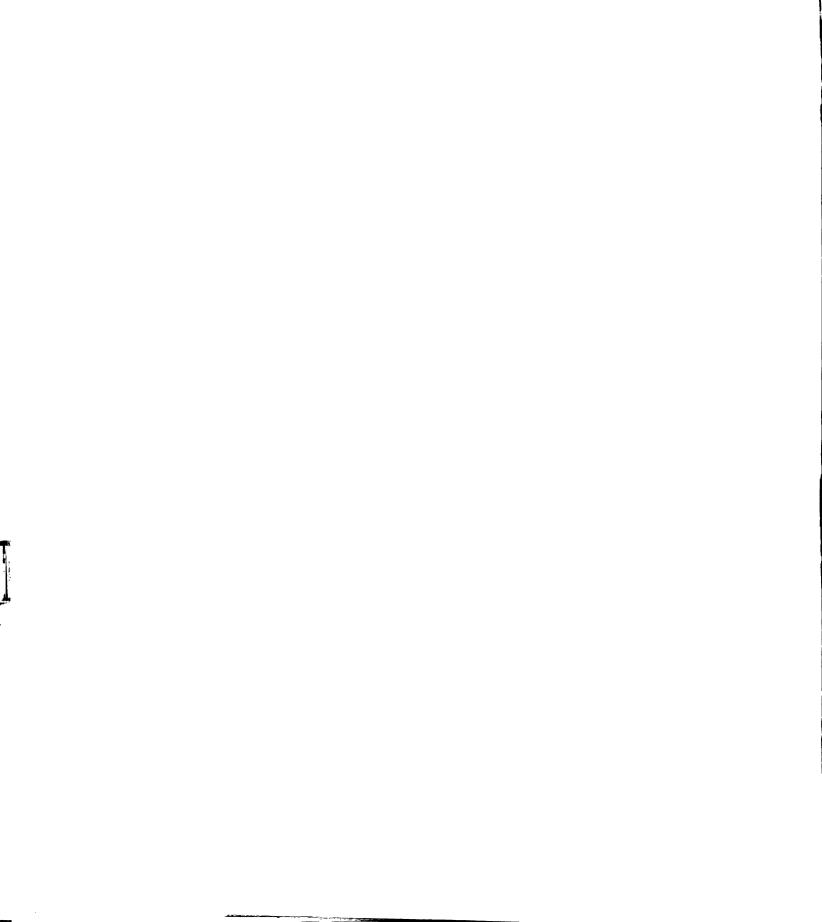


Table 30. Photolysis of 0.100M CMVP in Benzene: cis-Piperylene Quencher

[Quencher], M:	none	0.250	0.500	0.750	1.000	1.250
Relative vpc Ai	reas, Pho	oto and 1	Thermal I	Products	:	
PPP ^a ,	0.016	0.074	0.182	0.232	0.285	0.368
β,γ-U ^b	1.03	0.503	0.394	0.279	0.212	0.188
α,β-ΨC	0.874	0.692	0.662	0.542	0.430	0.430
CCBd	0.130	0.113	0.087	0.064	0.040	0.039
HMVPe	0.438	0.178	0.167	0.156	0.152	0.168
Relative vpc An Designated Peak		ermal Pro	oducts 0	ccurring	under	
_			0 1 5 0	0.040		0 706
PPP	0.016	0.051	0.150	0.268	0.282	0.396
β,γ-U	0.267	0.174	0.173	0.120	0.073	0.096
α,β-U	0.065	0.047	0.069		0.038	0.044
CCB	0.023	0.023	0.024	0.025	0.019	0.023
HMVP	0.169	0.172	0.149	0.172	0.162	0.178
Relative vpc Ar	reas, Pl	notoprodu	ucts Only	7:		
β,γ-U	0.764	0.329	0.221	0.159	0.139	0.092
α, β- U	0.809	0.645	0.593	~0.489	0.392	0.386
CCB	0.107	0.090	0.063	0.038	0.022	0.017
HMVP	0.269	0.00	0.00	0.00	0.00	0.00
Concentrations	of Photo	products	$s \times 10^5$,	М:		
β , γ-U	84.3	36.3	24.4	17.6	15.3	10.2
α,β-U	89.3	71.2		·54.0	43.3	42.6
CCB	11.5	9.7	6.8	4.1	2.3	1.8
HMVP	28.9	5 • <i>r</i>	0.0	. • •	2.0	2.0
D:						
β,γ-Ŭ	0.133	0.057	0.038	0.028	0.024	0.016
α,β-U				~0.085		
CCB	0.141	0.112	0.103	0.0065	0.003	0.002
HMVP	0.046	0.0133	0.0107	0.0003	0.0037	0.002
Internal S	Standard	0.0006	500M n-C	20H42		
313 nm Rad				- · -		
				owax 20N	M at 145	0

е has same retention time.
b1-Pheny1-2-methylpent-3-en-1-one
c1-Pheny1-2-methylpent-2-en-1-one
d2-Chloro-1-pheny1-2,4-dimethylcyclobutanol
eα-Hydroxy-α-methylvalerophenone

Table 31. Photolysis of 0.100M CMVP in Benzene with 0.50M Pyridine: cis-Piperylene Quencher

[Quencher], M:	none	0.100	0.200	0.500	1.00	3.00	6.99
Relative vpc A	reas, P	hoto ai	nd Therr	nal Proc	lucts:		
β,γ-U α,β-U CCB HMVP RCMVP ^a	0.163	0.344 0.479 0.131 0.180 0.136	0.257 0.447 0.109 0.189 0.139	0.114 0.175	0.347 0.069	0.281 0.041 0.172 0.142	
Relative vpc A Designated Pea		herma1	Product	s Occui	rring ur	nder	
β,γ-U α,β-U CCB HMVP RCMVP	0.078 0.166 0.006 0.174 0.102						
Relative vpc A	reas, P	hotopro	oducts (Only:			
β,γ-U α,β-U CCB HMVP RCMVP	0.157		0.179 0.281 0.103 0.02 0.04	0.218	0.181 0.063	0.115 0.035 0.00 0.04	0.090 0.000 0.00 0.08
Concentrations	of Pho	tonrodi	icts v 1	ιο ⁵ <i>ν</i> .			
β,γ-U α,β-U CCB HMVP	81.1 67.9	48.9 57.6 22.4	32.9 51.7 18.4	22.3 40.1 19.3	13.8 33.3 11.3	21.2	16.6 0.0
Φ:							
β,γ-U α,β-U CCB HMVP RCMVP	0.100 0.083 0.034 0.011 0.032	0.060 0.071 0.028	0.040 0.063 0.023			0.026 0.008	
Internal 313 nm Ra vpc Colum	diation	: 0.00	00100 <i>M</i> γ 0815 ξ/1 1, 1.2%	l - "	-	at 140°	

 a_{γ} or β -CMVP

Table 32. Photolysis of 0.100M CMVP in Benzene to ~15% Conversion: 2,5-Dimethy1-2,4-hexadiene Quencher

[Quencher], A	d: none	0.0500	0.100	0.150	0.200	0.300	0.400
Relative vpc	Areas,	Photo ar	d Ther	nal Prod	lucts:		
β , γ-U	1.25	1.36	1.29	1.23	1.17	1.11	1.07
α,β-U	0.440	0.668	0.634	0.616	0.592	0.564	0.543
CCB	0.098	0.076	0.070	0.066	0.065	0.058	0.054
RCMVP	0.564	0.420	0.416	0.394	0.398	0.373	0.364
Concentration	10^4	, <i>M</i> , Pho	to and	Thermal	l Produc	cts:	
β , γ-U	75.3	82.3	77.7	74.4	70.8	67.0	64.6
α,β-U	26.6	40.3	38.3	37.2	35.8	34.1	32.8
CĆB	5.7	4.4	4.1	3.9	3.8	3.4	3.2
RCMVP	32.9	24.5	24.3	23.0	23.2	21.8	21.3

Concentrations of Photoproducts \times 10⁴, M, Estimated from Low Conversion Data:

β,γ-U 49.4 α,β-U 52.3 CCB 6.8

Φ:

CCB 0.015 0.012 0.011 0.0105 0.010 0.0091 0.0086

Internal Standard: 0.00400M n-C₁₇H₃₆

313 nm Radiation: 0.0372 $\xi/1$

vpc Column: 6' 4% QF-1, 1.2% Carbowax 20M at 130°

Table 33. Photolysis of 0.100M CMVP in Acetonitrile: Effect of t-Butylmercaptan

[t-C ₄ H ₉ SH]	PPP	β,γ-U	α,β-U	CCB	HMVP	RCMVP
Relative vpc	Areas,	Photo an	d Therma	1 Produc	ts:	
none 0.200 <i>M</i> 0.500 <i>M</i>	0.105 0.041	0.251 0.339 0.487	1.32 0.988 0.665	0.050	0.219 0.224 0.238	
Relative vpc Designated Pe		Therma1	Products	Occurri:	ng under	
none 0.200 <i>M</i> 0.500 <i>M</i>	0.000 0.000 0.000	0.084		0.000	0.195 0.197 0.189	0.157 0.158 0.153
Relative vpc	Areas,	Photopro	ducts On	ly:		
none 0.200M 0.500M	0.105 0.041	0.255 0.405	0.912 0.605	0.050 0.046		
Concentration	ns of Pi	notoprodu	icts x 10	, M:		
none 0.200 <i>M</i> 0.500 <i>M</i>	17.7 6.9	24.6 43.0 68.4	208. 154. 102.	8.5 8.1 7.5	3.9 4.4 7.9	
none 0.200 <i>M</i> 0.500 <i>M</i>	0.029 0.011	0.040 0.071 0.113	0.342 0.253 0.168	0.014 0.013 0.012		
Internal			00200M n-0	С ₁₀ Н ₂₁ ОН		

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 130°

Table 34. Photolysis of 0.100M CMVP in Acetonitrile: 2,5-Dimethy1-2,4-hexadiene Quencher

[Quencher],	M: none	0.100	0.200	0.300	0.500	1.00	
Relative vp	c Areas, P	hoto and	Thermal	Product	s:		
β,γ-U α,β-U CCB	0.188 0.706 0.034	0.185 0.623	0.208 0.562	0.205 0.492	0.294 0.484		
HMVP RCMVP	0.282	0.324	0.295	0.254	0.333	0.232	
Concentrati	ons x 10 ⁵ ,	M, Phot	o and Th	ermal Pr	oducts:		
β,γ-U α,β-U CCB	31.7 119. 5.5	31.2 105.	35.1 94.9	34.6 83.0	49.6 81.7	43.0 55.2	
HMVP RCMVP	45.7 32.1	52.6	47.8	41.2	54.0	37.6	
Concentrations of Photoproducts x 10^5 , M, Estimated from Preceding Table:							
β,γ-U α,β-U CCB HMVP	16.6 140. 5.7 2.6						
Concentrati Above Estim		toproduc	ts x 10 ⁵	, <i>M</i> , Bas	ed upon		
β,γ-U α,β-U CCB	16.6 119. 5.5	16.1 105.	20.0 94.9	19.5 83.0	34.5 81.7	27.9 55.2	
Φ:							
β,γ-U α,β-U CCB	0.040 0.290 0.013	0.039 0.256	0.049 0.231	0.048 0.202	0.084 0.199	0.068 0.135	

Internal Standard: $0.00200M n-C_{10}H_{21}OH$

313 nm Radiation: 0.00411 $\xi/1$

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 120°

Table 35. Photosensitization of CMVP by and in Methyl Ethyl Ketone^a

[CMVP]	PPP	β,γ-U	α,β-U	CCB	HMVP	RCMVP	RCMVP ^b
Relative vpc	Areas, I	hoto a	nd Therm	al Pro	ducts:		
0.0100 <i>M</i> 0.0200 <i>M</i>			0.603 0.904				0.078
Relative vpc Designated Pe		Thermal	Product	s Occu	rring un	der	
0.0100 <i>M</i> 0.0200 <i>M</i>	0.000 0.000		0.030 0.057				
Relative vpc	Areas, I	hotopro	oducts 0	nly:			
0.0100 <i>M</i> 0.0200 <i>M</i>	0.109 0.113		0.573 0.847				0.078
Concentration	s of Pho	otoprodi	ucts x 1	0 ⁵ , M:			
0.0100 <i>M</i> 0.0200 <i>M</i>	5.01 5.20	12.2 20.5	26.4 39.0	4.97 5.59	6.31 13.2	3.5 6.44	3.5
Φ:							
0.0100 <i>M</i> 0.0200 <i>M</i>	0.012 0.013				0.015 0.032		0.008

Internal Standard: $0.000250M n-C_{20}H_{42}$

313 nm Radiation: 0.00411 $\xi/1$

vpc Column: 9' 5% QF-1, 1.2% Carbowax 20M at 140°

 $[\]overline{a_{11.1M}}$

^bBoth isomers analyzed

B I B L I O G R A P H Y

BIBLIOGRAPHY

- 1. P. J. Wagner, Accts. Chem. Res., 4, 168 (1971).
- N. J. Turro, G. S. Hammond, J. N. Pitts, Jr., D. Valentine, Jr., A. D. Broadbent, W. B. Hammond, and E. Whittle, "Annual Survey of Photochemistry, Vol. 1: Survey on 1967 Literature," Wiley-Interscience, New York, N.Y., 1969, p. 70-109, 316-330, 355-363.
- N. J. Turro, G. S. Hammond, J. N. Pitts, Jr., D. Valentine, Jr., A. D. Broadbent, J. E. Leonard, F. D. Lewis, D. M. Pond, and E. Whittle, "Annual Survey of Photochemistry, Vol. 2: Survey of 1968 Literature," Wiley-Interscience, New York, N. Y., 1970, p. 40-66.
- N. J. Turro, G. S. Hammond, J. F. Endicott, J. C. Dalton, T. Kelly, J. E. Leonard, D. R. Morton, and D. M. Pond, "Annual Survey of Photochemistry, Vol. 3: Survey of 1969 Literature," Wiley-Interscience, New York, N. Y., 1971, p. 67-111.
- 5. P. Yates, <u>Pure Appl. Chem.</u>, 16, 93 (1968).
- 6. K. Schaffner, <u>ibid</u>., 16, 75 (1968).
- 7. A. N. Strachan and F. E. Blacet, <u>J. Amer. Chem. Soc.</u>, 27, 5254 (1955).
- 8. J. A. Barltrop and A. Thomson, <u>J. Chem. Soc. (C)</u>, 155 (1968).

- 9. H. Tomioka, Y. Izawa, and Y. Ogata, <u>Tetrahedron</u>, 24, 5739 (1968).
- 10. B. E. Kaplan and A. L. Hartwig, <u>Tetrahedron Lett.</u>, 4855 (1970).
- 11. R. E. Harmon, H. N. Subbarao, and S. K. Gupta, Syn. Commun, 1, 165 (1971).
- 12. N. C. Yang and E. D. Feit, <u>J. Amer. Chem. Soc.</u>, <u>90</u>, 504 (1968).
- 13. A. Jablonski, <u>Z. Physik</u>, 24, 38 (1935).
- 14. J. G. Calvert and J. N. Pitts, Jr., "Photochemistry", John Wiley and Sons, Inc., New York, 1966, p. 243-245.
- 15. E. F. Ullman, Accts. Chem. Res., 1, 353 (1968).
- 16. R. G. W. Norrish and M. E. S. Appleyard, <u>J. Chem. Soc.</u>, 874 (1934).
- 17. C. H. Bamford and R. G. W. Norrish, <u>ibid</u>., 1504 (1935).
- C. H. Bamford and R. G. W. Norrish, <u>ibid</u>., 1531 (1938).
- 19. W. Davis, Jr. and W. A. Noyes, Jr., <u>J. Amer. Chem. Soc.</u>, 62, 2153 (1947).
- 20. R. Srinivasan, <u>ibid</u>., 81, 5061 (1959).
- 21. D. K. Coulson and N. C. Yang, <u>ibid</u>., 88, 4511 (1966).
- 22. N. C. Yang and D.-H. Yang, <u>ibid</u>., 80, 2913 (1958).
- 23. P. J. Wagner and G. S. Hammond, <u>ibid</u>., 87, 4009 (1965).
- 24. P. J. Wagner and G. S. Hammond, <u>ibid</u>., 88, 1245 (1966).
- 25. N. C. Yang and S. P. Elliot, <u>ibid</u>., 91, 7550 (1969).

- 26. N. C. Yang, S. P. Elliot and B. Kim, <u>ibid</u>., 91, 7551 (1969).
- 27. P. J. Wagner, Tetrahedron Lett., 1753 (1967).
- 28. P. J. Wagner and A. E. Kemppainen, <u>J. Amer. Chem. Soc.</u>, 91, 3085 (1969).
- 29. P. J. Wagner and G. S. Hammond, Advances in Photochemistry, 5, 21 (1968).
- 30. P. J. Wagner, <u>J. Amer. Chem. Soc.</u>, <u>89</u>, 5898 (1967).
- 31. P. J. Wagner, Tetrahedron Lett., 5385 (1968).
- 32. P. J. Wagner and A. E. Kemppainen, <u>J. Amer. Chem. Soc.</u>, 90, 5898 (1968).
- 33. P. J. Wagner and G. Capen, Mol. Photochem., 1, 173 (1969).
- 34. P. J. Wagner and H. N. Schott, <u>J. Amer. Chem. Soc.</u>, <u>21</u>, 5383 (1969).
- 35. P. J. Wagner, A. E. Kemppainen and H. N. Schott, <u>ibid</u>., 92, 5280 (1970).
- 36. P. A. Kelso, Ph.D. Thesis, Michigan State University, 1971.
- 37. R. G. Zepp, Personal Communication.
- 38. N. C. Yang, A. Morduchowitz, and D.-H. Yang, <u>J. Amer.</u>
 <u>Chem. Soc.</u>, <u>85</u>, 1017 (1963).
- 39. P. J. Wagner, M. J. May, A. Haug, and D. R. Graber, ibid., 92, 5269 (1970).
- 40. N. C. Yang, E. D. Feit, M. H. Hui, N. J. Turro, and J. C. Dalton, <u>ibid</u>., <u>92</u>, 6974 (1970).
- 41. P. J. Wagner and A. E. Kemppainen, <u>ibid</u>., 20, 5896 (1968).
- 42. J. N. Pitts, Jr., D. R. Burley, J. C. Mani, and A. D. Broadbent, <u>ibid</u>., 90, 5900 (1968).

- 43. H.-G. Heine, <u>Justus Liebigs Ann. Chem.</u>, 732, 165 (1970).
- 44. J. A. Barltrop and J. D. Coyle, Chem. Commun., 1081 (1969).
- 45. P. J. Wagner and R. W. Spoerke, <u>J. Amer. Chem. Soc.</u>, 91, 4437 (1969).
- 46. P. Dunion and C. N. Trumbore, <u>ibid</u>., 87, 4211 (1965).
- 47. R. Simonaitis, G. W. Cowell and J. N. Pitts, Jr., <u>Tetrahedron Lett.</u>, 3751 (1967).
- 48. J. C. Dalton, D. M. Pond, D. S. Weiss, F. D. Lewis, and N. J. Turro, <u>J. Amer. Chem. Soc.</u>, 22, 2564 (1970).
- 49. T. J. Dougherty, <u>ibid</u>., §7, 4111 (1965).
- 50. M. O'Sullivan and A. C. Testa, <u>ibid.</u>, 92, 5842 (1970).
- 51. N. J. Turro and F. D. Lewis, Tetrahedron Lett., 5845 (1968).
- 52. F. D. Lewis and N. J. Turro, <u>J. Amer. Chem. Soc.</u>, <u>22</u>, 311 (1970).
- 53. M. K. M. Dirania and J. Hill, <u>J. Chem. Soc. (C)</u>, 1311 (1968).
- 54. J. R. Collier, M. K. M. Dirania, and J. Hill, <u>J. Chem.</u>
 Soc. 1(C), 155 (1970).
- 55. H. E. Zimmerman, Adv. Photochem., 1, 183 (1963).
- O. Jeger, K. Schaffner, and H. Wehrli, <u>Pure Appl. Chem.</u>,
 9, 555 (1964).
- 57. S. Iwasaki and K. Schaffner, <u>Helv. Chim. Acta</u>, 51, 557 (1968).
- 58. J. R. Collier and J. Hill, Chem. Commun., 700 (1968).
- 59. C. Ganter and J. F. Moser, <u>Helv. Chim. Acta</u>, 51, 300 (1968).

- 60. T. Laird and N. Williams, Chem. Commun., 561 (1969).
- 61. C. L. McIntosh, P. deMayo, and R. W. Yip, <u>Tetrahedron</u>
 Lett., 37 (1967).
- 62. C. Lehmann, K. Schaffner, and O. Jeger, <u>Helv. Chim Acta</u>, 45, 1031 (1962).
- 63. C. K. Johnson, B. Dominy, and W. Reusch, <u>J. Amer. Chem.</u>
 Soc., §5, 3894 (1963).
- 64. H. E. Zimmerman, B. R. Cowley, C.-Y. Tseng and J. W. Wilson, <u>ibid</u>., <u>86</u>, 947 (1964).
- 65. H. Wehrli, C. Lehmann, P. Keller, J. J. Bonet, K. Schaffner, and O. Jeger, Helv. Chim. Acta, 49, 1986 (1966).
- 66. C. S. Markos and W. Reusch, <u>J. Amer. Chem. Soc.</u>, §9, 3363 (1967).
- 67. O. Jeger and K. Schaffner, <u>Pure Appl. Chem.</u>, 21, 247 (1970).
- 68. J. C. Anderson and C. B. Reese, <u>Tetrahedron Lett.</u>, 1 (1962).
- 69. L. D. Hess, J. L. Jacobson, K. Schaffner, and J. N. Pitts, Jr., <u>J. Amer. Chem. Soc</u>., 89, 3684 (1967).
- 70. J. J. Hlavka and P. Bitha, Tetrahedron Lett., 3843 (1966).
- 71. P. J. Wagner and I. Kochevar, <u>J. Amer. Chem. Soc.</u>, <u>20</u>, 2232 (1968).
- 72. D. L. Dexter, <u>J. Chem. Phys.</u>, 21, 836 (1953).
- 73. A. N. Terenin and V. L. Ermolaev, <u>Trans. Faraday Soc.</u>, 52, 1042 (1956).
- 74. G. Porter and F. Wilkinson, Proc. Roy. Soc. (London), A264, 1 (1961).

- 75. K. Sandros and H. L. J. Bäckström, Acta Chem. Scand., 16, 958 (1962).
- 76. K. Sandros, <u>ibid</u>., 18, 2355 (1964).
- 77. W. G. Herkstroeter, L. B. Jones, and G. S. Hammond,

 <u>J. Amer. Chem. Soc.</u>, 88, 4777 (1966).
- 78. F. Wilkinson, Advan. Photochem. Vol. 3, W. A. Noyes, Jr., G. S. Hammond, and J. N. Pitts, Jr., Ed., John Wiley and Sons, Inc., New York, N. Y., 1964, p. 248.
- 79. B. Smaller, E. C. Avery, and J. R. Renko, <u>J. Chem. Phys.</u>, 43, 922 (1965).
- 80. J. G. Calvert and J. N. Pitts, Jr., "Photochemistry,"

 John Wiley and Sons, Inc., New York, N. Y., 1966, p. 627.
- 81. A. D. Osborne and G. Porter, <u>Proc. Roy. Soc. (London)</u>, A284, 9 (1965).
- 82. J. K. Roy and M. A. El-Sayed, <u>J. Chem. Phys.</u>, 40, 3442 (1964).
- 83. W. G. Herkstroeter and G. S. Hammond, <u>J. Amer. Chem</u>
 Soc., 88, 4769 (1966).
- 84. W. D. K. Clark, A. D. Litt, and C. Steel, <u>ibid</u>., 91, 5413 (1969).
- 85. G. Porter and M. R. Topp, <u>Proc. Roy. Soc. Ser. A</u>, 315, 163 (1970).
- 86. P. J. Wagner in "Creation and Detection of the Excited State," Vol. I, Part A, A. A. Lomola, Ed., Marcel Dekker, Inc., New York, N. Y., 1971, Chapter 4.

- 87. G. S. Hammond and R. P. Foss, <u>J. Phys. Chem.</u>, 68, 3739 (1964).
- 88. A. J. Fry, R. S. H. Liu, and G. S. Hammond, <u>J. Amer</u>.

 <u>Chem. Soc.</u>, <u>88</u>, 4781 (1966).
- 89. G. S. Hammond and R. S. Cole, <u>ibid</u>., <u>\$7</u>, 3256 (1965).
- 90. S. L. Murov, R. S. Cole, and G. S. Hammond, <u>ibid.</u>, <u>90</u>, 2957 (1968).
- 91. F. D. Lewis, Tetrahedron Lett., 1373 (1970).
- 92. F. D. Lewis and T. A. Hilliard, <u>J. Amer. Chem. Soc.</u>, 92, 6672 (1970).
- 93. F. D. Lewis and T. A. Hilliard, ibid., 94, 3852 (1972).
- 94. P. J. Wagner, I. Kochevar, and A. E. Kemppainen, ibid., in press.
- 95. R. G. Zepp and P. J. Wagner, <u>J. Chem. Soc. D</u>, <u>Chem.</u>
 Commun., 167 (1972).
- 96. R. E. Kellogg and W. T. Simpson, <u>J. Amer. Chem. Soc.</u>, 87, 4230 (1965).
- 97. S. P. McGlynn, T. Azumi, and M. Kinoshinta, "Molecular Spectroscopy of the Triplet State," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969, Table 4.12, p. 159.
- 98. W. A. Pryor, "Free Radicals," McGraw-Hill Book Company,
 New York, N. Y., 1966, p. 223-226.
- 99. W. A. Pryor, "Free Radicals," McGraw-Hill Book Company, New York, N. Y., 1966, p. 87, 88 and references cited therein.
- 100. P. J. Wagner and J. M. McGrath, <u>J. Amer. Chem. Soc.</u>, 94, 3849 (1972).

- 101. F. D. Lewis, Personal Communication.
- 102. N. J. Turro and D. M. McDaniel, Mol. Photochem., 2, 39 (1970).
- 103. C. Walling and A. Padwa, <u>J. Amer. Chem. Soc.</u>, 85, (1963).
- 104. C. Walling and A. Padwa, <u>ibid</u>., <u>85</u>, 1597 (1963).
- 105. P. J. Krusic and T. A. Rettig, <u>ibid</u>., 92, 722 (1970).
- 106. R. K. Solly and S. W. Benson, <u>ibid</u>., 93, 1592 (1971).
- 107. D. M. Golden and S. W. Benson, <u>Chem. Rev.</u>, 62, 125 (1969).
- 108. S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Chem. Rev., 62, 279 (1969).
- 109. R. F. Borkman and D. R. Kearns, <u>J. Chem. Phys.</u>, 44, 945 (1966).
- 110. M. O'Sullivan and A. C. Testa, <u>J. Amer. Chem. Soc.</u>, <u>92</u>, 258 (1970).
- 111. R. Hoffman and J. R. Swenson, <u>J. Phys. Chem.</u>, 74, 415 (1970).
- 112. E. W. Abrahaman, J. G. F. Littler and K.-P. Vo,

 <u>J. Chem. Phys.</u>, 44, 4082 (1966).
- 113. P. J. Wagner and R. A. Leavitt, <u>J. Amer. Chem. Soc.</u>, 92, 5806 (1970).
- 114. A. E. Kemppainen, Ph. D. Thesis, Michigan State University, 1971.
- 115. P. J. Wagner, J. McGrath and A. E. Kemppainen, <u>J. Amer.</u>
 Chem. Soc., submitted.

- 116. P. J. Wagner, Personal Communication.
- 117. A. Padwa, E. Alexander, and M. Niemcyzk, <u>J. Amer. Chem.</u>

 <u>Soc.</u>, <u>91</u>, 456 (1969).
- 118. A. Padwa and D. Eastman, <u>ibid</u>., 91, 462 (1969).
- 119. D. S. Weiss, N. J. Turro, and J. C. Dalton,

 Mol. Photochem., 2, 91 (1970).
- 120. R. B. Gagosian, J. C. Dalton, and N. J. Turro,

 <u>J. Amer. Chem. Soc.</u>, 22, 4752 (1970).
- 121. N. Sugiyama, K. Yamada, and H. Aoyama, <u>J. Chem. Soc.</u>
 <u>C</u>, 830 (1971).
- 122. R. Hoffman, S. Swaminathau, B. G. Odell, and R. Gleiter,

 <u>J. Amer. Chem. Soc.</u>, 22, 7081 (1970).
- 123. L. M. Stephenson, P. R. Cavigli, and J. L. Parlett, ibid., 93, 1984 (1971).
- 124. L. M. Stephenson and J. I. Brauman, <u>ibid</u>., 93, 1988 (1971).
- 125. L. M. Stephenson and T. A. Gibson, <u>ibid</u>., 24, 4599 (1972).
- 126. J. B. Lambert and J. D. Roberts, <u>ibid</u>., <u>87</u>, 3384, 3891 (1965).
- 127. H. E. Zimmerman, <u>Tetrahedron Suppl. 2</u>, 12, 393 (1963).
- 128. P. J. Wagner, J. M. McGrath, and R. G. Zepp, <u>J. Amer.</u>
 Chem. Soc., in press.
- 129. F. D. Lewis and J. G. Magyar, <u>J. Org. Chem</u>., <u>37</u>, 2102 (1972).
- 130. D. O. Cowan and A. A. Baum, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 1153 (1971).

- 131. R. A. Keller and L. J. Dolby, <u>ibid</u>., 21, 1293 (1969).
- 132. R. E. Rebbert and P. Ausloss, <u>ibid</u>., <u>87</u>, 1847 (1965).
- 133. R. E. Rebbert and P. Ausloos, <u>ibid</u>., <u>87</u>, 5569 (1965).
- 134. G. R. DeMare, M.-C. Fontaine, and M. Termonia,

 Chem. Phys. Letters, 11, 617 (1971).
- 135. E. F. Ullman and N. Baumann, <u>J. Amer. Chem. Soc.</u>, 70, 4158 (1968).
- 136. E. F. Ullman and R. Weinkam, <u>ibid</u>., 22, 5256 (1970).
- 137. E. F. Ullman and N. Baumann, <u>ibid</u>., 22, 5892 (1970).
- 138. W. D. Totherow and G. J. Gleicher, <u>ibid</u>., <u>91</u>, 7150 (1969).
- 139. G. Stork and S. R. Dowd, <u>ibid</u>., &&, 2178 (1963).
- 140. M. D. Soffer, R. A. Stewart, J. C. Cavagnol,
 H. E. Gellerson, and E. A. Bowles, <u>ibid</u>., 72, 2704 (1950).
- 141. J. March, "Advanced Organic Chemistry. Reactions, Mechanisms, and Structure," McGraw-Hill, New York, 1968, p. 692-694.
- 142. E. W. Warnhoff, D. G. Martin, and W. S. Johnson,

 Org. Syn., Colly Voly 4, 162 (1963).
- 143. F. G. Moses, R. S. H. Liu, and B. M. Monroe, <u>Mol</u>.

 <u>Photochem</u>., 1, 245 (1969).
- 144. C. C. Sweeley, B. D. Ray, W. I. Wood, and J. F. Holland,

 Anal. Chem., 42, 1505 (1970).
- 145. R. M. Silverstein and G. C. Bassler, "Spectrometric Identification of Organic Compounds," John Wiley and Sons, Inc., New York, 1963, p. 83-88.

